
Journal of Sound and Vibration 499 (2021) 115991 

Contents lists available at ScienceDirect 

Journal of Sound and Vibration 

journal homepage: www.elsevier.com/locate/jsv 

Component replacement TPA: A transmissibility-based 

structural modification method for in-situ transfer path 

analysis 

J.W.R. Meggitt a , ∗, A.S. Elliott a , A.T. Moorhouse 

a , A. Jalibert b , G. Franks c 

a Acoustics Research Centre, University of Salford, Greater Manchester, M5 4WT, UK 
b Bentley Motors Ltd., Pyms Lane, Crewe, CW1 3PL, UK 
c Hottinger Brüel & Kjær Engineering Services, Millbrook, Bedfordshire, MK45 2YT, UK 

a r t i c l e i n f o 

Article history: 

Received 7 September 2020 

Revised 26 January 2021 

Accepted 28 January 2021 

Available online 30 January 2021 

Keywords: 

Transfer path analysis 

Structural modification 

Component characterisation 

Blocked forces 

Transmissibility 

a b s t r a c t 

In-situ transfer path analysis is a diagnostic method used to analyse the propagation of 

noise and vibration through complex built-up structures. Its defining feature is the in- 

dependent characterisation of an assembly’s active components (i.e. vibration sources) by 

their blocked forces. This independent characterisation enables the downstream structural 

modification of an assembly without affecting the sources’ operational characteristics. In 

practical engineering structures, however, there is often a need to alter or replace com- 

ponents that reside within a vibration source, for example resilient mounts. An upstream 

structural modification of this sort would alter the blocked force and thus invalidate any 

response predictions made thereafter. Hence, an alternative approach is required. In the 

present paper a transmissibility-based structural modification method is introduced. We 

derive a set of equations that relate the blocked force and forward transfer functions ob- 

tained from an initial assembly, to those of an upstream modified assembly. Exact formu- 

lations are provided, together with first and zeroth order approximations for resiliently 

coupled structures. These component replacement expressions are verified by numerical 

examples. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
1. Introduction 

Transfer Path Analysis (TPA) is a diagnostic method used for analysing the propagation of noise and vibration in complex 

built-up structures, for example, vehicles, buildings, ships, etc. It has become an essential tool in the development and 

refinement of structures whose vibro-acoustic response is of interest. There exist many variants of TPA, differing in their 

implementation and interpretation [1,2] . Popular variants include classical [3] , in-situ [4] , component-based [5] , operational 

[6,7] and transmissibility-based [8,9] TPA. In the present paper we are concerned with the variant known widely as in-situ 

TPA (also as blocked force TPA) [4] . 
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In an in-situ TPA the active components of an assembly (i.e. vibration sources) are each characterised by their blocked 

force; the force required to constrain their interface degrees of freedom (DoFs) such that their velocity (also displacement 

and acceleration) is zero. The blocked force independently describes the operational activity of a vibration source; it does 

not depend on what the source is connected to. This is advantageous as it means that the blocked force can be used in

conjunction with structural modification techniques, where the receiver structure is modified in some way, for example in 

a design optimisation context [10–12] . 

Once characterised, the contribution of each active component to an operational response is determined using transfer 

functions measured between the source-receiver interface and the chosen target DoF. Based on their relative contributions, 

an engineer is able to identify troublesome vibration sources/transmission paths and investigate appropriate design changes. 

Application of in-situ TPA requires the definition of a source-receiver interface; this interface implicitly defines what is 

considered as the ‘source’ of vibration. The source-receiver interface is, however, somewhat arbitrary, and is typically chosen 

for convenience rather than to satisfy some physical distinction. As a practical example, vibration isolators are often included 

as part of a source definition (i.e. the source-receiver interface is defined as being that between the isolator and the receiver,

as opposed to the source and the isolator). Although this interface is perfectly admissible, it does place a limitation on what

structural modifications can be investigated. 

In contrast to a downstream structural modification, an upstream modification will alter the source definition, and thus 

invalidate any response predictions made in the modified assembly. We are interested in extending the possibility of struc- 

tural modification upstream, such that a sub-component of a vibration source may be modified or replaced. For example, 

we may wish to alter the resilient coupling that has been included as part of a source definition. To achieve an upstream

modification of this sort, its influence on the blocked force and forward transfer function, obtained from some initial as- 

sembly, must be predicted. In the present paper we introduce a transmissibility-based structural modification to do so. Its 

application provides the modified blocked force and forward transfer function, according to a known component replace- 

ment, and thus enables response predictions to be made in the modified assembly without requiring re-characterisation of 

the blocked force. 

Having intoduced the context of this paper, its remainder will be organised as follows. Section 2 will begin by

briefly introducing in-situ TPA, before Section 3 describes the proposed Component Replacement TPA (CR-TPA) method; 

Section 3.1 will derive expressions for the modified blocked force, and Section 3.2 for the modified forward transfer function. 

A summary of the key equations is given in Section 3.3 . Two numerical validation studies will be provided in Section 4 be-

fore Section 5 draws some concluding remarks. 

2. In-situ transfer path analysis 

In-situ transfer path analysis aims to identify the dominant sources of vibration that contribute to a particular response 

(e.g. the sound pressure level in a vehicle cabin) by first characterising their operational activity, and then the transfer paths

through which they contribute. In-situ TPA differs from classical TPA in that the source activity is characterised independently 

using the blocked force, as opposed to the contact force (which depends on the dynamics of the receiver structure). 

In an in-situ TPA the blocked force is obtained using the inverse relation [13] , 

f̄ S c = 

(
Y 

C 
bc 

)−1 
v b (1) 

where, with reference to Fig. 1 a: v b is an operational velocity measured on the coupled assembly at the indicator DoFs b; Y 

C 
bc 

is the mobility matrix of the coupled assembly C, measured between the indicator and interface DoFs, b and c, respectively; 

and f̄ S c is the sought-after blocked force. Note that the interface DoFs c may be considered a subset of the indicator DoFs b.

If the number of indicator DoFs is greater than interface DoFs, | b| > | c| , the matrix inverse may be interpreted as a pseudo-

inverse. Implementation of Eq. (1) requires a two part measurement procedure. In part 1, the source is turned off and the

mobility matrix Y 

C 
bc 

is measured. In part 2, the source is operated and the velocity v b is measured. 

Once the blocked force has been obtained it can be used to predict the operational response at some target DoFs r in

the assembly. This forward response prediction is given by, (
p r 

v r 

)
= 

[
H 

C 
rc 

Y 

C 
rc 

]
f̄ S c (2) 

where: p r and v r are operational pressure and velocity predictions; H 

C 
rc and Y 

C 
rc are the vibro-acoustic transfer function and

transfer mobility, respectively, between the interface and target DoFs, c and r; and f̄ S c is the acquired blocked force from 

Eq. (1) . Together, Eqs (1) and (2) constitute what is known as in-situ/blocked force TPA. 

Note that the blocked force is an independent, or invariant, source property (hence the superscript S); it can be used

to predict the operational response in any assembly, provided that its coupled transfer functions are known. In the more 

general case, where H 

C 
rc or Y 

C 
rc are predicted using dynamic sub-structuring, for example, the above is typically referred to 

as component-based TPA [1] . 

In the present paper we are interested in Eqs (1) and (2) in the presence of an upstream assembly modification. This

issue will be discussed further in the following section. 
2 
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Fig. 1. Diagrams of general assemblies; (a) - Source-Receiver assembly, (b) - Source-Mount-Receiver assembly. Labels take the following meaning: a - 

remote source side DoFs, b - receiver side ‘indicator’ DoFs, r - remote target DoFs, o - internal source DoFs where operational forces act (assumed inacces- 

sible), c - interface DoFs, c 1 - primary interface DoFs, and c 2 - secondary interface DoFs. 

 

 

 

 

 

 

 

 

 

3. Component replacement transfer path analysis 

Often when performing an in-situ TPA, access to the preferred source-receiver interface is limited and the required mea- 

surements cannot be undertaken. In this case, it is possible to redefine the source-receiver interface elsewhere, typically 

further downstream, i.e. into the receiver structure. By doing so, we redefine the source and receiver to include and exclude 

the appropriate components. Take for example the source-mount-receiver assembly in Fig. 1 b. Although the interface c 1 may 

be the preferred choice, as it is the natural source interface, the interface c 2 may equally be considered. In this case, the

source definition is set to include the mount, which is now excluded from the receiver. 

Whilst the definition of source and receiver is somewhat arbitrary, if we wish to investigate the effect of replacing

or modifying a component it must be located downstream of the defined source-receiver interface (i.e. within the re- 

ceiver structure). Only then can standard structural modification methods be used. Any modifications made upstream of 

the source-receiver interface will affect the source definition, and in turn alter the blocked force. For example, suppose the 

mount in Fig. 1 b were replaced by some other coupling; the blocked force at the interface c 2 would be modified accordingly.

When performing an in-situ TPA one must also consider the forward transfer function between the defined source-receiver 

interface and the chosen target DoFs. Clearly, the modification or replacement of any upstream component will also influ- 

ence this transfer function. 

In the present paper we are interested in the replacement (or modification) of the upstream component I 1 → I 2 . We

wish to predict its effect on the blocked force f̄ SI 
c 2 

, the forward transfer function Y 

C 
rc 2 

(or H 

C 
rc 2 

), and consequently the target

response v r (or p r ). Hence, we are interested in the structural modifications, 

f̄ SI 1 
c 2 

? −−→ f̄ SI 2 
c 2 

(3) 

Y 

C 1 
rc 2 

? −−→ Y 

C 2 
rc 2 

(4) 

where superscripts 1 and 2 denote the initial and modified assemblies, respectively. To achieve the above we propose a 

novel transmissibility-based structural modification method, Component Replacement TPA (CR-TPA). 

With reference to Fig. 1 b, CR-TPA requires that a primary interface c 1 is defined. Any component modifications must take

place downstream of this primary interface. The blocked force f̄ SI 
c 2 

, defined at some secondary interface c 2 , is related to the

primary interface blocked force f̄ S c 1 
via a blocked force transmissibility, which takes into account the properties of the initial 

assembly. This primary interface blocked force will be independent of any modifications made upstream of the secondary 

interface, so long as they remain downstream of the primary interface. Using a second blocked force transmissibility, based 

on the modified assembly, a modified blocked force at the secondary interface can be obtained. A similar procedure is used

to obtain the modified forward transfer function. 

The modified blocked force and forward transfer function equations will be derived in Sections 3.1 and 3.2 , respectively,

and summarised in Section 3.3 . Section 4 will then present a numerical demonstration of the proposed CR-TPA. 
3 
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Although not the primary concern of this paper, based on developments presented below, Appendix A derives a down- 

stream transmissibility-based modification. That is, the replacement of a constituent component in the receiver structure 

when the primary interface c 1 is considered. 

3.1. Modified blocked force 

Shown in Fig. 1 b is an assembly whose source is excited externally (or internally) at some DoF a (or o). FFrom the

perspective of the receiver structure, this excitation can be represented by an equivalent excitation at the primary interface 

c 1 , corresponding to the negative blocked force [13,14] . Hence, the equations of motion of this assembly, in mobility form,

are given by, ( 

v c 1 
v c 2 
v r 

) 

= 

[ 

Y 

C 
c 1 c 1 

Y 

C 
c 1 c 2 

Y 

C 
c 1 r 

Y 

C 
c 2 c 1 

Y 

C 
c 2 c 2 

Y 

C 
c 2 r 

Y 

C 
rc 1 

Y 

C 
rc 2 

Y 

C 
rr 

] 

⎛ 

⎝ 

−f 
S 

c 1 
0 

0 

⎞ 

⎠ . (5) 

In impedance form, we have equivalently, ⎛ 

⎝ 

−f 
S 

c 1 
0 

0 

⎞ 

⎠ = 

[ 

Z 

SI 
c 1 c 1 

Z 

I 
c 1 c 2 

0 

Z 

I 
c 2 c 1 

Z 

IR 
c 2 c 2 

Z 

R 
c 2 r 

0 Z 

R 
rc 2 

Z 

R 
rr 

] ( 

v c 1 
v c 2 
v r 

) 

. (6) 

Note that whilst the mobility terms of Eq. (5) characterise the assembly C as a whole, the impedance terms above charac-

terise individual components ( S, I, R ), or couplings thereof ( SI, IR ). 

By applying an appropriate blocking force at the secondary interface c 2 , we are able to enforce the constraint v c 2 = 0

(and consequently v r = 0 ), ⎛ 

⎝ 

−f 
S 

c 1 

f 
SI 

c 2 
0 

⎞ 

⎠ = 

[ 

Z 

SI 
c 1 c 1 

Z 

I 
c 1 c 2 

0 

Z 

I 
c 2 c 1 

Z 

IR 
c 2 c 2 

Z 

R 
c 2 r 

0 Z 

R 
rc 2 

Z 

R 
rr 

] ( 

v c 1 
0 

0 

) 

. (7) 

From the top row of Eq. (7) we obtain, 

v c 1 = −
(
Z 

SI 
c 1 c 1 

)−1 
f̄ S c 1 

(8) 

which upon substitution into the second row yields, 

f̄ SI 
c 2 

= −Z 

I 
c 2 c 1 

(
Z 

SI 
c 1 c 1 

)−1 
f̄ S c 1 

. (9) 

Eq. (9) relates the primary and secondary interface blocked forces (due to an excitation at a or o), through what may be

interpreted as a blocked force transmissibility, 

T̄ 

a 
c 2 c 1 

= −Z 

I 
c 2 c 1 

(
Z 

SI 
c 1 c 1 

)−1 
(10) 

where the over-bar � is used to denote a blocked force transmissibility, as opposed to a velocity transmissibility, for example. 

Note that the primary interface blocked force, f̄ S c 1 
, is by definition independent of the components I and R, whilst the 

secondary interface blocked force, f̄ SI 
c 2 

, is independent of only the receiver component R . 

By considering the inverse of the above we can formulate an equivalent expression that relates the secondary interface 

blocked force to that of the primary, 

f̄ S c 1 
= −Z 

SI 
c 1 c 1 

(
Z 

I 
c 2 c 1 

)−1 
f̄ SI 

c 2 
. (11) 

Suppose we obtain a secondary interface blocked force, f̄ 
SI 1 
c 2 

, from some initial assembly with the component I 1 installed. 

From Eq. (11) , we can obtain the primary interface blocked force f̄ S c 1 
. Then, using Eq. (9) for an assembly with component I 2 

installed, we can obtain the modified blocked force f̄ 
SI 2 
c 2 

. All together we have that, 

f̄ SI 2 
c 2 

= Z 

I 2 
c 2 c 1 

(
Z 

S I 2 
c 1 c 1 

)−1 
Z 

S I 1 
c 1 c 1 

(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
(12) 

where the superscripts 1 and 2 are used to denote the initial and modified assemblies, respectively. Eq. (12) provides an

exact modification of the blocked force f̄ SI 
c 2 

, due to the component replacement I 1 → I 2 . 

Note that Eq. (12) has been formulated in terms of component impedances. An analogous expression can be derived in 

terms of assembly mobilities as follows. The velocity response at the secondary interface c 2 , due to an excitation at a (or o),

may be reproduced exactly by the application of an appropriate blocked force at either c 1 or c 2 , 

v c 2 = Y 

C 
c 2 a 

f a = −Y 

C 
c 2 c 1 

f̄ S c 1 
= −Y 

C 
c 2 c 2 

f̄ SI 
c 2 

. (13) 
4 
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Pre-multiplication of Eq. (13) by the inverse mobility matrix 
(
Y 

C 
c 2 c 1 

)−1 
then yields, 

f̄ S c 1 
= 

(
Y 

C 
c 2 c 1 

)−1 
Y 

C 
c 2 c 2 

f̄ SI 
c 2 

(14) 

from which we can identify the blocked force transmissibility as, 

T̄ 

a 
c 1 c 2 

= 

(
Y 

C 
c 2 c 1 

)−1 
Y 

C 
c 2 c 2 

= −Z 

SI 
c 1 c 1 

(
Z 

I 
c 2 c 1 

)−1 
. (15) 

From Eq. (15) a mobility-based analogue of Eq. (12) can be formulated as, 

f̄ SI 2 
c 1 

= 

(
Y 

C 2 
c 2 c 2 

)−1 
Y 

C 2 
c 2 c 1 

(
Y 

C 1 
c 2 c 1 

)−1 
Y 

C 1 
c 2 c 2 

f̄ SI 1 
c 2 

. (16) 

Given that we are interested in the component replacement I 1 → I 2 , the impedance form of Eq. (12) will prove more

convenient in what follows. Substituting an impedance summation for the coupled SI impedance, Z 

SI 
c 1 c 1 

= Z 

S 
c 1 c 1 

+ Z 

I 
c 1 c 1 

, 

Eq. (12) may be rewritten as, 

f̄ SI 2 
c 2 

= Z 

I 2 
c 2 c 1 

(
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

)−1 (
Z 

S 
c 1 c 1 

+ Z 

I 1 
c 1 c 1 

)(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
(17) 

where it is noted that the source impedance is unchanged between the two assemblies. Substitution of the source 

impedance for the free source mobility, Z 

S 
c 1 c 1 

= 

(
Y 

S 
c 1 c 1 

)−1 
, then yields, 

f̄ SI 2 
c 2 

= Z 

I 2 
c 2 c 1 

((
Y 

S 
c 1 c 1 

)−1 + Z 

I 2 
c 1 c 1 

)−1 ((
Y 

S 
c 1 c 1 

)−1 + Z 

I 1 
c 1 c 1 

)(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
. (18) 

Eq. (18) provides an exact modification of the blocked force, requiring the point and transfer impedance of the coupling 

elements I 1 and I 2 , and the free source mobility. Eq. (18) may be rewritten to avoid the free source mobility by addition and

subtraction of the initial coupling element point impedance within the leftmost matrix inversion, 

f̄ SI 2 
c 2 

= Z 

I 2 
c 2 c 1 

(
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

+ Z 

I 1 
c 1 c 1 

− Z 

I 1 
c 1 c 1 

)−1 (
Z 

S 
c 1 c 1 

+ Z 

I 1 
c 1 c 1 

)(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
, 

which simplifies to, 

f̄ SI 2 
c 2 

= Z 

I 2 
c 2 c 1 

(
Z 

SI 1 
c 1 c 1 

+ 

[
Z 

I 2 
c 1 c 1 

− Z 

I 1 
c 1 c 1 

])−1 
Z 

SI 1 
c 1 c 1 

(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
. (19) 

Unlike Eq. (18) , which required the free source mobility, Eq. (19) requires the coupled impedance of the initial SI assem-

bly, Z 

SI 1 
c 1 c 1 

. This is available experimentally if excitations can be performed at both the primary and secondary interface. By

measuring the coupling element’s interface mobility matrix, the impedance Z 

SI 1 
c 1 c 1 

can be obtained by matrix inversion as 

[15] , [
Z 

SI 
c 1 c 1 

Z 

I 
c 1 c 2 

Z 

I 
c 2 c 1 

Z 

IR 
c 2 c 2 

]
= 

[
Y 

C 
c 1 c 1 

Y 

C 
c 1 c 2 

Y 

C 
c 2 c 1 

Y 

C 
c 2 c 2 

]−1 

. (20) 

Note however, if the above measurement were possible, then one would likely define the blocked force at the primary 

interface to begin with. Nevertheless, Eqs. (19) and (20) provide an exact modification of the blocked force that avoids the

need for the free source mobility. 

If only response measurements are available at the primary interface (i.e. no excitations can be made) it is possible to

use an indirect approach to obtain the necessary impedance Z 

SI 
c 1 c 1 

. Recall the impedance and mobility-based transmissibility 

relation ( Eq. (15) ), 

−Z 

SI 
c 1 c 1 

(
Z 

I 
c 2 c 1 

)−1 = 

(
Y 

C 
c 2 c 1 

)−1 
Y 

C 
c 2 c 2 

. (21) 

Post-multiplication by the coupling element transfer impedance yields, 

Z 

SI 
c 1 c 1 

= −
(
Y 

C 
c 2 c 1 

)−1 
Y 

C 
c 2 c 2 

Z 

I 
c 2 c 1 

. (22) 

By using the reciprocity relation (Y 

C 
c 2 c 1 

) 
−1 = (Y 

C 
c 1 c 2 

) 
−T 

, we arrive at, 

Z 

SI 
c 1 c 1 

= −
(
Y 

C 
c 1 c 2 

)−T 
Y 

C 
c 2 c 2 

Z 

I 
c 2 c 1 

(23) 

which provides an indirect estimate of the SI assembly impedance Z 

SI 
c 1 c 1 

, based on the coupled mobilities Y 

C 
c 1 c 2 

and Y 

C 
c 2 c 2 

, and

the assumed known transfer impedance Z 

I 
c 2 c 1 

. Noting that Z 

SI 
c 1 c 1 

= Z 

S 
c 1 c 1 

+ Z 

I 
c 1 c 1 

, the source impedance can also be obtained

indirectly as per, 

Z 

S 
c 1 c 1 

= −
(
Y 

C 
c 1 c 2 

)−T 
Y 

C 
c 2 c 2 

Z 

I 
c 2 c 1 

− Z 

I 
c 1 c 1 

. (24) 

Note that the measurement of Y 

C 
c 1 c 2 

requires a response measurement at the primary interface. If this is not possible 

we are unable to provide an exact modification of the blocked force. In the special case that the coupling element being

replaced constitutes some form of isolation (e.g. a resilient coupling), we can assume an impedance mismatch between 
5 
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the source and coupling element, and some progress can be made. Mathematically, we can express this assumption in the 

following form, 

Z 

SI 
c 1 c 1 

= Z 

S 
c 1 c 1 

+ κ�I 
c 1 c 1 

(25) 

where: Z 

I 
c 1 c 1 

= κ�I 
c 1 c 1 

is the coupling element point impedance, κ is some small numerical constant, and �I 
c 1 c 1 

is an ap- 

propriate unscaled matrix. Providing that κ�I 
c 1 c 1 

is sufficiently small, a (first order) Taylor series expansion can be used to 

approximate the inverse of the coupled impedance Z 

SI 
c 1 c 1 

[16] , (
Z 

SI 
c 1 c 1 

)−1 ≈
(
Z 

S 
c 1 c 1 

)−1 − κ
(
Z 

S 
c 1 c 1 

)−1 
�I 

c 1 c 1 

(
Z 

S 
c 1 c 1 

)−1 
. (26) 

Substitution of Eqs. (25) and (26) into Eq. (12) then yields, 

f̄ SI 2 
c 2 

≈ Z 

I 2 
c 2 c 1 

((
Z 

S 
c 1 c 1 

)−1 − κ
(
Z 

S 
c 1 c 1 

)−1 
�I 2 

c 1 c 1 

(
Z 

S 
c 1 c 1 

)−1 
)(

Z 

S 
c 1 c 1 

+ κ�I 1 
c 1 c 1 

)(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
. (27) 

Expanding the bracketed terms, 

f̄ SI 2 
c 2 

≈ Z 

I 2 
c 2 c 1 

(
I + κ

(
Z 

S 
c 1 c 1 

)−1 
�I 1 

c 1 c 1 
− κ

(
Z 

S 
c 1 c 1 

)−1 
�I 2 

c 1 c 1 
− κ2 

(
Z 

S 
c 1 c 1 

)−1 
�I 2 

c 1 c 1 

(
Z 

S 
c 1 c 1 

)−1 
�I 1 

c 1 c 1 

)(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
(28) 

neglecting quadratic terms in κ (as we are considering a first order approximation), 

f̄ SI 2 
c 2 

≈ Z 

I 2 
c 2 c 1 

(
I + κ

(
Z 

S 
c 1 c 1 

)−1 
�I 1 

c 1 c 1 
− κ

(
Z 

S 
c 1 c 1 

)−1 
�I 2 

c 1 c 1 

)(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
(29) 

and substituting back κ�I 
c 1 c 1 

= Z 

I 
c 1 c 1 

, we arrive at, 

f̄ SI 2 
c 2 

≈ Z 

I 2 
c 2 c 1 

(
I + 

(
Z 

S 
c 1 c 1 

)−1 [
Z 

I 1 
c 1 c 1 

− Z 

I 2 
c 1 c 1 

])(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
(30) 

or equivalently, 

f̄ SI 2 
c 2 

≈ Z 

I 2 
c 2 c 1 

(
I + Y 

S 
c 1 c 1 

[
Z 

I 1 
c 1 c 1 

− Z 

I 2 
c 1 c 1 

])(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
. (31) 

Eq. (31) constitutes a first order approximation of the modified blocked force ̄f 
SI 2 
c 2 

, due to the component replacement I 1 → I 2 .

In the case that an identical mount is used ( I 1 = I 2 ) the above yields, f̄ 
SI 2 
c 2 

= ̄f 
SI 1 
c 2 

, as expected. Although simplified, in its

current form Eq. (31) still requires the free source mobility Y 

S 
c 1 c 1 

. However, it avoids the need for a double matrix inver-

sion, as in Eq. (18) . Matrix inversions are notoriously sensitive to experimental error and inconsistencies. As such, providing

there is a sufficient impedance mismatch, Eq. (31) may provide a more reliable estimate than Eq. (18) in the presence of

experimental uncertainty. 

Note that in deriving Eq. 31 we considered the first order approximation of Eq. (12) (or equivalently Eq. (17) ). Had we

applied the approximation to Eq. (19) we would have arrived at the intermediate form, 

f̄ SI 2 
c 2 

≈ Z 

I 2 
c 2 c 1 

[ 
I + 

(
Z 

SI 1 
c 1 c 1 

)−1 (
Z 

I 1 
c 1 c 1 

− Z 

I 2 
c 1 c 1 

)] (
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
(32) 

where the coupled SI impedance Z 

SI 1 
c 1 c 1 

replaces the free source mobility. Recall that this impedance term is available in- 

situ, as per Eq. (20) . Hence, Eq. (32) constitutes an in-situ first order approximation. This form may prove useful if the free

mobility is not available. Note that if we were to apply a first order approximation to the inverse of Z 

SI 1 
c 1 c 1 

we would arrive

identically at Eq. (31) . Whilst Eq. (32) no longer requires the free source mobility, it does still require response measure-

ments above and below the coupling element. Often, due to limited channel count, available sensors, or restricted access, it 

is not possible to obtain the required source side response measurements. Hence, we are interested in further simplifying 

the above component replacement expressions. 

Note that the free source mobility in Eq. (31) is multiplied by a small quantity; the coupling element impedance dif-

ference Z 

I 1 
c 1 c 1 

− Z 

I 2 
c 1 c 1 

. It is argued that, provided the elements are not too dissimilar, a reasonable approximation can be

obtained from the zeroth order term alone, 

f̄ SI 2 
c 2 

≈ Z 

I 2 
c 2 c 1 

(
Z 

I 1 
c 2 c 1 

)−1 
f̄ SI 1 

c 2 
. (33) 

Eq. (33) constitutes a zeroth order approximation to the modified blocked force f̄ 
SI 2 
c 2 

, due to the component replacement 

I 1 → I 2 . Importantly, Eq. (33) requires only the transfer impedance of the two coupling elements, and thus avoids the need

to perform any additional measurements over and above those required by a standard in-situ TPA. 

In general, the matrix product Z 

I 2 
c 2 c 1 

(
Z 

I 1 
c 2 c 1 

)−1 

may be fully populated. In the simplified case where no cross-coupling 

exists between the primary and secondary interface DoFs, we have that, 

Z 

I 2 
c 2 c 1 

(
Z 

I 1 
c 2 c 1 

)−1 → 

⎡ 

⎣ 

α1 0 0 

0 

. . . 0 

0 0 αN 

⎤ 

⎦ (34) 
6 



J.W.R. Meggitt, A.S. Elliott, A.T. Moorhouse et al. Journal of Sound and Vibration 499 (2021) 115991 

Table 1 

Summary of Component Replacement TPA equations for an upstream modification of the blocked force and forward transfer 

function. 

Approx. Modified blocked force: ̄f SI 2 
c 2 

= T f̄ 
(I 2 ← I 1 ) f̄ SI 1 

c 2 
Modified transfer function: Y C 2 rc 2 

= Y C 1 rc 2 
T c 2 

Y 

(I 2 ← I 1 ) 

Exact T f̄ = Z I 2 c 2 c 1 

((
Y S c 1 c 1 

)−1 + Z I 2 c 1 c 1 

)−1 ((
Y S c 1 c 1 

)−1 + Z I 1 c 1 c 1 

)(
Z I 1 c 2 c 1 

)−1 
T c 2 

Y 
= 

(
Y C 1 c 2 c 2 

)−1 
[ (

Y C 1 c 2 c 2 

)−1 + 

(
Z S I 2 c 2 c 2 

− Z S I 1 c 2 c 2 

)] −1 

T f̄ = Z I 2 c 2 c 1 

(
Z SI 1 

c 1 c 1 
+ 

[
Z I 2 c 1 c 1 

− Z I 1 c 1 c 1 

])−1 
Z SI 1 

c 1 c 1 

(
Z I 1 c 2 c 1 

)−1 

First order T f̄ ≈ Z I 2 c 2 c 1 

[
I + Y S c 1 c 1 

(
Z I 1 c 1 c 1 

− Z I 2 c 1 c 1 

)](
Z I 1 c 2 c 1 

)−1 
T c 2 

Y 
≈

[
I −

(
Z I 2 c 2 c 2 

− Z I 1 c 2 c 2 

)
Y C 1 c 2 c 2 

]
T f̄ ≈ Z I 2 c 2 c 1 

[ 
I + 

(
Z SI 1 

c 1 c 1 

)−1 (
Z I 1 c 1 c 1 

− Z I 2 c 1 c 1 

)] (
Z I 1 c 2 c 1 

)−1 

Zeroth order T f̄ ≈ Z I 2 c 2 c 1 

(
Z I 1 c 2 c 1 

)−1 
T c 2 

Y 
≈ I 

 

 

 

 

 

 

 

 

 

where αN = Z 
I 2 
c 2 N c 1 N 

/ Z 
I 1 
c 2 N c 1 N 

is the ratio of the Nth element’s initial to modified transfer impedance. In a design optimisation

context, this ratio could be used to determine the necessary modification required to achieve a specified target response 

level. 

In summary, Eqs. (12) , (31) , and (33) , provide, respectively, an exact, first order, and zeroth order approximation to the

modified blocked force f̄ 
SI 2 
c 2 

due to the component replacement I 1 → I 2 . These equations are summarized in Table 1 . 

3.2. Modified forward transfer function 

Eqs. (12) , (31) , and (33) , enable the modification of the secondary interface blocked force f̄ SI 
c 2 

given the component re-

placement I 1 → I 2 . To make a TPA response prediction in this modified assembly, the (modified) blocked force must be 

accompanied by an appropriately modified forward transfer function Y 

C 2 
rc 2 

. In this section we will derive a modification of 

the initial forward transfer function Y 

C 1 
rc 2 

to accompany the modified blocked force f̄ 
SI 2 
c 2 

. 

We begin by recalling the invariant properties of the transmissibility [17] . It can been shown that the velocity transmis-

sibility between the interface DoFs c 2 and the remote target DoFs r, due to an applied force at c 2 , T 
c 2 
rc 2 

, is independent of

the forcing applied. Consequently, the same transmissibility would be obtained whether or not the SI assembly is attached 

to the receiver R . As such, we have that, 

Y 

C 
rc 2 

(
Y 

C 
c 2 c 2 

)−1 = Y 

R 
rc 2 

(
Y 

R 
c 2 c 2 

)−1 = T 

c 2 
rc 2 

. (35) 

Based on this invariance, a second equation can be established for a new assembly ( C 2 ) whose coupling element has

been replaced, 

Y 

C 2 
rc 2 

(
Y 

C 2 
c 2 c 2 

)−1 = Y 

R 
rc 2 

(
Y 

R 
c 2 c 2 

)−1 
. (36) 

The left hand sides of Eqs. (35) and (36) can now be equated. Post-multiplication by Y 

C 2 
c 2 c 2 

then yields, 

Y 

C 2 
rc 2 

= Y 

C 1 
rc 2 

(
Y 

C 1 
c 2 c 2 

)−1 
Y 

C 2 
c 2 c 2 

(37) 

where the superscript C 1 is used to denote the initial assembly. 

Eq. (37) provides an exact modification of the forward transfer function Y 

C 1 
rc 2 

, due to the component replacement 

I 1 → I 2 . This form, however, requires the modified assembly’s point mobility matrix Y 

C 2 
c 2 c 2 

, which is unavailable. To simplify

Eq. (37) we begin by substituting the modified mobility Y 

C 2 
c 2 c 2 

for its impedance form, 

Y 

C 2 
rc 2 

= Y 

C 1 
rc 2 

(
Y 

C 1 
c 2 c 2 

)−1 (
Z 

R 
c 2 c 2 

+ Z 

S I 2 
c 2 c 2 

)−1 
(38) 

where Z 

S I 2 
c 2 c 2 

represents the point impedance of the modified source-coupling assembly. By adding and subtracting the initial 

source-coupling impedance Z 

S I 1 
c 2 c 2 

, 

Y 

C 2 
rc 2 

= Y 

C 1 
rc 2 

(
Y 

C 1 
c 2 c 2 

)−1 (
Z 

R 
c 2 c 2 

+ Z 

S I 2 
c 2 c 2 

+ Z 

S I 1 
c 2 c 2 

− Z 

S I 1 
c 2 c 2 

)−1 
(39) 

and rearranging terms, we arrive at, 

Y 

C 2 
rc 2 

= Y 

C 1 
rc 2 

(
Y 

C 1 
c 2 c 2 

)−1 (
Z 

C 1 
c 2 c 2 

+ 

(
Z 

S I 2 
c 2 c 2 

− Z 

S I 1 
c 2 c 2 

))−1 
(40) 

where Z 

C 1 
c 2 c 2 

is the coupled impedance of the initial assembly. Eq. (40) remains exact, as no approximations have been

introduced. 

As with the modified blocked force, we consider the special case of a resilient coupling element, and the presence of

an impedance mismatch, now between the receiver and source-coupling assembly. By approximating the rightmost matrix 

inverse of Eq. (40) as a first order Taylor expansion, 

Y 

C 2 
rc 2 

≈ Y 

C 1 
rc 2 

(
Y 

C 1 
c 2 c 2 

)−1 [
Y 

C 1 
c 2 c 2 

− Y 

C 1 
c 2 c 2 

(
Z 

S I 2 
c 2 c 2 

− Z 

S I 1 
c 2 c 2 

)
Y 

C 1 
c 2 c 2 

]
(41) 
7 
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we arrive at the simplified equation, 

Y 

C 2 
rc 2 

≈ Y 

C 1 
rc 2 

[
I −

(
Z 

S I 2 
c 2 c 2 

− Z 

S I 1 
c 2 c 2 

)
Y 

C 1 
c 2 c 2 

]
. (42) 

Eq. (42) constitutes a first order approximation of the modified forward transfer function Y 

C 2 
rc 2 

, due to the component re-

placement I 1 → I 2 . 

It is important to note that the impedance terms Z 

S I 2 
c 2 c 2 

and Z 

S I 2 
c 2 c 2 

are properties of the source-coupling assembly SI, 

and include dynamic contributions from both the source and the coupling element; these are not directly available from 

experiment. We are interested in simplifying the impedance difference Z 

S I 2 
c 2 c 2 

− Z 

S I 1 
c 2 c 2 

such that it can be expressed in terms 

of available quantities. Under the present assumptions (i.e. an impedance mismatch) the source will have a high impedance 

compared to the coupling element. As such, the coupling element will be approximately blocked at the primary interface, 

and Z 

SI 
c 2 c 2 

≈ Z 

I 
c 2 c 2 

. This same conclusion can be arrived at by a first order approximation as follows. 

Consider the source-coupling assembly SI, whose secondary interface is excited by an external force, (
v c 1 
v c 2 

)
= 

(
Y 

SI 
c 1 c 1 

Y 

SI 
c 1 c 2 

Y 

SI 
c 2 c 1 

Y 

SI 
c 2 c 2 

)(
0 

f c 2 

)
. (43) 

Equivalently in impedance form, (
0 

f c 2 

)
= 

(
Z 

SI 
c 1 c 1 

Z 

I 
c 1 c 2 

Z 

I 
c 2 c 1 

Z 

I 
c 2 c 2 

)(
v c 1 
v c 2 

)
(44) 

where it is noted that 
(
Z 

I 
c 2 c 2 

)−1 � = Y 

SI 
c 2 c 2 

. The top row of Eq. (44) can be rearranged for the primary interface velocity, 

0 = Z 

SI 
c 1 c 1 

v c 1 + Z 

I 
c 1 c 2 

v c 2 → v c 1 = −
(
Z 

SI 
c 1 c 1 

)−1 
Z 

I 
c 1 c 2 

v c 2 (45) 

and substituted it into the bottom row of Eq. (44) to give, 

f c 2 = 

(
−Z 

I 
c 2 c 1 

(
Z 

SI 
c 1 c 1 

)−1 
Z 

I 
c 1 c 2 

+ Z 

I 
c 2 c 2 

)
v c 2 = 

(
−Z 

I 
c 2 c 1 

((
Y 

S 
c 1 c 1 

)−1 + Z 

I 
c 1 c 1 

)−1 

Z 

I 
c 1 c 2 

+ Z 

I 
c 2 c 2 

)
v c 2 = 

˜ Z 

SI 
c 2 c 2 

v c 2 (46) 

where ˜ Z 

SI 
c 2 c 2 

represents a reduced impedance matrix which takes into account the dynamics of the source. Note that 

Eq. (46) represents the same dynamic system as Eqs. (43) and (44) . Consequently, 
(

˜ Z 

SI 
c 2 c 2 

)−1 = Y 

SI 
c 2 c 2 

, and the SI impedance

terms in Eqs. (40) and (42) may be expressed in the form of Eq. (46) . 

In the presence of an impedance mismatch, the reduced impedance matrix may be rewritten in the form, 

˜ Z 

SI 
c 2 c 2 

= 

(
−κ2 �I 

c 2 c 1 

(
Z 

S 
c 1 c 1 

+ κ�I 
c 1 c 1 

)−1 
�I 

c 1 c 2 
+ κ�I 

c 2 c 2 

)
(47) 

which, after applying a first order Taylor expansion to the matrix inverse, yields, 

˜ Z 

SI 
c 2 c 2 

= 

(
−κ2 �I 

c 2 c 1 

[ (
Z 

S 
c 1 c 1 

)−1 − κ
(
Z 

S 
c 1 c 1 

)−1 
�I 

c 1 c 1 

(
Z 

S 
c 1 c 1 

)−1 
] 
�I 

c 1 c 2 
+ κ�I 

c 2 c 2 

)
. (48) 

If we retain only first order terms in κ, the above reduces to, 

˜ Z 

SI 
c 2 c 2 

≈ Z 

I 
c 2 c 2 

. (49) 

Given that Eq. (42) is already based on a first order approximation, Eq. (49) may be incorporated as so, 

Y 

C 2 
rc 2 

≈ Y 

C 1 
rc 2 

[
I −

(
Z 

I 2 
c 2 c 2 

− Z 

I 1 
c 2 c 2 

)
Y 

C 1 
c 2 c 2 

]
. (50) 

Eq. (50) constitutes a first order approximation of the modified forward transfer function Y 

C 2 
rc 2 

, due to the component re-

placement I 1 → I 2 . 

Finally, from Eqs. (50) (or (42) ) a zeroth order approximation can be identified as simply, 

Y 

C 2 
rc 2 

≈ Y 

C 1 
rc 2 

(51) 

i.e. the component replacement has no effect on the forward transfer function. 

In summary, Eqs. (37) , (50) , and (51) , provide, respectively, an exact, first order, and zeroth order approximation to the

modified forward transfer function Y 

C 2 
rc 2 

due to the component replacement I 1 → I 2 . These equations are summarized in 

Table 1 . 

3.3. Summary of Component Replacement TPA equations 

The purpose of this paper has been to derive a set of equations that relate the blocked force and forward transfer function

of an initial assembly, to those of an upstream modified assembly, where a sub-component of the source has been modified

or replaced. In contrast to conventional component-based TPA, which aims to build an assembly from the measurement 

of individual components, the proposed CR-TPA begins with an initial (coupled) assembly, and seeks to replace or modify 
8 
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a component. Hence, CR-TPA may be viewed as an extension of in-situ TPA, enabling the upstream (also downstream, see 

Appendix A ) structural modification of an assembly for design optimisation. 

The CR-TPA equations derived above can be expressed generally in the form, 

f̄ SI 2 
c 2 

= T f̄ 
(I 2 ← I 1 ) f̄ SI 1 

c 2 
(52) 

and 

Y 

C 2 
rc 2 

= Y 

C 1 
rc 2 

T 

c 2 
Y 

(I 2 ← I 1 ) (53) 

where Eq. (52) constitutes a modification of the blocked force, and Eq. (53) the forward transfer function. The corresponding

‘transmodification’ matrices T 
f̄ 
(I 2 ← I 1 ) and T 

c 2 
Y 

(I 2 ← I 1 ) characterise the component replacement I 1 → I 2 . 
1 2 Their form depends 

on whether an exact, first order or zeroth order modification is considered. The corresponding equations are summarised in 

Table 1 . 

The exact transmodification matrices were derived irrespective of the nature of the coupling element I. Hence, they are 

valid in the presence of an arbitrary coupling element. This benefit comes at the cost of additional complexity and exper-

imental effort. Providing the point and transfer impedance of the initial and replacement coupling elements are already 

known, T 
f̄ 

requires either the free source mobility Y 

S 
c 1 c 1 

, or the source-coupling impedance Z 

SI 1 
c 1 c 1 

. The former requires dis-

mantling the assembly to freely suspend the source, whilst the latter requires instrumentation of both the primary and sec- 

ondary interfaces (see Eq. (20) ). Similarly, T 
c 2 
Y 

requires the initial and replacement source-coupling impedance Z 

SI 
c 2 c 2 

. Whilst 

this term can be calculated as per Eq. (46) , the free source mobility is still required. Furthermore, in the exact case both

T 
f̄ 

and T 
c 2 
Y 

require a double matrix inversion. Matrix inversions are known to amplify the effect of noise, and so the exact

formulation may be more sensitive to experimental error. 

In the presence of a resilient coupling (which would typically be the case for vibrating machinery) an impedance mis- 

match can be assumed at the primary and secondary interfaces and, by use of a Taylor series expansion, first and zeroth

order approximations can be derived. The first order transmodification matrices have the advantage that they avoid the 

need for a double matrix inversion. Hence, they are likely less sensitive to experimental error. Whilst T 
f̄ 

still requires the

free source mobility (or source-coupling impedance), T 
c 2 
Y 

requires only the initial assembly mobility, and the initial and re- 

placement coupling element impedance; the source-coupling impedance required by the exact modification is reduced to 

the coupling impedance alone. 

Finally, the zeroth order transmodification matrices provide what is perhaps the most useful form of CR-TPA. T 
f̄ 

reduces 

simply to a product of the modified and (inverse) initial coupling impedance; the free source mobility is no longer required.

T 
c 2 
Y 

takes the even simpler form of an identity matrix. Although a lower order approximation, the zeroth order case is likely

the most practical given its simple form and the minimal experimental effort required (all that is needed is the transfer

impedance of the initial and replacement coupling elements). It is shown later in Section 4.2.3 , as part of a numerical

example, that the zeroth order errors are not significantly greater than that of the first order approximation, and that for a

reasonable impedance mismatch errors of less than 5dB can be expected. 

4. Numerical case study 

In this section two numerical examples are presented. They will demonstrate the application of CR-TPA to the exact and 

approximate prediction of modified blocked forces and forward transfer functions, due to an upstream component replace- 

ment. An experimental illustration of CR-TPA can be found in [18] , where the method is used to replace the resilient mounts

of an automotive gearbox, and predict the resulting cabin sound pressure level. 

4.1. Coupled beam assembly 

This initial example is shown diagrammatically in Fig. 2 ; two free-free beams (source and receiver) are coupled via a

third (resilient) beam element. As above, we identify the primary and secondary interfaces as c 1 and c 2 , respectively. We

are interested in predicting the blocked force at, and the forward transfer function from, the secondary interface c 2 based

on the modification of some initial assembly. This modification will be the replacement of the resilient coupling by another 

of different geometry and material properties. Results will be compared against those obtained directly from the modified 

assembly. The geometry and material properties of each beam element are given in Table 2 . 

The initial blocked force f̄ 
SI 1 
c 2 

∈ C 

2 is obtained using the inverse relation of Eq. (1) based on the mobility of the coupled

SIR assembly. The initial forward transfer function Y 

C 1 
rc 2 

∈ C 

1 ×2 is obtained from the same assembly. These are shown in grey

in Figs. 3 and 4 , respectively. Two plots are shown in each figure, corresponding to the blocked force (a) and the blocked

moment (b) in Fig. 3 , and their associated transfer functions in Fig. 4 . 
1 Whilst T f̄ 
(I 2 ← I 1 ) and T c 2 

Y 

(I 2 ← I 1 ) were derived based on the principles of transmissibility, strictly speaking they are not transmissibilities in the traditional 

sense. Transmissibilities relate like-quantities between DoFs on the same assembly. In contrast, T f̄ 
(I 2 ← I 1 ) and T c 2 

Y 

(I 2 ← I 1 ) relate the blocked force and forward 

transfer function between the same DoFs of two different assemblies. Hence, the term ‘transmodification’ is deemed more appropriate. 
2 The superscript c 2 of T c 2 

Y 

(I 2 ← I 1 ) is used to denote the secondary interface from which the modification is considered. In Appendix A we consider a 

component replacement from the perspective of the primary interface c 1 and derive the transmodification matrix T c 1 
Y 

(I 2 ← I 1 ) . 

9 
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Fig. 2. Diagram of numerical simulation; two steel beams coupled via a third resilient beam. 

Fig. 3. Modified blocked force at the interface c 2 obtained using the Component Replacement TPA approach and its approximations; (a) - blocked force, 

(b) - blocked moment. Grey plot corresponds to the blocked force obtained for the initial assembly. Remaining plots correspond to the new assembly with 

a component replacement. 

Table 2 

Beam element properties - l length, E Young’s modulus, ρ density, and η loss factor. All beam 

elements were given a thickness h of 0.01 m and a width w of 0.1 m. 

Element l (m) E (GPa) ρ (kg/m 

3 ) η

Source 1 200 7800 0.05 

Receiver 0.5 200 7800 0.1 

Coupling (init.) 0.2 2 2000 0.1 

Coupling (mod.) 0.3 0.2 4000 0.1 

 

 

 

 

 

 

The same procedure is followed for the modified assembly, and the true blocked force and transfer function are obtained. 

These are shown in orange in Figs. 3 and 4 , respectively. The purpose of CR-TPA is to predict these modified assembly

properties based on those of the initial assembly. 

Comparison of the initial and (true) modified blocked force in Fig. 3 demonstrates the large effect the modification of 

a coupling element can have on the blocked force at the secondary interface. Fig. 4 suggests this modification has a lesser

effect on the forward transfer function. This is to be expected given the resilient nature of the coupling. 

Also shown in Fig. 3 are the exact (yellow), first order (purple), and zeroth order (green) blocked force predictions ob-

tained as per Table 1 . As expected, the exact modification is in agreement with the true blocked force. The first order

approximation can be seen to provide a good estimate of the blocked force across most of the frequency range, although

there are some notable discrepancies (see for example ≈150 Hz). The zeroth order approximation also provides a reasonable 

estimate given its simplicity. 

Shown in Fig. 4 are the exact (yellow), and first order (purple) transfer function predictions obtained as per Table 1 (the

zeroth order approximation corresponds to the unmodified transfer function). Again, the exact modification is in agreement 

with the true transfer function. The first order approximation can be seen to provide a noticeable improvement over the 

unmodified transfer function. 

These results demonstrate the application of CR-TPA, albeit on a simple assembly. In the following sub-section a more 

complex numerical assembly will be considered. 
10 
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Fig. 4. Modified forward transfer function between the interface and reference DoFs c 2 and r obtained using the Component Replacement TPA approach 

and its approximations; (a) - force-velocity mobility, (b) - moment-velocity mobility. Grey plot corresponds to the transfer function obtained for the initial 

assembly. Remaining plots correspond to the new assembly with a component replacement. 

Fig. 5. Schematic of the numerical examples considered; (a) - fully connected coupling element, (b) - discrete coupling elements. 

Table 3 

Plate element properties - l length, w width, h thickness, E Young’s modulus, ρ density, 

and η loss factor. 

Element l × w × h (m) E (GPa) ρ (kg/m 

3 ) η

Source 0 . 6 × 0 . 5 × 0 . 01 200 7800 0.05 

Receiver 0 . 6 × 0 . 5 × 0 . 01 200 7800 0.05 

Coupling (connected, init.) 0 . 35 × 0 . 5 × 0 . 005 0.2 4000 0.05 

Coupling (connected, mod.) 0 . 45 × 0 . 5 × 0 . 005 2 2000 0.1 

Coupling (discrete, init.) 0 . 35 × 0 . 1 × 0 . 005 0.2 4000 0.05 

Coupling (discrete, mod.) 0 . 45 × 0 . 1 × 0 . 005 2 2000 0.1 

 

 

 

 

 

4.2. Complex plate assembly 

The study considered here is shown diagrammatically in Fig. 5 ; two free-free plates (source and receiver) are coupled

via a third plate-like element. This assembly is more complex than the previous, with a closer resemblance to practical 

applications of the method. As above, we identify the primary and secondary interfaces as c 1 and c 2 , respectively. In the

present case study these interfaces include several points of contact, each having DoFs in the out-of-plane z direction, and 

rotation about the x/y axes (see Fig. 5 ). We are interested in predicting the blocked force at, and the forward transfer

function from, the secondary interface c 2 based on the modification of some initial assembly. This modification will be the 

replacement of the coupling element by another of different geometry and material properties. Note that again a resilient 

coupling has been considered to demonstrate the application of the first and zeroth order approximations. 

Two particular cases will be explored; a fully connected coupling element where all interface DoFs are coupled via a 

single component (see Fig. 5 a), and a series of discrete coupling elements where each interface contact is coupled to just

one other (see Fig. 5 b). The CR-TPA results will be compared against those obtained directly from the modified assemblies.

The geometry and material properties of each plate element are given in Table 3 . 
11 
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Fig. 6. Example point mobilities for the uncoupled source and the fully connected (a) and discrete (b) coupling elements shown in Fig. 5 a and 5 b, re- 

spectively. Initial couplings are shown in orange, and modified in yellow. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

The fundamental difference between the two assemblies considered here is the structure of their coupling element’s 

impedance matrix Z I ∈ C 

24 ×24 . The fully connected coupling is described by the full impedance matrix, 

Z 

I = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Z 11 , 11 Z 11 , 12 Z 11 , 13 Z 11 , 14 Z 11 , 21 Z 11 , 22 Z 11 , 23 Z 11 , 24 

Z 12 , 11 Z 12 , 12 Z 12 , 13 Z 12 , 14 Z 12 , 21 Z 12 , 22 Z 12 , 23 Z 12 , 24 

Z 13 , 11 Z 13 , 12 Z 13 , 13 Z 13 , 14 Z 13 , 21 Z 13 , 22 Z 13 , 23 Z 13 , 24 

Z 14 , 11 Z 14 , 12 Z 14 , 13 Z 14 , 14 Z 14 , 21 Z 14 , 22 Z 14 , 23 Z 14 , 24 

Z 21 , 11 Z 21 , 12 Z 21 , 13 Z 21 , 14 Z 21 , 21 Z 21 , 22 Z 21 , 23 Z 21 , 24 

Z 22 , 11 Z 22 , 12 Z 22 , 13 Z 22 , 14 Z 22 , 21 Z 22 , 22 Z 22 , 23 Z 22 , 24 

Z 23 , 11 Z 23 , 12 Z 23 , 13 Z 23 , 14 Z 23 , 21 Z 23 , 22 Z 23 , 23 Z 23 , 24 

Z 24 , 11 Z 24 , 12 Z 24 , 13 Z 24 , 14 Z 24 , 21 Z 24 , 22 Z 24 , 23 Z 24 , 24 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (54) 

whilst the discrete coupling element impedance is given by, 

Z 

I = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Z 11 , 11 0 0 0 Z 11 , 21 0 0 0 

0 Z 12 , 12 0 0 0 Z 12 , 22 0 0 

0 0 Z 13 , 13 0 0 0 Z 13 , 23 0 

0 0 0 Z 14 , 14 0 0 0 Z 14 , 24 

Z 21 , 11 0 0 0 Z 21 , 21 0 0 0 

0 Z 22 , 12 0 0 0 Z 22 , 22 0 0 

0 0 Z 23 , 13 0 0 0 Z 23 , 23 0 

0 0 0 Z 24 , 14 0 0 0 Z 24 , 24 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(55) 

where subscript i j, kl denotes the impedance between the jth contact on the i th interface, and the lth contact on the k th

interface. Note that each impedance sub-matrix contains translational and rotational components, Z i j,kl ∈ C 

3 ×3 . 

Topologically, the discrete coupling case resembles, for example, resilient mounted machinery, where each source contact 

is placed on a single resilient element. The fully connected case represents a more general coupling, for example a flange-

like coupling between two components (with discretization by a finite series of point like DoFs). 

For clarity all results will be presented for a single contact position (including translational and rotational DoFs). 

4.2.1. Fully connected coupling 

Let us first consider the fully connected coupling element (see Fig. 5 a). The initial blocked force f̄ 
SI 1 
c 2 

∈ C 

12 is obtained

using the inverse relation of Eq. (1) based on the mobility of the coupled SIR assembly. The initial forward transfer function

Y 

C 1 
rc 2 

∈ C 

1 ×12 is obtained from the same assembly. These are shown in grey in Figs. 7 and 8 , respectively. Three plots are

shown in each figure, corresponding to the blocked force (a) and the x/y blocked moments (b, c) in Fig. 7 , and their associ-

ated transfer functions in Fig. 8 . The same procedure is followed for the modified assembly, and the true blocked force and

transfer functions are obtained. These are shown in orange in Figs. 7 and 8 , respectively. 

To illustrate the source/coupling impedance mismatch and the modification of the initial coupling element, a point mo- 

bility of the source, initial coupling and modified coupling are shown in Fig. 6 a. Based on this modification, the exact, first

and zeroth order CR-TPA equations (see Table 1 ) are used to predict the modified blocked force. These are shown in Fig. 7 in

yellow, purple and green, respectively. Note that translational and rotational blocked forces are shown for a single contact 

only. Similar agreement is obtained for all other contacts. 

As expected, the exact solution is in agreement with the true blocked force. The first and zeroth order approximations 

provide reasonable estimates of each blocked force, correctly predicting regions of both amplification and attenuation. Note 
12 



J.W.R. Meggitt, A.S. Elliott, A.T. Moorhouse et al. Journal of Sound and Vibration 499 (2021) 115991 

Fig. 7. Modified blocked force at the interface c 2 for a fully connected coupling (see Fig. 5 a), obtained using the Component Replacement TPA approach 

and its approximations; (a) - blocked force, (b) - blocked x -moment, (c) - blocked y -moment. Grey plot corresponds to the blocked force obtained for the 

initial assembly. Remaining plots correspond to the new assembly with a component replacement. 

 

 

 

 

 

 

 

 

 

 

 

 

that in this example the modification constitutes a stiffening of the coupling element, and so we generally see an increase

in the blocked force, unlike the previous example where a softening was considered. 

Based on the same modification as above, the exact, first and zeroth order CR-TPA equations are used to predict the

modified forward transfer functions. These are shown in Fig. 8 in yellow, purple and grey, respectively. Note that the zeroth

order approximation reduces to the identity matrix, and so the modified transfer function is the same as the initial transfer

function. 

As expected, the exact solution is in agreement with the true transfer function. The first order approximation provides a 

reasonable estimate of each transfer function, with a general improvement over the zeroth order (unmodified) estimate. As 

was observed in the previous example, it is clear from Figs. 7 and 8 that the modification of a constituent source component

has a greater effect on the blocked force than the forward transfer function. 

Having predicted the modified blocked force and forward transfer function we are able to make a target response pre- 

diction for the modified assembly. Shown in Fig. 9 are the target responses for the initial (grey) and modified (orange)

assemblies. Also shown are the exact (yellow), first (purple) and zeroth (green) order CR-TPA predictions. As expected, the 

exact solution is in agreement with the true response. Both first and zeroth order approximations provide reasonable esti- 

mates of the response, particularly at higher frequencies where there is a greater impedance mismatch (see Fig. 6 ). Whilst

the first order approximation generally provides better agreement, given its simplicity, the zeroth order approximation does 

a reasonable job predicting the effect of a component replacement. 

4.2.2. Discrete coupling 

The same procedure as above is now considered with the discrete coupling elements (see Fig. 5 b) in place of the fully

connected element. Note that each discrete coupling is nominally identical. A point mobility of the source (unchanged), 

initial coupling and modified coupling are shown in Fig. 6 b. Note that the discrete coupling gives rise to a much greater

dynamic range than the fully connected element. 

The initial and modified blocked force and moment results are presented in Fig. 10 . Similarly, the initial and modified

forward transfer functions are presented in Fig. 11 . 

As expected, in both cases the exact solution is in agreement with the true blocked force/transfer function. The first and

zeroth order approximations provide reasonable estimates, although some regions of greater error are observed (e.g. around 

150 and 280 Hz), compared to the fully connected case. These errors likely arise due to the greater dynamic range of the

discrete coupling element (see Fig. 6 ). 
13 
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Fig. 8. Modified forward transfer function between the interface and target DoFs c 2 and r for a fully connected coupling (see Fig. 5 a), obtained using the 

Component Replacement TPA approach and its approximations; (a) - force-velocity mobility, (b) - x -moment-velocity mobility, (c) - y -moment-velocity mo- 

bility. Grey plot corresponds to the transfer function obtained for the initial assembly. Remaining plots correspond to the new assembly with a component 

replacement. 

Fig. 9. Target response prediction using modified blocked force and forward transfer functions for a fully connected coupling (see Fig. 5 a), obtained using 

the Component Replacement TPA approach and its approximations. Grey plot corresponds to the response obtained for the initial assembly. Remaining 

plots correspond to the new assembly with a component replacement. 

 

 

 

The above errors are somewhat expected, given that the predictions were based on the assumption of a sufficient 

impedance mismatch between the source and coupling element (which may be violated in some regions due to the coupling 

element’s greater dynamic range). Note that the over-predicted forward transfer function around 150 Hz is better estimated 

when the source contribution in the SI point impedance is retained, as in Eq. (42) (this result has been omitted for brevity).

This is likely because the source is not sufficiently rigid to satisfy the assumption that ˜ Z 

SI 
c 2 c 2 

≈ Z 

I 
c 2 c 2 

. Nevertheless, we are

typically more interested in the accuracy of a response prediction than the blocked force or transfer function individually. 

Shown in Fig. 12 are the target responses for the initial (grey) and modified (orange) assemblies. Also shown are the

exact (yellow), first (purple) and zeroth (green) order CR-TPA predictions. As expected, the exact solution is in agreement 

with the true response. Whilst the errors observed above are carried forward, the first and zeroth order approximations 

still provide reasonable estimates of the modified response. Again, the first order approximation generally provides better 
14 
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Fig. 10. Modified blocked force at the interface c 2 for discrete couplings (see Fig. 5 b), obtained using the Component Replacement TPA approach and its 

approximations; (a) - blocked force, (b) - blocked x -moment, (c) - blocked y -moment. Grey plot corresponds to the blocked force obtained for the initial 

assembly. Remaining plots correspond to the new assembly with a component replacement. 

 

 

 

 

 

agreement than the zeroth order. Nevertheless, given its simplicity the zeroth order approximation does a reasonable job 

predicting the effect of a component replacement. 

4.2.3. Error analysis 

The results presented above considered only a single initial and replacement coupling element, and so provide little 

information regarding the sensitivity of the CR-TPA approximations to their key assumption; an impedance mismatch be- 

tween source and coupling element. In this section we will investigate the accuracy of the method for varying levels of a)

the source/coupling impedance mismatch and b) the difference between initial and modified coupling elements. Given that 

the exact method is exact, only the first and zeroth order approximations will be considered here. 

For ease of analysis, a single plate-like coupling element will be considered, corresponding to the fully connected element 

from Section 4.2.1 . To investigate the sensitivity of the CR-TPA procedure, a combined error (including the blocked force and

forward transfer function modification) is captured through a receiver response prediction, 

v r = Y 

C 
rc 2 

f̄ SI 
c 2 

. (56) 

From this, a dB error is calculated using, 

Error = 20 

∣∣∣∣log 10 

( 〈| v mod 
r |〉 

〈| v r |〉 
)∣∣∣∣ (57) 

where v mod 
r is the response prediction obtained as per CR-TPA, v r is the true response, and 〈 〉 represents an average across

frequency. 

To enable a reasonable comparison between different impedance mismatches, the fully connected element’s mobility 

matrix (as used in Section 4.2.1 ) is artificially scaled to increase or decrease the mobility of initial and replacement coupling

elements. Here, the initial coupling element mobility is given by, 

Y 

I 1 = αY 

I (58) 

where Y 

I corresponds to the mobility of the initial element considered in Section 4.2.1 , and α is a scaling parameter varied

logarithmically between 10 2 and 10 −2 . This scaling is intended to simulate both stiffer and more flexible coupling elements. 

The modified coupling element’s mobility Y 

I 2 is determined by further scaling the initial mobility Y 

I 1 , 

Y 

I 2 = βY 

I 1 . (59) 
15 
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Fig. 11. Modified forward transfer function between the interface and target DoFs c 2 and r for discrete couplings (see Fig. 5 b), obtained using the Compo- 

nent Replacement TPA approach and its approximations; (a) - force-velocity mobility, (b) - x -moment-velocity mobility, (c) - y -moment-velocity mobility. 

Grey plot corresponds to the transfer function obtained for the initial assembly. Remaining plots correspond to the new assembly with a component 

replacement. 

Fig. 12. Target response prediction using modified blocked force and forward transfer functions for discrete coupling case (see Fig. 5 b), obtained using the 

Component Replacement TPA approach and its approximations. Grey plot corresponds to the response obtained for the initial assembly. Remaining plots 

correspond to the new assembly with a component replacement. 

 

 

 

 

 

 

Here β is intended to simulate replacement coupling elements with different levels of flexibility/stiffness compared to the 

initial element Y 

I 1 . β is varied logarithmically between 10 and 10 −1 . 

Shown in Fig. 13 are error plots corresponding to the first (a) and zeroth (b) order approximations. Note that the x -axis

is defined as the ratio of frequency-averaged mobilities for the replacement and initial coupling elements, x = 〈| Y I 2 |〉 / 〈| Y I 1 |〉 ,
such that x = 1 indicates a modified element identical to the initial element. For x < 1 the modified element is stiffer than

the initial, and for x > 1 the modified element is more flexible. The y -axis is defined as the ratio of frequency-averaged

mobilities for the initial coupling element and source, y = 〈| Y I 1 |〉 / 〈| Y S |〉 , such that y = 1 indicates an initial coupling element

whose frequency-averaged mobility is the same as that of the source. Hence, for y > 1 the initial coupling element has a

greater mobility than the source (i.e. is more flexible). 
16 
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Fig. 13. Frequency-averaged dB error plots for the first (a) and zeroth (b) order approximations of a remote response with a fully connected coupling 

element. x -axis: relative modification 〈 Y I 2 〉 / 〈 Y I 1 〉 . y -axis: relative initial coupling/source mobility 〈 Y I 1 〉 / 〈 Y S 〉 . Colour: dB error 20 

∣∣∣log 10 

(
〈| v mod 

r |〉 
〈| v r |〉 

)∣∣∣. Shown in 

red are the lines of constant 5dB error. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 14. Frequency-averaged dB error plots for the first (a) and zeroth (b) order approximations of a remote response with discrete coupling elements. 

x -axis: relative modification 〈 Y I 2 〉 / 〈 Y I 1 〉 . y -axis: relative initial coupling/source mobility 〈 Y I 1 〉 / 〈 Y S 〉 . Colour: dB error 20 

∣∣∣log 10 

(
〈| v mod 

r |〉 
〈| v r |〉 

)∣∣∣. Shown in red are 

the lines of constant 5dB error. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

Consider the first order approximation. The error plot ( Fig. 13 a) indicates a maximum error when the initial coupling

element’s (frequency-averaged) mobility is equal to that of the source, and its replacement constitutes a stiffer element. 

This is expected, given that both of these conditions are at odds with the requirement of an impedance mismatch between

source and coupling element. Interestingly, even with 〈| Y I 1 |〉 / 〈| Y S |〉 = 1 , providing the replacement coupling constitutes a 

more flexible element, the error remains below 5dB (indicated by the red contour). Given that one would typically be 

interested in reducing the transmission of vibration, replacement with a more resilient coupling is the more likely scenario 

in practice. In the presence of a greater impedance mismatch, 〈| Y I 1 |〉 / 〈| Y S |〉 � 10 2 , an error less than 5dB is achieved for all

replacement elements within 10 ±1 of the initial element. 

Now consider the zeroth order approximation. The error plot ( Fig. 13 b) indicates two regions of maximum error. These

occur when the initial coupling element’s (frequency-averaged) mobility is equal to that of the source and the replacement 

coupling differs significantly from the initial coupling, whether stiffer or more flexible. This error is expected as the zeroth 

order approximation is based on the assumption that Z 

I 1 
c 1 c 1 

− Z 

I 2 
c 1 c 1 

is sufficiently small that it can be neglected in Eq. (31) .

Interestingly, for 〈| Y I 1 |〉 / 〈| Y S |〉 ≈ 1 the zeroth order error is much less sensitive than the first order error. This is expected

given that Z 

I 1 
c 1 c 1 

− Z 

I 2 
c 1 c 1 

in the first order approximation grows linearly as the difference between the initial and replacement

coupling increases. Whilst valid for small values, the first order approximation ‘over-shoots’ the true inverse for large values 

(note that the second order term in the Taylor series expansion of a matrix inverse is opposite in sign to the first, so would
17 



J.W.R. Meggitt, A.S. Elliott, A.T. Moorhouse et al. Journal of Sound and Vibration 499 (2021) 115991 

 

 

 

 

 

 

 

 

 

 

 

 

 

counteract this over-shoot). This term is neglected from the zeroth order approximation, so its error does not grow linearly 

with an increasing impedance difference. 

To enable a reasonable comparison against an equivalent set of discrete elements (where the coupling mobil- 

ity/impedance matrix has block diagonal structure) the fully connected element considered above is artificially ‘decoupled’ 

by setting all cross terms to 0, as in Eq. (55) . This method was chosen over the explicit decoupling used in Section 4.2.2 as

the resulting dynamics differed significantly from the fully connected element, as seen in Fig. 6 . Although artificial, this de-

coupling will enable a direct comparison of the errors encountered between fully connected and discrete coupling elements. 

Shown in Fig. 14 are the error plots corresponding to the first (a) and zeroth (b) order approximations for the discrete

coupling case. Note that the general trend of the error is the same as in Fig. 13 . This suggests that the accuracy of CR-TPA

is not noticeably sensitive to cross-coupling between neighbouring contacts. 

To put the above error analysis into a practical context, it is worth noting that in the automotive industry, for example,

the body-to-isolator stiffness ratio K 

B /K 

I (which is equivalent to the source-coupling mismatch Y I /Y S ) is designed to be as

great as possible without compromising stability. Values of K 

B /K 

I ∼ Y I /Y S >> 10 are typical. 

5. Conclusions 

Structural modification is a technique that can be used to investigate the effect of design changes made to an assem-

bled structure. Its application has thus far been limited to the passive components that reside downstream of a defined 

source-receiver interface. Upstream structural modifications have been prohibited as they would alter the operational char- 

acteristics (i.e. blocked force) of the vibration source, and thus invalidate any response predictions made thereafter. The 

purpose of this paper has been to extend the possibility of structural modification upstream of the defined source-receiver 

interface, i.e. to simulate the replacement or modification of a sub-component within a source definition. To this end, we 

have introduced Component Replacement TPA (CR-TPA): a transmissibility-based structural modification method for in-situ 

transfer path analysis. 

In contrast to component-based TPA, CR-TPA does not attempt to build an assembly out of individual components. In- 

stead, it takes an assembled structure and considers the replacement of an individual component. In this way, CR-TPA may 

be viewed as an extension to in-situ TPA. One that enables upstream (also downstream, see Appendix A ) structural modifi-

cations to be made. 

At the heart of CR-TPA are the transmodification matrices that characterise the component replacement I 1 → I 2 . These

matrices can be approximated to various degrees, and used to investigate the effect of different structural modifications. 

Equations are presented for exact, first, and zeroth order approximations. Based on a truncated Taylor series expansion, the 

first and zeroth order approximations are valid only in the presence of a resilient coupling (i.e. an impedance mismatch). A

key result is that the zeroth order approximation requires only the transfer impedance of the initial and modified coupling 

elements. This information is readily available from experimental measurement or numerical modelling. 

The CR-TPA method was validated numerically using coupled beam and plate simulations. It was shown that the blocked 

force, and to a lesser extent the forward transfer function, are both affected by the replacement of any coupling elements

that reside within the source definition, and that the CR-TPA method is able to predict this change exactly. An error anal-

ysis based on coupled plate simulations suggests that when a first order approximation is used in the presence of a stiff

coupling element, modifications should be restricted to replacement with a more resilient element. Also, when a sufficient 

impedance mismatch is achieved, both first and zeroth order approximations are seen to provide good estimates of the 

modified assembly, with frequency-averaged errors of less than 5dB. 
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Appendix A. Downstream component replacement 

Although not the primary concern of this paper, in what follows we will apply the developments above to the replace-

ment of a sub-component within a receiver structure. 
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With reference to Fig. 1 b, suppose the primary interface c 1 is accessible, and chosen as the interface where the blocked

force is defined. We are interested in the replacement of the receiver sub-component I 1 → I 2 . Note that the blocked force

f̄ S c 1 
is unaffected by this modification. Thus only a modification of the forward transfer function, Y 

C 
rc 1 

, is required. 

If there is measurement access to both the primary and secondary interfaces, a downstream component replacement can 

be achieved as follows. The primary interface blocked force f̄ S c 1 
can be propagated onto the secondary interface c 2 using a

blocked force transmissibility (see Eq. (9) ) corresponding to the modified assembly, 

f̄ SI 2 
c 2 

= −Z 

I 2 
c 2 c 1 

(
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

)−1 
f̄ S c 1 

. (A.1) 

Pre-multiplication by the modified forward transfer function, Y 

C 2 
rc 2 

= Y 

C 1 
rc 2 

T 
c 2 
Y 

(I 2 ← I 1 ) 
, yields a response prediction in the modi- 

fied assembly, 

v C 2 r = Y 

C 1 
rc 2 

T 

c 2 
Y 

(I 2 ← I 1 ) Z 

I 2 
c 2 c 1 

(
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

)−1 
f̄ S c 1 

(A.2) 

where T 
c 2 
Y 

(I 2 ← I 1 ) is the transmodification matrix based on the secondary interface c 2 (see table 1 ). 

Eq. (A.2) relates the primary interface blocked force to a remote receiver response in the modified assembly. Its matrix 

product must therefore correspond to the forward transfer function Y 

C 2 
rc 1 

in the modified assembly. 

Finally, using the round trip identity [19] , 

Y 

C 
rc 2 

= Y 

C 
rc 1 

(
Y 

C 
c 2 c 1 

)−1 
Y 

C 
c 2 c 2 

(A.3) 

we can relate the initial and modified forward transfer functions using the equation, 

Y 

C 2 
rc 1 

= Y 

C 1 
rc 1 

T 

c 1 
Y 

(I 2 ← I 1 ) (A.4) 

where, 

T 

c 1 
Y 

(I 2 ← I 1 ) = 

(
Y 

C 1 
c 2 c 1 

)−1 
Y 

C 1 
c 2 c 2 

T 

c 2 
Y 

(I 2 ← I 1 ) Z 

I 2 
c 2 c 1 

(
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

)−1 
(A.5) 

is the transmodification matrix that transforms the forward transfer function from the primary interface in the initial as- 

sembly to that of the modified assembly. 

When T 
c 2 
Y 

(I 2 ← I 1 ) is taken in its exact form Eq. (A.5) provides an exact modification of the assembly based on the proper-

ties of the initial assembly, the initial and modified coupling elements, and the initial and modified source-coupling assem- 

bly, 

T 

c 1 
Y 

(I 2 ← I 1 ) = 

(
Y 

C 1 
c 2 c 1 

)−1 
[ (

Y 

C 1 
c 2 c 2 

)−1 + 

(
Z 

S I 2 
c 2 c 2 

− Z 

S I 1 
c 2 c 2 

)] −1 

Z 

I 2 
c 2 c 1 

(
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

)−1 
. (A.6) 

Note that the last bracketed term of Eq. (A.6) can be expressed equivalently as, (
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

)−1 = 

(
Z 

SI 1 
c 1 c 1 

+ 

(
Z 

I 2 
c 1 c 1 

− Z 

I 1 
c 1 c 1 

))−1 
. (A.7) 

As before, if the component I constitutes a resilient element, we can consider first and zeroth order approximations of 

the above. Depending on which form is taken, two first order approximations can be derived. Taking 

(
Z 

S 
c 1 c 1 

+ Z 

I 2 
c 1 c 1 

)−1 

and 

applying a first order Taylor expansion we obtain, 

T 

c 1 
Y 

(I 2 ← I 1 ) ≈
(
Y 

C 1 
c 2 c 1 

)−1 
Y 

C 1 
c 2 c 2 

[
I −

(
Z 

I 2 
c 2 c 2 

− Z 

I 1 
c 2 c 2 

)
Y 

C 1 
c 2 c 2 

]
Z 

I 2 
c 2 c 1 

Y 

S 
c 1 c 1 

[
I − Z 

I 2 
c 1 c 1 

Y 

S 
c 1 c 1 

]
. (A.8) 

Similarly, by taking 

(
Z 

SI 1 
c 1 c 1 

+ 

(
Z 

I 2 
c 1 c 1 

− Z 

I 1 
c 1 c 1 

))−1 

we obtain, 

T 

c 1 
Y 

(I 2 ← I 1 ) ≈
(
Y 

C 1 
c 2 c 1 

)−1 
Y 

C 1 
c 2 c 2 

[
I −

(
Z 

I 2 
c 2 c 2 

− Z 

I 1 
c 2 c 2 

)
Y 

C 1 
c 2 c 2 

]
Z 

I 2 
c 2 c 1 

(
Z 

SI 1 
c 1 c 1 

)−1 
[ 

I −
(
Z 

I 2 
c 1 c 1 

− Z 

I 1 
c 1 c 1 

)(
Z 

SI 1 
c 1 c 1 

)−1 
] 
. (A.9) 

The principle difference between these two approximations is that the former requires the free source mobility Y 

S 
c 1 c 1 

, whilst

the latter requires the coupled impedance term Z 

SI 1 
c 1 c 1 

. Note that this latter impedance term can be determined in-situ if

measurements are performed at both the primary and secondary interface (see Eq. (20) ). Given that both approximations 

require measurements at each interface, the latter is more convenient, as it avoids the need for the free mobility. 

From the above we can identify the zeroth order approximations as, 

T 

c 1 
Y 

(I 2 ← I 1 ) ≈
(
Y 

C 1 
c 2 c 1 

)−1 
Y 

C 1 
c 2 c 2 

Z 

I 2 
c 2 c 1 

Y 

S 
c 1 c 1 

. (A.10) 

or equivalently, 

T 

c 1 
Y 

(I 2 ← I 1 ) ≈
(
Y 

C 1 
c 2 c 1 

)−1 
Y 

C 1 
c 2 c 2 

Z 

I 2 
c 2 c 1 

(
Z 

SI 1 
c 1 c 1 

)−1 
. (A.11) 

The downstream CR-TPA equations are summarised in Table A.4 . Note that these CR-TPA equations provide an alternative 

approach to the dynamic sub-structuring procedures typically used in virtual prototyping and component-based simulation. 
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Table A4 

Summary of downstream Component Replacement TPA equations for the modified forward transfer func- 

tion. 

Approximation Modified transfer function: Y C 2 rc 1 
= Y C 1 rc 1 

T c 1 
Y 

(I 2 ← I 1 ) 

Exact T c 1 
Y 

= 

(
Y C 1 c 2 c 1 

)−1 
[ (

Y C 1 c 2 c 2 

)−1 + 

(
Z S I 2 c 2 c 2 

− Z S I 1 c 2 c 2 

)] −1 

Z I 2 c 2 c 1 

((
Y S c 1 c 1 

)−1 + Z I 2 c 1 c 1 

)−1 

T c 1 
Y 

= 

(
Y C 1 c 2 c 1 

)−1 
[ (

Y C 1 c 2 c 2 

)−1 + 

(
Z S I 2 c 2 c 2 

− Z S I 1 c 2 c 2 

)] −1 

Z I 2 c 2 c 1 

(
Z SI 1 

c 1 c 1 
+ 

(
Z I 2 c 1 c 1 

− Z I 1 c 1 c 1 

))−1 

First order T c 1 
Y 

≈
(
Y C 1 c 2 c 1 

)−1 
Y C 1 c 2 c 2 

[
I −

(
Z I 2 c 2 c 2 

− Z I 1 c 2 c 2 

)
Y C 1 c 2 c 2 

]
Z I 2 c 2 c 1 

Y S c 1 c 1 

[
I − Z I 2 c 1 c 1 

Y S c 1 c 1 

]
T c 1 

Y 
≈

(
Y C 1 c 2 c 1 

)−1 
Y C 1 c 2 c 2 

[
I −

(
Z I 2 c 2 c 2 

− Z I 1 c 2 c 2 

)
Y C 1 c 2 c 2 

]
Z I 2 c 2 c 1 

(
Z SI 1 

c 1 c 1 

)−1 
[ 

I −
(
Z I 2 c 1 c 1 

− Z I 1 c 1 c 1 

)(
Z SI 1 

c 1 c 1 

)−1 
] 

Zeroth order T c 1 
Y 

≈
(
Y C 1 c 2 c 1 

)−1 
Y C 1 c 2 c 2 

Z I 2 c 2 c 1 
Y S c 1 c 1 

T c 1 
Y 

≈
(
Y C 1 c 2 c 1 

)−1 
Y C 1 c 2 c 2 

Z I 2 c 2 c 1 

(
Z SI 1 

c 1 c 1 

)−1 

Fig. A14. Modified forward transfer function between the primary interface and target DoFs c 1 and r for a continuous coupling (see Fig. 5 a), obtained 

using the Component Replacement TPA approach and its approximations; (a) - force-velocity mobility, (b) - x -moment-velocity mobility, (c) - y -moment- 

velocity mobility. Grey plot corresponds to the transfer function obtained for the initial assembly. Remaining plots correspond to the new assembly with a 

component replacement. 

 

 

 

 

 

Whilst they are limited to the modification I 1 → I 2 , in the presence of a resilient suspension they yield simplified forms (see

Eqs. (A.9) and (A.11) ) which avoid the need to measure the free interface properties of source and receiver, instead relying

on in-situ measurements. This may prove more useful in practical TPA applications where coupling element replacements 

are of interest. 

The downstream CR-TPA equations presented in Table A.4 have been applied to the case study presented in 

Section 4.2 for the fully connected coupling (see Fig. 5 a). Shown in Fig. A.14 are the initial (grey), true (orange) and modi-

fied forward transfer functions Y 

C 2 
rc 1 

, based on the exact (yellow), first (purple) and zeroth (green) order approximations. As 

expected, the exact solution is in agreement with the forward transfer function. The first and zeroth order approximations 

also provide reasonable estimates, the zeroth order in particular given its simplicity. 
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