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ABSTRACT:  

Electromagnetic high-temperature therapy is popular in medical engineering treatments for various 

diseases include tissue damage ablation repair, hyperthermia and oncological illness diagnosis. The 

simulation of transport phenomena in such applications requires multi-physical models featuring 

magnetohydrodynamics, biorheology, heat transfer and deformable porous media. Motivated by 

investigating the fluid dynamics and thermodynamic optimization of such processes, in the present 

article a mathematical model is developed to study the combined influence of thermal buoyancy, 

magnetic field and thermal radiation on the entropy generation, momentum and heat transfer 

characteristics in electrically-conducting viscoelastic biofluid flow through a vertical deformable 

porous medium. Jefferys elastic-viscous model is deployed to simulate non-Newtonian characteristics 

of the biofluid. “It is assumed that heat is generated within the fluid by both viscous and Darcy 

(porous matrix) dissipations. The governing equations for fluid velocity, solid displacement and 

temperature are formulated in a Cartesian coordinate system. The boundary value problem is 

normalized with appropriate transformations. The non-dimensional biofluid velocity, solid 

displacement and temperature equations with appropriate boundary conditions are solved 

computationally using a spectral method. Verification of accuracy is conducted via monitoring 

residuals of the solutions. Validation of solutions with Runge-Kutta shooting quadrature is included. 

The effects of Jeffrey viscoelastic parameter, viscous drag parameter, magnetic field parameter, 

radiation parameter and buoyancy parameter on flow velocity, solid displacement, temperature and 

entropy generation are depicted graphically and interpreted at length. Increasing magnetic field and 

drag parameters are found to reduce the field velocity, solid displacement, temperature and entropy 

production. Higher magnitudes of thermal radiation parameter retard the flow and decrease Nusselt 

number whereas they elevate solid displacement. Entropy production is enhanced with an increase in 

buoyancy parameter and volume fraction of the fluid. The novelty of the work is the simulatenous 

inclusion of multiple thermophysical phenomena and the consideration of thermodynamic 

optimization in coupled thermal/fluid/elastic media. The computations provide an insight into multi-

physical transport in electromagnetic radiative tissue ablation therapy and a good benchmark for more 

advanced simulations.  

Key words: Deformable porous media; magnetohydrodynamics; thermal convection; electro-conductive 

viscoelastic fluids; radiative heat transfer; spectral computation; bio-magneto-thermal therapy. 
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1. INTRODUCTION  

The study of fluid flow in undeformable (rigid) permeable media has been a very active 

research area embracing many branches of engineering and science. There are number of 

natural and industrial processes in which the medium is not rigid including geomaterials, 

biomaterials, insulation etc [1]. For these materials the forces which are exerted by the flow 

can cause substantial deformations of the medium. This deformation can, in turn, have a 

significant impact on the fluid flow itself if the properties of the material which govern the 

flow change with the deformation. The flow and deformation are coupled in deformable 

porous media and an analysis of the problem requires the simultaneous solution of the 

viscous flow and elastic deformation equations. Transport in poro-elastic media features in 

many applications including engineering seismology, geotechnics, biomechanics, energy 

dissipation systems etc. A popular approach in simulating deformable porous media is the 

theory of mixtures which has been lucidly described by Biot [2] in the context of 

geomechanics. Subsequently this approach has been adopted in biomechanics as it provides a 

good framework for modelling biological porous media including arterial wall permeability, 

articular cartilage, skin, pulmonary transport, bone etc. Mow et al. [3] presented an extensive 

review on mechanical and fluid transport properties of articular cartilage with consideration 

of the theory of mixtures. Lai et al. [4] discussed the deformation behaviour and swelling of 

articular cartilage. Barry et al. [5] investigated the unsteady flow of a Newtonian fluid 

through channel filled with deformable porous media. Sreenadh et al. [6, 7] developed 

mathematical models for multi-physical transport in deformable porous media with 

consideration of buoyancy and magnetic effects. 

In numerous biological processes, heat transfer is present and may arise frequently as 

thermal conduction, convection or radiation. In these bio-thermal systems, energy losses are 

incurred which can cause disorder. Avoiding or controlling this energy loss in thermal 

processes has gained much interest among researchers in recent years. Analysis of entropy 

generation is a powerful tool by which one can minimize the energy wastage or utilize it in an 

optimum way to improve the system performance. Bejan [8] introduced the entropy 

generation minimization (EGM) approach, initially for industrial thermal systems. Since 

generically thermal processes are inherently irreversible, “this leads to continuous entropy 

generation, which eliminates the exergy (useful energy or available energy for work) of a 

system via different modes of heat transfer (thermal conduction, convection and radiation)”. 
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In biological systems other phenomena may also contribute to the entropy production 

including electrical fields (due to ions), magnetic fields (associated with iron in the 

haemoglobin molecule), viscosity (fluid friction), magnetic field, thermal buoyancy, species 

buoyancy etc. Minimization in the loss of exergy in any system is desirable since “it permits 

optimal usage of the energy situation with minimum irreversibilities. This optimum condition 

can be assessed via entropy generation minimization (EGM)”. A number of diverse problems 

in medical engineering sciences have been studied with this technique in recent years. 

Entropy generation minimization (EGM) provides an enhanced understanding of 

thermodynamic efficiency of biological systems and can aid in optimizing numerous 

biomedical processes including cryo-preservation [9], cell dynamics [10], peripheral 

neuropathy [11], novel bio-thermodynamic anti-cancer strategies [12],  vascular blood flows 

[13], reactive hyperthermia for spinal cord injury treatment [14] and extra-corporeal blood 

flow control [15]. “It utilizes the second law of thermodynamics to enable a more refined 

appraisal of heat transfer and mitigation of losses. Computational studies of entropy 

generation in porous media” have been communicated by for example Vasu et al. [16] who 

considered a Darcian porous medium and computed thermal dispersion effects on entropy 

generation rates with a Chebyshev spectral collocation method). Srinivas and Raman Murthy 

[17] investigated analytically the microstructural fluid flow in dual porous regimes in a 

horizontal channel. Akbar et al. [18] observing that “entropy generation rate is enhanced 

with both Darcy and Brinkman number (ratio of direct heat conduction from the wall surface 

to the viscous heat generated by shear in the boundary layer). They also showed that Bejan 

number (ratio of heat transfer irreversibility to total irreversibility due to heat transfer 

and fluid friction) is elevated with both increasing Brinkman number and Darcy number. 

Datta et al. [19] studied the entropy generation with thermal convection in a square enclosure 

containing a porous medium”, computing heatlines, Nusselt number, streamlines, entropy 

generation and irreversibility production in the enclosure. Rashidi et al. [20] studied free 

convection and entropy generation of nanofluid flow in a vertical cylinder under 

heterogeneous heat flux. 

Magnetohydrodynamics (MHD) is also an active area of modern biomedical 

engineering sciences. It involves the interaction of applied magnetic fields with electrically-

conducting flows. Blood for example is electrically-conducting owing to the presence of 

haemoglobin in the iron molecule and plasma and other physiological liquids contain 
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significant levels of ions [21]. Other physiological fluids which respond to magnetic fields 

are synovial lubricants, plasma, occular fluids etc. The imposition of external (extra-

corporeal) magnetic fields is also beneficial in pain therapy since it successfully controls 

flow. To properly quantify the effectiveness of magnetic therapy, for example, magnetic drug 

targeting for different cancerous diseases, it is important to develop realistic 

magnetohydrodynamic physiological flow models which properly simulate the influence of 

magnetic fields on transport phenomena (flow, heat and mass transfer). The relative 

contribution of viscous hydrodynamic force and Lorentz magnetic drag force is usually 

critical in such simulations and influences entropy generation rates. Several investigations 

have therefore considered entropy generation minimization in biological magneto-thermal 

fluid dynamics. Bég et al. [22] computed Bejan numbers and entropy generation rates in 

magnetized biofluid transport from a rotating disk using a homotopy technique. Khan et al. 

[23] analysed the entropy generation rate in thin film reactive mixed convection 

magnetohydrodynamic viscoelastic nanofluid bioconvection in a Darcian porous regime. 

Radiative heat transfer with entropy generation has also stimulated some interest. 

Ramana Murthy et al. [24] “studied thermal radiation effects on entropy generation in 

channel flow and heat transfer in dual immiscible non-Newtonian Stokes’ couple stress 

fluids. They showed that entropy production is reduced by thermal radiation whereas it is 

enhanced with viscous dissipation. Srinivas et al. [25] computed porous media drag and 

radiative effects on entropy generation in micropolar natural convection flow. Jamalabadi et 

al. [26] studied combined viscous dissipation and radiative effects on entropy generation” 

non-Newtonian power-law convection from an axi-symmetric stretching sheet. Shukla et al. 

[27] obtained finite element solutions for entropy generation characteristics in radiative 

stagnation-point nanofluid flow under both electrical and magnetic fields. Muthukumar et al. 

[28] investigated on MHD convective flow of a nanofluid in a lid driven porous enclosure 

under the influence of thermal radiation with non-uniform thermal vertical walls. 

Sheikholeslami et al. [29] used finite element method to compute the solutions of the 

developed mathematical model on MHD free convective-radiative flow of a nanofluid inside 

a corrugated annulus.  

“Liquids exhibiting characteristics which are both solid- and fluid-like are categorized 

as viscoelastic fluids. Such fluids are classified as non-Newtonian and possess time-

dependent or rate-sensitive stress-strain relations.”Many physiological liquids behave as 
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viscoelastic fluids. Pertinent examples include blood [30] which contains numerous 

suspensions such as non-protein hormones, lipids, proteins, nutrients, electrolytes, gases, 

erythrocytes, leukocytes etc. Other examples are synovial fluid in the human knee [31], gels 

in the human eye [32], submucosal injection materials (SIMs) in early-stage gastrointestinal 

neoplasm treatment [33], sub-mandilar saliva [34] and blood-plasma [35]. The inadequacy of 

the Navier-Stokes equations in simulating such fluids has motivated researchers to deploy an 

extensive spectrum of viscoelastic fluid models which feature different material 

characteristics including relaxation times, viscosity, elasticity, retardation, normal stress 

differences etc. The heat-conducting nature of blood and other biological and industrial 

liquids has also attracted interest from a thermodynamic optimization viewpoint. Entropy in 

chemically-reacting third grade Reiner-Rivlin fluids has been considered by Adesanya et al. 

[36]. Kumar et al. [37] conducted an entropy generation minimization and Bejan heat line 

visualization analysis of time-dependent free convection flow of a second grade elastic-

viscous fluid external to a cylindrical geometry with the Crank-Nicolson finite difference 

method. They showed that an increase in viscoelasticity, viscosity and Grashof number 

reduces entropy generation. Among the most versatile nonlinear viscoelastic hydrodynamic 

models developed is the Jeffrey fluid model. This non-Newtonian model represents 

biophysical fluids reasonably well and “features three constants i.e. viscosity at zero shear 

rate, and two time-related material parameter constants”. A number of studies have reported 

on the suitability of the Jeffery rheological model for biological hydrodynamics including 

Vajravelu et al. [38] and Tripathi and Bég [39]. Magnetohydrodynamic thermal therapy of 

biological viscoelastic fluent media has also been explored extensively and relevant examples 

include structural modification of synovial fluids in orthopaedics [40], affinity-based 

magnetic purification of blood plasma [41], magnetized pharmaco-dynamics [42] and 

treatment of ocular and cochlear disorders with magneto-acoustics [43]. Several 

mathematical studies have also appeared focused on biological magnetothermal flow with the 

electrically-conducting Jeffrey model. Manzoor et al. [44] employed the Adomian 

decomposition method (ADM) to investigate hydromagnetic ciliated propulsion of Jeffrey’s 

“viscoelastic fluids with heat transfer in a porous medium channel with viscous dissipation 

effects, observing that the Jefferys parameter (stress relaxation time to retardation time ratio) 

substantially modifies momentum and thermal characteristics. Ramesh et al. [45] studied 

theoretically the magnetohydrodynamic (MHD) peristaltic pumping of viscoelastic two-phase 

blood in a deformable channel, noting that higher values of Jefferys viscoelastic parameter 



6 

 

retard the fluid phase flow, accelerate the particle phase flow, decrease axial pressure 

gradient, enhance  pressure difference in the augmented pumping region and reduce pressure 

difference in the pumping region.” 

In many biological systems and medical devices, as noted earlier the medium is poro-

elastic. It undergoes elastic deformation and simultaneously permits fluid percolation. 

Although some investigations have been communicated on entropy generation in media with 

deformable boundaries, the simulation of entropy generation in deformable porous media has 

emerged more recently. Important studies in this regard include Gopi Krishna et al. [46] who 

studied Casson viscoplastic heat transfer with entropy generation in a vertical porous medium 

channel. Gopi Krishna et al. [47] further investigated the entropy generation in viscous flow 

in an inclined deformable porous layer containing a heat source bound by rigid plates, noting 

that fluid velocity, temperature and “entropy generation decrease with increasing viscous 

drag whereas solid displacement increases with increasing viscous drag. They further 

observed that volumetric flow rate is greater for undeformable (rigid) porous media as 

compared with deformable porous media.” 

In the present article, a numerical study is conducted to elucidate the collective effects 

of thermal buoyancy, magnetic field and thermal radiation on the flow, heat transfer and 

entropy generation in magnetized viscoelastic Jeffrey’s biofluid in a vertical deformable 

porous medium which is absent in the technical literature. The emerging non-dimensional 

boundary value problem is solved with the robust, accurate, convergent iterative 

computational spectral quasilinearization method (SQM) [45]. Validation of solutions with 

Runge-Kutta shooting quadrature [46] is included. The effects of Jeffrey viscoelastic 

parameter, viscous drag parameter, magnetic field parameter, radiation parameter and 

buoyancy parameter on flow velocity, solid displacement and temperature are depicted 

graphically. The simulations are relevant to bio-magnetic high temperature therapy processes 

and to the authors’ knowledge constitute a novel contribution to the literature.  In 

biomagnetic therapy magnetic fields generate thermal effects in solid/fluid composite 

biomaterials in the human body. The interstitial fluid is often non-Newtonian, therefore a 

rheological model with magnetic body force terms must be employed since the ionic nature 

of biofluids makes them electrically conducting. This is the novelty of the work - a much 

more comprehensive multi-physical formulation is given then previously published anywhere 

in the literature- many effects are considered simultaneously, which have not been reported 
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before in tissue electriomagnetic ablation therapy. These results will therefore benefit 

understanding in articular carteilage, perfused tissue and other areas. 

2. MODEL FOR MAGNETO-VISCOELASTIC TRANSPORT IN DEFORMABLE MEDIUM 

“The regime under consideration comprises the steady, fully-developed, free convective-

radiative flow of an electrically-conducting Jeffrey viscoelastic physiological fluid through a 

vertical deformable porous medium bound by rigid walls. The porous material is elastic and 

deformable and is modelled as a continuous binary mixture of solid and fluid phases where 

each point in the mixture is occupied continuously by both the fluid and solid. The porous 

matrix is saturated with viscoelastic biofluid. Darcy’s law is assumed and the medium is 

considered as isotropic and homogenous. Tortuosity effects are neglected. The X -axis is 

taken along the middle of the channel geometry and the Y -axis is orientated perpendicular to 

the X -axis. A uniform static magnetic field is applied along the Y -axis. The plates of the 

channel are maintained at constant and uniform temperature 1T  respectively. Magnetic 

Reynolds number is negligibly small and therefore magnetic induction effects are negated. It 

is also assumed that applied or polarized voltage is neglected so that no energy is added or 

extracted from the fluid by electrical means. The biofluid is considered to be a gray, 

absorbing-emitting but non-scattering medium and the Rosseland approximation is used to 

describe the radiative heat flux which also acts transverse to the plates. The radiative heat 

flux in the X-direction is considered negligible in comparison with that in the Y-direction. 

Optical density of the fluent medium is considered to be high for which the Rosseland 

approximation is valid. A constant pressure gradient 
P

X




is applied to produce an axially 

upward directed flow. The channel width is 2h. The physical regime is illustrated in Fig. 

1.”The constitutive equations for an incompressible “Jeffrey fluid [35, 36] flow are 

T P I s= − + , where T  and ( )2

11
s


  


= +

+
are the Cauchy stress tensor and extra stress 

tensor respectively, P is the pressure, I  is the identity tensor, 1 is the ratio of relaxation to 

retardation time (Jeffrey elastic-viscous parameter), 2  is the retardation time, ( )
T

q q =  +  is 

shear rate and dots over the quantities indicate differentiation with respect to time” i.e. 

( )
d

q
dt t

 
 


= = + 


where 

d

dt
is the material derivative and q is the fluid velocity vector. 
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Incorporating the appropriate terms from the Jeffrey model, under the above assumptions, the 

governing equations extending the Newtonian model in [47] assume the form: 

 

Fig. 1 Physical model of magnetic heat transfer in viscoelastic-saturated deformable porous  medium  

 

2

2
(1 ) 0

U P
KV

Y X
 
 

− − + =
 

                                                                                                   (1) 

( )
2

2

0 02

1

2
0

1

a V P
KV B V g T T

Y X


   



 
− − − + − =

+  
                                                               (2) 

( )

22

0

2

1

2 1
0

1

a r

p p p

K qT V

c Y c Y c Y



   

  
+ − = 

 +   
                                                                         (3) 

“where   is the apparent (dynamic) viscosity of the fluid in the porous material, U  is the 

solid displacement,  is porous medium volume fraction, 
P

X




is the axial pressure gradient 

K is the porous media drag coefficient, V is the flow velocity, a is the Lamé constant, 1 is 

ratio of relaxation and retardation time,  is biofluid electrical conductivity, Bo is applied 

magnetic field,  is the density of the biofluid, β is the coefficient of thermal expansion, T is 

“biofluid temperature, To is an arbitrary temperature, Ko is thermal conductivity, cp is isobaric 



9 

 

specific heat capacity, qr is radiative flux. The system is symmetrical about the channel 

centreline. The boundary conditions at the channel centre-line and the right hand plate are: 

0,
dU

dY
= 0,

dV

dY
= 0

dT

dY
= at 0Y = (Centre line) 

0,U = 0,V = 1T T= at Y h= (Right hand side plate)                                                               (4) 

Introducing the following dimensionless variables for transverse coordinate, axial coordinate, 

fluid velocity, solid displacement, temperature and pressure, respectively: 

,
Y

y
h

= ,
X

x
h

=
1 0

2
,

( )

a V
v

g h T T



 
=

− 2

1 0

,
( )

U
u

g h T T



 
=

−

0

1 0

,
T T

T T


−
=

− 1 0( )

P
p

g h T T 
=

−
   (5) 

In view of the above dimensionless variables, the governing elastic equilibrium and 

momentum conservation equations (1)-(2) emerge as: 

2

2
(1 ) 0

d u dp
v

dy dx
 − − + =                                            (6) 

( )

2

2

1

1
0

1

d v dp
v Mv

dy dx
  


− − − + =

+   

                                                              (7) 

where u is the non-dimensional solid displacement, v is the non-dimensional flow velocity in 

the deformable porous layer,  is the volume fraction of the fluid,  = Kh/(2a) is viscous 

drag parameter (Darcian impedance parameter), 
2 2

0

2 a

B h
M




= is the magnetic body force 

parameter and  is non-dimensional temperature. “According to Rosseland’s diffusion 

approximation [48], the radiative heat flux ( )rq  term can be written as: 

 
* 4

*

4

3
r

T
q

k Y

 
= −


                                                                                                                     (8) 

Here * and k* denote the Stefan-Boltzmann constant and mean absorption coefficient 

respectively. The Rosseland model retains reasonable accuracy for optically-thick media 

wherein thermal radiation propagates a limited distance prior to encountering scattering or 

absorption. The refractive index of the biofluid is assumed to be constant, intensity within the 

fluid is nearly isotropic and uniform, and furthermore wavelength regions exist where the 
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optical thickness is generally in excess of five. It is assumed that the temperature differences 

are small within the flow so that the quartic non-linear temperature term, 4T can be expressed 

as a linear function using Taylor’s series expansion about 1T  i.e. 4 3 4

1 14 3T T T T= − . 

Substituting this in eqn. (8), we obtain” 

* 3 2

1

* 2

16

3

rq T T

Y k Y

 
= −

 
                                                                                                               (9) 

Again substituting eqn. (9) in eqn. (3) and using the afore-mentioned dimensionless variables 

(5), we obtain: 

22
2

2

1

4
1 0

3 1

d N dv
R N v

dy dy






  
+ + + =  

+   
                 (10) 

Here 
* 3

1

*

4 T
R

k


= is the thermal radiation-conduction parameter,

2 2 4 4

1 0

0

( )

2 a

g h T T
N

k

 



−
= is the 

thermal buoyancy parameter, and all other parameters have been defined earlier. The  

associated boundary conditions emerge as: 

0
du dv d

dy dy dy


= = = at 0y =            (channel centreline)                              (11) 

0, 0, 1u v = = = at 1y =                (right hand plate)                                                            (12) 

3. SPECTRAL QUASI-LINEARIZATION METHOD (SQM) NUMERICAL SOLUTION 

The set of non-linear coupled eqns. (6), (7) and (10) with boundary conditions Eq. (11) and 

Eq. (12) are solved numerically using the Spectral Quasi-Linearization Method (SQM). This 

method combines the exceptional accuracy of spectral collocation [49] with the traditional 

Bellman-Kalaba quasi-linearization method (QLM) yielding enhanced stability and accuracy. 

SQM has been utilized extensively in recent years in many diverse areas of engineering 

sciences including rocket propulsion [50], geological convection [51], bioheat transfer in 

tissue [52], electrodynamic propulsion [53] and biomagnetic hemodynamics [53]. The first 

step intrinsic to this approach is the linearization of the governing differential equations i.e. 

Eqns. (8)-(11) by QLM, following Bellman and Kalaba [45]. Next applying the QLM to 

Eqns.  (6), (7) and (10) by assuming the approximate solutions, ,ru  rv and r of solid 

displacement, velocity field and temperature field respectively, we get: 
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2 1 0 0

1,1 1 1,1 1 1,1 1 1,2 1 1r r r ra u a u a u a v R+ + + +
 + + + =                  (13) 

2 0

2,2 1 2,2 1 2,3 1 2r r ra v a v a R+ + +
 + + =                   (14) 

2 1

3,3 1 3,2 1 3r ra a v R + +
 + =                     (15) 

 

The boundary conditions become 

1 1 1

1 1 1

0 at 0,

0, 1at 1

r r r

r r r

u v y

u v y





+ + +

+ + +

   = = = = 


= = = = 

                  (16) 

 

Here the featured coefficients in Eqns. (13)-(15) are defined as follows: 

2 1 0 0

1,1 1,1 1,1 1,21, 0, 0,a a a a = = = =         

( )2 0 2 0

2,2 2,2 1 2,3 11, (1 ) , (1 )a a M a  = = − + + = +  

2 1 0

3,3 3,2 3,2

1

4
1 , 2 , 2

3 (1 )
r r

R N
a a v a N v


= + = =

+
 

( )1 1 ,R P= −
2 1(1 )R P = +  and ( )

2 2

3

1(1 )
r r

N
R v N v


= +

+
              (17)

 

To compute the solutions of Eqns. (13)-(15) under boundary conditions Eq. (16) at the 

( )1
th

r + iteration, field variables are selected at the thr position 

as 0, 0, ;r r ru v y= = = satisfying the boundary conditions. Now according to the spectral 

method, the domain  0,1y is first transformed (mapped) onto  1, 1z −  using the 

transformation, ( )
1

1
2

z = + . Next the Chebyshev Gauss-Lobatto points are selected based 

on: 

cosj
j

z
n

 
=  

 
, 0(1)j n= ,                    (18) 

Here n  represents the number of collocation points. The field variables ,r ru v and r are 

approximated in terms of Lagrange polynomials (basis functions) at 1N + Gauss-Lobatto 

points, as, respectively: 
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 ( ) ( )
0

,
n

j j
j

u u  

=

=                      (19) 

( ) ( )
0

n

j j
j

v v  

=

=                      (20) 

( ) ( )
0

n

j j
j

    

=

=  .                    (21) 

Next the derivatives with respect to the basis functions about the collocation points are 

obtained (see Trefthen [49]) as: 

 ( ) ( )
0

2 '( )
n

j i j
j

D  

=

=                      (22) 

Eqns (13) - (15) with conditions Eq. (16) are discretized in terms of Lagrangian polynomials 

about these collocation points. This effectively leads to the following matrix system of 

equations in the form AX R= , where:  

111 12 13 1

21 22 23 1 2

31 32 33 31

, ,

r

r

r

uB B B R

A B B B X v R R

B B B R

+

+

+

    
    

= = =
    
        

                            (23) 

Here the following definitions apply: 

2 2 0
11 1,1 12 131,2

( ) , ( ) ,B diag a D B diag a I B O= = =                 (24) 

2 2 0 0
21 22 2,2 232,2 2,3

, ( ) ( ) , ( )B O B diag a D diag a I B diag a I= = + =               (25) 

1 2 2
31 32 3,2 33 3,3, ( ) , ( )B O B diag a D B diag a D= = =                 (26)

 “In Eqns. (24)-(26), D is the Chebyshev differentiation matrix, I is the Identity matrix of 

order N+1 and O is the zero matrix of order N+1. The boundary conditions are imposed in the 

matrices as follows: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 11 12 13 1

11 11 12 13 1

1,: 0, 1,: 1,: ; ( 1,:) 0; 1,: 0; 1 0;

1,: 0; 1,1 1; 1,: 0; 1,: 0; (1) 0;

B n B n D n B n B n R n

B B B B R

+ = + = + + = + = + =

= = = = =
          (27) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

21 22 22 23 2

21 22 22 23 2

1,: 0; 1,: 0; 1,: 1,: ; 1,: 0; 1 0;

1,: 0; 1,: 0; 1,1 1; 1,: 0; (1) 0;

B n B n B n D n B n R n

B B B B R

+ = + = + = + + = + =

= = = = =
        (28) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

31 32 33 3

31 32 33 33 3

1,: 0; 1,: 0; 1,: 1,: ; 1 0;

1,: 0; 1,: 0; 1,: 0; 1,1 1; 1 1;

B n B n B n D n R n

B B B B R

+ = + = + = + + =

= = = = =
             (29) 

This system of equations can be solved by using the pseudo-inverse operator available in 

MATLAB®. In order to check the accuracy of the results, residuals of the solutions have been 

presented through Figs. (2)-(4). From these figures, it is perceived that solid displacement 

( u ) and fluid velocity ( v ) results are obtained to an accuracy of 10-10 and   to 10-9 accuracy. 

Convergence and accuracy of the solutions is therefore attained comfortably”. 

 

Figure 2: Residual of u for 10 iterations with n=40 collocation points 
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Figure 3: Residual of v for 10 iterations with n=40 collocation points 

 

Figure 4: Residual of   for 10 iterations with n=40 collocation points 
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Further validation of the SQM solutions is confirmed via comparison with another numerical 

method i.e. shooting quadrature technique (see Mallikarjuna et al. [55] and Srinivasacharya et 

al. [56]). These are presented in Section 5.  

 

4. ENTROPY GENERATION ANALYSIS 

In almost all thermodynamic processes, avoiding energy wastage is of great importance, since  

most energy is dissipated as heat in the system. Bejan’s entropy generation minimization 

(EGM) approach offers a practicable mechanism for optimizing energy usage which is 

critical in industrial and medical applications. Volumetric rate of entropy generation [57], 

( )( )3/ ,GE W m K based on the second law of thermodynamics for a deformable porous 

medium saturated with viscoelastic field with thermal radiation and magnetic field effects, 

takes the form: 

( )

2 2 2* 2 2
20 1 0

2 *

0 0 1 0

16 2

3 1

a
G

k T T T V B
E V

T Y kk Y T Y T

  



        
= + + +      

  +        

                      (30) 

The first and second terms in the square brackets on the RHS are associated respectively with 

thermal conduction and thermal radiative heat transfer, the next term is due to viscous 

dissipation and the last term is due to magnetic body force. In dimensionless form, the 

entropy generation number can be determined using: 

( )

2 2

0

0 1 0

s G

T h
N E

k T T
=

−
                                                                                                           (31) 

Using variables defined earlier, the non-dimensional version of Eqn. (31), emerges as: 

2 2

24
1

3
s

d N dv
N R Mv

dy dy

      
= + + +            

                                                                 (32) 

“Here ( )1 0 0T T T = −   is the dimensionless temperature difference and all other parameters 

have been defined previously. It is also noteworthy that entropy generation analysis 

(specifically the evaluation of the irreversibility distribution) can be conducted with the Bejan 
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number which is defined for the current model as the ratio of  irreversibility due to radiative 

heat transfer to the total heat irreversibility due to radiative heat transfer, fluid friction, and 

magnetic body force, viz: 

2

2 2

2

4
1

3

4
1

3

d
R

dy
Be

d N dv
R Mv

dy dy





  
+  

  
=

     
+ + +             

                                                   (33) 

However in the present simulations attention is focused on the entropy generation rates which 

are generally inversely proportional to the Bejan number.”Further, it is apparent from Eq. 

(33) that the Bejan number ( )Be  values range from 0 to 1 (also see the discussion in Ref. 

[58]). The value of 0Be = signifies the case of domination of irreversibility due to fluid 

friction and magnetic force over irreversibility due to thermal-radiative-conduction. The 

value of 1Be =  represents the case of domination of irreversibility due to thermal-radiative-

conduction over the irreversibility due to fluid friction. Finally, the two irreversibility 

mechanisms contribute equally when 0.5Be = . 

5. NUMERICAL RESULTS AND DISCUSSION: 

Extensive computations have been performed and solutions are presented graphically in Figs. 

5-23 for fluid velocity ( ),v solid displacement ( )u  and temperature distribution ( ) with 

variation in key parameters. Default values of parameters are prescribed as follows unless 

otherwise stated: pressure gradient parameter 1,P = −  porous medium volume 

fraction 0.6, =  viscous drag parameter 1, =  radiation-conduction parameter 1,R =  Jeffery 

viscoelastic parameter 1 0.2, =  magnetic parameter 1M = and thermal buoyancy parameter 

1N = . Physically these values imply negative pressure, high porosity, weak drag, 

equivalence of radiation and conduction heat transfer modes, weak viscoelasticity, 

equivalence of Hartmann magnetic drag and viscous hydrodynamic force and equivalence of 

thermal buoyancy and viscous hydrodynamic force, respectively. In addition to the 
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fundamental variables u,v, and entropy generation rate, NS, it is also useful to study 

momentum and heat transfer characteristics at the channel wall (plate). Non-dimensional 

shear stress (skin friction), , is defined as: 

 = [dv/dy] y = 1                                                     (34) 

 

Figure 5: Velocity profiles for different values of   

 

Figure 6: Displacement profiles for different values of   
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Figure 7: Temperature profiles for different values of   

 

 

 

Figure 8: Velocity profiles for different values of R 
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Figure 9: Displacement profiles for different values of R 

 

 

 

Figure 10: Temperature profiles for different values of R 
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Figure 11: Velocity profiles for different values of M 

 

 

 

Figure 12: Displacement profiles for different values of M 
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Figure 13: Temperature profiles for different values of M 

 

 

 

Figure 14: Entropy generation for different of  and M 
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Figure 15: Entropy generation number for different of  and N 

 

 

 

Figure 16: Entropy generation for different values of  and R 
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Figure 17: Entropy generation for different values of   

 

 

 

Figure 18: Skin friction as a function of   for different values of N  
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Figure 19: Skin friction as a function of   for different values of M 

 

 

 

Figure 20: Skin friction as a function of 1  for variation of R  
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Figure 21: Nusselt number as function of  for different values of N  

 

 

Figure 22: Nusselt number as a function of  for different values of M  
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Figure 23: Nusselt number as a function of 1  for different values of R 

 

Nusselt number, Nu i.e. dimensionless heat transfer gradient at the wall is given by: 

Nu = -[d/dy] y = 1                                                     (35) 

It is also note-worthy that only the right hand channel half-space is studied since the system is 

symmetrical about the channel centre-line i.e. all computations are presented for the range 0 

y 1. Additionally we note that in all graphs both SQM and shooting numerical quadrature 

solutions have been presented and achieve excellent agreement. Confidence in the SQM code 

utilized is therefore justifiably high. 

Figs. 5-7 illustrate the velocity (v), solid displacement (u) and temperature () 

distributions for different values of viscous drag parameter (). This parameter embodies the 

Darcian matrix resistance i.e. impedance to which it is directly proportional i.e.  = Kh2/(2a). 

It features in the normalized elastic equilibrium (6) and energy conservation (10) equations as 

a  positive linear and quadratic body force terms in terms of flow velocity i.e. +  v and 

+Nv2, respectively. However it appears as a negative body force in the momentum 

conservation eqn. (7), viz  - v. The inhibitive nature of this porous media drag force leads to 

a significant deceleration in fluid flow, as observed in Fig. 5. Increasing values of K and 
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therefore , imply an accentuation in the impedance offered by the porous media solid fibers 

to percolating flow. Consistently maximum fluid velocity is computed at the centreline and 

vanishes at the channel wall (right hand side plate) in consistency with the no-slip boundary 

condition imposed there. Conversely with larger values of , solid displacement is enhanced 

across the channel half-space region in Fig. 6. The increase retardation of the biofluid 

manifests in an elevation in poro-elastic stress generated between the porous media fibers. 

The deformability of the medium permits these stresses to generate significant displacements 

characteristic of poro-elastic materials, via inter-pore fluid pressure as noted by Coussy [1], 

Liu et al. [58] and Cheng and Detorunay [59]. Temperature however is strongly reduced with 

increasing viscous drag parameter, as plotted in Fig. 7. The buoyancy force +Nv2, in Eqn. 

(10) encourage momentum diffusion in the regime. However it reduces thermal convection 

which leads to a depletion in temperatures across the channel half-space. Stronger viscous 

drag associated with the poro-elastic medium therefore effectively cools the regime and this 

has important implications in biothermal therapy procedures.  

Figs. 8-10 depict the evolution in “fluid velocity, solid displacement and temperature 

distribution across the channel half space with variation in radiation-conduction parameter, R. 

This parameter defines the relative contribution of thermal radiation heat transfer to thermal 

conduction heat transfer. It only features in the augmented thermal diffusion term in the 

normalized energy eqn. (10) i.e. it is absent from the elastic equilibrium and momentum 

conservation equations although via coupling it does exert an indirect effect on displacement 

and velocity. When R <1  thermal radiation dominates over thermal conduction, for R >1” 

“thermal conduction dominates. When R = 1 both thermal conduction and thermal radiation 

contributions are equal”. Increasing R value i.e. decreasing thermal radiation is found to 

elevate fluid velocity (v) as seen in Fig. 8. Increasing radiative flux is known to energize 

fluids and simultaneously supplies supplementary energy to the velocity field i.e. induces 

acceleration, as noted by Srinivas et al. [24], Shukla et al. [26] and also Cess [60]. The 

radiation interacts in a complex manner with both thermal convection and thermal 

conduction. The maximum effect is sustained at the channel centre-line and decays with 

proximity to the channel plate (wall). Fig. 9 indicates that the displacement field is also 

weakly suppressed with a rise in R values i.e. displacments are increased with radiative heat 

flux. Stress state of the poro-elastic medium is therefore elevated by thermal radiation. This 

has significant benefit in for example high intensity focused ultrasound (HIFU) ablation 
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treatments where strong thermal fields contribute to enhanced local tissue movement, as 

noted by Wang [61]. Fig. 10 illustrates that temperatures are much more significantly boosted 

with a decrease in R values. Significant energization of the biofluid is achieved with R < 1 

whereas cooling is induced with R >1. The profiles are substantially modified as compared 

with displacement and velocity field which are marginally influenced.  

Figs. 11-13 illustrate the impact of magnetic body force parameter on fluid velocity, solid 

displacement and temperature distributions. Velocity of the fluid decreases when the 

1magnetic parameter (M) increases. Higher values of M correspond to stronger external 

magnetic field. This in turn accentuates the Lorentzian drag force (generated due to an 

interaction 1between the 1magnetic field induction and electric current density) which 

increases the impedance to the flow i.e. induces retardation and a reduction in fluid velocity 

magnitudes. When M < 1 the viscous hydrodynamic force exceeds the hydromagnetic drag 

force and vice versa for M > 1. Despite the marked deceleration in flow there is never any 

back flow induced or flow separation. The flow remains stable across the channel half-space. 

Evidently the flow is strongly regulated by the action of 1a magnetic field and this is of 

significance in magnetic thermal therapy procedures including biomagnetic regulation of 

blood flow in vascular tissue [15]. Displacements are also considerably reduced with greater 

magnetic field effect, as observed in Fig. 12. However the reduction is significantly lower for 

the velocity field. Although magnetic field does not feature in the elastic equilibrium eqn. (6), 

via poro-elasticity the damping in the velocity field leads to a modification in pressure 

distribution and this influences the displacement field. Although this effect is more prominent 

in anisotropic porous media, it still exerts some contribution in the isotropic model under 

consideration. “Modeling poroelasticity requires the coupling of two laws, namely Darcy's 

law and the structural displacement law for the porous matrix. Darcy’s law describes the 

relation between fluid motion and pressure within a porous medium and implies that fluid 

velocity is directly proportional to the difference in pressure over a given distance and the 

fluid's viscous properties and the porous material's ability to disrupt the flow”. The 

structural displacement of the porous matrix relates to elastic equilibrium and the Biot 

poroelasticity approach successfully describes this coupled physics and is utilized in the 

current model. Temperatures are also strongly depressed with 1increasing magnetic field 

parameter, as visualized in Fig. 13. This behaviour deviates from the classical result in 

viscous magnetohydrodynamics in non-deformable porous media. Generally when the 
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medium cannot deform, “the supplementary work expended in dragging the fluid against the 

action of the applied magnetic field is dissipated as thermal energy”. This heats the medium. 

However in poro-elastic media, since deformation is possible, the displacement field allows a 

modification in the porous matrix structure which manifests in a cooling effect with 

increasing magnetic field. This has been noted by several investigators including Boopalan 

[62] and is beneficial to both tissue and cartilage repair. 

Figs. 14-17 “depict the effects of magnetic parameter M , drag parameter , buoyancy 

parameter N , fluid fraction  , radiation-conduction parameter R , Jeffrey parameter 1  and 

temperature difference parameter, , on the entropy generation number sN . In this study, as 

noted earlier, we have selected the following default values for the numerical 

computations: 1,P = − 0.6, = 1, = 1,N = R 1,= 1,N =
1 0.2, = 1.M =  Fig. 14 presents 

the evolution in entropy generation number sN  across the channel half-space for different 

values of M and  . It is noticed that magnetic” field induces a considerable reduction in 

entropy generation. This is attributable to the strong damping in velocity field with greater 

magnetic field. This behaviour has also been observed by other researchers including Khan et 

al. [22] and Vyas and Srivastava [57]. It is also evident that entropy generation number 

decreases significantly with increasing viscous drag (porous impedance) parameter  since 

again this is associated with strong retardation of the flow. This implies that the parameters 

M and  can successfully control the entropy production in the channel, confirming the 

advantage of using magnetic therapy from a thermodynamic optimization viewpoint. Fig. 15 

shows that “entropy generation number decreases with increasing buoyancy parameter N  

and volume fraction of the fluid  . Thermal buoyancy is associated with flow deceleration in 

natural convection regimes. Velocity is reduced and this leads to a suppression in entropy 

generation. In poro-elasticity, the application of any external load to the deformable porous 

medium modifies the volume fraction of the pores. The fluid-filled pores experience a 

change in pressure under this mechanical stress, which, in turn, generates fluid motion. As a 

reaction to this change in pore volume, the solid material shifts and deforms elastically”. 

Increasing volume fraction produces lower flow velocities which result in a decrease in 

entropy generation. Maximum modifications are consistently computed at the channel plate 

(wall). Entropy generation is observed to grow from the channel centre-line to the channel 

boundary since velocity is reduced over this same range (velocity vanishes at the wall).  
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Fig. 16 “illustrates the variation in the entropy generation number with radiation-

conduction parameter R and Jeffrey parameter 1 . It is seen that an increase in Jefferys 

viscoelastic parameter mobilizes a significant elevation in entropy generation. This parameter 

denotes the ratio of the relaxation to retardation times of the biofluid. When λ1 =1, both 

relaxation and retardation time are exactly equivalent. However, in the context of biological 

media, it is more appropriate to consider λ1 <1 for which retardation time exceeds the 

relaxation time. It is also interesting to note that whereas both the viscosity and elasticity vary 

greatly among the pathological fluids, the elasticity is the more sensitive indicator of 

viscoelastic properties. This implies that the biofluid responds faster with the removal of 

stress and returns quicker to its unperturbed state. This influences pressure gradient and” 

elevates the velocity field since elastic forces are accentuated and viscous effects are reduced 

progressively with larger values of 1 . The acceleration in the flow leads to an enhancement 

in entropy generation. An increase in R value (decrease in radiative heat transfer contribution) 

is also observed to lead to an escalation in entropy generation number, Ns.  Both 

viscoelasticity and radiative flux are therefore counter-productive in terms of thermodynamic 

optimization of the biological system. Inspection of Fig. 17 shows that there is a dramatic 

depression in entropy generation across the channel half space with increasing temperature 

difference parameter () values. Eqn. (32) 

i.e.

2 2

24
1

3
s

d N dv
N R Mv

dy dy

      
= + + +            

clearly shows the inverse relationship 

between Ns. Larger temperature differences lead to a  stabilization in thermal convection and 

inhibit entropy generation, as noted by Vasu et al. [16] and Akbar et al. [18]. The impact as 

noted earlier is amplified at the channel wall and minimized at the central (core) zone of the 

channel. As with other plots (Figs 14-16) there is a monotonic increase in entropy generation 

rate across the channel half space. 

Figs. 18-20 visualize the effects of buoyancy parameter (N), magnetic body force 

parameter (M), and thermal radiation-conduction parameter (R) on skin friction at the right 

hand channel plate (y =1) as function of   ,  , and 1 , respectively. It is observed that the 

skin friction decreases with buoyancy and magnetic parameters (since velocity fields are 

reduced) whereas the opposite behaviour is noticed in the case of radiation-conduction 

parameter. Skin friction is also observed in Fig 18 to be depressed in a linear fashion with 



31 

 

increasing volume fraction. However it grows significantly with increasing viscous drag 

parameter (Fig. 19) but is again strongly reduced with greater Jefferys viscoelastic parameter 

(Fig. 20). These trends are intimately connected with the influence of the same parameters on 

the velocity field described in earlier graphs. 

Figs. 21-23 present the evolution in Nusselt number and presented through Figs. 20-23. It 

is pointed out that the Nusselt number increases with respect to buoyancy and magnetic 

parameters since greater heat transfer to the wall is achieved with a reduction in 

temperatures. However Nusselt numbers are noticeably suppressed with increasing R values 

since temperatures are decreased and this augments heat diffusion rates from the biofluid to 

the channel plate. These trends concur with the earlier study of Hidouri et al. [63] which 

indicates that radiation effect homogenizes the temperature inside the channel by decreasing 

the temperature gap between the two insulated channel walls, resulting in depletion in Nusselt 

numbers. 

6. CONCLUSIONS 

Motivated by providing a multi-physical model of transport in deformable magneto-

biothermal systems, a mathematical and numerical study has been presented in this article, 

for magnetohydrodynamic biological flow, heat transfer and entropy generation in electro-

conductive viscoelastic flow in a vertical channel containing a poro-elastic medium. Thermal 

buoyancy and radiative flux effects have been included. The non-dimensionalized boundary 

value problem has been solved numerically to yield robust“solutions for fluid velocity, solid 

displacement and temperature distribution. Additionally solutions for entropy generation rate, 

wall shear stress at the right hand plate and Nusselt number have been presented. Verification 

of the accuracy of the SQM computations has been achieved with an alternate numerical 

method i.e. shooting quadrature.“The effects of various physical parameters on “fluid 

velocity, solid displacement, temperature, entropy generation, shear stress and Nusselt 

numbers have been visualized graphically. The present simulations have shown that 

(i) Increasing viscous drag (porous media impedance) parameter decreases the fluid 

velocity. 

(ii) Increasing magnetic force and drag parameters decrease both velocity and entropy 

production rates. 



32 

 

(iii) Entropy production is enhanced with an increase in thermal buoyancy parameter and 

volume fraction of the fluid. 

(iv) Skin friction decreases with elevation in thermal buoyancy and magnetic body force 

parameter whereas the reverse trend is computed with increasing radiation-conduction 

parameter. 

(v) Nusselt number increases with an increase in thermal buoyancy and magnetic body 

force parameter whereas the converse behaviour is induced with increasing values of 

radiation-conduction parameter”. 

(vi)  Skin friction is strongly reduced with increasing viscoelastic parameter whereas 

Nusselt number is elevated. 

(vii) Elastic displacement in the deformable porous medium is boosted with increasing 

viscous drag parameter, whereas it is weakly decreased with increasing radiation-

conduction parameter and strongly reduced with increasing magnetic body force 

parameter”. 

(viii) The case for a viscous Newtonian fluid can be retrieved in the present model by 

taking 1 0 → and 2 0 → . 
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