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Motivated by enrobing processes in manufacturing technology with intelligent coatings, this work analyses the 

flow of an electroconductive incompressible nanofluid with heat distribution in a boundary layer containing 

metallic nanoparticles or ferroparticles along an extending cylindrical body with magnetic induction effects. The 

quasi-linear boundary conditions for the partial derivative formulations connecting to the far stream and cylinder 

wall are converted to ordinary non-linear derivatives by applying appropriate similarity transformations. The 

emerging system of derivatives are solved by a stable, efficient spectral relaxation method (SRM). The SRM 

procedure is benchmarked with special limiting cases in the literature and found to corroborate exceptionally well 

with other studies in the literature. Here, water is taken as the base liquid containing homogenously suspended 

non-magnetic (Nimonic 80a, Silicon Dioxide (SiO2) or magnetic nanoparticles Ferric Oxide (Fe3O4), Manganese 

Franklinite (Mn-ZnFe2O4),). The influence of all key parameters on the velocity and temperature distributions are 

displayed in graphs and tables with extensive elucidation. The wall local drag force (skin friction) and local 

temperature gradient (Nusselt number) are also visualized graphically for various parameters. The rate of 

convergence of the spectral relaxation method (SRM) convergence is compared with that of the successive over 

relaxation (SOR) method and observed to converge faster. Larger magnetohydrodynamic body force parameter 

and inverse of Prandtl magnetic number induces flow deceleration whereas it enhances temperatures. Flow 

acceleration is computed for SiO2non-magnetic nanoparticles and good heat conduction augmentation is produced 

with nanoparticle magnetic Fe3O4. Rising fractional volume of the solid nanoparticle decelerates the axisymmetric 

flow for both non-magnetic and magnetic nanoparticles whereas it elevates the magnetic induction and 

temperature magnitudes.  

 

Keywords: Spectral relaxation method; Metallic nanoparticles; Ferro nanoparticles; Stretching cylinder; 

Cylinder curvature; Electromagnetic induction 

 
1. INTRODUCTION 

The heat diffusion fluid flow in a boundary layer has many engineering usefulness, for example, enrobing system 

synthesis of fuel cell, extrusion of polymer sheet, coating dynamics, etc. The theory of boundary-layer in viscous 

Navier-Stoke equations is valuable because its can assist in maintaining a streamlined computation and physical 

accuracy, Schlichting [1]. This theory has therefore been implemented extensively in chemical and process 

mechanical engineering systems which feature viscous fluids in contact with a variety of geometries. For example, 

the boundary layer behavior on the stretching plates (conveyor belts) were considered by Sakiadis [2, 3]. Crane 

[4] extended the study done by Sakiadis on the boundary layer flow by including unvarying ambient heat in the 

fluid. A similarity closed form solution was found for distance and velocity linear variant. Various scientists 

successively adapted the Crane-Sakiadis formulation to incorporate other fluid physical properties such as 

radiation, porosity, exponential sheet, magnetic field, heat flux, injection/suction and so on. Illustrative studies in 

this area includes [5-12].  

The studies enumerated above ignored curvature and restricted the flow medium to moving vertical or horizontal 

devices. Many technological mechanisms are intrinsically curved, and thus need coating boundary layer 

formulations that combine curvature properties. For instance, Schwarz and Wediner [13] reported that curvature 

surface is corresponding to overpressure propagation of flowing liquid with time-independent. Magyari et al. [14] 

stressed the substantial adjustments in the wall drag friction and the rate of heat distribution produced by curvature. 



3 
 

In the cylinder surface, radius is related to the thickness of the boundary layer and the external boundary layer 

flow may be considered as 2-D. For a thin cylinder the radius and the thickness of the boundary layer are taken 

be of equal order. For this reason, the flowing liquid in 2-D is taken as axisymmetric [15, 16]. The condition is 

additional complicated for contracting (or extended) cylinder surface, a process that is obtained in pipe fabrication, 

blow moulding, etc. [17-20]. Wang [21] established steady Newtonian analytical solutions for flows past an 

extending cylinder. Ishak et al. [22] performed numerical calculations for hydromagnetic convection flow du 

stretching cylinder and studied the velocity and heat impacts on the physical parameters.  Ishak et al. [23] studied 

the effect of blowing/suction on the flowing liquid and heat diffusion from an extending permeable cylinder. Butt 

et al. [24] studied the combined effect of porous drag, magnetic field and energy irreversibility on Newtonian flow 

from a widening cylinder. He also observed decline in the velocity boundary film viscosity with permeability 

parameters and magnetic force.  

In recent years, nanofluids have been increasingly deployed in industrial and technological systems. They 

constitute a unique subset of nanomaterials. Commonly used heat distribution liquids like ethylene glycol, water, 

and engine oil having small thermal conductivity when compared to metals. Therefore, dispersing solid metal 

particles in heat diffusion can meaningfully increase heat conduction, Nima et al. [25]. Nanofluids consists of 

nanoparticles distributed in the base liquids such as, water, ethylene glycol, etc. The very imperative 

physiognomies of nanofluids is there heat conductivity strength, Ogunseye et al. [26]. The nanoparticles adopted 

in the nanofluids synthesis are basically carbides (SiC), nitrides (SiN, AlN), metallic oxides (TiO2, Al2O3), metallic 

(Cu, Al) or nanotubes carbon of diameters between the range 10 and 100nm. Sandeep et al. [27] considered 

transient convective of nanoliquid Nimonic 80a flowing fluid (alloy, iron, chromium, nickel)-Ethylene glycol 

along a vertical infinite sheet. It was detected that with a modified nanoparticle shape, rate of heat conduction is 

improved. Pandey and Kumar [28] reported on the flowing Cu-water nanoliquid in a stretching slippery cylinder 

with heat transfer boundary layer. Recently, new fluids have come up with magnetic and super magnetic particles 

that shows both heat and magnetic augmentation property. This kind of nanoparticle has wide-ranging usages in 

biomedicine, Pankhurst et al. [29], thin film smart polymer coating smart thin films [30-32], swirling bio-

convection nanofluid, Shamshuddin et al. [33], nuclear smart pumping bio-inspired systems, Abdelsalam et al. 

[34], Quadruple solutions on nanofluid over exponential shrinking/stretching surface, Lund et al. [35], Dual 

solution on MHD Casson nanofluid over shrinking sheet, Lund et al. [36] and multiple solutions on nanofluid 

containing hybrid nanomaterials over shrinking sheet, Lund et al. [37]. Numerous students have established 

vigorous mathematical formulations for the flow of magnetic nano-particle through robust foundation 
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experimental data. Anwar Bég et al. [38] has done extensive study on hydromagnetic flow of different magnetic 

nanoparticles and base fluids. They observed that silver nanoparticles combined with each base fluid achieve the 

best temperature elevation, flow acceleration and magnetic induction. Rarani et al. [39] used sonicator-prepared 

iron-oxide-ethylene glycol magnetic nanofluids to show that greater electric field decreases viscosity of magnetic 

nanofluids and that nanofluids is observed at higher concentration of nanoparticles. Kandasamy [40] derived 

closed form solution for nanoliquid flow to analyze wall transpiration effects with stretching boundary flow. 

Shukla et al. [41] employed a homotopy method and Bejan minimization technique to simulate entropy generation 

in reactive magnetic nano-particle doped stagnation coating flows. Bég et al. [42] employed finite difference along 

with variational iteration methods to compute the influence of thermo-capillary convection in magnetic/ferro-

nanofluid flow. Sandeep [43] studied non-Newtonian stagnation point flow of ferro-nanofluids along an 

elongating sheet with induced magnetic field. Qasim et al. [44] considered the hydromagnetic ferrofluid 

convection for an extending cylinder. Nevertheless, to the knowledge of the authors’, heat transport flow of ferro-

nanoliquid past a moving cylinder with diverse non-magnetic and magnetic nanoparticles and magnetic induction 

has thus far not been considered in the scientific reports, thus, the current study focus. In this case, a stationary 

applied magnetic field is considered along the longitudinally extending cylinder axis. By transformation similarity 

variables, the multi-physical nonlinear model is changed to ordinary system of derivatives from partial derivatives 

with suitable far stream and wall conditions.  An alternative computational procedure known as the spectral 

relaxation method (SRM) is employed to have solutions to the boundary layer ordinary derivative equations which 

displayed a fast convergence rate. The applied simulations technique may find usefulness in the technology 

components coating with nano-magnetic materials. 

 

2. CYLINDRICAL STRETCHING MODEL FLOW ANALYSIS 

An axisymmetric, non-uni-directional of an incompressible moving boundary layer cylinder flow of aqueous 

ferro-nanoliquid is investigated. The r-axis is assumed along the radial direction while x-axis is oriented in the 

cylinder axis. The induced magnetic effect is significant due to huge Reynolds number and the flow is therefore 

distorted the magnetic field [45]. The magnetic field is normal to mutual components, 
1 2( , )H H H  and its aligned 

to the cylinder axis. The parallel component 
2H  is the magnetic induced field of perpendicular element that 

dissipates at the cylinder surface, 
1H  tends to an assumed value 

0HxH e = at the periphery (free stream). The 

temperature at wall is 
wT  and temperature of far stream isT

 as described in Figure 1. Additionally, the cylinder 
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is taken to be elongated along the axial direction and have the linear stretching rate, 
0 ( / )wU U x l= in which 

l is the cylinder length and 
0U  is constant.  

 

Fig. 1: Physical dimensional flow coordinate system 

Extending the model [22, 44], new system of principal equations for the stretching regime, may be written as: 
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The appropriate flow analysis boundary conditions are  

1
2

1

, , 0, 0,

, 0, 0, ,

w w

e

H
At r a u U v H T T

r

As r u v H H T T
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= = = = = = 

 
→ → = → → 

                                                                                (6) 

 

2.1 Nanoscale Model and Transformation 

To inspire the adapted characteristic of the nanoliquid, nanofluid density is defined as nf , the dynamic nanofluid 

viscosity is described as nf , and the heat nanofluid diffusivity is taken as nf  separately as [22]: 
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For uncomplicatedness, the succeeding transformation variables are used on the dimensional equations (1)-(6): 

( ) ( ) ( ) ( )
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For the momentum field, the dimensional steam function quantity is denoted as ),( rx : 

1 1
,u v

r r r x

  
= = −
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                                                                                                                                       (9) 

On applying the transformation variables, the dimensionless boundary layer nanofluid derivative equations takes 

the form: 
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Proceeding with the analysis we define:  
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Eqns. (10)-(12) therefore take the absolute form: 
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With boundary conditions  
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Now, the bodily measures from the point of view of engineering, wall coefficient dragging friction and wall 

temperature gradient (Nusselt number) can be assessed by the subsequent definitions  
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Here w is the wall friction and the plate heat flux is represented by wq which can be written as: 
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3. COMPUTATIONAL SOLUTION WITH SPECTRAL RELAXATION METHOD (SRM) 

Using spectral collocation, a system of large nonlinear equations is reduced to smaller systems of linear equations 

by simple iteration technique which is known as the spectral relaxation method. Motsa [46] has described this 

method in detail. The method has been applied in numerous viscous fluid dynamics problems including micropolar 

geophysical plume dynamics, Anwar et al. [47], exothermically reacting gel propulsion, Anwar et al. [48], von 

Kármán swirling viscoelastic flow, Motsa and Makukula [49], unsteady rotating flows with activation energy and 

species binary reaction, Awad et al. [50] and transient mixed convection in magnetic nanofluids from stretching 

or shrinking surfaces. SRM is correspondingly used on the quasi-linear coupled systems of derivative equations. 

The transformed Eqs. (14)-(17) is discretized by following the SRM algorithm procedures which involves 3 

stages: 

1. Set )()(  Ff =  for the equation order to be reduced.  
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2. )(f  is evaluated from previous computation (symbolized by )(rf ), and linear terms in )(F are 

calculated at present stage (represented by )(1 +rF ) and all other terms are previously known from the 

existing stage.  

3. The same computation schemes is followed for other dependent variables.  

This method is equivalent to the Gauss-Seidel technique. The algorithm stated above leads to. Chebyshev spectral 

collocation methods ([51], [52]). Spectral methods have remarkably high accuracy and are easy to implement 

within simple domains.  

Eqns. (14)- (17) now become: 
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The associated boundary conditions: 
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To solve (23)-(30) we used Chebyshev spectral collocation technique ([50], [51]). The spectral technique is 

applied in the domain [-1,1]. The transformation 
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Where N+1 is the number of grid points, 
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As a power of D, higher derivative orders are gotten: 

( )p p
f D fr r=                                                                                                                                                       (33) 

Where the derivative order is p . Utilizing the spectral method to Eqns. (23) to (27) to have: 

1 1 1 1 1 0, ( ) 1, ( ) 0r r N rA F B F F + + += = =                                                                                                   (34) 

2 1 2 1, ( ) 0,r r NA f B f + += =                                                                                                                           (35) 

3 1 3 1 0, ( ) 1,r rA G B G + += =                                                                                                                            (36) 
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4 1 4 1, ( ) 0,r r NA g B g + += =                                                                                                                           (37) 

5 1 5 1 1 0, ( ) 1, ( ) 0r r N rA B    + + += = =                                                                                                       (38) 

Where, 
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k
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In Eqn. (42), the identity matrix is I. Diag [ ] refers to a diagonal matrix, ,,,, GgFf  correspondingly, when 

calculated at the grid points and the iteration number is signified by the subscript r. The initial assumptions for 

the functions is chosen to be compatible with boundary conditions. Therefore, we make the following guess for 

the initial value of the functions:  

0 01 , ( ) , ( ) , ( ) 1, ( )f e F e g e G e
       − − − −

= − = = = =                                            (45) 

For collocation point, N=80 is considered to have a precise results. Taking from the preliminary guesstimate (45), 

the SRM technique is used to achieve the resulting condition  

1 1 1max ( , , )r r r r r r rF F G G   +  +  + − − −                                                                                            (46) 

Where, 
r is a error tolerance taken to be 610−  . We have used the spectral method to fast the convergence of 

iterative by introducing relaxation parameter   on Eqns. (34)-(38): 

1 1 1 1(1 )r rA F A F B + = − +                                                                                                                            (47) 

2 1 2 2(1 )r rA G A G B + = − +                                                                                                                          (48) 

3 1 3 3(1 )r rA A B   + = − +                                                                                                                       (49) 

Subject to the same conditions, the value of   depends upon the input terms that provides the good convergence 

depending on the input parameters magnitude. We have taken    in the range 0.74< <1 which correspond to 

under relation (SOR,  <1). An assessment table of results for the SRM with SOR and the basic SRM are 

presented in Table 1 for the wall temperature gradient (various nanoparticles is examined). It is seen that SRM 

with SOR quickens the rate of convergence. 
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Table 1: Assessment of wall temperature gradient convergence (Nusselt number) for SRM with SOR and SRM 

 

Terns 

 

Nanoparticles 

 

Nusselt number 

Iterations required 

Basic SRM SRM with 

SOR 
0.5, 0.14, 0.5,

0.1 ,0.15, Pr 0.72

  



= = =

= =
 

 

Mn-ZnFe2O4 

 

0.14 

 

37 

 

19 

0.5, 0.1, 0.5,

0.1 ,0.15, Pr 0.72

  



= = =

= =
 

 

SiO2 

 

1.2356 

 

38 

 

21 

1.1, 0.1, 0.5,

0.1 ,0.15, Pr 0.72

  



= = =

= =
 

 

Nimonic 80a 

 

1.1249 

 

33 

 

15 

0.5, 0.1, 0.5,

0.1 ,0.15, Pr 0.72

  



= = =

= =

  

Fe3O4 

 

1.2233 

 

35 

 

20 

 

4. VALIDATION  OF SRM RESULTS AND DISCUSSION 

A broad computed series of SRM has been carried out in Figs. 2a-11b. A thermo-dynamical properties of 

parameters sensitivity with water based fluid for four nanoparticles are examined, two are non-magnetics (SiO2 

and Nimonic 80a), and two are magnetics (Mn-ZnFe2O4, and Fe3O4) are given in the Table 2 ([44, 53]).  

The exactness of MATLAB symbolic software for spectral relaxation method (SRM) in standard form is 

confirmed with models from available articles. Using 
1 2 1 / ,nf fk k = = = 0   = = = =  and changing 

the value of Pr , the adopted method (SRM) results are compared for the wall temperature gradient (Nusselt 

number) with the asymptotic solutions of Wang [54] and finite difference of Keller-box solution procedure by 

Khan and Pop [55]. The obtained computed results are established showing a good quantitative agreement with 

others as revealed in Table 3, the accuracy of the solution technique (SRM) is then defensibly. Pr 1 denotes 

small fluid heat conductivity, Pr 7= represents water while polymers takes Pr 20 . 

Table 2: Thermo physical property of nanoparticles and base fluid. 

  (kg/m3) 
pc (J/Kg-K) k (W/m-K) 

Water 997.1 4179 0.613 

Fe3O4 5180 670 9.7 

Mn-ZnFe2O4 4900 800 5 

Nimonic 80a 8190 448 112 

SiO2 2220 745 1.38 

 

Table 3: Assessment of Prandtl number on the asymptotic Nusselt number solutions 

Pr  Present Study Wang [54] Khan and Pop [55] 

0.2 0.1691012 0.1697 0.1691 

0.7 0.4539616 0.4539 0.4539 

2 0.9113768 0.9114 0.9114 

7 1.8954305 1.8954 1.8954 

20 3.3539414 3.3539 3.3539 

70 6.4621077 6.4622 6.4622 
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Figure 2a: Flow rate fields, ( )f   for various   and various nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.1, Pr 0.72   = = = = =  

 
Figure 2b: Stream magnetic gradient function, ( )g   for various  and various nano-ferrofluids, with  

0.5, 0.1, 0.5 , 2 , 0.1, Pr 0.72   = = = = =  

 
Figure 2c: Temperature fields, ( )  for various   and various nano-ferrofluids, with 

0.5, 0.1, 0.5 , 2 , 0.1, Pr 0.72   = = = = =  
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             Figure 3a: Velocity profiles, ( )f   for various Pr  and different nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.1, Pr 0.72, 4.17   = = = = =  

 

    
Figure 3b: Stream magnetic gradient function, ( )g   for various Pr and various nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.1, Pr 0.72, 4.17   = = = = =  

 
Figure 3c: Temperature profiles, ( )   for various Pr and different nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.1, Pr 0.72, 4.17   = = = = =  
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Figure 4a: Flow velocity field, ( )f   for various  and various nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.5, 0.1, Pr 0.72   = = = = =  

 

 
Figure 4b: Stream magnetic gradient function, ( )g   for various   and various nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.5, 0.1, Pr 0.72   = = = = =  

 
Figure 4c: Temperature fields, ( )   for various  and various nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.5, 0.1, Pr 0.72   = = = = =  
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Figure 5a: Velocity field, ( )f   for various  and various nano-ferrofluids, with 

0.5,1, 0.1, 0.5, 0.1, Pr 0.72   = = = = =  

 
Figure 5b: Stream magnetic gradient function, ( )g   for various  and various nano-ferrofluids, with 

0.5,1, 0.1, 0.5, 0.1, Pr 0.72   = = = = =  

 
Figure 5c: Temperature fields, ( )   for various   and various nano-ferrofluids, with 

0.5,1, 0.1, 0.5, 0.1, Pr 0.72   = = = = =  



15 
 

 
Figure 6a: Flow velocity fields, ( )f   for various   and various nano-ferrofluids, with

0.5,1, 0.1, 0.5, 0.1,0.15,Pr 0.72   = = = = =   

 

 
Figure 6b: Stream magnetic gradient function, ( )g   for various   and various nano-ferrofluids, with

0.5,1, 0.1, 0.5, 0.1,0.15,Pr 0.72   = = = = =  

 
Figure 6c: Temperature distributions, ( )   for various   and various nano-ferrofluids, with 

0.5, 0.1, 0.5, 0.1,0.15, Pr 0.72   = = = = =  
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Figure 7a: Surface shear stress distribution, (0)f   versus for different nano-ferrofluids, with 

0.5, 0.1, 0.1, Pr 0.72  = = = = . 

     

Figure 7b: Temperature gradient profiles, (0)   versus  , for different nano-ferrofluids, with 

0.5, 0.1, 0.1, Pr 0.72  = = = = . 

 

 
Figure 8a: Wall shear stress distribution, (0)f  against  , for different nano-ferrofluids, with 

0.5,1, 0.5, 0.1, Pr 0.72  = = = = . 
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Figure 8b: Temperature gradient profiles, (0)   versus  , for different nano-ferrofluids, with 

0.5, 0.5, 0.1, Pr 0.72  = = = =  

 
Figure 9a: Wall shear stress distribution, (0)f  against Pr , for different nano-ferrofluids, with 

0.5, 0.1, 0.1, 0.5   = = = = . 

 

Figure 9b: Temperature gradient profiles, (0)   versus Pr for different nano-ferrofluids, with 

0.5, 0.1, 0.1, 0.5   = = = =  
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.  

Figure 10a: Wall shear stress distribution, (0)f   against  , for different nano-ferrofluids, with 

0.5, 0.1, 0.5, Pr 0.72  = = = = . 

 
Figure 10b: Temperature gradient profiles, (0)   versus  , for different nano-ferrofluids, with 

0.5, 0.1, 0.5 ,Pr 0.72  = = = =  

 
Figure 11a: Wall shear stress distribution, (0)f  against  , for different nano-ferrofluids, with 

0.5,1, 0.1, 0.1, Pr 0.72  = = = =  
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Figure 11b: Temperature gradient profiles, (0)   versus   for different nano-ferrofluids, with 

0.5, 0.1, 0.1,Pr 0.72  = = = =  

 

Fig. 2a-c shows the evolution in ( )f  , ( )g  and ( )   profiles for different nano-ferrofluids (magnetic and 

non-magnetic) suspensions for variation in the inverse of Prandtl magnetic number,  . Fig. 2a indications that 

the flow rate ( )f   is highly reduced along the boundary layer with expanding numerical figures of λ. The non-

magnetic nanoparticle SiO2 shows high magnitude of velocity field (thinnest momentum boundary layer) while 

magnetic nanoparticle Fe3O4 displays lowest flow rate magnitude (thickest momentum boundary layer). 

Meanwhile, the remaining nanoparticles creates flow velocity at the two extremes with Mn-ZnFe2O4 lower than 

the Nimonic 80a for high computational figure of . Figure 2b exhibitions the impact of  on the stream 

magnetic gradient function distributions ( )g  . As seen, increasing values of  creates a support for the stream 

magnetic gradient function. In the observed situations, the flow distribution tends to a unity asymptotic in the far 

flow field. Magnetic Prandtl number [42, 56-58] expresses the rate of viscous distribution ratio to the rate of 

magnetic dispersion rate (i.e. the Reynolds magnetic number ratio to the regular Reynolds number). The term

denotes the reciprocal ratio i.e. the rate of viscous diffusion dividing the rate of magnetic diffusion. Therefore, for

1  , the rate of viscous diffusion surpasses the rate of magnetic diffusion and otherwise for 1  . Whenever 

the magnetic diffusion controls intensifies, the impact of inducted magnetic shows high degrees of ( )g  is 

attained for 2 = (boundary denser layer of magnetic field) and a repressed magnitudes of magnetic induction 

equivalent to 0.5 =  (boundary thinner layer magnetic field) in fig. 2b. However, the converse effect is generated 

in the velocity field (fig. 2a) although no back flow is ever produced around the flow boundary film. Minimum 

values of ( )g  are gotten for nanoparticles SiO2, follow by Nimonic 80a Mn-ZnFe2O4 then Fe3O4. Obviously 

ferromagnetic properties are valuable to the induced magnetic field. Figure 2c illustrations that for high numerical 
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figures of , a separate temperature elevation is seen (and thermal boundary layer thickness). Higher relative 

diffused magnetic to viscous diffusivity is then supportive to the heat distribution process. Also, magneto-

nanoparticles display considerably larger thermal conductivity augmentation when related to non-magneto 

nanoparticles, for instance, lowest amount of heats are generated by non-metallic SiO2 follow by Nimonic 80a 

then Mn-ZnFe2O4, and finally by Fe3O4. 

Fig 3a-c depict the evolution in velocity, magnetic induction and temperature distribution for different nanofluids 

(magnetic and non-magnetic) with Prandtl number (Pr) . No tangible mitigation are computed either in velocity or 

in temperature (Figs. 3a, b) as Prandtl number changes. This invariance is largely associated with the forced 

convection flow nature and also the absence of magnetic field impacts on the Prandtl number (i.e. the expresses 

of the ratio of the viscous to the heat diffusion rates of the flow). Temperature (Fig. 3c) is clearly reduced with 

increasing Prandtl number (corresponding to a decrease in nfk ). This behavior is exhibited by both magnetic and 

non-magnetic nanoparticles. The temperature boundary layer viscosity is depleted with higher Prandtl number. 

The lowest heat transfer enhancement is associated with SiO2, Fe3O4, Mn-ZnFe2O4 and Nimonic 80a in the 

respective order. Therefore, both the highest and lowest heat transfer enhancement is achieved by non-magnetic 

nanoparticles and the magnetic nanoparticle performance (Fe3O4, Mn-ZnFe2O4) falls between the Nimonic 80a 

and SiO2 cases. 

 Figs. 4a-c visualize the influence of the body force magnetic term,  , on the ( )f  , ( )g  and ( )  function 

distribution for different nanofluids (magnetic and non-magnetic).  Velocity profile (Fig. 4a) clearly decreases as

 increases i.e. the flow momentum field declined in the device and the flow velocity boundary layer viscosity is 

increased and this is associated with the retarding nature of the body Lorentz force impact on the flow momentum 

Eqn. (14). Non-magneto nanoparticle, SiO2 produces the maximum flow rate (strong flow acceleration) while 

magneto-nanoparticle Fe3O4 achieves the least flow rate (thickest momentum boundary layer thickness). Figure 

4b indicates that increasing magnetic body force parameter,  results in an enhancement in the stream magnetic 

gradient function (magnetic induction). In the observed cases, minimum values are associated with the cylinder 

surface and these grow to a maximum in the free stream. Maximum magnetic induction is generated for Fe3O4 

then by Mn-ZnFe2O4, follow by Nimonic 80a, and to the least by SiO2. Fig. 4c shows that the magnetic 

nanoparticles achieve the best heat transfer enhancement i.e. least heats are obtained for SiO2, then by Nimonic 

80a follow by Mn-ZnFe2O4, and finally Fe3O4 in that order.  
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Fig. 5a-c shows the evolution in ( )f  , ( )g  and ( )   profiles with cylinder curvature parameter, 

( )2

0/fl U a = . This parameter features in eqns. (14-(16). As cylinder radius increases clearly the curvature 

parameter is reduced (inverse relation). Conversely for smaller cylinder radius (decreasing cylinder surface area) 

there is a greater curvature effect which encourages momentum diffusion in the boundary layer and velocity 

enhancement (thinner momentum boundary layers), as also noted by Magyari et al. [14], among others. The 

highest velocity is achieved by SiO2 then by Mn-ZnFe2O4, follow by Fe3O4 and finally by Nimonic 80a in the 

respective order. Stream magnetic gradient function (Fig. 5b) is also boosted with greater curvature effect 

indicating that a smaller surface area of the stretching cylinder is assistive to magnetic diffusion. Figure 5c clearly 

indicates that a slight raise in the heat is generated with greater cylinder curvature term and this creates a thermal 

boundary thicker layer. The highest heat transfer enhancement is achieved with the Nimonic 80a then by Fe3O4, 

follow by Mn-ZnFe2O4 then lastly SiO2. The boost in temperatures is however less prominent when compared 

with velocity and magnetic induction over the same increment in curvature parameter. 

 Figs. 6a-c show the response in ( )f  , ( )g  and ( )  fields with the perpendicular coordinate of the volume 

fraction solid change term,  , and various nanoliquid suspensions (magnetic and non-magnetic). Species mass 

doping of 10% and 15% are examined for ( = 0.1, 0.15). In figure 6a, it is obvious that a small declination of 

the flow with higher variation of fractional volume occurs i.e. the thickness of the flow velocity boundary layer 

reduces. The nanomaterial non-magnetic SiO2 attains the peak flow rate, next by Mn-ZnFe2O4, follow by Fe3O4 

and lastly by Nimonic 80a. The stream magnetic gradient function (fig. 6b) shows a significant boost with 

increasing fractional solid volume term. The impact is very noticeable close to the cylinder wall, increasingly 

shrinking towards the far stream. In figure 6c, it is clear that high stream magnetic gradient function is realized 

by SiO2 next to it by Mn-ZnFe2O4, follow next is Fe3O4 and finally Nimonic 80a in the order. Fig. 6c displays a 

relative feeble rise in the nanoliquid heat distribution; a good thermal improvement is achieved for the nanofluid 

Nimonic 80a, next by Fe3O4, follow next is Mn-ZnFe2O4 and then by SiO2. The same trend of temperature reaction 

is noticed as reported by [33, 53], though in the deficiency of induced magnetic field.  

Figures 7a-b illustrate the coefficient of wall dragging friction and temperature gradient (Nusselt number) 

distributions for various rising values of inverse Prandtl magnetic number, . Clearly, the skin friction is reduced 

strongly with greater  values indicating a significant deceleration of the flow boundary layer with depletion in 

the boundary layer hydrodynamic viscosity. Maximum skin friction coefficient corresponds to ferromagnetic 

nanoparticles i.e. Fe3O4 next to it is Mn-ZnFe2O4, then follow by Nimonic 80a and finally by SiO2. However, there 
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is a substantial elevation in the rate of heat transport gradient to the cylinder wall (Nusselt number) with rising 

values of  . Non-magnetic nanoparticles have a much larger Nusselt number than magnetic nanoparticles. SiO2 

has the highest Nusselt number followed by Nimonic 80a, Mn-ZnFe2O4 and Fe3O4 respectively. 

 Figs. 8a-b represent the reaction coefficient of wall friction and Nusselt number fields to changing in the magnetic 

term,  . As 
 
increases (stronger applied magnetic field, Ho) the shear stress coefficient decreases indicating 

marked flow retardation. Again, the maximum skin friction coefficient is associated with Fe3O4 next to it is Mn-

ZnFe2O4, follow next is Nimonic 80a and last to it is SiO2 respectively. Increasing   values also elevate the 

Nusselt number at the cylinder surface.  Non-magnetic nanoparticles produce higher Nusselt numbers (at any 

value of magnetic parameter) than magnetic nanoparticles. SiO2 has the highest Nusselt number followed by 

Nimonic 80a, Mn-ZnFe2O4 and Fe3O4 (ferromagnetic) respectively. 

 Figs. 9a, b visualizes the evolution in skin friction and Nusselt number with Prandtl number. By varied range of 

Pr (<1 up to 10) there is no tangible modification in skin friction for any nanoparticle (legend is given in fig. 9b). 

The value of Nusselt number however significantly increases as Pr  increases indicating the intensification in heat 

transferred to the cylinder surface from the nanofluid with progressively lower nfk . SiO2 has the highest Nusselt 

number then followed by Nimonic 80a, Mn-ZnFe2O4 and Fe3O4 respectively.  

Figs. 10a, b illustrate the impact of solid fractional volume parameter on wall skin dragging force 

(dimensionless surface shear stress function) and Nusselt number for the investigated nano-particles. The 

computational figures for   is taken between the figures 0.02 to 0.1, Qasim et al. [44] which aligns to 2% to 10% 

doping nanoparticle. As the value 
 
is raised, the coefficient of the shear stress reduces i.e. high induced flow 

shrinking is noticed. The nanoparticle non-magnetic Nimonic 80a reaches the maximum shear stress, and 

nanoparticle non-magnetic SiO2 generate the smallest shear stress. On the other hand, Nusselt number (wall 

temperature gradient) decreases with solid volume fraction, since temperatures are increased (see earlier figures) 

and this confirms the effectiveness of nanofluids as superior thermal working fluids [25]. With reduction in 

Nusselt number there is a corresponding transfer of heat into the nanofluid leading to thicker thermal boundary 

layers [38-41]. Non-magnetic nanoparticles have the largest Nusselt numbers compared with magnetic 

nanoparticles which produce the lowest Nusselt numbers at any volume fraction. SiO2 has the highest Nusselt 

number then followed by Nimonic 80a, Mn-ZnFe2O4 and Fe3O4 respectively. 

Figs. 11a, b demonstration the variant in cylinder wall skin friction (dimensionless surface shear stress function) 

and Nusselt number again for all 4 nano-particles investigated, with cylinder curvature parameter . The values 
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of   are selected in the range, 1 to 1.6 which is reasonable for industrial coating applications [13]. As the values 

of 
 
upsurges, the coefficient of shear stress declines. The nanoparticle non-magnetic Nimonic 80a attains the 

greatest shear stress, and the nanoparticle non-magnetic SiO2 has the smallest shear stress, irrespective of curvature 

parameter value. However, there is a steady ascent in Nusselt number (wall temperature gradient) with increasing 

curvature parameter (smaller cylinder radius and curved surface area). Non-magnetic nanoparticles have the 

largest Nusselt number and magnetic nanoparticles produce the minimal Nusselt numbers. SiO2 has the highest 

Nusselt number followed by Nimonic 80a, Mn-ZnFe2O4 and Fe3O4 respectively. Evidently therefore selectivity 

of the nature of nanoparticles is crucial in controlling surface heat transfer rates for cylinder coatings and both 

metallic (ferromagnetic) and non-metallic nanomaterials appear to have useful properties in this regard. 

 

5. CONCLUSIONS 

In the current study, a detailed mathematical construction of a steady state, incompressible, boundary layer flow 

of a nano-ferrofluid heat transfer past an extending cylinder is presented by a stimulated nanomaterial coating 

applications. Four different nanoparticles (two non-magnetic and two ferromagnetic) have been considered (SiO2, 

Nimonic 80a, Mn-ZnFe2O4 and Fe3O4). A Tiwari-Das type fractional volume formation has been utilized to 

simulate nanoscale effects. The effects of magnetic induction and cylinder curvature have been included. By 

adopting a suitable transformation invariant quantities for the flow rate, energy transfer and magnetic field, the 

conservation equations have been converted to an ordinary derivative equations. The equations with suitable far 

stream and cylinder wall boundary conditions solved through SRM. Validation of solutions with earlier particular 

cases of the model available in the literature has been performed. Convergence performance of the SRM algorithm 

has also been examined. A detailed analysis of the impact of , , Pr,   , on momentum, magnetic induction and 

thermal characteristics (including coefficient skin friction and heat transfer gradient) has been accompanied. The 

current computational outcomes have revealed that: 

• With higher magnetic body force parameter and inverse of Prandtl magnetic number, the flow is decelerated 

and momentum boundary layer thickness enhanced where the flow is energized i.e. temperature and thermal 

boundary layer thickness are elevated. Flow acceleration is enhanced with SiO2 non-magnetic nanoparticles 

and good heat conduction augmentation is achieved with magnetic Fe3O4 nanoparticles. 

• Rising Prandtl number has a trivial impact on velocity and magnetic induction whereas it significantly reduces 

temperature (and decreases the heat boundary layer thickness). 
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• Velocity, magnetic field and heat profile are all substantially enhanced with a rise in the cylinder curvature 

term (smaller surface contact area and cylinder radius).  

• Rising fractional volume of the solid nanoparticle slows the flow velocity for both non-magnetic and magnetic 

nanoparticles whereas it elevates the magnetic induction and temperature.    

• Coefficient of skin friction diminishes by a rise in the magnetic parameter, fractional volume solid 

nanoparticle term and inverse of Prandtl magnetic number (ratio of magnetic diffusion to viscous diffusion). 

• Nusselt number upsurges by greater magnetic parameter, curvature term, fractional volume solid nanoparticle 

term and inverse of Prandtl magnetic number. 

• Skin friction rises with a rise in the cylinder curvature parameter. 

• Nusselt number reduces with a rise in the Prandtl number. 

• Nanoparticle non-magnetic SiO2 achieves the greatest flow rate enhancement. 

• Ferromagnetic nanoparticle has the smallest flow rate enhancement that produces the best temperature 

enhancement.  

The SRM numerical approach is an efficient and versatile technique for computational analysis of multi-physical 

nanoscale coating flows. It is currently also being explored for non-Newtonian ferromagnetic nanofluids using 

viscoelastic, viscoelastic and microstructural rheological models, and the results of these analyses will be reported, 

in the nearest time.  
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