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Abstract 

Load carriage and marching ‘in-step’ are routine military activities associated with lower limb 

injury risk in service personnel. The fixed pace and stride length of marching typically vary 

from the preferred walking gait and may result in over-striding. Over-striding increases ground 

reaction forces and muscle forces. Women are more likely to over-stride than men due to their 

shorter stature. These biomechanical responses to over-striding may be most pronounced 

when marching close to the preferred walk-to-run transition speed. Load carriage also affects 

walking gait and increases ground reaction forces, joint moments and the demands on the 

muscles. Few studies have examined the effects of sex and stature on the biomechanics of 

marching and load carriage; this evidence is required to inform injury prevention strategies, 

particularly with the full integration of women in some defence forces. This narrative review 

explores the effects of sex and stature on the biomechanics of unloaded and loaded marching 

at a fixed pace and evaluates the implications for injury risk. The knowledge gaps in the 
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literature, and distinct lack of studies on women, are highlighted, and areas that need more 

research to support evidence-based injury prevention measures, especially for women in 

arduous military roles, are identified.  

 

Key Points 

• Marching ‘in-step’ at a fixed pace and stride length can result in over-striding in shorter 

individuals, increasing ground reaction and muscle forces, and injury risk. 

• Marching at speeds close to the preferred walk-to-run transition speed may increase 

these forces and injury risk. 

• Load carriage affects movement patterns and increases ground reaction forces, joint 

moments and the demands on the muscles. 

• Few studies have examined the effects of sex and stature on the biomechanics of 

marching and load carriage. 

• It is unknown whether men and women adapt their biomechanics differently when 

speed and stride length are enforced. 
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Introduction 

Military personnel are often required to carry heavy loads for prolonged periods. The load 

carried can exceed 70 kg in combat roles  [1], depending on the operation, which is close to 

the body mass of some personnel. This heavy load carriage may increase injury risk [2-4], 

especially as the recommended maximum load that military personnel should carry is 45% of 

their body mass [5]. The incidence of musculoskeletal injuries (‘injuries’ herein) during basic 

training is high in the UK military (1.2 to 16.2% in men and 5.4 to 26.5% in women), and results 

in lost training days and medical discharge [6]. Women are 1.5 to 3.0 times more likely than 

men to sustain an injury during basic training [7, 8], increasing their chance of re-injury or 

sustaining further injury [5]; women are also more susceptible to developing stress fractures, 

and hip injuries, than men [9]. The smaller stature and lower body mass of women likely 

contribute to their increased injury risk, particularly when carrying relatively heavier loads than 

men [10]. Currently, women make up around 10 % of all service personnel in the UK Armed 

Forces [11], with a recruiting target of 15 %, and all roles are now open to them. Therefore, 

the biomechanical impact on women of operating in arduous roles needs to be fully understood 

to optimise training strategies and maximise through career opportunities.   

Marching is a traditional military activity, performed in a regimented manner at a fixed pace 

and stride length. Walking with stride lengths longer than preferred increases the risk for lower 

limb and back injuries [12], due to increased joint loading [13, 14], while walking at speeds 

markedly different to the preferred walking speed results in an exponential increase in energy 

cost [15]. Furthermore, walking at speeds greater than the preferred walk-to-run transition 

speed is associated with greater rates of perceived effort [15]. Both preferred walking speed 

[16] and preferred walk-to-run transition speed [17, 18] are positively correlated with stature, 

in both men and women. However, the strength of the correlation between preferred walk-to-

run transition speed and stature varies considerably (r = 0.011 to 0.690), and only two studies 

include and present separate data on women. The effect of heavy load carriage on the 

preferred walk-to-run transition is not known [19]. 

Shorter stature, lower body mass and female sex are risk factors for lower limb injury in British 

Army recruits [6]. The independent effects of stature and sex on lower limb biomechanics of 

marching at a fixed stride length have not been examined. Moreover, the biomechanical effect 

of carrying relatively heavier loads (>30% of body mass), which better reflect the loads carried 

by military personnel wearing marching order (59.4 kg), is not fully understood. And, in some 

cases, military personnel may be required to carry heavier loads over shorter durations. A 

better understanding of biomechanical responses to changes in walking speed and stride 

length/frequency, and load carriage, will help inform preventative strategies for injury risk in 

military personnel. Most studies use male populations, and there is a need for more research 

to include women to determine if any sex-specific responses exist.  

This narrative review aims to provide a broad summary of existing literature and present 

evidence on biomechanical risk factors for injury, focussing specifically on changes to walking 

gait and heavy load carriage, typical of military activities.  
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The role of fixed spatiotemporal parameters on biomechanics and the risk factors for 

injury during unloaded walking  

Spatiotemporal parameters and walking speed 

Spatiotemporal parameters are characteristics of gait, which include stride length, stride 

frequency and speed. The preferred stride length for walking is, on average, 42 ± 3% of an 

individual’s stature [20, 21] and preferred walking speed is faster in those with taller stature 

and longer lower limb length [22]. Marching is performed at a fixed stride length and speed, 

irrespective of stature or limb length. This may force many individuals to walk with a greater 

stride length than preferred, increasing the risk of lower limb overuse injuries [23-25]. The 

shorter stature of women (mean (SD) stature for military personnel: men 1.77 (0.07) m and 

women 1.65 (0.06) m [10]) reduces their preferred stride length and results in over-striding 

when marching in a mixed-sex group. 

Ground reaction forces 

Ground reaction forces (GRFs) are exerted on the body from contact with the ground. GRFs 

acting at a distance from a joint generates a turning effect, or torque, referred to as a joint 

moment. GRFs reportedly increase with increasing walking speed [26, 27], for example, Sun, 

Fekete [27] reported a 0.3 bodyweight increase in peak vertical GRF with a 25 % increase in 

walking speed. Increased GRFs, and the corresponding increases in joint moments, are 

associated with overuse injuries, including stress fractures and knee joint problems [28]. 

Interestingly, Zadpoor and Nikooyan [29] showed that studies do not agree on whether there 

are significant differences in the GRFs and/or loading rates between stress fracture and 

control groups, during running. However, most studies included in this review compared 

groups running at a fixed speed and did not consider the effect of how increasing speed 

increases GRFs. The relationship between stride length and stride frequency on GRFs, 

normalised by body mass, are similar between sexes: as stride length increases, contact time, 

anterior-posterior braking and propulsive force, impulse descriptors, and vertical impulse per 

step systematically increase [30]. Interestingly, vertical peak forces and impulse per meter 

walked show little variation with changes in stride length [30]. However, it is worth noting that, 

relatively small (± 5 and ± 10 %) changes in stride length and frequency were investigated, 

and therefore, the effect of greater changes in stride length on GRFs and lower limb 

biomechanics in men and women is unknown. 

Muscle forces 

Increasing stride length alone, to increase speed, results in a greater contribution to the 

vertical GRFs from the hip and knee muscles than increasing step frequency alone [31]. The 

(smaller) contribution from limb posture, defined as “the resistance to the downward pull of 

gravity provided by the bones and joints of the stance limb” [31, 32], increases as speed 

increases [31]; these mechanisms may explain the reduced walking speed and stride lengths 

that are observed in older adults with weak hip and knee extensors and may reflect an 

adaptation to alleviate the demand placed on the gluteus maximus and vasti muscles. This is 

significant when considering the injury risk of female soldiers marching in a group of men; as 

over-striding may exacerbate weakness in the muscles of the hip and knee that are required 

for counteracting the joint moments. Overall, lower limb muscle function was affected by 

changes in stride length more than step frequency [31]. However, participants in this study 
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were required to walk at a “nominal” stride length (0.73 m) and step frequency (1.92 steps/s), 

and at ± 20% of these values. These “nominal” values were chosen to be representative of 

the normal for healthy young adults, based on published data, and would not account for 

differences in preferred stride length and step frequency. Therefore, participants may already 

have had to adjust their preferred walking biomechanics and so the effect of enforcing changes 

from preferred stride lengths and frequencies on lower limb muscle forces remains unknown.   

Preferred walking speed and preferred walk-to-run transition speed 

Humans have a preferred walking speed of approximately 1.4 m∙s-1, on average [33]. Humans 

adopt a combination of preferred stride length and stride frequency to achieve their preferred 

walking speed. Walking at speeds markedly different to the preferred walking speed is 

associated with an exponential increase in energy cost [15] as well as increases in joint 

moments, particularly at the hip [13, 31, 34], which may increase the risk of lower limb and 

lower back injuries. Furthermore, as speed increases, there is a spontaneous transition 

between walking and running, known as the preferred walk-to-run transition speed [22]. The 

preferred walk-to-run transition speed is around 2 m∙s-1 for healthy adults [18, 22]. However, 

this preferred speed is dependent on multiple factors (e.g. stature, limb length, and metabolic 

and mechanical efficiency) [13, 15, 17, 18, 22, 35], and is said to decreases when carrying 

external load [36], and occurs at a slower speed in women than men [18, 37].  

The strength and significance of associations are mixed between the preferred walk-to-run 

transition speed and anthropometry (stature, sitting height, leg length, lower leg length, thigh 

girth and calf girth) [17, 18, 36, 38]. Greater variability in stride length, frequency and duration 

is also observed at speeds near the preferred walk-to-run transition speed, suggesting a loss 

of stability in the movement pattern [39],  increased rate of perceived effort [15, 40] and 

increased muscle activity [40, 41]. These findings are relevant and important to a military 

population marching ‘in-step’. Firstly, Army personnel must complete a 12.8 km load carriage 

at ~1.8 m·s-1 [42] as part of their annual physical employment test, which is close to the 

average preferred walk-to-run transition speed for healthy adults [18, 22]. Secondly, a mixed 

military cohort will have a wide range of statures (mean (SD) statures for military personnel: 

men 1.77 (0.07) m and women 1.65 (0.06) m [10]), and, consequently, preferred walking 

speeds, walk-to-run transition speeds and stride lengths. To mitigate the biomechanical stress 

of over-striding, shorter personnel are typically placed at the front of a group to ‘control’ speed 

(when unspecified) and stride length. This formation will not fully prevent some individuals 

from marching at speeds closer to their preferred walk-to-run transition speed than their 

preferred walking speed, which likely results in less efficient marching [15], and increased joint 

loading [13, 31, 34]. 

Many studies have investigated the relationship between spatiotemporal parameters and 

walking biomechanics, and over-striding has been shown to increase injury risk [23, 24, 43]. 

However, the effects of sex and stature on the biomechanical response to enforcing 

spatiotemporal parameters are unknown. Moreover, whether the effect of stature on the 

preferred walk-to-run transition speed is sex dependent is also unclear.  
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The effect of load carriage on spatiotemporal parameters, biomechanics and injury risk 

A better understanding of the additive effect of load carriage on the biomechanical response 

to fixed walking speed, stride frequency and stride length will help mitigate injury risk in military 

personnel. A high number of studies have investigated the effect of load carriage on 

biomechanical function and metabolic energy expenditure in both civilian [21, 44-51] and 

military [34, 44, 49, 52-54] populations. However, only a proportion of these studies included 

women, and only four compared between sexes. This section will describe the effect of load 

carriage on walking biomechanics and, where data are available, differences between men 

and women. 

Spatiotemporal parameters and walking speed 

Studies investigating the effect of load carriage on stride length and frequency report mixed 

findings. Several studies have reported decreased stride length [44-47, 49-52, 54] and 

increased stride frequency [47, 50, 52, 54] with the increased load carried at self-selected and 

fixed (1.5m/s) walking speeds; where the loads carried ranged from approximately 0-65 

%body mass. Others reported no effect of the increased load carried on stride length [21, 48] 

or stride frequency [44, 51, 52]. One study reported decreased walking speed, stride length 

and stride frequency with increasing load (0-60 %body mass) [47]. In contrast, another 

reported increased stride length and stride frequency with increased load [53], however, these 

increases were likely a result of the corresponding increase in walking speed and the relatively 

small loads considered (0–17 kg).  

Similarly, there is conflicting evidence for sex differences in spatiotemporal measures during 

load carriage [21, 49]. In two studies, no sex differences were shown in GRFs, stride length 

or stride frequency while walking with loads at either the preferred walking speed [21] or a 

prescribed speed of 1.50 m∙s-1 [49]. In contrast, women walked with higher stride frequencies 

than men at set speeds of 1.36 m∙s-1 [55] and 1.78 m∙s-1 [56]. Also, as load increased, women 

had a greater increase in stride frequency than men [56]. At a fixed speed of 1.36 m∙s-1, stride 

length increased over time, and decreased with heavier loads, in women, but not in men; 

although, the findings may have been biased by the high number of women who may have 

had naturally shorter stride lengths [55] and were unable to complete the task. 

These different spatiotemporal responses to load may, in part, be due to variability in 

participant populations (particularly load carriage experience) and the variability in loads 

carried, and/or reflect a learned effect or a non-linear response to load. Load carriage 

experience affects biomechanical adaptations, and military personnel who are familiar with 

marching ‘in-step’ are accustomed to maintaining stride length, even during load carriage [50]. 

However, over-striding is considered a risk factor for overuse injuries [23, 24, 43] and, 

therefore, shortening stride length is proposedly a mechanism for reducing biomechanical 

stress while carrying load [2]. The additional load may also reduce the mechanical efficiency 

of walking and decreases preferred walk-to-run transition speeds [36]. The effect of modifying 

spatiotemporal parameters during load carriage on lower limb biomechanics in men and 

women may help inform injury prevention measures.  

Kinematics 

Joint kinematics is the motion between two consecutive segments of the human body. 

Measurement of joint kinematics may improve our understanding of injury mechanisms, and 
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the changes observed in energy expenditure, with load carriage [3, 12, 25, 57]. Changes in 

movement patterns are a likely mechanism to maintain postural control and alignment of the 

applied GRFs, as well as minimise the energetic cost of load carriage. The postural changes 

during load carriage may result in measurable changes in kinematic parameters [53], however, 

study findings are conflicting. 

A number of other studies [44, 52, 58-60], and a recent meta-analysis [57], identified an 

association between load carriage and increased hip sagittal range of motion (RoM) [52, 57], 

unchanged knee sagittal RoM [57, 58], increased ankle sagittal RoM [45, 53, 57] and 

unchanged trunk sagittal RoM [52, 57]. However, others have reported decreased knee 

sagittal RoM [44, 59, 60], increased knee sagittal RoM [2, 52] and increased knee flexion [21, 

53, 61] with increased load carriage (0-50 kg). Differences in findings between studies may 

be explained by variations in load carriage experience, walking speed, hip belt usage and 

posterior displacement of the load away from the trunk. The biomechanical changes induced 

by load carriage are also influenced by the phase of walking [45, 53, 57]. 

Inconsistent findings have also been reported for ankle kinematics. Some studies reported 

increased ankle dorsiflexion with increasing load [52, 53, 59], however, others observed no 

change [34, 62]. Furthermore, adding load decreased ankle RoM when barefoot, but increased 

ankle RoM when shod during treadmill walking [45]. However, these findings were not 

replicated in a subsequent study investigating overground walking [46]. These conflicting 

results could be due to different footwear, or walking modalities, influencing ankle kinematics 

and/or by measurement error with identifying the underlying bony landmarks when wearing 

footwear.  

Increased forward lean of the trunk with increasing (posterior) load is well documented [34, 

52, 59, 60]. Forward lean keeps the load centre of mass as close to the base of support as 

possible. Increased forward lean leads to flexion at the hip [21, 34, 52, 53, 59, 60, 62] that is 

counteracted by increased muscle activity in pelvic and low back musculature [34, 59, 60]. 

Load carriage may, therefore, increase the risk of lower back injuries due to the increased 

stress placed on the local musculature [52].  

Krupenevich, Rider [49] observed significant sex by load interaction for average trunk position 

during walking. Women increased trunk lean to a greater extent than men during load carriage 

(13% and 11%, respectively); possibly due to their lighter mass and the need to lean further 

forward to offset the same load. Furthermore, a significant correlation was found between 

trunk lean and body mass, for the combined dataset of men and women, indicating lighter 

participants carried the load with greater forward lean [49]. Some epidemiological studies 

support the role of smaller body size, such as smaller body mass, shorter stature and shorter 

preferred stride length, rather than female sex, as principal risk factors for injury in basic 

military training [63-65]. Therefore, discerning the independent effects of sex and physical 

characteristics on biomechanical adaptations to load carriage is important for targeted injury 

mitigation strategies.  

Ground reaction forces and kinetics 

Overuse injuries result from repeated loading of the skeleton and soft tissue during training 

and operational tasks, with inadequate recovery [66]. During basic military training, recruits 

generally experience increased unaccustomed stresses, which may be relatively higher in 
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women [67], including increased joint loading from running and load carriage [66]. 

Measurement of joint kinetics ⎯ the forces/moments that cause movement at the joint ⎯ and 

GRFs will improve our understanding of the biomechanical risk factors of injury with load 

carriage.  

Load carriage increases the first and second peaks, and the minima between peaks, in the 

vertical GRF; the braking and propulsive GRF peak; and, the vertical, braking and propulsive 

impulse [57, 59, 60, 68]. Vertical GRFs increase proportionally with increasing load [2, 21, 46, 

48, 69]. Silder, Delp [21] reported increased vertical GRF by approximately 6% for each 10% 

increase in load; no sex differences were detected for peak vertical GRFs normalised to body 

mass, although women were typically 12 kg lighter suggesting a lower absolute peak vertical 

GRF. A similar proportional increase is observed between the braking and propulsive GRFs 

and increasing load [2, 46, 69].  

Peak hip and knee, flexor and extensor moments, and peak ankle plantar flexor moments 

increase with increasing load [21, 46, 61, 70, 71]. Although the relative increase in joint loading 

due to load carriage is likely speed dependent, the largest increase in joint moment 

consistently occurs at the knee joint [46, 70]. This increased knee joint moment may be a 

mechanism for dissipating energy and reducing joint loading elsewhere [70], however, this has 

not been experimentally tested. Furthermore, as load carriage will increase GRFs, joint 

moments will also likely increase and the muscles crossing joints will be required to produce 

more force to counteract these, which may lead to a greater risk of injury. The lack of sex 

differences suggests that the forces generated from load carriage are not attributable to the 

increased injury risk in women [21]; however, the intrinsic ability to cope with these loads could 

be a differentiating factor.  

Changes to stride length and stride frequency affect the GRFs during loaded walking [12, 72]. 

At a fixed speed, when stride frequency decreases (and stride length increases) the anterior-

posterior GRF increases [12]. Whereas at self-selected speeds, all GRF peaks were higher at 

a high stride frequency (1 Hz) compared with a low stride frequency (0.6 Hz) [72]. Importantly, 

as stride frequency decreased the knee extensor moment increased, which could have 

implications for the development of muscle fatigue; however when stride frequency increased 

there was no change to the knee extensor moment [12]. These findings are important when 

considering marching ‘in-step,’ where shorter individuals, who are more likely to be women, 

must over-stride to match stride lengths of taller individuals; shorter individuals will experience 

greater stress on the knee extensor muscles compared with marching at their preferred stride 

length/frequency [12].   

Despite the high number of studies investigating the biomechanics of load carriage, in both 

military and civilian populations, there are still gaps in our understanding. Specifically, there 

are very few studies comparing the effects of load carriage between the biomechanics of men 

and women. Women are typically smaller and have less muscle mass than men  [67, 73], and 

it seems logical that absolute increases in load carriage would generally have a greater impact 

on the biomechanics of women than men. This is not the case as it has been reported that 

men and women implement similar biomechanical adaptations to load carriage [21, 49]. It is 

possible the relatively small sample sizes in these studies may increase the chance of type II 

error, and sex differences may only occur with the development of greater muscle fatigue. A 

larger study with adequate statistical power is required to rigorously compare the effect of load 

carriage on the biomechanics between men and women and to identify if any differences are 
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specifically related to sex, or a consequence of known sex differences in strength, stature 

and/or mass. A better understanding of sex differences in biomechanics during load carriage, 

and the effect of load carriage on the biomechanical changes induced by stride lengths and 

stride frequencies, is important when designing training protocols, developing strategies to 

mitigate injury risk, and optimising the performance of women in arduous roles.  

Conclusions 

This narrative review explores the influence of sex and stature on lower limb biomechanics, 

when walking at a fixed speed, stride length or stride frequency, and during load carriage. 

Marching ‘in-step’ at a fixed pace and stride length can result in over-striding in shorter 

individuals, increasing GRFs, muscle forces, and injury risk, particularly at speeds close to the 

preferred walk-to-run transition speed. Load carriage affects movement patterns and 

increases ground reaction forces, joint moments and the demands on the muscles. Many of 

these biomechanical responses are associated with injuries typically seen in military 

populations. It is unknown whether men and women adapt their biomechanics differently when 

speed, stride length and frequency are enforced, or whether these biomechanical adaptations 

are related to stature rather than sex. 
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