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Abstract: 

Mathematical modelling of mechanical system in microfluidics is an emerging area of interest in 

micro scale engineering. Since microfluidic devices use the hair like structure of artificial cilia for 

pumping, mixing and sensing in different fields, therefore; electro osmotic cilia driven flow help 

to generate the fluid velocity for the Newtonian and viscoelastic fluid. Due to the deployment of 

artificial ciliated walls, the present research reports the combined effect of an electro osmotic flow 

and convective heat transfer on Jeffrey viscoelastic electrolytic fluid flow in a two-dimensional 

ciliated vertical channel. Heat generation/absorption and nonlinear radiation effects are included 

in the present mathematical model. After applying Debye-Huckel approximation and small 

Reynolds number approximation to momentum and energy equation, the system of nonlinear 

partial differential equation is reduced into non-homogenous boundary value problem. The 

problem determines the velocity, pressure and temperature profiles by the application of semi-

analytical technique known as Homotopy Perturbation Method (HPM) with the help of software 

Mathematica. The graphical results of the study suggest that HPM is a reliable methodology for 

thermo physical electro-osmotic rheological transport in micro channels.  

 

Keywords: Mathematical modelling, Jeffrey fluid; heat transfer; ciliated channel, electro osmotic flow, 

nonlinear radiation. 

1 Introduction 
Electro-kinetic flows are regarded as electrolytes which are prepared by electrical fields in ducts 

that have charged walls [1]. A special class of electro-kinetic flow is electro-osmotic flow where 

the electrostatic body force is large in the electrical double layers and simultaneously the vicinity 

of the charged no-slip surface leads to significant friction. Electro-osmotic flow is therefore 

tempted by an applied potential or electric field in a system that has an imbalance of charge. This 

mechanism is a very efficient technique to create fluid flow in bulk across a charged boundary. It 

helps to control the flow for proper working in small straits and channels like lab-on-a-chip 

devices, micro channels, or other fluid conduits. Many practical applications feature such flows 

including isoelectric protein focusing [2], electrode array design [3], articular cartilage solute 

transport [4], electro kinetic flow across elliptic cylinder [5] and micro channel [6]. Electro-

osmotic flows arise naturally (e.g. in blood flows) and can also be induced artificially in a variety 



of energy and chemical processes. The Debye–Hückel linear approximation is also frequently 

employed in electro-osmotic flows (EOFs) since it retains some of its physics but greatly simplifies 

computations. In a study, Marcos et al. [7] used a control volume integration method, and 

staggered grid system to simulate steady state developing electro-osmotic flow in closed-end 

cylindrical micro-channels. Similarly, Tripathi et al. [8] used Mathematica software integration 

routines to compute the effects of inverse Debye length and Helmholtz–Smoluchowski velocity 

on micro-capillary peristaltic blood flows. Engineers and applied mathematicians have therefore 

studied in detail rheological electro-osmotic transport in microsystems with a variety of non-

Newtonian constitutive models. Some useful researches in this regard include viscoplastic Casson 

fluids [9], three-constant Ellis power-law model [10] and Carreau model [11]. All these studies 

confirmed the substantial deviation from Newtonian behaviour which arises due to various non-

Newtonian effects. A simple model is a Jeffreys elastico-viscous model [12] which accurately 

simulates many biophysical fluids and features three constants i.e. viscosity at zero shear rate, and 

two time-related material parameter constants (for stress relaxation and retardation time).  

Cilia are antenna-like membrane-associated structures which exist in many organisms to move the 

cells or fluid surrounded by it. They exist in arrays on the surface of cells and beat in a coordinated 

way to clean airways, pass ovum to the uterus, release semen, control embryonic fluid flow etc. as 

described in [13]-[16]. In recent studies of engineered cilia for bionic microfluidics include 

Toonder et al. [17] (for active micro-fluidic mixing), Balazs et al. [18] (for control of particle–

surface interactions in micro-bioreactors) and Chateau et al. [19] (for hydrodynamic multi-phase 

flow control). Non-Newtonian ciliated metachronal propulsion has also been examined by a 

variety of investigators. Manzoor et al. [20] used the Blake elliptic cilia model to study 

magnetohydrodynamic metachronal slip flow of Johnson-Segalman fluids in a channel. They 

derived perturbation solutions and showed that with greater viscous force relative to elastic force 

(i.e. smaller Weissenberg viscoelastic number) and increasing cilia length, a substantially larger 

pressure gradient is needed to sustain the same flux through a narrow region compared with a 

wider channel.  

Jeffrey’s visocleastic model has also been deployed in ciliated channel. Relevant studies in recent 

years include Manzoor et al. [21] (who considered porous medium drag effects). Maqbool et al. 

[22] investigated the hydromagnetic ciliary propulsion of Jeffrey viscoelastic fluid in a tilted 

conduit showing that increasing inclination, magnetic field and cilia length enhances pressure 



gradient whereas greater viscoelasticity reduces it.  

Another important aspect of modern bio-microfluidics is heat transfer. This is important in both 

natural systems and in manufactured devices. Mercke [23] investigated the air humidity effects in 

muco-ciliary transport showing that an increase in temperature modifies the ciliary beat frequency. 

Prodromou et al. [24] have shown that thermal shock results in rapid reabsorption in primary cilia 

in the human body. Mills et al. [25] have used computational fluid dynamics to study the thermal 

transport in artificially ciliated microfluidic systems. Ciliary flow with heat transfer has many 

applications in bioengineering, medical sciences, and medical equipment, such as cilia-based 

micro devices for the clearance of viscoelastic fluid from dust and viruses. 

 Recently, Shaheen et al. [26] discussed the effect of nanoparticles on ciliary flow of Jeffrey fluid 

and resulting partial differential equations are solved by Homotopy perturbation method and Farah 

et al. [27] studied the electro-osmotic flow of Jeffrey fluid with effects of heat source/sink. The 

effect of nonlinear radiations on electro osmotic flow of viscoelastic fluid (Jeffrey fluid) due to the 

ciliary activity has not been considered so far to the best of our knowledge. This study serve as the 

first step towards understanding the role of electro-osmotically driven bio fluid flow (viscoelastic 

ciliary flow) with the effects of nonlinear thermal radiation and heat source which can bear the 

potential to bring a significant change in temperature field in the channel. 

In the present work, motivated by exploring applications in thermal bio-microfluidics, a theoretical 

analysis of electro-osmotic bionic Jeffrey’s viscoelastic flow and thermal convection in a two-

dimensional channel with ciliated walls is presented. The equations of motions are formulated to 

include, buoyancy force, viscous dissipation [28, 29], nonlinear radiation [30, 31] and heat source 

[32] effects, which give the coupled system of highly nonlinear partial differential equations. To 

solve the resulting nonlinear coupled system, lubrication approximations and semi-analytical 

Homotopy perturbation method [33-35] is used. Mathematica software is employed to evaluate 

solutions for velocity, pressure, stream function and temperature. The effects of emerging 

parameters i.e. cilia length  (𝜀), Grashof number(𝐺𝑟), Brinkman number (𝐵𝑟), Jeffreys first 

viscoelastic parameter (1), radiation parameter (Rn) and electroosmotic parameter (𝑈ℎ𝑠) on 

analytical results are visualized graphically.  

2 Mathematical Modelling 
Jeffrey’s viscoelastic fluid flow in two-dimensional channel with ciliated walls is considered. 

Electroosmotic and heat transfer effects are present. An axial electrical field is imposed. The 



collective beating of cilia that are present in the inner walls of the channel and buoyancy forces 

[36] produce a metachronal symplectic wave in the axial direction having constant speed c and 

wave length𝜆. The physical model for the problem in Cartesian coordinate system is shown in  

Fig. 1. The continuity, momentum and energy conservation equations of a bionic Jeffrey fluid with 

buoyancy force and potential function in the wave frame are presented as follows: 

 

Fig. 1: Physical model for electro-osmotic flow in a ciliated channel. 
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The stress tensor of bionic Jeffrey fluid [21] satisfy the following relation 
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(7) 

 

The bionic viscoelastic flows are observed to be Poiseuille type which requires that flow is 

maximum at the center line of the ciliated channel and temperature profile is also maximum at 

center of channel therefore axial velocity and temperature profile at r = 0 (center line) satisfies the 

following conditions [26-27] 
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(8b) 

Where ℎ = 𝑎 + 𝜀𝛼 cos (
2𝜋

𝜆
𝑥1) 

2.1 Electro hydrodynamics and potential distribution 

The electric charge density e in micro channel satisfy the following Poisson equation [6] 

 ∇2Ω = −
𝜌𝑒
𝜐
, (9) 

 

Here   is dielectric permittivity and   is the electric potential function. 

Also electric charge density follows the Boltzmann distribution [8] by the following relation 
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Applying Debye-Hückel linearization [8], Eq. (9) reduces to the following equation  

 𝑑2Ω

𝑑𝑥2
2 = 𝑘Ω, 

(11) 

 

Where 𝑘 = 𝑒𝑡0√
2𝑛0

𝑣𝑘𝑏𝑇𝑎
, 𝑛0 is the density, 𝑡0 is elementary charge valance, 𝑒 is protonic charge, 

𝑘𝑏 is the Boltzmann constant and 𝑇𝑎 is absolute temperature. 

The exact solution of Eq. (11) subject to the boundary conditions 
𝜕Ω

𝜕𝑥2
= 0 at 𝑥2 = 0 and 

Ω = 1 𝑎𝑡 𝑥2 = ℎ is as follow 

 
Ω =
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2.2 Lubrication approach and non-dimensionalization 

The wave frame and fixed frame are related by the following transformation 

 𝑋1 = 𝑥1 − 𝑐𝑡, 𝑋2 = 𝑥2, 𝑉1 = 𝑣1 − 𝑐, 𝑉2 = 𝑣2, 𝑃(𝑋1, 𝑋2, 𝑡) =  𝑝(𝑥1, 𝑥2, 𝑡), (13) 

where 𝑥1, 𝑥2, 𝑣1, 𝑣2 and 𝑝 are the quantities in wave frame and 𝑋1, 𝑋2, 𝑉1, 𝑉2 and 𝑃 are 

quantities in fixed frame. 

The non-dimensional parameters are defined as follow 
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All parameter definitions are given in the notation section. In view of Eq. (14), after applying the 

lubrication approach and ignoring the inertial forces [34] and dropping asterisks Eq. (2)-(4) and 

(7) then take the following form:  
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(17) 

 

The centre line symmetry assumption and metachronal wave at the tip of the cilia gives the 

following dimensionless boundary conditions 

 𝑣1 = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥1), (18a) 
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The stream function 𝜓 is defined as 
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Eqs. (15)-(18) in terms of 𝜓 take the following form 
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The boundary conditions can be expressed as 
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3 HPM Solution Methodology 

To solve this system of coupled nonlinear partial differential equations, the Homotopy perturbation 

method (HPM) is used. This method was developed by He [33] and has been applied to numerous 

viscoelastic biological propulsion problems [34, 35]. The Homotopic structure for velocity and 

temperature fields are defined as follows: 
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Here 𝐿1 and 𝐿2 are linear operators,  𝑔𝜓 and  𝑔𝜃 are known functions, �̃�0 and  �̃�0  are initial 

approximations and chosen as follows: 
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− 𝑅𝑛(1 + (𝜃𝑤 − 1)𝜃)
3
𝜕2𝜃

𝜕𝑥2
2 , 

(24d) 

 

 𝑔𝜓(𝑥2) = (1 + 𝜆1)(𝑘
2𝑈ℎ𝑠Ω − 𝐺𝑟𝜃),  𝑔𝜃(𝑥2) = −𝜂𝜃0.  (24e) 

The solutions of Eq. (23) can be obtained as power series expansions: 

 

 𝜓 = 𝜓0 + 𝑞𝜓1 + 𝑞
2𝜓2 + 𝑞

3𝜓3+⋯ (25a) 

 

 𝜃 = 𝜃0 + 𝑞𝜃1 + 𝑞
2𝜃2 + 𝑞

3𝜃3+⋯ (25b) 

     𝐹 = 𝐹0 + 𝑞𝐹1 + 𝑞
2𝐹2 + 𝑞

3𝐹3+⋯   (25c) 

Here q ∈ [0,1] is an embedding parameter with values 0 and 1 gives the initial and final 

solution. Using Eq. (25a-25c) in Eq. (20) and (21) one can determine the zero, first and second 

order systems which are given in appendix and solutions for first, second and third order system 

are calculated with the help of software “MATHEMATICA”. 

To find𝑄, volumetric flow rate, and related to the flux by the following relation 

 
𝑄 = ∫ (

𝜕𝜓

𝜕𝑦
+ 1)𝑑𝑦

ℎ

0

= 𝐹 + ℎ. 
(26) 

 

Furthermore, the axial pressure gradient in terms of velocity and temperature profile is computed 

as: 

 𝜕𝑝

𝜕𝑥1
=

1

1 + λ1

𝜕

𝜕𝑥2
(1 + λ2𝛽 (𝑢

𝜕

𝜕𝑥1
+ 𝑣

𝜕

𝜕𝑥2
))
𝜕𝑣1
𝜕𝑥2

− 𝑘2𝑈ℎ𝑠Ω + 𝐺𝑟𝜃. 
(27) 

 

The solution obtained by the Homotopy perturbation method are calculated for pressure gradient, 

velocity and temperature in the form of power series with decaying coefficients. 

4 Results and Discussion 

To plot graphical results based on the solutions developed in section 4, Mathematica software is 

employed. All computations are visualized in Figs. 2-7.  The default values used in the 

simulations are prescribed as follows: 𝛼 = 0.2, 𝛽 = 0.2, 𝑥1 = 0.25, 𝑘 = 0.2 and 𝜀 = 0.3, these 

are consistent with standard works in the area of ciliated propulsion. Fig. 𝟐(𝒂 − 𝒅) portrays the 

effects of Grashof number (𝐺𝑟), Jeffrey fluid parameter  (𝜆1,  𝜆2) and Helmholtz-Smoluchowski 

velocity (𝑈ℎ𝑠) on axial velocity. It is observed that magnitude of axial velocity decreases with 

increasing Jeffrey fluid parameter (𝜆1)  and increases with increasing Grashof number(𝐺𝑟) , 



Jeffrey fluid parameter (𝜆2)  and Helmholtz-Smoluchowski velocity ( 𝑈ℎ𝑠 ). The thermal 

buoyancy force, Gr in the momentum equation has a significant impact on flow development. 

𝐺𝑟 =
𝑔𝛽𝑎3

𝜈
(𝑇1 − 𝑇0) represents the ratio of thermal buoyancy force to viscous force.  For Gr < 1, 

the viscous force exceeds the thermal buoyancy force, and this is the range considered in Fig. 2a. 

Axial flow acceleration is clearly induced with increase in Grashof number. Similarly, higher 

values of the viscoelastic parameter (ratio of relaxation to retardation times i.e. 𝜆1) decrease the 

axial flow, which support the findings of Lu et al. [14] confirming that viscoelastic media achieve 

decreased flow performance. By increasing Jeffrey fluid parameter (𝜆2) fluid’s velocity increases 

shown in Fig. 2c. With higher values of Uhs, axial electrical field, 𝐸𝑥1 , is stronger (𝑈ℎ𝑠 =
𝐸𝑥1𝜐

𝜇𝑐
), 

and this also enhances the axial flow in accordance with the term, 𝑈ℎ𝑠𝛺 in the momentum that is 

shown in Fig. 2d. The acceleration is sustained across the span of the micro channel and a 

Poiseuille-type distribution is generated (velocity peak at the channel centre line).  

Fig. 3(a-b) illustrate the impact of cilia length parameter (𝜀) and Jeffrey fluid parameters (𝜆1, 𝜆2)  

on pressure gradient. It is noticed that pressure gradient increases along the axial direction of the 

channel as we increase cilia length parameter (𝜀) and Jeffrey fluid parameter (𝜆2) and a decrease 

can be observed with the increasing value of Jeffrey fluid parameter (𝜆1). The peripheral regions 

of the channel do not exhibit any significant modifications in pressure gradient, which are confined 

to the core zone. However, increasing viscoelastic effect is known to accelerate the flow which 

induces the opposite effect in pressure gradient. These trends concur with earlier studies on 

viscoelastic thermal electro-osmotic flows. 

Fig. 4(a-f) portrays the variation of temperature field for distinct values of Grashof number (𝐺𝑟), 

Brinkman number (𝐵𝑟) , Jeffrey fluid parameters (𝜆1, 𝜆2) , nonlinear radiation (Rn) and 

Helmholtz-Smoluchowski velocity (𝑈ℎ𝑠) . It is observed that with an increment in Jeffrey fluid 

parameter (𝜆1) and Helmholtz-Smoluchowski velocity(𝑈ℎ𝑠) there is a significant elevation in 

temperatures. Stronger thermal buoyancy (Gr) as shown in Fig.4a, significantly suppresses 

temperatures, which is a characteristic feature of buoyancy-driven flows, as noted by Gebhart et 

al. [36]. With increasing Brinkman number, 𝐵𝑟 and Rn through Fig. 4b, Fig. 4f a strong reduction 

in temperatures is also observed. Brinkman number quantifies the ratio of heat generated by 

viscous dissipation and the propagation of heat by molecular conduction in the fluid. When Br = 

1 both dissipation and molecular conduction are equivalent. However, for Br > 1, dissipation 



exceeds conduction and this manifests in an elevation in temperatures. With greater viscoelasticity 

(Fig. 4c), the upsurge in viscosity is conducive to thermal diffusion which results in heating of the 

regime. Increasing the values of Jeffrey fluid parameter (𝜆2)  temperature profile decreases. 

Higher values of Helmholtz-Smoluchowski velocity also correspond to stronger axial electrical 

field which again contributes to enhanced heating of the bionic fluid (Fig. 4d) i.e. elevation in 

temperatures. 

Fig. 5(a-c) indicate that with increasing Grashof number Gr, there is a general reduction in bolus 

sizes in the channel, although again the number of boluses is unaffected. In particular, there is a 

greater constriction of boluses in the axial direction with an elongation induced in the transverse 

direction. The clustering of streamlines at the upper and lower peripheries is therefore also 

intensified with greater thermal buoyancy effect. In Fig. 6a-c, increasing Helmholtz-

Smoluchowski velocity (𝑈ℎ𝑠) i.e. stronger axial electrical field induces a considerable expansion 

in bolus structure and growth in both directions, also leading to the emergence of smaller-scale 

boluses at Uhs =3. Clearly the bionic flow exhibits considerable sensitivity to electrical field 

effects and provides a useful mechanism for controlling such flows in bio-microfluidics. Finally, 

In Fig. 7(a-c), it is noted that the nonlinear radiation leading to reduction in number of boluses and 

their size, because the nonlinear radiation in the EOF causes to increase the resistance in the fluid 

flow and the molecular forces between the fluid particles become strong.   

 

                          (a)                         (b) 



                               

                          (c)                         (d)                

Fig. 2a-d: Variation of axial velocity for increasing values of 𝐺𝑟, 𝜆1,  𝜆2  and 𝑈ℎ𝑠. 

 

  

             (a)                         (b)                       (c) 

  

Fig. 3a- c: Variation of pressure gradient, 
𝑑𝑝

𝑑𝑥1
 for increasing values of 𝜀, 𝜆1 𝑎𝑛𝑑 𝜆2. 

 

  
             (a)                        (b)                        (c) 

  



 
 

             (d)                        (e)                        (f) 

 

Fig. 4a-f: Temperature distributions  for increasing values of Gr, Br,  𝜆1, 𝜆2, 𝑈ℎ𝑠 𝑎𝑛𝑑 𝑅𝑛. 

 

 

 

 
 

  (a) 𝐺𝑟 = 0.1                 (b)  𝐺𝑟 = 0.5                 (c) 𝐺𝑟 = 0.9 

  

Fig. 5a-c: Streamline distributions 𝜓 for increasing values of 𝐺𝑟. 
 

   
(a) 𝑈ℎ𝑠 = 1                 (b)  𝑈ℎ𝑠 = 2                 (c) 𝑈ℎ𝑠 = 3 

 

Fig. 6a-c: Streamline distributions 𝜓 for increasing values of 𝑈ℎ𝑠. 
 



 

   

 (a) 𝑅𝑛 = 0.1                 (b)  𝑅𝑛 = 0.2                 (c) 𝑅𝑛 = 0.3 

 

Fig. 7a-c: Streamline distributions 𝜓 for increasing values of 𝑅𝑛. 

 

5 Conclusions 

A mathematical analysis of electroosmotic mixed convective bionic viscoelastic flow generated 

by metachronal beating of cilia in a channel with heat generation and viscous dissipation effects 

under static axial electrical field, has been presented. Mathematica symbolic software is 

employed to evaluate numerically and graphically visualize the influence of key thermophysical, 

geometric and electro-osmotic parameters on transport characteristics. Axial flow is observed to 

slow down with larger thermal buoyancy forces (increasing Grashof number), positive values of 

Helmholtz-Smoluchowski (electro-osmotic) velocity (reversed axial electrical field) and Jeffrey 

fluid viscoelastic relaxation parameter. The simulations have shown that: Axial flow velocity is 

reduced increasing Grashof number, Jeffreys viscoelastic fluid parameter and Helmholtz-

Smoluchowski velocity.  

 Axial Pressure gradient is increased with an increase in cilia length parameter whereas it is 

suppressed with greater values of Jeffrey fluid parameter. 

 Temperature magnitudes are enhanced with Jeffrey fluid parameter, Brinkman number and 

Helmholtz-Smoluchowski velocity whereas they are reduced with thermal buoyancy effect i.e. 

greater values of Grashof number.  

 Bolus (trapped circulation zone) size is enhanced with increasing values of, Grashof number, 

heat generation parameter and Helmholtz-Smoluchowski velocity whereas it diminishes with 

higher values of radiation parameter. 



 We believe that this analysis, besides providing a deep theoretical insight to interpret the 

transport process, will also serve as a fundamental design tool for microfluidic devices/systems 

under electro kinetic influence. 

 In the present study we have considered ciliary flow as a single layer; future studies may 

examine ciliary flow in two layers i.e. liquid-liquid and liquid-solid phases. 

 

Nomenclature                                               

  Greek letters 

Symbols      Meaning                                         Symbols      Meaning 

𝑋1, 𝑋2 Axial and transverse coordinates in fixed frame 𝛼 Eccentricity of ellipse   

𝑥1, 𝑥2 Axial and transverse coordinates in wave frame 𝛺 Electrical potential function   

𝑉1, 𝑉2 Axial and transverse velocity in fixed frame     

v1 ,v2  
 

Axial and transverse velocity in wave frame 𝜆1, 𝜆2 Jeffrey viscoelastic 

parameters 
  

𝑡0 Elementary charge valence         𝜖 Cilia length   

𝐺𝑟 Grashof number 𝜏 Cauchy stress   

𝒈 Acceleration due to gravity 𝜌𝑒 Electric charge density   

𝑘 Electroosmotic parameter 𝜓 Stream function   

𝐵𝑟 Brinkman number 𝛽 Wave number   

𝑈ℎ𝑠 Helmholtz-Smoluchowski velocity 𝜆 Wavelength   

𝑐 Metachronal wave speed 𝜌 Density of the fluid   

𝑛0 Number density 𝜇 Dynamic viscosity of fluid   

𝑃 Pressure distribution in fixed frame 𝛽𝑇  Thermal expansion 

coefficient 
  

𝑝 Pressure distribution in wave frame 𝜐 Dielectric permittivity of 

the medium 
  

𝑄0 Heat source/sink                                                𝜎∗ Stefan--Boltzmann 

coefficient 
  

𝐸𝑥1 Applied electric field                                                       𝑘∗    Rosseland mean absorption 

coefficient 
  

𝑃𝑟 Prandtl number     

𝐸𝑐 Eckert number     

𝑐𝑝 Specific heat     

𝑒 Protonic charge                                          

𝑚 Thermal conductivity of the bionic fluid     

𝑇 Temperature field     

𝑘𝑏 Boltzmann constant     

𝑇𝑎 Absolute temperature     

   𝑇0       Temperature at the centre of the channel     

𝑇1 Temperature on the ciliated surface     



𝑅𝑛 Radiation parameter 

  

Appendix 

Zeroth order system 

 𝜕4𝜓0

𝜕𝑥2
2 −

𝜕4�̃�0

𝜕𝑥2
4 = 0, 

 

 𝜕2𝜃0

𝜕𝑥2
2 −

𝜕2�̃�0

𝜕𝑥2
2 = 0, 

 

 

The associated boundary conditions 

 
𝜓0 = 0,   

𝜕2𝜓0
𝜕𝑥2

2
= 0,   

𝜕𝜃0
𝜕𝑥2

= 0,   𝑎𝑡   𝑥2 = 0, 
 

 
𝜓0 = 𝐹,   

𝜕𝜓0
𝜕𝑥2

= −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥1),   𝜃0 = 0,   𝑎𝑡 𝑥2 = ℎ. 
 

First order system 

 𝜕4𝜓1
𝜕𝑦4

= −
𝜕4𝜓0
𝜕𝑦4

+ (1 + λ1) (𝑘
2𝑈ℎ𝑠

𝜕Ω

𝜕𝑥2
− 𝐺𝑟

𝜕𝜃0
𝜕𝑥2

) 

+𝛽𝜆2 (−
𝜕𝜓0
𝜕𝑥1

𝜕5𝜓0
𝜕𝑥25

+
𝜕𝜓0
𝜕𝑥2

𝜕5𝜓0
𝜕𝑥1𝜕𝑥24

+ 2
𝜕2𝜓0
𝜕𝑥22

𝜕4𝜓0
𝜕𝑥1𝜕𝑥23

− 2
𝜕4𝜓0
𝜕𝑥24

𝜕2𝜓0
𝜕𝑥1𝜕𝑥2

) 

 

 

 

 𝜕2𝜃1

𝜕𝑥2
2 = −

𝜕2𝜃0

𝜕𝑥2
2 − 𝜂𝜃0 − 𝑅𝑛(1 + (𝜃𝑤 − 1)𝜃0)

3
𝜕2𝜃0

𝜕𝑥2
2  

−
𝐵𝑟

(1 + λ1)
((
𝜕2𝜓

0

𝜕𝑥22
)

2

+ 𝛽𝜆2 (
𝜕2𝜓

0

𝜕𝑥22
𝜕𝜓

0

𝜕𝑥2
+

𝜕3𝜓
0

𝜕𝑥1𝜕𝑥22
−
𝜕𝜓

0

𝜕𝑥1

𝜕3𝜓
0

𝜕𝑥23
)) 

 

 

 

and the associated boundary conditions are  

 
𝜓1 = 0,   

𝜕2𝜓1
𝜕𝑥2

2
= 0,   

𝜕𝜃1
𝜕𝑥2

= 0,   𝑎𝑡   𝑥2 = 0, 
 

 
𝜓1 = 0,   

𝜕𝜓1
𝜕𝑥2

= 0,   𝜃1 = 0,   𝑎𝑡 𝑥2 = ℎ. 
 

 

 

Second order system 

𝜕4𝜓2
𝜕𝑦4

= −(1 + λ1) (𝐺𝑟
𝜕𝜃1
𝜕𝑥2

) 

+𝛽𝜆2

(

 
 

−
𝜕𝜓0
𝜕𝑥1

𝜕5𝜓1
𝜕𝑥25

−
𝜕𝜓1
𝜕𝑥1

𝜕5𝜓0
𝜕𝑥25

+
𝜕𝜓0
𝜕𝑥2

𝜕5𝜓1
𝜕𝑥1𝜕𝑥24

+
𝜕𝜓1
𝜕𝑥2

𝜕5𝜓0
𝜕𝑥1𝜕𝑥24

+2
𝜕2𝜓0
𝜕𝑥22

𝜕4𝜓1
𝜕𝑥1𝜕𝑥23

+ 2
𝜕2𝜓1
𝜕𝑥22

𝜕4𝜓0
𝜕𝑥1𝜕𝑥23

− 2
𝜕4𝜓0
𝜕𝑥24

𝜕2𝜓1
𝜕𝑥1𝜕𝑥2

− 2
𝜕4𝜓1
𝜕𝑥24

𝜕2𝜓0
𝜕𝑥1𝜕𝑥2)

 
 
, 

 

 



 
𝜕2𝜃2

𝜕𝑥2
2 = −𝜂𝜃1 −

𝐵𝑟

(1 + λ1)
(
𝜕2𝜓

0

𝜕𝑥22
𝜕𝜓

1

𝜕𝑥2
+
𝜕2𝜓

1

𝜕𝑥22
𝜕𝜓

0

𝜕𝑥2
+

𝜕3𝜓
1

𝜕𝑥1𝜕𝑥22
−
𝜕𝜓

0

𝜕𝑥1

𝜕3𝜓
1

𝜕𝑥23
−
𝜕𝜓

1

𝜕𝑥1

𝜕3𝜓
0

𝜕𝑥23
)

−
2𝐵𝑟

(1 + λ1)

𝜕2𝜓
0

𝜕𝑥22
𝜕2𝜓

1

𝜕𝑥22
− 3𝑅𝑛((𝜃𝑤 − 1)𝜃1)

𝜕2𝜃0

𝜕𝑥2
2 + 6𝑅𝑛(𝜃𝑤 − 1)

2𝜃0𝜃1
𝜕2𝜃0

𝜕𝑥2
2

+ 3𝑅𝑛((𝜃𝑤 − 1)𝜃1𝜃0
2)
𝜕2𝜃0

𝜕𝑥2
2 + 𝑅𝑛(𝜃𝑤 − 1)𝜃0

3
𝜕2𝜃1

𝜕𝑥2
2 + 𝑅𝑛

𝜕2𝜃1

𝜕𝑥2
2  

 +3𝑅𝑛((𝜃𝑤 − 1)𝜃0)
𝜕2𝜃1

𝜕𝑥2
2 + 3𝑅𝑛((𝜃𝑤 − 1)𝜃0

2)
𝜕2𝜃1

𝜕𝑥2
2 = 0. 

 

 

 

 

 

 

 

 

and the associated boundary conditions are  

 

 
𝜓2 = 0,   

𝜕2𝜓2
𝜕𝑥2

2
= 0,   

𝜕𝜃2
𝜕𝑥2

= 0,   𝑎𝑡   𝑥2 = 0, 
 

 
𝜓2 = 0,   

𝜕𝜓2
𝜕𝑥2

= 0,   𝜃2 = 0,   𝑎𝑡 𝑥2 = ℎ. 
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