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ABSTRACT

Over the past few years, the concept of multi-directional 3D printing has been introduced to print complex

shapes and overhang geometry. This technique requires the nozzle to constantly change orientation to print the

object along its tangential direction. A 6-DOF (Degree-Of-Freedom) robotic arm or Stewart platform can be a

solution, but these mechanisms use more components and motors. An alternative solution has been proposed in

this paper based on a 4-CRU mechanism. This mechanism can orient the nozzle by switching into different motion

types with minimal numbers of motors while keeping the mechanism rigid and agile. Therefore, analyses of the

reconfiguration, workspace, singularities, and self-motions of a 4-CRU mechanism presented in this paper have

become necessities. By using primary decomposition, four geometric constraints have been identified, and the

reconfiguration analysis has been carried out in each of these. It reveals that each geometric constraint will have

three distinct operation modes, namely Schönflies mode, reversed Schönflies mode, and an additional mode. The

additional mode can either be a 4-DOF mode or a degenerated 3-DOF mode, depending on the type of geometric

constraints. By taking into account the actuation and constraint singularities, the workspace of each operation mode

has been analysed and geometrically illustrated. It allows us to determine the regions in which the reconfiguration

takes place. Furthermore, the inherent self-motion in the Schönflies mode is revealed and illustrated, which occurs

at two specified actuated leg lengths. Demonstration of the reconfiguration process and self-motions are provided

through a mock-up prototype.

1 Introduction

Over the past few decades, investigations on reconfigurable mechanisms have been carried out under different terms,

e.g., kinematotropic mechanisms [1,2], metamorphic mechanisms [3,4,5], deployable mechanisms [6,7,8], and mechanisms

with multiple operation modes [9,10]. The concept of operation modes was initially developed to drive attention to interpret

five distinct 3-DOF motions performed by the DYMO (Double Y-Multi Operational) [11]. Based on Euler-Quaternion

parameters, types of operation modes and transition configurations were investigated in [12, 13]. The Study’s kinematic

mapping and algebraic geometry approach were used to reveal the Schönflies mode and reversed Schönflies mode of the

4-RUU and 2-RUU parallel mechanisms [14, 15]. Later, the translational parts of the Study’s kinematic mapping were

modified to identify the workspace transition of the 3-(rR)PS metamorphic parallel mechanism [16, 17]. The same method

was employed in [18] to synthesize the design parameters for medical purposes [19,20,21]. The Cayley parametrization was

implemented in [22] to determine several extra modes of the 4-UPU parallel mechanism.

The reconfiguration process from one operation mode to another involves a constraint singularity. The conditions for

switching the operation modes of a 3-PRPiR parallel robot involving lockable Pi (parallelogram) and R joints were investi-

gated in [23]. A systematic approach was proposed in [24] to synthesize multi-modes manipulators with lockable-joints such
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1 INTRODUCTION 2

that constraint singularities can be avoided during reconfiguration. In [25], brakes and timing belts were installed in the DI-

RECTOR (DIsassembly-free REConfigurable parallel manipulaTOR) to enable passage through the constraint singularities.

A reconfigurable platform is also a solution for the mechanisms to switch the operation modes without crossing constraint

singularities. A special case of singularity may occur where the moving-platform can perform continuous and finite motions

when all actuators are locked. This class of singularity is called self-motions [26, 27].

Serial and parallel mechanisms have been used for 3D-printing technology for building construction, which is currently

being explored by many researchers. 3D-printing technology offers many advantages compared to conventional construction

processes, such as reduced waste and cost, operation time saving and the ability to generate complex architectures. An

important application is contour crafting [28], which is a computerized additive manufacturing technology that uses trowels

to build a polished planar and free form surface. A D-shape project was started by Cesaretti et. al. [29] which used a binding

agent and special powder as the two main components of the deposited material. A gantry mechanism was applied to both

the contour crafting and D-shape building construction projects.

For such printing mechanisms, the nozzle moves in limited X ,Y, and Z linear motions without orientation functionality.

The printabilities of those mechanisms are quite poor when it comes to printing complex shapes or overhang geometry,

for example the tilted wall in Fig. 1. As a consequence, additional support is needed to prevent the concrete mixture from

collapsing due to gravity. It becomes less efficient, lengthens the printing process, and reduces its flexibility. Furthermore,

the final result is lacking in surface quality due to stair-stepping effects, as shown in Fig. 1.

Several researchers have attempted to overcome these issues by introducing the idea of a multi-directional 3D printing

process where the nozzle can be freely oriented to print the workpiece along its tangential direction, as shown in Fig. 1.

Krejcirik et al. [30] applied a 6-DOF robotic arm to print overhang geometry without support. This strategy enables higher

bonding quality than the gravitational force due to the self-supportive fiber deposition. Although the robotic arm can be

designed to follow complex trajectories, the nozzle and extruder, which should be carried by the moving-platform, will

increase the base motor loads and decrease its agility.

Tilted wall

Traditional printing

Multi-directional printing

Nozzle

Nozzle

Fig. 1: Illustration of traditional and multi-directional 3D printing

If compared to serial robotic arms, parallel mechanisms use several short chains and are intrinsically more robust to

unwanted movements. A Stewart mechanism was employed in [31] to create a low-cost additive manufacturing with multi-

directional deposition process. All six motors were mounted on top of the frame, leading to vibrations. Instead of using

extra motors for extra DOF, Gao et al. [32] operated a 5-DOF Computer Numerical Control (CNC) to minimize the use of

supportive material. The base-platform carrying the workpiece moves in two rotational axes in addition to 3-DOF linear

motions of the print head. This method cannot be adopted for printing big and heavy parts, such as buildings or houses.

Motivated by those problems, we developed a 4-CRU1 mechanism for 3D printing buildings. This mechanism is able to

reconfigure beyond its original 4-DOF motions. By reconfiguring, the nozzle carried by the platform can switch into different

motion types, hence the nozzle can print the workpiece along its tangential direction, as shown in Fig. 1. The reconfiguration

is very useful for this application since we perform more motion types with less parts and motors as compared to the Stewart

platform. All actuators of the 4-CRU mechanism are fixed on the ground, which will enable the mechanism to be more rigid

1C, R, U stand for cylindrical, revolute, universal joint.
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and agile, as compared to the serial robotic arm. Since we aim to print large parts, such as buildings, the ground carrying the

workpiece cannot be oriented. This contrasts with the 5-DOF CNC, and all orientation functions should be conducted by the

platform via reconfiguration.

Accordingly, this paper focuses on the analysis of reconfiguration, workspace, singularities and self-motions of a 4-

CRU parallel mechanism with the change of its geometric constraints. The rest of this paper is organized as follows: the

application of a 4-CRU parallel mechanism for 3D-printing building is briefly explained in Section 2. Section 3 provides

the mechanism description and the derivation of constraint equations. The primary decomposition is computed as a set of

constraint equations to determine the number and types of operation modes in Section 4. The workspace and actuation

singularities for different operation modes are presented in Sections 5. The reconfiguration between operation modes is

described in Section 6 and the self-motions are analysed and demonstrated in Section 7. Eventually, conclusions for this

research are addressed in Section 8.

2 Application for 3D-Printing Building

3D-printing technology has continued to grow since its emergence. This technology can be used to create simple parts

or complex building shapes. The process of printing a building is carried out by a super-sized printer which deposits a special

concrete and composite mixture in layers. This mixture is much thicker than regular construction concrete.

A 4-CRU parallel mechanism performing 4-DOF motions (three translations about X ,Y,Z directions and one rotation

about Z axis) is proposed as a 3D printing buildings, as shown in Fig. 2. This mechanism is composed of four identical

CRU legs in which each leg is actuated by one linear motor. All linear motors are vertically fixed on the ground, which will

make the mechanism lighter and more agile when executing a printing task. Thanks to its structure, the load carried by the

moving-platform can be evenly distributed to all four CRU legs. In addition to 4-DOF motions, the mechanism is able to

reconfigure its motion types continuously into several distinct 3-DOF motions. Each motion type corresponds to a specific

operation mode.

As stated in Section 1, a 4-CRU parallel mechanism is used to accomplish multi-configuration printing where the print

head motions can be continuously reconfigured in multiple axes without extra motors. Therefore, the reconfiguration ability

is the main interest of this paper. The influences of geometric constraints to the changes in operation modes are explored. The

constraint singularities between operation modes are characterized, so we can detect the regions in which the reconfiguration

takes place.

Fig. 2: Application for a 3D-printing buildings

3 Mechanism Description and Constraint Equations

3.1 Mechanism Description

The structure of a 4-CRU parallel mechanism is shown in Fig. 3. This mechanism is composed of a reconfigurable base

and moving-platform, which are connected by four identical legs. Each leg is connected to the reconfigurable base and the

moving-platform by a cylindrical joint, a revolute joint, and a universal joint. The fixed frame Σ0 is defined by the origin O
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of coordinates x,y,z and located at the center of base. The moving-frame Σ1 is defined by the origin P of coordinates u,v,w

and located at the center of moving-platform.

In each leg, the cylindrical and revolute joints are built with perpendicular and intersecting axes. The cylindrical joint

of each leg is attached to the base and its translational motion is actuated along the axis si, where i = 1, ..,4. Its unit vector

expressed in the fixed frame is defined as: s0
i =

[

0 0 1
]T

. The linear distance hi of the cylindrical joint is the actuated leg

length which is measured from point Ai to Bi, as shown in Fig. 4. The base is bounded by four vertices Ai. The length a

is defined from origin O of the fixed frame to the mid-edges of A1A2 and A3A4, as shown in Fig. 5. Likewise, length b is

defined from the origin O of the fixed frame to the mid-edges of A2A3 and A4A1. The revolute joint of leg i is located at point

Bi. The coordinates of point Bi expressed in the fixed frame are:

b0
1 =

[

a −b h1

]T

b0
2 =

[

a b h2

]T

b0
3 =

[

−a b h3

]T

b0
4 =

[

−a −b h4

]T (1)

The moving-platform is bounded by four universal joints, of which the intersection point of the revolute joints is denoted

by point Ci. The first and second joints of the universal joint are directed along the axes mi and ni, respectively. The unit

vector of ni expressed in the moving-frame is defined as: n1
i =

[

0 0 1
]T

. The length of segment BiCi is denoted by r. The

length c is defined from the origin P of the moving-frame to the mid-edges of C1C2 and C3C4, as shown in Fig. 5. Likewise,

the length d is defined from the origin P of the fixed frame to the mid-edges of C2C3 and C4C1. The coordinates of point Ci

expressed in the moving-frame are:

c1
1 =

[

c −d 0

]T

c1
2 =

[

c d 0

]T

c1
3 =

[

−c d 0

]T

c1
4 =

[

−c −d 0

]T (2)

As the base and moving-platform are reconfigurable, the lengths a,b,c, and d can be assigned with arbitrary values. In

the following, the number and types of operation modes and the singularity conditions are investigated for different values

of design parameters a,b,c,d.

A1

A2

A3

B1

B2

B3

B4

C1

C2
C3

C4
x y

z

r

ni

si

O

P

u

v
w

Fig. 3: Isometric view of a 4-CRU parallel mechanism
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h1

h2

h3

h4

Fig. 4: Front view of a 4-CRU parallel mechanism

A1 A2

A3
A4

C1

C2

C3

C4

−
a

a
−b b

−c

c

−d
d

x

y
u

v

Fig. 5: Top view of a 4-CRU parallel mechanism

3.2 Constraint Equations

The initial step in deriving the constraint equations is to perform the coordinate transformation of the moving-platform

vertices Ci and the unit vectors ni. The Quaternion parameters x0,x1,x2,x3 and point-displacement X ,Y,Z are used and

formulated to be rotation matrix R and displacement vector d, respectively. Both matrix R and vector d are combined to be

a homogeneous transformation matrix T, as follows:

R =





x2
0 +x2

1 −x2
2 −x2

3 2(x1x2 −x0x3) 2(x1x3 +x0x2)

2(x1x2 +x0x3) x2
0 −x2

1 +x2
2 −x2

3 2(x2x3 −x0x1)
2(x1x3 −x0x2) 2(x2x3 +x0x1) x2

0 −x2
1 −x2

2 +x2
3



, d =

(

X

Y

Z

)

, T =

(

R d

01×3 1

)

(3)

All those seven parameters are useful in representing the spatial displacement of a rigid body. Then, the coordinates of points

Ci and unit vectors ni expressed in the fixed-frame can be determined through transformation, namely:

c0
i = R c1

i +d, i = 1, ..,4

n0
i = R n1

i , i = 1, ..,4
(4)

Once all coordinates of points and unit vectors are expressed in terms of Euler-Quaternion parameters, the constraint

equations can be derived by examining the geometric conditions of each CRU leg. The link connecting points Bi to Ci can

be defined by a vector:

u0
i = c0

i −b0
i i = 1, ..,4 (5)

Vector ui is always coplanar to the unit vectors si and ni, as shown in Fig. 6. This condition can be mathematically formulated

as a scalar triple product, as follows:

(s0
i ×n0

i )
T u0

i = 0, i = 1, ..,4 (6)

By applying Eq. (6) to all CRU legs, four constraint equations can be determined as follows:

f1 : Xx0x1 −Xx2x3 +Yx0x2 +Yx1x3 − ax0x1 + ax2x3 + bx0x2 + bx1x3 + cx0x1 + cx2x3 − dx0x2 + dx1x3 = 0

f2 : Xx0x1 −Xx2x3 +Yx0x2 +Yx1x3 − ax0x1 + ax2x3 − bx0x2 − bx1x3 + cx0x1 + cx2x3 + dx0x2 − dx1x3 = 0

f3 : Xx0x1 −Xx2x3 +Yx0x2 +Yx1x3 + ax0x1 − ax2x3 − bx0x2 − bx1x3 − cx0x1 − cx2x3 + dx0x2 − dx1x3 = 0

f4 : Xx0x1 −Xx2x3 +Yx0x2 +Yx1x3 + ax0x1 − ax2x3 + bx0x2 + bx1x3 − cx0x1 − cx2x3 − dx0x2 + dx1x3 = 0

(7)
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si

ui

mi

ni

(a) si and ni are parallel

si

ui

mi

ni

(b) si and ni are not parallel

Fig. 6: Geometric condition of the CRU leg

Let the linear motions h1,h2,h3,h4 of C-joint in CRU legs be actuated. The length of link BiCi is defined by r. It follows

that point Ci can move along a circle of point Bi and radius r, which is mathematically defined as follows: ‖ c0
i −b0

i ‖2= r2.

This computation yields:

f5 : −4d(Y + b)x2
2 + 4c(X − a)x2

1 + 4c(Z− h1)x1x3 − 4d(Z− h1)x2x3 − 4d(Z− h1)x0x1 − 4c(Z− h1)x0x2 +(4Xc

−4Yd − 4ac− 4bd)x2
0− 2h1Z+(4Xd+ 4Yc− 4ad+ 4bc)x0x3 +(−4Xd+ 4Yc+ 4ad+ 4bc)x1x2 + 2Yb+Z2

+h2
1 − r2 − 2Xa− 2Xc+Y2 +X2 + c2 + 2dY + a2 + b2 + d2 + 2ac+ 2bd = 0

f6 : 4c(X − a)x2
1 + 4d(Y − b)x2

2 +(4Xd+ 4Yc− 4ad− 4bc)x1x2 +(−4Xd+ 4Yc+ 4ad− 4bc)x0x3 +(4Xc+ 4Yd

−4ac− 4bd)x2
0+ h2

2 − 2h2Z − 2Yb+Z2 − r2 − 2Xa− 2Xc+ 4d(Z− h2)x0x1 − 4c(Z− h2)x0x2 + 4c(Z− h2)

x1x3 + 4d(Z− h2)x2x3 +Y2 +X2 + c2 − 2dY + a2 + b2 + d2 + 2ac+ 2bd = 0

f7 : 4d(Y − b)x2
2 − 4c(X + a)x2

1 +(−4Xd− 4Yc− 4ad+ 4bc)x0x3 +(4Xd− 4Yc+ 4ad+ 4bc)x1x2 +(−4Xc+ 4

Yd − 4ac− 4bd)x2
0− 2h3Z+ h2

3 − 2Yb+Z2 − r2 + 2Xa+ 2Xc− 4c(Z− h3)x1x3 + 4c(Z− h3)x2x0 + 4d(Z−
h3)x1x0 + 4d(Z− h3)x2x3 +Y 2 +X2 + c2 − 2dY + a2 + b2 + d2 + 2ac+ 2bd = 0

f8 : −4c(X + a)x2
1 +(−4Xd− 4Yc− 4ad− 4bc)x1x2 +(4Xd− 4Yc+ 4ad− 4bc)x0x3 − 2Zh4 +(−4Xc− 4Yd−

4ac− 4bd)x2
0+ h2

4 + 2Yb+Z2 − r2 + 2Xa+ 2Xc+Y2 +X2 − 4d(Y + b)x2
2 + c2 + 2dY + a2 + b2 + d2 + 2ac

+2bd+ 4c(Z− h4)x2x0 − 4d(Z− h4)x1x0 − 4d(Z− h4)x2x3 − 4c(Z− h4)x1x3 = 0

(8)

The norm of Quaternion parameters is computed and when its norm is equal to 1, the Quaternion parameters are called

normalized Quaternions. This normalization equation is added to be the ninth constraint equation, as follows:

f9 : x2
0 + x2

1 + x2
2 + x2

3 − 1 = 0 (9)

Eq. (9) should be fulfilled which means that x0 = x1 = x2 = x3 = 0 should be excluded. In the following, all constraint

equations were examined to determine the number and types of operation modes.

4 Description of Operation Modes

It is well known that design parameters have great influence on the numbers and types of operation modes. The condi-

tions of design parameters a,b,c, and d and their effects on the numbers and types of operation modes of the 4-CRU parallel

mechanism will be analyzed hereafter.

The solutions of nine equations f1, f2, f3, f4, f5, f6, f7, f8, f9 will be the solutions of direct kinematics. A polynomial

ideal that consists of four polynomials is formulated to analyze the operation modes, i.e. H = 〈 f1, f2, f3, f4〉. This ideal

is independent of the actuated lengths h1,h2,h3,h4 and it is defined by parameters (x0,x1,x2,x3,X ,Y ) and coefficient ring

C[a,b,c,d,r]. The primary decomposition is computed over the ideal H to identify if the ideal H is the intersection of
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several sub-ideals. Indeed, the primary decomposition returns several sub-ideals, such that:

H =
3⋂

j=1

H j (10)

The results of sub-ideals H j are as follows:

H1 : 〈x1,x2〉
H2 : 〈x0,x3〉
H3 : 〈(b2c2 − c2d2)X2 +(a2d2 − c2d2)Y 2,(ab− ad− bc+ cd)x2

0+(ab+ ad+ bc+ cd)x2
3,(ab+ ad− bc− cd)x2

1

+(ab− ad+ bc− cd)x2
2,(a− c)x0x1 +(−a− c)x2x3,(b− d)x0x2 − (a+ c)x1x3,(−ad+ cd)Yx1 +(bc− c

d)Xx2,(ad− cd)Yx0 +(bc+ cd)Xx3,(bc− cd)Xx0− (ad+ cd)Yx3,(bc+ cd)Xx1+(ad+ cd)Yx2〉

(11)

The sub-ideals H j do not contain any other sub-ideals, which means that the sub-ideals H j are prime ideals. The prime

ideals H j define the types of operation modes that belong to the studied 4-CRU parallel mechanism. The first and second

sub-ideals, H1 and H2, correspond to the 4-DOF operation modes, namely the Schönflies mode and reversed Schönflies

mode, respectively. Each operation mode will be discussed in the following sub-sections.

4.1 Operation Mode 1: Schönflies Mode (H1)

The first operation mode is named Schönflies mode which is described by the condition x1 = 0 and x2 = 0. This condition

is valid for all poses and is substituted into the transformation matrix T, which yields:

TH1
=









x2
0 − x2

3 2x0x3 0 X

2x0x3 x2
3 − x2

0 0 Y

0 0 1 Z

0 0 0 1









(12)

The transformation matrix TH1
specifies that the moving-platform has 4-DOF motions. This motion is composed of

3-DOF translational motions defined by the parameters X ,Y,Z and 1-DOF rotational motion about the positive z-axis of the

fixed frame Σ0. The rotational motion is parametrized by x0 and x3 which should simultaneously satisfy the normalization

equation defined in Eq. (9).

The Jacobian matrix of the Schönflies mode can be formulated based on the Screw theory. In this operation mode, the

axis ni is always pointing upward and parallel to the axis si as shown in Fig. 6(a). Each has one constraint screw that is

reciprocal to all five twists of CRU leg. This constraint screw can be described intuitively as an infinite-pitch screw which is

perpendicular to the axes mi and ni on the moving-platform (Fig. 6(a)), as: $̂ci =

[

0

mi ×ni

]

. Since four constraint screws,

$̂ci, geometrically lie in the same horizontal plane of moving-platform, the constraint screws in non-singular configuration is

2-system. It means that two arbitrary constraint screws, e.g. $̂c1, $̂c2, can be selected to be the Jacobian of the constraint, as

follows:

JH1c
=

[

(m1 ×n1)
T 01×3

m2 ×n2)
T 01×3

]

(13)

By considering that the translational motion of C-joint of CRU leg is actuated, each leg has one additional screw that

is reciprocal to all except the translational screw within the CRU leg. This is a zero-pitch screw whose axis is along vector

ui, as follows: $̂ai =

[

ui

c0
i ×ui

]

. On taking the reciprocal product of this zero-pitch screw with the moving-platform twist

and the screws representing the CRU joints within the i-th leg, one can solve for the translational rate of the C-joint and the
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moving-platform rates. In non-singular configuration, the actuation screws in this mode form the 4-system of Jacobian of

actuation, as follows:

JH1a
=









(c0
1 ×u1)

T uT
1

(c0
2 ×u2)

T uT
2

(c0
3 ×u3)

T uT
3

(c0
4 ×u4)

T uT
4









(14)

As a consequence, we define the Jacobian matrix to comprise the 4-system of JH1a
and the 2-system of JH1c

, as follows:

JH1

















(c0
1 ×u1)

T uT
1

(c0
2 ×u2)

T uT
2

(c0
3 ×u3)

T uT
3

(c0
4 ×u4)

T uT
4

(m1 ×n1)
T 01×3

m2 ×n2)
T 01×3

















(15)

4.2 Operation Mode 2: Reversed Schönflies Mode (H2)

This operation mode is characterized by the second sub-ideal H2 in which parameters x0 and x3 are null. The parameters

x0 = 0 and x3 = 0 are substituted into the transformation matrix, which gives:

TH2
=









x2
1 − x2

2 2x1x2 0 X

2x1x2 −x2
1 + x2

2 0 Y

0 0 −1 Z

0 0 0 1









(16)

The transformation matrix TH2
represents the 4-DOF motions performed by the moving-platform. This motion consists

of 3-DOF translational motions parametrized by X ,Y,Z and 1-DOF rotational motion parametrized by x1 and x2. The

moving-platform was turned 180◦ from the identity condition about an axis parallel to the XY -plane. The identity condition

is defined as a pose when the moving-frame and the fixed frame are coincident, i.e. Σ0 ≡ Σ1. As a consequence, the w-axis

of the moving-frame Σ1 is pointing downward. In this paper, this operation mode is called the reversed Schönflies mode.

The screw systems of reversed Schönflies mode are the same as the Schönflies mode, i.e. Jacobian of constraint JH2c
and

Jacobian of actuation JH2a
, as defined in Eq. (13-14).

In practice, the reversed Schönflies mode is difficult to reach due to collisions within legs or collisions between leg and

moving-platform. Thus, the following analysis will not include the reversed Schönflies mode.

4.3 Operation Mode 3: Additional Mode (H3)

This operation mode is characterized by the sub-ideal H3 which consists of nine polynomials. Its mathematical expres-

sions are rather general and need further investigation. The last six polynomials are dependent to the first three polynomials.

By solving the last six polynomials, it will lead to the first three. Thus, the three independent parameters X ,x3,x2 are solved

linearly in terms of the design parameters a,b,c,d from the first three polynomial sub-equations of the sub-ideal H3 in

Eq. (11), as follows:

x3 =±x0

√

(c− a)(b− d)

(a+ c)(d+ b)
, x2 =±x1

√

(c− a)(b+ d)

(b− d)(a+ c)
, X =±Y

√

d2(c− a)(a+ c)

c2(b− d)(d+ b)
. (17)

Real solutions of Eq. (17) are obtained if one of these inequalities is satisfied, namely: (c−a)(b−d)≥ 0 or
(c− a)

(b− d)
≥ 0.

Since both inequalities lead to the same results, only the first one is considered in this paper, namely (c− a)(b− d) ≥ 0.

Based on this inequality, four geometric constraints can be identified as follows:
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1. Geometric constraint A: c > a,b > d or c < a,b < d

2. Geometric constraint B: c = a,b 6= d

3. Geometric constraint C: c 6= a,b = d

4. Geometric constraint D: c = a,b = d

The geometric constraints A, B, C, and D determine the geometric relationships among the design parameters a,b,c,

and d. By fulfilling these conditions, the 4-CRU parallel mechanism may generate Schönflies mode, reversed Schönflies

mode, and new additional modes. To identify the additional modes, the primary decomposition must be recomputed, and the

discussions are provided hereafter.

4.3.1 Geometric constraint A: c > a,b > d or c < a,b < d

The additional mode of geometric constraint A is characterized by Eq. (17). One rotational motion is parametrized by

parameters x0,x1 in connection with the normalization equation defined in Eq. (9). The absence of parameter Z indicates that

the moving-platform is able to perform one translational motion along vertical direction and another translational motion

defined by X related to Eq. (9). It shows that the 4-CRU parallel mechanism in this operation mode has 3-DOF motion. In

this operation mode, the moving-platform is no longer parallel to the base and is tilted within 0◦ and 180◦.
By using the Screw theory, the Jacobian matrix of the additional mode can be determined. In this additional mode, the

axis ni is not pointing upward and is also not parallel to the axis si, as shown in Fig. 6(b). In this configuration, the constraint

screw reciprocal to five twists of CRU leg is a zero-pitch screw. This constraint screw passes through the intersection of axes

si and ni and is along the axis si ×ni. The intersection point of the axes si and ni is denoted by point Qi and the constraint

screw becomes: $̂ci =

[

(si ×ni)
q0

i × (si ×ni)

]

. Since vector si ×ni of four legs are geometrically parallel to each other as shown

in Fig. 7, the constraint screws are 3-system. Three arbitrary constraint screws can be selected, e.g. $̂c1, $̂c2, $̂c3 to form

Jacobian of constraint, as:

JH3Ac
=





(q0
1 × (s1 ×n1))

T (s1 ×n1)
T

(q0
2 × (s2 ×n2))

T (s2 ×n2)
T

(q0
3 × (s3 ×n3))

T (s3 ×n3)
T



 (18)

With the moving-platform constraints described as a 3-system of screws, its motion is described by a reciprocal 3-system of

twists, which is a planar 3-DOF motion in a plane perpendicular to the directions of these constraint screws.

By allowing the translational motion of the CRU leg be actuated, one actuation screw reciprocal to four passive joints

can be identified. This actuation screw is collinear with vector ui and passes through point Bi to Ci, as: $̂ai =

[

ui

c0
i ×ui

]

.

The number of actuation screws required in this operation mode are redundant and the actuation screws are 3-system. Three

arbitrary actuation screws, e.g. $̂a1, $̂a2, $̂a3 can be selected to form the Jacobian of actuation, as follows:

JH3Aa
=





(c0
1 ×u1)

T uT
1

(c0
2 ×u2)

T uT
2

(c0
3 ×u3)

T uT
3



 (19)

Eventually, the Jacobian matrix JH3A
consists of 3-system actuation screws and 3-system constraint screws, as follows:

JH3A
=

















(c0
1 ×u1)

T uT
1

(c0
2 ×u2)

T uT
2

(c0
3 ×u3)

T uT
3

(q0
1 × (s1 ×n1))

T (s1 ×n1)
T

(q0
2 × (s2 ×n2))

T (s2 ×n2)
T

(q0
3 × (s3 ×n3))

T (s3 ×n3)
T

















(20)

4.3.2 Geometric Constraint B: c = a and b 6= d

Let us consider the design parameters where the base and moving-platform follow the geometric constraint B, i.e.

c = a and b 6= d. This condition is then substituted into the constraint equations f1, f2, f3, f4 defined in Eq. (7). The
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x y

z

n1

n2

n3

n4

s1

s2

s3

s4

$̂c1

$̂c2

$̂c3

$̂c4

Fig. 7: Additional mode of geometric constraint A

new polynomial ideal HB is defined and the primary decomposition is computed. The ideal HB is decomposed into three

components, HB =
⋂3

j=1 H jB, with the results of primary decomposition as follows:

H1B : 〈x1,x2〉
H2B : 〈x0,x3〉
H3B : 〈X ,x2,x3〉

(21)

The results of primary decomposition tells us that the 4-CRU parallel mechanism with the geometric constraint A has

three operation modes. The first and second sub-ideals H1B and H2B correspond to the Schönflies and reversed Schönflies

modes, hence H1B = H1 and H2B = H2. The third sub-ideal H3B is associated with a specific operation mode. The Hilbert

dimension is computed as: dim (H3B) = 3. This shows that the sub-ideal H3B is 3-DOF operation mode. The third operation

mode is characterized by the parameters X = 0,x2 = 0,x3 = 0, which are substituted into the transformation matrix as follows:

TH3B
=









1 0 0 0

0 x2
0 − x2

1 −2x0x1 Y

0 2x0x1 x2
0 − x2

1 Z

0 0 0 1









(22)

The transformation matrix TH3B
shows that the motion type belonging to the third mode is composed of 2-DOF trans-

lational motions parametrized by Y and Z and 1-DOF rotational motion parametrized by x0 and x1. This motion type is also

well-known as a planar motion with pure rotational motion about x-axis. One pose of the mechanism in this additional mode

H3B is shown in Fig. 8.

4.3.3 Geometric Constraint C: c 6= a and b = d

According to geometric constraint C, the design parameters of the base and moving-platform satisfy c 6= a and b = d.

The new constraint equations are derived by substituting c 6= a and b = d into Eq. (7). These new constraint equations are

then collected to be a polynomial ideal HC. The primary decomposition is computed over the ideal HC. Similar to the ideal

HB, the ideal HC is also decomposed into three sub-ideals, as: HC =
⋂3

j=1 H jC with their results as follows:

H1C : 〈x1,x2〉
H2C : 〈x0,x3〉
H3C : 〈Y,x1,x3〉

(23)
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n1

n2

n3

n4

x y

z

Fig. 8: Additional mode of geometric constraint B

The first and second sub-ideals H1C and H2C correspond to the Schönflies and reversed Schönflies modes, hence H1C =
H1 and H2C = H2. The third sub-ideal is a 3-DOF operation mode which is shown by the computation of the Hilbert

dimension as: dim (H3C) = 3. Unlike the geometric constraint B, the planar motion of the third mode H3C is composed of 2-

DOF translational motions about xy-plane and 1-DOF rotational motion about y-axis. This planar motion is characterized by

Y = 0,x1 = 0,x3 = 0 which are substituted into the transformation matrix as given in Eq. (24). The illustration of mechanism

pose in this additional mode H3C is shown in Fig. 9.

TH3C
=









x2
0 − x2

2 0 2x0x2 X

0 1 0 0

−2x0x2 0 x2
0 − x2

2 Z

0 0 0 1









(24)

n1

n2 n3

n4

x y

z

Fig. 9: Additional mode of geometric constraint C

4.3.4 Geometric Constraint D: c = a and b = d

In the geometric constraint D, the design parameters of the base and moving-platform are assigned to be c= a and b= d.

This condition is substituted into the constraint equations f1, f2, f3, f4 derived in Eq. (7). The polynomial ideal HD is defined

by collecting the new constraint equations. Like the two ideals HB and HC, the computation of primary decomposition shows



5 WORKSPACE AND ACTUATION SINGULARITIES FOR DIFFERENT OPERATION MODES 12

that the ideal HD is decomposed into three sub-ideals, as: HD =
⋂3

j=1 H jC. The results are:

H1D : 〈x1,x2〉
H2D : 〈x0,x3〉
H3D : 〈Xx1 +Yx2,x3〉

(25)

The first and second sub-ideals H1D and H2D are associated with the Schönflies and reversed Schönflie modes, hence

H1D = H1 and H2D = H2. Unlike the third operation modes of geometric constraints B and C, this third operation mode has

4-DOF motions, which is shown by the computation of the Hilbert dimension, i.e. dim (H3D) = 4. Based on Eq. (25), the

parameter X can be solved linearly from the sub-ideal H3D as: X = −Yx2

x1
. It shows that the moving-platform will undergo

parasitic translation motion. To determine the motion type of this mode, the parameters X =−Yx2

x1
and x3 = 0 are substituted

into the transformation matrix, as follows:

TH3D
=











x2
0 + x2

1 − x2
2 2x1x2 2x0x2 −Yx2

x1
2x1x2 x2

0 − x2
1 + x2

2 −2x0x1 Y

−2x0x2 2x0x1 x2
0 − x2

1 − x2
2 Z

0 0 0 1











(26)

Accordingly, the moving-platform can perform 2-DOF translational motion which are parametrized by Y and Z and 2-DOF

rotational motions which are parametrized by x0,x1,x2 in connection with the normalization equation. The 2-DOF rotational

motions are about x-axis and y-axis. The pose of 4-CRU parallel mechanism in the additional mode H3D is depicted in

Fig. 10.

n1

n2
n3

n4

x y

z

Fig. 10: Additional mode of geometric constraint D

5 Workspace and Actuation Singularities for Different Operation Modes

5.1 Workspace

The workspace of a 4-CRU parallel mechanism will be analyzed for different operation modes. The workspace will be

defined as a set of positions that can be reached by an arbitrary specified point in the moving-platform for a given orientation.

Without loss of generality, the middle point of the moving-platform was selected to illustrate the workspace. The limit of

passive joints and link collisions are negligible. The limit of active joints is assumed to be equal to the frame height, i.e.

himin
= 0 and himax = 4. Therefore, the workspace boundary will be determined by the dimensions of design parameters and

the limit of active joints.
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Let us consider geometric constraint A, i.e. a = 7
4 ,b = 2,c = 2,d = 1,r = 5

2 in the Scönflies mode. The moving-platform

is assumed to be working at a specific orientation, namely x0 = 1,x1 = x2 = x3 = 0. A set of constraint equations f5, f6, f7, f8

is recalled as follows:

f5 : 16X2 + 16Y2 + 16Z2 + 8X + 32Y − 96Z+ 61 = 0

f6 : 16X2 + 16Y2 + 16Z2 + 8X − 32Y − 96Z+ 61 = 0

f7 : 16X2 + 16Y2 + 16Z2 − 8X − 32Y − 96Z+ 61 = 0

f8 : 16X2 + 16Y2 + 16Z2 − 8X + 32Y − 96Z+ 61 = 0

(27)

Equation (27) represents tubular regions of four legs as shown in Fig. 11(a) and its cross-section is shown in Fig. 11(b).

The intersection of the four tubular regions (pink color) yields the workspace (blue color) as shown in Fig. 11(b). The same

approach was carried out to determine the workspace of Schönflies mode and additional mode for geometric constraint A,

B, C, D as shown in Table 1. The blue and yellow surfaces in Table 1 depict the workspace of Schönflies modes and an

additional mode, respectively. Their projections in 2-dimensional space are also given in Table 1.

Workspace (blue)

(a) Isometric view

A1

A2A3

A4

Workspace

Boundary

(b) Top view

Fig. 11: Cartesian workspace for orientation x0 = 1,x1 = x2 = x3 = 0

5.2 Actuation Singularities

The singular configurations are those where the actuators cannot control the velocity of moving-platform hence it loses

the ability to transmit motion and forces, is called actuation singularity in [25]. It typically occurs inside an operation mode.

The 4-CRU parallel mechanism reaches an actuation singularity when the determinant of Jacobian matrix of each operation

mode vanishes. Initially, an ideal that consists of inverse kinematic equations is defined as follows:

K = 〈 f5, f6, f7, f8, f9〉 (28)

Hence, an ideal of each operation mode can be defined by the linear combination of H and K , such that: L = H ∪K . The

Jacobian matrix is determined by taking first-order partial derivative of system L with respect to the corresponding motion
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Table 1: Workspace and singularities of different operation modes

Geometric Design Workspace

constraint parameters Schönflies mode Transition Additional mode

A x0 = 1,x1 = x2 = x3 = 0
x0 =−

√
230
46 ,x3 =−

√
46

46

x1 = x2 = 0

x1 =
√

15
6 ,x2 =

√
3

6

x0 =
3
√

115
46 ,x3 =

√
23

46

2a2b

2c2d

a = 7
4

b = 2

c = 2

d = 1

r = 5
2

B
x0 =

√
3

2 ,x3 =
1
2

x1 = x2 = 0
x0 = 1,x1 = x2 = x3 = 0

x0 =
√

3
2 ,x1 =

1
2

x2 = x3 = 0

2a2b

2c
2d

a = 7
4

b = 2

c = 7
4

d = 3
2

r = 4

Legend: • = Schönflies mode workspace, • = additional mode workspace , • = actuation singularity, • = constraint singularity
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Table 1: Continued

Geometric Design Workspace

constraint parameters Schönflies mode Transition Additional mode

C
x0 =

√
3

2 ,x3 =
1
2

x1 = x2 = 0
x0 = 1,x1 = x2 = x3 = 0

x0 =
√

3
2 ,x2 =

1
2

x1 = x3 = 0

2a2b

2c
2d

a = 2

b = 7
4

c = 3
2

d = 7
4

r = 4

D
x0 =

√
3

2 ,x3 =
1
2

x1 = x2 = 0
x0 = 1,x1 = x2 = x3 = 0

x0 =
1
2 ,x1 =−

√
3

2

x2 = x3 = 0

2a2b

2c2d

a = 7
4

b = 2

c = 7
4

d = 2

r = 4

Legend: • = Schönflies mode workspace, • = additional mode workspace , • = actuation singularity, • = constraint singularity
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parameters, as follows:

Schönflies mode J1 =
∂L1

∂(x0,x3,X ,Y,Z)
=

∂(H1 ∪K )

∂(x0,x3,X ,Y,Z)

Reversed Schönflies mode J2 =
∂L2

∂(x1,x2,X ,Y,Z)
=

∂(H2 ∪K )

∂(x1,x2,X ,Y,Z)

Additional mode (A) J3A =
∂L3A

∂(x2,x3,Y,Z)
=

∂(H3A ∪K )

∂(x2,x3,Y,Z)

Additional mode (B) J3B =
∂L3B

∂(x0,x1,Y,Z)
=

∂(H3B ∪K )

∂(x0,x1,Y,Z)

Additional mode (C) J3C =
∂L3C

∂(x0,x2,X ,Z)
=

∂(H3C ∪K )

∂(x0,x2,X ,Z)

Additional mode (D) J3D =
∂L3D

∂(x0,x1,x2,Y,Z)
=

∂(H3D ∪K )

∂(x0,x1,x2,Y,Z)

(29)

The determinant is computed for all Jacobian matrices in Eq. (29). Each determinant of the Jacobian matrices is added

into the corresponding system L and the actuated lengths (h1,h2,h3,h4) are eliminated. It yields a single equation in terms

of rotations and translations which is known as an equation of actuation singularity. This equation defines an actuation

singularity surface which is illustrated within the mechanism workspace in red surface as given in Table 1. Their projection

in 2-dimensional space is also plotted within the mechanism workspace as shown in Table 1. The actuation singularity and

mechanism workspace are depicted when the moving-platform is in the Schönflies mode, transition region and additional

mode for four types of geometric constraints.

6 Reconfiguration Between Operation Modes

Reconfiguration has been studied by many researchers since it is an important issue in control of parallel mechanisms

with multiple operation modes. The 4-CRU parallel mechanism can reconfigure itself from one operation mode to another

by passing through the transition configurations. The transition configurations based on [12, 13] are defined as common

configurations that belong to more than one operation mode, and are also known as constraint singularity configurations. To

determine the transition configurations, the linear combination of two polynomial ideals was performed. All reconfiguration

conditions between each pair of different operation modes are identified and provided in Table 2.

Let the 4-CRU parallel mechanism have geometric constraint B, i.e. a = c,b 6= d. The design parameters are assigned to

be a = c = 7
4 ,b = 2,d = 3

2 . Initially, the moving-platform is in the Schönflies mode H1. It will switch to the additional mode

H3B by entering the transition configurations which can be determined by the linear combination of those two polynomial

ideals as follows: H1 ∪H3B = 〈x1,x2,x3,X〉. The moving-platform is said to be at the transition configurations whenever its

orientation is similar to the base and its geometric center P is on the plane X = 0. The transition region is plotted within the

mechanism workspace in green surface as given in Table 1.

Once the moving-platform leaves the transition configurations, the moving-platform will switch to the additional mode

H3B. As explained in Section 4.3, the moving-platform in the additional mode H3B is able to perform 3-DOF planar motion

on the plane X = 0. The moving-platform is no longer parallel to the base and its orientation is defined by x0,x1 in connection

with the normalization equation. The reconfiguration is demonstrated by the mock-up as shown in Fig. 12 and its animation

is provided here2.

7 Self-motions in Schönflies Mode

In this section, the conditions of the actuated leg lengths hi, i = 1..4 are derived such that the mechanism can exhibit at

least 1-DOF self-motion in the Schönflies mode. In Schönflies mode, the moving-platform performs only 1-DOF rotation

about z-axis characterized by two parameters x0,x3. These parameters are replaced by the tangent of the half-angle hence

2http://its.id/4crumanipulator

http://its.id/4crumanipulator
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Table 2: Reconfiguration conditions

Geometric constraint Mode reconfiguration Transition region

A H1 ∪H3A x1 = 0; x2 = 0;

c2(b− d)(d+ b)X2+ d2(a− c)(a+ c)Y2 = 0;

(a+ c)(d+ b)x2
3 − (c− a)(b− d)x2

0 = 0.

B H1 ∪H3B x0 = 1; x1 = 0; x2 = 0; x3 = 0; X = 0

C H1 ∪H3C x0 = 1; x1 = 0; x2 = 0; x3 = 0; Y = 0

D H1 ∪H3D x0 = 1,x1 = 0; x2 = 0; x3 = 0

x

y

z

(a) Schönflies mode (b) Transition (c) Additional mode

Fig. 12: Reconfiguration of Geometric constraint B

1-DOF rotation can be represented by a single parameter tp, as follows:

x0 =
1− t2

p

1+ t2
p

, x3 =
2tp

1+ t2
p

(30)

This paremetrization is substituted into the ideal L1 = H1 ∪K . Then one can compute an elimination of parameters X ,Y,Z

and it yields a univariate polynomial of degree 16 in one parameter tp, as follows:

G0 : δ16t16
p + δ15t15

p + δ14t14
p + δ13t13

p + δ12t12
p + δ11t11

p + δ10t10
p + δ9t9

p + δ8t8
p + δ7t7

p + δ6t6
p + δ5t5

p + δ4t4
p + δ3t3

p + δ2t2
p+

δ1tp + δ0 = 0

(31)

where coefficients δ0...δ16 are polynomials in terms of the actuated leg lengths h1,h2,h3,h4 and the design parameters

a,b,c,d,r. The self-motions occur if all coefficients simultaneously vanish. The coefficient δ0 is the absolute term in G0 as:

δ0 : 16(b−d)2(a−c)2(a2−2ac+b2−2bd+c2+d2−r2)γ2
1+(a−c)2γ2

2γ2
3γ2

4+(b−d)2γ2
5γ2

6γ2
7+4(b−d)2(a−c)2γ8γ9 (32)

where:

γ1 : h1 − h2 + h3 − h4 γ2 : −h4 + h1 − h3 + h2 γ3 : h1 − h2

γ4 : h3 − h4 γ5 : h4 + h1 − h3 − h2 γ6 : h1 − h4

γ7 : −h3 + h2 γ8 : h2
1 − 2h1h2 + h2

2 + h2
3 − 2h3h4 + h2

4 γ9 : h2
1 − 2h1h4 + h2

2 − 2h2h3 + h2
3 + h2

4

(33)
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Let the coefficient δ0 vanish due to the conditions of the actuated leg lengths. The conditions of the actuated leg lengths

for which δ0 = 0 can be obtained by solving γ1 to γ9 in Eq. (33). This computation leads to two conditions of the actuated

leg lengths, as follows:

Condition 1 : h1 = h2 = h3 = h4

Condition 2 : h1 = h2,h3 = h4 or h1 = h4,h2 = h3

(34)

Each of these two conditions is substituted back into the univariate polynomial G0. It turns out that both substitutions give

the same factor (ad− bc), as follows:

From Condition 1 G0 : (ad− bc) (κ0 t4
p +κ1 t2

p +κ2) = 0

From Condition 2 G0 : (ad− bc) (κ3 t8
p +κ4 t6

p +κ5 t4
p +κ6 t2

p +κ7) = 0
(35)

where κ0...κ7 are the coefficients in terms of only design parameters a,b,c,d,r. If the first factor (ad − bc) vanishes, one

can obtain the self-motions. To illustrate the self-motions, certain values are assigned to the design parameters and actuated

leg lengths in the following.

7.1 Condition 1: h1 = h2 = h3 = h4

Let the base and moving-platform be the same shape but not the same dimension. A square shape is considered such

that it fulfils (ad − bc) = 0. The design parameters are assigned to be: a = b = 2, c = d = 1, r = 3. In condition 1, all

four actuated leg lengths are equal such that: h1 = h2 = h3 = h4 = 1. By substituting all those values into the ideal L1, the

solutions of direct kinematics can be computed and the parameters X ,Y,Z,x0,x3 can be solved. It appears that the parameter

Z is free such that the transformation matrix becomes:

T =















1 0 0 0

0
Z2

8
− Z

4
+

1

4
−1

8

√
Z2 − 2Z+ 10

√
−Z2 + 2Z+ 6 0

0
1

8

√
Z2 − 2Z+ 10

√
−Z2 + 2Z+ 6

Z2

8
− Z

4
+

1

4
0

Z 0 0 1















(36)

The transformation matrix shown in Eq. (36) parametrizes 1-DOF self-motion which can be performed by the moving-

platform. The platform is able to simultaneously rotate and translate about the z-axis. Although all four actuated leg lengths

are fixed with the same values, the moving-platform is able to move as demonstrated by the mock-up in Fig. 13 and its

animation is provided here3.

Fig. 13: Self-motion of Condition 1

3http://its.id/4crumanipulator

http://its.id/4crumanipulator
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7.2 Condition 2: h1 = h4,h2 = h3 or h1 = h2,h3 = h4

There are two possibilities of condition 2, namely h1 = h4,h2 = h3 or h1 = h2,h3 = h4. In fact, these possibilities are

swapped by the x and y axes. The following analysis will discuss only one, namely h1 = h2,h3 = h4.

The geometric constraint D (c = a,b = d) is selected such that it fulfills (ad − bc) = 0. The geometric constraint D

shows that the base and moving-platform are the same size and shape. Specific values are assigned to the design parameters

as: a = c = 1, b = d = 2, r = 3. Likewise, the actuated leg lengths are assigned with certain values to fulfil condition 2

as: h1 = h2 = 4, h3 = h4 = 1. All these values are substituted into the ideal L1 and one can compute the solutions of direct

kinematics by solving the parameters X ,Y,Z,x0,x3. It turns out that the parameter X is free and the transformation matrix

becomes:

T =















1 0 0 0

X 1 0 0

−
√
−4X2 + 27

2
0 1 0

5

2
0 0 1















(37)

The transformation matrix given in Eq. (37) shows that the moving-platform has 1-DOF self-motion while all actuated

leg lengths are fixed. The platform is able to perform circular-translation in the xy-plane without change in orientation.

Fig. 14 illustrates the 4-CRU parallel mechanism in one pose of self-motion and the trajectory followed by the moving-

platform during the self-motion.

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

Trajectory

Fig. 14: Self-motion of Condition 2

8 Conclusions

Many printing mechanisms moves in 3-DOF translational motions, hence printability is degraded when they should print

complex shapes and/or overhang geometry. This paper proposed a 4-CRU parallel mechanism to address those problems

since this mechanism is able to change its operation modes through a series of reconfiguration process. This paper focused

on the reconfiguration analysis and self-motions of a 4-CRU parallel mechanism based on their geometric constraints. The

algebraic geometry approach was employed to define the constraint equations. The primary decomposition was computed

over a set of constraint equations to determine four geometric constraints and each has three operation modes. The three

operation modes are the Schönflies mode, the reversed Schönflies mode, and the additional mode which can be either 4-DOF

or 3-DOF modes. Among these operation modes, the workspace and singularities were examined. The regions in which the

reconfiguration takes place were obtained and geometrically plotted. Two conditions of the actuated leg lengths at which the

moving-platform can perform at least 1-DOF self-motions in the Schönflies mode were detected and demonstrated in video.

Deeper evaluation on the reconfiguration strategy and algorithm involving dynamic analysis, will be the subject of our future

work. The future work fully rely upon the results reported in this paper.
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