
Redefining Legacy: A Technical Debt
Perspective

Ben D. Monaghan1[0000−0001−6755−0304] and Julian M.
Bass1[0000−0002−0570−7086]

University Of Salford, 43 Crescent, Salford M5 4WT, UK
B.D.Monaghan1@edu.salford.ac.uk

J.Bass@salford.ac.uk

Abstract. Organisations that manage legacy systems at scale, such as
those found within large government agencies and commercial enter-
prises, face a set of unique challenges. They manage complex software
landscapes that have evolved over decades. Current conceptual defini-
tions of legacy systems give practitioners limited insights that can in-
form their daily work. In this research, we compare conceptual defini-
tions of large-scale legacy and technical debt. We hypothesise that large-
scale legacy reflects an accumulation of technical debt that has never
been through a remediation phase. To pursue this hypothesis, we iden-
tified the following question: How do practitioners describe their experi-
ence of managing large-scale legacy landscapes? We conducted 16 semi-
structured open-ended, recorded and transcribed interviews with indus-
try practitioners from 4 government organisations and 9 large enterprises
involved with the maintenance and migration of large-scale legacy sys-
tems. A snowball sampling technique was used to identify participants.
We adopted an approach informed by grounded theory. There was con-
sensus among the practitioners in our study that the landscape is frag-
mented and inflexible, consisting of many dispersed and fragile applica-
tions. Practitioners report challenges with shifting paradigms from batch
processing to near real-time customer-focused information systems. Our
findings show there is overlap between challenges experienced by par-
ticipants and symptoms typified by technical debt. We identify a novel
type of technical debt, “Ecosystem Debt” which arises from the scale,
and age, of many large-scale legacy applications. By positioning Legacy
within the context of Technical Debt, practitioners have a more concrete
understanding of the state of the systems they maintain.

Keywords: Legacy Software · Technical Debt · Software Evolution ·

Industry Perspectives · Ecosystem Debt · Software Ecosystems

1 Introduction

Legacy Software [4, 5] is everywhere. From local companies to tech giants, it is
an issue every industry faces. Despite the issues (and costs) being well known for
decades, it’s a problem which has persisted. One area where legacy is particularly



2 Ben D. Monaghan and Julian M. Bass

persistent is within governments and large enterprises. The definition of Legacy
Software varies. It has been defined as software that is outdated and old [4], or,
software that is mission critical but brittle, expensive to maintain and resistant
to changes [5].

Legacy Systems are typically associated with mainframe-based languages
such as COBOL and Fortran [12]. This, however, is not always the case. Modern
software developed using new techniques can also satisfy the criteria of legacy
[22]. This is especially true in large-scale web development where a product has a
long development time before it goes to market and the latest web framework is
now outdated. One common thread throughout however is that they are mission
critical and therefore maintenance costs must be tolerated.

Challenges to managing and maintaining legacy software are well understood
[5, 12]. It is difficult to maintain and difficult to port to new technologies. Often
legacy software is heavily integrated with the physical hardware it operates in
(i.e. mainframes). However, legacy software persists. It has been estimated that
there are still billions of lines of legacy code in use [16]. This raises the question of
why are companies unwilling, or unable, to modernise their legacy applications?
We posit that current conceptual definitions of legacy fail to accurately convey
the day to day challenges faced when managing legacy systems. To this end, we
propose an alternative way of defining legacy by viewing it from the perspective
of technical debt. However, in order to understand how legacy relates to technical
debt we first need to capture the experiences of industry practitioners involved
in the maintenance and migration of legacy systems. This leads to the question:
How do practitioners describe their experience of managing large-scale legacy
landscapes?

In this paper we adopt a grounded theory approach, analysing 16 open-ended,
transcribed interviews from industry practitioners who have been involved in the
maintenance or migration of large scale legacy systems. We identify common
characteristics of large scale legacy systems. We present a taxonomy mapping
these to types of technical debt. We propose a new type of technical debt, which
we refer to as “Ecosystem Debt”. We also extend existing definitions of technical
debt to account for the impact of age on code related debt. Specifically in relation
to the cognitive gap which arises from shifts in development paradigms. The rest
of this paper is organised as follows: the next section provides the background.
Sect. 3 describes the research methods used. In Sect. 4 we present our findings.
In Sect. 5 we discuss those findings any threats to validity. Finally we conclude
in Sect. 6

2 Background

2.1 Legacy Systems

The definition of Legacy Software varies. They are defined as software that
is outdated, or old, software that is mission critical but brittle, expensive to
maintain and resistant to changes [4]. One definition proposed by [8] is that they



Redefining Legacy: A Technical Debt Perspective 3

simply belong to a previous generation of technology. This, however, isn’t always
the case. Modern software developed using new techniques can also satisfy the
criteria of legacy [17]. This is especially true in modern web development where
if a product has a particularly long development time before it goes to market,
what’s modern has probably evolved and the latest web framework is now old.
One common thread throughout however is that they are mission critical and
therefore worth the costs associated with maintaining them.

Research into legacy modernisation typically focuses on technical challenges,
with little focus on industry perceptions. Research often runs on the assumption
that legacy software is obsolete. However there is evidence that this may not al-
ways be the case [16]. Practitioners from a spectrum of positions and fields were
interviewed about their perception of what their experiences with legacy soft-
ware. Their results echo existing views regarding the challenges associated with
legacy software, however they also reveal that to a number of respondents held
a favourable view of legacy software. There is a perception that legacy software
is proven technology, reliable and perhaps counter intuitively, performant.

2.2 Technical Debt

The term Technical Debt (TD) was first introduced by Cunningham [7]. TD is
used to describe developing poor-quality systems for short term gain (often for
expedience), with the view that at some point in the future the work will need to
be revisited. TD, much like financial debt, can bring benefits in the short term
(on the provision that is paid back promptly).

Although the term debt might be viewed as a bad thing, this is not necessarily
the case. Going into TD can be part of a larger strategic decision to bring a
product to market quicker, delaying quality and robustness until further into
the future [24].

While accruing TD may be a strategic decision, much like conventional debt,
it needs to be kept under control and managed. Failure to do so results in brit-
tle, hard to maintain software that becomes costly and difficult to comprehend
[26]. In certain cases the build-up of TD may not be a conscious decision [6].
Martin Fowler suggests breaking down reasons for TD into reckless, prudent,
inadvertent and deliberate [10]. There are also types of TD, such as code related
or architectural debt, Alves et al present an ontology where they identify 12
different types [1]. Similar types are identified by both Kutchens et al [19] and
Rios et al [23].

2.3 Relationship Between Technical Debt and Legacy

Legacy software and Technical debt share similarities in that they are both
perceived to mean software that is in a poor state or of low quality. Holvitie et
al [15] explore the closeness of technical debt and legacy software. They present
conceptual definitions of both, highlighting the similarities and that, depending
on the context and interpretation both terms can be used to describe the same
symptoms.



4 Ben D. Monaghan and Julian M. Bass

Technical debt also offers a potential mechanism for improving the quality
and longevity of existing legacy software. Gupta et al [14] present a case study on
managing a legacy application by tackling technical debt issues. They show a de-
crease in a number of quality defects, such as memory issues, system crashes and
performance related issues, suggesting that approaching legacy from a technical
debt perspective can alleviate issues commonly associated with ageing software.

2.4 Software Ecosystems

Definitions of Software Ecosystems (SECO) vary [11]. Efforts have been made to
create a more concrete definition by [20], they provide the definition of a SECO
‘as the interaction of a set of actors on top of a common technological platform
that results in a number of software solutions or services’.

Research into SECOs is a growing area, however we note that there is little
research into the impact of technical debt and SECOs, much of existing research
focuses on the context and ecosystem health [11]. McGregor et al [21] present
software ecosystems within the context of technical debt, they highlight that the
effects of technical debt in one aspect of a software ecosystem can have impacts
on other components within the same ecosystem.

3 Method

In this paper we analyse industry practitioner experiences when managing large
scale legacy software. The research question we answer is: How do practitioners
describe their experience of managing large-scale legacy landscapes?.

A qualitative method approach was adopted in this study to capture and
analyse industry practitioner experiences within the context of large scale legacy
software. We adopted a Grounded Theory (GT) approach, analysing data col-
lected from semi-structured open ended interviews. GT was chosen to avoid pre-
conceived assumptions about how legacy is maintained and perceived by prac-
titioners.

3.1 Research Sites

A mix of practitioners from a variety of backgrounds and industries were iden-
tified using a snowball sampling technique. Initial participants were identified
through the authors professional contact network, subsequent participants were
then identified on recommendation by initial participants. The criteria for selec-
tion was to be, or have been, involved in managing or maintaining large scale
legacy systems. Interviews were conducted both in person through meetings and
where that was not possible via Skype. The participants in this study are listed
in table 1. To highlight the scale of the organisations that participants were from,
we briefly describe P1, Major City Council and P9, Large Insurance Company.

P1, Major City Council. P1 Is an Enterprise Architect for a Major UK City
Council (population >400k), which employs >15,000 staff. P1 is involved in



Redefining Legacy: A Technical Debt Perspective 5

ensuring ICT systems across the City Council are aligned to the overall business
strategy.

P9, Large Insurance Company. P9 Is an IT Development manager for a large
UK based Insurance company. They have a revenue of >£5 Billion and employ
>2000 staff. P9 is involved in managing the legacy estate that the organisation
maintains, they operate out of a business unit specifically designed to manage
large scale legacy within the organisation.

Table 1. List of Research Participants

Identifier Job Title Industry Experience

P1 Enterprise Architect Major City Council 18 years

P2 CTO Start-up 15+ years

P3 IT Director High Street Retailer 30 years

P4 CIO Government Agency 15+ Years

P5 Head of Project Delivery Government Department 15+ Years

P6 CIO Banking 40+ Years

P7 Senior Delivery Leader Government Department 40+ Years

P8 CIO Large Enterprise 40+ Years

P9 IT Development Manager Large Insurance Company 40+ Years

P10 CIO High Street Retailer 30+ Years

P11 Lead DBA Regional Energy Company 17 Years

P12 CIO Consultancy Company 25+ Years

P13 Head of Software Engineering Government Agency 16 Years

P14 CIO High Street Retail & Banking 40 Years

P15 Principal Architect Government Agency 25+ Years

P16 Digital Directory Government Department 30 Years

3.2 Data Collection

A total of 16 semi-structured interviews [3] were conducted for data collection.
An open-ended approach was adopted to allow the interviewee a chance to cover
any other issues of interest beyond the semi-structured interviews. Interviews
were conducted in person where possible, otherwise remotely via Skype and
recorded. The interview recordings were then transcribed by hand. Questions
were revisited after each interview and refined. Each interview continued for
between 45-60 minutes.

3.3 Data Analysis

3.4 Interviews

For this paper we adopted a classical grounded theory (Glasserian) approach [13].
Grounded Theory aims to develop a theory from data without any pre-conceived



6 Ben D. Monaghan and Julian M. Bass

perceptions. To enable this approach Interview transcripts were analysed using
an industry standard qualitative analysis tool nV ivo. We first went through the
initial transcripts, using a line by line coding. As we began to understand the
data we grouped codes into category, this allowed us to identify recurring topics
within the interview transcripts. These categories were then further grouped
into concepts. Each concept was analysed using memos. Memos were iteratively
refined via constant comparison of the concepts with the raw data.

3.5 Classifying Legacy in Terms of Technical Debt

In order to classify legacy in terms of technical debt, we identified the major types
of technical debt from literature. We limited our search to 2015-2020, using the
keywords “Technical Debt Types” OR “Technical Debt Dimensions” ’OR “Tech-
nical Debt Categories”. Digital libraries considered for this search were ACM
Digital Library, IEEE Xplore, Science Direct and Springer Link. Selection crite-
ria was defined as papers which define or describe types/dimensions/categories
of Technical Debt. We identified three main sources which provided definitions
of technical debt types; Alves et al, [1], Krutchen et al [19] and Rios et al [23].
For each concept generated as a part of interview data analysis, we compared
participants descriptions of symptoms/difficulties that they have to manage with
those described in literature to see how much, or if any, overlap there was.

4 Findings

The following section presents our findings and is structured as follows; Sub-
section 4.1 presents how respondents viewed and defined legacy systems. Sub-
section 4.2 presents the results of our analysis of practitioner experiences as
compared with Technical debt types.The remaining Subsections (4.3 through to
4.8) present the the interview responses that formed the concepts highlighted in
table 2. Figure 1 presents an example of how this process was applied to produce
the concept Growing Skills Gaps Impacts on ability to maintain and evolve, the
findings that support this concept are presented in subsection 4.7.

4.1 Practitioner Understanding of Legacy

Participants describe legacy as old code on old hardware, “They tend to be older
systems developed with older technology. Typically older programming languages,
or even sitting on older hardware” - P1, Enterprise Architect Major City Council.
And potentially no longer supported by vendors, “Coupled with that, potentially,
the vendors no longer support the products as well” - P1, Enterprise Architect
Major City Council.

Interviews reveal that legacy systems are at the end of their useful life, “The
legacy system has been in place 10 or 15 years. It’s at the end of its useful life
now” - P5, Head of Project delivery, Government Department. This is echoed
by P14, CIO High Street Retailer & Bank, “Sometimes, when people talk about



Redefining Legacy: A Technical Debt Perspective 7

Fig. 1. Illustration on process of iterating through codes, categories and concepts

legacy they are talking about things that are nearing end of life”. However P14
also suggests that legacy is simply something which has been there for a long
time, “sometimes when people talk about legacy they just mean things that have
been there a long time, but it still does the job, it still works.”. P14 goes onto pro-
vide a more concrete definition within their organisation, “So, in [Practitioners
Organisation], when people talk about legacy systems, they talk about the things
that they want to replace, they want to get rid of”.

When discussing the term legacy, P16 suggests “I sort of try not to use the
term heritage and legacy. They have a certain connotation, which is these are
old things that we shouldn’t have” P16, Digital Director, Government Depart-
ment. They go on to then suggest that the driving force should be meeting
business needs, “when you look forward you look at; what is your business look-
ing to achieve?” - P16, Digital Director Government Department. Respondents
describe the importance of these systems to business value, “We have many sys-
tems that deliver over £100b. . . to the public running on COBOL-based VME” –
Digital Director, Government Department. They need to support large numbers
of customers, “they had about 4,000,000 customers” CIO, High Street Retail,
that represents significant value “average daily sales was about £2,000,000” -
CIO, High Street Retail.



8 Ben D. Monaghan and Julian M. Bass

4.2 Legacy as a Product of Technical Debt

The concepts that were formed from interview analysis were compared with
definitions of technical available in literature [1, 19, 23], we present the results of
this analysis in Table 2.

Table 2. Taxonomy Classifying Participants Experience with Legacy to Types of Tech-
nical Debt

Legacy Concept Symptoms TD type

Legacy Applications
support surrounding
systems

Difficult to modify due to
external dependencies

Ecosystem Debt

Applications are
fragmented

Unforeseen consequences
when modifying or removing
legacy

Ecosystem Debt

Inherited Legacy Difficult to evolve, maintain
and integrate

Ecosystem Debt, Code Debt
Architectural Debt
Infrastructure Debt
Design Debt, Build Debt, Test Debt
Documentation Debt

Applications no
longer represent the
organisation needs

System Architecture no
longer supports business
needs
Code quality has eroded
over time impacting main-
tainability

Code Debt
Architectural Debt

Skills Gap impacts
ability to maintain or
evolve

Challenges understanding
system. Developer premi-
ums. Fear of modifying
underlying system. Lack of
maintainability and difficult
to evolve.

Code Debt, Design Debt
Architectural Debt
Documentation Debt

Complex System Ar-
chitectures

Difficult to maintain or
evolve
New functionality is bolted
on
Architectural Drift

Code Debt, Architectural Debt

4.3 Legacy Applications Support Surrounding Systems

The interviews reveal that large-scale legacy systems are composed of significant
numbers of applications, “in the retail bank you had over 600 applications” -
P12 CIO Consultancy Company. P13 describes a large number of product plat-
forms “in the Cobol estate there are 29 products platforms” – P13 Head of SWE



Redefining Legacy: A Technical Debt Perspective 9

Government Department, a similar situation is also confirmed by P2, “There are
quite a lot of applications” – P2, CTO of Start-up.

Participants describe the size and scale of the legacy systems they are man-
aging,“One is, we’ve got a legacy fraud system. It’s the system that we use for all
of our fraud casework here. Bearing in mind, we’re a big organisation – 80,000
people – so fraud is a big deal to us.” – Head of Project Delivery, Government
Department. And need to support large numbers of internal operations “I look
after all our contact centre solutions. We have 30,000 contact centre seats here“
– P16, Director of Digital Platforms, Government Department.

Respondents describe how they need to manage many independent applica-
tions. These applications support large numbers of internal and external users.
They describe how they process significant numbers of transactions, both in
number, and in value.

4.4 Applications are Fragmented

Participants describe highly dispersed and fragmented application landscapes,
“The application landscape is highly fragmented. There are a lot of dispersed
systems that aren’t necessarily connected together” – P2, CTO of Start-up.

P2 goes on to describe how individual applications support surrounding sys-
tems, “that system had been there so long it was supported by a number of other
surrounding systems as well.” – P2, CTO of Start-up. They describe that this
them difficult to replace as they impact the wider functionality of a system,
“Simply replacing the legacy system wouldn’t necessarily solve all of our prob-
lems. We’d be impacting other parts of the process as well” – P2, CTO of Start-
up. In one example, a single application was interfacing with upwards of 200
other systems.

“For example, one of the legacy systems I’ve replaced, I think it had interfaces
with about 200 other systems. So you’ve got this real jigsaw of all these different
systems that link together” – P5, Head of Project Delivery, Government Depart-
ment.

Respondents describe a highly fragmented application landscape. These ap-
plications can be disconnected and dispersed, or part of a complex jigsaw of
dependencies. Migrating or replacing these legacy applications can be a chal-
lenge.

4.5 Inherited Legacy

The interviews reveal a number of participants have inherited applications when
companies are bought up, “So at the moment it’s a complex collection of legacy
systems, some of which even came into the [High Street Retailer] when we ac-
quired the [High Street Retail] a very long time ago” – P10, CIO, High Street
Retail. P9 describes a similar scenario, “we have really big acquired insurance



10 Ben D. Monaghan and Julian M. Bass

businesses which all come with their own large large legacy estates” - P9, IT
Development Manager, Large Enterprise. One respondent, when describing ac-
quiring a smaller company highlighted the impact this can have,

“they had to go through all of these scripts, either, switching them off and
seeing what happened or trying to put logging into them to try to see if and when
they got touched. . . just monitoring the whole thing to try to gradually unpick
this delicate, fragile, kind of landscape of scripts” – P2, CTO of Start-up.

Respondents describe acquiring smaller companies. As part of this acqui-
sition they inherit the pre-existing systems that support the newly acquired
company. This expands their existing landscape even further. In some cases, the
applications they inherit may be problematic.

4.6 Applications No Longer Represent the Organisation’s Needs

Participants describe how a shift in user expectation drives evolution, “A lot of
people expect to interact with us, as an organisation – and many other organi-
sations – in the way that they do with the likes of the Amazon platforms.” - P1,
Enterprise Architect, Major City Council. One participant describes “the organ-
isation is transforming quite significantly, we’ve got lots of new policy measures
coming in, new ways of working” - P5, Head of Project Delivery, Government
Department. The same participant goes on to say

“Because the organisation is transforming quite significantly, we’ve got lots of
new policy measures coming in, new ways of working. I think we’re also moving
towards a more digital organisation. It means that some of our legacy systems
just don’t work in the new world”, and that “In terms of what our users expect,
so citizens – but also some of our business processes – the current systems just
don’t work” - P5, Head of Project Delivery, Government Department.

Participants from Government departments describe organisation needs are
driven by driven by policy change, “we have policy units that take the government
legislation, interpret it into what it is intended to do; that is translated into,
“Right. So, we need to change what we actually provide to our customers.” So,
the systems will change underneath.” – P7, Senior Delivery Leader, Government
Department. This is compounded by the frequency in which government policy
changes, “They change all the time, because government policy changes.” - P7,
Senior Delivery Leader ,Government Department

One participants reveals that attempts to evolve with frequently policy driven
needs results in the degradation of the system, “. . . we tend to append technology
so if we started off with a nice and clean nucleus of an estate 20 or 30 years ago
is essentially we’ve gone right we need to implement this new policy and we will
add that on and add that” – P13, Head of SWE, Government Department.

Participants describe their legacy systems as no longer being able to support
organisation needs. Those from government departments describe the need to



Redefining Legacy: A Technical Debt Perspective 11

keep up with frequent shift in government policy causing systems to degrade
over time.

4.7 Skills Gap Impacts Ability to Maintain or Evolve

Participants describe how Legacy systems can be many years old “so the majority
of our systems are on VME so some of these VME machines have been around
maybe something like 40 years” – Principal Architect, Government Department.
These systems reflect a different world, “These systems reflect what the world
was, maybe, 10 or 20 years ago” – P1, Enterprise Architect, Major City Council.

Knowledge is lost as developers retire, “if somebody is approaching retirement
and they are one of the only ones that know about that system, we should really
start to have some sort of formal handover and transfer of knowledge as well.
Otherwise, there is a knowledge gap and a skills gap there” – P1, Enterprise
Architect, Major City Council. This in turn creates risk, “The big challenge is
risk because when you get inside these things you don’t always know what you’re
going to find, and there’s a danger that if you do that, you break that” – P10,
CIO, High Street Retailer.

Knowledge loss combined with change in programming paradigms means
new developers struggle to understand existing code bases, “If you’ve only ever
learned, for example, object-orientated languages, and then you’re faced with
a 20-year-old procedural language, it’s completely different” – P1, Enterprise
Architect, Major City Council.

Developers tend to want to work on the latest technology, “they’re all [de-
velopers] chasing the next shiny thing the new languages and technology” – P13,
Head of SWE, Government Department. This inevitably leads to high developer
turnover, this loss of knowledge makes future development hard, “If their coding
style, if they way they’ve written the application, is unfamiliar to the next group
of people who come in, it’s really hard. It takes longer to do development.” – P2,
CTO of Start-up.

Finding developers with the correct skill-set and understanding of procedural
code is a challenge, “Typically, it was really difficult to get the programming
skills in place to get enough of an understanding of all the nuts and bolts of
the procedural code before we could migrate away onto any new solution ” - P1,
Enterprise Architect, Major City Council.

However, P12 describes their experience with a skills gap, “when they get old
and retire you’re not going to be able to find anybody who codes in that language”
- P12, CIO, Consultancy Company. They follow up with, “well that’s just not
the case we found that we started to take in A-level apprenticeship scheme”. An-
other participant echoes similar sentiment regarding the value of apprenticeships,
“We’ve got a number of apprenticeships. We’ve got a number of apprentices in
our department as well. It’s having that mix, to be perfectly honest.” - P1, En-
terprise Architect, Major City Council.

The interviews reveal that there is a lack of knowledge in the languages
that legacy systems were written in and the paradigms that were prominent at
the time. Respondents describe how developers want to use the latest technology



12 Ben D. Monaghan and Julian M. Bass

and that many applications have evolved through significant shifts in technology.
Additional, they reflect the world from many years ago, and participants describe
how finding the skills to bridge this gap between old and new is difficult, and
comes at a premium.

4.8 Complex System Architectures

The interviews reveal that system architectures become complex over time, P2
describes one situation “Then you just get this layering of stuff that all, kind of,
pretty much hangs together ” - P2 CTO of Start-up. This is echoed by P8, who
described “layers of sort of complexity sitting on the top of the base systems” -
P8, CIO, Large Enterprise. A lack of long term view causes systems to degrade,
P2 describes how “Each group that had come in had tried to create good modular
well-structured code and all the rest of it. It was in 10 different languages and 30
different frameworks ” P2, CTO of Start-Up. They believe this is due to “This
is what happens when you’ve got project-based budgeting within an organisation,
rather than product-based. ”, and that “ If you’ve got a product that you’re
continuously evolving, people care about the product and there’s a much more
long-term view taken with it. ” - P2, CTO Of Start-Up.

Participants describe to degradation over time as the systems as new func-
tionality is added. There is described as being due to short term decisions being
made when evolving legacy systems over time. Participants describe how this
degradation leads to complex architectures, with systems that just “hang to-
gether” and are made up of many “layers”.

5 Discussion

In this section discuss our findings. We also introduce a new type of technical
debt, which we refer to as “Ecosystem Debt”. We extend existing definitions of
code related debt to include the impact of shifting technological paradigms, such
as that which has occurred over the last few decades.

5.1 Practitioners Experience with Legacy Systems

Participants describe a mixed experience of legacy. They corroborate existing
definitions within literature, including challenges with old code [4], and inflex-
ibility [5]. We find similar responses to Khadka et al [16], in that participants
view legacy systems as no longer support the organisations future direction.
However, we note that our participants provided a more varied experience. No-
tably, we find a more pronounced conflict between participants from a technical
background and those from management.

5.2 Legacy vs Technical Debt

Our participants experiences suggest that many of the challenges they face today
are a consequence of the decisions (or lack of) made in the past. We therefore



Redefining Legacy: A Technical Debt Perspective 13

draw parallels between legacy systems and that of technical debt [7] i.e decisions
made in the past result in costs that need to be paid for in the future. It is there-
fore our view that legacy can be classified in terms of technical debt. Specifically,
legacy software is an accumulation of technical debt that is never paid off. This
can be compared to the stages of technical debt as described by Kruchten et al
[19]. It is our view that Legacy software is software which has reached tipping
point but never gone through any form of remediation phase.

Similar overlap between legacy and technical debt is highlighted in [15]. While
we agree with the authors assessment that software practitioners managing tech-
nical debt could learn from the many decades of legacy modernisation research,
we also believe the reverse to be true; practitioners managing legacy can bor-
row from research (including tools and techniques) on managing technical debt.
Indeed, some of the benefits of this approach have already been highlighted by
[14].

Many organisations are faced with a difficult choice; do they modernise or do
they maintain? We believe that presenting legacy in technical debt terms goes
some way to helping organisations make that decision. Technical Debt can give
insight into the current state of a software system [18, 19], moreover it can provide
a shared vocabulary between technical and non-technical practitioners, giving
technical practitioners the tools needed to convey the risk and costs associated
with maintaining an application [9, 2].

5.3 Ecosystem Debt

The size, scale and age of large scale legacy systems brings a unique set of symp-
toms that do not map directly to current types of technical debt [1, 19]. We note
that practitioners describe a complex application landscape that often work to-
gether, typically supporting a number of services and staff. To the authors this
is very similar to the definition of a software ecosystem as outlined in [20]. And
while there has been some research into ecosystem health [11], as well as tech-
nical debt within the context of a software ecosystem [21] we do not believe the
ecosystem itself has been described in terms of technical debt. To this end we
define ecosystem debt as follows

“Software systems, and the systems they support, create a software ecosystem.
Like any ecosystem, the impact on one aspect can influence others. If dependen-
cies between software systems are not managed, future changes to the individual
software systems that make up this ecosystem can be costly, if not impossible”

While current definitions of technical debt capture the state of individual
applications, we believe they fail to capture the challenges that arise from the
evolution of (or to) a software ecosystem. Ecosystem debt is therefore the con-
sequence of decisions made during an ecosystems evolution (such as inheriting
external software, integrating different, independently developed applications)
that are done for expediency, but which later cause friction and hinder develop-
ment.



14 Ben D. Monaghan and Julian M. Bass

5.4 The Impact of Older Programming Languages and Paradigms

A common theme from all participants is having to contend with older languages
and programming paradigms. Languages such as COBOL are no longer widely
taught which makes developer recruitment difficult, indeed, many participants
cited lack of available skills as a motivation for wanting to move away from
legacy systems. However, the internal quality of legacy systems not necessarily
being of low quality they still incur the same penalties of poor quality software
(for example, difficulty onboarding new developers, hard to understand code)
[16]. We believe this to be due to the cognitive gap [25] which opens up as
programming languages become dated. In this instance, new developers have
to contend with learning not only COBOL, but also understanding the way
COBOL applications were developed (structured, procedural code vs Object
Oriented). This cognitive gap makes it harder to onboard new developers. This
has a compounding affect as a lack of knowledge can itself cause technical debt
as code quality is reduced.

5.5 Threats to Validity

External Validity : The organisations who were part of this study were all located
within the United Kingdom, including Government Departments. These organ-
isations have evolved within the UKs political and regulatory environment, as
a consequence our findings may not be generalisable outside of the context of
the UK. However, to mitigate against this, we interviewed a range of different
organisations, including large scale enterprises.

Internal Validity : The target demographic for this study was practitioners
involved in large scale legacy systems. This represents a very small, focused de-
mographic within the IT and Software industry, as such a snowball sampling
technique was used to identify participants. To limit potential bias from respon-
dents in similar industries, we have included respondents from a varied industry
background, including a mix of enterprise and government departments.

Conclusion Validity : For this paper we used semi-structured open ended in-
terviews to collect data. These interviews were refined and revised after initial
interviews were conducted. We utilised open ended questions, including allow-
ing practitioners the opportunity discuss anything they felt relevant to limit the
impact of the researchers own biases.

6 Conclusions

Organisations that manage legacy systems at scale face a set of unique challenges.
They manage complex software landscapes that have evolved over decades.
Over this period user expectations have evolved dramatically, as have technical
paradigms. Current conceptual definitions of legacy systems gives little insight
into the challenges associated with managing them, nor does it give much insight
in how to avoid the transition from non-legacy to legacy.



Redefining Legacy: A Technical Debt Perspective 15

In this paper we identify practitioner experiences while managing large scale
legacy systems. We propose an alternative method for defining legacy systems
by classifying respondents experiences in terms of types of technical debt. We
present a new type of technical debt, which we refer to as “Ecosystem Debt”
and extend current definitions of code related debt to include the effects of age,
language choice and coding paradigm on code understanding.

We adopted a Grounded Theory approach to analysing 16 semi-structured,
open ended interviews. We interviewed industry practitioners who maintain,
or have maintained, large scale legacy systems. We used a snow ball sampling
technique to identify industry practitioners for this paper. We selected industry
practitioners from both large scale enterprises and large government department,
including practitioners from both technical and non-technical backgrounds.

Our work in this paper contributes to understanding practitioner perspec-
tives on Large Scale Legacy, to our knowledge there is only one similar study on
this topic. Furthermore, we position Legacy in terms of technical debt, identify-
ing similarities between both legacy and technical debt types. We additionally
present a new type of technical debt, and expand current understanding of ex-
isting types of technical, namely code related debt.

7 Acknowledgements

We would like to acknowledge and thank the participants who took part in this
study. Many of which are in senior positions, as such we appreciate them taking
the time to participate in this study.

References

1. Alves, N.S., Mendes, T.S., de Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: A systematic mapping study.
Information and Software Technology 70, 100 – 121 (2016)

2. Arvanitou, E.M., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Stamelos, I.: Mon-
itoring technical debt in an industrial setting. In: Proceedings of the Evaluation
and Assessment on Software Engineering. p. 123–132. EASE ’19, Association for
Computing Machinery, New York, NY, USA (2019)

3. Bass, J., Monaghan, B.: Legacy systems interview guide (Jul 2020).
https://doi.org/10.17866/rd.salford.12662537.v1

4. Bennett, K.: Legacy systems: coping with success. IEEE Software 12(1), 19–23
(1995)

5. Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy information systems: Issues
and directions. IEEE Software 16(5), 103–111 (1999)

6. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCor-
mack, A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka,
N.: Managing technical debt in software-reliant systems. pp. 47–52 (01 2010)

7. Cunningham, W.: The wycash portfolio management system. SIGPLAN OOPS
Mess. 4(2), 29–30 (Dec 1992)

8. Dedeke, A.: Improving legacy-system sustainability: A systematic approach. IT
Professional 14(1), 38–43 (2012)



16 Ben D. Monaghan and Julian M. Bass

9. Eisenberg, R.J.: A threshold based approach to technical debt. SIGSOFT Softw.
Eng. Notes 37(2), 1–6 (Apr 2012)

10. Fowler, M.: bliki: Technicaldebtquadrant (2020),
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

11. Garćıa-Holgado, A., Garćıa-Peñalvo, F.J.: Mapping the systematic literature stud-
ies about software ecosystems. In: Proceedings of the Sixth International Con-
ference on Technological Ecosystems for Enhancing Multiculturality. p. 910–918.
TEEM’18, Association for Computing Machinery, New York, NY, USA (2018)

12. Gholami, M.F., Daneshgar, F., Beydoun, G., Rabhi, F.: Challenges in migrating
legacy software systems to the cloud — an empirical study. Information Systems
67, 100–113 (2017)

13. Glaser, B.G.: The discovery of grounded theory : strategies for qualitative research
(2003)

14. Gupta, R.K., Manikreddy, P., Naik, S., Arya, K.: Pragmatic approach for man-
aging technical debt in legacy software project. In: Proceedings of the 9th India
Software Engineering Conference. p. 170–176. ISEC ’16, Association for Computing
Machinery, New York, NY, USA (2016)

15. Holvitie, J., Licorish, S.A., Martini, A., Leppänen, V.: Co-existence of the’technical
debt’and’software legacy’concepts. In: QuASoQ/TDA@ APSEC. pp. 80–83 (2016)

16. Khadka, R., Batlajery, B., Saeidi, A., Jansen, S., Hage, J.: How do profession-
als perceive legacy systems and software modernization? pp. 36–47. No. 1, IEEE
Computer Society (2014)

17. Khadka, R., Saeidi, A., Idu, A., Hage, J., Jansen, S.: Legacy to soa evolution: A
systematic literature review. Migrating Legacy Applications: Challenges in Service
Oriented Architecture and Cloud Computing Environments pp. 40–70 (01 2012)

18. Kontsevoi, B., Soroka, E., Terekhov, S.: Tetra, as a set of techniques and tools
for calculating technical debt principal and interest. In: Proceedings of the Second
International Conference on Technical Debt. p. 64–65. TechDebt ’19, IEEE Press
(2019)

19. Kruchten, Philippe, a.: Managing technical debt : reducing friction in software
develpment. SEI series in software engineering (2019)

20. Manikas, K., Hansen, K.M.: Software ecosystems–a systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

21. McGregor, J.D., Monteith, J.Y., Zhang, J.: Technical debt aggregation in ecosys-
tems. In: Proceedings of the Third International Workshop on Managing Technical
Debt. p. 27–30. MTD ’12, IEEE Press (2012)

22. Razavian, M., Lago, P.: A systematic literature review on soa migration. Journal
of Software: Evolution and Process 27(5), 337–372 (2015)

23. Rios, N., de Mendonça Neto, M.G., Sṕınola, R.O.: A tertiary study on technical
debt: Types, management strategies, research trends, and base information for
practitioners. Information and Software Technology 102, 117 – 145 (2018)

24. Wolff, E., Johann, S.: Technical debt. IEEE Software 32(4), 94–c3 (2015)
25. Zaytsev, V.: Open challenges in incremental coverage of legacy software languages.

In: Proceedings of the 3rd ACM SIGPLAN International Workshop on Program-
ming Experience. p. 1–6. PX/17.2, Association for Computing Machinery, New
York, NY, USA (2017)

26. Zazworka, N., Shaw, M., Shull, F., Seaman, C.: Investigating the impact of design
debt on software quality. pp. 17–23 (2011)


