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ABSTRACT  

The present article discusses the solute transport process in unsteady laminar blood flow through 

a non-Darcy porous medium, as a model for drug movement in blood vessels containing deposits. 

The Darcy-Brinkman-Forchheimer drag force formulation is adopted to mimic a sparsely packed 

porous domain, and the vessel is approximated as an impermeable cylindrical conduit. The 

conservation equations are implemented in an axisymmetric system ( , )R Z  with suitable boundary 

conditions, assuming constant tortuosity and porosity of the medium. Newtonian flow is assumed, 

which is physically realistic for large vessels at high shear rates. The velocity field is expanded 

asymptotically, and the concentration field decomposed. Advection and dispersion coefficient 

expressions are rigorously derived. Extensive visualization of the influence of effective Péclet 

number, Forchheimer number, reaction parameter on velocity, asymptotic dispersion coefficient, 

mean concentration, and transverse concentration at different axial locations and times are 

provided. Increasing reaction parameter and Forchheimer number both decrease the dispersion 

coefficient, although the latter exhibits a linear decay. The maximum mean concentration is 

enhanced with greater Forchheimer numbers, although the centre of the solute cloud is displaced 

in the backward direction. Peak mean concentration is suppressed with the reaction parameter, 

although the centroid of the solute cloud remains unchanged. Peak mean concentration 

deteriorates over time since the dispersion process is largely controlled by diffusion at the large 

time, and therefore the breakthrough curve is more dispersed. A similar trend is computed with 

increasing Péclet number (large Péclet numbers imply diffusion-controlled transport). The 

computations provide some insight into a drug (pharmacological agents) reacting linearly with 

blood. 

KEYWORDS: Taylor dispersion, Forchheimer coefficient, Bulk flow reaction; porous media; 

Péclet number; pharmaco-dynamics; axial and radial diffusion. 
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1.INTRODUCTION 

Solute transport in porous media continues to mobilize substantial attention of researchers 

throughout the globe due to its diverse applications in several branches of technology and 

environmental sciences. These include contaminant transport (Sahimi, 2011), geological 

carbon storage (Popova et al., 2012; Szulczewski et al., 2012), and environmental 

protection (Wang and Chen, 2015; Wang et al., 2013, 2015) etc. Furthermore, in certain 

hemodynamic scenarios e.g., the molecular reaction of oxygen in the vasculature, solute 

transport is important. This can lead to, for example, endothelial dysfunction in chronic 

flow overload (Taniyama and Griendling, 2003; Touyz and Schirin, 2004).  The transport 

of solute, whether in biological or other systems, is the result of advection and molecular 

diffusion mechanisms. Advection is responsible for carrying the centre of mass of an 

injected solute band, whereas molecular diffusion helps to spread the solute from a high 

concentration zone to a low concentration zone. For uniform velocity, the concentration 

of the dissolved band is low on both sides, which assists in molecular diffusion towards 

the axial direction, a phenomenon often termed axial dispersion. However, for non-

uniform velocity profiles, a radial concentration gradient is observed, which induces 

radial diffusion. Taylor (1953) first studied this phenomenon for laminar flow through a 

capillary by neglecting axial diffusion, and thereafter the mechanism of solute dispersion 

in a shear flow has popularly been termed as Taylor dispersion. Even in the case of flow 

through porous media, the tracer material is dispersed by molecular diffusion and 

convective or mechanical diffusion. This convective diffusion in porous media is due to 

the irregular flow pattern, and the source of this irregular flow pattern is a complex 

geometric structure of the permeable medium. Therefore, the hydrodynamic dispersion 

in porous media is highly complex, microscopic, and consequently a challenge to simulate 

mathematically. The best way to describe this complicated process is to formulate the 



3 

 

problem by considering a molecular picture through mathematical simplification such as 

statistical averages. The Slattery-Whitaker theorem is one of the important mathematical 

aspects in deriving the fluid's average properties through porous media. This theorem was 

independently discovered by both Slattery Slattery (1967) and Whitaker (1967) in the 

context of chemical engineering fluid dynamics at the same time. In fact, these averages 

are statistical averages of physical quantities taken over some representative volume of 

the system. 

The seepage velocity generally utilized in the above studies is governed by Darcy’s law 

(Darcy, 1856), an empirical law which explicitly states that the flow rate is proportional 

to the applied pressure gradient in steady flow through porous media. In modern notation, 

this is expressed as  
1q P−= − K , where, q  is the seepage or Darcy velocity and K  is 

the permeability tensor. For the case of isotropic porous media (i.e. a single permeability 

in all directions), this law can be modified as  ( / )P K q = − . The Darcy law is relevant 

for a tightly packed porous medium having very low permeability that quantifies only the 

frictional force applied on a fluid element by the solid particles instead of usual viscous 

force. Beavers et al. (1970) experimentally observed the presence of shear inside the 

porous medium, near the boundaries. The Darcy equation failed to predict the presence 

of such a boundary region as the equation does not incorporate the macroscopic shear 

term. Tam (1969) and Slattery (1970) modified Darcy’s equation by including the shear 

term in the form  

 
2 .q qP

K



 −=   (1) 

Here  
 is the effective viscosity, which is a function porosity   of the porous medium. 

The Eq. (1) most acceptable governing equation for an incompressible creeping flow of 
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a Newtonian fluid in an anisotropic, homogeneous porous medium, originally proposed 

by Dutch petroleum engineer Brinkman (1949 a, b, c).  A complete statistical 

interpretation of the Eq. (1) was subsequently given by Saman (1971) and Lundgren 

(1972). The Brinkman model is true for a loosely packed fluid-saturated porous medium 

where there is a large vacuum (space) for a fluid to flow so that the distortion of velocity 

increase the usual viscous shear force. However, in a variety of realistic situations under 

which the porosity of the porous medium is close to unity, the flow of fluid is curvilinear, 

and curvature of the path induces the inertia effect.  The substantially increasing inertia 

force as compared to the viscous force increases the drag more rapidly with velocity. 

Lapwood (1948) gave a mathematical form incorporating the convective inertial term, 

thereby extending Eq. (1) to: 

2

2
( ) .q q P q q

K

 



  = − +  −  (2) 

Equation (2) does not consider the unsteady nature of the flow, and for this reason, the 

Eq. (2) is further modified by including local acceleration term as follows (Nield and 

Bejan, 2013; Vafai and Kim, 1995): 

2

2

1 1
( ) .

q
q q P q q

t K


 

 

 
+   = − +  − 

 
 (3) 

In Darcy's law, the seepage velocity q  is linear and holds when q  is sufficiently small 

(Reynolds number order of pore size). As q  increases Reynolds number is within the 

range 1 10− ; clearly this transition, not one from laminar to turbulent. However, in this 

regime of Reynolds number, a change from linear drag to non-linear drag is observed. By 

including the quadratic drag in the system, the above Eq. (3) becomes: 
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2

2

1 1
( ) | |

fC
P

q
q q q q q q

t K K


 

 

 
+   = − +  − − 

 
 (4) 

 Equation (4) is known as the Darcy-Lapwood-Brinkman-Forchheimer model, where fC  

designates the quadratic (Forchheimer) drag coefficient. As noted earlier, solute 

dispersion features in a number of biophysical transport phenomena. A blood vessel in 

the human body is one of the best examples of porous media in a biological system due 

to the presence of fatty plug in the lumen of the blood artery. Blood flow modelling (and 

indeed other physiological systems) with porous media effects have therefore stimulated 

considerable attention in modern biofluid dynamics. These investigations have featured 

both Newtonian and non-Newtonian models and deployed both analytical and numerical 

methods. Dash et al. (1996) used the Darcy-Brinkman model to study viscoplastic (yield 

stress) blood flow in an isotropic porous medium through a tube. Tripathi and Bég (2012) 

presented homotopy power series solutions for viscoelastic blood transport under 

peristaltic waves with hydrodynamic slip in generalized Darcy-Brinkman porous media. 

Ravi Kiran et al. (2017) derived exact solutions for hydrodynamic dispersion in 

micropolar gastric flow with homogenous chemical reaction. Bég et al. (2007) used a 

Darcy-Forchheimer-Brinkman model, variational finite elements and finite difference 

algorithms to analyze the biomagnetic micropolar convective blood flow in porous media. 

Chapelle et al. (2009) used higher-order penalty finite element algorithms with a poro-

elastic Darcy model to compute the blood flow and vessel deformation in cardiac 

perfusion. Rashidi et al. (2010) employed a differential transform algorithm to study the 

magnetized micropolar blood flow and heat transfer in Darcy-Brinkman-Forchheimer 

porous media, noting the significant deceleration associated with higher Forchheimer 

drag effects. Bég et al. (2013) applied Liao’s homotopy method to derive analytical 

solutions for two-phase blood flow and thermal convection in a Darcy-Forchheimer-
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porous medium with Stokes number effects. The Darcy-Brinkman-Forchheimer model 

has also been deployed by Bég et al. (2012) (on pulsating blood flow with a 

pharmacological mass transfer under a magnetic field). The Darcy-Brinkman model has 

been implemented by Tripathi and Bég (2012) (on annular polar hemodynamic peristaltic 

microvascular flow in permeable media) and Tripathi and Bég (2012) (on unsteady 

propulsion of gastric viscoelastic suspensions in intestinal conduits containing permeable 

media. 

Generally, the above studies have ignored reactive hydrodynamic dispersion in blood 

flows through porous media. Such flows, as noted earlier, have direct relevance to oxygen 

transport in hemodynamics and also controlled drug release in pharmacodynamics 

(Weiser and Saltzman, 2014). It is well known that pharmaco-kinetic models furnish very 

limited insight into the fate of drugs released in blood flows. The dispersion process of 

pharmaceuticals is regulated locally by physiological transport principles, which are 

particular to the anatomic site and can significantly impact the agent release rate from the 

controlled release device as well as its fate in the local tissues. As such, fluid dynamic 

dispersion models (pharmaco-dynamic) offer a more comprehensive foundation for 

analysing such phenomena than conventional pharmaco-kinetic models deployed in 

medicine. They facilitate the bioengineers to investigate the local drug (reactive agent) 

transport released from the controlled release device and during migration through the 

local tissues and deposits (porous media), allowing a deeper understanding of the 

significance of local drug delivery constraints (Peppas and Sahlin, 1989; Saltzman, 2001). 

The current work may also be of pertinence in nano-drug delivery systems (Dubey et al., 

2020; Tripathi et al., 2020b) and hypercholesterolemia (Ohara et al., 1993) and also redox 

reaction mechanisms in blood vessels (Mueller et al., 2005). Motivated by these 

applications, the current study has devolved a comprehensive mathematical model for 
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unsteady blood flow through a cylindrical vessel containing porous media in which a fully 

miscible and chemically active species (pharmacological agent) is injected. The porous 

medium is governed by the Darcy-Brinkman-Forchheimer model, and the Newtonian 

model is deployed, which is valid for large vessels at high shear rates. The conservation 

equations are formulated in an axisymmetric coordinate system ( , )R Z  with appropriate 

boundary conditions, assuming constant tortuosity and porosity of the medium. Both axial 

and radial diffusion are considered. The general convective diffusion equation is rendered 

dimensionless with appropriate transformations and solved using a regular perturbation 

method taking the perturbation parameter as 1/ Da  where Da  is the Darcy number 

(dimensionless permeability parameter). The velocity field is expanded asymptotically, 

and the concentration field decomposed. Advection and dispersion coefficient 

expressions are rigorously derived. Comprehensive graphs are displayed to explore the 

influence of effective Péclet number, Forchheimer number and reaction parameter on 

velocity, asymptotic dispersion coefficient, mean concentration, and also transverse 

concentration at different axial locations and times.  

2. MATHEMATICAL FORMULATION 

Consider the transport of a reactive solute (e.g., pharmacological agent, oxygen, etc.) in 

a cylindrical rigid, impermeable walled-blood vessel containing sparsely packed porous 

media as depicted in Fig. 1. The porous medium is saturated with blood and is assumed 

to be non-deformable i.e.; elastic matrix effects are negated. In view of this, we recall 

following (Chen and Wu, 2012; Chen and Zeng, 2009; Wang and Chen, 2015; Wang et 

al., 2013) the general convective diffusion equation in the average phase scale as: 

 grad ( ) ( ) .
C q k

C k C C C
t

 
 


+  =   +   −


D  (5) 
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The variables and parameters are used in the above equations are defined in Table 1 

below.  

Table 1. List of variable and parameters 

Symbols           Name  Unit 

t   Time  s 
q       Superficial velocity m s 1−  

K     Permeability (hydraulic conductivity)  m 2  

     Porosity Dimensionless 

C  Solute concentration kg m 3−  

    Concentration diffusivity m 2  s 1−  

k   Tortuosity Dimensionless 

D   Concentration dispersion tensor m 2  s 1−  

   Bulk flow reaction rate s 1−  

Consider a tracer transport in a fully developed unidirectional (i.e., (0,0, )q U= ), steady 

blood (assumed to be Newtonian) flow with constant , , k   and D  through a blood 

vessel (a circular tube of radius  a  ). The blood vessel is assumed to be a sparsely packed 

isotropic porous medium and   = . With this assumption, the momentum Eq. (4) is 

then reduced to: 

2 1
0, 0 .

fCU p
R U U R a

R R R K ZK

 



   
− − − =   

   
 (6) 

Here, /  =  is the kinematic viscosity, and the axial pressure gradient /p Z    is 

assumed to constant. The conditions at the boundary (vessel wall) are imposed as:  

 at 0,

0  at .

U R

U R a

  = 


= = 
 (7) 
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Fig. 1 Schematic diagram of reactive dispersion in Newtonian blood flow in a non-Darcy porous medium vessel  

Equation (6) describes the flow velocity equation for saturated porous media and is 

known as the Brinkman-Forchheimer-Darcy equation. Many studies of fluid flow in 

porous media are based on Darcy law, but one drawback of this law is that it is applicable 

only for small Reynolds numbers (Re 1) . However, there are several cases when the 

flow velocity is slow with relatively high Reynolds numbers; in such cases, the flow 

exhibits non-linearity characteristics and cannot be modelled according to Darcy’s law. 

This deficiency can be overcome with the consideration of Brinkman-Forchheimer-Darcy 

drag force formulation for hydrodynamics of porous media. For the present hemodynamic 

regime, the transport Eq. (5) reduces to:  

eff2
eff

2
, 0 .R

L

DC U C C C
D R C R a

t Z Z R R R




     
+ = + −   

     
 (8) 

Where, Z  and R  are respectively axial and radial coordinate. 
eff ( / )L LD k D = +  and 

eff ( / )r rD k D = +  are the longitudinal and transverse diffusion coefficient. The species 

(solute) of mass M  (e. g. drag) is instantaneous release into the blood flow at time 0t =

, i.e.,  
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2
.(0, , ) ( ), 0

M
C R Z Z a

a
 


=    (9) 

The boundary of the blood vessel considered in the present study is assumed to be 

impermeable, i.e.,  

0 at ,R
R

a
C
=


=


 (10) 

again, owing to symmetry, we have: 

0 at 0.
C

R
R


= =


 (11) 

The amount of solute released into the flow is finite, and it follows that as a result, the 

upstream and downstream condition for solute transport (concentration boundary 

condition) is imposed as: 

( , , ) 0  as ,
C

C t R Z Z
R


= = → 


 (12) 

3. NON-DIMENSIONALISATION OF MODEL  

Throughout the remainder of the analysis, the following dimensionless quantities are 

adopted: 

3

0

0

, , , , ,
U t R Z a C U

r z u
a a a M U


 = = =  = =  (13) 

 2

0 ( / ) /U a p = −    is the reference velocity.  Using the scaling as defined in Eqn. (13), 

the initial-boundary value problem (IBVP) given by Eqs. (6-7) emerges as follows: 

21 F
1 0,

Da Da

d du u
r u

r dr dr

 
− − + = 

 
 (14) 

 
 at 0,

0  at 1.

u r

u r

  = 


= = 
 (15) 
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Here 2Da /K a= is the familiar Darcy number and 
2

0F /fUC a K=  is the Forchheimer 

number which is the product of drag coefficient, Reynolds number, and the square root 

of Darcy number. Similarly, the dimensionless form of the convection-diffusion Eq. (8) 

with associated initial and boundary conditions (9-12) is transformed by virtue of Eq. (13) 

to: 

2

2

1
Pe ( ) ,Du r r R

z r r r z

      
+ = + − 

     
 (16) 

( )
(0, , ) , (0 1),

z
r z r




 =    (17) 

0 at 0,r
r


= =


 (18) 

 0 at 1,r
r


= =


 (19) 

 ( , , ) 0,  at .t r z z
r


=  = → 


 (20) 

Here 2 eff/ Ra D =  is the dimensionless bulk reaction rate, eff eff/L RDR D D=  represents 

the ratio of axial and radial diffusion coefficients and eff

0Pe( / )RU a D=  is the effective 

Péclet number which quantifies the relative contribution of convection to diffusion in the 

porous medium. 

4. SUPERFICIAL VELOCITY 

4.1. For Large Darcy number 

The differential Eq. (14) is highly non-linear due to the presence of the penultimate term 

on the right-hand side and therefore to extract a solution, it is judicious to adopt a regular 

perturbation method by taking the perturbation parameter as 1/ Da=ò . We have 
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considered the case for which the Darcy number is large (very high permeability), so Eq. 

(14) assumes the form: 

2 21
F 1 0.

d du
r u u

r dr dr

 
− − + = 

 
ò ò  (21) 

Proceeding with the analysis, the velocity field is expanded asymptotically with respect 

to ò as follows: 

2

0 1( ) ( ) ( ) ( ).u r u r u r O= + +ò ò  (22) 

Inserting the asymptotic expression of Eq. (22) into Eq. (21) and also in the boundary 

condition (15), collecting the like powers of ò, the differential equation for 0u  and 1u is 

obtained. By solving those equations, we arrive at: 

2 6 4 21 F 1
( ) (1 ) 2 9 18 11 .

4 DaDa1152
u r r r r r O

 
 = − + − + − +   

 
 (23) 

4.2. For small Darcy number 

In contrast to above subsection if the Darcy number is sufficiently small, i.e., 1ò , then 

to solve Eqn. (21), we rearrange the problem by multiplying 
2−ò  on both sides as: 

 
2 1 2 21

F 0.
d du

r u u
r dr dr

− − − 
− − + = 

 
ò ò ò  (24) 

Then the above problem (Eq. (24)) is a singular perturbation problem with 1/ò is a 

perturbation parameter. It is important to mention here that the boundary layer located 

near the wall i.e. 1r = , accordingly the outer solution of the problem became 

out 2.u −= ò  (25) 

In order to find the inner solution, we use the transformation (1 )r = −ò  and neglecting 

smaller order terms in Eq. (24) we obtain: 
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2 in
in

2
0.

d u
u

d
− =  (26) 

The solution of Eq. (25) is  

in exp( ) exp( ).u A B = − +  (27) 

Where A  and B  is the arbitrary constant. Using Prandtl’s matching conditions as 

illustrated by Bush (1992), which is of the form 

out in

1
lim lim
r

u u
→ →

=  (28) 

leads to 0B =  and hence the composite solution of velocity with the aid of no slip 

boundary condition is  

( )( )
2

1 exp 1
.

r
u

− −
=

ò

ò
 (29) 

5. GENERALIZED DISPERSION MODEL 

Following Gill (1967), we have decomposed the concentration field as follows: 

0

( , , ) ( , ) ,
i

i i
i

r z f r t
z




=

 
 =+


  (30) 

where the over-bar indicates a cross-sectional average and is defined as: 

1

0
2 .g rgdr=   (31) 

By assuming that the process of mean concentration   is diffusive in nature right from 

the beginning, then accordingly, the mean concentration can be expressed as follows: 

1

( ) ,
i

i i
i

K
z






=

  
=

 
  (32) 
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The termed 1K  and 2K  in Eq. (32) are termed as the advection and dispersion coefficient, 

respectively. Using Eq. (30) in Eq. (32) in Eq. (16) and after some algebraic manipulation, 

we obtain the following system of partial differential equations: 

 ( )1 1
1 1

1
,

f f
r f u K

r r r

   
= − − + 

   
Pe  (33) 

 ( )2 2
2 1 1 2

1
( )D

f f
r f u K f R K

r r r

   
= − − + + − 

   
Pe  (34) 

 

( )2 2
2 1 1 2

2

2

3

1
( )

                                                 ( 1,2, )

k k
k k D k

k

i k i

i

f f
r f u K f R K f

r r r

K f k


+ +

+ +

+

+ −

=

   
= − − + + − 

   

− =

Pe

L

 (35) 

The initial and boundary conditions on 's

kf are prescribed as follows: 

0(0, ) , ( 0,1,2)i if r i= =  (36) 

 0 ( 0,1,2) at 1,if i r
r


= = =


 (37) 

 0, ( 0,1,2) at 0,if i r
r


= = =


 (38) 

Again from Eq. (31) it may be inferred that: 

1

0

( , ) 0ir f r t dr =  (39) 

The coefficients 1K  and 2K  can be derived by taking the cross-sectional average of Eq. 

(16) as: 

1( ) Pe ,K u = −  (40) 

 
1

2 1
0

( ) 2Pe .DK R r f udr = −   (41) 

 
1

2 1
0

( ) 2Pe .i iK r f udr+ += −   (42) 
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5.1. Dispersion coefficient: 

To obtain the solution of Eqn. (33) we have decomposed 1f  into two parts as follows: 

1 1 1( , ) ( ) ( , )sf r f r f r = +  (43) 

The function 1 ( , )f r  is the transient part of the solution and tends to zero with the 

progress of time. Therefore, the differential equations for 1sf and 1f  are respectively: 

( )1
1

1
Pe ,s

s

dfd
r f u u

r dr dr

 
−  = − 

 
 (44) 

 1 1
1

1
,

f f
r f

r r r

 




   
= − 

   
 (45) 

With, 

1 1(0, ) ( ),sf r f r = −  (46) 

 1 ,0 a 0,1tsf
r

r


==


 (47) 

 1 0 at 0,1.
f

r
r


= =


 (48) 

Eq. (39) becomes: 

1 1

1 1

0 0

( ) ( , ) 0.sr f r dr r f r t dr =  =   (49) 

The solution of Eqns. (44) (for large Darcy velocity) and (45) subject to boundary 

conditions (46-48) are as follows: 

1 1 0( ) ( ) ( ),sf r A J r b r= +  (50) 

Here: 

( )4 4

1 7

1

192 48
,

96 ( )

Pe F F
A

I

  

 

+ −
=  (51) 
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  ( )

( ) ( )

2 2 2 2 6 6 6 4 4

4 8

6 4 2 2 6 4 2

Pe FPe
( ) 4 4 2 9 72

4 1152 Da

                  + 18 144 1152 4608 11 72 576 ,

b r r u r r

r

     
 

     

= + − + + − + −

− + − − − + −

 (52) 

and 

2 2

1 0

1

( , ) ( ) exp( ),n n n

n

f r B J r      


=

= − −  (53) 

where, 

 

1

1 0

0

2

0

2 ( ) ( )

.
( )

s n

n

n

rf r J r dr

B
J




= −


 

(54) 

Here 2 =  and n  is the positive root of the Bessel function 1( ) 0J x = . If 0 →  then 

the solutions are given by Eqns. (49) and (52) emerge as: 

( )4 2 8 6 4 2

1
0

Pe 79
lim ( ) 3 6 2 8 36 52

192 536864 Da
s

Pe F
f r r r r r r r

→

 
= − − + + − + − + 

 
 (55) 

2

1 0
0

1

lim ( ) ( ) n

n n

n

f r B J r e
 







−

→
=

=  (56) 

Accordingly, From Eq. (41) we get the dispersion coefficient with reaction and without 

reaction for large Darcy number. To solve the Eq. (44) analytically for small Darcy 

number is difficult due to the presence of exponential function in the right side of the 

differential Eq. (44), thus we have adopted the Crank Nicolson implicit scheme to get the 

solution. Additionally, due to bulk degradation, the rate of decrease is further assessed by 

defining 
2 ,KR   as: 

2

2
,

2 0

1K

K
R

K


=

= −  (57) 

Here 2 0
K

=
is the dispersion coefficient without reaction for an isotopic solution 

( )1DR = .  



17 

 

2.3-2 Mean and Transverse Concentration 

The expression for the higher-order term in the series solutions defined by Eqns. (30) and 

(32) are negligible (Wang and Chen, 2016) and at the large time 3   only 0 ( , )f r   is 

sufficient to estimate the solute concentration. Therefore, by neglecting the 3K  onwards 

from Eqn. (32) we get: 

2

2 2
Pe ( ) .u K

z z




  
= − +

 

 




 (58) 

The solution of Eq. (58) is w.r.t. the initial boundary condition given earlier is: 

( )
2

Pe1
exp ,

4 ( )2 ( )

z u

   


 −
= − 

 
 

 (59) 

where, 

 2

0

( ) ( ) .K s ds



  =   (60) 

The transverse concentration is obtained from Eqn. (30) as: 

0

( , , ) ( , )
i

i i
i

r z f r t
z




=

 
 =+


  (61) 

However, with the progress of time, the higher-order terms of the series become 

negligible. Wang and Chen (2016) have shown that after time 3  , only the first term 

of the series is sufficient i.e.: 

1( , , ) ( , )r z f r t
z

 +


=



  (62) 

6. RESULTS AND DISCUSSION  

Evidently, significant suppression in radial velocity accompanies a rise in F . The 

symmetric boundary conditions at the wall ensure that symmetric parabolic distributions 

are obtained across the vessel cross-section i.e., 1 1r−   . Although greater F implies 

increasing inertial contribution in the flow, the overwhelming effect of quadratic drag is 
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Fig 2. Dimensionless velocity distribution for a variety of Forchheimer number for small and 

large darcy number. 

the deceleration of the blood flow in the porous regime. This is characteristic of 

Forchheimer's effects and has been computed in numerous other studies, including Vafai 

and Tien (1982) and Dybbs and Edwards (1984). It is noteworthy that the purely fluid 

regime scenario can be recovered for Da →  and F 0= . The Darcy drag force 

consequence of the viscous contribution to stress at the solid particle boundaries. As such, 

with increasing permeability , the flow becomes gradually less sensitive to porous fibers, 

which decrease in concentration. Inertial effects due to the porous medium are 

experienced via the quadratic drag term i.e., Forchheimer term, which does not directly 

include viscosity but arises through the action of viscosity, caused by the inertial effects 

propagation of pressure distribution which also contributes to the stress at the rigid 

boundary of the vessel surface. Forchheimer drag, as shown by Joseph et al. (1982) 

models, basically a form drag phenomenon, which in reality involves the separation of 

boundary layers and creation of wake next to solid impediments (solid matrix fibers, 

bundles, etc.). The pore-scale convective inertial effects contributing to the form drag 

results in a significant change of the velocity field and intensify in the macroscopic region 

where the gradient of pore-scale velocity are high. Lage (1998)  has clearly demonstrated 
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that these characteristics are applicable to both  bluff body type porous media as well as 

those of the conduit type (relevant to the present model). Skjetne and Auriault (1999)  has 

further observed a strong inertial flow regime in porous media due to the  Forchheimer 

drag. This refers to the flow regime where the pore Reynolds number, Re  (which depends 

on  particle or pore diameter), is approximately greater or equal to unity, and the model 

deviates from the traditional porous media transport physics (purely Darcian or viscous-

dominated). It is also pertinent to note that the range of F  values considered up to 30 

does not stimulate vortex formation associated with higher Reynolds numbers (greater 

than 250). However, the boundary layers around the pores become more prominent, and 

an “inertial core” can be seen with a higher Forchheimer number, and creation of such 

“core” is accountable for the non-linear relationship between flow rate and the pressure 

drop.  

 
 

 

Fig 3. Plots of 2 DK R−  ; (a) for a variety of reaction parameters for large Darcy number ( Da 10,=  Pe 100,=  and 

10F = ); (b) for a variety of Forchheimer numbers large Darcy number ( Da 10,=  Pe 100,=  and 1 = ); (c) for a 

variety of reaction parameters for small Darcy number ( Da 0.01,=  and Pe 100= ). 
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Figures 3 and 4 are presented in order to analyze the dispersion coefficient (from which 

the ratio of axial diffusion to radial diffusion). Figures 3a, b visualize the time-dependent 

behavior for a variety of reaction parameters and also Forchheimer numbers. This 

behaviour is induced due to the reaction involved in the present blood flow, while the 

second one is associated with velocity, however, in all cases the dispersion coefficient 

ultimately reaches their steady state (Debnath et al., 2017a,b).  Figure 3(a) shows that an 

increase in the reaction parameter decreases the dispersion coefficient. This is attributable 

to the fact that the number of moles involved in the reaction often increases with the 

increase of the reaction rate, and as a consequence dispersion coefficient is reduced 

(Debnath and Ghoshal, 2020; Debnath et al., 2019a; Roy et al., 2017). The same 

decreasing nature of the dispersion coefficient is also induced with increasing 

Forchheimer number (Fig. 3(b)), and this is probably associated with the deceleration 

(retardation) in axial flow with greater quadratic drag effect. Although both the 

parameters are responsible for decreasing the effective dispersion coefficient, they exert 

a different modification in the topology of profiles (Figs. 4a,b). With the increment in 

Forchheimer number, the dispersion coefficient decays linearly; however, this is not the 

case for greater reaction parameters.  

 
 

Fig 4. Asymptotic dispersion coefficient 2( )DK R−  with (a) Forchheimer number and (b)  bulk reaction parameter 

where ( Da 10=  and Pe 100= ) . 
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The reduction rate is initially steady with increasing reaction parameters; subsequently, a 

sharp increase is observed in the reduction rate. However, this transition does not exist 

for large reaction parameters (Fig. 5). It is important to note that the initial steady 

reduction rate varies with the chemical reaction parameter and can be controlled by 

Forchheimer number i.e., quadratic drag effect. 

 

 
Fig 5. Variation of 

2 ,KR   with   at asymptotic time 2 =  Da 10=  where ( Da 10=  and 

Pe 100= ). 

 

 
Fig 6. Mean concentration with axial distance at different dimensionless times where 

Da 10,=  10F = , 0.5 = , 1DR =  and Pe 100= . 
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Fig 7. Mean concentration with axial distance at different Péclet numbers where Da 10,=  

10F = , 0.5 = , 1DR =  and 10 =  . 

 

Figure 6 illustrates how the centroid of the solute cloud is propagated into the 

downstream region of the blood vessel. The figure also reveals that the peak of the mean 

concentration deteriorates over time. This is induced since the dispersion process is 

largely controlled by diffusion at large times, and therefore the breakthrough curve is 

more evenly dispersed. A similar trend is additionally computed with a greater effective 

Péclet number. A large Péclet number means the process is diffusion-controlled (Fig. 7). 

Figure 8a shows that the peak of the mean concentration increases with Forchheimer 

number; however, the central location of the solute (pharmacological agent) cloud is 

displaced in the backward direction; the decrease in mean velocity with Forchheimer 

number generates this migration. In contrast to Fig. 8(a) other figures (Fig. 8b,c,d) show 

that the peak of the mean concentration decrease with reaction parameter (Debnath et al., 

2019b; Roy et al., 2019), porosity and DR , and furthermore, that the centroid of the solute 

cloud remains unchanged. 
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Fig 8. Axial mean concentration at the dimensionless time 10 =  with Da 10= and Pe 100= ; (a) for variety of 

Forchheimer number ( 0.5, =  2, =  and 1DR = ) (b) for variety of reaction parameter ( 0.5, =  10,F =  and 

1DR = ) (c) for variety of Porosity ( 10,F =  2, =  and 1DR = ) (d) for variety of diffusion ratios ( 0.5, =  2, =  

and 10F = ). 

 

Using Eq. (56) several graphs are also presented for the transverse variation of the 

concentration in upstream and downstream at different times with a variation in bulk 

reaction parameter ( ) . Figures 9(a-d) show that with a change in axial location, there 

is a substantial alteration in profiles which morph from smooth ascents at 0.1 = −  to 

decays at 0.1 =  (for both times of 5 =  and 10). The axial location ( Pe )z u = −  is 

measures from center of gravity of the injected solute which is moving with the average 

velocity of the blood. The topology in transverse concentration is therefore sustained with 

time but modified with the axial location. Generally, transverse concentration is 

significantly elevated with increasing bulk reaction parameter ( ) , at all radial and axial 

locations, and at all time instants. 
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Fig 9. Transverse concentration at different axial location and different times for various bulk reaction parameters, 

 but fixed 0.5, = 10,Pe 100,Da 10 F = = = and 1DR = . 

 

  

  

Fig 10. Transverse concentration at different axial location and different times for various Forchheimer numbers, F 

where, 0.5, 2,Pe 100,Da 10 and 1DR = = = = = . 

 

Figures 10(a-d) indicate that with a change in axial location, there is again a marked 

alteration in profiles which morph from smooth ascents at 0.1z = −  to decays at 0.1z =   
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(for both times of 5 =  and 10). Increasing Forchheimer number strongly boosts the 

transverse concentration magnitudes at all radial locations. Transverse concentration is 

therefore minimized for the Darcian case (F 0)=  and maximized for the strongly 

quadratic drag case (F 20)= . Inertial drag, therefore, encourages transverse diffusion. 

7.CONCLUSIONS 

A comprehensive mathematical model has been developed for solute transport in 

unsteady blood flow through a rigid, impermeable blood vessel containing a non-Darcy 

porous medium, as a model for drug movement (pharmaco-dynamics) in blood vessels 

containing fatty deposits. The Darcy-Brinkman-Forchheimer drag force formulation is 

adopted to mimic a sparsely packed porous domain, and the vessel is approximated as an 

impermeable cylindrical conduit. The conservation equations are formulated in an 

axisymmetric system ( , )R Z  with appropriate boundary conditions, assuming constant 

tortuosity and porosity of the medium. Newtonian flow is assumed, which is physically 

realistic for large vessels at high shear rates. Both axial and radial diffusion are 

considered. The general governing equation of the blood flow is then non-

dimensionalized and solved using a regular perturbation method taking the perturbation 

parameter as 1/ Da  where Da  is the Darcy number (dimensionless permeability 

parameter). The velocity field is expanded asymptotically, and the concentration field 

decomposed. Advection and dispersion coefficient expressions are rigorously derived. 

Extensive visualization of the influence of effective Péclet number, Forchheimer number, 

reaction parameter on velocity, asymptotic dispersion coefficient, mean concentration, 

the transverse concentration at different axial locations and times, is provided. The 

present computations have shown that:  
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(I) Increasing reaction parameter and Forchheimer number both decrease the 

dispersion coefficient, although the latter exhibits a linear decay. 

(II) The maximum mean concentration is enhanced with greater Forchheimer 

numbers, although the centre of the solute cloud is displaced in the backward 

direction. 

(III) Peak mean concentration is suppressed with the reaction parameter, although the 

centroid of the solute cloud remains unchanged. 

(IV) Peak mean concentration deteriorates over time since the dispersion process is 

mostly controlled by diffusion at the large time, and therefore the breakthrough 

curve is more dispersed. A similar trend is computed with increasing P\'eclet 

numbers (large Péclet numbers imply diffusion-controlled transport). 

(V) Transverse concentration is significantly elevated with increasing bulk reaction 

parameter ( ) , at all radial and axial locations, and at all time instants. 

(VI) Increasing Forchheimer number strongly boosts the transverse concentration 

magnitudes at all radial locations and is minimized for the Darcian case ( 0)F =  

 The computations provide some insight into drugs (pharmacological agents) reacting 

linearly with blood.  However, attention has been confined to Newtonian flow. Future 

studies may explore non-Newtonian models for hemorheological characteristics e.g., 

viscoelastic (Dubey et al., 2020), and will be communicated imminently. 
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