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Abstract 

Understanding better the consequences of anthropogenic pressure and environmental 

change is a substantial area of research for modern conservation ecology. This aim of this 

research is to investigate these consequences for the avian communities of saltmarshes and 

associated reed beds. The research has four objectives: to classify saltmarsh and reed bed 

vegetation distribution; to assess the vulnerability of these habitats to sea level rise; to 

determine the impacts of sea level rise on nesting avifauna; and to derive recommendations 

for conservation practice. 

Vegetation classification methods using data from satellites and Unmanned Aerial Vehicles 

(UAV) for the Upper Mersey Estuary were explored. Satellite data failed to provide adequate 

classification due to a large spatial resolution. Object-based methods carried out on UAV 

data produced an accurate vegetation classification. The implications for adopting this 

method in a vegetation monitoring system are discussed. 

In 2016 a series of habitat interventions (grazing by cattle, scrape creation, and establishing 

a reed bed cutting 20-year cycle) on saltmarsh and reedbeds within the Upper Mersey 

Estuary were commenced. These interventions were maintained during the three years of 

this study. Changes in the ecology resulting from these interventions were monitored using 

the Common Bird Census technique between March and July 2015 - 2018, Wetland Bird 

Survey counts, and wintering bird surveys. These habitat management interventions were 

associated with increased diversity of wetland species (both feeding and breeding) and 

therefore, increased habitat connectivity with the Mersey Estuary SPA.  

Modelling highlighted the moderate sensitivity of saltmarsh habitats in the Upper Mersey 

Estuary to sea level rise. With lower sea level rise, nesting sites for all avian species were 

found to be restricted by periodic tidal flooding and under the top-end estimate of tidal 

increase (between 1.1 – 1.9 metres) the species studied would not be able to breed 

successfully. 

The findings reported here have implications for global estuarine saltmarsh management. 
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Chapter 1 – Introduction 

1.1 – Research Context 

During the twentieth century the human population has increased from 1.5 to 6.1 

billion (Roser and Ortiz-Ospina, 2017). To sustain this growth landscapes have been greatly 

altered to maximise the provision of food, fresh water, timber, and fuel (MA, 2005). This 

population growth, particularly within the last 50 years, has led to grave impacts on the 

natural environment. Ecosystems and species have been lost as extinction rates have 

increased between 100 – 1000 times more than in the early 20th century (MA, 2005). Since 

the 1970s, 56 % of species have declined in the United Kingdom because of land 

transformation, urbanisation, and agricultural intensification (Hayhow et al., 2016). These 

processes have led to the disruption of ecosystems, the natural links between ecosystems, 

and their populations (Zipperer, 2011). We now understand that the negative impacts 

derived from these processes are non-linear, non-reversible, and unsustainable (MA, 2005; 

Lawton et al., 2010; Zipperer, 2011). Eventually, with this understanding came an 

acknowledgement of our responsibility. Manifest as the field of ecological restoration, we 

are now seeking to reverse the damages done to these systems by assisting in their recovery 

(SER, 2004). The field of ecological restoration, however, has been defined as a process that 

restores an ecosystem from a degraded state back toward an historical trajectory (SER, 

2004). This framing assumes that the ecosystems of the future will be as sustainable as 

those of the past. It assumes that the environment, and the world in which we currently 

live, is a static system (Collof et al., 2017).  

During the past few decades, it has become clearer that we are entering an era of 

pervasive change. The period between 1984 – 2012 is likely the warmest three-decade 

period in 1,400 years and by the end of the 21st century, global mean temperature will have 

increased by between 1.7°C and 4.8°C (IPCC, 2014). A key driver of this process of climate 

change has been the release of large amounts of atmospheric carbon, through 

anthropogenic processes including industrial processes, agricultural intensification, and land 

conversion (Heller and Zavaleta, 2009; IPCC, 2014). It is predicted that a change such as this 

will be associated with a multitude of derived impacts on environmental and ecological 

processes. These impacts will include phenological mismatches, species range shifts, and 
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secondary effects such as climate change derived sea level rise (IPCC, 2014). Impacts such as 

these will further exacerbate the challenges that ecological restoration currently faces by 

incorporating a factor of uncertainty.  

Only recently was climate change considered an integral constituent of conservation 

planning with papers as late as 2006 stating that ecological restoration had no clear 

approach to incorporating this challenge into practice (Clewell and Arsonson, 2006; Heller 

and Zavaleta, 2009).  It can be argued that we still have no clear approach to incorporating 

the impacts of climate change into practice as the systems through which to integrate the 

science of uncertainty into conservation planning are not yet in place (Dickinson et al., 2015; 

Collof et al., 2017). The frameworks of the past, those based on the traditional approaches 

towards managing ecological restoration, may not be appropriate within the context 

environmental change and uncertainty (Collof et al., 2017). This is a concern when many 

extant ecosystems are already in an unfavourable state or are threatened by human 

encroachment (Lawton, 2010).  

Coastal habitats have suffered similar declines to those of terrestrial ecosystems. 

Human population density is generally higher around coastal and estuarine areas, 

exacerbating habitat loss (Davies et al., 2016).  Coastal wetlands and saltmarshes are 

valuable habitats for a multitude of reasons: they are highly productive habitats, they 

represent a key ecosystem for often threatened avian species and act as natural flood 

barriers for human habitation (Wolters et al., 2005; Chen et al., 2013). Saltmarshes, 

especially those situated in heavily urbanised estuaries, could be sensitive to the secondary 

impacts of climate change such as sea level rise. The increase in sea level rise has been 

forecast between 0.3 – 1.9 metres by the end of the century (Jevrejeva et al., 2014). In the 

UK, threats to coastal habitats varies with geographic area (Nicholls et al., 2013), however, 

with sea level rise representing a very real challenge in the future the impacts need to be 

assessed on a site by site basis (Doody, 2008).  

Coastal conservation and restoration managers, in the UK and globally, must face the 

prospect of these environmental changes under the implicit uncertainty of climate change 

projections (Dickinson et al., 2016).  Clearly, we need to ask the question: how can we 

monitor, map, and evaluate uncertain environmental impacts and incorporate them into 
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management objectives? This is the challenge that we must face to reduce the compounded 

impacts of present habitat loss with future environmental change (Collof et al., 2017). 

Adaptive management and scenario testing are likely integral to the transformative 

approach we must adopt in order to mitigate for future risks (Dickinson et al., 2016; Wyborn 

et al., 2016, Collof et al., 2017). We need to accept uncertainty and incorporate it within 

future management scenarios (Dickinson et al., 2016). Conservation and restoration need to 

incorporate systems to monitor and report ecosystem condition to determine the relative 

impacts of change on specific ecosystems more widely. This process is the emergent science 

of vulnerability assessment and requires inclusion of all stakeholders across disciplines 

(Dickinson et al., 2016; Collof et al., 2017).  

To address the gaps related to the management of ecosystems under environmental 

uncertainty this study has the broad aim to evaluate relevant methods for the consistent 

monitoring and reporting of future environmental impacts on a managed restoration 

project in the context of wetland vulnerability assessment, and within the context of the 

literature, falls within the paradigm of ecosystem vulnerability assessment (Collof et al., 

2017). The recommendations within the literature are combined into three objectives 

pertinent to the study of a constrained saltmarsh under future environmental uncertainty. 

This research uses a multidisciplinary approach utilising the Upper Mersey Estuary in the 

northwest of England as a case study.  A practical application and final contribution of this 

research will be to assist the Mersey Gateway Environmental Trust – the body responsible 

for ecological restoration within the Upper Mersey Estuary – with future scenarios for 

conservation and management under projections of sea level rise.  

1.2 – Thesis Structure  

 The structure of the thesis is summarised in Figure 1.1. In Chapter 2 the literature 

relating to ecological restoration within a dynamic world, saltmarsh ecology, wetland 

monitoring, and the overarching themes of ecological vulnerability are critically evaluated. 

Gaps and opportunities for research are identified and translated into the aims and 

objectives, which are presented at the end of Chapter 2.  

 In Chapter 3 the research area and the justification for the selection of this location 

were described, the Upper Mersey Estuary saltmarshes under the supervision of the Mersey 
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Gateway Environmental Trust. Following this, the methods of analysis and data collection 

that are appropriate to address the research objectives are described.   

Chapter 4 consists of an exploration of data derived from the European Space 

Agencies’ Sentinel-2 satellite system as a platform from which to monitor saltmarsh 

vegetation. In the first part of the chapter the ability of this system to differentiate 

saltmarsh cover types, including saltmarsh grasses and reed bed, utilising vegetation indices 

and spectral plots is explored. The second half of this chapter compares three classification 

approaches and their performance in mapping the saltmarsh cover of Upper Moss Side 

saltmarsh. 

The data presented Chapter 5 were used to explore the application of an Unmanned 

Aerial Vehicle mounted with consumer-grade cameras for mapping the distribution of 

saltmarsh cover classes. This was first initiated as a technique to mitigate the risks that may 

affect the collection of satellite data, namely cloud cover. However, as is presented in the 

chapter, an exploration of this technique allowed for further gaps within the research 

literature to be addressed. The same three classification procedures that were applied in 

Chapter 4 were applied to the data collected for Chapter 5.  

In Chapter 6, the main objective was to characterise the avian ecology of the study 

area to inform the vulnerability analysis that follows in Chapter 7. In total, four species were 

identified as potentially vulnerable to climate change effects, these were all ground nesting 

birds: meadow pipit (Anthus pratensis), skylark (Alauda arvensis), northern lapwing 

(Vanellus vanellus), and redshank (Tringa totanus), among others. The collection of these 

data allowed for a comparison of diversity pre/post habitat management. Diversity profiles 

derived from Hill numbers were identified as a possible means to reflect biotic changes 

between sites and dates, when supported by statistical methods of change.  

In Chapter 7 an analysis of the vulnerability of ground nesting avifauna, identified in 

Chapter 6, to the impacts of sea level rise was explored. The analysis included elevation 

data, tide gauge data, sea level rise scenarios, avian territory distribution, and avian 

breeding ecology statistics to determine under which scenarios might the breeding season 

of the selected species be interrupted. The data analysis undertaken here represents the 

first case study of ecosystem vulnerability for saltmarshes in the northwest of England, and 
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the first vulnerability analysis of this kind. The implications for future management are 

discussed in Chapter 8.  

In Chapter 8 the outcomes of the research presented in this thesis are brought 

together and interpreted within the context of vulnerability assessment. The contributions 

that the current research has made are made explicit and opportunities for further research 

are explored. Management practices that may need to be implemented considering the 

findings presented in this research are also discussed. 
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Figure 1.1 – Thesis Structure representing the links between chapters. Data outputs from 

each chapter serves as an input data set for the subsequent chapters. 
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Chapter 2 – Literature Review  

2.1 – Ecological Restoration and Humankind   

The human relationship with the natural world has a dynamic and value-driven 

history (Wilson, 1984; Berkes, 1998; Berkes et al., 2008; Egan, 2011; Lubick and Jordan, 

2011). The development of this association is inextricably linked to our understanding of 

modern ecological restoration and the issues encapsulated by its practice (Egan et al., 

2011). As an integral part of nature, humankind plays a substantial role in shaping the 

condition of the environment based on their perception of place within it – either 

consciously or otherwise (Egan, 2011; Lubick and Jordon, 2011). The relationship can be 

represented as a continuum between two opposing ideals: nature as itself and its 

manipulation by humanity (Wilson, 1984). A period in human development during the 

Epipaleolithic (20,000 BP – 10,000 BP) known as the Natufian (14,500 BP – 11,500 BP) 

represents a shift in this history with the dawn of both agriculture, through the selective 

breeding of wild grains, and fruticulture (Mithen, 2004). This shift placed mankind on a 

course towards the latter of the two ideals that would lead to the settling of landscapes and 

the emergence of civilisations (Wilson, 1984). In many ways, the intensification of this 

development led to a disconnect between people and the natural world, and to the 

perception that nature exists solely for our provision. Perhaps this is best represented as a 

frontier mentality (Wilson, 1984; Farina et al., 2003).   

 The dispersal of humanity across the globe has generally resulted in the degradation 

of ecosystems and a loss of species, and even though there have been periods of stability 

and equilibrium, the relationship has not been sustainable (Berkes, 2000; Egan, 2011). In 

contrast the culture of indigenous populations, and those documented in the history of our 

past, represent humans as an inherent part of their landscape. The persistence of such 

cultures – often for millennia – relies on the individuals and groups developing a stake in the 

sustainable use and conservation of their environment, living and hunting within the 

capacity of their habitat (Berkes, 1998; Lubick and Jordan, 2011). This way of living 

represents an aspect of values that are more ecocentric, but this is perhaps more a 

consideration of social livelihood, rather than nature as a sole beneficiary (Lubick and 

Jordan, 2011).    
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Berkes (1998) describes a more ecosystem focussed model of this relationship which 

incorporates the consideration of culture and spirituality. The idea and existence of the 

sacred grove is common in cultures across the world. These groves represent areas 

protected from formal land management, and often honour a deity or God or are set aside 

to preserve the wild area for its own intrinsic value. Indeed, the Hindi word “auron”, which 

is used to describe sacred groves, can be interpreted as “for others” and represents the idea 

of the preservation of nature and all its parts for its own sake (Jha, 1991, cited in Lubick and 

Jordan, 2011). In this context, the significance of the sacred grove concept — while a 

manifestation of a protected area — also relates to the values cultures place in nature: the 

grove exists as a symbol, illustrating the importance of fostering the relationship between 

people and the natural world (Lubick and Jordan, 2011). The implication can be applied to 

the modern movement of ecological restoration; it is, in some ways, less to do with acts of 

preservation or maintenance of the human habitat, but more related to the upkeep and 

maintenance of the moral, ethical, and behavioural structures on which the preservation 

depends (Berkes et al., 2008, Egan, 2011, Jordan and Lubick, 2011). In this way, 

understanding the human place within the context of ecological restoration is vital to the 

success of long-term projects that include multiple interests and stakeholders outside of the 

secular or scientific communities (Egan et al., 2011; Mace 2014). This is particularly relevant 

as ecological restoration moves towards a multi-disciplinary manner of study (Hannah et al., 

2002; Mace, 2015). Viewing ecology outside the strictly scientific perspective might enable 

us to capture a more complete view of the issues, specifically relating to the creation of 

values through restoration. Perhaps, within the dynamic and challenging world biodiversity 

conservation faces today, the ability to reshape our values will provide the adaptability on 

which the modern human-nature relationship might depend (Egan et al., 2011; Jordan and 

Lubick, 2011). The history of this relationship runs deep but what is clear is that our 

perception of the environment – the model in which we perceive our place within, and the 

context for our impact on nature – has evolved with our society, culture, and science 

(Jackson et al., 1995; Lubick and Jordan, 2011).    
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2.2 – Framings of Ecological Restoration   

Restoration science in the 21st century has grown and adapted to shifts in 

perspective. Traditionally, ecological restoration can be defined as: “… the process of 

assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed” 

(SER, 2004, p. 3). This is a recognition of the acceleration of human impacts on natural areas 

since the 19th century and an acknowledgement of our responsibility (Dickinson et al., 

2015). Landscapes and ecosystems have been altered greatly, surpassing the threshold of 

socio-economic sustainability to support an ever-growing human population (Aronson et al., 

2006; Dickinson et al., 2015). The root of the modern wave of anthropogenically driven 

biodiversity loss is the result of the rapid expansion of modern society, within which social-

economic processes are operating at a spatio-temporal scale finer than the adaptive 

capacity of ecosystems (Krebs, 2001; Elqvist et al., 2003; Lawton et al., 2010).    

Ecological restoration aims to restore ecosystems to their historical trajectory (SER, 

2004). It is considered successful when the ecosystem has recovered sufficient biotic and 

abiotic resources to sustain itself structurally and functionally without assistance (SER, 

2004). Aronson et al., (2006 p.136) take the ‘bare-bones’ definition further, that: “… 

ecosystem restoration is a process that recovers and improves the functionality of 

ecosystems within landscapes consisting of lands in agricultural production as well as set-

aside nature reserves”, concerning land where people, live, work, and produce food, i.e., 

within cultural habitats (Hurford, 2006). Incorporating landscapes outside traditional 

protected areas, where most conservation is focussed, promotes the sustainable use of 

biodiversity and ecosystem services and integrates humans into the restoration framing 

(Aronson et al., 2006; UNESCO 2017). Traditional human practices outside reserves have 

shaped ecosystems for thousands of years, through practices such as grazing, burning, and 

agriculture (Jackson et al., 1996). For this reason, in Europe and the United Kingdom, most 

habitats are termed ‘semi-natural’, as there are few that have not seen some form of 

modification, and many of these – heathland, saltmarsh, grassland – require ongoing 

intervention to maintain maximum biodiversity by limiting succession (Lawton et al., 2010; 

Hayhow et al., 2016). In the inclusive view of humans and nature, the process of ecological 

restoration must include these activities. The inclusion of human cultural relationships with 
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landscape is a key part in the overall process of restoration, where management 

programmes are viewed as necessary ongoing interactions between people and nature, 

rather than intervention, and it is as such that these systems are described cultural 

ecosystems (Jackson et al., 1996; Hurford, 2006).   However, as a result of this relationship, 

systems can be left to degrade if intervention is not continued (Hurford, 2006). In the UK, 

the loss of biodiversity since the 1950s has been attributed to two main drivers: habitat loss 

and habitat deterioration (Lawton et al., 2010; Hayhow et al., 2016). Habitat loss has led to 

a fragmented landscape of patchy habitat, replacing a continuous mosaic of diverse, semi-

natural habitats that existed before. Species will become threatened if a minimum viable 

population size is not maintained (Foreman, 2014). The UK has, however, seen large-scale 

agricultural and urban development as the driver of this transformation which interrupts 

natural processes and the natural succession of a landscape (Zipperer, 2011). Natural 

succession within urban areas is limited: native species are homogenised favouring 

generalists, edge dwellers and non-native species, and the effective links between habitat 

parcels are cut off impacting the resilience of species and ecosystems (Douglas, 2010; 

Zipperer, 2011).  A recent report “State of Nature 2016” which compiled data from over fifty 

UK conservation charities and NGOs reports how 56 per cent of species have declined since 

the 1970s (Hayhow et al, 2016). The drivers of decline can be attributed to the 

intensification and expansion of agriculture in the late 20th century, which consequently left 

little room for wildlife. As a product of this development, semi-natural habitat became 

increasingly fragmented and fast growing ‘weed’ plant species spread in favour of more 

sensitive vascular plants. This process is ongoing, 73% of the loss of Biodiversity Action Plan 

(BAP) habitats in 2008 was a direct result of agricultural practice (JNCC, 2015, Lawton, 2010; 

Hayhow et al., 2016). The “State of Nature 2016” report also highlights how another key 

impact, the deterioration of habitats through changing management, also negatively 

impacts biodiversity in the UK, this is also identified in the Lawton report, and is again linked 

to fundamental changes in our relationship with the land (Lawton, 2010). In lowland Britain, 

four per cent of grasslands remained in a biodiverse, unimproved state with the majority 

being degraded by agricultural pollution and deterioration through a withdrawal of 

traditional management practices (Colston, 2003).  
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In response to declining species population trends and habitat deterioration, conservation 

has shifted towards large-scale restoration projects in the UK. This has influenced the 

uptake of larger scale conservation projects, looking beyond single site work, towards the 

values outlined in the Lawton report (Lawton et al, 2010). In recent years there have been 

several landscape scale projects stemming from the conservation NGOs, chiefly, the RSPB’s 

Futurscapes in 2001 and 2010, and the Wildlife Trusts’ Living Landscapes since 2005 (Adams 

et al., 2014).   

The implementation of conservation restoration and ecological knowledge into 

national policy is known by many commentators as a significant source of frustration 

(Waylen and Young, 2014). Ecosystems continue to degrade, despite advances in scientific 

understanding and the knowledge that these systems support human wellbeing through a 

multitude of ways (Diaz et al., 2006; Waylen and Young, 2014). International and national 

initiatives have been undertaken to synthesise and disseminate ecological knowledge 

particularly by raising awareness within the context of national policy. The 2005 UN 

Millennium Ecosystem Assessment (MEA) and subsequently the UK National Ecosystem 

Assessment (UKNEA) both brought to the forefront the concepts of natural capital and 

ecosystem services, and the links between humans and ecosystems, with the overarching 

objective to directly impact national policy (MA, 2005, NEA, 2011). Ecosystems are known to 

contribute to all aspects of human health and wellbeing, and people derive benefits to both 

their physical and mental health by interacting with nature and green spaces (MA, 2005). 

Both the MEA and the UKNEA assessments contributed to a widespread adoption of ideas 

within conservation practice and policy, with the broad reception of ecosystem services as 

an inclusive model in which to view, conserve, and benefit from nature (MA, 2005; Tallis, 

2008; Mace, 2014).  In the past decade, ecosystem services became a main area of focus for 

biodiversity policy and conservation representing, what some have identified, as a shift in 

the objectives of ecological restoration (Bullock et al., 2011). The development of global 

conservation objectives within the last century has seen several distinct phases. The 

monetisation and valuation through ecosystem services being one of the most recent 

(Mace, 2014). This has largely been due to a realisation that nature provides goods and 

services vital to humanity. These goods had been somewhat taken for granted, and the 

result of this has been continued degradation and negative impacts to people due to the 
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degradation of these services.  In recent years, this realisation has prompted conservation 

toward an integrative mode of management, with an aim to sustain the global human 

population as well as the biotic resource (MA, 2005; NEA, 2011; Mace, 2014). As part of this 

integrated approach to conservation and restoration, the dissemination of knowledge is a 

key challenge. The challenge facing the scientific community is how best to present findings, 

and communicate pressures facing ecosystems to stakeholders within the public domain 

(Krolik-Root et al., 2015; Collof et al., 2017). This is a key framework through which this 

thesis will be presented and represents a significant theme within the extant literature.  

There are numerous frameworks and justifications for the restoration of ecosystems 

(Jackson et al., 1995; Aronson et al., 2006; Clewell and Aronson, 2006; Harris et al., 2006). 

These are determined by project specific conditions, and whether these are conducive to 

successful restoration, through social commitment, ecological circumstance, quality of 

judgement and values (Jackson et al., 1995; Clewell and Aronson, 2006). According to 

Clewell and Aronson (2006), the pragmatic motivation for restoration would one day be 

cited as the key argument for ecological restoration. While, in their interpretation, they 

somewhat segregate the ‘pragmatic’ theme from the holistic, value-driven restoration 

process mentioned previously, they acknowledge two key elements: restoration for natural 

capital, and restoration for the amelioration of climate effects (Clewell and Aronson, 2006).  

These two categories now pertain to some of the greatest challenges in modern 

conservation science and practice (Mawdsley et al., 2009; Lawton et al., 2010; Mace, 2014; 

Dickinson et al., 2015; Collof et al., 2017).  In Clewell and Aronson’s (2006) paper the second 

recommendation for development within the pragmatic approach was the amelioration of 

climate change impacts through restoration. Despite the recognition that the development 

of restoration for natural capital and climate change effects would have the most impact on 

human welfare, the authors comment that within the 2006 literature, this approach 

towards restoration was one of the least developed (Clewell and Aronson, 2006). More 

recently, climate change is regarded as integral to conservation planning (Heller and 

Zavaleta, 2009, Dickinson et al., 2015). The rate of climate warming is now regarded as 

unprecedented when compared to changes in past centuries, it is likely that the period 

between 1983 – 2012 was the warmest three-decade period in 1400 years, with an 

approximate increase of 0.2°C (IPCC, 2014).  Global mean temperature by the end of the 
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21st century is predicted to increase between 1.7°C to 4.8°C, depending upon the carbon 

emission scenario (IPCC, 2014). The implications of these changes — other than direct biotic 

impacts of temperature change — are an increasing likelihood of variations in global 

weather patterns characterised by increasing sea level and incidence of extreme weather 

events (Harris et al., 2006). Changes at such scale present implications to the sustainability 

of natural systems (Heller and Zavaleta, 2009; IPCC, 2014).    

 

2.3 – Climate Change and Ecology   

Along with continuing land-use change and population growth, it is widely 

recognised that climate change and it’s impacts on biodiversity are a major threat to the 

integrity and resilience of ecosystems, amplifying the range of non-climatic threats already 

present (Erwin, 2009; Heller and Zavaleta, 2009; Dickinson et al., 2015). Ongoing land 

conversion, when combined with climate change, is predicted to be a key threat to the 

exacerbation of the carbon cycle and its trickle-down effects on biodiversity (Schroter, 

2005). The productivity of ecosystems is impacted as the balance of productivity is altered, 

the fixation of carbon by photosynthesis in comparison to its remineralisation through 

respiration ultimately determines whether an ecosystem acts as a carbon source, or a sink 

(Houghton et al., 1998; Yvon-Durocher et al., 2010). As these mechanisms contribute to a 

positive feedback mechanism it is predicted that the release of atmospheric carbon will be 

elevated under continuous climate change (Houghton et al., 1998; Knorr et al., 2005). A 

carbon-climate model constructed by Cox et al., (2000) indicated that under a ‘business as 

usual scenario’, the global biosphere will switch to a carbon source by 2050, and the oceans 

capacity for carbon uptake will be balanced by the terrestrial carbon source at 2100 (Cox et 

al., 2000).    

Biological responses to climate change are numerous and may already be driving 

species extinctions (McLaughlin et al., 2002 cited in Heller and Zavaleta, 2009). The 

alteration of species ranges will introduce new interactions, not previously encountered, 

due to spatial and climatic exclusion (Van der Putten et al., 2010; Walther, 2010). This has 

been reported across latitudinal as well as altitudinal gradients (Parmesan et al., 1999; 

Holzinger et al., 2008 cited in Walther, 2010; Hodgson et al., 2015). This will potentiate the 
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likelihood of invasive species becoming naturalised in new ecosystems (Walther, 2010, 

Travis et al., 2013). Changes in community composition are predicted, destabilising 

ecosystems when interspecific interactions are disrupted (Elmqvist, 2003; Walther, 2010). In 

addition to the physical changes in community composition, alterations of species’ 

phenology and behaviour impact the wider ecology through a decoupling of interactions 

(Post and Forchahammer, 2008; Van der Putten et al., 2010). Asynchronicity in the range of 

responses to phenological triggers is a source of uncertainty when trying to predict these 

shifts; species will respond individualistically and not as communities (Post and 

Forchahammer, 2008; Van der Putten et al., 2010; Dickinson et al., 2015). The biotic 

responses to environmental change are likely to be exacerbated by abiotic limits. The 

fragmentation of habitats as a product of human development, in addition to natural 

barriers to dispersion, will limit the ability of some species to track climate change 

potentially leading to extinctions and degradation of ecosystem resilience (Fahrig, 2003; 

Huntley et al., 2008; Laliberte et al., 2010; Doerr et al., 2011; Dickinson et al., 2015).    

Processes derived from climate change, through a manifestation secondary effects, 

will further contribute to the stressors that ecosystems will be subjected to. Within the 

context of coastal ecosystems this is manifest particularly by sea level rise (SLR), as a result 

of glacial/ ice cap melt water and the thermal expansion of sea water (Jevrejeva et al., 

2014). This process will threaten coastal systems to varying degrees based on local 

constraints and conditions and will impose further risk to those systems that may be 

physically constrained through urban encroachment or lack of habitat connectivity (Kirwan 

et al., 2010). Intertidal habitats across the globe are likely to be impacted, however this is 

likely to be more severe in the mid to high latitudes (Chust et al., 2008). The International 

Panel on Climate Change (IPCC), in their fifth assessment report, predicted continued sea-

level rise, with ‘medium’ confidence as a global increase of 44 – 74 cm (IPCC, 2013). The 

IPCC projections, however, may still be conservative (Kirwan et al., 2010). Recent work 

suggests that the melting ice sheets may have an increased contribution to sea-level rise 

(Jevrejeva et al., 2014). While the confidence that can be assigned to these predictions may 

be lower than those from the IPCC, the prospect of a 1.9 m rise in sea level before the end 

of the twenty-first century that comes from these predictions provides a stark scenario for 

the future of biodiversity in the intertidal zone and is a reality that those involved in coastal 
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conservation and urban planning will have to recognise (Kirwan et al., 2010; Jevrejeva, 

2012). In the UK, the value for global annual sea-level rise closely matches that of the IPCC 

fifth assessment predictions (IPCC, 2007; Woodworth et al., 2009). Relative sea-level rise 

varies from north to south as a product post-glacial isostatic adjustment, uplift and 

subsidence. Between the southeast and northwest of England the difference in relative sea-

level rise is around 1.5 mm/yr with an increase to 2 mm/yr after 2055, based on current 

projections (Nicholls et al., 2013). The northwest experiences positive land movement (i.e., 

it is rising) of 0.8 mm/y in contrast to a negative (i.e. sinking) 0.8 mm/yr in the southeast 

(Defra, 2009). As a result, in the variance of relative sea-level rise, threats to coastal habitats 

vary across the UK. Studies indicate an approximate loss of <100ha of saltmarsh per year in 

the east-midlands and southeast, but the impacts of relative sea level rise will need to be 

assessed on a site by site basis, as conditions around the UK differ (Doody, 2008). Therefore, 

there is an opportunity to expand on the published literature by exploring relative sea-level 

rise impacts on individual sites and novel systems, and as such, this is an aim of the current 

research. 

2.4 – Threats to Coastal Habitats – Saltmarsh Ecology   

The continuous loss and degradation of coastal habitats are concerns for coastal 

management and nature conservation, particularly within the context of projected SLR 

(Chust et al., 2008; Davies et al., 2016). Saltmarshes are a relatively common habitat within 

estuaries, particularly in the mid to high latitudes, and globally saltmarshes and wetlands 

are some of the most productive habitats, producing up to 3000g C/m2/y (Chen et al., 2013; 

Giuliani and Belluci, 2019). There are significant commercial and recreational attributes 

associated with these habitats, particularly through the abundance of fish stocks and a high 

diversity of breeding and wintering avifauna which exist as the highest trophic level in these 

systems, and subsequently attract bird watchers throughout the year (chiefly waders, gulls, 

terns and passerines) (Chen et al., 2013; Klemas 2013; Greenberg et al., 2014; Giulliani and 

Belluci, 2019). Many of the bird species found within coastal/ estuarine habitat are of 

conservation concern, and many estuaries in Europe hold populations of international 

importance.  
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The morphology of saltmarshes varies regionally and is dictated by a multitude of 

biotic and abiotic processes. Saltmarshes often show clear zonation between the vegetative 

communities present. Typically, this has been linked to elevation and the length of 

inundation and salinity ranges between the mudflats and the mean high-water level 

(Giuliani and Belluci, 2019). The establishment of vegetation on the estuarine or coastal 

mudflats occurs when sediment has accreted to a level at which they are covered by the 

tide for less than six hours a day, and therefore can support vegetation (Van Duin et al., 

1996). This is known as the pioneer zone and is typically characterised by the presence of 

Salicornia and Suada species, both salt tolerant succulent plants that are found within the 

lower zones in a saltmarsh system (Giuliani and Belluci, 2019). The density and height of 

vegetation determines the effectiveness of the saltmarsh in trapping sediment. A direct 

relationship has been demonstrated between the height of vegetation, its density, and its 

ability to slow water (Boorman et al., 1998, Giuliani and Belluci, 2019). Taller vegetation is 

flattened easily by the movement of water, shorter stiffer species associated with the 

pioneer zone are more effective at slowing flow and, when combined with the greater 

period of tidal inundation, increases sediment deposition at the lower expanse of the marsh 

(Dale et al., 2017). As a result of this process, and as elevation increases with wave 

direction, the duration of inundation decreases, and a wider range of plant species then 

colonise the mid to higher marsh elevation (Giulliani and Belluci, 2019). Then, the rhizomes 

and root profile of the colonising grass species further stabilises the marsh sediment 

(Giuliani and Belluci, 2019). Therefore, saltmarsh habitats act as natural dissipaters of tidal 

energy and, therefore, protect landward sea defences, private land, and businesses from 

damage and erosion (Wolters et al., 2005; Doody, 2008). The primary mechanisms for this 

are through wave attenuation, floodwater attenuation, and shoreline stabilisation (Gedan., 

2011; Shepard et al., 2011; Rupprecht et al., 2017). By these mechanisms, saltmarshes 

reduce the impact and duration of storm surges, the depth of saltmarsh sediment and the 

creek network further alleviates this draining and absorbing flood waters, reducing flood 

risk and damage in the coastal zone (Gedan et al., 2011, Shepard et al., 2011). However, 

with the prevalence of these risks projected to increase in the future, the persistence and 

protection of these habitats is paramount within the context of coastal protection (Giuliani 

and Belluci, 2019).  
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Differences in sediment load within the water source, soil properties and sub-surface 

water flow further influences the distribution of vegetation, marsh structure, elevation and 

the resilience of the habitat between different locations (Silvestri et al., 2005). Long term 

monitoring has revealed, in some cases, that the dynamics of saltmarsh vegetation does not 

always follow the established model of succession, and further, that paleo-ecological 

analysis has shown that at some sites, the species present represent a stable community 

that has existed for many thousands of years (Adam, 1990; Silvestri et al., 2005). While it is 

often appropriate to view the general mechanism of marsh development through the 

traditional definitions of succession, when management is being undertaken it is still 

important to consider that these habitats are dynamic, and responsive to local conditions, 

leading to the potential establishment of novel systems (Silvestri et al., 2005; Gedan and 

Bertness, 2009; Stagg et al., 2016). 

Coastal wetlands respond through a complex feedback process between surface 

elevation, sediment accretion, and plant growth (Stagg et al., 2016). The resilience of 

wetland ecosystems may be attributed to this emergent ecosystem response and, 

depending on estuarine sediment supply, enable marshes to keep pace with relative sea-

level rise (Stagg et al., 2016). The outcome of this feedback process is an example of an 

ecosystem in which a response to climate change may be controlled by eco-geomorphic 

processes (Kirwan et al, 2010). Many studies have failed to consider the dynamic nature of 

saltmarsh processes. Numerous forecasts of ecosystem change have relied on the 

supposition that sea-level rise will occur across a static landscape: known generally as the 

‘bathtub’ model (Kirwan et al., 2010; Kirwan et al., 2016; Davies et al., 2016). In saltmarshes, 

vegetation growth is generally increased at lower elevations. During times of increasing sea 

level and high-water events, sediment trapping may be enhanced due to increased 

deposition rates (Morris, 2002; Kirwan et al., 2002). Consequently, vertical erosion may be 

suppressed. This may explain the presence and persistence of wetlands in the intertidal 

zone after their development by rapid sea level rise during the post-glacial period (Davies et 

al., 2016).    

As seasonal tidal flooding is the main mechanism of sediment supply to the 

saltmarsh platform and, as such, these habitats are inextricably linked to variations in the 
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tidal limit and sea level rise (Fagherazzi et al., 2012). Several studies quantify the variability 

across UK saltmarshes. Work conducted in the Thames Estuary and the Solent suggest that 

vertical sediment accretion has exceeded the rate of sea level rise in the past two decades 

and that these tidal marshes are currently able to maintain their tidal elevation (Cundy & 

Croudace 1996; Hughes 2004; van der Wal & Pye 2004; Foster et al., 2013). Hughes and 

Paramor (2004), suggest that a loss of saltmarsh pioneer plant communities does not 

necessarily result in a corresponding loss of upper marsh communities; Puccinellia maritima 

and similar species are effective in sediment trapping (Langlois et al., 2003).  Accelerated 

global sea level rise, however, and increasing projected values cause this issue to remain 

problematic as these values may exceed vertical sediment accretion in the future (Foster et 

al., 2013).   

While there have been wide-spread observations and projections of saltmarsh 

submergence, complete saltmarsh loss is rare, and generally a result of human involvement 

leading to either a reduction of the sediment supply or increasing subsidence rates (Kirwan 

et al., 2010; Kirwan et al., 2016). River estuaries in Europe are highly urbanised and 

contribute to these processes. These changes include port development, dredging, tidal 

barrages, and training wall construction (Halcrow, 2010). It might also be considered that 

post-glacial fluvial and coastal sediment resource has decreased (Redfield, 1972; Robins et 

al., 2016).  As a result of these processes, eco-geomorphic processes, i.e., sediment supply, 

may be altered, reducing the resilience of the saltmarsh ecosystem to sea level rise and 

environmental change (Kirwan et al., 2010). Kirwan et al., (2010) compare five dynamic 

models used to assess saltmarsh response to sea level rise. They found that sediment 

availability is a strong influence on a saltmarsh’s ability to survive high sea level rise, and a 

positive relationship was found between this threshold and the estuary tidal range. These 

macro-tidal estuaries were found to be more sensitive to a reduction of sediment supply, 

however, a high tidal range and a concentration of sediment greater than 20 mg/L was 

found to support their resilience (Kirwan et al., 2010). The authors demonstrate a range of 

scenarios that – under their dynamic models – intertidal marshes in northwest Europe could 

survive sea level rise, and comment that the prediction of saltmarsh loss made under static 

scenarios and past trends would be difficult to defend. However, under rapid sea level rise 

based on the projections in Jevrejeva et al., (2014), we would see a large-scale submergence 
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of saltmarshes before 2100 (Kirwan et al., 2010; Kirwan et al., 2016; Jevrejeva et al., 2012). 

This implications of this disparity in predictions is an area requiring further investigation and 

will be explored within this thesis.   

The presence of urban areas or constraining land use further the survival of the 

saltmarshes long term (Giulliani and Belluci, 2019). Saltmarshes have lost fifty percent of 

their global coverage over the past two centuries, and most of these losses are ascribable to 

human involvement, either directly or indirectly (Barbier et al., 2011). Historically, land 

reclamation for port development, and draining and ditching for agricultural use has led to 

the direct loss of saltmarshes (Giulliani and Belluci, 2019). More recently, an indirect 

mechanism of saltmarsh loss has been defined in the literature by a process known as 

“coastal squeeze” (Doody, 2004).  

There have been numerous discussions within the literature as to the definition, and impact 

of coastal squeeze on saltmarshes. Doody (2004) describes it as: 

“ … where rising sea levels and other factors such as increased storminess push the 

coastal habitats landward. At the same time in areas where land claim or coastal 

defences has created a static, artificial margin between land and sea or where the 

land rises relative to the coastal plain, habitats become squeezed into a narrowing 

zone. Manifestation of this process is most obvious along the seaward margins of 

coastal habitats, especially salt marshes, when erosion takes place.” – Doody (2004). 

These fixed defences, walls or built to protect the adjacent urban areas prevent the natural 

migration of the marsh to a higher elevation when the seaward edge is eroded by storm 

surges and rising sea levels (Giulliani and Belluci, 2019). As the total area of the saltmarsh is 

reduced, this begins to endanger the man-made physical barriers as the existence of 

saltmarsh protects the integrity of these structure through wave and water attenuation 

(Dale et al., 2017).  

Coastal squeeze as a mechanism has been criticised. Pontee (2016) reports that coastal 

narrowing has been observed on both undefended and defended coastal profiles, and that 

wind wave climate and sediment profile are factors that can influence a greater loss of 

habitat than the traditional definition of coastal squeeze. While this sentiment is true and 

has been echoed within the literature, changes to the sediment regime, and an increase in 
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storm surges when combined with a fixed sea wall or boundary will only exacerbate habitat 

loss in the intertidal zone. Despite the critique of Pontee (2016), the term “coastal squeeze” 

is now well established and well used within the literature (Crosby et al., 2016; Davies et al., 

2016; Dale et al., 2017; Borchert et al., 2018; Giuliani and Bellucci, 2019; Leo et al., 2019). 

Since the use of this terminology is associated with an emerging area of research, the 

definitions and approaches related to coastal squeeze are not standardised, however, the 

impact of the mechanism known as ‘coastal squeeze’ can no longer be denied (Leo et al., 

2019). The conclusions drawn from the current body of research suggests that habitat 

connectivity, and promoting the ease of saltmarsh landwards migration are critical factors 

for the long term sustainability of saltmarshes in the face of sea level rise, and that coastal 

squeeze remains one of the greatest threats to ecosystems of this kind (Kirwan et al., 2016). 

Indeed, this issue is controllable, as the impacts of coastal squeeze are linked to policy 

decisions such as shoreline management plans (Davies et al., 2016). In combination with the 

impacts of weather pattern changes and sea level rise, loss of intertidal habitats can be 

expected to increase as the use of sea walls and hard flood defences continues (Leo et al., 

2019). Without a shift in paradigm this is unlikely to change, this approach of coastal 

defence is societies current preference, and with urban infrastructure and development 

bordering these structures in many areas there is little option (Calder, 2015; Leo et al., 

2019). Human population density, and subsequently urbanisation, is generally higher 

around coastal areas such that in some systems it could be said that it is the town and cities 

themselves that are constraining the saltmarsh ecosystems (Davies et al., 2016). With many 

coasts already heavily armoured, the extinction and fragmentation of intertidal saltmarsh 

habitats will continue to occur and increase in prevalence unless active recovery and 

positive management occurs (Leo et al., 2019).  

2.5 – Global Change-ready Approach   

A pervading theme throughout the literature is that conservation and restoration 

must be ready to respond to and communicate future environmental change,  however, it 

must also incorporate implicit uncertainty across a range of scales, this is manifest within 

the range of SLR scenarios currently published (Jevrejeva et al., 2014; IPCC, 2014). Such 

uncertainty can represent a barrier to decisions being made (Harris et al., 2006). 

Conservation managers, under these circumstances, must have a means to assess a range of 
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future climate change effects and appropriate management options. They require 

techniques to be able to do this. These techniques might include sensitivity analyses 

conducted for a system under specific scenarios, the spatial impacts would then be mapped 

to communicate future impacts for incorporation into management plans (Hannah et al, 

2002). The emerging practice of ‘integrated vulnerability assessment’ which utilises 

multiples sources of information to understand better and predict the impacts of climate 

change serves as a mean to assess the sensitivity of a system (Dickinson et al., 2015). The 

practice is built into a model incorporating adaptive management and facilitates the 

identification of the most appropriate strategy and the urgency of intervention required 

(Ausden, 2014; Dickinson, et al., 2015). The iterative process involves consistent monitoring 

and re-evaluation of actions that are then fed back into the decision-making process. These 

actions are considered crucial as a tactic for restoration when understanding climate change 

impacts (Hannah et al., 2002; Dickinson et al., 2016; Wyborn et al., 2016). However, 

adaptation based on the framing of localised and marginal change could prove ineffective. 

This system, based on a multidisciplinary mode of study, allows the incorporation of all 

stakeholders and as such, the communication of the problem is central to the process 

(Collof et al., 2017)  Uptake and implementation within restoration projects has been slow 

and a transformative adaptation approach is likely to be needed (Haggerman and 

Satterfield, 2014; Wyborn et al., 2016; Collof et al., 2017). 

Climate change vulnerability is described by the International Panel on Climate 

Change (IPCC) as the susceptibility of a resource, species or system to the negative effects of 

climate change, and other stressors (Gitay et al., 2011; Glick et al., 2011; IPCC, 2014). The 

term vulnerability here is defined by three components: exposure, sensitivity and adaptive 

capacity (Glick et al., 2011). These are defined thusly: 

• Exposure: the amount and rate of change that a species or system 

experiences from the either direct or indirect impacts of climate change,  

• Sensitivity: the characteristics of a species or system that are dependent on 

specific environmental conditions, and to the degree to which this will be 

altered by climate change, 
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• Adaptive capacity: the ability of a species to cope and persist under changing 

conditions through acclimation, dispersal, migration evolution or phenotypic 

plasticity.  

The emergent science of climate change vulnerability assessment (CCVA), is a set of 

tools that can be used as an initial step in the process of climate adaptation or mitigation by 

identifying the greatest risks facing a species, habitat or system (Glick et al., 2011). These risks 

can either be direct or indirect effects, as well as non-climate related factors, for example, 

land-use change and habitat fragmentation (Glick et al., 2011). The process of conducting a 

CCVA includes the synthesis of existing species, or system data, and the identification of 

knowledge gaps (MCAP, 2015). This information will then be incorporated with projections 

of climate change to identify the elements comprising the systems vulnerability, i.e., the 

exposure, sensitivity and adaptive capacity of the system (Glick et al., 2011; MCAP, 2015). 

As yet, there is no standard approach or framework through which to conduct a CCVA, 

and a variety of methods are being implemented across various governments and institutions 

(Glick et al., 2011). Much of the published work around this topic is within the grey literature, 

specifically that produced by various governmental institutions across the United States of 

America, where there has been a broad uptake towards CCVA as an operational management 

tool across a range of ecosystems (MCAP, 2015). However, due to the lack of a centralised set 

of guidelines it is important to consider how each of the three components set out by the 

IPCC describing climate vulnerability are evaluated within the context of an assessment, and 

how these inform the overall objectives set out by the project management (Glick et al., 2011; 

MCAP, 2015).  

The European Union White Paper on a European adaptation framework stated that 

the research on climate change and ecosystem vulnerability studies was fragmented, with 

information not being shared between the decision-making levels (EC, 2009). The outputs 

published by the research community were generally in relation to predefined scenarios and 

thus hindered knowledge integration, limiting the applicability of this knowledge to 

stakeholders of other systems (Harrison et al., 2015). More recently, the European 

Environment Agency published a report in 2016 assessing the projected climate change 

impacts on ecosystems and society. This report is the fourth published report of a four-year 
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cycle reviewing the trends and development of adaptation policy within the member states 

(Castalleri and Kurnik, 2017). Several knowledge gaps were highlighted within this document 

relating to the broad scale advancements and application of climate planning across the 

continent. The presence of robust vulnerability assessments, the tools to support adaptation 

policy, and an integrated knowledge regarding effective adaptation case studies were all 

reported as gaps in knowledge across the member regions (Castalleri and Kurnik, 2017). 

Between 2007-2013 the EU’s FP7 scheme covered climate-relevant research, the project 

‘Climate change integrated assessment methodology for cross-sectoral adaptation and 

vulnerability in Europe’ (CLIMSAVE) being the most appropriate within the context of CCVAs 

(Castalleri and Kurnik, 2017). This project identified the need for a user driven, participatory 

tool for integrated vulnerability assessment in Europe (Harrison et al., 2015). The output of 

this project was an interactive web-based tool to allow stakeholders to quantitatively assess 

climate change impacts for a range of sectors, including agriculture, forestry, biodiversity, 

coasts, water resources and urban environments (Harrison et al., 2015). Following the advent 

of the FP7 scheme, Horizon 2020 has covered a diverse range of disciplines and research 

initiatives, with climate science accounting for 35% of the budget Castalleri and Kurnik, 2017). 

As such, the contribution of these advances will be published within the fifth edition of the 

European Environment Agency report cycle. Within these studies, there is a lack of detailed 

research relating to the vulnerability of key breeding bird species within the context of 

climate change derived vulnerability. While this has been well studies in the USA (Glick et al., 

2011; Raposa et al., 2017), studies in the UK are general and do not focus on wetlands or 

saltmarshes or specific associated species, such as the redshank (Tringa totanus) (Greenwood 

et al., 2016; Martay et al., 2017). This is despite the recognition by Eaton et al., (2015) that 

climate change will exacerbate population trends in the future for already threatened UK 

species. This assessment however only acknowledges broad ‘climate envelope’ assessments 

and does not acknowledge secondary effects, such as sea level rise, and the implications for 

wetland birds.  The lack of published research relating to ecosystem vulnerability assessment 

in Europe provides an opportunity to address the gaps highlighted by the European 

Environment Agency (Castalleri and Kurnik, 2017), i.e., through the provision of a case study 

relating to a vulnerability assessment undertaken to a specific system, and further that an 

integrated knowledge approach is used in order to effectively communicate vulnerability or 

resilience. Further to this, addressing the vulnerability of specific species and groups to the 
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secondary effects of climate change is an area of research that is lacking within the UK. This 

theme will be addressed within the current thesis with the focus on key saltmarsh bird 

species.  

2.6 – Monitoring Changes in Biodiversity 

Implicit to the success of long-term conservation projects, particularly within the context of 

environmental change and ecosystem vulnerability assessment, is the ability to determine 

when an ecosystem itself changes, and if so, at what rate (Buckland et al., 2005). This relates 

to observing the exposure and sensitivity of a system within the framework of CCVA (IPCC, 

2014). This is an important consideration within the context of the 2020 Convention on 

Biological Diversity Target to halt overall biodiversity loss (CBD, 2010). Ultimately, to address 

the matter appropriately, managers need to ask three questions: Why monitor? What 

should be monitored? How should monitoring be carried out? (Yoccoz et al., 2001; Buckland 

et al., 2005).The first two questions should be informed by local targets with relation to 

national/ international objectives, for example in the UK this could be the BAP target species 

for a specific region, key species within an Special Protection Area (SPA) citation or by 

historic records of species of conservation concern (JNCC, 2018). It is important that the 

species or habitat that is the subject of monitoring is made clear from the offset and that 

baseline conditions are established (Maturo and Battista, 2018). Benchmarks can be derived 

through a variety of methods, generally these might include empirically derived reference 

conditions, the first point of a time series or identification of a desired goal by an expert 

(Taft et al., 2006; Maturo and Battista, 2018). Through an appropriately designed 

monitoring system, the three components of ecosystem vulnerability can then be addressed 

adequately, i.e., the sensitivity, exposure and finally the adaptive capacity of the species or 

habitat to which the management objectives are related (IPCC, 2014). Without this clear 

vision, the work will fall closer to the definition of ecosystem surveillance, where the 

detection of trends in habitats or populations is the aim, rather than the extent of variation 

from an expected baseline, or target, as monitoring is defined (Hurford, 2006). Though 

surveillance may represent a portion of the pre-monitoring work at the outset of a project 

(Maturo and Battista, 2018). While similar, both are methods which are important to 

distinguish, particularly in cultural habitats (Hurford, 2006). The pressures facing these 
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cultural systems i.e., those derived from human activity or management intervention, are 

sensitive to environmental change as many exist within a fragmented landscape (Hurford 

2006; Lawton, 2010). Therefore, it is a key benefit of monitoring that it promotes 

responsible conservation by encouraging practitioners to consider why sites are important, 

that the most important habitats and species are prioritised, that sufficient data is gathered 

to recognise when conservation value is under threat, and that this can be identified and an 

appropriate management response is taken before the conservation value is lost (Hurford, 

2006).  Within the context of long-term projects seeking to plan for climate change, 

particularly within the framework of climate change vulnerability analysis, a stringent and 

well-defined monitoring system will overcome issues relating to changes in management 

(Hurford, 2006; IPCC, 2014).  

In practice, there are a multitude of considerations when determining the data required and 

the methods to utilise for ecological monitoring. These will be intimately linked to the 

management objectives and the species or system under scrutiny, however, setting a 

threshold at which the system switches from unfavourable to favourable condition is central 

to this process. This could be defined by the presence (or lack of) of target species, or the 

quality/ diversity of a habitat (Hurford, 2006). Within the context of the research presented 

in this thesis, the ecological processes linked to saltmarshes, and the techniques through 

which they are monitored, are broad. The management objectives set for a specific site will 

dictate which techniques are most appropriate. Within the framework of ecosystem 

vulnerability assessment, the impact of future environmental change on tidal regime, 

saltmarsh habitat area, saltmarsh morphology, and species ecology are central challenges 

facing management, and subsequently, monitoring (EA, 2007; McCowen et al., 2017). 

 

Recently, quantifying species diversity has seen a resurgence within the literature, with 

studies seeking to address the best way in which to depict the biodiversity of a system (Cox 

et al., 2017). The simplest, and most common measure of biodiversity is species richness, 

which is the absolute number of species within a community. Despite this metric’s strong 

foundation within the literature and within models of community ecology (MacArthur and 

Wilson, 1967), an issue with this measure relates to its biased underestimation of a 
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community due to its sensitivity to sample size, and that it does not incorporate relative 

abundance as all species carry equal weight (Chao et al, 2014). There are numerous 

compound indices that have been created to combine measures of species richness and 

species abundance, Shannon and Simpson’s diversity being the most commonly used 

(Morris et al., 2014). However, the use of these traditional indices has been criticised as they 

tend to be highly correlated, are not expressed in sensible units, and do not allow for true 

comparisons (Cox et al., 2017). Recently, the use of Hill numbers has seen a resurgence 

within the scientific literature. Hill numbers are a unified group of diversity indices which 

incorporate species richness and relative abundance (Jost, 2007; Chao et al., 2014). The use 

of the Hill numbers offers several advantages over the other diversity indices. They obey the 

doubling property, i.e., if two completely distinct species groups are combined (with 

identical relative abundance) then the Hill number doubles (Chiu et al, 2013), different 

assemblages can be directly compared and provides unambiguous differences within the 

diversity values (Chao et al., 2014; Cox et al., 2017). In tandem with traditional statistical 

means, such as the Kruskall-Wallis, and the Mann Whitney-Wilcoxon tests, this provides 

restoration practitioners with a usable metric that summarises the broad diversity of a site, 

is sensitive to community change, and is within a format that is easily communicable (Cox et 

al., 2017). This line of enquiry will be pursued within this thesis. 

 If the management purpose is to increase the diversity of another biotic group, 

invertebrates, or plants for example, then vegetation surveys are undertaken using 

established techniques. The National Vegetation Classification (NVC) is a standardised 

system which sought to produce a comprehensive classification and description of plant 

communities within the UK (Rodwell et al., 2000). This technique acts as the key terrestrial 

habitat classification system for guidance on SSSI site selection, UK common standards 

monitoring guidance, and numerous conservation organisations/ consultancies 

methodology for detailed site assessment. NVC provides a highly detailed picture of 

community structure, when compared to more general classification schemes, such as 

Phase 1 habitat survey, a generally less labour-intensive technique. The use of these 

techniques is closely related to the management objectives of a site, though both are 

commonly used for baseline habitat description and the vegetative classes are interlinked 
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(JNCC, 2010). Following the characterisation of habitat, the monitoring program might then 

follow a set of predefined condition indicators to determine habitat change against the 

benchmark (Hurford, 2006). In general, this approach will require unambiguous definition as 

to the both the favourable extent and favourable condition of a habitat (Hurford, 2006). The 

application of traditional field-based techniques (NVC and Phase 1) has seen integration 

with wetland-based impact assessments and in the UK. In 2009, the Environment Agency 

undertook a large-scale review of wetland habitats and identified condition thresholds that 

may be sensitive to future change (EA, 2009). Within the context of saltmarsh management, 

optimum habitat might relate to sward height in addition to floristic diversity if encouraging 

breeding waders is an objective, as redshank and lapwing both prefer to breed on grazed 

grass swards (Sharps et al., 2016). Monitoring regimes utilising these traditional methods, 

while providing very high detailed libraries of biotic change, are limited by their time and 

resource expense, particularly when large scale, regional to national assessments are 

required (JNCC, 2007). Remote sensing is a discipline that can provide an opportunity for 

more frequent observations of these systems, and data collection at hard to access sites. 

The systems are particularly suited to providing regular assessments of habitat extent, 

which may be supported by field-based methods. Recent advances within the technology 

are leading to an increase in uptake (Adam et al., 2010). The ability to regularly acquire 

detailed images provides an opportunity for site managers to tie together systems and 

species information visually, aiding communication trends, and to identify sources of future 

threat (Harris et al., 2006; Collof et al., 2016; Wyborn et al., 2016). 

 

   2.7 – Monitoring Wetland Habitats – Remote Sensing   

The sustainable management of wetlands and their associated habitats requires the 

effective and timely mapping and monitoring of vegetation distribution particularly under 

mounting anthropogenic and climatic pressures (Adam et al., 2010). Traditional methods for 

assessing vegetation characteristics involves field work that, depending on the area of study 

and the methods utilised, may be hindered by site size and accessibility, and safety 

(Anderson et al., 2014). Remote sensing is the process of gathering information about a 

feature, object or area using a sensor to record the data, and a platform to which the sensor 

is mounted is flown or orbits over this object of interest (Cordell et al., 2016). The sensor 
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itself detects electromagnetic energy that is emitted or reflected by the features on the 

Earth’s surface. The platform itself can be anything that can be reliably flown. Historically, 

the first aerial photography was taken from balloons, however, in the early 20th century, 

imagery was taken from aircraft as the original application was that of military surveillance 

(Colomina and Molina, 2014). The discipline offers a set of analytically powerful techniques 

for the discrimination of wetland vegetation and biophysical properties that can 

complement ground-based measurements and can be used to improve the efficiency of 

field sampling and monitoring (Adam et al., 2010). Remote sensing data, due to the repeat 

coverage of orbiting satellite sensors, or aerial photography flights, can be acquired at 

regular intervals without the researcher being in contact with a site and is easily integrated 

into Geographic Information Systems (GIS) for analysis (Adam and Mutanga, 2009). This 

provides ecologists and conservationists with a potential tool to include within long term 

habitat monitoring programmes, either by way of supporting existing vegetation survey 

techniques, or providing an alternative source of data collection. 

Key platforms from which remote sensing data are collected are satellites, aircraft 

and more recently, unmanned aerial vehicles (UAVs). In general, the decision as to which 

platform is appropriate for the system of study is to consider a set of trade-offs which will 

be dictated by project objectives and revenue. Historically, aerial photography has been a 

primary source for the mapping and monitoring of change in habitats and landscapes 

(Morgan et al., 2010). The use of aerial photography far pre-dates the emergence of satellite 

remote sensing, with the launch of the first space borne sensors in the 1970s and in some 

cases provides data for long term change detection studies, where the data has been 

collected (Campbell, 2011). The advent of satellite remote sensing saw a broad uptake 

within academic institutions, and through its practical application, quantitative image 

analysis and classification techniques were developed as the discipline progressed (Morgan 

et al., 2010). Through the use of satellite borne multispectral sensors, multispectral relating 

to the acquisition of data across a large number of wavelengths, entire landscapes could be 

monitored across a time series, enabling researchers to quantify large-scale ecological shifts 

such as deforestation trends (Song et al., 2014), monitoring woodland burn scars (Cao et al., 

2009), assessing forest fire risk (Jaiswal et al., 2002), and monitoring long-term habitat 

change in wetlands (Niu et al., 2012).  However, long satellite revisit times, obscuring cloud 
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cover, and coarse spatial resolution of some datasets can limit the applicability of satellite 

sensors when being utilised to meet local or regional objectives, as the data are often too 

general (Wulder et al., 2004; Anderson, 2013). The spatial resolution of a satellite sensor 

relates the ‘on the ground’ representation of a pixel. Landsat-8, one of the most widely 

utilised within research because of its long service time, has a spatial resolution of 30m, and 

although some low spatial resolution satellite data (e.g., European Space Agency Sentinel-2, 

Landsat series, MODIS) are freely available, high resolution data, which are critical for 

accurate vegetation monitoring (e.g., IKONOS 3.2 m resolution, Quickbird 2.44 m resolution) 

often comes at a prohibitively high financial cost, thus limiting the potential for uptake 

within smaller conservation or research bodies around the world (Koh and Wich, 2012). The 

twin-satellite Sentinel-2 mission developed by the European Space Agency (ESA) has been 

providing data of high spatial, spectral and temporal resolution since mid-2016. The sensor 

pair contains a Multi-Spectral Imager that records spectral bands across the visible 

spectrum, near infra-red (NIR), and shortwave infrared including three bands in the red-

edge region. In remote sensing, this portion of the electromagnetic spectrum (red-edge to 

near infra-red) is reflected strongly by healthy vegetation, and as such is a useful parameter 

for detecting change based on plant based attributes. The NIR and visible bands are 

recorded at a spatial resolution of 10m, while the ‘red-edge’ bands (bands 5 – 7) record at 

20m (Delegido et al., 2011; Stratoulias et al., 2015). While providing continuity to the SPOT 

and Landsat missions, these attributes and the short revisit time and large swath width may 

be advantageous when considering Sentinel-2 for vegetation monitoring in estuarine 

environments in the United Kingdom (Martimort et al., 2007; Stratoulias et al., 2015).  While 

these platforms are in no way redundant, utilising remote sensing for the assessment of 

local sites and land parcels that sit within a broader landscape require techniques that are 

cost-effective, timely, and at a scale appropriate to ecological processes and management 

objectives (Anderson, 2013; Angus, 2017). 

 Aerial photography is a platform suited to mapping small scale ecosystems, and fine 

landscape features due to the high spatial resolution of the mounted camera/sensor. The 

technique, as with other remote sensing methods, is subject to numerous challenges within 

its application, however these differ from those of satellite data. In general, imagery 

collected from an aerial platform has a limited spatial coverage, also known as swath width, 
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which is a function of the altitude at which the sensor is collecting the data. Morgan et al., 

(2010) describe that until recently, the practical application of aerial photography relied on 

image interpreters, through which land cover was delineated through a subjective 

procedure relying on interpreter experience. Within the last two decades, aerial 

photography has benefited from the advancements in remote sensing image analysis 

originally developed within the context of satellite digital data sets (Campbell, 2011). The 

earlier subjective interpretation of aerial photography data did not require radiometric 

standardisation – or calibration –, however, utilising quantitative classification methods 

requires normalisation of images throughout the flight path and between dates for analyses 

to be valid (Dronova, 2015). This poses a challenge for data derived from aerial 

photography, as the imagery taken as part of one flight, or the constituents of a larger 

mosaic of images, might have significant variations in illumination, either due to 

atmospheric conditions or in the angle of solar illumination (Dronova, 2015; Anderson et ., 

2018). Techniques developed for very high-resolution data sets, specifically object-based 

approaches, have been successfully applied to aerial image analysis (Morgan, et al., 2010; 

Dronova, 2015). Object-based approaches provide an alternative to the traditional pixel-

based analyses and offers a key set of advantages when using data that is of very high 

resolution, particularly in wetlands due to narrow successional gradients. The variability of 

adjacent pixels, variable soil moisture, and the similarity of spectral characteristics between 

cover types can lead to inferior, speckled image products, characterised by the term “salt-

and-pepper” (Dronova, 2015). Within an object-based approach, the collected image is 

segmented into objects (groups of pixels) based on specific elements, habitats or features, 

which than then be classified (Dronova, 2015). 

The emerging technology of Unmanned Aerial Systems offers new possibilities within 

the application of remote sensing (Rosnell et al., 2011). The platform is a branch of the field 

of aerial photography, and like the former, allows remote imagery to be collected under 

cloudy conditions that would obscure the satellite platform. In some applications, including 

time series mapping, data must be collected under highly variable illumination conditions 

(Rosnell et al., 2011). While this has been a limitation to the platform, it also provides 

opportunities within remote sensing research to develop and refine data collection methods 

through image normalisation and calibration. 
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Unmanned Aerial Vehicles (UAVs) have been the focus of a new swath of ecological 

research focussed on addressing the limitations of the satellite-based methods, indeed, 

there are those who claim that the application of UAV systems has revolutionised spatial 

ecology (Anderson, 2013). The basis for the prediction is that UAVs will prove to be ground-

breaking within ecology is that eventually the cost effectiveness and accuracy of this 

platform will exceed that of traditional methods in field ecology (Hodgson et al., 2016). Until 

this claim can be truly tested, continuous research is being undertaken focusing on refining 

techniques used in data collection in various habitats and ecosystems. In coastal 

environments, UAVs have been utilised to assess sea-grass meadows (Duffy et al, 2018), 

assess viable fish nurseries (Ventura et al., 2016) and monitor beach and sand-dune 

structure (Goncalves and Henriques, 2015) and coral reefs (Chirayath and Earle, 2016). 

Beyond the traditional uses for mapping purposes, the application of UAVs has potential for 

use in species surveying in difficult to access area, for example, Orangutan (Pongo borneo) 

in Indonesia, and breeding bird colonies in Australia (Koh and Wich, 2012; Hodgson et al., 

2016).  

While the area of study offers the potential for great advances within the fields of 

ecology, the successful deployment of the platform needs to be considered along with the 

potential limitations, and indeed, it’s translation from the scientific literature into 

professional practice (Duffy et al., 2017). Within the context of practical conservation 

projects within the UK, the viability of this technology and the development of a UAV 

system will have to be considered within a set of trade-offs. One particular limitation within 

the application of a UAV system is the lack of standardisation between studies.  As with 

most technological advancement, the cost ceiling within the field of UAVs is high, and as 

such there are a multitude of classes to consider. Originally developed from military grade 

technology, early unmanned applications were undertaken by NASA’s Ikhana vehicle, a 

modified MQ-9 Predator drone. This system was utilised in environments that were unsafe 

for a manned mission, such as real-time wildfire monitoring (Ambrosia et al., 2010). The 

large systems, such as Ikhana, involve prohibitive costs in ground-based operation and 

deployment and are, as such, unsuitable for ecological research needs (Duffy et al., 2017). A 

medium sized fixed wing UAV system with hyperspectral array can be purchased for 

upwards of £12,000 (www.mapir.camera) and the Parrot Sequoia multispectral sensor for 
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approximately £3000 (www.parrot.com) – prices correct in September 2018. These costs 

can be considered as a limitation to application within ecological research and conservation 

when considering the potential of inherent environmental risks and ease of deployment 

(Koh and Wich, 2012; Duffy et al., 2017). Duffy et al., (2017) provide an in-depth review of 

the range of UAV platforms available for environmental research, including operational 

constraints, and applicability of use. In general, light weight, multi-rotor platforms are the 

most used platform for environmental research (Anderson and Garston; 2013, Hodgson et 

al., 2015, Duffy at al. 2017; Duffy et al., 2018). Low cost (£500-1000), ease of deployment 

and the ability to take stationary footage allows this platform to contribute most to the field 

of ecology (Duffy et al, 2017). 

2.8 – Remote Sensing Analysis 

Determining habitat cover types with high accuracy is a challenge when monitoring 

wetland ecosystems with remote sensing data (Ouyang et al., 2011; Dronova, 2015). The 

properties of wetland plants are less easily detectable than terrestrial communities because 

of high spatial and spectral similarities within these ecosystems (Adam et al., 2010). For 

wholly aquatic vegetation ecosystems, either emergent or floating vegetation, the signal 

detected by a sensor is heavily influenced by the presence of water. The strong absorption 

of infrared and near-infrared electromagnetic radiation attenuates the performance of 

these bands that are used for vegetation classification (Silva et al., 2008; Adam et al., 2010). 

While the spectral response of the terrestrial and freshwater vegetation itself may be 

similar, the presence of water of various depths and cover can considerably alter the 

radiometric response derived from the vegetation image, which, in combination with 

background soil reflectance and atmospheric water vapour, can further complicate 

vegetation classification (Silva et al., 2008; Wolf et al., 2013; Villa et al., 2014). This is a 

factor of consideration pertinent to saltmarsh ecosystems.  Inundation by spring tides is 

seasonal and, hence, the background of the vegetation throughout the study area will 

fluctuate between water, intermediate zones, and bare mud.   

Zonation and detectability of saltmarsh communities, Phragmites australis reed 

beds, and wetland macrophyte communities, poses another challenge for remote sensing in 

the form of spatial resolution and detectability; these habitats are successional due to steep 
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environmental gradients (Adam et al., 2010). The complex spatial heterogeneity of fine scale 

wetland habitats poses a problem for monitoring using multispectral sensors such as 

Landsat-8. A 30m pixel resolution, the resolution of Landsat-8 images, is too coarse to 

reliably identify and classify vegetation communities due to the mixed pixel problem 

(Stratoulias et al., 2015). Poor temporal resolution in some sensors, for example Worldview-

3, can be of limited application for monitoring as a narrow swath width reduces the 

frequency that an image can be acquired at a consistent viewing angle (Stratoulias et al., 

2015(a); Stratoulias et al., 2015(b)). Variation in image viewing angles reduces comparability 

due to differing atmospheric effects owing to off-nadir image acquisition and angular 

variability in reflected radiation due to the fact Earth surfaces are not Lambertian in nature 

(Milton et al., 2006).  The application of space borne optical sensors, utilising visible and NIR 

bands, must also assume a cloud-free environment. Partially scattered cloud can obscure 

areas of interest and preclude study areas from observation (Armitage et al., 2012). This 

represents an implicit problem when utilising remote sensing for applications within the UK. 

After analysing a 15-year archive of Landsat imagery, Konteos and Stakenborg (1990) found 

that only 50% of the imagery was cloud-free during the summer months. Armitage et al., 

(2012) revised this with an updated study utilising MODIS cloud mask. The results estimated 

the yearly cloud-free probability as 21.3%, with a monthly mean probability varying 

between 12.9% and 33.3% (Armitage et al., 2013).  

2.8.1 – Vegetation Classification Techniques  

While the finer resolution from very high spatial resolution platforms are 

advantageous to discriminate the steep successional zones of some saltmarsh ecosystems, 

the heterogeneity between local pixel values, spectral similarity among cover types, and 

variations in soil moisture limit the use of a sole pixel-based approach to inform the 

classification procedure (Ouyang et al., 2011; Dronova, 2015). Classification procedures are 

usually described as supervised, or unsupervised. Within the supervised approach, the user 

will identify key areas within the site that characterise specific cover types. A sample of the 

spectral data will be collected from each (with replicates) for use as a training area. A 

classification algorithm (e.g., maximum likelihood) is then selected which assigns every pixel 

within the image to one of the identified groups (Campbell, 2008). Within unsupervised 
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classification, the selected algorithm automatically groups all pixels to a number of 

predefined classes. 

Utilising a supervised classification scheme, a sample of pixels, representing a 

spectrally pure sample of each class would be collected as a training set. A classification 

algorithm would then be used to compare the image pixels to the reference library and 

assign each to a class (Lillesand et al., 2008; Campbell and Wynne, 2011). The maximum 

likelihood classifier, a statistics-based approach, assumes a Gaussian distribution of classes 

across feature space (Pal and Mather, 2003). More recently techniques such as artificial 

neural networks were designed as pattern recognition and analysis tools that simulate 

human neural storage and analytical processes (Yuan et al., 2009). These algorithms require 

extensive training and parameterisation by the user, and changes to the values at each 

stage can impact the accuracy and performance of the classifier (Pal and Mather, 2003). 

However, the neural approach can estimate non-linear relationships between the inputs 

and output classes (Yuan et al., 2009). Decision trees are based on logical tests or decisions 

that split the input at a node into a series of subclasses, or ‘leaves’ (Pal and Mather, 2003). 

Advantages of the decision tree approach to pixel-based analysis lie in the ability to 

incorporate data from different measurement scales and the lack of statistical assumptions 

on the frequency distribution of the data sets (Pal and Mather, 2003). When comparing all 

three methods on a Landsat ETM+ data sets, Pal and Mather (2003) found that the decision 

tree method resulted in a higher classification accuracy than the statistical maximum 

likelihood approach. Historically, the maximum likelihood approach is the preferred 

method, but this is dependent on project objectives and input data (Pall and Mather, 2003).  

More recently, studies have been comparing the commonly used parametric procedures – 

such as maximum likelihood – to the machine learning techniques such as support vector 

machines and random forest classifiers (Noi and Kappas, 2018). These non-parametric 

techniques have gained the most attention in recent years for implementation in 

classification studies (Breiman, 2001; Adam et al., 2014). Support vector machines and 

random forest classifiers are insensitive to overtraining and data related noise, and 

generally perform similarly, exceeding the accuracy of the maximum likelihood technique 

(Adam et al., 2014; Noi and Kappas, 2018). However, determining the most appropriate 

classification technique for optimal accuracy assessment has generally been inconclusive, 
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with different techniques performing better under different applications. There is only 

limited published research comparing these within the context of Sentinel-2 data, and none 

for the UAV platforms (Noi and Kappas, 2018). Random forest is reported to perform better 

with high noise data sets, such as wetlands or drylands, however this has not been widely 

explored, and the application of this algorithm is valid research area for exploration within 

the context of a saltmarsh ecosystem (Tian et al., 2016).  It is then an opportunity within this 

field to compare these three classifiers with data derived Sentinel-2 satellite data and UAV 

collected data. The classifiers, the commonly used maximum likelihood parametric classifier, 

and the two non-parametric machine learning classifiers that are currently prominent within 

the literature: support vector machine and random forests (Noi and Kappas, 2018) enables a 

further contribution to be made by applying these to a saltmarsh ecosystem.  

 While the traditional methods of image classification were originally developed for 

pixel-based approaches, these techniques have seen uptake within studies utilising the 

aforementioned object-based classification procedure (Dronova, 2015). In many cases, 

information important for the understanding of an image is not represented in the 

individual pixels, but rather the derived image objects and their associated relationships 

(Blaschke et al., 2000). This coincides with human perception and provides ecological 

meaning through spatial context (Blaschke et al., 2000; Dronova, 2015). Object-based image 

analysis (OBIA) might be a framework through which the issues with traditional, pixel-based 

approaches may be addressed. In this method, texture, shape, and spectral information are 

utilised for classification, allowing the identification of single objects, as opposed to pixels 

(Wan et al., 2014). Image pixels will be accumulated into objects through a segmentation 

process, in which these objects will be homogenous depending on the base characteristic 

used for their delineation – spatial or spectral properties (Wan et al., 2014; Dronova, 2015). 

The benefits of the object-based method, relative to pixel-based approaches include: the 

incorporation of contextual information into the classification, smoothing of variation and 

noise between objects which can increase accuracy, and the ability to account for hierarchy 

and ecostructure (Dronova, 2015). Addressing the use of OBIA utilising a high-resolution 

data set applied to a saltmarsh system is therefore a gap within the literature that will be 

addressed within the current literature.  
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2.8.2 – Vegetation Indices   

Principal techniques in assessing vegetation characteristics and phenology can be 

derived from Vegetation Indices (VIs). VIs can be used as tools to determine biophysical 

properties of vegetation such as Leaf Area Index (LAI), which equates to the development of 

a canopy at a given time, and productivity; several VIs are related to LAI for specific crops 

and communities (Villa et al., 2014). A VI is used to enhance the sensitivity to the biophysical 

attributes of the plant, to regulate the impact of external distortion effects such as the 

atmosphere, and to reduce the contamination of the response due to differences in canopy 

background radiation (Huete et al., 1994; Villa et al., 2014). The normalised difference 

vegetation index (NDVI) is an early example of an index utilised for vegetation monitoring. 

Many subsequent indices have been derived from this, for example the normalised 

difference water index (NDWI) based on water as a background for correction rather than 

soil (Gao, 1996; Villa et al., 2014). A VI is principally a ratio between two or more inversely 

related spectral bands associated with the same biophysical property.  The value of the ratio 

itself expressing the contrast between these; for the NDVI, it is the absorption of red light by 

chlorophyll and reflection at the near infrared portion of the spectrum, controlled by leaf 

structure in the spongy mesophyll from which this information is derived in the index 

(Campbell et al., 2011).   

Vegetation indices (VIs) are a useful approach when utilising remote sensing 

applications; they are easier to implement than other techniques and remain consistent 

across a variety of platforms (Villa et al., 2013). In macrophyte communities they have been 

utilised to monitor the conservation status of Phragmites australis reed bed in Lake Garda 

(Italy) and Lake Balaton (Hungary) utilising remote sensing methods. Principally, four VIs 

were tested by Villa et al., (2013) to ascertain the morphological complexity of the 

Phragmites australis stand as well as the competency of the vegetation indices for 

conservation monitoring. The enhanced vegetation index (EVI), normalized difference 

vegetation index (NDVI), normalized difference aquatic vegetation index (NDAVI), and red 

green ratio index (RGRI) were examined and, in a further study, the water adjusted 

vegetation index (WAVI) (Villa et al., 2013; Villa, Bresciani et al., 2014). The work 

demonstrates the value of vegetation indices for reed bed monitoring and the NDAVI 
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indices ability to distinguish the distorting effects of water in low density vegetation and 

WAVI in medium high-density vegetation. The authors comment on the transferability and 

further testing of the NDAVI and WAVI indices for future monitoring across a general 

geographical setting and range of habitats (Villa et al., 2013; Villa et al., 2014; Villa et al., 

2015). These indices are relevant for utilisation in the current study as these have not been 

tested in a mixed saltmarsh ecosystem using multispectral sensors. Vegetation indices 

derived from narrow band hyperspectral sensors are often regarded as the most 

appropriate choice for discriminating spectrally similar vegetation. This is due to the greater 

range of narrow bands derived from the sensor and the inherent problems with the diverse 

spatial scale of wetland habitats (Artigas and Yang 2005; Hestir et al., 2015). Hyperspectral 

data are generally more expensive, more difficult to acquire than broadband multi-spectral 

imagery, and more difficult to process. For the utilisation of VIs such as NDVI and WAVI that 

focus on vegetation greenness and the associated background effects, narrow band 

hyperspectral data has been shown to only slightly outperform the multiband versions, for 

which reasons multispectral sensors are considered in many ways a better option for 

vegetation monitoring using remote sensing (Elvidge and Chen, 1995; Villa et al., 2014). This 

provides an opportunity to determine the applicability of these VIs in distinguishing the 

vegetation cover of mixed saltmarsh habitat. As a further application in the study of 

vegetation indices, several published works document the utilisation of the VI data as an 

input for classification, both on single data and time series data, as opposed to unprocessed 

satellite bands (Tien et al, 2016; Lie et al, 2020). This has yielded high classification 

accuracies within time series data and utilises machine learning classifiers such as support 

vector machine and random forests. The application of random forests has been undertaken 

in wetland sites, however this has been limited to Landsat data, and provides an 

opportunity for research within the current study, particularly when utilising VIs as an input 

source for a machine learning algorithm (Liu et al., 2020).  

The effective management of saltmarsh habitats requires consistent and repeatable 

monitoring, with derived data relating to habitat extent, composition and phenology; the 

demanding physiological nature of the system means that even moderate changes in 

nutrient input and environmental conditions can lead to changes in plant vigour and 

resilience (Dörnhöfer and Oppelt, 2016). While the traditional ecological approaches 
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provide in depth assessments of such habitats, these methods are time consuming, may be 

constrained through limited site access and subject to bias through variations in site 

assessor (Rodwell, 2000; Adam et al., 2010; Villa et al., 2014). Remote sensing offers a range 

of repeatable, quantitative procedures that can be applied to vegetation studies and can 

complement the efficiency of traditional field work (Villa et al., 2014). As such, the literature 

cited within the previous section highlight several opportunities for research which will be 

explored within this thesis.  

2.9 – Recommendations Derived from the Literature   

The current literature indicates that a holistic approach to landscape management is 

required, one driven by the relationship between humans and nature across reserves and 

developed land in order to address climate change (Heller and Zavaleta, 2009).The 

application of orthodox conservation and restoration methods – the maintenance and 

establishment of protected areas – will remain key but that a transformative approach is 

required in the way projects are governed and policy created (Hannah et al., 2002; Harris et 

al., 2006; Collof et al., 2016; Wyborn et al., 2016). Society needs new systems better suited 

to monitoring and reporting ecosystem condition, and examples of application across novel 

ecosystems. This needs to be extended regionally and incorporated into reserve 

management (Harris et al., 2006; Heller and Zavaleta, 2009). Without adaptation within 

practice and policy this might result in the interpretation that wildlife and humans have 

conflicting needs if global climate change leads to crises (Harris et al., 2006). It is, therefore, 

an essential part of the challenge in adapting ecological restoration and conservation that 

the consequences of different land-use and climate scenarios are made as explicit as 

possible (Krolik-Root et al., 2015; Tolvanen and Aronsen, 2016).  

 

 2.10 – Aim and Objectives 

 

The future of biodiversity under climate change is intimately linked with the 

sensitivity of an ecosystem to specific future scenarios. Conservation and restoration 

management needs to determine the potential impacts of climate change on various 

aspects of the systems function so that this can be incorporated into long term 

management plans. Furthermore, these changes within a system, and projected scenarios 
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of future change, need to be communicated explicitly to all stakeholders, across disciplines. 

This view, when aligned with research questions prevalent within the literature leads to the 

current study’s aim:  

To evaluate relevant methods for the consistent monitoring and communicating of 

future environmental impacts on a managed restoration project in the context of coastal 

vulnerability assessment.  

The research presented within this thesis addresses the above aim by first testing 

the use of remote sensing techniques in the habitat mapping of saltmarshes. This relates to 

two of the key knowledge generating chapters of this Thesis, Chapter 4 and Chapter 5. 

These data then fed into a vulnerability analysis, using ecological field data (Chapter 6) to 

provide context to a climate change derived sea level rise model as a vulnerability analysis. 

Through the linking of these data the final contribution of this research was derived -

incorporating this ecological information within a vulnerability analysis (Chapter 7), with a 

focus on communication to non-scientists, the public and key stakeholders 

 

To achieve this, the following objectives were devised: 

1.) What remote sensing system is best suited to collecting spatial and temporal 

data of wetlands?  

2.) What pressures face wetland ecosystems within a cultural landscape?  

3.) Can these issues be communicated in a format suitable for a multi-stakeholder 

environment?  

These questions have been addressed through the following null hypotheses which were 

derived from the literature review: 

1.) Fine scale UAV systems do not produce greater accuracy maps of saltmarsh 

habitats than satellite derived techniques, 

2.) Remote sensing does not provide saltmarsh habitat maps sufficient for a 

vulnerability analysis, 

3.) Habitat management does not impact on bird populations using saltmarsh and 

reedbed estuarine vegetation, 

4.) Sea level rise poses no risk to breeding birds in the Upper Mersey Estuary. 
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Chapter 3 – Methods   

In this chapter, the broad methods identified to address the aims and objectives, and 

the subsequent null-hypotheses presented within the Literature Review (Chapter 2), are 

described. Details related to data collection are presented within chapters 4, 5, 6 and 7. The 

broad scope of these methods is in the holistic, multi-disciplinary approach to habitat 

assessment that reflects the wetland vulnerability assessment framework, a key framework 

identified in the literature (Dickinson et al., 2015; Collof et al., 2017). This research to 

address the objectives in a holistic manner, as such the outputs from each chapter will serve 

as the input for the subsequent chapters, this is conceptualised within Figure 1.1, with the 

objective to build an assessment of the habitats, species and subsequent pressures within 

the UME fulfilling recommendations for wetland vulnerability assessment (Gitay et al., 

2011). The methods associated with Chapters 4 and 5 were used to investigate repeatable 

and reliable techniques used to determine habitat extent, and as a basis for the detection of 

change within wetland habitats. In Chapter 6, data representing the avian ecology, their 

community changes and representation with diversity profiles is presented. The focus of 

Chapter 7 in the assessment of changes in relative sea level rise under climate change 

scenarios and the potential derived impacts on avian breeding communities, and their 

subsequent vulnerability. A commentary of the implications of these findings, and the 

subsequent recommendations for the future management and study of this ecosystem are 

presented in the final chapter of the thesis, Chapter 8. 

3.1 – Research Area 

The Mersey Estuary occupies a glacially over deepened, permo-triassic rock basin 

that since the late Pleistocene and the retreat of the Devensian ice sheet has been subject 

to an influx and partial filling of alluvial and fluvial sediments (Gresswell, 1964; HBC, 2008; 

(CH2M Halcow, 2013). The increase in post-glacial temperate climates during the Holocene 

led to a rise in sea level, and the subsequent formation of the estuary by tidal waters around 

5000 BP. The change of temperate climate led to a stabilisation of the land around the 

Mersey by deciduous forest, though this has been developed further through anthropogenic 

intervention into agricultural and industrial land (McDowell and O’Conner, 1977; HBC, 2008; 

(CH2M Halcow, 2013).  
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The estuary has undergone a gradual reduction in capacity since its establishment 

due to an influx of sediment, however anthropogenic land claim, port development, the 

construction of training walls, and the dumping of dredged soil has accelerated this process 

since the turn of the 20th century (O’Conner, 1987; HBC, 2008; (CH2M Halcow, 2013). During 

the 19th century the estuary was considered to be in dynamic equilibrium with limited net 

changes in the Inner Mersey Estuary, characterised by channel migration (O’Conner, 1987).  

The Mersey Estuary is an example of an unusual bottle shape morphology with a 

narrow mouth at the ‘Narrows’ restricted by the underlying geology, widening to a broad 

shallow channel at the main Estuary course, narrowing again to a typical upper river estuary 

course past Runcorn and Widnes to Howley Weir in Warrington (HBC, 2008). This 

morphology limits wave propagation in the estuary, though locally generated waves can be 

stimulated by south-westerly and north-westerly winds (CH2M Halcow, 2013). The sediment 

structure of the Mersey Estuary is influenced in a greater proportion by marine tidal 

flooding, in comparison to fluvial sources, due to a comparably low fresh water input (25 – 

200 m3/s) compared to a much higher tidal influx (1200 – 2000 m3/s) (O’Conner, 1987; HBC, 

2008). The erosion of Ince Bank and the soft cliffs at Speke may supply a minimal source of 

sediment. The Manchester Ship Canal acts as a sediment trap to incoming fluvial deposits 

through this route (CH2M Halcow, 2013). 

Most the river’s course through the Lower Mersey Estuary is characterised by 

mudflats, sandbanks, and saltmarshes at Frodsham. The estuary is subject to a range of 

national and international wildlife designations including RAMSAR, SPA and SSSI for avian 

communities at Dungeon Banks and Ince Banks within the SSSI mudflat zone (JNCC, 2017). 

The Upper Mersey Estuary is situated between the new towns of Runcorn, Widnes, and 

Warrington, where the estuary reaches its tidal limit at Howley, Warrington (CH2M Halcow, 

2013). Throughout this stretch the estuary narrows to a channel 1.5 km to 0.5 km in 

approximate width and is bordered by saltmarsh throughout much of its extent (Figure. 3.1).  

In 2008 Halton Borough Council commissioned a series of vegetation surveys across 

the saltmarshes, to establish baseline condition (HBC, 2008). The saltmarsh habitats present 

in the Upper Mersey Estuary are similar in morphology and vegetation community structure 

throughout, these include Widnes Warth, and Cuerdley Marsh on the north bank, and 
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Astmoor, and Upper Moss Side on the south bank (Figure 3.1). The habitats typify upper 

saltmarsh communities. Much of the saltmarsh exists at the extreme tidal limit and, thus, 

are only inundated during the seasonal high tides. As a result of this phenomenon – a 

common feature at the landward extent of estuaries – the habitats themselves are generally 

species poor, other than at edges and within creeks (HBC, 2008). Key vegetation cover 

comprises Elymus species:  common couch (Elymus repens), sea couch (Elymus athericus), or 

the hybrid Elymus x drucei (HBC, 2008; EVR, 2011). 

 

Figure. 3.1 – Upper Mersey Estuary, Mersey Gateway Environment Trust ecological 

boundary. ESA 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                        

Other grass species present within the sward, to a varying degree, include red fescue 

(Festuca rubra), creeping bent (Agrostis stolonifera), common saltmarsh-grass (Puccinellia 

maritima), marsh foxtail (Alopecurus geniculatus). The presence of these species, with the 

additional records of spear-leaved orache (Atriplex prostrata), sea clubrush (Bolboschoenus 

maritimus), and sea aster (Aster tripolium) characterises most of the saltmarsh extent, with 

a little variation when Elymus species are absent. On its seaward edge Cuerdley Marsh is 
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characterised by Puccinellia maritima with Spartina anglica presence, while the landward 

edge contains false oat-grass Arrhenatherum elatius communities, where saline inundation 

does not occur (Rodwell, 2000; HBC, 2008; EVR, 2011).  

3.2 – Mersey Gateway Environment Trust  

The Mersey Gateway is a six-lane bridge crossing the river Mersey at the western 

end of the Upper Mersey Estuary between the towns of Widnes and Runcorn (HBC, 2008). A 

part of this project was the recognition of an opportunity to contribute to the promotion of 

biodiversity. In 2010, the Mersey Gateway Environment Trust was set up to implement 

conservation management and restoration within the Upper Mersey Estuary. The Mersey 

Gateway Environment Trust is a unique project in the UK in terms of its funding and its 

relationship with a major civil engineering project (the Mersey Gateway Bridge). The aim of 

the Trust is to promote the conservation, protection, and improvement of the natural and 

physical environments in the Upper Mersey Estuary through monitoring and management 

(Mersey Gateway Environment Trust, 2014). The ecological boundary for the Mersey 

Gateway Environment Trust is represented in Figure. 3.1. Already, the Trust has supported 

numerous research projects. These involved the determination of perspectives on landscape 

ecology, management of urban greenspace utilising the ecosystem approach, and the 

assessment of future ecosystem services provision (Scott, 2009; Smith, 2013; Drewitt, 2017). 

The Mersey Gateway Environment Trust incorporates the views of numerous public and 

private stakeholders into the operation of its projects. One advantage into the selection of 

the Mersey Gateway Environment Trust area for the current research project is the 

inclusion of multiple stakeholders, and the opportunity for a cross disciplinary mode of 

study. This was one of the recommendations of the literature, and in doing so will enable 

the incorporation of these views into a framework of restoration adaptive to environmental 

change (Hannah et al., 2002; Collof et al., 2017). All data pertinent to the project will be 

collected within the Mersey Gateway Environment Trust ecological boundary - at Cuerdley 
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marsh and Upper Moss Side (also known as Norton Marsh) - where access has been 

permitted by Mersey Gateway Environment Trust and the landowners (Figure. 3.2).   

 Figure 3.2 – Locations of the two managed sites within the Upper Mersey Estuary.  

 

3.3 – Saltmarsh Satellite Remote Sensing  

  The following section addresses the requirements for the first research objective by 

considering methods utilised in the field of remote sensing to characterise saltmarsh 

vegetation. As identified in Chapter 2, the global coverage of satellite imagery, coupled with 

the diversity of multispectral, high temporal resolution sensors, establishes remote sensing 

as a primary data source for mapping habitats and land cover (Bell et al., 2015; Dörnhöfer et 

al., 2016).   

To implement the exploration of such methods within the current study, remote 

sensing data was collected for a subsample of the saltmarsh habitats in the Upper Mersey 

Estuary. Permission was granted to conduct the UAV based data collection at Upper Moss 

Side saltmarsh, however, this was not possible at Cuerdley Marsh due to limitations 
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imposed by the landowner. As such, the spatial scale of the UAV data collection was limited, 

though it still falls within that of a managed restoration project, a recommendation derived 

from the literature, and provides an opportunity to assess the value and potential 

limitations of each remote sensing platform in supporting such a project (Tolvanen and 

Aronsen, 2016).  

Imagery was derived from the European Space Agency’s (ESA) Sentinel-2 mission, a 

multi-spectral space-borne sensor with high temporal resolution and moderate spatial 

resolution (10m pixel resolution at NIR portion of the spectrum). All Sentinel-2 imagery was 

acquired through the Semi-Automatic Classification plugin available through QGIS 3.0. This 

plugin allows the user to pre-process satellite imagery, perform spectral analysis, band 

calculations, and is pre-set with several pixel-based classifiers. All satellite images were 

subject to an atmospheric correction, such that the top of atmosphere reflectance was 

converted to surface reflectance (also known as bottom of atmosphere reflectance), thus 

removing the impact of the atmospheric conditions from the actual reflectance emitted 

from the objects under scrutiny (Noi and Kappas, 2018). 

First, an exploratory study of range of vegetation indices derived from Sentinel-2 

data was undertaken.  Vegetation index values were utilised to determine the thresholds 

between vegetation classes. The mixed saltmarsh community at the study site, Upper Moss 

Side, is made up of five broad classes: grazed (referred to hereafter as short sward grass), 

ungrazed (referred to hereafter as long sward grass), reed bed, water, and bare sediment. 

This study utilised several vegetation indices (VIs) (Table. 1) designed for both aquatic and 

terrestrial backgrounds, to distinguish the most suitable for separating vegetation cover 

types in a mixed saltmarsh ecosystem. The vegetation indices displayed in Table 3.1 were 

calculated from the Sentinel-2 images, the statistics were then compiled from the VI image 

using 20 training samples per class (Noi and Kappas, 2018). From the derived from the 

training areas for each VI and cover class, the Jeffries-Matusita distance was calculated.  This 

measure is a qualitative measure of the average distance between pairwise histograms, and 

has a probabilistic interpretation (Liu et al., 2020). The output of the is measure is a value 

ranging between 0 (completely separable) to 2 (completely inseparable) with large values 

indicating greater separability (Liu et al., 2020). This measure was calculated in the SCP 

plugin to determine class separability for the Sentinel-2 derived data. 
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The image classification was undertaken on the Sentinel-2 data set for all of the 

extant saltmarshes in the Upper Mersey Estuary, i.e., those under scrutiny within the 

context of the current study (Cuerdley Marsh and Upper Moss Side), extended to those 

present downstream (Astmoor and Widnes Warth), which are also within the remit of the 

Mersey Gateway Environmental Trust. The classification was also undertaken on the high 

spatial resolution UAV data set, which is available only for Upper Moss Side due to a lack of 

landowner permission at Cuerdley Marsh, this analysis will be discussed later in this chapter. 

The data were classified in ESRI ArcMap, utilising a maximum likelihood, support vector 

machine and random forest classifier (Noi and Kappas, 2018). The classifiers were trained by 

collecting 20 samples for each class, a statistically significant sample that is of key 

importance when using the parametric maximum likelihood classifier (Noi and Kappas, 

2018; ESRI, 2018). The study site size and satellite spatial resolution of the satellite derived 

data limits the number of pixels that can be present in some of the class training samples, 

however, training size still exceeded 0.25% of the study area recommended in the literature 

(Noi and Kappas, 2018).  The same training samples were utilised for all three classifiers, as 

while the two machine learning classifiers require fewer samples, including more does not 

impact the classification accuracy (Nitze et al., 2012; Noi and Kappas, 2018). Classification 

accuracy was assessed by collecting 500 ground truth points by a random stratification 

across the study area, and a confusion matrix was computed for each image.  The decision 

to use a 20 m2 sampling polygon was derived from the discrepancy in positional accuracy 

derived from Sentinel-2 data, such that the reported mean registration precision from this 

platform is approximately 15% of the 10 m pixel (Yan et al., 2018). This means that the 

ground truthing procedure is more likely to locate the same positional area where the 

classified pixel is located, which is an issue when utilising a single pixel as a sampling unit 

(Foody, 2010).  

In addition to the classifications undertaken on the Sentinel-2 multispectral bands, 

an image classification was extended to the vegetation indices. The same training area that 

were used to derive the Jeffries-Matusita Distance separability analysis were utilised to train 

the Random Forest classifier, as this classifier has been shown to perform well when utilising 

vegetation index data that has low separability (Liu et al., 2020). A classification image was 

then produced for each VI that was utilised in this study, for the saltmarshes in the UME. 
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These images were subject to the same accuracy assessment procedure as the Sentinel-2 

classification derived from the image bands.  

 

Table 3.1. – Vegetation Indices applied to the Sentinel-2 data set.  

Vegetation Index  Formula  Source  

NDVI – Normalised 

Difference Vegetation  

Index  

 

Rouse et al., (1974)  

EVI  –  Enhanced  

Vegetation Index  
 

  

Huete et al., (1997)  

WAVI – Water Adjusted  

Vegetation Index     

Villa et al., (2014)  

NDAVI – Normalised 

Difference Aquatic  

Vegetation Index  
   

Villa et al., (2013)  

  

3.4 – Saltmarsh Unmanned Aerial Vehicle (UAV) Data Collection 

To assess the value of the emerging science of UAV based platforms for vegetation 

mapping, and to mitigate the risk of cloud cover than satellite-based platforms encounter, 

data were collected using a UAV system, further addressing Research Objective One, in 

Chapter 2, Section 2.10. The imagery of the study area was collected by mounting a GPS 

enabled MAPIR Survey 3 ‘NGB’ (Near Infra-red, Green and Blue bands) band 4.3 mm digital 

camera to a DJI Phantom 3 standard quadcopter, in addition to the RGB camera that is 

mounted as stock on the UAV. The MAPIR camera collected radiance in three bands, NIR 

850nm, Green 550nm and Blue 450nm, these bands are appropriate for collecting and 

delineating vegetation data. 

Due to limitations in the battery life – less than 20 minutes total flight time – seven 

flight grids were established across Upper Moss Side. The grids were designed to 
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incorporate 70% image overlap between images; this will assist when matching imagery for 

orthomosaic generation as the images will contain more shared features, ensuring greater 

success when mapping homogenous bodies, such as standing water. The MAPIR camera 

records imagery in RAW format roughly every 5 seconds. To ensure adequate coverage of 

the grid – and to limit motion blur – the UAV was flown at 4 m/s, and at 80m altitude 

(Anderson, 2013).  

The workflow incorporates several pieces of software at each level of processing. 

The flight grids were first designed and planned in Pix4D Capture, an application 

downloaded on to an iPad mini 4. This application was used to monitor the automated 

flight process in the field. Following the creation of the flight grids, the GPS waypoints and 

camera trigger locations were uploaded to the UAV system. Following the successful 

collection of the data, the imagery was pre-processed in MAPIR’s own software: using the 

MAPIR Camera Control the collected RAW imagery was converted to TIFF format. This 

software also enables an empirical line calibration to be applied to the imagery. Following 

this, the images are then stitched into an orthomosaic data set using Agisoft Photoscan. 

A fundamental stage of image processing is the radiometric calibration, or 

normalisation. Imaging sensors record radiance in the form of digital numbers (DN). DNs do 

not reflect the ground surface conditions accurately, as they are a product of atmospheric 

attenuation, illumination geometry, and the sensor characteristics (Baugh and Groeneveld, 

2008). The quantitative value of remote sensing data were derived by calibrating the raw 

image values to a surface reflectance factor; the reflectance of an object is an inherent 

physical property that is not subject to external environmental effects (Baugh and 

Groeneveld, 2008; Laliberte, 2011; Wang, 2015). The most widely used method in UAV and 

aerial photography is the empirical line method (Wang, 2015). The implementation of this 

method requires the in-situ placement of panels of known reflectance that the sensor will 

record. Light and dark coloured targets painted with a Lambertian material are used and 

placed at the end of each flight line of the grid (Hakala et al., 2013). Once the imagery was 

collected, the mean pixel value of the calibration target was extracted and plotted against 

the mean value of each camera waveband (Wang et al., 2015). The technique assumes a 

linear relationship between DN and ground measured reflectance, and as such, the 

intercept at the y-axis for each empirical line equation can be interpreted as the calibration 
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parameter for each waveband (Wang et al., 2015). Most studies use two calibration targets 

of different grey shades to carry out the calibration, however four can be used to improve 

accuracy (Wang et al., 2015). In this study, four panels of varying reflectance values were 

captured by the cameras at the start and end of each flight grid. This will allow the variance 

in illumination conditions throughout the data collection process to be corrected for and 

allow comparison between multiple dates of data collection, a factor of high importance 

when considering the use of UAVs for a vegetation monitoring scheme. The calibration 

procedure was undertaken in the Mapir Camera Control (MCC) application. The panels of 

known reflectance were also supplied by Mapir. This process was undertaken on both the 

red, green, and blue and the near infrared, green, and blue data sets.  

Following the image processing phase, these data were subject to the same 

processing and classification techniques as applied to the Sentinel-2 derived data in ESRI 

ArcMap. To avoid known issues when classifying very high-resolution imagery, i.e., the ‘salt 

and pepper speckle’ problem (Dronova, 2015), a mean shift segmentation was first applied 

to the data before the classification procedures were undertaken (Anderson, 2013; Duffy et 

al., 2018). Mean shift is a clustering technique used in image segmentation. The process is a 

form of unsupervised data analysis and does not require prior knowledge of the image set 

or required number of output clusters. It is therefore pertinent to the current research 

question where other techniques require user-based parameters to first determine the 

extent of image objects (Vlachopoulos et al., 2020).  The process of OBIA is made up of a 

series of functions that split an image into a set of distinct objects. The mean shift approach 

achieves this by grouping adjacent pixels that have similar spectral properties (Duffy et al., 

2018). The pixels within an image set that have similar spectral properties and are related 

spatially are considered an object within this methodology (Blaschke et al., 2000; Myint et 

al., 2011).  This allowed a comparison between the two techniques and aids in determining 

their appropriateness for monitoring a constrained saltmarsh such as Upper Moss Side. One 

advantage to the UAV platform in this processing stage is derived from its spatial resolution. 

One hundred pixels per training sample were collected providing a statistically valid number 

(Noi and Kappas, 2018). From these sample, Jeffries-Matusita distance was calculated. 

Image sets were then classified with the maximum likelihood, support vector machine and 

random forest algorithms.  
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The verification and accuracy of resultant classifications was derived from sample 

points. The sample points were derived by random stratification across the study area to 

avoid biasing results through class bias, and utilised 500 test points (Feng et al., 2015; Noi 

and Kappas, 2018). The cover class of the 500 stratified random points were ground-truthed 

during a field survey using a handheld GPS to locate the points, the classes associated with 

the points was further confirmed by a desk-based operation utilising the RGB band UAV 

image change. The 500 points were used to establish a sampling polygon rather than 

utilising the point itself as the sampling unit. The generated point that represents the centre 

of a 5 m2 quadrat, which was used to ground truth the landcover. Following Foody (2010), 

this was achieved by identifying the dominant cover type within the quadrat, which was 

then utilised to assign the class of the sample point. This was derived during the field survey 

by utilising the DAFOR relative abundance ranking, where D = Dominant; A = Abundant, F = 

Frequent, O = Occasional, R = Rare. The utilisation of quadrats, and a collection of pixels 

rather than a single unit, is an established as means of sampling the data derived from very 

high-resolution data sets, and UAV derived data, specifically when an object based 

classification procedure is utilised (Lechner et al., 2012; Anderson, 2013; Duffy et al., 2017). 

This also addresses the issue when utilising a single pixel of very high-resolution data as a 

sampling point. In the case of the UAV derived data, determining the exact location of the 

pixel to be validated would be impossible due to the limitations of positional accuracy of 

handheld GPS, and the high resolution (3.5 cm) of the image pixel (Foody, 2010).  

3.5 – Ecological Surveys  

3.5.1 – Target Species – Avifauna   
Within the Mersey Gateway environmental statement, there is a description of 

future measures that are required to increase and maintain levels of biodiversity. During 

both construction and operational phases of the new road crossing there is a commitment 

to the maintenance of the saltmarsh habitats and to biodiversity within the Upper Mersey 

Estuary (HBC, 2008). The management of the habitats should promote species diversity and 

community assemblage, while making use of traditional management techniques, such as 

grazing (HBC, 2008). The key objective of the Mersey Gateway Environmental Trust is to 

increase the available habitat for several target bird species. The presence of breeding 

lapwing (Vanellus vanellus) and redshank (Tringa totanus), would be key measures of 
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success for the habitat restoration. The project sought to improve habitat for other 

passerine species such as reed bunting (Emberiza schoeniclus), skylark (Alauda arvensis), 

meadow pipit (Anthus pratensis), and the migratory warbler species, sedge warbler 

(Acrocephalus scoenobaenus), reed warbler (Acrocephalus scirpaceus) and grasshopper 

warbler (Locustella naevia). Due to the close proximity of the study area within the Upper 

Mersey Estuary to the Mersey Estuary Special Protection Area (SPA), a site which holds 

internationally important wetland bird populations, a further objective was to identify 

whether associated species would move into the UME saltmarshes following management 

intervention (JNCC, 2017). These species include redshank (Tringa totanus), teal (Anas 

crecca) and shelduck (Tadorna tadorna). The habitat management was undertaken 

separately at the two sites, Upper Moss Side and Cuerdley Marsh.  

In the winter of 2016 / 2017 a saltmarsh management regime was implemented at 

Upper Moss Side to improve habitat quality for ground nesting bird species, principally 

redshank and lapwing. Utilising hardy cattle breeds such as Belted Galloway and Longhorn 

cattle, is a well-established saltmarsh management technique (Doody, 2008). At Cuerdley 

Marsh during the same winter, a reedbed cutting cycle was established by which 10 x 10 m2 

areas of reedbed, and reed litter were cleared. This technique promotes structural 

heterogeneity of the reedbed and has been shown to increase the biodiversity of the reed 

dwelling species, as these are generally edge dwelling (RSPB, 2014). The design of the 

habitat interventions provides each unmanaged portion of habitat as the control for the 

respective managed habitat, i.e., the saltmarsh at Cuerdley Marsh is the control for the 

managed saltmarsh at Upper Moss Side, and the unmanaged reedbed at Upper Moss Side 

served as control for those managed at Cuerdley Marsh.   

To address research objectives two and three, as stated in Chapter 2, it is required 

that the ecology of the study site be categorised, and further to determine whether changes 

in community structure can be represented in a visually engaging way. In keeping with the 

conservation targets of the managed restoration project within which this research is 

contextualised, avian species were selected as the key group within the saltmarsh 

ecosystem. 
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3.5.2 – Bird Surveys 

3.5.2.1 – Common Bird Census 

The Common Bird Census breeding bird survey methodology was undertaken at 

Upper Moss Side and Cuerdley Marshes. This technique has been utilised to document the 

impact of the management practices implemented during the project on breeding bird 

populations, and produces maps portraying seasonal breeding territories. The target species 

for the project conform to those associated with biodiverse saltmarsh habitats. The 

bracketed colour label after a species’ name denotes its UK conservation status. Red is the 

highest conservation priority describing a species needing urgent action, Amber the next 

most critical and Green the least. A full description of the criteria assigned to each species is 

published in Eaton et al., (2015). The target species are northern lapwing (Vanellus vanellus) 

(Red), redshank (Tringa totanus) (Amber), skylark (Alauda arvensis) (Red), meadow pipit 

(Anthus pratensis) (Amber), reed bunting (Emberiza schoeniclus) (Amber), and the 

summering warbler species, sedge warbler (Acrocephalus schoenobaenus), reed warbler 

(Acrocephalus scirpaceus) and grasshopper warbler (Locustella naevia). Marsh harrier 

(Circus aeruginosus) (Amber), bearded reedling (Panurus biarmicus) (Green), and bittern 

(Botaurus stellaris) (Amber) would be considered an ultimate measure of success within 

such a restoration project, and such species breeding in the Upper Mersey Estuary could be 

considered an achievable target within the 30 years of the Mersey Gateway Environment 

Trust’s vision. 

Common Bird Census (CBC) is undertaken annually between March-July in 

accordance with the British Trust for Ornithology and the methodology outlined in Gilbert et 

al., (1998).  During this period, 10 surveys at each site were undertaken to assess avian 

population size and territory use by recording key indicators of breeding behaviour, namely 

evidence of nest building activity, feeding activity and territorial behaviour, and singing 

males (Gilbert et al., 1998; Bibby et al., 1993). The surveys consist of walked route through 

the study site, making sure to walk within 50m of each key area. It is also recommended to 

reverse the route walked, so that observations are not biased by time of day. The complete 

CBC surveys were undertaken yearly for a three-year period. The surveys were initiated in 

mid-March and repeat visits were made at least ten days apart throughout the season 

ending in July (Gilbert et al., 1998). All the breeding periods for the bird species will be 
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captured by this technique (Joys and Crick, 2004).  It is an assumption of this method that 

females will be under recorded; but that the sex ratio will be relatively equal (Hill et al, 

2007). All surveys were carried out during optimal weather conditions for recording bird 

vocalisation, on days with high winds and consistent rain the surveys were rescheduled. The 

surveys carried out by pairs of competent surveys to conform to health and safety rules, and 

to validate the observations made by the lead surveyor. All records in the field were 

recorded on paper base maps using BTO codes for species and behaviour. The records were 

then digitised using QGIS 2.16 and an analysis of territories derived following the methods in 

Bibby et al., (1993). Territories are mapped by a technique that groups temporal 

observations of male territorial activity, into a cluster. A cluster is accepted as a territory if 

there are three or more registrations of the species in that area over the ten visits, or, two 

registrations for a migrant species (Bibby et al., 1993). 

 

3.5.2.2 – Wintering Bird Surveys 

To extend the data collected during the CBC surveys, winter bird surveys were also 

undertaken. These surveys were based on the Wetland Bird Survey methodology and 

included monthly counts across the study area between the months of August to February. 

Counts were taken from six vantage points across the study area, and further to this a route 

was walked across the saltmarshes to ensure all birds were detected (BTO, 2017). The 

wintering surveys were implemented to detect community changes in the species roosting 

and feeding on the saltmarsh during the winter months, particularly, species that might also 

be associated with the Special Protection Area (SPA), such as redshank, teal and shelduck, as 

a principle aim of the restoration project was to improve habitat connectivity throughout 

the Mersey Estuary – Upper Mersey Estuary. 

 

3.6 – Statistical Analysis 

To address research objectives two and three (Section 2.10), and null hypothesis 

three: “Habitat management does not impact on bird populations using saltmarsh and 

reedbed estuarine vegetation”, two statistical tests were undertaken on the bird survey 

data to test the significance of the observed changes in community. The null hypothesis was 
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tested by addressing several sub-hyptotheses, which are outlined in at the beginning of 

Chapter 6. These statistical tests are the Mann Whitney-Wilcoxon test and the Kruskal-

Wallis test. 

The Mann Whitney-Wilcoxon test is a non-parametric alternative of an unpaired t-

test and is the equivalent to the Wilcoxon rank sum test. The test compares the median 

values of non-normal data sets, such as ecological field data, where the generalised null 

hypothesis is that there is no difference between group medians (Townend, 2005).  The 

basis for the test is the premise that if both populations have a similar distribution, then the 

values derived from these will be completely interspersed when they are set in rank order, 

with approximately equal mean ranks. The U-value used in this test is derived from the rank 

values, from which the probability P-value is derived to determine the likelihood that the 

observed differences between the medians occurs by chance (Townend, 2005). 

The Kruskal-Wallis is a non-parametric alternative to a one-way ANOVA to 

determine the differences in medians among more than two populations, i.e., across two or 

more years, or two or more sites. The test works using the same basis as that of the Mann 

Whitney-Wilcoxon test described above, by placing the samples in rank order. The 

generalised null hypothesis for this test is that the populations all have the same median 

(Townend, 2005). A test statistic H-value is then derived from the comparison of the rank 

means (comparable to the U-value described above) to derive the P-value, which is derived 

by referencing the H-value and degrees of freedom in a chi-square lookup table (Townend, 

2005). This process is completed automatically in Minitab 18, which was the software 

utilised for these analyses within the current study. 

The use of these statistical tests is appropriate when considering data which do not 

display normality, or data with a small sample size (McDonald, 2016). The applicability of 

both of these statistical tests to the current research was recently demonstrated in a study 

conducted by Bonnington and Smith (2018), which utilised bird data collected within both 

the summer and winter period, and undertook these statistical tests to instead determine 

the impacts of the construction of the Mersey Gateway Bridge on breeding and wintering 

bird territory and abundance.  

In tandem with the statistical analysis, biodiversity profiles were implemented in 

this study as a further means to contextualise the ecology of the site. As a means to address 

the third research objective In Chapter 2, Section 2.10, the biodiversity profiles were 
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calculated for all communities present on site using the total count data based on both 

breeding and wintering bird surveys as a means to contextualise any significant differences 

reported by that statistics in terms of biodiversity, and therefore to report changes in 

community structure in an unambiguous way. While the research is not presented to 

establish this method as the most appropriate for concise communication of communi9ty 

change these data are explored to provide context within vulnerability analysis. Due to the 

nature of the formula underlying a plotted diversity profile, here derived from the Hill 

numbers, effective species numbers are derived and as such, true comparison between 

sites, and dates can be made (Hill, 1973; Dodge et al., 2017). The Hill numbers show the 

relationship between the diversity and evenness indices (Hill, 1973). The commonly used 

indices of biodiversity (e.g., Shannon or Simpsons indices) order the distribution of an 

abundance data set only according to the relative aspect captured by each. A change in the 

choice of index can reverse the order in which groups are ranked by biodiversity (Buckland 

et al., 2012). The profile reflects diversity as a parametric family and is described as the 

function of a free parameter λ, where Jj is found by taking the exponential of Renyi’s 

entropy (Hill, 1972; Tothmeresz, 1995; Buckland et al., 2012; Chao et al., 2017). This 

transformation is derived from the Renyi index of generalised entropy, and was calculated 

using the following formula (Formula 3.1) (Hill, 1972; Chiu and Chao, 2014):  

  

 

 

Formula 3.1 – Hill’s diversity profile. 

 In this formula, S denotes the number of species, Pi the proportion of species 

relative to all other detected species and species are indexed by i = 1, 2, 3, 4. (Chao et 

al., 2017). The value of λ represents the sensitivity, or weight, of the measure to 

relative abundance, so when λ = 0, all species are considered equally regardless of 

relative abundance and therefore equates to species richness Buckland et al., 2012; 
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Chao et al., 2017). When λ approaches 1, this roughly equates to Shannon diversity, i.e., 

the exponential of Shannon entropy therefore representing the number of common 

species in an assemblage, which in the context of this equation λ = 1, results in all 

individuals are considered equally, and species are counted proportionally to their 

abundance (Chao et al., 2017). When λ = 2, this equates to the inverse of Simpson 

diversity, which considers the dominant species in an assemblage while disregarding the 

rarities (Chiu and Chao, 2014; Chao et al., 2017). Rather than representing community 

as just one of these diversity measures, λ = 0, 1 or 2, where conclusions that are drawn 

from changes over time are dependent on the choice of parameter, Hill’s numbers allow 

the visualisation of a continuous function of λ, and therefore represent all of the 

information within the relative abundance distribution (Hill, 1973, Tothmeresz, 1995, 

Chao and Jost, 2015). Within the continuous plot of these values, if the profiles of 

assemblages do not cross, then one is unambiguously more diverse than the other. 

(Chao and Jost, 2015). If they do cross, then only statements in relation to the individual 

values of λ can be made (Chao and Jost, 2015). The use of the biodiversity profile 

technique will then enable this research to address a recommendation of the literature, 

that being to reflect changes in biodiversity in an unambiguous and visually engaging 

way, which in turn is appropriate within the context of long term vulnerability 

monitoring (Krolik-Root et al., 2015; Tolvanen and Aronsen, 2016). 

The diversity values were calculated on the total number of species rather than 

mean, as the indices cannot be calculated with decimal values. Rounding the mean 

would nullify the impact of rare species observations on the index, for example, where 

one observation of a species was made during the surveys, the value would round to 

zero. The decision to use the total counts will not change the significance or ranking of 

the index as the total and mean value for abundance is linked by the constant of the 

number of survey visits, in this case, the value of twelve (Tothmeresz, 1995; Bibby, 

1993). The diversity profiles for each year, using the Hill formula, were calculated in 

Paleontological Statistics 3.23 (PAST) (Hammer, 2019), an open source population 

statistics package. The profiles were plotted with the bootstrapping option, providing a 
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95% confidence limit based on 2000 replicates, to represent statistically significant 

separation between the plotted profiles (Chao and Jost, 2015; Hammer, 2019). 

 The statistical analyses described here, the results of which are presented in 

Chapter 6, are designed to support the generation of the ecosystem vulnerability 

analysis through the provision of contextual ecological data. While the statistical tests 

are appropriate for addressing the described aims and objectives, they are of secondary 

importance within the context of the knowledge generating themes of the thesis. 

3.7 – Sea Level Rise Scenarios – Ecosystem Vulnerability   

While the impact of sea level rise on saltmarshes may encompass uncertainty due to 

the multitude of associated processes, it is appropriate in the context of practical 

conservation to determine the potential for impact on saltmarsh habitats across the range 

of likely scenarios. It is a focus of this work to utilise elevation data to create a model to 

determine the sensitivity of the saltmarshes within the Upper Mersey Estuary to sea level 

rise. The models will incorporate the IPCC and UKCP09 climate change scenarios. A range of 

scenarios from best to worst case were used to determine the level of flooding that the 

habitats might see under climate change. There are several approaches within the literature 

that address the impact of sea level rise on coastal and estuarine communities. These vary 

from analyses of simple, contour-based intersections and digital elevation model 

manipulation (Priestnall et al., 2000; Krolik-Root et al., 2015) to dynamic models that 

simulate the hydraulic effects of land cover and topography (Bates and de Roo, 2000).  

Hydrodynamic models are a popular resource for site scale assessments (Battjes and 

Gerritsen, 2002). However, the computational complexity and calibration effort required to 

implement finite-difference and finite-element models, especially over large areas, has led 

to the uptake of more general approaches to flood-risk assessment and sea level rise 

modelling (Brown, 2006). At its most basic level, the analysis of sea level rise requires only a 

digital elevation model. This method is known as the inundation model (Mcleod et al., 

2010). In this method, a simple calculation using a raster calculator in a commonly used GIS 

platform (ESRI ArcGIS, QGIS) will provide a representation of tidal inundation (Krolik-Root et 
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al., 2015). Using an elevation model and a raster layer representing a chosen sea level rise 

scenario Krolik-Root et al., (2015) implement the following formula (Formula 3.2):  

a ≤ b 

Formula 3.2 – Raster Inundation model. 

Where a represents the input DEM and b the mean high tide scenario the output will 

represent all areas that will be inundated.  To apply this methodology to the current 

research, tidal gauge data were collected from Fiddler’s Ferry in Widnes to represent tide 

height In the Upper Mersey Estuary. These data were collected online from a long-term tidal 

data repository supplied by the Environment Agency (2018). Sea level rise projections were 

derived from IPCC, UKCP09 as presented in Jevrejeva et al., (2014) as well as a worst-case 

low probability increase presented by those authors. The stated projections were chosen 

from the described sources as they are the most prominent within the sea level rise 

projection literature and capture the widest range of sea level rise appropriate to the area 

of study (Lowe et al., 2009; Jevrejeva et al., 2014; IPCC, 2014). Projections were corrected 

for isostatic land shift to gain a value for relative sea level rise in the northwest United 

Kingdom by deriving the yearly land shift and subtracting this yearly value from the 

projection of sea level rise (Defra, 2009; Nicholls et al., 2013). To maintain focus on the 

impacts of sea level rise on the ecology of the Upper Mersey Estuary, particularly the avian 

breeding season, the tidal data from March-September 2018 was analysed. Following this, a 

series of maps were derived to reflect the increase in tidal inundation under each scenario. 

Further to this, and to provide a novel application of this methodology within the current 

study, the analysis was then applied to the breeding season of four threatened species to 

determine the individual impacts during the breeding season. In this sense, the methods 

presented here will contribute to gaps within the literature calling for contextual, site-

specific sea-level rise analyses (Doody, 2008). This will address research objective three in 

section 2.10 by addressing the null hypothesis that the current projections of sea level rise, 

which represent a major source of ecosystem vulnerability, will not impact the key breeding 

species of the Upper Mersey Estuary. 
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Chapter 4 – Satellite Remote Sensing 

Satellite mounted multispectral sensors, from which environmental data products 

can be derived, have been the mainstay of environmental remote sensing since the latter 

part of the 20th century (Campbell, 2002).  Applications of remote sensing have been 

regularly used to identify and monitor the distribution and type of vegetation within a 

region, and to detect and record changes in land cover (Pande-Chhetri et al., 2017). A great 

opportunity within this field was afforded when the European Space Agency (ESA) began the 

operation of the twin satellite Sentinel-2 mission in 2016. The sensors provide remote 

sensing practitioners with an improved spatial resolution in the red, green, blue and near 

infrared (NIR) bands, in comparison to the Landsat satellites (10 metres vs 30 metres), and a 

high temporal and spectral resolution. This means that the system has a greater potential to 

contribute to the monitoring of land cover across smaller sites. The data are open source, an 

advantage when considering the relatively low budgets of conservation restoration projects 

(Duffy et al., 2017). 

The following Chapter contains the results of the analyses relating to the Sentinel-2 

data covering the saltmarsh habitats of the Upper Mersey Estuary. The chapter aim is to 

address Research Objective One, and Hypothesis One, as presented in Chapter 2, Section 

2.10. To aid comparison, the satellite dataset and the UAV data set were both collected 

within the same month, and the first cloud free satellite image was acquired. This satellite 

image was acquired on the 21st May, 2018. Following the collection and pre-processing of 

the image, the vegetation indices were calculated utilising the formulae presented in Table 

3.1 in Chapter 3. A visual representation of the vegetation indices is presented in Figures 4.1 

– 4.4. Each index image has been set with a colour-ramp in order to visualise each 

vegetation index for the saltmarshes in the UME. The index values tend to range between 0-

1, where 1 is considered high quality, dense vegetation. Negative values relate to water, and 

some manmade objects. The band properties of the Sentinel-2 satellite sensor are 

presented in Table 4.1. These include long sward grass, short sward grass, reed bed, water, 

and bare sediment. Distinguishing the long and short sward grass coverage is pertinent to 

the restoration objectives of the Mersey Gateway Environmental Trust (MGET), as ground 

nesting birds prefer a heterogeneous short sward (Davidson et al., 2017). Statistics were 

compiled for each of the cover classes associated with the saltmarsh habitat.  These were 
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derived from the 20 training polygons per class used within the classification procedure, and 

from these a pairwise comparison of class separability was calculated using the Jeffries-

Matusita distance, presented in Table 4.2. Following this, three classification procedures 

were undertaken on the image dataset. These were the maximum likelihood, random forest 

and support vector machine classifiers. In additional to these, a classification was performed 

on the vegetation index data sets using the random forest classifier (Liu et al., 2020). The 

justification for these methods is outlined in Chapter 3, Section 3.3. 

Table 4.1 – Band properties of Sentinel-2. 

 

 

 

Satellite Band  Central Wavelength (μm) Resolution (m) Bandwidth (nm) 

Band 1 – Coastal aerosol 0.443 60 21 

Band 2 – Blue 0.490 10 65 

Band 3 – Green 0.560 10 35 

Band 4 – Red 0.665 10 30 

Band 5 – Vegetation Red Edge 0.705 20 15 

Band 6 – Vegetation Red Edge 0.740 20 15 

Band 7 – Vegetation Red Edge 0.783 20 20 

Band 8 – NIR 0.842 10 115 

Band 8A – Narrow NIR 0.865 20 20 

Band 9 – Water vapour 0.945 60 20 

Band 10 – SWIR – Cirrus 1.375 60 20 

Band 11 – SWIR 1.613 20 941 

Band 12 – SWIR 2.202 20 851 
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The pairwise Jeffries-Matusita distance values for the saltmarsh cover classes are presented 

within Table 4.2. These values represent the separability of the cover classes based on the 

input bands and VIs and can be interpreted as a reflection confounding classes which may 

influence overall classification accuracy (Liu et al., 2020). These values were generated using 

the Semi-Automatic Classification Plugin (SCP). The output values for Jeffries-Matusita 

distance vary between 0 – 2, where lower values are interpreted as low separability, i.e., 

highly similar histograms, and values towards 2 with high separability, i.e., a value of 2 

would represent an entirely separable histogram. The general distribution of values was 

similar between those derived from the Sentinel-2 analysis bands and the VIs, these are 

presented in Table 4.2. Generally, the values which relate to the vegetation classes (long/ 

short sward grass, and reed bed) were less separable from each other than they were from 

the non-vegetative classes (bare sediment and water). The values between the vegetative 

and non-vegetative classes ranged between 1.65 and 1.99 The separability between bare 

sediment and water was generally low as values ranged between 0.21 and 0.45, with the 

WAVI index showing the highest separability. For the comparison between the vegetative 

classes, the WAVI index showed the greatest separability with values ranging between 1.17 

for the reed bed vs short sward grass classes, 0.92 for the short sward vs long sward grass 

classes, and 0.81 for the long sward vs reed bed classes. The pairwise class comparisons 

between the values derived from the satellite bands was overall of lower separability than 

those derived from the dedicated VIs.  

 

Table 4.2 – Jeffries-Matusita distance for the five saltmarsh cover types, based on the 

Sentinel-2 bands, and the vegetation indices. 

Sentinel-2 Bands Long sward grass Short sward grass Reed bed Water 

Short sward grass 0.27 
  

 

Reed bed 0.19 0.34 
 

 

Bare sediment  1.89 1.36 1.41 0.21 

Water 1.99 1.67 1.99  



62 
 

NDVI Long sward grass Short sward grass Reed bed Water 

Short sward grass 0.76    

Reed bed 0.52 0.60   

Bare sediment  1.95 1.65 1.12 0.32 

Water 1.98 1.96 1.99  

NDAVI Long sward grass Short sward grass Reed bed Water 

Short sward grass 0.75    

Reed bed 0.58 0.59   

Bare sediment  1.94 1.69 1.54 0.43 

Water 1.99 1.99 1.99  

EVI Long sward grass Short sward grass Reed bed Water 

Short sward grass 0.79 

  

 

Reed bed 0.64 0.78 

 

 

Bare sediment  1.96 1.61 1.87 0.42 

Water 1.99 1.99 1.99  

WAVI Long sward grass Short sward grass Reed bed Water 

Short sward grass 0.92 

  

 

Reed bed 0.76 1.17 

 

 

Bare sediment  1.93 1.65 1.91 0.45 

Water 1.99 1.99 1.99  
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 Figure 4.1 – Normalised Difference Vegetation Index (NDVI) of the Upper Mersey Estuary, May 2018. 
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              Figure 4.2 – Normalised Difference Aquatic Vegetation Index (NDAVI) of the Upper Mersey Estuary, May 2018. 
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Figure 4.3 – Enhanced Vegetation Index (EVI) of the Upper Mersey Estuary, May 2018. 
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Figure 4.4 – Water Adjusted Vegetation Index (WAVI) of the Upper Mersey Estuary, May 2018. 
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4.1 – Saltmarsh Vegetation Cover Classification Derived from Sentinel-2 Data 

 The following section presents data relating to the image classification of Sentinel-2 

derived remote sensing data utilising the analysis bands. These data were collected in 

tandem with an Unmanned Aerial System (UAV) flight at upper Moss Side saltmarsh to 

enable a comparison in the classification results of the two techniques. The data relating to 

the UAV remote sensing are presented in Chapter 5. This section helps to further address 

Research Objective 1 and Hypothesis one in Chapter 2, Section 2.10, by determining the 

validity of a Sentinel-2 derived data set in classifying the saltmarsh cover of a site within the 

Upper Mersey Estuary. This will determine whether the technology produces data 

appropriate within the context of wetland vulnerability analysis, particularly for small area, 

constrained saltmarshes. The techniques utilised in the classification procedure are 

described in Chapter 3, Section 3.3, and include the maximum likelihood classifier, support 

vector machine and random forests classifiers.  The results are presented below, for each 

procedure in turn. 

 

Figure 4.5 – Locations of the 500 sampling points. 
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Figure 4.6 – Maximum likelihood classification of Upper Mersey Estuary Saltmarshes. 

Table 4.3 – Confusion matrix for the maximum likelihood classification.  

Class Long sward grass Short sward grass Reed bed Bare sediment Water Total U_Acc Kappa 

Long sward grass 108 45 19 0 0 172 62 
 

Short sward grass 28 52 19 1 0 100 52 
 

Reed bed 44 32 78 1 0 155 50 
 

Bare sediment 2 1 9 24 4 40 60 
 

Water 2 2 0 11 18 33 54 
 

Total 184 133 125 37 22 500 
  

P_Acc 58 39 62 64 81 
 

56 
 

Kappa  
       

0.4 
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Figure 4.7 – Support vector machine classification of Upper Mersey Estuary Saltmarshes. 

Table 4.4 – Confusion matrix for the support vector machine classification. 

 

Class Long sward grass Short sward grass Reed bed Bare sediment Water Total U_Acc Kappa 

Long sward grass 143 39 12 0 0 194 73 
 

Short sward grass 26 46 31 5 1 109 42 
 

Reed bed 13 20 68 9 3 113 60 
 

Bare sediment 2 23 12 19 5 64 29 
 

Water 0 4 2 4 13 23 56 
 

Total 184 132 125 37 22 500 
  

P_Acc 77 34 54 51 56 
 

57 
 

Kappa 

       
0.42 
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Figure 4.8 – Random forests classification of Upper Mersey Estuary saltmarshes. 

Table 4.5 – Confusion matrix for the random forest classification. 

 

Class Long sward grass Short sward grass Reed bed Bare sediment Water Total U_Acc Kappa 

Long sward grass 162 24 0 2 0 188 86  

Short sward grass 17 72 34 3 2 128 56  

Reed bed 4 18 81 7 1 111 72  

Bare sediment 1 18 8 21 1 49 42  

Water 0 1 2 4 18 24 75  

Total 184 133 125 37 22 500   

P_Acc 88 54 64 56 81  70  

Kappa        0.59 
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The classification maps for Upper Moss Side saltmarsh are presented in Figures 4.6 – 4.8. An 

evaluation of the classification accuracy of each is presented in Tables 4.3 – 4.5. Within 

these, ‘P_Acc’ and ‘U_Acc’ refers to the ‘producer’ and ‘user’ accuracy. The results of the 

three classification procedures is 56%, 57%, and 70% respectively, with a Kappa score of 0.4, 

0.42, and 0.59 for each of the techniques. The Kappa coefficient reflects the relative 

accuracy of the classification procedure while also accommodating for the fact that some 

classes may have been allocated in such a way by chance alone (Foody, 2002). From this, the 

random forest classifier had the greatest Kappa score, of 0.59.  

The interpretation of the error matrices presented in Tables 4.3 – 4.5 enables the 

determination of the source of the classification errors. The values presented as columns in 

the matrix represent errors of omission, or false negatives. They are the values of a given 

class that were predicted to be in a separate class. The errors of commission are presented 

as rows, represent false positives, they represent values that were predicted to be in a class 

in which they do not belong. The interpretation of both errors of commission and omission 

relate only to the values that are off the diagonal, as these represent the number that were 

classified correctly. Producer accuracy is the probability that a value in a class was classified 

correctly, and user accuracy is related to the probability that a value predicted to be of a 

specific class actually is (Campbell, 2003). In Table 4.3, the highest user accuracy for the 

maximum likelihood is 62%, relating to the long sward grass class, bare sediment is second 

at 60% user accuracy. The producer accuracy was greatest for water at 81%. Low overall 

accuracy is the result confusion between classes, particularly reed bed and the short sward 

class, and bare sediment and reed bed which is also reflected within the Jeffries-Matusita 

values in Table 4.3. In Table 4.4, the data for the support vector machine classification are 

presented. The highest user accuracy was the long sward class, with 86%. The long sward 

grass class had the greatest producer accuracy at 88% with water second at 81%. The lowest 

accuracy using this classifier was the bare sediment at 42%. Large errors of omission 

between vegetated classes lowered the producer accuracy for the short sward class and the 

reed bed class.  The random forest classifier in Table 4.5, the highest user accuracy was the 

long sward class at 86%, the highest producer accuracy was also long sward grass at 88% 

and water was second at 81%. Relatively large errors of commission and omission were 



72 
 

present for the vegetated classes across all three classifiers, though this is in keeping with 

the low representative Jeffries-Matusita distance values for these.  

The second classification procedure was undertaken utilising the individual vegetation index 

datasets as an input, rather than the Sentinel-2 satellite bands. This utilised the random 

forest classifier on these data since this has performed well on vegetation index data (Liu et 

al., 2020). Two of these vegetation indices were specifically designed for aquatic systems, or 

systems where water may be present within the vegetation. These are the Normalised 

Difference Aquatic Vegetation Index (NDAVI), and the Water Adjusted Vegetation Index 

(WAVI) (Villa et al., 2013; Villa et al., 2015). The remaining two indices, the Normalised 

Difference Vegetation Index (NDVI), and the Enhanced Vegetation Index (EVI) are 

traditionally used terrestrially, with recent focus being turned to applications within 

agriculture as a reflection of crop health. The classification maps are presented in Figures 

4.9 – 4.12, and the confusion matrices in Tables 4.6 – 4.9. Within these tables, ‘P_Acc’ and 

‘U_Acc’ refer to the ‘producer’ and ‘user’ accuracy. WAVI is enlarged (Figure 4.12) as this 

was the highest accuracy dataset. The classification results utilising the VIs all performed 

similarly, with greater distinction between vegetated and non-vegetated classes, however, 

confusion between categories was still prevalent. For the four VIs, the accuracy was 65%, 

71%, 68% and 76% respectively, resulting in a kappa of 0.51, 0.61, 0.57 and 0.67. The lowest 

performing VI was the NDVI, with 0.51 kappa. The water-based VIs all performed greater 

than the classification procedures based on the satellite bands. Though the random forest 

classifier utilising the Sentinel-2 bands outperformed the NDVI and EVI classification. The 

WAVI derived classification utilising the random forest classifier yield the most accurate 

results of the entire set, with 76% accuracy, and 0.67 kappa. Long grass was best classified 

with a user accuracy of 80%, the highest producer accuracy was also long sward grass with 

85%. Water and bare sediment were the lowest accuracy using the WAVI classifier, with 

24% user accuracy for water, and 48% producer accuracy for bare sediment. As is reflected 

with the Jeffries-Matusita distance values in Table 4.2, the WAVI showed the greatest 

separability between vegetated and non-vegetated classes. However, as was also reflected 

by the pairwise comparison within each category, the classification accuracy was inhibited 

by between class confusion. This was particularly clear between bare sediment and water, 

and the reed bed and long sward grass classes.  
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Figure 4.9 – Classification based on the Normalised Difference Vegetation Index (NDVI) class 

thresholds for the Upper Mersey Estuary. 

 

Table 4.6 – Confusion matrix for the NDVI classification. 

Class Long sward grass Short sward grass Reed bed Bare sediment Water Total U_Acc Kappa 

Long sward grass 135 36 24 0 0 195 69  

Short sward grass 22 74 19 5 1 121 61  

Reed bed 18 21 81 11 1 132 61  

Bare sediment 3 1 1 17 2 24 70  

Water 6 0 0 4 18 28 64  

Total 184 132 125 37 22 500   

P_Acc 73 56 64 45 81  65  

Kappa        0.51 



74 
 

Figure 4.10 - Classification based on the Normalised Difference Aquatic Vegetation Index 

(NDAVI) class thresholds for the Upper Mersey Estuary. 

 

Table 4.7 – Confusion matrix for the NDAVI classification.  

Class Long sward grass Short sward grass Reed bed Bare sediment Water Total U_Acc Kappa 

Long sward grass 144 22 17 0 0 183 78  

Short sward grass 28 93 9 8 0 138 67  

Reed bed 21 14 87 7 1 121 71  

Bare sediment 0 3 12 17 3 35 48  

Water 0 0 0 5 18 23 78  

Total 184 132 125 37 22 500   

P_Acc 78 70 69 45 81  71  

Kappa        0.61 
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Figure 4.11 - Classification based on the Enhanced Vegetation Index (EVI) class thresholds 

for the Upper Mersey Estuary. 

Table 4.8 – Confusion matrix for the EVI classification.  

Class Long sward grass Short sward grass Reed bed Bare sediment Water Total U_Acc Kappa 

Long sward grass 135 24 15 0 0 174 77  

Short sward grass 29 89 11 6 1 136 65  

Reed bed 11 18 85 9 1 124 68  

Bare sediment 8 1 12 16 1 38 42  

Water 1 0 2 6 19 28 67  

Total 184 132 125 37 22 500   

P_Acc 73 67 68 43 86  68  

Kappa        0.57 
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Figure 4.12 - Classification based on the Water Adjusted Vegetation Index (WAVI) class thresholds for the Upper Mersey Estuary. 
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Table 4.9 – Confusion matrix for the WAVI classification.  

 

Following the analysis of the Sentinel-2 band and vegetation index derived image 

classification, it can be concluded that for the current study the WAVI has produced the 

highest accuracy classification. The habitat extent for Cuerdley Marsh and Upper Moss Side 

is presented in Table 4.10. 

Table 4.10 – Total combined habitat area based on the WAVI classification for Upper Moss 

Side and Cuerdley Marsh.  

Saltmarsh Cover Class Area in metres squared (m2) 

Long sward grass 197,223 

Short sward grass 43,743 

Reed bed 124,220 

Bare sediment 10,502 

Water 4,223 

 

 

 

 

Class Long sward grass Short sward grass Reed bed Bare sediment Water Total U_Acc Kappa 

Long sward grass 157 26 12 0 0 195 80  

Short sward grass 17 88 10 4 0 119 73  

Reed bed 9 17 99 10 1 136 72  

Bare sediment 0 1 3 18 3 25 72  

Water 1 1 0 5 18 24 75  

Total 184 133 124 37 22 500   

P_Acc 85 66 79 48 81  76  

Kappa        0.67 
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4.2 – Summary 

Data have been presented in this chapter that address the questions raised within 

the literature, and by utilising methods described in Chapter 3, Section 3.3, and the question 

put forward as Research Objective One, translated into Hypothesis One. The Water Adjusted 

Vegetation Index (WAVI) classified with the random forest classifier yielded the classification 

with the greatest accuracy. Class separability across each input dataset (Sentinel-2 bands, 

and vegetation indices) shared similar traits in that the vegetated vs unvegetated categories 

could be well separated, whereas within category separation was much less. A further 

confounding factor is likely derived from the mixed pixel problem. This problem, where a 

single pixel reflects multiple cover types, is one of the great challenges when utilising 

satellite remote sensing data and contributes to the low accuracy of the classification 

outputs for this site (Campbell and Wynne, 2011). This problem represents a challenge to 

the field of estuarine remote sensing, and a gap within the literature to be explored, this will 

be discussed further in Chapter 8. A continued exploration of remote sensing methods is 

presented in this thesis, and defines the subject of the next chapter, an exploration of an 

Unmanned Aerial System for saltmarsh vegetation cover mapping. 
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Chapter 5 – Unmanned Aerial Vehicle (UAV) Data Collection and Analysis 

5.1 – Introduction 

The reliable and repeatable monitoring of saltmarshes was identified in the 

literature review (Section 2.10) as a fundamental component in assessing coastal 

vulnerability. Given both the historic and projected losses of this ecosystem in some parts of 

the UK, developing up to date monitoring methods of appropriate scale should improve the 

way that we understand both the drivers of change and how to incorporate these more 

readily into management objectives (Duffy et al., 2018). Saltmarshes are of particular value 

in demonstrating how environments can change in response to environmental pressure, and 

with sea level rise a very real threat globally real-time monitoring of ecosystem response is 

critical across a range of management applications (Angus, 2017).  

The research presented in this chapter investigates three factors relating to the application 

of lightweight Unmanned Aerial Vehicle (UAV) technology in monitoring saltmarsh 

ecosystems. These three questions are outline below. The subsequent discussion of these 

relates to the main research question in Objective One, and the subsequent Hypothesis One 

- Section 2.10, namely, the requirement for a critical assessment of UAV based remote 

sensing for monitoring saltmarsh cover types, specifically within a conservation 

organisation. The three lines of enquiry addressed in this chapter are:  

1) Can consumer grade cameras and a lightweight UAV be used to collect 

proximal remote sensing data of a mixed saltmarsh ecosystem.  

2) Can the UAV system provide a classification accuracy greater than the 

satellite system. 

3) How effective are different image classification techniques for mapping 

saltmarsh cover types.  

The limitation of satellite-based remote sensing approaches in monitoring small-

scale ecosystems is attributed to a mismatch between the spatial resolution of the sensor, 

and the observable ecosystem process (Anderson and Gaston, 2013). This was apparent in 

Chapter 4, Section 4.3, where the relatively large spatial resolution of the Sentinel-2 sensors 

limited the utility of the data when applied to a narrow, constrained habitat such as the 
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saltmarshes found in the Upper Mersey Estuary. However, this limitation has contributed to 

the emergence, deployment, and development of UAV technology as a tool for the ecologist 

(Duffy et al., 2018). The platform of a UAV system offers ecologists cost effective and timely 

monitoring of environmental phenomena, especially when compared to high-cost aerial 

photography platforms. The ability to capture data from very low altitude offers a platform 

that can collect data at sub-decimetre ground sampling distance, thus eliminating issues 

that may be encountered with the mixed pixel problem in remote sensing (Duffy et al., 

2018). 

The research presented in this chapter investigates the value of a UAV based 

monitoring system in contrast to a satellite-based one. The work addresses Research 

Objective 1, to critically assess the use of remote sensing for mapping and monitoring 

saltmarsh vegetation cover types at Upper Moss Side Saltmarsh in Warrington. Building on 

previous work undertaken within the field, this study will incorporate a near infra-red image 

band and an object-based classification procedure into the analysis (Samiappan et al., 2016; 

Duffy et al., 2018). 

5.2 – UAV System Design and Flight Planning 

In comparison to satellite-based data collection – i.e., the download of an 

appropriate data set from an online repository - the acquisition of UAV data requires more 

careful planning and consideration. The workflow has two distinct phases before analysis 

can be considered: planning and data collection. While the use of UAV technology is now 

established within the scientific literature, there is a lack of a common understanding, and 

protocol for addressing methodological errors and challenges (Anderson et al., 2017). As a 

result of this, much of the guidance utilised for designing the data collection procedure is 

derived from producers of UAV data processing software and included Agisoft, Pix4D, and 

DJI (Anderson et al., 2017). 

The first stage of planning was to confirm, through Civil Aviation Authority (CAA) 

guidance, that the study area did not fall within a restricted fly zone. The no-fly zones local 

to the study area are presented in Figure 5.1. The CAA (2018) rules state: 
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“Unmanned aircraft weighing more than 7kg are not permitted to be flown in 

controlled airspace or within an Aerodrome Traffic Zone (ATZ) without the 

permission of the Air Traffic Control unit responsible for the airspace.” 

“Although operators of drones weighing 7 kg or less are not required to have the 

permission of Air Traffic Control (even when flying within Controlled Airspace or 

within an ATZ), the Air Navigation Order requires that any person in charge of a small 

drone: 

• may only fly the aircraft if reasonably satisfied that the flight can safely be 

made, and 

• must maintain direct, unaided visual contact with the aircraft …for avoiding 

collisions.  Note: The use of normal corrective spectacles is acceptable within 

the term ‘unaided’” (Cunliffe et al., 2017; CAA, 2018). 

Following the exploration of the law, and the aviation rules for the area of interest, a UAV 

system was designed that allowed the fulfilment of the objectives, keeping within the CAA 

guidelines.  
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 Figure 5.1 – Prohibited area and flight restriction zones local to the Upper Mersey Estuary, 

obtained directly from www.noflydrones.co.uk, in accordance with CAA rules (Map data 

©2018 Google). 

 

Based on the literature, low-cost multi-rotor platforms, such as DJI Phantom 

quadcopters, are the most used in environmental research, mainly due to the ease of 

deployment and control of the system (Anderson and Garston, 2013; Hodgson et al., 2016; 

Duffy at al. 2017; Duffy et al., 2018). The DJI Phantom 3 Standard was selected for this 

research. This UAV platform includes a pre-installed GPS enabled Red Green and Blue (RGB) 

camera. To incorporate the Near infra-red band, and to address the research objectives, a 

second camera – the MAPIR Near infra-red, green and blue (Mapir Survey3W NGB) - was 

acquired from Peau Productions, Inc. This was then mounted underneath the Phantom 3 

UAV chassis with a separate GPS receiver to enable data to be collected across the 4 bands 

required for this study. In keeping with the CAA guidance for the local area, the fully laden 

UAV system came to a weight of 1380g (Figure 5.2), and thus it was not required to inform 

the local ATZ control at Liverpool Airport.  
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Figure 5.2 – DJI Phantom 3 Standard with a mounted MAPIR Survey3W NGB camera and 

GPS receiver. The MAPIR calibration target and DJI Phantom controller are also shown in 

this photograph. 

The programme Pix4d Capture (Pix4d, 2018) was used to both design the grids that the UAV 

will fly (the grids are shown in Figure 5.3), and to control the UAV during its operation. This 

is a free application that enables the user to select the size of the flight grids, the overlap of 

the imagery, the altitude at which the UAV flies, and the speed the grid is flown. The 

software itself was downloaded onto an Apple iPad Mini 4 which was used to connect to the 

UAV in the field. The procedure for UAV data collection is that a grid is flown, with the 

cameras in a nadir (vertical) position. Pix4d capture enables the user to determine the size 

and shape of each grid, the image overlap, the speed at which the UAV will travel, and the 

elevation from which the data will be collected. Each attribute impacts the quality of the 

collected data, and the success of the final product. 
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Figure 5.3 – Flight grids and camera trigger locations at Upper Moss Side saltmarsh. 
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Of key importance is the image overlap, this must be high enough to ensure that all 

the neighbouring images will share a common feature, so that tie-points can be computed 

for successful image stitching. The overlap/ sidelap for the flight grids was 85% frontal, and 

75% side, which exceeds the recommended guidance detailed by Pix4d (2018). The 

remaining attributes were selected around the key limiting factors for a flight grid, which are 

the battery life of the UAV and the capture speed of the mounted cameras. The appropriate 

flight time was ascertained through several test flights. The Phantom 3 Standard battery 

lasts for approximately 20 minutes. With the extra weight of the MAPIR camera and GPS 

unit, this was reduced to around 18 minutes of flight time. Travel to the start of the flight 

grid and return to the landing area takes 2 minutes in total. Flights were, therefore, 

conducted at an altitude of 80m and the UAV travelled at a speed of 8 m/s in order to 

achieve the required flight time for the required image overlap. This enabled the two 

mounted cameras to take RAW and JPEG photograph every 5 seconds, which was the 

maximum capture speed of the SD cards within each camera, the Sandisk Extreme Plus 64 

gigabyte memory cards. To cover the entire study area, seven flight grids were required with 

a mean flight time of 12 minutes. The footprint for these, and camera trigger locations are 

presented in Figure 5.3. A ground sampling distance (GSD) of 3.5 cm was achieved for the 

RGB camera, and 2.5 cm for the MAPIR NGB camera. 

Following a series of test flights, and the recommendations put forward by Duffy, et 

al., (2017), the maximum permissible wind speed, including gusts, under which a successful 

flight could be operated was found to be 10 m/s. Under gusts exceeding this value the UAV 

could be sent off course from its pre-programmed flight grid, the images taken from the 

mounted NGB camera would vary from a nadir position, and the UAV would have to work 

harder to counter the wind, thus reducing battery life. To determine whether conditions 

were suitable to fly, the online resource UAV Forecast (UF, 2018), was utilised. This provides 

hour by hour forecasts relating to the operation of a UAV (Figure 5.4). Utilising these 

resources, the date during the peak vegetation period that the UAV data collection was 

flown, was the 5th May 2018. Following the successful completion of the data collection, the 

orthomosaic stitching procedure, calibration, and subsequent classification analysis was 

undertaken. The details of these processes are outlined in Methods, Chapter 3, Sections 3.3, 

and 3.4.  
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Figure 5.4 – An example of data contained in the UAV Forecast tool for flight planning.  

5.3 – Results 

 The two completed orthomosaics from the completed flight at Upper Moss Side 

saltmarsh are presented in Figures 5.5 and 5.6 respectively for the RGB, and NGB data sets. 

These images relate to the raw, unprocessed stitching of the photographs collected for each 

dataset. For the RGB dataset, this was 524 photographs, and for the NGB, 476 photographs. 

For the purposes of comparison, the three classification techniques, described in Chapter 3 

were undertaken on the RGB camera data set and the NGB camera dataset separately. 

These were maximum likelihood, support vector machine, and random forests. The 

classifications were undertaken on the output of a mean shift segmentation that was 

conducted on each orthomosaic image, utilising ESRI ArcMap. The segmented datasets are 

presented in Figures 5.7 and 5.8, and the Jeffries-Matusita distance scores are presented in 

Table 5.1. 
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 Figure 5.5 – Red green blue (RGB) orthomosaic of Upper Moss Side saltmarsh. 
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Figure 5.6 – Near Infrared green blue (NGB) orthomosaic of Upper Moss Side Saltmarsh. 
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Figure 5.7 – Mean shift segmentation of RGB Image at Upper Moss Side saltmarsh using the 

base image colour. 
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Figure 5.8 – Mean shift segmentation of NGB image at Upper Moss Side saltmarsh.  
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Table 5.1 – Pairwise Jeffries-Matusita distance between each class for the RGB and NGB 

image sets. 

 

5.3.1 – RGB Image Classification 

 Following the methodology set out in Chapter 3, Sections 3.3 and 3.4, this section 

presents the outcomes of three classification techniques that were conducted on the 

segmented RGB data set. The results presented here include three classification maps 

relating to the five saltmarsh cover classes pertinent to the habitat management at Upper 

Moss Side (short sward saltmarsh, long sward saltmarsh, reed bed, bare sediment, and 

water). A confusion matrix for each classification map is also presented as an assessment of 

accuracy compared to the 500 ground control points shown in Figure 5.9. Figures 5.10, 5.11, 

and 5.12 present the outputs for the maximum likelihood, support vector machine, and 

random forest respectively. Tables 5.2, 5.3, and 5.4 relate to the confusion matrices for each 

classifier. Within these ‘P_Acc’ and ‘U_Acc’ refers to the ‘producer’ and ‘user’ accuracy. 

 

 

RGB Long sward grass Short sward grass Reed bed Water 

Short sward grass 0.31 
  

 

Reed bed 0.42 0.51 
 

 

Bare sediment  1.52 1.23 1.21 0.97 

Water 1.12 1.02 1.32  

NGB Long sward grass Short sward grass Reed bed Water 

Short sward grass 0.56    

Reed bed 0.71 0.98   

Bare sediment  1.71 1.65 1.24 0.89 

Water 1.91 1.87 1.81  
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Figure 5.9 – 500 ground sampling points randomly stratified across the study area – Upper 

Moss Side. 
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                          Figure 5.10 – Maximum likelihood classification for the RGB data set.  

Table 5.2 – Confusion matrix for the RGB maximum likelihood classification. 

Class Long sward grass Short sward grass Reed bed Bare sediment water Total U_Acc Kappa 

Long sward grass 46 19 8 0 0 68 60 
 

Short sward grass 19 149 22 1 0 119 78 
 

Reed bed 4 26 78 21 2 136 59 
 

Bare sediment 0 3 4 51 26 25 85 
 

Water 0 1 11 7 26 24 57 
 

Total 64 198 123 80 30 500 
  

P_Acc 64 75 63 63 86 
 

69 
 

Kappa 
       

0.58 
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   Figure 5.11 – Support Vector Machine Classification for the RGB data set.                     

                Table 5.3 – Confusion matrix for the RGB support vector machine classification.  

Class Long sward grass Short sward grass Reed bed Bare sediment water Total U_Acc Kappa 

Long sward grass 48 20 9 2 0 79 60  
Short sward grass 18 145 19 4 0 186 77  
Reed bed 2 21 80 2 1 406 75  
Bare sediment 1 11 5 65 3 85 76  
Water 0 1 10 7 26 44 59  
Total 69 198 123 80 30 500   
P_Acc 69 79 65 81 86  72  
Kappa 

       0.63 
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                     Figure 5.12 – Random forest Classification on the RGB data set. 

                   Table 5.4 – Confusion matrix for the RGB random forest classification. 

Class Long sward grass Short sward grass Reed bed Bare sediment water Total U_Acc Kappa 

Long sward grass 39 19 10 2 0 70 55  
Short sward grass 22 145 20 2 0 189 76  
Reed bed 2 25 85 6 5 123 59  
Bare sediment 1 8 4 63 3 79 79  
Water 0 1 4 7 22 34 64  
Total 64 198 123 80 30 500   
P_Acc 60 79 69 78 79  71  
Kappa 

       0.61 
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5.3.2 – RGB Interpretation 

Table 5.5 – RGB classification summary. 

RGB Data Maximum Likelihood Support Vector Machine Random Forest 

Class Producer’s 
accuracy (%) 

User’s 
Accuracy (%) 

Producer’s 
accuracy (%) 

User’s 
Accuracy (%) 

Producer’s 
accuracy (%) 

User’s 
Accuracy (%) 

Long sward 
saltmarsh 

64.06 60.29 69.56 60.75 60.93 55.71 

Short sward 
saltmarsh 

75.25 78.01 73.23 77.95 73.23 76.71 

Reed bed 63.41 59.54 65.04 75.47 69.10 69.10 

Bare 
sediment 

63.75 85.01 81.25 76.47 78.75 79.74 

Water 86.66 57.77 86.66 59.09 73.33 64.70 

Overall 
Accuracy (%) 

69.69 72.8 71.51 

Kappa 0.58 0.63 0.61 

 

 The final saltmarsh cover maps derived from the RGB image set are presented in 

Figures 5.10 – 5.12. An evaluation of the classification accuracy, calculated from the ground 

control points and presented as a confusion matrix, is presented in Tables 5.2 – 5.4 for each 

classification procedure respectively. Within these tables, ‘P_Acc’ and ‘U_Acc’ refers to the 

‘producer’ and ‘user’ accuracy. A summary of classification accuracy and Kappa scores are 

presented in Table 5.4. The evaluation of the classification accuracy for these data show 

that the overall Kappa and overall accuracy are highest for the support vector machine 

technique, with 0.63 and 72.8 % respectively. This exceeds the random forest classification 

with a Kappa of 0.61 and overall accuracy of 71.51%. Maximum likelihood was the lowest 

with 69.69 % overall accuracy and 0.58 Kappa. The confusion matrices in Tables 5.2 – 5.4 

allows determination of which features were associated with the correct cover class, and if 

they were not, which class they were allocated to. The two types of error derived from the 

confusion matrix are of omission and commission. An error of omission relates to a ground 

truth value of a certain class being misclassified as a different class during the classification 

produce, these classes can be identified by reading along the same row as the class round 

control point. This error contributes to the producer accuracy, or reliability, value displayed 

in the confusion matrices and summary tables. An error of commission means that the 

ground truth of other classes was included in a certain class, these are identified by reading 

the column of the cover class. Table 5.2 displays the matrix for the RGB maximum likelihood 
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classification. From this, the main sources for errors of omission and commission can be 

seen, particularly within the vegetative classes, however there is some confusion between 

the classification of reed bed and bare ground. As sources of omission error in Table 5.2, 22 

points of long sward grass resulted as the short sward class and 8 points as reed bed. 

Nineteen points of short sward were classed as long sward and 22 of reed bed. Of the reed 

bed ground truth, four were allocated to long sward, 26 to short sward, and 21 to bare 

sediment. Eleven points that were water were associated with reed bed and 7 as bare 

sediment. Errors of commission were very much similar in size, though they were marginally 

more precise overall which can be seen in the overall accuracy values in Table 5.5. Nineteen 

ground truth points belonging to the short sward class were allocated to long sward. 

Twenty-six of the reed bed class and 19 of the long sward were allocated to short sward. 

Twenty-two of the short sward points were allocated to reed bed and 21 of the reed bed 

class to bare sediment. Because of the misclassification between certain classes, it can be 

seen that long sward, reed bed, and the water classes have the lowest producer accuracy 

(Table 5.5). This reflects the probability that a class was correctly classified. The user 

accuracy is lowest in the water and reed bed class, which reflects the probability that a 

value predicted to be in a specific class, actually is assigned to that class. As is seen with the 

comparison between the three classifiers in the RGB imagery, the error values are extremely 

similar across the three. Despite the long sward class being separable in the reed bed, lack 

of separability in the remaining bands contributed to the moderate classification accuracy 

and reliance that a pixel was allocated to the correct class. The low separability is 

represented by the Jeffries-Matusita distance values as presented in Table 5.1 

5.3.3 – Near Infrared Green and Blue (NGB) Image Classification 

 Following the methodology set out in Chapter 3, Section 3.2, the data presented in 

this section are the outcomes of three classification techniques that were conducted on the 

segmented NGB data set. Three classification maps are presented here, pertaining to the 

five saltmarsh cover classes associated with the habitat found at Upper Moss Side. A 

confusion matrix for each classification map is presented as an assessment of accuracy 

compared to the 500 ground control points. Outputs are presented in Figures 5.13 – 5.15 for 

the maximum likelihood, support vector machine, and random forest in turn. Tables 5.6, 5.7 

and 5.8 relate to the confusion matrices for each classifier. 



98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 

 

 

 

Figure 5.13 – Maximum likelihood classification on the NGB data set.             

Table 5.6 – Confusion matrix for the NGB maximum likelihood classification.   

Class Long sward grass Short sward grass Reed bed Bare sediment water Total U_Acc Kappa 

Long sward grass 41 12 4 0 0 57 71  
Short sward grass 9 116 11 8 0 144 80  
Reed bed 13 68 106 27 2 216 49  
Bare sediment 1 2 2 44 3 52 84  
Water 0 0 0 1 25 23 93  
Total 64 198 123 80 30 500   
P_Acc 64 58 86 55 0.83  67  
Kappa 

       0.55 
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                  Figure 5.14 – Support vector machine classification on the NGB data set. 

                  Table 5.7 – Confusion matrix for the NGB support vector machine classification.  

Class Long sward grass Short sward grass Reed bed Bare sediment water Total U_Acc Kappa 

Long sward grass 53 27 12 0 0 92 57  
Short sward grass 10 142 29 6 1 188 75  
Reed bed 3 19 80 31 0 133 60  
Bare sediment 0 7 8 43 4 62 69  
Water 0 0 1 2 22 25 88  
Total 66 195 130 82 27 500   
P_Acc 80 72 61 52 81  69  
Kappa 

       0.56 
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                      Figure 5.15 – Random forest classification on the NGB data set.  

                      Table 5.8 – Confusion matrix for the NGB random forest classification. 

Class Long sward grass Short sward grass Reed bed Bare sediment water Total U_Acc Kappa 

Long sward grass 49 5 0 0 0 54 90  
Short sward grass 13 159 7 1 0 180 88  
Reed bed 4 29 12 11 1 166 72  
Bare sediment 0 2 2 70 1 75 93  
Water 0 0 2 0 25 25 1  
Total 66 195 130 82 27 500 0  
P_Acc 74 81 93 85 92  84  
Kappa 

       0.79 
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5.3.4 – NGB Interpretation 

Table 5.9 – NGB classification accuracy summary.  

 

The saltmarsh cover maps derived from the NGB image set are presented in Figures 

5.13 – 5.15. An evaluation of the classification accuracy, calculated from the ground control 

points and presented as a confusion matrix, is presented in Tables 5.6 – 5.8 for each 

classification procedure respectively. A summary of classification accuracy and Kappa scores 

are presented in Table 5.9. The evaluation of the classification accuracy for these data 

shows that the overall Kappa and overall accuracy is highest for the random forest 

technique: 0.79 and 84.8 % respectively. This exceeds the support vector classification with 

a Kappa of 0.56 and overall accuracy of 68.01%. Maximum likelihood was the lowest with 

67.07 % overall accuracy and 0.55 Kappa. Interestingly, the maximum likelihood and support 

vector classification were slightly lower than the RGB data set. The highest overall accuracy 

for this study is derived from the NGB data set. For the maximum likelihood classifier, the 

NGB images were classified the long sward with greater accuracy than the RGB image set by 

0.11 % user accuracy and reliability. The short sward class included 68 points of reed bed as 

an error of commission, lowering the accuracy compared to the RGB data set. As a result of 

this, the reed bed class had a reduced reliability compared to the RGB with – 0.1 to the user 

accuracy at 0.49 %. Error of commission saw 27 points of reed incorrectly classified as bare 

sediment, further contributing to the decreased accuracy. The support vector classifier had 

less commission error than the RGB for the long sward class, with a producer accuracy of 

80%, fewer pixels of short sward saltmarsh were mistakenly included in this class. The short 

sward class was classified similarly to the RGB data set: 0.02 difference in the producer 

NGB Data Maximum Likelihood Support Vector Machine Random Forest 

Class Producer’s 
accuracy (%) 

User’s 
Accuracy (%) 

Producer’s 
accuracy (%) 

User’s 
Accuracy (%) 

Producer’s 
accuracy (%) 

User’s 
Accuracy (%) 

Long sward 
Saltmarsh 

64.06 71.92 80.30 57.60 74.24 90.74 

Short sward 
Saltmarsh 

58.58 80.55 72.82 75.53 81.53 88.33 

Reed bed 86.17 49.07 61.53 60.15 93.07 72.89 

Bare 
sediment 

55.01 84.61 52.43 69.35 85.36 93.33 

Water 83.33 96.15 81.48 88.01 92.59 100 

Overall 
Accuracy 

67.07 68.01 84.8 

Kappa 0.55 0.56 0.79 
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accuracy and 0.02 for the user accuracy. For this classification, the bare sediment was the 

least accurate (52% producer accuracy) due to commission error including 31 points of reed 

bed as this class. The random forest classifier increased both user and producer accuracy 

across the five classes: 100% reliability in the water class, 93% for bare sediment, and 90% 

for the long sward class. Sources of error are derived from omission and commission 

between the long sward, short sward and reed bed classes, particularly where regions of 

short sward saltmarsh, long sward saltmarsh, and in some regions, bare sediment are 

incorrectly classed as reed bed. Despite this, the accuracy was still greater than the other 

methods. Across all three classifiers water was clearly the highest in reliability and accuracy. 

The long sward and bare sediment classes were the second and third best in user accuracy 

for the random forest classification (Table 5.9). This is represented in the Jeffries-Matusita 

values in Table 5.1, as the inclusion of the NIR band contributed to an increased distinction 

between vegetated and unvegetated classed. As random forest classifier utilising the 

camera with the NIR band produced the greatest classification accuracy, this will be used to 

calculate the habitat extent for Upper Moss Side.  These values are presented in Table 5.10. 

Table 5.10 – Habitat are in metres squared derived from the random forest classification of 

the NGB dataset for Upper Moss Side 

Saltmarsh Cover Type Habitat Extent in Metres Squared (m2) 

Long sward grass 39,401 

Short sward grass 81,012 

Reed bed 63,419 

Bare sediment 10,742 

Pools 12,378 

 

5.4 – Summary 

To address Research Objective One, and the Null Hypothesis One, the data 

presented in this chapter were used to further explore the line of enquiry initiated in 

Chapter 4, by further exploring methods in remote sensing, and their application to 
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saltmarsh mapping. Overall, two broad contributions can be derived from the work 

presented in this chapter in relation to the application of these techniques to the remote 

sensing of saltmarshes. First, the UAV platform and its ability to capture very high spatial 

resolution imagery addresses the problems derived from the satellite remote sensing data 

in chapter 4, in that the problems derived from mixed pixels, and the less precise habitat 

representation are removed. A second contribution included in this chapter is to address the 

gaps within the literature by including camera which incorporates the NIR band into the 

classification of saltmarsh vegetation, and by testing the three classification procedures 

outline in Chapter 3, Section 3.1 (Pande-chhetri et al., 2017; Duffy et al., 2018). While the 

random forest classifier was clearly the most reliable and accurate within this study, further 

research is required within this field to determine the value of UAV systems for saltmarsh 

monitoring and whether the application of such a system is practical within the context of 

Ecosystem Vulnerability Assessment. The findings within this chapter are in agreement with 

the recently published literature confirming the random forest classifier an optimal 

approached compared to other machine learning techniques (support vector machine) and 

traditional approaches (maximum likelihood). The increase in performance of this classifier 

is related to the attribute that it performs well with data that has strong ‘noise’ i.e., within 

wetland ecosystems which contain hydrological fluctuations (Villa et al., 2015; Tian et al., 

2016; Liu et al., 2020). Opportunities for further research are described in Chapter 8, in 

addition to a critical assessment of both techniques. Due to the highest accuracy being 

derived from the random forest classification, this data set will be utilised an input for the 

following two chapters, first, as a basemap to represent the ecological data at Upper Moss 

Side, and second, to contextualise the sea level rise analyses by displaying the extent of the 

potentially impacted habitat, i.e., the saltmarsh grassland.  
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Chapter 6 – Characterising Site Ecology and the Impacts of Management – 

Avian Biodiversity  

 

Since the 1970s there has been a 56 % decline in species in the UK (Hayhow et al., 

2016). As was described in Chapter 2, Section 2.7, there are two main attributing factors to 

this downward trend, habitat loss and deterioration. Continued loss of quality habitat has 

resulted in a fragmented landscape (Lawton, 2010). In the UK, the value of nature 

conservation is compounded by the fact that much of the land transformation that has 

contributed to these losses is to urban and agricultural land use, which interrupts the 

landscapes natural ecosystem process and ultimately reduces the landscapes ecosystem 

function (Zipperer, 2011). The recognition of these trends in the UK has prompted a greater 

move towards landscape linked restoration projects such as those currently an objective of 

the conservation NGOs, particularly the Wildlife Trusts’ ‘Living Landscapes’, and RSPB’s 

‘Futurescapes’ (Adams et al., 2014). In 2010, a key document was published that underpins 

this focus. The Lawton Report – ‘Making Space for Nature’ – concluded that the current 

network of nature reserves in the UK is not sufficient to maintain ecological connectivity, 

and to reverse the negative impacts that we have seen on species and habitats requires a 

landscape scale approach to management. These landscape scale approaches require high 

quality, biodiverse sites to interconnect, enabling species to move between them. The 

recommendations of the Environment White Paper (Making Space for Nature, Lawton, 

2010) are that the extant network of designated sites is managed better, a new series of 

Ecological Restoration Zones is established, and the current wealth of non-designated sites 

receive better protection (Lawton, 2010). 

Fulfilling the recommendations of the Environment White paper, the Mersey 

Gateway Environmental Trust initiated a habitat improvement programme in 2016, with the 

key objective to improve avian biodiversity in both Cuerdley Marsh, on the north bank of 

the Mersey, and Upper Moss Side, known also as Norton Marsh on the south bank (Chapter 

3, Figure 3.1). The work presented in this chapter investigates the change in avian 

communities across these two managed saltmarshes during 2015 – 2018. Within this 

chapter is a presentation of a selection of biodiversity data which are used support the data 

presented in Chapters 4, 5 and 7 by providing ecological context to the central knowledge 
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generating themes of this thesis, that is to say, the development of a vulnerability analysis 

designed to communicate the pressures facing a wetland ecosystem to non-scientists and 

stakeholders through the use of remote sensing,  habitat maps and sea level rise data. The 

data and analyses presented here are of secondary importance within this context and are 

not intended as central to the knowledge generating themes of the research. The analyses 

presented in this chapter addresses research objectives two and three and null hypothesis 

three (Section 2.10): Habitat management does not impact on bird populations using 

saltmarsh and reedbed estuarine vegetation. To address the null hypothesis, the following 

additional null-hypotheses were explored:  

• Breeding territory is not influenced by habitat management period, 

• There are no significant variations within species territory, richness and 

abundance between the management years, 

• There is not significant difference between the managed habitat and the 

control group between species territory, richness and abundance. 

6.1 – Site Ecology and Management  

The Beyond our Bridges project was set up by the Mersey Gateway Environmental 

Trust (MGET) as part of a 30-year vision to provide lasting conservation benefit within the 

Upper Mersey Estuary.  The project focuses on the saltmarsh and reed bed habitats present 

at key sites in the Upper Mersey Estuary (UME): Upper Moss Side and Cuerdley Marsh, both 

in the Borough of Warrington.  Over a three-year timescale, appropriate practical 

management works were identified and initiated at each site in order to contribute to the 

conservation of nationally important breeding and wintering bird populations. These species 

are split into two broad groups related to their habitat type and are presented in Table 6.1. 

The majority of these species have experienced population declines in recent years, and 

conservation action is therefore a priority, specifically the Red and Amber list species 

described by Eaton et al., (2015). Mounting pressure on the populations of these species 

derived from habitat loss and climate change will only increase unless direct intervention is 

taken (Lawton et al., 2010; Eaton et al., 2015). Many of the warbler species, which are 

associated with the reedbed habitats, are migratory, and while two of these species (reed 

warbler and sedge warbler) are Green list species, these birds are still considered a priority 
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due to their lifecycle and increased sensitivity to change, as changes to wintering habitat 

conditions can impact population success (Sanderson et al., 2006). Approximately 2 km 

downstream of the Upper Mersey Estuary, within which the study areas are situated, is the 

River Mersey Estuary Special Protection Area (SPA). This SPA is designated as it supports 

internationally important wintering bird populations (JNCC, 2017). Due to the close 

proximity of this significant area, a broad aim of the conservation project is to increase 

connectivity between the Upper Mersey and lower Mersey Estuary in terms of bird 

populations, such that increasing the suitable habitat available in the UME will increase the 

resilience of these populations to future change. As such, encouraging an increase in 

wetland species associated with the SPA, e.g., redshank (Tringa totanus), teal (Anas crecca) 

and shelduck (Tadorna tadorna) either wintering or breeding, would be a key measure of 

success for the conservation project (MGET, 2014). 

Table 6.1 – Target species for the practical conservation work undertaken in the Upper 

Mersey Estuary (MGET, 2014). 

 

Habitat 
Type 

Species Conservation Status (Eaton et al., 
2015) 

Saltmarsh Skylark (Alauda arvensis) Red 

Meadow pipit (Anthus pratensis) Amber 

Lapwing (Vanellus vanellus) Red 

Redshank (Tringa totanus) Red 

Eurasian teal (Anas crecca) Amber 

Pink footed goose (Anser brachyrhynchus) Amber 

Reedbed Reed bunting (Emberiza schoeniclus) Amber 

Marsh harrier (Circus aeruginosus) Amber 

Grasshopper warbler (Locustella naevia) Red 

Reed warbler (Acrocephalus scirpaceus) Green 

Sedge warbler (Acrocephalus 
schoenobaenus) 

Green 

Cetti’s warbler (Cettia cetti) Green 



107 
 

Across both sites, the Mersey Gateway Environment Trust managed different 

aspects of the available habitat during 2016 – 2018. This provides the opportunity to 

compare the management impacts of one site to the unmanaged equivalent at the other, 

which will serve as a control for the analysis. The key focus for the work undertaken at 

Cuerdley Marsh was the improvement of the reed bed habitat. This was achieved by 

establishing a seven-year reed bed cutting cycle. During the winters of 2016 and 2017, a 

network of approximately ten 10 x 10 m patches were cut into the reed beds (accounting for 

c. 15% of the habitat) using a brush cutter, shown in Figure 6.1 and an example of a cut area 

in Figure 6.2. This technique is utilised to remove the old reed litter, and dense old growth, 

and to limit the succession of the bed. The technique increases the structural variation of 

the reed bed, which in turn has been proven to increase biodiversity as many reedbed birds 

favour edges, or younger and less dense patches of reed for both breeding and feeding 

(RSPB, 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.1 – The brush cutter used for the practical habitat management – the BCS 630WS 

Max. 
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Figure 6.2 – An example of a 10 m2 cut area of reed bed. 

 At Upper Moss Side, cattle grazing was utilised as a management technique. Cattle 

grazing is a long-established method of saltmarsh habitat intervention (Doody, 2008). In the 

Upper Mersey Estuary, a study undertaken on a grazing programme in 2011 identified clear 

links between avian biodiversity, and foliage density, and furthermore, an increase in the 

provision of key ecosystem services (Smith, 2013). When undertaking management at 

Upper Moss Side Farm the cattle were kept grazing year-round from late winter in 2016 but 

were taken off for the avian breeding season (March – July). The animals were stocked at a 

density of 1 animal per hectare, on a rotational basis. The land parcels of Upper Moss Side 

were split into three, and during the avian breeding season cattle were taken from the 

saltmarsh parcel to reduce the risk of nest trampling (Sharps et al., 2016). Belted Galloway 

and English Longhorn cattle were chosen as the grazers (Figure 6.3). These animals are 

hardy and can stay on pasture during the winter.  



109 
 

 

Figure 6.3 – The mixed herd of grazing cattle at Upper Moss Side. 

The data presented in this chapter are utilised first, to determine whether any key 

breeding species are present within the study area to inform the sea level rise analysis in 

Chapter 7, and second, to determine whether there is any evidence that population 

fluctuations can be attributed to the period of habitat management.  

6.2 – Methods 

 Throughout March – July during 2015 to 2018, Common Bird Census (CBC) breeding 

bird surveys were undertaken at Upper Moss Side and Cuerdley Marshes. This technique 

has been utilised to document the impact of the management practices implemented 

during the project on breeding bird populations, where the output of the analysis is a value 

for the number of breeding territories. The methodology for this technique is described in 

Chapter 3, Section 3.5.2.1.  In addition to the surveys undertaken as part of the research 

presented here, the Mersey Gateway Environmental Trust supplied CBC data which was 

undertaken in 2015, as part of the pre-commencement baseline surveys for the saltmarsh 

conservation project (MGET, 2014). 

In addition to the CBC surveys, a generic wintering bird survey based on the breeding 

bird survey route was undertaken for the remaining months (September – February) to 

determine the abundance of wintering birds across the study area, this is described in 

Section 3.5.2.2. The sum totals of all species, including non-breeding birds, were compiled 



110 
 

for the purposes of comparison within this chapter. The breeding territories of key species 

were then overlain onto the UAV derived habitat map presented in the previous chapter for 

Upper Moss Side, in addition to other observations of key species of interest for this site, 

derived from CBC and the generic winter surveys, and community changes across the years 

of study. The species observation for Cuerdley Marsh will be presented on the basemap 

derived from the Water Adjusted Vegetation Index (WAVI) classification derived from 

Chapter 4.  

For the purposes of analysis, the breeding species observed on the saltmarsh were 

assigned to two groups:  saltmarsh species and reedbed species. Despite many other species 

being recorded across the study area, in hedgerows, or trees, these were excluded unless 

they were deemed to be species that are particularly associated with the habitat types. The 

timings of the habitat intervention allow for statistics to be undertaken as a function of the 

management period (i.e., pre-management and during), and the survey year. 2015 and 2016 

represent the ‘pre-management’ condition of the study sites, 2017 and 2018 the ‘during’ 

management condition. The statistical analysis described in Chapter 3, Section 3.6 were then 

undertaken to address the sub-hypotheses and overarching null-hypotheses described at the 

beginning of this chapter.  

The first sub-hypothesis, to determine whether the territory number of breeding bird 

species was influenced by the habitat management period, was addressed by calculating 

Mann Whitney-Wilcoxon statistics for the two species groups (saltmarsh and reedbed) 

against the habitat management period, i.e., before the management intervention had taken 

place, and during intervention.  This was then extended to include the species richness and 

abundance of all species recorded during the surveys between 2016-2018. The second 

hypothesis was to determine whether any significant variations within species territory, 

richness or abundance could be attributed specific years, this was tested with a Kruskal-Wallis 

test. Third, these tests were repeated to look at variation between the managed habitat and 

the control sites to determine whether management significantly affected the species group. 

As with the second hypothesis a Kruskal-Wallis test was used. The diversity profiles technique 

will accompany these analyses to visualise any significant changes reported by the models.  
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6.3 – Results 

6.3.1 – Habitat Area 

The total habitat area was derived from the UAV habitat map from Upper Moss Side 

(presented in Chapter 5), and the Sentinel-2 WAVI classification map for Cuerdley Marsh, 

these values are presented in Table 6.2. These values of habitat area represent the post-

management period at each of the two saltmarshes. Upper Moss Side holds a much larger 

area of short sward grass habitat in comparison to Cuerdley, as a result of the grazing 

regime implemented by the MGET. Both saltmarshes hold a moderate reed bed resource, 

though the reed bed at Cuerdley Marsh is 21,779 m2 greater in area, approximately 13,000 

m2 of this habitat was mown each year as part of the cutting cycle, and the removal of c. 

15% of the mature reed bed.  

Table 6.2 – Measurement of area in metres squared derived from the WAVI classification for 

Cuerdley Marsh, and the NIR random forest UAV image. 

Saltmarsh Cover Class Cuerdley Marsh Area m2 Upper Moss Side Area m2 

Long sward grass 164,252 39,401 

Short sward grass 4,721 81,012 

Reed bed 85,198 63,419 

Bare sediment 1,742 10,742 

Water 113 12,378 

 

6.3.2 – Common Bird Census Breeding Bird Surveys  

6.3.2.1 – Cuerdley Marsh 

The outcome of the Common Bird Census territory analyses for Cuerdley Marsh and 

Upper Moss Side respectively are presented in Tables 6.3 – 6.5. Within these tables, only the 

territories of species tied to the two habitat types are presented, these being saltmarsh and 

reedbed breeding birds.  
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During the CBC surveys at Cuerdley marsh, only two species were recorded holding 

breeding territory within the saltmarsh itself (Table 6.3). Skylark (Alauda arvensis) held at least 

one territory between 2015 – 2017 with a peak of three in 2017. During the 2018 season, this 

species was not recorded holding territory at Cuerdley Marsh. The second species recorded 

within the saltmarsh habitat of Curedley Marsh was the meadow pipit (Anthus pratensis), which 

held territory consistently through the four survey years, with a peak in 2017 of 20 territories, 

and a minimum in 2015 of three.  

Table 6.3 – Breeding territory at Cuerdley Marsh during the three monitoring years for 

saltmarsh species. 

Species 2015 
Territory 

2016 
Territory 

2017 
Territory 

2018 
Territory 

Conservation 
Status 

Meadow pipit 3 15 20 14 Amber 

Skylark 1 1 3 0 Red 

 

There were more species breeding in the reed bed habitat at Cuerdley Marsh, with five 

species recorded as holding territory throughout the survey years (Table 6.4). Cetti’s warbler 

(Cettia cetti) showed a steady increase in territory through the study years, from zero held in 

2015, to four in 2018. Grasshopper warbler (Locustella naevia) only held territory in 2018 at 

Cuerdley Marsh. Sedge warbler (Acrocephalus schoenobaenus), reed warbler (Acrocephalus 

scirpaceus) and reed bunting (Emberiza schoeniclus) were present during every survey year. 

Peak sedge warbler territory was recorded in 2017 and 2018 with six held. Peak reed 

warbler territory was in 2016 with 25 held, and reed bunting 2016 with 38 held. Figures 6.4 

– 6.7 show the approximate territory locations, and changes thereof, at Cuerdley Marsh 

during the 4 years CBC surveys were undertaken. This data is presented Sentinel-2 WAVI 

classification map, as this was the vegetation with the highest accuracy for Cuerdley Marsh. 
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Table 6.4 – Breeding territory at Cuerdley Marsh during the three monitoring years for 

reedbed species. 

 

The territories derived from the 2015 - 2018 CBC surveys show that there has been a 

increase in the reed bunting territories recorded at Cuerdley Marsh (of +13 across the four 

study years), and a decrease in reed warbler territory (-12) overall during the monitoring 

period. Meadow pipit territories increased by 17 between 2015 and 2017, and then 

decreased by 6 during 2018. An increase was seen in sedge warbler (+4) and skylark (+2) by 

2017. 

Figure 6.4 – Approximate centres of territory for the reedbed and saltmarsh species at Cuerdley 

Marsh, derived from the 2015 CBC survey data provided by the MGET. 

Species 2015 
Territory 

2016 
Territory 

2017 
Territory 

2018 
Territory 

Conservation 
Status 

Cetti’s warbler 0 2 2 4 Green 

Grasshopper 
warbler 

0 0 0 1 Red 

Reed bunting 34 38 30 30 Amber 

Reed warbler 17 25 20 21 Green 

Sedge warbler 2 2 6 6 Green 
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Figure 6.5 – Approximate centres of territory for the reedbed and saltmarsh species at Cuerdley 

Marsh, derived from the 2016 CBC surveys. 

Figure 6.6 – Approximate centres of territory for the reedbed and saltmarsh species at Cuerdley 

Marsh, derived from the 2017 CBC surveys. 



115 
 

Figure 6.7 – Approximate centres of territory for the reedbed and saltmarsh species at Cuerdley 

Marsh, derived from the 2018 CBC surveys. 

6.3.2.2 – Upper Moss Side 

At Upper Moss Side, four species were recorded breeding on the saltmarsh habitat during 

the survey years (Table 6.5). Meadow pipit were recorded holding territory between 2016-

2017 with 5 territories held in the final two years. Northern lapwing (Vanellus vanellus), 

were recorded in 2017 and 2018 with three and four territories held respectively. Redshank 

(Tringa totanus) were recorded holding territory in only the final year, with two observed. 

Skylark were recorded holding territory during each survey year with a peak of six in 2015, 

and the low of one in 2017. Figures 6.8 – 6.11 show the approximate territorial centres, and 

changes to species composition, for the key reedbed and saltmarsh species present 

throughout the 2015 – 2018 CBC surveys. This data is presented within the context of the 

habitat map derived from the UAV remote sensing data presented in Chapter 5.  
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Table 6.5 – Breeding territory at Upper Moss Side during the monitoring years for saltmarsh 

species. 

 

Within the reed bed habitat, four species were recorded (Table 6.6), all of which were 

recorded as present during each survey year. Grasshopper warbler held peak territory count 

of four during 2016, reed bunting of 36 during 2016, reed warbler of 26 during 2015, and 

sedge warbler of 6 during 2016.   

Table 6.6 – Breeding territory at Upper Moss Side during the monitoring years for reedbed 

species. 

 

At Upper Moss Side, reed bunting territories increased initially by 9 between 2015 – 2016 

but decreased by three each of the remaining years. A decrease was seen in skylark (-4) 

between 2015/2017, however skylark breeding territories increased in 2018 to 4. Sedge 

warbler remaining stable with 5 across most years with and increase to 6 in 2016. Reed 

warbler territories increased by 4 between 2016 and 2017, as did meadow pipit by 1, and 

whitethroat by 1. By 2018 reed warbler territories had decreased by 5. Northern lapwing 

territories were recorded for the first time within the project with 3 territories centred on 

the area of the newly created and restored scrape in 2017, and a further territory was 

recorded in 2018. Two redshank territories were also recorded by 2018. 

Species 2015 
Territory 

2016 
Territory 

2017 
Territory 

2018 
Territory 

Conservation 
Status 

Meadow pipit 0 4 5 5 Amber 

Northern 
lapwing 

0 0 3 4 Red 

Redshank 0 0 0 2 Amber 

Skylark 6 5 1 4 Red 

Species 2015 
Territory 

2016 
Territory 

2017 
Territory 

2018 
Territory 

Conservation 
Status 

Grasshopper 
warbler 

2 4 2 2 Red 

Reed bunting 27 36 33 30 Amber 

Reed warbler 26 21 25 20 Green 

Sedge warbler 5 6 5 5 Green 
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Figure 6.8 - Approximate territorial centres for the reedbed and saltmarsh species at Upper 

Moss Side, derived from the 2015 CBC survey data provided by the MGET. 
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Figure 6.9 - Approximate territorial centres for the reedbed and saltmarsh species at Upper 

Moss Side, derived from the 2016 CBC survey data. 



119 
 

Figure 6.10 - Approximate territorial centres for the reedbed and saltmarsh species at Upper 

Moss Side, derived from the 2017 CBC survey data.  
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Figure 6.11 - Approximate territorial centres for the reedbed and saltmarsh species at Upper 

Moss Side, derived from the 2018 CBC survey data.   
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6.3.3 – Statistical Analysis of Bird Survey Data 

6.3.3.1 – Common Bird Census Territory 

From the statistical analyses, the null hypothesis has to be accepted, and it can be 

concluded that the habitat management period, that is to say, before or during habitat 

management, had no significant effect on the number of held territories within the two 

groups of breeding birds. This result was returned across of the saltmarshes within the study 

area and these are presented in Tables 6.7 and 6.8. Despite this, the mean territory during 

management was higher for all species groups and habitat types than the pre-management 

value, except for the reedbed species at Upper Moss Side.  

Table 6.7 – Mann Whitney-Wilcoxon analysis of the bird territories at Cuerdley Marsh before, 

and during management. The value in brackets is the range of the recorded territory.  

Cuerdley Marsh 
Species 

Mean territory before 
management  

Mean territory during 
management 

Mann Whitney-
Wilcoxon score 

Saltmarsh 
Meadow pipit 
Skylark 
 
 

 
9 (3-15) 
1 (1) 
 

 
17 (14-20) 
2 (2-3) 
 

 
 
W = 17, P=0.878 

Reedbed 
Reed bunting 
Reed warbler 
Grasshopper warbler 
Sedge warbler 
Cetti’s warbler 

 
28 (17-38) 
29 (25-34) 
0 
2 (2) 
1 (0-2) 

 
30 (30) 
21 (20-21) 
1 (0-1) 
6 (6) 
3 (2-4) 

 
 
 
 
 
W = 25, P=0.676 

Table 6.8 – Mann Whitney-Wilcoxon analysis of the bird territories at Upper Moss Side before, 

and during management. The value in brackets is the range of the recorded territory. 

Upper Moss Side 
Species 

Mean territory before 
management  

Mean territory during 
management 

Mann Whitney-
Wilcoxon score 

Saltmarsh 
Meadow pipit 
Skylark 
Lapwing 
Redshank 

 
2 (0-4) 
6 (5-6) 
0 
0  

 
5 (5) 
3 (1-4) 
1 (0-2) 
4 (3-4) 

 
 
 
 
W = 15, P = 0.468 

Reedbed 
Reed bunting 
Reed warbler 
Grasshopper warbler 
Sedge warbler 

 
32 (27-36) 
24 (21-26) 
3 (2-4) 
6 (5-6) 

 
32 (30-33) 
23 (20-25) 
2 (2-2) 
5 (5-5) 

 
 
 
 
W = 29, P = 0.834 
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6.3.3.2 – Between Year Variation in Bird Communities  

 In order to extend the analysis and to address the second hypothesis, a Kruskal-

Wallis test was applied to all the survey years. In addition to the summer species breeding 

territory, the species richness and abundance taken from all survey years was incorporated. 

This included the counts made during the summer CBC surveys as well as the counts 

recorded during the generic wintering bird surveys.  

 There was no significant between year effect observed within the saltmarsh and 

reedbed habitats of Cuerdley Marsh between any of the response variables across the four 

survey years (Table 6.9). As no significant result was returned, no post-hoc testing was 

conducted between the individual years. 

Table 6.9 - Kruskal-Wallis test between all study years, incorporating abundance and 

richness measures. 

Response Variable Comparison between all years (2016 -2018) 
Kruskal-Wallis test 

Saltmarsh Territory H = 1.963, P = 0.407 

Saltmarsh Abundance H = 1.954, P = 0.727 

Saltmarsh Richness H = 1.941, P = 0.391 

Reedbed Territory H = 0.614, P = 0.891 

Reedbed Abundance H = 0.192, P = 0.942 

Reedbed Richness H = 1.143, P = 0.498 

 

 There was no significant difference between the species measures of the reedbed 

habitats at Upper Moss Side. The test did return a significant difference (H = 4.15, P = 0.012) 

for the species richness response variable at this site for the saltmarsh community, and this 

does indeed translate to a significant increase in total biodiversity.  Post-hoc testing, utilising 

the Mann Whitney-Wilcoxon test (including the Bonferroni adjustment to counteract the 

problem of multiple comparisons and, as a result of this, results where P < 0.01 are 

considered significant), returned a significant (P = 0.01) between the year of 2016 and 2017 

at this site. These results are presented in Table 6.10.  
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 Table 6.10 - Kruskal-Wallis test between all study years, incorporating abundance and 

richness measures. 

 

 

 To visualise these changes, and to determine whether the significant different in 

richness can also be represented as a difference in site biodiversity, the total data utilised in 

the statistical analysis were plotted as a diversity profile. This includes the full set of records 

of all species seen interacting with the habitat types over the three-year period, and the 

data is plotted with the 95% confidence interval to reflect significant difference within the 

plot. Figure 6.12 displays the data for the saltmarsh group of species for the two survey 

years at Upper Moss Side, from which the significant difference between species richness 

data was derived from the Kruskal-Wallis test. The profile indicates a clear separation within 

the plot line for 2016 and 2017, with the latter year being unambiguously more diverse than 

2016. A conclusion can be drawn then that the significant difference between the two 

survey years does indeed translate to a significant different by an increase in total 

biodiversity.  This contains the total abundance data derived from the surveys at Upper 

Moss Side over the survey years for the saltmarsh species group. None of the other species 

Response Variable  Comparison between all 

years (2016-2018) Kruskal-

Wallis test 

2016-2017 (Post-hoc Mann-

Whitney-Wilcoxon Test) 

Saltmarsh Territory H = 1.77, P = 0.595  

Saltmarsh Abundance H = 4.88, P = 0.08 

Saltmarsh Richness H = 4.15, P = 0.0121 P = 0.01 

Reedbed Territory H = 0.14, P = 0.985  

Reedbed Abundance H = 1.85, P = 0.755 

Reedbed Richness H = 0, P = 1 
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groups showed a clear distinction in the biodiversity order as the plots either overlapped, or 

the confidence intervals overlapped.  

Figure 6.12 – Diversity profile between 2016 and 2017 at Upper Moss Side, the plot shows 

an unambiguous increase in the saltmarsh biodiversity between the two years. The dashed 

lines represent the confidence intervals. 

This difference between biodiversity order as displayed in Figure 6.12, and the significant 

difference between these two years coincides with the habitat management, which was 

undertaken at Upper Moss Side saltmarsh, i.e., cattle grazing to provide a more favourable 

grass sward. Within the data presented in Table 6.11, derived from the total annual species 

abundance for the saltmarsh group, the green highlighted rows represent species which 

were observed using the habitat following the management intervention. These species are 

presented within the context of the habitat map in Figure 6.13 which represents the 
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increase of wetland species between the years 2016-2017, and visualises the increase in 

biodiversity, and the significant change in composition as reported by this study. 

Table 6.11 – Summary of annual abundance of saltmarsh species present at Upper Moss 

Side. Rows highlighted in green represent the addition of a species, or an increase in 

abundance following the management year. 

Species 2016 2017 2018 Species 2016 2017 2018 

Black headed gull 40 51 36 Meadow pipit 46 34 36 

Canada goose 0 76 69 Moorhen 0 2 3 

Cetti's warbler 2 0 0 Pink footed goose 0 65 97 

Curlew 0 13 20 Redshank 0 5 8 

Gadwall 2 9 0 Ringed plover 0 2 3 

Grey heron 0 5 3 Shelduck 11 4 5 

Grey partridge 14 4 0 Shoveler 0 2 3 

Greylag goose 1 10 8 Skylark 34 9 11 

Jack snipe 0 2 3 Snipe 113 78 62 

Kingfisher 1 1 1 Teal 150 125 10 

Lapwing 0 115 86 Tufted duck 0 12 13 

Linnet 3 3 2 Wheatear 4 6 4 

Little egret 0 4 3 Wigeon 10 0 0 

Little grebe 0 1 1 Wren  58 54 11 
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Figure 6.13 – Post-management increase of wetland species, 2017, presented within the 

context of the Upper Moss Side habitat map. 
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6.3.3.3 – Between Site Variation in Bird Communities 

 Tables 6.12 and 6.13 present the outcome of the statistical comparison between 

each of the study sites before and during management. Both sites contained the same 

collection of habitats, i.e., reedbed and saltmarsh, however, management for each was 

undertaken separately at each site. At Cuerdley Marsh only reedbed management was 

undertaken, leaving the saltmarsh grass sward in an uncut state, at Upper Moss Side only 

the saltmarsh was managed, leaving the reedbeds. Using each respective unmanaged 

habitat type as a control, the outcome of the analysis on the breeding bird territories 

demonstrate that there was no significant difference between the two sites before or during 

the management interventions. 

Table 6.12 - Mann Whitney-Wilcoxon analysis of the bird territories at Cuerdley Marsh and 

Upper Moss Side before habitat management, years 2015 and 2016. The value in brackets is 

the range of the recorded territory. 

Species Group Mean territory before 
management – 
Cuerdley Marsh 

Mean territory before 
management – Upper 
Moss Side 

Mann Whitney-
Wilcoxon score 

Saltmarsh 
Meadow pipit 
Skylark 
Lapwing 
Redshank 

 
9 (3-15)                         

1 (1)                               

0                                     

0 

 
2 (0-4) 
6 (5-6) 
0                                       

0 

 
 
 
 
W = 18, P = 1 

Reedbed 
Reed bunting 
Reed warbler 
Grasshopper warbler 
Sedge warbler        

Cetti’s warbler 

 
28 (17-38) 
29 (25-34) 
0 
2 (2) 
1 (0-2) 

 
32 (27-36) 
24 (21-26) 
3 (2-4) 
6 (5-6) 
0 

 
 
 
 
W = 25.5, P = 0.754 
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Table 6.13 - Mann Whitney-Wilcoxon analysis of the bird territories at Cuerdley Marsh and 

Upper Moss Side during habitat management, years 2017 and 2018. The value in brackets is 

the range of the recorded territory. 

Species Group Mean territory during 
management – 
Cuerdley Marsh 

Mean territory during 
management – Upper 
Moss Side 

Mann Whitney-
Wilcoxon score 

Saltmarsh 
Meadow pipit 
Skylark 
Lapwing 
Redshank 

 
17 (14-20) 
2 (2-3) 
0  
0 

 
5 (5) 
3 (1-4) 
1 (0-2) 
4 (3-4) 

 
 
 
 
W = 15, P = 0.471 

Reed bed 
Reed bunting 
Reed warbler 
Grasshopper warbler 
Sedge warbler 
Cetti’s warbler 

 
30 (30) 
21 (20-21) 
1 (0-1) 
6 (6) 
3 (2-4) 

 
32 (30-33) 
23 (20-25) 
2 (2-2) 
5 (5-5) 
0 

 
 
 
 
W = 17, P = 0.885 

 

 To determine whether there was a variation between the control sites (Cuerdley 

saltmarsh and Upper Moss Side reed bed), versus the managed sites (Cuerdley reedbed and 

Upper Moss Side saltmarsh), a Kruskal-Wallis test was undertaken individually on all of the 

collected to compare the response variables for each year. The outcome of each test is 

presented in Table 6.14. There was no significant difference between the control sites vs the 

managed sites for any of the survey years. As the richness between the saltmarsh variable 

showed the value closest to the significance threshold, a post-hoc Mann Whitney-Wilcoxon 

test was undertaken. This returned the significant result between the Upper Moss Side 

communities between 2016 and 2017, and also a P-value of 0.03 between the saltmarsh 

communities of the control site (Cuerdley Marsh) and the managed site (Upper Moss Side). 

This coincides with the period where management was introduced to Upper Moss Side and 

the reported significant increase in species richness and biodiversity. However, as P = 0.03, 

this cannot be interpreted as truly statistically significant following the Bonferroni 

adjustment required when comparing multiple samples. 
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Table 6.14 – Kruskall-Wallis test undertaken individually for all survey years between the 

control sites and managed site for each species group. 

 

6.4 – Summary  

To determine the relative impacts of both the habitat management schemes 

implemented by coastal managers and to determine community impacts from 

environmental change, long-term monitoring programmes need to be initiated. In this 

chapter the data presented were collected to enable the characterisation of site ecology in 

the Upper Mersey Estuary targeting avifauna. The identified species were associated with 

the two key habitat types, saltmarsh and reedbed, and within these species groups, several 

species of key importance and value in the Upper Mersey Estuary, and estuaries globally, 

were identified (Doody et al., 2004). From the CBC breeding bird surveys, it was determined 

that, overall, there have been four species of ground nesting bird that utilise the 

saltmarshes to breed during the period studied, and five in total within the reedbed. These 

species are split into two groups: passerines – generally known as perching birds – and non-

passerines which in this case include two species of wading bird. The recorded breeding 

passerines were the skylark (Alauda arvensis) and the meadow pipit (Anthus pratensis) 

ground nesting within the saltmarsh, and reed bunting (Emberiza schoeniclus), reed warbler 

(Acrocephalus scirpaceus), sedge warbler (Acrocephalus schoenobaenus), grasshopper 

warbler and Cetti’s warbler (Cettia cetti) within the reedbeds. The wading species recorded 

were the northern lapwing (Vanellus vanellus) and redshank (Tringa totanus). All these 

species were included as target species in the Mersey Gateway Environmental Trusts’ 

management targets (Mersey Gateway Environment Trust, 2015). The two breeding 

Response Variable Comparison between all 
years (2016-2018) 
Kruskal-Wallis test 

Post-hoc Mann Whitney-Wilcoxon Test 

Saltmarsh Territory H = 3.705, P = 0.763  

Saltmarsh Abundance H = 6.825, P = 0.216 

Saltmarsh Richness H = 5.304, P = 0.143 P = 0.01, 2016 vs 
2017 Upper Moss 

Side 

P = 0.03, 2016 
Cuerdley Marsh vs 
2017 Upper Moss 

Side 

Reedbed Territory H = 0.7866, P = 0.997  

Reedbed Abundance H = 0.6215, P = 0.986 

Reedbed Richness H = 0.4898, P = 0.947 
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territories held by redshank signify the uptake of the favourable saltmarsh habitat by one of 

the SPA key species of the Mersey Estuary downstream. The increase in foraging birds 

associated with the favourable habitat, following the management intervention at Upper 

Moss Side could represents the increase in ecological connectivity within the estuary entire, 

as SPA species such as teal were recorded, along other sensitive winter migrants, such as 

pink footed goose. The records of the breeding territories for the saltmarsh breeding birds 

will be included in the following section (Chapter 7) as a targeted study on the impacts of 

climate change derived sea level rise.  

The statistical analysis presented here enabled the determination of the specific year 

and management period of change, as supported by the diversity profile, this enabled a 

statistically robust, and visually engaging characterisation of an ecological community 

(Buckland et al., 2012; Krolik-Root et al., 2015; Tolvanen and Aronsen, 2016). With the 

diversity profile (Figure 6.12) reflecting the disparate measures of species richness, and the 

dominance and evenness indices as described in the Shannon or Simpson index, within one 

profile transformed by Hill’s formula a direct comparison between dates and sites can be 

made. The data presented here reflected a net increase in biodiversity following the 

management activities described in Section 6.1, at Upper Moss Side only. The continued use 

of such measures, instead of single biodiversity indices, might be a valuable inclusion into 

long-term monitoring schemes, particularly when including ancillary data to determine the 

links between environmental impacts and biodiversity as presented here (Buckland et al., 

2012). However, the central design of the analysis presented within this chapter was not to 

establish these methods for this purpose, but to provide contextual ecological field data to 

incorporate within the vulnerability analysis, the key theme of this thesis. Future research 

with a study design focussing on comparative methods for the concise presentation of 

community change will be better suited to draw such conclusions.  
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Chapter 7 – Sea Level Rise Impacts on Breeding Avifauna 

7.1 – The Impact of Sea Level Rise on Saltmarsh Ecosystems  

 

 The literature on the impacts of sea level rise on saltmarshes was critically evaluated 

in Chapter 2. The worst-case predictions for each mechanism of change reports significant 

alteration and loss of saltmarsh ecosystems globally, as assessed by multiple sea level rise 

(SLR) models (Doody, 2004). Despite the extant literature documenting changes in 

vegetation in response to tidal regime and exposure to salinity, it is still not clear how 

vegetation communities may change on a site by site basis which limits the exploration of 

these processes when assessing the impacts on the habitats of the Upper Mersey Estuary.  

However, the data presented here demonstrate the potential for SLR to impact ground 

nesting birds by interrupting the breeding species of four key species. This in turn will allow 

for discourse around saltmarsh vulnerability on a broad scale and the subsequent 

opportunities for management to mitigate these effects. As such, the study of the impacts 

of sea level rise on the sensitivity of the saltmarsh avifauna is the focus of this current 

chapter, and addresses research objective two and three, and null hypothesis four, detailed 

in Chapter 2, that: sea level rise poses no risk to breeding birds in the Upper Mersey Estuary. 

The sensitivity of many saltmarsh dwelling birds to sea level rise has the potential to be very 

high, as most of these species are ground dwelling and nesting (van de Pol et al., 2010). 

Numerous studies worldwide have focussed on this sensitivity though they have been 

conducted predominantly in the USA (Knutson and Klaas, 1997; Gjerdrum et al., 2008; Reiley 

et al., 2017). While this issue has been observed and described in the UK (Greenhalgh, 

1971), recent research on the populations sensitivity of ground nesting birds has focussed 

on disturbance derived from grazing regimes and the loss of nests through trampling 

(Sharps et al., 2015). Sea level rise scenarios derived from the literature (Table 7.1) are used 

to determine the derived impacts on four key breeding species in a UK saltmarsh, and to 

visually highlight habitat that may be sensitive to changes in the tidal regime. The outcomes 

of this chapter will seek to highlight and portray sensitive areas of habitat under each sea 

level rise scenario, which will feed into a discussion regarding the ecosystem vulnerability of 

the area, and the potential management interventions that may serve to mitigate the 

potential impacts.  



132 
 

7.1.1 – Data  

To explore the range of sea level rise scenarios and their impact on the breeding bird 

species appropriate to this study, several sources of data were acquired. These include the 

outputs of the previous two chapters, namely the UAV derived habitat cover map produced 

in Chapter 5, and the territory data of the key species identified in Chapter 6. The base layer 

for the analysis conducted in the current chapter was derived from the 2017 Environment 

Agency LIDAR data for the Upper Mersey Estuary in 50 cm spatial resolution (EA, 2017). The 

data from which the tidal scenarios were calculated is derived from the Fiddler’s Ferry tidal 

gauge, supplied by the National Tidal and Sea Level Facility (2018). This data set contains the 

daily low, mean, and high water for the six-year period (2012 – 2018), and from this a 

general approximation of the impacts of sea level rise on the monthly high, and daily tidal 

cycle can be made. Table 7.1 reflects the tidal range of the Upper Mersey Estuary 

throughout 2018 and displays the proposed tidal increase at 2095 which are derived from 

the IPCC, UKCP09 and Jevrejeva et al., (2014). The key breeding bird species associated with 

the study site were identified during the 2018 Common Bird Census surveys which were 

conducted as part of the data collection for Chapter 6. These species relate to the 

management objectives of the Mersey Gateway Environmental trust, and all four are 

ground nesting, and therefore, potentially susceptible to the secondary impacts of sea level 

on the saltmarsh habitats through increased inundation and erosion of the saltmarsh 

platform. These species can be split in to two groups, passerine (perching birds) and non-

passerine, in this case, wading species. The two passerine species are the skylark (Arlauda 

arvensis), and the meadow pipit (Anthus pratensis), and the wading species the redshank 

(Tringa totanus) and the northern lapwing (Vanellus vanellus). The approximate breeding 

territories of these species are used as the basis for the analysis presented in this chapter. 

The methods utilised in this chapter are adapted from Krolik-Root et al., (2015), the basis of 

which is described in Chapter 3. Here, the method is expanded to explore the month/month 

tidal inundation and a detailed daily comparison of tidal change in relation to avian breeding 

period and territory. In the first stage of the analysis, an overview of monthly sea level rise 

was created utilising the ‘bath-tub’ approach (Krolik-Root et al 2015). The tidal maximum for 

each month of the breeding season was calculated, and these values formed the basis of 

input into the Geographical Information systems (GIS) based model.  
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Utilising the formula:  a ≤ b (Formula 3.2 in Section 3.6) – where a represents the 

input digital surface model, and b the elevation – masked layers were produced. For each 

month seven masks were made representing the mean high monthly tide 2012-2018 and 

each scenario of sea level rise. The output of a single calculation derived from the above 

formula is a binary grid where 0 represents the mask where the elevation was excluded and 

1 represents values which are equal to and below the b variable. The resulting data includes 

a grid for each month in the avian breeding season (March – July) and for each sea level rise 

scenario. The binary grids for each scenario were then combined in a raster calculator 

utilising a union calculation. For each pixel where a 1 is present in multiple layers, the 

output will combine them. This then represents the frequency that a specific pixel will be 

inundated by the high tide based on the mean monthly peak.  

This operation was then adapted and repeated to focus on each of the four 

identified species’ breeding periods. Rather than using the monthly high tide data, which 

does not capture multiple flooding events per month, the procedure was calculated on the 

2018 daily tidal gauge data. A decision was made not to calculate the 6-year daily average 

high tide, due to the nature of the 28-day tidal cycle, all variation in the data set would be 

lost, and thus would remove the utility of the scenario analysis.  The same calculations were 

carried out on the daily high tide, to determine whether the specific breeding window for 

the four species would be sensitive to sea level rise. After these processes were 

implemented, the 2018 avian species territories were used as a layer to import zonal 

statistics from the sea level rise frequency scenarios. The output of this process reflects the 

mean and max flooding values for each species territory. These data were then combined 

and presented as a series of maps which reflect the frequency of tidal inundation per 

species across the saltmarsh habitat within the breeding season. The saltmarsh cover type 

was then extracted from the UAV derived classification map and overlain on the inundation 

map to visually reflect the inundation frequency of the key habitat. Within the work 

presented here, the basis of the exploratory model assumes that there is no supply and 

accretion of saltmarsh sediment, and that saltmarsh habitat cover will not change with the 

increased sea level rise scenarios (Krolik-Root et al., 2015). This work focuses on the 

potential impact of the sea level rise scenarios interrupting the avian breeding season. 

Implications of vegetation change are described and discussed in Chapter 8.  
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This exploration of the sea level rise scenarios in this chapter are focussed on a 

subset of the Upper Mersey Estuary (UME) at a site known as Upper Moss Side, the site at 

which the key species were observed as presented in Chapter 6, and where the UAV data 

collection to produce a habitat map was centred, as is presented in Chapter 5. Within the 

current chapter, these sources of data will be combined to explore the visual extent and 

potential impacts of a set of sea level rise scenarios on the breeding ecology of the four 

target species, as an exploration of an ecosystem vulnerability assessment framework for a 

managed saltmarsh in the UME.   

7.2 – Results – Coastal Vulnerability  

 The sea level rise scenarios are applied to Environment Agency 2017 digital elevation 

data, at a spatial resolution of 50 cm (EA, 2017). Environment Agency Lidar data root mean 

square error is less than ±15 cm, and the absolute spatial error is ± 40cm (EA, 2017). Table 

7.1 displays the tidal frame based on the 2017 Tidal Data derived from the National Tidal 

and Sea Level Facility (2018). This displays current projections derived from the IPCC, (2014), 

UKCP09, (2009) projections and a worst-case projection of +1.9m cited in Jevrejeva et al., 

(2014). 

Table 7.1 – Tidal values for the River Mersey derived from 2018 tidal gauge, and the mean 

high water under projected scenarios. 

 

 

 

 

 

Tidal Categories and Scenarios  Elevation (m) 

Highest Astronomical Tide (HAS)  5.3 

Mean High Water Spring (MHWS) 5.2 

Mean High Water Neap (MHWN)  3.2 

Mean Low Water Spring (MLWS)  0.7 

Mean Low Water Neap (MLWN)  0.3 

HAS 2095  6.4 

MHWS 2095 High Emission Scenario (+0.7) 5.9 

MHWS 2095 Med Emission Scenario (+0.6) 5.8 

MHWS 2095 Low Emission Scenario (+0.5) 5.7 

Maximum UKCP09 Scenario (0.94 – 1.5) 6.14 - 6.70 

Jevrejeva et al., (2014) (+1.9 m)  7.3 
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7.2.1 – Saltmarsh Avifauna Breeding Season and Sea Level Impacts 

 The Mersey Gateway Environmental Trust aims to restore the saltmarshes of the 

Upper Mersey Estuary to a condition favourable for key bird species. The details of the 

scope and objectives for this project, named Beyond our Bridges, can be found in Chapter 

Three. As were described in Chapter Three, and identified as breeding at Upper Moss Side in 

Chapter 6, the four key species relevant to this chapter, are meadow pipit (Anthus 

pratensis), skylark (Alauda arvensis), redshank (Tringa totanus), and northern lapwing 

(Vanellus vanellus). Data for the breeding ecology of these species are presented in Table 

7.2, and is visualised in Figure 7.1, these data represent the date of the first laid clutch are 

derived from Joys and Crick (2004). The rationale for the selection of these species is that 

they are ground nesting and are known to breed and raise chicks on saltmarshes, and 

further, that these species were identified as targets by the live restoration project 

undertaken by the MGET (Doody, 2004; MGET 2014). Being ground nesting, these species 

are sensitive to changes in the tidal regime during the summer months and may risk nest 

loss during catastrophic tidal events (van de Pol et al., 2010). 

 As can be seen from Table 7.2, the mean date that an egg clutch is laid by the two 

passerine species: the meadow pipit and skylark is the 19th May. Eggs can be laid earlier in 

the season: the 5th – 50th percentile date for both species is approximately four weeks 

before the mean date. The key period of sensitivity to tidal inundation for both ground 

nesting passerines – taken from the mean date – would include the period of incubation and 

fledging. Both meadow pipit and skylark chicks are altricial, meaning that they are not yet 

able to fend for themselves or leave the nest during the fledging period. From the date of 

eggs laid the sensitivity of a meadow pipit brood to tidal inundation will be 27 days a 

duration arrived at by adding the mean incubation period and mean fledging to the 19th 

May. This period is also the same for the skylark when using the values from Joys and Crick 

(2004) and represents the period of sensitivity from the first brood. 

 The two wading species differ in their period of breeding. The redshank mean clutch 

date is the 1st May, whereas the northern lapwing clutch is usually laid by the 12th April. The 

development of these birds differs from the passerine species. Incubation takes longer: 24 

days for the redshank and a mean of 31 for the northern lapwing. Once hatched, the 

redshank can take 30 days to fledge and the northern lapwing 38. Both species hatch 
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precocial chicks, meaning that the young birds hatch at the developmental stage where they 

can, to a degree, fend for themselves, potentially reducing the impact of tidal events during 

this period as the young birds will be mobile and able to move to higher ground if it is 

possible to do so. In this case, the main period of sensitivity for the redshank is 24 days from 

the 1st May, and the northern lapwing 31 from 12th April.  

Table 7.2 – Date of first clutch, and species breeding ecology (Joy and Crick, 2004). 

Species Eggs Laid 
(mean date, 
and 5th-95th 
percentile) 

Incubation 
(days) 

Fledging (days) Broods 
(number) 

Chick 
development 

Meadow pipit 
(Anthus 
pratensis) 

19th May 
(18th April – 16th 

June) 

13 – 15 12 –14 2 Altricial 

Skylark (Alauda 
arvensis) 

19th May 
(20th April – 6th 

July) 

         13 – 14 11 – 16 1 – 4 Altricial 

Redshank 
(Tringa totanus) 

1st May 
(14th April – 7th 

June) 

24 25 – 35 1 Precocial 

Northern 
lapwing 
(Vanellus 
vanellus) 

12 April 
(25th March – 

25th May) 

25 – 34 35 – 40 1 Precocial 

 

Figure 7.1 – Date of first egg clutch. The date is expressed in number of days, and the red 

bar represents the mean, or upper limit of the 50th percentile.  
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Figure 7.2 summarises the mean high tides during the 2012-2018 period with 

reference to the mean elevation of Upper Moss Side and sea level rise scenarios for 2095. 

From this period, using the six year mean high tide plot, it can be determined that the 

passerine breeding season – from mid-May – suffers no inundation as the value for the 

mean high tide falls below the Upper Moss Side mean elevation. However, it will from the 

UKCP09 low SLR estimate, the UKCP09 high end estimate and the scenario put forward by 

Jevrejeva et al., (2014) as these high tide projections exceed that of the Upper Moss Side 

elevation based on this figure. This is similar for both the redshank and the northern lapwing 

under the current tidal frame at Upper Moss Side. Figures 7.3– 7.8 visually represent the 

data displayed in Figure 7.2. They represent the peak high tide for each month between the 

avian breeding season (March and July) subject to the sea level rise scenarios and the 

number of inundations each area of saltmarsh will experience under these.  The outline of 

the UAV based habitat map produced in Chapter 5 is overlain on these data to highlight the 

location of Upper Moss Side within the UME, as this is the site where the study is focussed 

though these figures provide an overview of the scenarios on the UME in its entirety.  

Figure 7.2 – 2012 – 2018 peak mean tide for the breeding season with reference to 

saltmarsh elevation, and sea level rise forecasts for 2095.   
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 Figure 7.3 - Monthly peak tides based on 2012 – 2018 tidal data from Fiddler’s Ferry, Inundation frequency per breeding season.
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           Figure 7.4 - Peak tide inundation based on the IPCC 2095 low emission scenario. 
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    Figure 7.5 - Peak tide inundation based on the IPCC 2095 medium emission scenario. 
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              Figure 7.6 - Peak tide inundation based on the IPCC 2095 high emission scenario. 
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Figure 7.7 - Peak tide inundation based on the UKCP09 2095 minimum scenario 
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             Figure 7.8 - Peak tide inundation based on the UKCP09 maximum scenario 
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 From Figure 7.2 it can be seen that the peak high tides under high sea level rise 

scenarios will inundate the saltmarshes every month under the UKCP09 maximum forecast 

and Jevrejeva et al., (2014) forecast, (Figures 7.7 and 7.8). Under these two scenarios, the 

dates when meadow pipit and skylark species breed coincide with predicted high tides that 

exceed the average elevation of the saltmarshes and, therefore, there is a high likelihood to 

impact or interrupt the breeding season of these species. As has been established, the 

skylark and meadow pipit breeding cycle (egg-laying to fledging) takes around 27 days (Joys 

and Crick, 2004). The lunar tidal cycle is approximately 28 days between high tides 

(Gjerdrum et al., 2008). This means that when considering the impact of sea level rise on 

nest inundation, if only the monthly high tide exceeds the elevation of the saltmarsh, then it 

may be possible for species to breed uninterrupted in some instances during the May to July 

period. A 28-day cycle also means that it is likely that some months will see two inundations, 

a factor which is not expressed within the data above. To explore these issues further the 

following figures and data represent a daily analysis of saltmarsh inundation based directly 

around each species breeding period. The data are split into three sections: the passerine 

species, the redshank, and finally the northern lapwing. The passerine species were grouped 

as their breeding seasons are during a similar period (Table 7.2 and Figure 7.1). 

7.2.2 – Passerine Breeding Season and Sea Level Rise Impacts on 2018 Territory  

 Figures (7.9 – 7.14) and Tables (7.3 and 7.4) display the outcomes of the sea level 

rise analysis conducted for the ground nesting passerine species. To base the inundation 

values on known species territories, the approximate territory centres derived from the 

analysis in Chapter 6 were utilised to sample these data utilising the zonal statistics function 

in QGIS. Sea level rise scenarios outlined in Table 7.1 were applied to the daily tidal data for 

the period of the passerine breeding season. The dates for the breeding season are 

displayed in Table 7.2 and Figure 7.3. The first date in the series was the mean date of first 

clutch laid, derived from Joys and Crick (2004). To capture all tidal events within the 

breeding period for the two species, the study uses tidal data from the 19th May to the 6th 

July.  
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Figure 7.9 - Inundation events based on passerine breeding season under IPCC low emission 

scenario 2095 per breeding period (BP), March – July. 
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Figure 7.10 – Inundation events based on passerine breeding season under IPCC medium 

emission scenario 2095 per breeding period (BP), March – July.
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Figure 7.11 – Inundation events based on passerine breeding season under IPCC high 

emission scenario 2095 per breeding period (BP), March – July.
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Figure 7.12 – Inundation events based on passerine breeding season under UKCP09 

minimum emission scenario 2095 per breeding period (BP), March – July. 
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Figure 7.13 – Inundation events based on passerine breeding season under UKCP09 

maximum emission scenario 2095 per breeding period (BP), March – July. 
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Figure 7.14 – Inundation events based on passerine breeding season under the Jevrejeva et 

al., (2014) emission scenario 2095 per breeding period (BP), March – July.  
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 Table 7.3 – Descriptive statistics for meadow pipit territory inundation during the breeding 

period (BP) 

 

 

Table 7.4 - Descriptive statistics for skylark territory inundation during the breeding period 

(BP). 

  

 

Table 7.3 displays the sea level rise inundation data associated with meadow pipit 

territories across Upper Moss Side for the breeding period (19th May – 6th July). The mean 

number of inundations represents the number of days within the 48-day period that the 

high tide exceeds the elevation at which the species’ territory exists. Figure 7.18 visualises 

the frequency of inundations graphically with reference to the mean elevation of each of 

the bird species’ territory at Upper Moss Side. Tables 7.5 and 7.6 display the data relating to 

the longest period without disturbance by flooding and the mean elevation values for both 

the species territories. The most extreme forecast could see a mean of 21.7 territory 

inundations with the longest time between these being 22 days (Figure 7.15). The forecast 

based on the UKCP09 maximum scenario is similar with 24 days being the longest time 

SLR scenario Mean No. of Inundations/ BP Standard Deviation 

IPCC Low 1.1 0.2 

IPCC Med 1.6 0.4 

IPCC High 2.0 0.33 

UKCP09 Min 3.2 0.6 

UKCP09 Max 8.5 0.7 

Jevrejeva et al., (2014) 21.7 1.1 

SLR Scenario Mean No. of Inundations/ BP Standard Deviation 

IPCC Low 1.1 0.2 

IPCC Med 1.7 0.4 

IPCC High 2.1 0.3 

UKCP09 Min 3.2 0.6 

UKCP09 Max 8.7 0.6 

Jevrejeva et al., (2014) 21.9 0.9 
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between the 21.7 territory inundations. The remaining scenarios see less of an impact, 

based on the tidal data, than the severe sea level rise scenarios. 

The data relating to skylark territory inundation is presented in Table 7.4.  The inundation 

values are nearly identical to that of the meadow pipit territories due to the similarity of 

elevation and breeding period. 

Table 7.5 – Longest period without inundation for meadow pipit territory. 

 

Table 7.6 – Longest period without inundation for skylark territory. 

 

 

 

 

 

 

 

 

 

Upper Moss Side Scenario Longest period without inundation (No. of Days) 

IPCC Low 42 

IPCC Med 42 

IPCC High 41 

UKCP09 Min 29 

UKCP09 Max 24 

Jevrejeva et al., (2014) 23 

Upper Moss Side Scenario Longest period without inundation (No. of Days) 

IPCC Low 39 

IPCC Med 33 

IPCC High 30 

UKCP09 Min 24 

UKCP09 Max 23 

Jevrejeva et al., (2014) 10 
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       Figure 7.15 – Tidal inundation frequency based on 2018 tidal gauge data under sea level rise scenarios, for the passerine breeding period. 
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7.2.3 – Ground Nesting Wader Breeding Season and Sea Level Rise impacts on Current 

Territory  

7.2.3.1 – Redshank 

Figures 7.16 – 7.21 and Tables 7.7 and 7.8 display the outcome of the sea level rise analysis 

for the redshank territory at Upper Moss Side. The same procedure was undertaken as 

outlined above in Section 7.2.2, however the dates used were derived from the redshank 

breeding season, that is to say between the 1st May and 24th June (Joys and Crick, 2008).  

Figure 7.22 represents the inundation frequency based on the 2018 tides. 

Table 7.7 – Mean inundation for each sea level rise scenario for redshank territory. 

 

Table 7.8 – Longest period without inundation for redshank territory. 

 

Upper Moss Side Scenario Mean No. of Inundations Standard Deviation 

IPCC Low 1 0 

IPCC Med 1 1 

IPCC High 1.06 0.2 

UKCP09 Min 2.02 0.1 

UKCP09 Max 7.8 0.3 

Jevrejeva et al., (2014) 16.2 0.7 

Upper Moss Side  Scenario Longest period without inundation (No. of Days) 

IPCC Low 45 

IPCC Med 45 

IPCC High 45 

UKCP09 Min 44 

UKCP09 Max 24 

Jevrejeva et al., (2014) 10 
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Figure 7.16 – Inundation events based on redshank breeding season under IPCC low 

emission scenario per breeding period (BP), March – July.  
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Figure 7.17 – Inundation events based on redshank breeding season under IPCC med 

emission scenario per breeding period (BP), March – July.  



157 
 

Figure 7.18 – Inundation events based on redshank breeding season under IPCC high 

emission scenario per breeding period (BP), March – July.  
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Figure 7.19 – Inundation events based on redshank breeding season under UKCP09 

minimum emission scenario per breeding period (BP), March – July.  
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Figure 7.20 – Inundation events based on redshank breeding season under UKCP09 

maximum emission scenario per breeding period (BP), March – July.  
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Figure 7.21 – Inundation events based on redshank breeding season under Jevrejeva et al., 

(2014) emission scenario per breeding period (BP), March – July.  
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       Figure 7.22 – Tidal inundation frequency based on 2018 tidal gauge data, under sea level rise scenarios, for the redshank breeding period.  
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Figures 7.16 – 7.21 represent the parts of saltmarsh habitat that will be inundated 

and the frequency of inundation during the redshank breeding period. The data presented 

in Table 7.7 relate to the mean number of inundations for the redshank territory under the 

sea level rise scenarios. Due to the relatively late period that this species breeds and the 

high elevation of the territory at Upper Moss Side, the lower sea level rise scenarios forecast 

only one inundation under the IPCC predictions.  The UKCP09 minimum and maximum 

range predictions sees 2.02 and 7.8 inundations respectively, and the speculative forecast 

publish by Jevrejeva et al., (2014) would see the redshank territory inundated 16.2 times 

based on the 2018 data and current redshank territory. Table 7.8 and Figure 7.22 represents 

the longest period between inundations under each scenario and a graphical representation 

of the daily tide heights under the sea level rise scenarios based on the 2018 tidal data. A 

dissimilarity in the breeding behaviour between the passerine species and the non-

passerine, in this case, wading birds, lies in the development of the chicks after hatching. 

The passerine species are precocial, so are restricted to the nest while the parent birds rear 

them to fledging. The wading species hatch as altricial, meaning they are mobile as soon as 

they emerge, meaning that they might only be sensitive to sea level rise during the 

incubation phase. In redshank, the mean period that eggs are incubated is 24 days, and the 

fledging period after which the birds can fend for themselves is 36 days. It is the assumption 

here that once hatched, young birds can avoid inundated areas of the saltmarsh (Redfern, 

1982), however, as is seen in the more extreme forecasts represented in the average high 

tide in figures 7.20 and 7.21, there are few areas that are not inundated. Hence, this period 

of sensitivity then will remain at the 24 days. As is displayed in Table 7.8 the IPCC forecasts 

exceed this incubation period: the longest time between inundation is 45 days. The UKCP09 

min forecast gives 44 days without inundations, and the max forecast is 24 days which 

equals the mean of the redshank incubation period. The scenario derived from Jevrejeva et 

al., (2014) sees only 10 days without inundation. It is clear then that redshank nesting 

success may be compromised under UKCP09 and Jevrejeva et al., (2014) scenarios, and with 

Upper Moss Side having a greater elevation than the other marshes in the area this might 

indicate that redshank across the entire Upper Mersey Estuary are vulnerable. 
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7.2.3.2 – Northern lapwing 

 Figures 7.23 – 7.28, and Tables 7.9 and 7.10 display the outcome of the sea level 

rise analysis for the northern lapwing territory at Upper Moss Side. The same procedure was 

undertaken as outlined above in Section 7.2.2, however the dates used were derived from 

the northern lapwing breeding season between the 12th April and 25th May (Joys and Crick, 

2004).  

Table 7.9 – Mean number of inundations for northern lapwing territories under sea level 

rise scenarios. 

 

Table 7.10 – Longest period without inundation for northern lapwing territories. 

     

Upper Moss Side Scenario Mean No. of Inundations Standard Deviation 

IPCC Low 2 0 

IPCC Med 2.02 0.1 

IPCC High 2.2 0.5 

UKCP09 Min 3.1 0.3 

UKCP09 Max 11.80 0.3 

Jevrejeva et al., (2014) 22.4 1.2 

Upper Moss Side Scenario Longest period without inundation (No. of Days) 

IPCC Low 53 

IPCC Med 53 

IPCC High 39 

UKCP09 Min 39 

UKCP09 Max 22 

Jevrejeva et al., (2014) 12 
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Figure 7.23 – Inundation events based on northern lapwing breeding season under IPCC low 

emission scenario per breeding period (BP), March – July. 
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Figure 7.24 – Inundation events based on northern lapwing breeding season under IPCC 

medium emission scenario per breeding period (BP), March – July. 
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Figure 7.25 – Inundation events based on northern lapwing breeding season under IPCC high 

emission scenario per breeding period (BP), March – July. 
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Figure 7.26 – Inundation events based on northern lapwing breeding season under UKCP09 

minimum emission scenario per breeding period (BP), March – July. 
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Figure 7.27 – Inundation events based on northern lapwing breeding season under UKCP09 

maximum emission scenario per breeding period (BP), March – July. 
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Figure 7.28 – Inundation events based on northern lapwing breeding season under Jevrejeva 

et al., (2014) emission scenario per breeding period (BP), March – July. 
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               Figure 7.29 – Tidal inundation frequency based on 2018 tidal gauge data, under sea level rise scenarios, for the northern lapwing breeding period.
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Figures 7.23 – 7.28 present the data for each sea level rise scenario for the northern 

lapwing at Upper Moss Side. Each figure communicates the inundation frequency for the 

saltmarsh habitat at this site in relation to the breeding territory of this species during the 

breeding period. The data presented in Table 7.9 relates to the mean number of inundations 

for the northern lapwing territory under the sea level rise scenarios. This species lays eggs 

between 12th April and 25th May and has a total mean period of 69 days from egg laying to 

fledging. For this species the IPCC scenarios predict a mean number of inundations of 2, like 

the redshank, due to the relatively high elevation of the saltmarsh (5.85m). The UKCP09 

minimum and maximum range predictions sees 3.10 and 11.80 inundations respectively, 

and based on speculative forecast published by Jevrejeva et al., (2014) the northern lapwing 

territory would be inundated 22.4 times based on the 2018 data and current northern 

lapwing territory locations. Table 7.10 and Figure 7.29 represents the longest period 

between inundations under each scenario, and a graphical representation of the daily tide 

heights under the sea level rise scenarios based on the 2018 tidal data. Like the redshank, 

the northern lapwing chicks hatch as altricial meaning they are mobile as soon as they 

emerge. In the northern lapwing the mean period that eggs are incubated is 31 days, and 

the fledging period after which the birds can fly is 36 days. Also following the previous 

section, it is the assumption here that once hatched, the young birds can avoid inundated 

areas of the saltmarsh. However, as is seen in the more extreme forecasts, represented in 

the average high tide data presented in figures 7.27 and 7.28, there are few areas that will 

not be inundated.  This period of sensitivity will, therefore, remain at the 24 days. As is 

displayed in Table 7.10 the IPCC forecasts exceed this incubation period. The longest time 

between inundation is 53 days under the IPCC low scenario, and 39 for the IPCC high 

scenario. The UKCP09 minimum range forecast is for 39 days without inundations and the 

max forecast is 22 days which equals the mean of the lapwing incubation period. Under the 

scenario derived from Jevrejeva et al., (2014) the forecast is for only 12 days without 

inundation. It is clear then that northern lapwing nesting success may be compromised 

during these two extreme scenarios. And as Upper Moss Side has a greater elevation than 

the other marshes in the area, northern lapwing breeding success might be compromised 

across the entire Upper Mersey Estuary under a similar tidal frequency. 
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7.3 – Summary 

 The findings reported in this chapter address Research Objective 2, Section 2.10 

by visually representing the impacts of sea level rise within a saltmarsh of the Upper Mersey 

Estuary and determining the potential impacts that sea level rise scenarios would have on 

the breeding bird species associated with the saltmarsh habitats. This has addressed the 

recommendation within the literature and represents a novel exploration of breeding data 

bird data and sea level rise.  As has been documented here, it is only under the most 

extreme scenarios that species-specific breeding seasons in the Upper Mersey Estuary will 

be an interrupted. While from data presented here it may be determined that the saltmarsh 

habitats within the Upper Mersey Estuary have a moderate to low vulnerability to sea level 

rise. This is under the assumption that the avian species will choose to breed at the 

beginning of a ‘safe’ period the longest period of no flooding. As has been described within 

the literature, birds do not necessarily have an awareness of changes in tidal flooding cycles 

and, thus, may still breed within a period that is highly susceptible to flooding (Van de Pol, 

2000). Within this chapter the vulnerability of the species breeding habitat to the sea level 

rise experienced within the Upper Mersey Estuary has been highlighted. Further research 

will be required, over long-time scales to document species responses to this phenomenon. 

As the literature recommends it might be appropriate that, regardless of vulnerability, 

management options should be explored and initiated that protects the ecology of such 

systems from effects of climate change and sea level rise (Dickinson et al., 2015). Potential 

management options, and further research that might be derived from the basis of this 

chapter are explored in Chapter 8.  
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Chapter 8 – Discussion 

8.1 – Introduction to Chapter 

The work presented within this thesis has addressed gaps identified within the 

literature cited in Chapter 2.  Pursuing these opportunities for understanding, particularly 

within the framework of ecosystem vulnerability assessment, has provided new perspectives 

for the future management of the Upper Mersey Estuary, and for estuaries globally by 

reinforcing potential risks to these systems under climate change. The findings make 

important contributions within the now well recognised and globally important field of 

vulnerability assessment. A key discourse within this field, identified in Chapter 2, relates to 

environmental uncertainty and how it must be included in the setting of objectives within 

ecological restoration projects – albeit within the greater framing of environmental 

conservation – as the uncertainty around the impacts of climate change are irreducible 

(Dickinson et al., 2015; Collof et al., 2017). The vulnerability of ecosystems needs to be 

assessed in ways appropriate to their function, and the extent of any vulnerable habitat 

systems needs to be monitored and mapped. Vulnerability analyses can be derived by 

examining the sensitivity of component species to changes in key environmental conditions, 

based on the parameters identified by the IPCC, namely sensitivity, exposure and adaptive 

capacity. In the case of the research presented here, these parameters relate to the 

breeding window of bird species and the available breeding habitat within the saltmarshes, 

and the forecast scenarios of sea level rise.  The relationships between these parameters 

ultimately influences potential impact and subsequent vulnerability of the system to change.  

Where vulnerable areas are identified, then appropriate management can be 

formulated based on those criteria as a response to future predicted changes (Dickinson et 

al., 2016). Key papers within the literature call for adaptive process to be initiated and 

adopted widely within conservation and restoration projects (Hannah et al., 2002; Doody, 

2008; Lawton, 2012; Dickinson et al., 2016; Wyborn et al., 2016; Collof et al., 2017). These 

authors identify that a wider application of scenario planning is required to identify robust 

climate change interventions designed for target species and systems, and that these 

processes are implemented on a site by site basis.  
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Systems need to be established to translate climate change scenario impacts on 

target species into effectively communicable and deliverable, management scenarios 

(Dickinson et al., 2016). To facilitate the required bridging of the gaps between policy and 

practice, and the integration of all stakeholders, the consequences and outcomes of 

different management scenarios should be made as clear as possible through mapping and 

other forms of communication (Krolik-root et al., 2015; Tolvanen and Aronsen, 2016). These 

concepts and the associated impacts of change need to be clearly communicated to ley 

public and non-specialist stakeholders. This is the form that vulnerability analysis needs to 

take in order to successfully plan for and mitigate change (Gitay et al., 2011). While this area 

of study is in its relative infancy, and no single approach has been defined, the numerous 

challenges and gaps within knowledge have been identified. Means to collect spatial and 

temporal data at scales appropriate to wetland processes is a key area of research. And 

further, that these data are contextualised by ecological information within complex settings 

of interactive pressures derived by land use and land ownership is a further area requiring 

attention (Gitay et al., 2011; IPCC, 2014). Though complex pressures will be entirely unique 

to each system, the framework of vulnerability assessment can be flexible in its application, 

such that novel studies are undertaken which are defined both by the aims of a restoration 

project and likely pressures that the system will face. This collection of ideas, and the gaps 

knowledge which have been identified are what the research presented within this thesis 

has sought to address. Within the view of ecosystem vulnerability assessment, the key 

questions are:  

1.) What remote sensing system is best suited to collecting spatial and temporal 

data of wetlands?  

2.) What pressures face wetland ecosystems within a cultural landscape?  

3.) Can these issues be communicated in a format suitable for a multi-stakeholder 

environment?  

These questions have been addressed through the following null hypotheses which were 

derived from the literature review: 

1.) Fine scale UAV systems do not produce greater accuracy maps of saltmarsh 

habitats than satellite derived techniques, 
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2.) Remote sensing does not provide saltmarsh habitat maps sufficient for a 

vulnerability analysis, 

3.) Habitat management does not impact on bird populations using saltmarsh and 

reedbed estuarine vegetation, 

4.) Sea level rise poses no risk to breeding birds in the Upper Mersey Estuary. 

The study was designed in such a way that the individual chapters feed into one another. 

These data are presented in the following chapters: the empirical findings relating to the 

saltmarsh vegetation classification (Chapters 4 and 5), and the characterisation of site 

ecology and the vulnerability of the saltmarshes and breeding bird species to sea level rise 

(Chapters 6 and 7).The implications derived from the findings, relating to the management 

of the field of ecological restoration under an uncertain future, is the subject of this chapter. 

This chapter will conclude by initiating a discourse on the potential future management 

options implemented in the Upper Mersey Estuary, as a representative of saltmarshes 

globally, as means to fulfil the recommendations derived from both the literature and from 

the findings presented in this thesis. The final contribution is to present this thesis as a 

foundation from which to pursue future research, relating specifically to the adaptive 

management, vulnerability assessment, and monitoring of estuarine habitats.  

8.2 – Employing a Remote Sensing Based System for Vegetation Mapping 

A central requirement for the implementation of adaptive management is the 

repeatable and consistent monitoring of key environmental variables relating to the system 

under study. This includes the extent of wetland habitats and, the distribution of cover 

types, and eventually, the within habitat change of the ecosystem. Remote sensing and 

Geographical Information Systems (GIS) provide scientists with a set of powerful tools to 

monitor the Earth’s surface. 

  The continued coverage of satellite-based systems allows us to capture an ecosystem 

at specific moments in time that can then be analysed to provide data products pertaining 

to a vast array of applications (Whyte et al., 2018). The large capture size, known as a swath 

width, of satellite sensors allows for the monitoring of large regions, enabling the researcher 

to collect data at regular intervals without being in contact with the site (Adams et al., 
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2010). A key application within this field is the derivation of land use and land cover 

information. This practice, within the context of a monitoring project, can allow for long-

term change detection and the monitoring or surveillance of sensitive ecosystems. 

The twin-satellite Sentinel-2 mission developed by the European Space Agency (ESA) 

was identified within the literature as a system appropriate to the study and monitoring of 

wetland environments. Despite the relatively recent launch of this system (Sentinel-2A 

launched 23rd June 2015 and Sentinel-2B launched 7th March 2017, 2C and 2D scheduled 

post-2020), there is a high volume of published work reporting its success and potential in 

the monitoring of wetland and aquatic systems (Villa et al., 2013; Bresciani et al., 2014; Villa 

et al., 2014; Statoulias et al., 2015; Villa et al., 2015; Kaplan and Avdan, 2017; Whyte et al., 

2018). In order to address the first research objective, this system was adopted within the 

current study with the aim to evaluate critically the use of the derived products within the 

context of vegetation mapping within the Upper Mersey Estuary.  

 Within the context of the current study two products were derived from the 

Sentinel-2 satellite system, these were vegetation indices, and Sentinel-2 band-based 

classifications, these data are presented in Chapter 4. That chapter presents an exploration 

of a saltmarsh land cover classification utilising the Sentinel-2 satellite bands, and a range of 

vegetation indices across the saltmarsh habitats in the Upper Mersey Estuary. Timely 

collection of data from which vegetation indices can be calculated allows users to monitor 

phenological change within a system via the ‘greening up’ vegetation phase, which may be a 

key indicator of ecosystem alteration as a result of climate change (Adam et al., 2010; 

Dickinson et al., 2015; Villa et al., 2015). These data were acquired in May 2018 to capture 

this greening up phase, and to aide comparison with the UAV data set which was collected 

during the same month (Sun et al., 2016).  An exploration of the separability between the 

saltmarsh cover classes was undertaken utilising the Jeffries-Matusita distance calculation, 

an established technique which establishes the probabilistic separability between two 

classes (Liu et al., 2020). The pairwise class separability was calculated for each input; the 

Sentinel-2 analysis bands, and the four vegetation indices utilised within this study. As was 

reported within Chapter 4, separability was generally low within category, i.e., vegetated, 

and non-vegetated, however, between category separability was high. The Water Adjusted 

Vegetation Index showed the greatest separability between classes, followed by the NDAVI. 
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This result echoes previous research utilising these indices for reed bed monitoring aquatic 

vegetation within Lake Garda (Villa et al., 2015). Using the Jeffries-Matusita distance, WAVI 

and NDAVI outperformed the terrestrial indices when studying reed beds of varying 

densities and water presence.  

 Delineating vegetation cover classes are of value both in terms of long-term studies 

of change and to provide baseline habitat data for key species (Dickinson et al., 2015; Kaplan 

and Avdan, 2017). The data presented in Chapter 4, Section 4.3, pertain to an exploration of 

the Sentinel-2 data set as a means to achieving this within the context of a saltmarsh 

ecosystem. Linking the scale of the study to that of management objectives was a key 

decision in testing the value of these data for future monitoring (Wyborn et al., 2016; Collof 

et al., 2017). The utilisation of three relevant pixel-based classification procedures was 

described in Chapter 3, Section 3.3. These three methods are the maximum likelihood, 

support vector machine, and random forest. The classification procedure was undertaken on 

a data set that was collected from the 21st May 2018. The result of these classifications was 

a user accuracy of 56%, 57%, and 70% for the three methods respectively, and a Kappa 

coefficient of 0.4, 0.42 and 0.59 (see Tables 4.2 – 4.4). According to the Kappa values the 

classification yielded moderate agreement for the random forest, with less than 70% of 

pixels assigned to the correct land cover class. The classification procedure was repeated 

utilising the random forest technique on the four vegetation index images (Liu et al., 2020). 

These were the NDVI, NDAVI, EVI and WAVI. The resultant overall classification accuracies 

were 65%, 71%, 68% and 76% respectively. Overall, the classification results reflected the 

potential issues highlighted by the separability analysis. There were relatively low errors 

between categories (vegetated vs non-vegetated), however, with category separability was 

an issue, and this is due to the similar spectral properties and vegetation ecology of 

saltmarsh vegetation (Davidson et al., 2017). The WAVI based classification outperformed 

the other data sets with a Kappa score of 0.67. The also reflects the increased (albeit only 

slight) separability compared to the other VIs and the Sentinel-2 bands. This was greater 

particularly between the reed bed class, and the short sward grass class. This is likely due to 

the background effect of water within the mixed pixel (Villa et al., 2015). Within the matrix 

of vegetation of the saltmarshes present in the UME, low levels of water is generally 

present, particularly between the boundary of cover types. Following tidal inundation, the 
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saltmarsh substrate and vegetation will have a ‘background’ presence of water of varying 

depths. This overall separability is better distinguished by the aquatic VIs which account for 

this presence – NDAVI and WAVI. This changes when denser, longer sward vegetation is 

present as the background interference of the tidal water is somewhat obscured, resulting 

in lower separability, and almost comparable performance to the ‘terrestrial’ vegetation 

indices such as NDVI or EVI. The WAVI index performing greatest within this context is to be 

expected, as it derived from the NDAVI, though with the inclusion of a correcting factor for 

the background influence of water. This means that the index can be adjusted based on the 

conditions identified (Villa et al., 2020). Further to this, the impacts of the random forest 

classifier were an increase in accuracy when compared to the other two techniques. As has 

been noted within the literature, random forest is able to deal with ‘noisy’ data sets, i.e., 

those with background effects due to water (Tian et al., 2016). The WAVI index performed 

satisfactorily well, through the lessons learned within the current study, there is potential 

for future research which may further influence the applicability of this technique for 

wetland monitoring is discussed at the end of this section.    

A key challenge remains within the application of satellite sensors in the monitoring 

of saltmarsh habitats. This lies in the proportions and distributions of different ground cover 

types. The zonation and detectability of saltmarsh communities poses a challenge in the 

field of remote sensing. While these classes are spectrally separable, the steep 

environmental gradients present in these systems can mean that the detectivity of the 

vegetation classes is obscured by the spatial resolution of the sensor. Stands of vegetation, 

ditches, and pools can be smaller in size than the ground pixel size of the common satellite 

sensors (Adam et al., 2010). Researchers have had difficulties applying satellites of low 

spatial resolution to the mapping of coastal wetlands on account of this problem (Zomer et 

al., 2009). 

 This limitation of traditional remote sensing approaches in monitoring small-scale 

systems, while derived from a mismatch between the sensors spatial resolution and the 

ecosystem processes under scrutiny, offers opportunity within the field to test novel 

methods, and refine data collection techniques (Rosnell et al., 2011; Anderson and Garston, 

2013). As a result of this, it was within the remit of the first objective of this research to 

refine these techniques and explore opportunities for a scale appropriate vegetation 
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monitoring system for application within the Upper Mersey Estuary utilising an Unmanned 

Aerial Vehicle (UAV). The data associated with the development of this research objective 

are presented in Chapter 5. Within this study, recommendations were taken from previous 

research within this field to utilise two consumer grade cameras, one of which collected 

data in the NIR band, to classify the broad saltmarsh cover classes (Duffy et al., 2018). The 

novel application of the system described in Chapter 5 establishes this study as a basis for 

further development within this field, as the application of consumer grade NIR cameras for 

saltmarsh monitoring was a gap in the literature to be explored (Duffy et al., 2018). The key 

aim of this chapter relates still to objective one, however, this research sought to improve 

the accuracy of the classification derived from the Sentinel-2 data whilst also exploring 

whether the inclusion of the NIR band would assist in a further increase of classification 

accuracy. The key advantage derived from the consumer grade UAV system is manifested as 

a trade-off. Ultimately, the system sacrifices the depth of spectral resolution that is 

associated with satellite platforms for a very high spatial resolution several magnitudes 

greater than that obtained from the Sentinel-2 system. To determine the relative value of 

this system three questions were pursued relating to objective one: 

1.) Can consumer grade camera and lightweight UAV be used to collect proximal 

remote sensing data of a mixed saltmarsh ecosystem.  

2.) Can the UAV system provide a classification accuracy greater than the satellite 

system. 

3.) How effective are different image classification techniques for mapping 

saltmarsh cover types.  

As outlined in the Methods Chapter of this thesis (Chapter 3), object-based approaches are 

of value when analysing very high-resolution imagery as they remove the unwanted ‘salt 

and pepper problem’ of image speckle and noise that will result from pixel-based methods 

(Dronova, 2015). 

Utilising the described methods for data collection and analysis, the three 

classification methods applied to the Sentinel-2 data were applied to the UAV data sets. For 

the RGB image set a user accuracy of 69% was reported for the maximum likelihood 

classifier (Table 5.1), 72% for the support vector machine (Table 5.2), and 71% for the 
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random forest (Table 5.3). The Kappa values were 0.58, 0.63, and 0.61 respectively. For the 

data set including the NIR band a user accuracy was reported for the maximum likelihood 

classifier of 67% (Table 5.4), 68% for the support vector machine (Table 5.5), and 84% for 

the random forest (Table 5.6). The Kappa values were 0.55, 0.56, and 0.79 respectively. 

Addressing the three questions relating to this chapter, the application of the UAV system 

was successful in collecting remote sensing data in the saltmarsh environment. Further to 

this, the classification accuracy reported in Chapter 5 is lower by 5% for the RGB dataset 

when compared to the Sentinel-2 WAVI derived random forest classifier. The UAV dataset 

incorporating the NIR band exceeds that of the Sentinel-2 data presented in chapter 4 by an 

8% increase, based on the random forest classifier. The NIR classification utilising the 

random forest classifier, therefore, provided the highest overall classification accuracy of 

this study, however this was moderately comparable to the Sentinel-2 classification based 

on the WAVI vegetation index (Section 5.3.3). The random forest classifier produced the 

highest accuracy classification for both platforms, confirming the validity of this procedure 

within the classification of wetland systems. This confirms the advantage that has been 

highlighted within the literature as the classifier performs better than other machine 

learning algorithms on high noise datasets, such as wetlands or sparsely vegetated drylands 

(Tian et al., 2016; Noi and Kappas, 2018). It follows, then, that these results establish this 

technique as an appropriate technique to include within a monitoring strategy for the 

production of detailed habitat maps for saltmarshes in constrained estuaries, such as the 

Upper Mersey Estuary. However, though high classification accuracy and detailed habitat 

distribution were derived from this system, its ease of deployment and computational 

complexity may hinder the deployment of this system within some contexts. A key 

advantage to the utilisation of a remote sensing platform in habitat mapping and monitoring 

is the ability to collect proximal data of hard to reach areas. This advantage is widely cited 

within the literature and its applicability to satellite derived remote sensing is clear, as the 

researcher is not necessarily required to visit the site itself (Anderson et al., 2013; Duffy et 

al., 2017; Duffy et al., 2018). However, the statement cannot truly be applied to the UAV 

platform in the same way for several reasons, depending on the type of platform used, and 

the size of the site. UAV flight time is dictated by battery life, which can be further impacted 

by system weight and wind speed (Duffy et al, 2017). As a result, multiple batteries will be 
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required for medium to large sites (the current study used five), and consequently multiple 

flight grids will need to be flown. The regulations around UAV flight in the UK dictate that 

visual contact with the aircraft must always be maintained (Duffy et al., 2017).  This means 

that the researcher will have to be present on site for each grid that is flown, which in the 

case of the data collection at Upper Moss Side saltmarsh, required seven grids. While flight 

times can be increased with more expensive multirotor and fixed wing systems, site 

presence will still be required. The collection of multiple grids across a large site may take 

several hours from arrival to completion, as it takes time to prepare the battery, deploy the 

ground reference panels, upload the flight route and move between grids. Within this time, 

atmospheric conditions, cloud cover, illumination angle and intensity will change such that 

the collected imagery will require a calibration to account for these changes. This is a 

procedure that was undertaken within the current study; however, it required several 

panels of a known reflectance value to be placed throughout each flight grid, such that the 

calibration could be undertaken. This increases the researchers need to traverse the study 

area to a greater extent to deploy the calibration targets, or alternatively, to collect 

radiometric information from features that are present on site. As a result of these reasons, 

the claim that UAVs enable the proximal collection of remote sensing data in difficult to 

access, or dangerous to traverse sites is not totally accurate or applicable to this platform. 

Depending on the choice of the equipment, i.e., a large battery, and the size of the study 

site, it might be that data can be collected with the surveyor only need to gain access a point 

at which the system can be deployed (Duffy et al., 2017). However, this would assume that 

the calibration data would only be collected at the point of take-off and landing and may 

limit the data quality following processing as variable illumination will influence the final 

range of digital numbers which represent the radiometric information. Further constrains 

may lie in the weather conditions appropriate for UAV deployment. Moderate wind speeds, 

and gusts will prevent the safe flying of the platform and drain battery life, this will be 

compounded in coastal zone that often exhibit greater wind strength (Anderson et al., 2013; 

Duffy et al., 2017; Duffy et al., 2018). While the advantage of the UAV platform lies within 

the ability to deploy data under cloudy conditions, the sensitivity to wind prevents a barrier 

to data collection. In the current study, this limitation was encountered on multiple 

occasions, and this may limit the applicability of the UAV approach when timely data is 
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required, i.e., time series monitoring of vegetation. The deployment of the platform requires 

organisation of resources, and physical assistance such that it may be difficult to remain on 

‘stand-by’ for optimal conditions. With the aforementioned points considered, the UAV 

system was able to provide a highly detailed habitat map for the saltmarsh at Upper Moss 

Side, and with the further development of the platform that is still in its relative infancy, the 

above points will likely be mitigated for (Anderson et al., 2013). The use of UAVs vs satellite 

platforms needs to be considered with a set of trade-offs. Both platforms offer distinct 

advantages over the other, and the use of either as a means to provide a representation of 

habitat distribution will need to be considered along with the project objectives.  It is clear 

from the classification outputs of the current study that the UAV approach succeeds in 

providing a more detailed habitat cover map for a single site, which is where the larger 

resolution of the Sentinel-2 data underperforms, as despite the roughly equivalent accuracy 

of the WAVI derived classification to the UAV system, the pixelated representation will limit 

how well this output is perceived when communicating the broader ecosystem vulnerability 

analysis to a wider audience. However, if the project focus is at this wider scale, i.e., the 

regional coastal zone, the utilisation of the Sentinel-2 platform will provide a rapid and 

repeatable depiction of saltmarsh extent. The addition of Sentinel-C and D in 2020 and 2021 

will only increase this systems applicability like the one currently described, increasing the 

probability of cloud free data, free of charge, and of high radiometric depth.  

 It is clear that remotely sensed data provides valuable data from which accurate 

habitat maps can be derived. In tandem with traditional ground-based techniques, such as 

condition monitoring, these data will enable the long-term detection of habitat change, both 

in extent and composition. While remote sensing is not set out here as a replacement for 

traditional field techniques, it is considered as an approach with a different function. Rapid 

assessment of habitat extent, and precise georeferenced distribution maps can be produced 

quickly, and for large geographic areas. The nature of satellite platforms ensures that hard 

to reach, dangerous areas can be mapped, and therefore can provide data for potentially 

threatened systems that might not be gained otherwise. These facets determine remote 

sensing as a valuable source of data for long term vulnerability projects, and future 

developments within this field will further the ease of uptake, and quality of the derived 

data products (Doody, 2008; Davidson et al., 2017; Collof et al., 2017). 
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8.3 – Sea Level Rise Derived Impacts on the Avian Breeding Season 

To quantify the avian biodiversity changes because of management across the sites 

in the Upper Mersey Estuary and to provide ecological context for the sea level rise analysis, 

an avian monitoring programme was undertaken (Chapter 6, Section 6.3). The programme 

utilised the Common Bird Census technique to reflect the species assemblage and 

community structure to the highest achievable precision (Bibby, 2002). After analysis, the 

field observations of species are transformed to a value representing the number of species 

breeding territories (Tables 6.1 and 6.2) using a territory mapping method. In addition to 

territory analysis, this study sought to determine the key periods of community change, and 

finally took the total number of observations for each year and calculated the effective 

number of species through diversity profiles (Figure 6.12). The value of diversity profiles in 

the context of this study is largely twofold. Firstly, the use of effective numbers through the 

Hill series means that the index is truly comparable between sites and years of study, which 

is not the case when using only the most common diversity indices alone (Shannon or 

Simpson etc.) (Jost, 2006; Morris et al., 2014). Incorporating similar metrics into the 

calculation allows for a rigorous and biological meaningful comparison across communities 

(Leinster, 2014). Secondly, the nature of the plotted diversity profile makes interpretation 

clear and easy and allows for the effective communication of diversity changes within a 

community, which is of high value within the context of the current work (Morris et al., 

2014; Krolik-Root, 2015). Based on the profile presented in Chapter 6 (Figure 6.12), the 

outcome of management had a significant outcome for the short sward saltmarsh at Upper 

Moss Side in that species richness saw a significant increase during the monitoring years. 

This was the only community change of significance, as abundance and territory did not 

increase significantly between the two saltmarshes, and across the pre/during management 

years. The species representing this change were all favourable indicators of a saltmarsh 

wetland community, and the species were recorded across the breeding season as well as 

the winter period. The arrival of these species in 2017 represents the significant community 

difference reported in Chapter 6. No significant difference was recorded between the 

following post-management year, 2018, as these communities between these years was 

similar. The management impact which is statistically linked with this increase in richness 

fulfilled the key objective of the Mersey Gateway Environment Trust (MGET, 2014), that is, 
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to encourage key bird species to breed within the managed habitat. The two target species 

which were recorded breeding as result of the management were the redshank (Tringa 

totanus) and northern lapwing (Vanellus vanellus). This is in addition to the ground nesting 

birds which were already on-site pre-management, the skylark (Alauda arvensis) and the 

meadow pipit (Anthus pratensis). Importantly, several species which were recorded as 

utilising this habitat within the UME are associated with the Mersey Estuary SPA and are 

responsible for its citation (JNCC, 2017). The redshank is one of these species, and its 

presence both wintering and passage, represents approximately 4% of the British population 

(JNCC, 2017). The significance of the findings reported here are that the management has 

been proven to create habitat conditions favourable for this species, both in a capacity to 

support breeding and wintering birds. At Upper Moss Side this was manifest as an increase 

in favourable habitat of 81,012 m2 of short-sward saltmarsh, conditions favourable for 

breeding waders and ground nesting birds (Sharps et al, 2015; Davidson et al., 2017). Prior 

to commencement of the habitat management, no suitable habitat was present at Upper 

Moss Side for ground nesting birds due to dominant and rank saltmarsh grasses, which was 

identified during pre-commencement surveys conducted by the Mersey Gateway 

Environmental Trust (MGET, 2014). This increases the resilience of this species to population 

and habitat changes that may be associated with climate change and sea level rise. The 

provision of habitat connectivity through management – between the Mersey Estuary SPA 

and the UME – safeguards this SPA species, fulfilling the aims of the restoration objectives 

for the Mersey Gateway Environmental Trust’s project (MGET, 2014). In addition to the 

arrival of the SPA species, numerous other wetland species contributed to the increase in 

species richness. Three species of geese were recorded, pink footed goose (Anser 

brachyrhynchus), greylag goose (Anser anser), and canada goose (Branta canadensis), which 

are species typically associated as indicators of successful marsh restoration (Ladd, Skov, 

Lewis, & Leegwater, 2018). Waders in addition to the Eurasian lapwing included the 

nationally threatened curlew (Numenius arquata), ringed plover (Charadrius hiaticula), and 

the jack snipe (Lymnocryptes minimus) post-2017. Species in addition to these are presented 

in Table 6.11. Further to the statistically significant increase in species richness, this 

community change was reflected in the plotted Hill’s numbers as shown in the diversity 

profile in Figure 6.12. This shows a clear separation in the diversity between 2016 and 2017 
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which corresponds to the statistical measures set out in Table 6.10. This shows clearly that 

within the context of the current study, statistically significant community changes that are 

derived from management practices can unambiguously be represented by the Hill’s 

numbers and diversity profiles. This conclusion aligns with the recommendations within the 

literature, that community changes, either brought about by management, a progressive or 

acute change in an ecosystems function, needs to be communicated clearly (Collof et al., 

2017). The research presented within thesis identified the Hill’s numbers as a means to 

achieve this. Long term monitoring of faunal diversity could include this measure as a rapid, 

communicable and, most importantly, a statistically comparable measure of changes in 

community ecology over a period of time (Buckland et al., 2012). However, Chapter 6 was 

not intended to represent a key theme of knowledge generation within the current thesis, 

and the study was not designed to compare the analyses used to other methods which may 

be appropriate for represented community changes in a concise way. As such, while the 

methods presented here do indeed characterise the communities, an opportunity for future 

research lies in the rigorous testing of these, along with other appropriate methods. 

 An imperative recommendation from key sources of literature within the field of 

ecological restoration and uncertainty relates to approaches in scenario planning (Dickinson 

et al., 2015; Collof et al., 2017). Uncertainty can then be incorporated by setting goals 

derived from a range of modelled futures (Dickinson et al., 2015). As part of this method of 

management the sensitivity and adaptive capacity of a species or functional group can be 

assessed relative to these projected future scenarios. In tandem with ecological monitoring 

these methods form the basis of ecosystem vulnerability assessment (Dickinson et al., 2015; 

Collof et al; 2017). Within the Upper Mersey Estuary, it was identified by pertinent themes 

within the literature that future vulnerability to climate change is more likely to be derived 

from the indirect effects of increased tidal flooding than alterations in mean temperature 

(Doody, 2008; Kirwan et al., 2010; Jevrejeva et al., 2014). In order to determine the impacts 

of future sea level rise scenarios within the saltmarsh ecosystem, the ecology of these 

habitats was first categorised (Chapter 6, Section 6.3). Following the analysis of the breeding 

bird data it was shown that four key species of conservation concern were utilising the 

saltmarshes as a breeding habitat, moreover, these species were the most likely to be 

impacted by sea level rise as they nest on the ground. Two species of passerine, the 
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meadow pipit (Anthus pratensis) and the skylark (Alauda arvensis), and two non-passerine 

waders, the redshank (Tringa totanus) and the northern lapwing (Vanellus vanellus), and 

their breeding habitat were selected as viable subjects for the sea level rise based sensitivity 

analysis. These species are the subjects of national conservation targets and are key 

representatives of the saltmarsh ecosystem (Smith, 2012; Dickinson et al., 2015).  

 Within the Upper Mersey Estuary, to address this problem within the context of 

vulnerability assessment, a series of scenarios were explored. The scenarios themselves 

were derived from those of the International Panel of Climate Change (IPCC), the UK Climate 

Panel (UKCP) and a speculative ‘worst-case’ scenario all published in Jevrejeva et al., (2014) 

and the IPCC fifth assessment report (IPCC, 2014). The data were transformed to be 

applicable to the relative sea level rise rate for the northwest of England by consideration of 

the regions isostatic adjustment since the Holocene and a summary table is presented in 

Chapter 7, Section 7.2, Table 7.1. These data allowed for the exploration of a range of 

severity levels of the ecological impact of sea level rise, particularly focussing on the avian 

breeding season (Dickinson et al., 2015). In Chapter 7 data were presented relating to sea 

level rise impacts on the avian breeding season and whether under sea level rise the 

species-specific breeding season would in fact be interrupted resulting in the potential loss 

of young and an unsuccessful season for an already threatened group of species. As 

presented in the chapter, for all four species studied, it was only under the most extreme 

scenarios – those proposed as the top end of those interpreted from the UKCP09, and 

Jevrejeva’s (2014) speculative forecast – that the species-specific chick rearing period would 

see an interruption (see Table 7.5 for the meadow pipit data, Table 7.6 for the skylark data, 

Table 7.8 for the redshank data and Table 7.10 for the lapwing data). This interruption was 

ascertained in this study by deriving the mean clutch laying dates and chick rearing dates 

from a species and then determining whether in this breeding window there was a suitable 

flood free period in the forecasted high tides (Joy and Crick, 2004). This interruption free 

period, however, assumes that the birds will immediately lay a second clutch following the 

loss of the first, though this area knowledge within the ornithological research literature is 

lacking. Addressing objectives two and three, it must then be concluded, based on these 

data, that the species and habitats within this saltmarsh ecosystem in the Upper Mersey 

Estuary in fact have a relatively moderate sensitivity to sea level rise based on its primary 
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effects, however, scenario-based management plans need to incorporate the uncertainty 

within the sea level rise projections and plan for all cases (Jevrejeva et al., 2014; Dickinson et 

al., 2015).  

8.4 - Future Management and Implications of Change 

The visualisation of habitat extent, in addition to the contextual ecological 

information as presented within this thesis is recommended as the first stage of a wetland 

vulnerability analysis (Gitay et al., 2011). An exploration of the physical impacts of sea level 

rise on a target species or group of species allows for the subsequent setting of 

management targets, restoration goals and potential responses to sea level rise events in 

estuaries such as the UME (Wahl et al., 2017). The key gaps cited within this field are within 

the lack of spatial and temporal data at appropriate scales, an understanding of the multiple 

interactive pressures facing a site, and the limited understanding of the adaptive capacity of 

wetlands (Gitay et al., 2011). The geographical context and scale of a site are critical factors 

influencing the vulnerability assessment process, and the derivation of vulnerability will be 

intimately linked to these. The UME provides a clear example of the consideration of these 

multiple pressures that must be considered before the assessment includes future pressures 

and scenario planning. The UME represents an area where a multi-stakeholder landscape 

may influence how successful future management may be before it is undertaken. This was 

partly addressed within the context of the UME by Drewitt (2017) who identified the array 

of stakeholders and their potential objectives. Certain sites may not be released to 

conservation practitioners if they are within the remit of a landowner that is not willing to 

invest the time, or money, hence the requirement for explicit communication within the 

sciences, and its subsequent value within the context of ecosystem vulnerability analysis 

(Collof et al., 2017). If this is achieved, site specific and local information which contrasts 

plausible future narratives can be used to articulate interactions and the education of the 

public and stakeholders (Gitay et al., 2011; Collof et al., 2017). This communication as an 

awareness raising exercise is fundamental to the success of such projects, as these systems 

will have to be maintained for many years into the future, spanning decades of monitoring 

and adaptive management (Downing and Doherty, 2004; IPCC, 2014). The engagement 

through effective communication and the involvement of stakeholders throughout the 

process is a well repeated recommendation throughout the literature, though the 
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stakeholder identification was not a part of the research presented here as this has been 

undertaken for the UME within the last decade, effective communication was addressed 

within the scope of the current project (Bugliss et al., 1999).  

The research presented within this thesis contributes to the field of wetland vulnerability 

assessment in multiple ways. Foremost, the key species present with the UME were 

identified, and their distribution and climate derived pressures were mapped explicitly. Two 

systems for the rapid assessment and mapping of saltmarsh habitat extent were identified 

and tested. And, an approach derived from statistical analysis was utilised to reflect 

community change. Each of these contributing sections links to one another, to provide a 

system for assessing the ecosystem vulnerability of the UME, with a focus on threatened 

bird species. This was represented within Chapter 7, as the outputs of each preceding 

chapter were combined to reflect the avian community, and the associated habitat, that 

may be impacted by climate change derived processes in the future. The findings outlined 

within this thesis represent the very earliest stages of a wetland vulnerability assessment, 

however this research addresses the gaps within the extant literature by using the UME as a 

case study. The next stage within an assessment such as this relates to the identification of 

management options in order to mitigate the identified risks (Gitay et al., 2011).  

The impact of an increase in the frequency of seasonal flooding is likely to have wider 

array of impacts on the ecology of the UME, which in turn has implications for management. 

The restoration of degraded marshes is becoming more widespread within wetland 

management, though there have been issues in restoring sites to a condition comparable to 

a natural reference sites, at least in the short term (Hughes and Paramor, 2004; Mossman et 

al., 2012; Ladd, Skov, Lewis, & Leegwater, 2018). Many of these restored sites are derived 

from managed realignment projects which is the process of breaching the flood defences to 

allow the land beyond to be reclaimed as saltmarsh. There are numerous examples of these 

projects throughout the United Kingdom, a notable example being Hesketh Out Marsh on 

the Ribble Estuary (Ladd, Skov, Lewis, & Leegwater, 2018). Restoring a wetland to a 

‘functional’ state is an issue which needs to be successfully addressed to mitigate for 

projected marsh loss, though the mechanisms that influence the characteristics of a 

reference system are multifaceted and complex. Historically, the colonisation of a marsh by 

halophytic vegetation has been considered a measure of success (Ladd, Skov, Lewis, & 
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Leegwater, 2018).  The lack of comparability with reference sites is generally due to a 

different vegetative dominance (Mossman et al., 2012). While species richness is usually 

comparable, realigned sites are colonised rapidly by halophytic, early successional species. 

Mossman et al., (2012) noted that the shrub Atriplex portulacoides was significantly more 

abundant at realigned sites, preventing or inhibiting other species’ colonisation due to its 

growth form. This species is fast growing, long lived and bares many fruits in contrast to 

species such as Limonium vulgare and Puccinellia maritima which exhibit long reproductive 

cycles and low seed viability (Davy et al., 2011).  Further to this, managed realigned sites 

tend to have more bare ground, which can either indicate bioturbation, or represent a 

characteristic of an early successional state (Mossman et al., 2012). However, these factors 

may also indicate that the soil sediment is less oxygenated than the saltmarsh conditions at 

a comparable elevation on a reference site (Davy et al., 2011). This phenomenon is sediment 

redox potential and may inhibit the colonisation of species which are tolerant to 

waterlogged conditions, i.e., those species typical of mid-marsh succession and as such the 

realigned site is colonised and dominated by pioneer species (Davy et al., 2011). Sediment 

redox potential was found to be comparable in the high marsh when compared to reference 

sites, however, they were also dryer, and more terrestrial in vegetative composition 

(Mareno-mateos et al., 2012). A lower abundance of vegetation is likely to impact the 

saltmarsh ecosystem. With a mix of terrestrial and salt tolerant grasses dominating, and a 

subsequent lower proportion of flowering species. Faunal diversity will be reduced as many 

invertebrates depends on plants such as Limonium vulgare, which was recorded 

infrequently on many realigned marshes (Agassiz et al., 2000, Castillo and Ferguson, 2009). 

It is clear then, that managed realignment projects do not yet compare to natural systems, 

this is a serious consideration for wetland managers. If the aim is to provide comparable, 

functioning systems to natural saltmarshes, then large scale hydrological and geo-

engineering, and the provision of topographic heterogeneity may be required to address the 

issues relating to the characteristics of soil sediment (Mareno-mateos et al., 2012). Further 

to this, the planting of upper and mid-marsh species might also increase recruitment and 

stabilisation towards natural reference conditions (Mossman et al., 2012). Authors have 

commented that marsh restoration and mitigation for losses due to climate change, or any 

other anthropogenic activity, may not satisfy the requirements of current EU legislation 
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relating to saltmarshes, among other habitats, within the EU Habitats Directive (Mossman, 

et al., 2012). The implications of this will be discussed towards the end of this section. What 

is clear, is that for some systems, particularly those constrained by urban areas such as the 

UME, managed realignment may be the only long-term option to mitigate the projected 

rates of SLR.  If the UME lacks the ability to maintain elevation in the tidal frame through 

sediment accretion, then large-scale, high impact management approaches, such as 

managed realignment, might be appropriate (Pontee, 2017). This would involve the removal 

of parts of the flood defence walls, particularly those situated on the eastern side of Upper 

Moss Side saltmarsh, to enable the ecosystems natural migration inland. As yet, it is not very 

well understood how an increase in flooding events, and the associated increase in salinity 

pulses, will affect European saltmarsh communities. This has been studied in the USA, and 

while the species differ, the conclusions drawn by the response the vegetation communities 

are that an increase in salinity exposure and an increase in inundation frequency leads to a 

reduction of stem density and biomass (Howard and Mendolssohn, 2000). However, authors 

have noted that sediment redox potential of some US saltmarshes is not comparable to 

those in the UK and Europe (Davy et al., 2011). Under the assumption that the oligohaline 

communities present in European saltmarshes will react in the same way as those in the 

Americas, these findings may represent further impacts to the resilience of saltmarshes to 

sea level rise. Changes in community structure can remove the value of the saltmarshes for 

feeding bird species, across all seasons, as valuable seed-bearing food sources are replaced 

by more salt tolerant plants (Hughes, 2004). Differences in the sediment binding properties 

may be a further driver of change, as the saltmarsh loses stability, and perhaps is unable to 

track sea level rise (Hughes, 2004). This interaction of salinity with vegetation community 

structure, particularly within the upper/mid marsh zones, provides an opportunity for 

valuable research in the UK, and in tandem with a long term, managed realignment project.   

It might be that future management needs to look beyond the current structure of the 

specific habitat type, or ecosystem, under scrutiny to fulfil conservation targets and provide 

true ecological resilience. There is inherent variation in natural saltmarshes and projected 

environmental change. Policies set out within the EU Habitats Directive, which require 

management to produce almost exact equivalence between created marshes and 

references sites, may not be achievable based on our current understanding of saltmarsh 
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ecology (Mossman et al., 2011). Accepting this and shifting our definition of restoration 

might be required for the successful management of wetlands under projected climate 

change and sea level rise, at least in the short term. Our current systems for restoration are 

as yet unsuccessful in restoring true vegetative function, and as this is intimately linked to 

wider trophic groups, this is a key consideration (Mossman et al., 2011).  Therefore, current 

managed realignment and restoration does not satisfy adherence to the EU Habitats 

Directive which requires that the compensatory measures are comparable to the habitats 

and species negatively affected (Mossman et al., 2011). It might be that a minimum level of 

certain functions should be defined by the project, such as the presence of breeding birds, 

colonisation by pioneer species, and a ‘live’ sediment containing invertebrate faunas an 

initial indicator of success for managed realignment or restoration (Atkinson et al., 2004). 

This, in a way, would mirror the US Clean Water act, that requires no net loss of wetland 

habitat on larger spatial scales (Ladd, Skov, Lewis, & Leegwater, 2018). This would in turn 

require holistic management at the catchment level which might overshadow the ecological 

importance of some sites, for example, the Upper Mersey Estuary and its proximity to the 

Mersey Estuary SPA and SSSI (JNCC, 2017; Ladd, Skov, Lewis, & Leegwater, 2018). 

Replicating the tenets outlined in the 2010 UK Environment White Paper “Making Space for 

Nature” might be the most appropriate way in which to view the future of restoration 

(Lawton, 2010). That is, we need more habitat of higher quality with a greater level of 

connectivity (Lawton, 2010). This is of particular importance when considering constrained 

ecosystems such as the Upper Mersey Estuary. In some contexts, the mitigation of habitat 

loss through management decisions may not always be possible because of socio-economic 

considerations, spatial limits, and local development plans (Smart et al., 2016). In this case, 

projects could mitigate for this by creating, or restoring inland freshwater grassland that 

may prove an important option for the conservation of breeding waders (Smart et al., 2016). 

The variation in habitat across the landscape scale including taller, rougher patches of 

vegetation, has also been shown to reduce predation effects on breeding waders, perhaps 

of value as this threat increases with sea level rise (Laidlaw et al., 2015; Thorne et al., 2019). 

Increasing the network of scrapes and wet ditches may aid lapwing chick survival as 

mammalian predator species find it difficult to navigate the inundated marsh or wet 

grassland (Laidlaw et al., 2017); this in turn may encourage a greater nesting density where 
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the lapwing predator-mobbing behaviour may reduce nest predation (MacDonald and 

Bolton, 2008). Without continuous and specialised surveillance and monitoring, it will be 

difficult to detect shifts in abundance after ecological changes for species, especially those 

with low dispersal (Takekawa, 2015).  

Impacts such as these, however localised, are a conservation concern when 

attempting to ascertain the best approach to dealing with the challenges of habitat 

management for sea level rise resilience and species conservation. Species of conservation 

concern are generally restricted to small habitat fragments, and many coastal nesting birds 

are strict habitat specialists, so it is down to restoration practitioners to assist their 

adaptation to an uncertain future (Wilson, 2005; Van de Pol et al., 2010). This fact is 

compounded by a reported worryingly low-level or complete lack of adaptive response of 

saltmarsh nesting birds to flooding (Trilateral Wadden Sea Plan, 1997, cited in Van de Pol et 

al., 2010). Novel management practices will have to be implemented on both newly 

restored and existing saltmarshes to maximise avian biodiversity. These should be 

implemented through site specific research programmes backed up by a monitoring strategy 

tailored to the species, or group under study, and including consideration of the local 

ecological network (Doody, 2008; Van de Pol et al., 2010; Smart et al., 2016). 

8.5 – Future Research 

An increased frequency of inundation on the saltmarsh, or an increase in the 

frequency of extreme storm events derived from climate change, can alter habitat 

availability in tidal ecosystems. Changes such as these have long-term effects on the ecology 

of a site as population dynamics are fundamentally influenced by the availability of habitat 

(Thorne et al., 2019). These secondary community effects provide both a basis for future 

exploration within research, and the justification for the long-term monitoring of the 

communities that have been identified as under threat (Collof et al., 2017; Thorne et al., 

2019). An area of value for both research and management is the analysis of the potential 

changes in predator-prey interactions because of climate change induced sea level rise, both 

in terms of high impact storm induced flooding events, and the progressive rise of tide 

levels. Predation pressure is enhanced already for endemic tidal marsh species due to the 

seasonal impacts of spring tides. The impact of this change on the predation pressure for 
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saltmarsh species depends on the spatial-temporal dynamics of the saltmarsh being flooded, 

which is influenced by the creek structure, habitat structure, marsh elevation, and presence 

of sea walls (Traill et al., 2011). These factors will influence the marsh dwelling species risk 

to predation. Predator-prey relationships around saltmarshes are also influenced by the 

structure of adjacent land-use which can increase predation type and density (Traill et al., 

2011).  Variation in the availability of habitat for small mammals is linked to the impacts of 

predation on bird populations; establishing patches of taller vegetation, scrub and hedges, 

provides more habitat for rodents, and increase in the presence of these species reduces the 

impact of red fox (Vulpes vulpes) and mustelids on ground nesting bird populations 

(McDonal et al., 2000; Dell’Arte et al., 2007; Smart et al., 2016). 

Research has documented the link between satellite derived vegetation indices and 

ecology, and methods documented here might be valuable within the context of the 

saltmarsh ecosystems explored in the Upper Mersey Estuary. The synoptic coverage of 

habitats and ecosystems using remote sensing technology, whilst invaluable for vegetation 

studies, provides potential for correlation through the trophic levels with wildlife data to 

inform species distribution modelling, habitat suitability indices, and other ecological 

interactions (Bradley & Fleishman 2008; Villa et al., 2014). The long-term application of 

which might be valuable when considering species vulnerability assessments under climate 

change and sea level rise. Buermann et al., (2008) found that the inclusion of vegetation 

variables, such as Leaf Area Index, into a species distribution model improved the accuracy 

of prediction. The inclusion of these data provides a more continuous data set when 

compared with coarse resolution land cover, climate, and topographic variables as these 

variables better reflect the scale of the habitat/species interaction and often outrank 

predictive power of discrete variables. This is a phenomenon also observed with NDVI 

measures, with unclassified images performing as well as traditional land cover classification 

(Seto et al., 2004; Bradley & Fleishman 2008; Buermann et al., 2008; Goetz et al., 2008; Duro 

et al., 2014; Sheeren et al., 2014). The utilisation of VIs for predicting species richness has 

been demonstrated in a growing body of literature. Methods have been demonstrated 

across varying spatial scales with most studies focussing on individual species (Gottschalk et 

al., 2005; Mcfarland et al., 2012). Seto et al., (2004) use mean NDVI values in a desert 

ecosystem to test the correlation between bird and butterfly richness. The authors report 
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the NDVI derived plant productivity correlates positively with each group at varying 

sampling grains, and that vegetation indices may be useful in future studies across differing 

taxa (Seto et al., 2004). Inclusion of NDVI measures into the riparian habitat modelling of the 

southwestern willow flycatcher (Empidonax traillii extimus) demonstrated an increase in the 

ability to predict breeding habitats (Hatten and Sogge, 2007). Though there has been 

difficulty in extending the models to describe community structure, work has been 

implemented with moderate levels of success. Mcfarland et al., (2012) implemented a study 

to test whether the inclusion of NDVI has a greater correlation with species richness and 

avian abundance when compared with variables measured on the ground. Habitat 

preference and species abundance was successfully predicted for some key species, as with 

a number of studies within the same region (Hatten and Sogge, 2007). However, the 

majority of the R2 values were low, and the current methods were not appropriate for 

species richness. The authors recommend continued focus on VIs for habitat suitability 

across other watersheds and for a range of species with potential for model refinement to 

utilise the method for a rapid assessment of potential species richness (Mcfarland et al., 

2012). VIs have been shown to be positively correlated with species richness at coarse 

resolution across a large spatial scale in previous work (Foody, 2005; Mcfarland et al., 2012). 

NDVI, and the implicit potential of other vegetation indices, has been utilised by ecologists 

to quantify the effects vegetative vigour and phenology has on the upper trophic levels. This 

enables the potential for more robust predictions of the impacts of future environmental 

change as we develop knowledge of the responses of organisms to such scenarios (Pettorelli 

et al., 2005). NDVI has been linked to avifauna presence by representing increased primary 

productivity and increasing food abundance and variation within the NDVI values indicates 

habitat heterogeneity (Gordo 2007; St-Louis et al., 2009), for example, temporal variation of 

NDVI derived ecological conditions demonstrates habitat suitability and breeding success in 

the European range of the barn swallow (Hirundo rustica), and white stork (Ciconia ciconiaI) 

(Saino et al., 2004; Pettorelli et al., 2005). 

In the context of the research presented in this thesis, determining the link between 

bird species richness and saltmarsh productivity through vegetation indices might be 

valuable to pursue as future research within the Upper Mersey Estuary to assist in 

determining the impact of habitat changes on the ecological structure (Ding et al., 2006). 
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Historically, the use of satellite remote sensing in ecological studies has utilised land cover 

classification as the environmental layer. This use of discrete variables for predicting 

ecological patterns has some limitations. Chiefly, it ignores within class variability that will 

not be captured by one broad class for a habitat type (St-Louis, 2009). It is well known that 

dynamic habitat structure on grasslands and saltmarshes promotes species diversity, so it is 

inappropriate to utilise an environmental measure that fails to capture this variation (Doody 

et al., 2008). A common measure of vegetation structure in ornithological studies is the 

foliage height diversity (FHD), which measure vertical and horizontal structure (Wood et al., 

2013). Image texture is a measure derived from remotely sensed images that has been used 

to distinguish habitat suitability within grasslands (St-Louis, 2009). It is a measure of spatial 

variation in image tone values and has been shown to assist the prediction of habitat 

occupancy, habitat selection and species diversity of grassland meadows (St-Louis, 2009; 

Wood et al., 2013).   

Extending the remote analyses towards a time-series approach would be a valuable 

contribution to the research presented within this thesis. Vegetation classes will exhibit 

different spectral characteristics throughout the growth season (Sun et al., 2016). The 

inclusion of a Sentinel-2 vegetation index time-series, with a focus on the Water Adjusted 

Vegetation Index (WAVI), may lead to increased classification accuracy when monitoring 

habitats long term (Villa et al., 2015, Sun et al., 2016, Liu et al., 2020). Increasing data 

integration with traditional field techniques, for example condition monitoring, may reveal 

thresholds of habitat change that can be detected within long term monitoring (Hurford, 

2006). Further to this, an exploration of ‘fuzzy’ classification methods would be a further 

contribution and gap to address within wetland remote sensing and may increase accuracy 

of classification maps when dealing with narrow successional gradients (Zomer et al., 2009). 

Building upon the methods presented in Chapter 5 and the literature just described, 

future studies might focus on including texture into the classification procedure. Texture in 

some studies has led to an increase in accuracy when compared to pixel-based methods of 

between 10 % – 31% (Franklin et al., 2000; Laba et al., 2010; Dronova, 2015). In wetlands, 

particularly, texture could be a critical feature in the delineation of feature classes as it can 

compensate for a lack of richness in spectral resolution (Samiappan et al., 2016). Samiappan 

et al., (2016) report high classification accuracy when utilising a range of texture-based 
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variables when distinguishing common reed (Phragmites australis) stands in a mixed 

wetland. Accuracy varied between 89% – 99% depending on the classification. 

In Chapter 7 data were presented relating to the impacts of relative sea level rise and 

its impacts on avian species breeding season within the Upper Mersey Estuary. A limitation 

of the simplistic, ‘bathtub model’ that was utilised in this research is that future projections 

of sea level rise assume that the vertical frame of the landscape is static (Brown, 2006; 

Kirwan et al., 2016). The topography and structure of estuaries is dependent on the local 

characteristics. A key attribute is the supply of fluvial sediment and the availability of 

sediment that is brought in on tidal water (Kirwan et al., 2016). This determines the 

resilience of saltmarshes to the eroding forces of tidal water and the ability of the saltmarsh 

to maintain its vertical position within the tidal frame (Kirwan et al., 2016). The Sea Level 

Affecting Marshes model (SLAMM) method is advantageous when compared with more 

straightforward techniques through its incorporation of a sediment variable. This ‘modified 

bath-tub’ approach resolves some of points of criticism encountered using simpler GIS based 

approaches that do not incorporate assumption relating to the dynamic nature of 

saltmarshes (Kirwan et al., 2016). Incorporating an assumption of annual vertical sediment 

accretion enables a truer value to be derived, and a better representation of relative sea 

level rise when forecasting the sensitivity of coastal ecosystems (Davies et al., 2016; Kirwan 

et al., 2016).   

 While the inundation approach can provide a ‘quick’ analysis of the vulnerability of 

an area to sea level rise, the interpretation and application of the results must recognise 

that important feedback processes might be missing (Mcleod et al., 2010). These relate to 

the geomorphological attributes discussed previously as well as feedbacks among biological, 

ecological, and social process, for example how human adaptive process might impact the 

planning and mitigation of sea level rise at a specific site (Mcleod et al., 2010). Uncertainty 

must also be considered as an implicit aspect of sea level rise models. Projections of climate 

change and sea level rise are limited by uncertainty (IPCC, 2014). Primarily this is due to 

uncertainty in the contribution of the Greenland and West Antarctic ice sheets, perhaps 

contributing an additional 1-5m on current projections (IPCC, 2014).  
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To determine the impact of relative sea level rise, a GIS-model based on, or similar to 

the Sea Level Affecting Marshes Model (SLAMM) framework would be a useful application 

for estuarine research. SLAMM operates through decision tree rules and calculates water 

elevation and the subsequent inundation and response of habitats (Murdukhayeva et al., 

2013). The model incorporates the rate of sea level change through time to project 

scenarios. Depending on the local conditions the output maps will portray expected habitat 

classes after inundation and the area of habitat that will be lost (NOAA, 2016). A limitation 

to this model is the hard coding of the North American Nation Wetland Inventory as the 

representative landcover classes used to model vegetation change. This limits the models 

use outside of the USA unless the program is manually rewritten (Murdukhayeva et al., 

2013).  

8.6 – Summary 

With climate change a very real threat, and its derived impacts widespread, it is clear 

that we have entered a period of pervasive change, one which brings about new challenges 

for conservation planning and restoration, particularly within the coastal environment 

(Heller and Zavaleta, 2009).  The practice of conservation science developed during a time 

before the dynamic nature of the natural world was truly understood (Collof et al., 2017). 

Some regard the current era, characterised by change and complexity, as a ‘post-normal’ 

world (Funtowitz and Ravitz, 1993 cited in Collof et al., 2017). The ‘normal’ frameworks of 

the past —based on a static view of nature — may be less useful when approaching the 

problems present in today’s social-ecological systems (Collof et al., 2017). Instead, the 

science of this ‘post-normal’ age will be based on unpredictability and incomplete control; 

the peer community will also have to be extended to include all those with a stake in the 

issue (Funtowitz and Ravitz, 1993, cited in Collof et al., 2017). The challenges of the current 

era signal that a shift in approach is required. Change will be rapid and widespread, and the 

impacts irreversible (Heller and Zavaleta, 2009). The past decade of research within climate 

adaptation has produced numerous tools, guidelines, and alternative frameworks to assist in 

understanding, communicating and mitigating climate change impacts on biodiversity 

(Wyborn et al., 2016). As the literature in this field grows; recommendations for the future 
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implementation of conservation practice, policy, and the potential barriers to their success, 

become clearer.   

Human-induced climate change is a new threat, there is still much to learn about its 

associated impacts and secondary effects on ecological communities. Vulnerability to these 

effects will be mediated not only by the environmental processes themselves, but also how 

we as a society manage them (Dawson et al., 2011). While the model of vulnerability 

assessment and adaptive management may provide robust options for managers to 

incorporate into planning, it is still an emerging science and has yet to be incorporated into 

planning and policy (Dickinson et al., 2015; Wyborn et al., 2016). As a result, the 

implementation of these approaches in informing wetland vulnerability assessment is 

challenging. Is it a central to vulnerability assessment that what we do know is made explicit, 

and that we incorporate uncertainty. The task at hand is one that needs to transcend the 

disciplines and the research forum to extend into working practice and discourse. The 

research presented within this thesis has sought to incorporate the challenge facing a 

constrained saltmarsh system, the Upper Mersey Estuary, within the framework of wetland 

vulnerability assessment. Through this framework, the threats, the sensitivity of the system, 

and the potential for adaptation have been identified and contextualised by the aims of the 

restoration practitioners managing the sites (The Mersey Gateway Environmental Trust). 

The research through which the habitats, key faunal communities and future threats have 

been described link to the first stages of ecosystem vulnerability assessment for the Upper 

Mersey Estuary. The mapping and statistics which have been utilised to characterise the site 

have been made as explicit as possible to aide future communication, and to provide a 

benchmark for continued research and monitoring of this system. Future research will be 

required to further understand the thresholds of change, particularly in relation to saltmarsh 

vegetation, which will be required to successfully restore and potentially extend the wetland 

in this region. To address these challenges on a global scale, management of these systems 

needs a holistic view, so that we move away from a model where research only supplies 

information, and not a clear pathway for adaptation (Collof et al., 2017). Studies such as this 

represent only the first stage in a commitment to the adaptive management and 

conservation of these systems. 
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