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Abstract: A non-intrusive reduced-order model for nonlinear parametric flow 

problems is developed. It is based on extracting a reduced-order basis from 

full-order snapshots via proper orthogonal decomposition and using both deep 

and shallow neural network architectures to learn the reduced-order 

coefficients variation in time and over the parameter space. Even though the 

focus of the paper lies in developing a reduced-order methodology for 

approximating fluid flow problems, the methodology is generic and can be 

used for the order reduction of arbitrary time-dependent parametric systems. 

Since it is non-intrusive, it is independent of the full-order computational 

method and can be used together with black-box commercial solvers. An 

adaptive sampling strategy is proposed to increase the quality of the neural 

network predictions while minimising the required number of parameter 

samples. Numerical studies are presented for two canonical test cases, namely 

unsteady incompressible laminar flow around a circular cylinder and 

transonic inviscid flow around a pitching NACA 0012 aerofoil. Results show 

that the proposed methodology can be used as a predictive tool for unsteady 

parameter-dependent flow problems. 
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1. Introduction 

Large-scale, high-fidelity numerical simulations are 

commonly used across a wide array of industrial 

applications. Increasingly, parametric studies and 

design optimisation studies are also being done 

using high-fidelity models, even if they are costly. 

For instance, aerodynamic shape optimisation based 

on the Reynolds-Averaged Navier-Stokes (RANS) 

equations is now common practice. Even with the 

constant increase in computer power, these models 

are still unfeasible for large-scale parametric studies. 

Surrogate models aimed at finding inexpensive to 

run approximations of a system’s input-output 

relation can partly overcome this challenge (Guenot 

et al., 2013). Among them, reduced order models 

(ROMs) occupy a central place by generating a low-

order representation of the system defined on a basis 

which optimally spans the space of the system’s 

variables. ROMs have been successfully applied to 

a variety of problems requiring large-scale 

numerical simulations, including weather prediction 

(Fang et al., 2014), modelling of particle physics 

(Buchan et al., 2015), data assimilation (Cao et al., 

2007), flow through porous media (Alotaibi et al., 

2015), molecular dynamics (Hoang et al., 2016), or 

the study of advection-diffusion-reaction 

phenomena (Giere et al., 2015). 
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A popular technique for determining such a basis is 

Proper Orthogonal Decomposition (POD), 

originally introduced over a century ago (Pearson, 

1901). POD uses a set of system outputs (commonly 

referred to as snapshots) to provide a set of 

orthonormal vectors which form the required basis. 

The solution coordinates in the POD basis are 

usually known as the POD coefficients. Popular 

techniques to determine the coefficients are Petrov-

Galerkin projection, least-squares residual (or 

another error) minimisation or data-fitting 

techniques (Breitkopf and Coelho, 2010). 

In the Petrov-Galerkin projection approach, the 

original equations describing the system are 

projected onto the basis in order to determine the 

reduced-order system, which can be solved for the 

coefficients. This approach is code intrusive 

(requires extensive source code modifications) and 

cannot be used with black-box solvers. Intrusive 

ROMs have been successfully applied to 

incompressible turbulent flows (Carlberg and 

Farhat, 2011), predicting the gust response of 

aerofoils (Zhou et al., 2017) or the design of control 

laws for flexible aircraft (Da Ronch et al., 2012) As 

highlighted by several authors, intrusive ROMs are 

generally tailored towards a very specific 

application, can suffer from instability and nonlinear 

efficiency issues, or may be very difficult to 

implement in the first place for legacy codes (see for 

example Amsallem and Farhat, 2012, Wang et al., 

2019, Xiao et al., 2014, Schlegel and Noack, 2015, 

and related works). 

An alternative non-intrusive approach is to project 

only the snapshots onto the basis and determine a 

finite set of POD coefficients corresponding to those 

snapshots, and then use other surrogate techniques 

such as Kriging, artificial neural networks (ANNs) 

or radial basis functions (RBFs) as closures to model 

the full POD coefficient space based on the available 

set. This approach has become increasingly popular 

over the last few years, as seen in the works of Noori 

et al. (2011), Xiao et al. (2015, 2017, 2019), 

Audouze et al. (2009, 2013), Amsallem et al. (2015) 

or Wang et al. (2019). 

Regardless of whether the ROM is intrusive or non-

intrusive, most approaches use an offline-online 

strategy. The offline stage refers to collecting the 

high-order model snapshots and generating the basis 

(plus any other fixed quantities involved in that 

specific ROM approach), while the online stage 

refers to using the ROM to get approximations for 

the system solution for varying configurations of 

interest. 

Alternatively, machine learning techniques have the 

potential to generate more accurate reduced-order 

models, and recent research has been conducted to 

investigate deep neural network learning 

architectures in the context of fluid flow 

applications. A good review of the use of ML in 

model order reduction, together with representative 

examples from aerodynamics or structural 

mechanics can be found in (Swischuk et al., 2019). 

A supervised machine learning approach has been 

developed to predict regions in the parameter space 

where a predefined reduced order basis can achieve 

a target accuracy (Moosavi et al., 2015). A deep 

recurrent neural network has been introduced as an 

efficient model order reduction technique for 

nonlinear dynamical systems (Kani and Elsheikh, 

2017). Other deep neural networks, such as long 

short-term memory (LSTM) architectures have been 

utilised to complement an imperfect reduced-order 

model with live data streams (Wan et al., 2018). 

Deep neural networks have also been used in 

conjunction with POD-based reduced order 

modelling for unsteady parametric fluid flow models 

but restricted to the viscous Burgers equations and 

having the Reynolds number as the only parameter, 

with a limited number of samples (San et al., 2019). 

Deep ANNs have also been shown to allow the 

relatively accurate prediction of the dynamics of 

chaotic systems (Vaidyanathan et al., 2019), 

showing good potential for application to complex, 

turbulent fluid flows. 

A very recent application of deep neural networks is 

presented in Renganathan et al. (2020), where a 

parametric reduced-order model is generated for the 

inviscid steady-state transonic flow over a 

parameterised RAE 2822 aerofoil, the results 

showing that the neural network based model 

achieved accuracy comparable with intrusive ROM 

techniques. A non-intrusive ROM strategy based on 

POD, physics-informed neural networks (PINNs) 

and physics-reinforced neural networks (PRNNs) 

was proposed in Chen et al. (2020). Results shown 

better ROM accuracy compared to other ANN-based 

approaches, but the method was tested only for a low 

number of parameters as a single ANN is used to 

capture both the unsteady and the parameter space 

behaviour. Another ANN-ROM approach was 

developed in Regazzoni et al. (2019), formulated as 

a maximum-likelihood problem, but without any 

parameterisation. In addition to their potential use in 

obtaining more accurate non-intrusive reduced-

order models, deep neural networks have provided 

alternatives to classical RANS-based turbulence 

models (Ling et al., 2016), (Maulik and San, 2017) 

or even to the full Navier-Stokes equations (Gautier 

et al., 2015). 

It is seen that the focus in most of these works has 

been either to capture the nonlinear parameter space 

variation of a steady parameter-dependent system, 

or to accurately capture the unsteady behaviour of a 

nonlinear system. Indeed, the most common usage 

for ANNs in ROM frameworks are related to time 

evolution or data compression, examples of the latter 
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being found in Kim et al. (2019), Thuerey et al. 

(2020) or Yan et al. (2019), fewer works (such as 

Renganathan et al. (2020)) focusing on the 

parametric space approximation. Work on ANN-

ROMs for time-dependent phenomena involving 

arbitrarily large parameter spaces, as are common 

for many engineering design problems, is rarely 

covered in literature. 

To the authors best knowledge, the work presented 

here represents the first utilization of an ANN as a 

closure model in the POD-ROM modelling of 

parametric and time-dependent CFD problems in 

which the size and complexity of the parametric 

space can be arbitrarily high. The novelty and 

flexibility of the proposed approach consists of an 

efficient decoupling of the time-domain dynamics 

approximation from the parameter space 

approximation. The most adequate ANN 

architecture can thus be selected for each 

approximation, based on the available number of 

POD modes, parameter samples, computational time 

constraints, etc. The full model is built by leveraging 

the advantages of both deep and shallow neural 

network architectures in learning highly-nonlinear 

embeddings both in time and across the parameter 

space. A novel adaptive sampling strategy is also 

proposed for minimising the number of required 

samples in the parameter space while ensuring the 

most optimal training set for the shallow ANN. 

Section 2 of the paper details the proposed ROM 

methodology, while section 3 presents the numerical 

applications attempted. 

2. Methodology 

2.1 Proper Orthogonal Decomposition 

Let the full-order time-dependent parametric model 

be represented by: 

𝑹(𝒖(𝒙, 𝑡, 𝝁), 𝒙, 𝑡, 𝝁) = 𝟎 (1) 

Here, 𝑹:ℝ𝑁 × ℝ𝑃 × [0,∞) → ℝ𝑁 with 𝑁 typically 

being very large, 𝒖:Ω ⊂ ℝ𝑁 × ℝ𝑃 × [0,∞) → ℝ𝑁 

are the system variables defined on a subspace Ω of 

ℝ𝑁, 𝒙 ∈ ℝ𝑁 are spatial coordinates, 𝑡 is the time, 

defined in the semi-infinite interval [0,∞) and 

𝝁: D ⊂ ℝ𝑃 → ℝ𝑃 are the problem parameters 

defined on a subspace D of ℝ𝑃. 

It must be noted that (1) represents the discretized 

form of a single equation, for a single variable, but 

written for all grid points (finite volumes or finite 

elements, depending on the mathematical 

framework upon which the full-order solver whose 

solution will be approximated by the ROM is build). 

If the parametric model includes several equations 

for several variables, then the procedure described 

below is applied independently to each variable. 

A set of 𝑀 points (or samples) in the parametric 

space {𝝁1, 𝝁2, … , 𝝁𝑀, }, with 𝑀 typically being 

much smaller than 𝑁, is initially chosen. The full-

order model 𝑹 from equation (1) is then solved 

(marched) in time for each parameter sample 𝝁𝑝. 

The generation of the POD basis uses the method of 

snapshots introduced in (Sirovich, 1987). During the 

time-marching of the high-order model, at a set of 

𝑀𝑇 points (or samples) in time {𝑡1, 𝑡2, … , 𝑡𝑀𝑇 , }, 
snapshots of the full solution are captured and 

arranged in the 𝑁 ×𝑀𝑇 snapshots matrix: 

𝑺(𝝁𝑝) = 

[
𝒖(𝒙, 𝑡1, 𝝁𝑝), 𝒖(𝒙, 𝑡2, 𝝁𝑝), … ,

𝒖(𝒙, 𝑡𝑀𝑇 , 𝝁𝑝)
] 

(2) 

The deviation matrix 𝑫(𝝁𝑝) = [𝒖(𝒙, 𝑡1, 𝝁𝑝) −

�̅�, 𝒖(𝒙, 𝑡2, 𝝁𝑝) − �̅�, … , 𝒖(𝒙, 𝑡𝑀𝑇 , 𝝁𝑝) − �̅�] is then 

built, where �̅� is the snapshots mean vector, whose 

components are evaluated as �̅�𝑖 =
1

𝑀𝑇
∑ 𝑢𝑖(𝑡𝑗 , 𝝁𝑝)
𝑀𝑇
𝑗=1 , 𝑖 = 1,2, … , 𝑁. A singular value 

decomposition (SVD) of 𝑫 is computed, 𝑫 =
𝑼𝚺𝑽𝑇, where 𝑼 ∈ ℝ𝑁×𝑁, 𝑽 ∈ ℝ𝑀𝑇×𝑀𝑇 and 𝚺 ∈
ℝ𝑁×𝑀𝑇  is a diagonal matrix containing the ordered 

singular values 𝜎𝑖 ∈ ℝ, 𝜎1 > 𝜎2 > ⋯ > 𝜎𝑀𝑇 . The 

POD basis vectors (or modes) 𝜑𝑖(𝒙, 𝝁𝑝) ∈ ℝ
𝑁 are 

obtained by extracting the first 𝐾 column vectors of 

𝑼. The problem solution can then be approximated 

as: 

𝒖(𝒙, 𝑡, 𝝁𝑝) ≅ �̅�(𝒙, 𝝁𝑝) 

+∑𝛼𝑖(𝑡, 𝝁𝑝)𝜑𝑖(𝒙, 𝝁𝑝)

𝐾

𝑖=1

 
(3) 

Here, 𝛼𝑖(𝑡, 𝝁𝑝) are the POD coefficients. In a non-

intrusive approach such as used in this paper, 

equation (3) is considered for each snapshot in turn, 

and the POD coefficients are determined by a 

Petrov-Galerkin projection of the snapshots onto the 

POD basis vectors: 

𝛼𝑖(𝑡𝑗 , 𝝁𝑝) = 

(𝒖(𝒙, 𝑡𝑗, 𝝁𝑝) − �̅�(𝒙, 𝝁𝑝))
𝑇

𝜑𝑖(𝒙, 𝝁𝑝), 

𝑖 = 1,2, … , 𝐾, 𝑗 = 1,2, …𝑀𝑇 

(4) 

For many problems of interest, the most important 

part of the energy distribution is concentrated in just 

the first few modes. The truncation of the basis to 𝐾 

modes is done by selecting the smallest possible 

𝐾 ≪ 𝑀𝑇 such that a desired level of energy capture 

𝜀 ∈ [0,1] is achieved: 

∑ 𝜎𝑖
2𝐾

𝑖=1

∑ 𝜎𝑖
2𝑀𝑇

𝑖=1

≥ 𝜀 
(5) 

In order to obtain a POD approximation of the 

solution 𝒖(𝒙, 𝑡, 𝝁) at an arbitrary parameter value 

not included in the sampling {𝝁1, 𝝁2, … , 𝝁𝑀, } and at 

an arbitrary time not coinciding with any of the 

snapshot times, the variation of the POD coefficients 

over both the time domain and the entire parametric 

space is captured using artificial neural networks 

(ANNs). 
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2.2 Brief overview of Artificial Neural Networks 

An artificial neural network, often referred to as a 

neural network, is a computational model able to 

learn from a provided data set (for a thorough 

overview of ANNs see for example Haykin (2004)). 

Assume an arbitrary neuron 𝑗 in the network 

receives 𝑀 input signals {𝑥1, 𝑥2, … , 𝑥𝑀} (either from 

𝑀 sending neurons or as the network input data) and 

produces a scalar output signal 𝑦𝑗 (which can in turn 

be sent to 𝑁 receiving neurons or represent the 

network output data). The propagation function of 

neuron 𝑗 converts the vector input into a scalar input, 

often referred to as the net input. The most common 

choice is a weighted sum taking the form: 

𝑢𝑗 = 𝑓𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑥1, 𝑥2, … , 𝑥𝑀) 

=∑𝑤𝑘,𝑗𝑥𝐾

𝑀

𝑘=1

 
(6) 

Here, 𝑢𝑗 is the net input of neuron 𝑗 and 𝑤𝑘,𝑗  are the 

set of 𝑀 weights for each of the neuron’s vector 

input components. The activation function 

quantifies to what extent a given neuron is active 

(generating an output value). The activation function 

combines the net input with some threshold 𝑡𝑗 ∈ ℝ 

and is responsible for creating the activation state of 

the neuron: 

𝑎𝑗 = 𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑢𝑗, 𝑡𝑗) 

= 𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑𝑤𝑘,𝑗𝑥𝐾

𝑀

𝑘=1

, 𝑡𝑗) 
(7) 

Various choices of activation function exist in 

literature, among which the most common are so-

called sigmoid functions (Haykin, 2004), the 

hyperbolic tangent or the rectified linear unit 

function being widely used examples: 

𝑎𝑗 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

𝑎𝑗 = {
𝑧,   𝑧 ≥ 0
0,   𝑧 < 0

 

(9) 

The output function determines the neuron’s scalar 

output 𝑦𝑗 based on the activation state but is often 

taken as the identity function so that the output is 

directly given by 𝑎𝑗. 

𝑦𝑗 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑎𝑗) (10) 

Neurons are arranged in layers, with one input layer, 

𝐾 hidden layers and one output layer, with deep 

neural network typically having several hidden 

layers. The neurons in the input layer to not perform 

any computation tasks, having an identity activation 

function, while the output layer neurons typically 

use simpler, linear activation functions. 

The training of the neural network is the iterative 

process through which the neuron weights are 

determined. This is achieved by learning from a 

provided training set. Let 𝑓:ℝ𝐼 → ℝ𝑂 be a nonlinear 

function which the neural network must 

approximate. Let 𝒙1, 𝒙2, … , 𝒙𝑁𝑇𝑅, with 𝒙𝑖 ∈ ℝ
𝐼 be a 

set of 𝑁𝑇𝑅 training points, and 𝒚1, 𝒚2, … , 𝒚𝑁𝑇𝑅, with 

𝒚𝑖 = 𝑓(𝒙𝑖) ∈ ℝ
𝐼 be the function values 

corresponding to these points. The set {𝒙𝑖 , 𝒚𝑖}, 𝑖 =
1,2, … , 𝑁𝑇𝑅 represents the training set which must 

be supplied to the neural network. The goal is to 

approximate 𝑓 up to a certain tolerance 𝜀. The 

performance of the network is determined based on 

a performance function, typically the mean squared 

error (MSE): 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = ∑(‖𝒚𝑖 − 𝐹(𝒙𝑖)‖)
2

𝑁𝑇𝑅

𝑖=1

≤ 𝜀 

(11) 

Where 𝐹(𝒙𝑖) is the neural network prediction at 

training point 𝒙𝑖. The training iterations, usually 

called epochs, are aimed at calculating the optimal 

neuron weights such that (11) is satisfied and can be 

conducted using nonlinear regression algorithms 

such as the Levenberg-Marquardt algorithm 

(Marquardt, 1963) or stochastic gradient 

backpropagation approaches such as the ADAM 

algorithm (Kingma and Ba, 2014). 

2.3 Generating the Artificial Neural Networks 

Constructing the non-intrusive ROM requires a two-

stage process. In the first stage, a deep ANN (D-

ANN) is trained for each parameter value, D-ANN 

which captures the unsteady behaviour of model (1) 

for that specific sample in the parametric space: 

{𝑡1, 𝑡2, … , 𝑡𝑀𝑇 , }
𝐷−𝐴𝑁𝑁(𝝁𝑝)
→         

{𝜶(𝑡1, 𝝁𝑝), 𝜶(𝑡2, 𝝁𝑝), … , 𝜶(𝑡𝑀𝑇 , 𝝁𝑝)},  

𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀 

(12) 

With the D-ANNs of (12) generated and trained, the 

solution at any moment in time can be calculated as: 

�̃�(𝒙, 𝑡, 𝝁𝑝) = 

�̅�(𝒙, 𝝁𝑝) +∑�̃�𝑖(𝑡, 𝝁𝑝)𝜑𝑖(𝒙, 𝝁𝑝)

𝐾

𝑖=1

,  

𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀 

(13) 

Where �̃�𝑖(𝑡, 𝝁𝑝) are the POD coefficients 

approximated at time 𝑡 by each of the D-ANNs 

trained in (12) and are given by �̃�(𝑡, 𝝁𝑝) = 𝐷 −

𝐴𝑁𝑁(𝝁𝑝)(𝑡). The second stage of the process is 

centred around constructing the approximation in 

the parameter space. Let 𝑡𝐷 be the desired time for 

which the solution of (1) must be determined. Using 

equation (13), the approximation at 𝑡𝐷 of the high-

order solution �̃�(𝒙, 𝑡𝐷 , 𝝁𝑝), 𝑝 = 1,2, … ,𝑀 is 

calculated at all available parameter samples. Next, 

an ANN is trained using the available set of �̃� values 

to build the correspondence: 
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{𝝁1, 𝝁2, … , 𝝁𝑀, }
𝑆−𝐴𝑁𝑁
→     

{
�̃�(𝒙, 𝑡𝐷, 𝝁1), �̃�(𝒙, 𝑡𝐷, 𝝁2), … ,

�̃�(𝒙, 𝑡𝐷, 𝝁𝑀)
} 

(14) 

A shallow ANN (S-ANN) with one single hidden 

layer with a relatively low number of neurons and 

using Radial Basis Functions (RBFs) is used for this 

step. Finally, the solution of (1) at the desired time 

𝑡𝐷 and an arbitrary parameter value 𝝁𝐷 is given by 

the S-ANN trained in (14) and can formally be 

expressed as: 

�̂�(𝒙, 𝑡𝐷 , 𝝁𝐷) = 𝑆 − 𝐴𝑁𝑁(𝝁𝐷) (15) 

2.4 An adaptive sampling strategy 

Ensuring the quality of the ANN-ROM 

approximation is adequate requires a judicious 

choice of parameter samples. This is especially true 

in instances where the system response depends 

nonlinearly on the values of some or all of the 

parameters. An adaptive sampling strategy can be 

utilised to this effect. 

Assume a small, initial set of parameter samples 
{𝝁1, 𝝁2, … , 𝝁𝑀, } is chosen (selected a priori by 

methods such as Latin Hypercube Sampling), the 

POD basis 𝜑𝑖(𝝁𝑝), 𝑖 = 1,2, … , 𝐾 and coefficients 

are determined and the D-ANNs which capture the 

unsteady behaviour of the system at each of these 

parameter samples are built as described earlier, 

namely {𝑡1, 𝑡2, … , 𝑡𝑀𝑇 , }
𝐷−𝐴𝑁𝑁(𝝁𝑝)
→         

{𝜶(𝑡1, 𝝁𝑝), 𝜶(𝑡2, 𝝁𝑝), … , 𝜶(𝑡𝑀𝑇 , 𝝁𝑝)},  

𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀. Next, a small number 𝑁𝑇 of 

representative instances in time is chosen, and the 

set of S-ANNs is built as shown in (14) for each of 

the 𝑁𝑇 instances: 

{𝝁1, 𝝁2, … , 𝝁𝑀, }
𝑆−𝐴𝑁𝑁𝑖
→      

{�̃�(𝒙, 𝑡𝑖 , 𝝁1), �̃�(𝒙, 𝑡𝑖 , 𝝁2),… , �̃�(𝒙, 𝑡𝑖 , 𝝁𝑀)}, 
 𝑖 = 1,2, … , 𝑁𝑇 

(16) 

The relative influence of each parameter sample on 

the overall quality of the approximation is defined 

as: 

𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) = 

∑ ‖�̃�(𝒙, 𝑡𝑖 , 𝝁𝑗) − �̃�
−𝑗(𝒙, 𝑡𝑖, 𝝁𝑗)‖

𝑁𝑇
𝑖=1

∑ ∑ ‖�̃�(𝒙, 𝑡𝑖 , 𝝁𝑗) − �̃�
−𝑗(𝒙, 𝑡𝑖, 𝝁𝑗)‖

𝑁𝑇
𝑖=1

𝑀
𝑘=1

, 

 𝑗 = 1,2, … ,𝑀 

(17) 

Here, �̃�(𝒙, 𝑡𝑖, 𝝁𝑗) = 𝑆 − 𝐴𝑁𝑁𝑖(𝝁𝑗) is the 

approximation of the solution at time instance 𝑡𝑖 and 

parameter sample 𝝁𝑗 using the S-ANNs constructed 

in (16), while �̃�−𝑗(𝒙, 𝑡𝑖, 𝝁𝑗) = 𝑆 − 𝐴𝑁𝑁𝑖
−𝑗
(𝝁𝑗) 

represents the same approximation, but as obtained 

with S-ANNs constructed by leaving out the 𝑗-th 

parameter sample from the training set: 

 

{𝝁1, 𝝁2, … , 𝝁𝑗−1, 𝝁𝑗+1, … , 𝝁𝑀, }
𝑆−𝐴𝑁𝑁𝑖

−𝑗

→       

{

�̃�(𝒙, 𝑡𝑖, 𝝁1), �̃�(𝒙, 𝑡𝑖, 𝝁2), … ,

�̃�(𝒙, 𝑡𝑖 , 𝝁𝑗−1), �̃�(𝒙, 𝑡𝑖, 𝝁𝑗+1), … ,

�̃�(𝒙, 𝑡𝑖, 𝝁𝑀)

}, 

 𝑖 = 1,2, … , 𝑁𝑇 

(18) 

The quantity 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) is a measure of the total 

sensitivity of the S-ANN approximations with 

respect to the 𝑗-th parameter sample, and is 

calculated based on the well-known Leave One Out 

(LOO) verification strategy. 

When selecting a new parameter sampling point, it 

is important to simultaneously improve the quality 

of the ANN approximations for all variables. To 

achieve this outcome, treating the system as a multi-

response system and adopting a suitable Lipschitz 

constant as an indicator of the local response 

complexity (Lovison and Rigoni, 2011) are used. 

In the study of partial differential equations, 

Lipschitz constants are employed for bounding the 

nonlinear character, and therefore the complexity, of 

the functions involved: 

𝐿𝑓,𝐷 = 𝑠𝑢𝑝
𝑥1,𝑥2∈𝐷

|𝑓(𝑥1) − 𝑓(𝑥2)|

|𝑥1 − 𝑥2|
 (19) 

After equation (17) is evaluated for all parameters in 

the initial set {𝝁1, 𝝁2, … , 𝝁𝑀, } and for all variables 

(for example, 𝑝 − 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) for pressure, 

𝑢 − 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) for the 𝑢 velocity components, 

etc.), the parametric space is heavily populated 

(again using a method such as Latin Hypercube 

Sampling) with a set of candidate sample points 

{𝝊1, 𝝊2, … , 𝝊𝑄 , }, with 𝑄 ≫ 𝑀. The potential of 

enrichment of each candidate sample is then 

evaluated as: 

𝑃𝑜𝑡(𝝊𝑖) = 𝑚𝑎𝑥(𝑇1, 𝑇2, 𝑇3), 

𝑇1 = 𝑝 − 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) ∙

𝐿𝑝(𝝊𝑖)

∑ 𝐿𝑝(𝝊𝑙)𝝊𝑙

⋅ 𝑑(𝝊𝑖 , 𝝁𝑗), 

𝑇2 = 𝑢 − 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) ∙

𝐿𝑢(𝝊𝑖)

∑ 𝐿𝑢(𝝊𝑙)𝝊𝑙

∙ 𝑑(𝝊𝑖 , 𝝁𝑗), 

𝑇3 = 𝑣 − 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) ∙

𝐿𝑣(𝝊𝑖)

∑ 𝐿𝑣(𝝊𝑙)𝝊𝑙

∙ 𝑑(𝝊𝑖 , 𝝁𝑗), 

 𝑖 = 1,2, … , 𝑄, 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑑(𝝊𝑖 , 𝝁𝑘) 

(20) 

Here, 𝑑(𝝊𝑖 , 𝝁𝑗) is the Euclidean distance between 

two sample points and 𝐿𝑝(𝝊𝑖), 𝐿𝑢(𝝊𝑖) and 𝐿𝑣(𝝊𝑖) 

are the Lipschitz constants calculated as 𝐿𝑝(𝝊𝑖) =

𝑠𝑢𝑝
𝝁𝑘∈{𝝁1,𝝁2,…,𝝁𝑀,}

∑ ‖
𝑝(𝒙, 𝑡𝑖 , 𝝊𝑖) −

𝑝(𝒙, 𝑡𝑖 , 𝝁𝑘)
‖𝑁𝑇

𝑖=1 ‖𝝊𝑖 − 𝝁𝑘‖⁄ . 

Through (20), a balance is achieved between three 

distinct effects: a) improvement of the local quality 

of the S-ANN model by focusing on those samples 

having the highest relative influence; b) focusing on 
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the regions of stronger nonlinearity as defined by the 

Lipschitz constants; c) parameter space exploration 

through the Euclidean distance, resulting in a 

decrease in the potential of enrichment if the 

candidate sample is too close to an already existing 

sample. 

Finally, the candidate sample having the highest 

potential 𝝁𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑃𝑜𝑡(𝝊𝑘) is added to the 

set, which becomes {𝝁1, 𝝁2, … , 𝝁𝑀 , 𝝁𝑀+1 =
𝝁𝑛𝑒𝑤},𝑀 ← 𝑀 + 1 and the procedure continues 

until the desired number of samples have been added 

to the set. 

2.5 The ANN-ROM algorithm 

The offline procedure of constructing the ANN-

ROM can be summarised as following: 

(a) Select initial set of parameter samples 
{𝝁1, 𝝁2, … , 𝝁𝑀, } using Latin Hypercube Sampling. 

(b) For each parameter sample in the set: 

(b.1) run the full-order CFD solver and capture the 

sequence of snapshots. 

(b.2) for each variable in the snapshots: 

(b.2.1) obtain a set of POD basis function by using 

SVD of the snapshot matrix in equation (2). 

(b.2.2) determine the POD coefficients by projecting 

the snapshots on the POD basis as shown in equation 

(4). 

(b.2.3) train the deep ANNs (12) which capture the 

unsteady behaviour of model. 

(c) Use the adaptive sampling procedure to add new 

parameter samples until the desired number has been 

added to the set: 

(c.1) for each sample already in the set: 

(c.1.1) train the shallow ANNs as shown in (16) and 

(18). 

(c.1.2.) calculate the relative influence coefficient 

given by equation (17). 

(c.2) populate the parameter space with the 

candidate samples {𝝊1, 𝝊2, … , 𝝊𝑄 , } using Latin 

Hypercube Sampling. For each candidate sample: 

(c.2.1) calculate the Lipschitz constants with respect 

to all samples already in the set {𝝁1, 𝝁2, … , 𝝁𝑀, } 
using the S-ANNs trained in step (c.1.1). 

(c.2.2) calculate the enrichment potential using 

equation (20). 

(c.3) add the candidate sample having the highest 

potential to the set and: 

(c.3.1) run the full-order CFD solver and capture the 

sequence of snapshots for the new sample. 

(c.3.2) obtain the POD basis, POD coefficients and 

deep ANN as in steps (b.1) – (b.2). 

The online procedure of using the ANN-ROM can 

be summarised as following: 

(a) Select an arbitrary parameter value 𝝁𝐷 and a 

series of time instances {𝑡1, 𝑡2, … , 𝑡𝑝} at which the 

solution is to be approximated. 

(b) for each time instance in the series 

(b.1) calculate the POD coefficients corresponding 

to that time instance using the trained deep ANNs 

for all parameter values in the set and for all 

variables of interest (𝑝, 𝑢, etc). 

{�̃�(𝑡𝑖, 𝝁𝑝), �̃�(𝑡𝑖 , 𝝁𝑝), … , �̃�(𝑡𝑖, 𝝁𝑝)}, 

 𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀 
(21) 

(b.2) Obtain the solutions corresponding to that time 

instance for all parameter values in the set: 

𝑝(𝒙, 𝑡𝑖 , 𝝁𝑝) = 

�̅�(𝒙, 𝝁𝑝) +∑�̃�𝑝,𝑖(𝑡𝑖 , 𝝁𝑝)𝜑𝑝,𝑖(𝒙, 𝝁𝑝)

𝐾

𝑖=1

, 

�̃�(𝒙, 𝑡𝑖 , 𝝁𝑝) = 

�̅�(𝒙, 𝝁𝑝) +∑�̃�𝑢,𝑖(𝑡𝑖 , 𝝁𝑝)𝜑𝑢,𝑖(𝒙, 𝝁𝑝)

𝐾

𝑖=1

,  

𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀 

(22) 

(b.3) For all variables of interest, train the shallow 

ANN as shown in (14). 

(b.4) Use the shallow ANN to obtain the predictions 

for the arbitrary parameter value �̂�(𝒙, 𝑡𝑖, 𝝁𝐷), 
�̂�(𝒙, 𝑡𝑖, 𝝁𝐷), etc. 

2.6 Governing flow equations 

The open-source SU2 solver (Economon et al., 

2016) is used for the applications presented in the 

paper. The incompressible Navier-Stokes equations, 

governing the low-speed flow of a viscous fluid, 

written in differential form, are (for two-

dimensional flows): 

∇ ∙ 𝑽 = 0 
𝜕𝑽

𝜕𝑡
+ ∇(𝑽⨂𝐕) = −

∇𝑝

𝜌
+ 𝜐∇2𝑽 

(23) 

With: 

𝑽 = [𝑢 𝑣]𝑇  

Where 𝑽 is the velocity vector having components 𝑢 

and 𝑣 (assuming a Cartesian reference system), 𝜌 is 

the (constant) density, 𝑝 is the pressure and 𝜐 is the 

kinematic viscosity. 
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The Euler equations, governing the compressible 

flow of an inviscid fluid, written in differential form, 

are (for two-dimensional flows): 

𝜕𝑼

𝜕𝑡
+ ∇ ∙ 𝑭 = 0 (24) 

With: 

𝑼 = [𝜌 𝜌𝑢 𝜌𝑣 𝜌𝐸]𝑇 

𝑭 = 𝑭𝑥𝒊 + 𝑭𝑦𝒋 

𝑭𝑥 = [𝜌𝑢 𝜌𝑢𝑢 + 𝑝 𝜌𝑢𝑣 𝜌𝑢𝐻]𝑇 

𝑭𝑦 = [𝜌𝑣 𝜌𝑣𝑢 𝜌𝑣𝑣 + 𝑝 𝜌𝑣𝐻]𝑇 

 

Where 𝑼 are the conservative variables, 𝜌 is the 

density, 𝑢 and 𝑣 are the velocity components 

(assuming a Cartesian reference system), 𝐸 is the 

internal energy, 𝑭 is the flux vector having 

components 𝑭𝑥 and 𝑭𝑦, 𝑝 is the pressure and 𝐻 is 

the enthalpy. 

3. Applications 

The proposed ANN-ROM methodology is 

demonstrated on the prediction of two canonical test 

cases, which are unsteady incompressible laminar 

flow around a circular cylinder and the unsteady 

transonic flow around a sinusoidally pitching NACA 

0012 aerofoil. It must be noted that the main focus 

of this work rests with verifying the capabilities of 

the ANN-ROM method against a variety of flow 

problems. As such, the test cases are selected to 

capture various flow phenomena of interest such as 

vortex shedding and shock waves. 

3.1 Unsteady incompressible laminar flow 

around a circular cylinder 

The cylinder has a diameter 𝐷 = 1𝑚 and is placed 

in a domain of length 𝐿/𝐷 = 20 and height 𝐻/𝐷 =
10. A fully structured grid of approximately 12000 

cells is generated as shown in Figure 1. The six dots 

visible in the figure indicate the positions of 

monitoring points that will be used for a quantitative 

evaluation of the ROM accuracy, the exact 

coordinates of these points being provided at the 

relevant point in the paper. 

The velocity at the inlet is set to a constant value 

𝑢𝑖𝑛𝑙𝑒𝑡 = 1𝑚/𝑠. An implicit second-order accurate  

 

 

Figure 1. The circular cylinder structured grid 

Flux Difference Splitting (FDS) scheme is used for 

the momentum equations. 

Time marching is done using a second-order 

accurate dual time stepping method. At each 

physical time step, to accelerate dual time 

convergence to steady stage, a 3-level multigrid 

approach is used. The unsteady flow problem is run 

with a time step ∆𝑡 = 0.005𝑠 for a total physical 

time of 𝑡𝑚𝑎𝑥 = 50𝑠. 

In order to verify that the selected grid density is 

sufficient, a grid convergence study is performed. A 

coarse grid of 4000 cells and a fine grid if 36000 

cells are generated. To verify for grid convergence, 

the average value of the drag coefficient 𝐶𝐷
𝐴𝑣𝑔

 is 

determined for the time interval between 𝑡 = 40𝑠 
and 𝑡𝑚𝑎𝑥 = 50𝑠 . The grid convergence study 

results for 𝑢𝑖𝑛𝑙𝑒𝑡 = 1𝑚/𝑠 and a Reynolds number 

𝑅𝑒 = 30000 are included in Table 1. It is seen that 

the 𝐶𝐷
𝐴𝑣𝑔

 error between the 12000 cells medium grid 

and the Richardson extrapolation is 2.9%. As the 

primary focus of this work is to verify the 

capabilities of the ANN-ROM in approximating the 

full-order results, the RANS results obtained on the 

medium grid are considered to be sufficient for 

achieving this verification. 

A time step size study is performed to select the 

required time step value. The study is performed on 

the medium grid of 12000 cells. Three values are 

chosen, ∆𝑡 = 0.0025𝑠, ∆𝑡 = 0.005𝑠 and ∆𝑡 =
0.01𝑠, with the results being summarised in Table 2. 

Table 1. Grid convergence study for circular cylinder problem 

Coarse Grid 

𝐶𝐷
𝐴𝑣𝑔

 

Medium Grid 

𝐶𝐷
𝐴𝑣𝑔

 
Fine Grid 𝐶𝐷

𝐴𝑣𝑔
 

Order of 

Convergence 

Richardson 

Extrapolation 

Grid 

Convergence 

Index 

0.688 0.715 0.727 1.476 0.736 1.017 

 

Table 2. Time step study for circular cylinder problem 

 ∆𝑡 = 0.0025𝑠 ∆𝑡 = 0.005𝑠 ∆𝑡 = 0.01𝑠 
Strouhal Number 0.621 0.615 0.559 
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The Strouhal number 𝑆𝑡 = 𝑓𝐷/𝑢𝑖𝑛𝑙𝑒𝑡 is calculated 

based on the vortex shedding frequency 𝑓 for the 

time interval between 𝑡 = 40𝑠 and 𝑡𝑚𝑎𝑥 = 50𝑠. 
Reducing the time step size below ∆𝑡 = 0.005𝑠 has 

only a small effect on the obtained unsteady 

characteristics, and so the time step value is 

considered for the subsequent calculations. 

Simulations are done at 3 values of the Reynolds 

number corresponding to the laminar flow regime, 

𝑅𝑒 = [25000, 30000, 35000], with 𝑅𝑒 

representing the only parameter of this application. 

The adaptive sampling strategy is not used for this 

application. Snapshots of the pressure 𝑝 and the two 

velocity components 𝑢 and 𝑣 are taken every 10 time 

steps, for a total of 1000 × 3 snapshot vectors for 

each parameter sample point. 

Figure 2 shows the first 140 singular values of the 𝑢 

velocity snapshots matrix, nondimensionalised with 

respect to the largest singular value 𝜎1, as well as the 

energy content capture (calculated using (5)) as 

function of truncating the POD basis to various 

numbers 𝐾 of modes. It was decided to proceed with 

𝐾 = 50 for generating the ROM. 

The D-ANN which captures the unsteady behaviour 

of model has five hidden layers, with 8, 16, 32, 64 

and 64 neurons, and one output layer. Neurons in  

 

 

Figure 2. Singular values of u velocity snapshots 

matrix and the energy content capture as 

function of the retained number of POD modes 

hidden layers 1, 3 and 5 use the hyperbolic tangent 

sigmoid activation function, hidden layers 2 and 4 

use the rectified linear unit activation function while 

the output layer neurons use a linear activation 

function. Training is done using the ADAM 

algorithm for a maximum of 5000 epochs. From the 

1000 snapshots in each training set, 70% are used for 

the actual training, and 15% each for validation and 

testing. 

In order to test the capabilities of the ANN-ROM, a 

new Reynolds number value of 𝑅𝑒 = 32000 is 

chosen. Figure 3 shows contour plots of the velocity 

magnitude 𝑉 = √𝑢2 + 𝑣2 as obtained with both the 

full-order CFD solver and the ANN-ROM, at six 

selected instances in time, namely 𝑡 =
[10, 18, 25, 33, 42, 49]. It is seen that the ANN-

ROM predicts the flow filed with generally good 

accuracy. The loss in stability of the wake and the 

shedding of the first vortex are accurately captured 

at 𝑡 = 10 and 𝑡 = 18. The downstream advection of 

the initially-shed vortices is well tracked by the 

ANN-ROM, however at 𝑡 = 33, as some of the 

vortices are pushed above the longitudinal centreline 

of the flow filed due to the influence of the strong 

first vortex, some discrepancies can be observed 

between the CFD solution and the ANN-ROM. As 

the flow filed progresses towards the characteristic 

periodic alternating vortex shedding pattern visible 

especially at 𝑡 = 49, the quality of the ANN-ROM 

prediction increases, with a good capture of 

shedding frequency and typical vortex size. 

A quantitative overview of the ANN-ROM 

prediction is made by choosing a number of six 

points in the flow domain and plotting the time 

evolution of gauge pressure and velocity 

components at these locations. The chosen points 

have coordinates (𝑥, 𝑦) = (1, −0.49), (1,0),  
(1,0.49), (5, −1), (5,0) and (5,1). Figure 4 presents 

the time evolution of the flow variables at these 

points. It is immediately observed that values 

predicted by the ANN-ROM approximate the values 

from the CFD well, but are somewhat nosy, with 

small instantaneous fluctuations appearing for all 

three variables, but especially visible for the 

pressure, and for the entire duration of the 

calculation. This behaviour is possibly due to the 

lack of sufficient training data, both for the unsteady 

D-ANN but especially for the parametric S-ANN. 

However, many realistic engineering scenarios 

operate within the constraints of reduced datasets, as 

the computational costs of running the unsteady full-

order model for hundreds of parameter samples, or 

the storage requirements related to saving thousands 

of solutions for each unsteady run can be 

prohibitive. 

The pressure coefficient distribution is shown in 

Figure 5 at the same six instances in time as those 

used for the velocity magnitude contour plots shown 
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earlier. The quality of the ANN-ROM prediction is 

overall fair, showing low error in the region of 

attached flow and favourable pressure gradient on 

the front side of the cylinder, and higher error for the 

separated flow on the back of the cylinder, where the 

alternating vortex shedding initiates. 

The variation in time of the cylinder’s drag and lift 

coefficients are depicted in Figure 6. The ANN-

ROM prediction of the lift coefficient is relatively 

good, although showing the same fluctuations as 

were seen for the flow variables at the monitoring 

points downstream of the cylinder. Again, this 

behaviour is possibly due to the lack of sufficient 

training data. The drag coefficient prediction is not 

accurate and would not represent an adequate 

substitute for the full-order simulation. It was 

decided to include these results nonetheless, as the 

laminar flow around a circular cylinder is widely 

used as test case for various ROM strategies, 

however quantitative results related to the 

aerodynamic coefficients or the surface pressure 

coefficient distribution are not often presented. 

 

                            (a)                                                       (b)                                                        (c) 

 

                            (d)                                                       (e)                                                        (f)  

Figure 3. Plot of velocity magnitude for full-order CFD and ANN-ROM solutions for flow around a 

circular cylinder at a Reynolds number of 32000 

 

                            (a)                                                       (b)                                                        (c) 

 

                            (d)                                                       (e)                                                        (f) 

Figure 4. Time variation of velocity components and gauge pressure at points with (X, Y) coordinates of: 

(a) (1, -0.49), (b) (5, -1), (c) (1, 0), (d) (5, 0), (e) (1, 0.49), (f) (5, 1) 
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                            (a)                                                       (b)                                                        (c) 

 

                            (d)                                                       (e)                                                        (f)  

Figure 5. Pressure coefficient distribution for flow around a circular cylinder at a Reynolds number of 

32000 

 

Figure 6. Time variation of cylinder drag and lift coefficients 

 

3.2 Unsteady transonic flow around a 

sinusoidally pitching NACA 0012 aerofoil 

The NACA 0012 aerofoil has a chord 𝑐 = 1 and is 

placed in a relatively small domain of length 𝐿/𝑐 =
8 and height 𝐻/𝑐 = 6. A fully structured mesh of 

approximately 7,000 cells is generated and shown in 

Figure 7. The three dots visible in the figure indicate 

the positions of monitoring points that will be used 

for a quantitative evaluation of the ROM accuracy, 

the exact coordinates of these points being provided 

at the relevant point in the paper. 

The inviscid compressible flow is run at Mach 

number values between 𝑀 = 0.80 and 𝑀 = 0.85, 

the Mach number representing the first parameter of 

this problem. The Euler equations are discretised 

using an implicit second-order accurate Jameson-

Schmidt-Turkel (JST) scheme, while time marching 

is done using a second-order accurate dual time  

 



11 

Int. J. Comput. Appl. Tech., Vol. X, No. Y, 2020 

Copyright © 2020 Inderscience Enterprises Ltd. 

 

Figure 7. The structured grid around the NACA 

0012 aerofoil 

stepping method. At each physical time step, to 

accelerate dual time convergence to steady stage, a 

3-level multigrid approach is used. The unsteady 

flow problem is run with a time step ∆𝑡 = 0.01𝑠 for 

a total physical time of 𝑡𝑚𝑎𝑥 = 1𝑠. 

The farfield boundaries are positioned relatively 

close to the aerofoil. While this might affect the 

accuracy of the numerical flow solution, it will not 

affect the ANN-ROM generation and thus is 

considered sufficient for assessing the capabilities of 

the ANN-ROM. In order to verify that the selected 

grid density is sufficient, a grid convergence study 

is performed. A coarse grid of 3000 cells and a fine 

grid if 15000 cells are generated. The study is 

performed for steady-state flow conditions, at a 

Mach number of 𝑀 = 0.82 and an aerofoil angle of 

attack of 𝛼 = 3°. The grid convergence results are 

included in Table 3. It is seen that for the medium 

grid of 7000 cells, the drag coefficient error 

compared to the Richardson extrapolation is 3.97%, 

while the lift coefficient error is 1.6%. For the 

inviscid flow case considered, the medium grid is 

considered for the rest of calculations required to 

generate the ANN-ROM. 

Table 3. Grid convergence study for NACA0012 aerofoil in transonic flow problem 

Coarse Grid 𝐶𝐷 
Medium Grid 

𝐶𝐷 
Fine Grid 𝐶𝐷 

Order of 

Convergence 

Richardson 

Extrapolation 

Grid 

Convergence 

Index 

0.0752 0.0706 0.0689 2.472 0.0679 0.976 

Coarse Grid 𝐶𝐿 
Medium Grid 

𝐶𝐿 
Fine Grid 𝐶𝐿 

Order of 

Convergence 

Richardson 

Extrapolation 

Grid 

Convergence 

Index 

0.625 0.598 0.591 3.353 0.589 0.988 

 

The singular values of the density snapshots matrix 

and the energy content capture (calculated using (5)) 

as function of truncating the POD basis to various 

numbers 𝐾 of modes are depicted in Figure 8. This 

problem shows a much higher concentration of 

energy in the first few modes, as compared with the 

flow around the circular cylinder, with 𝐾 = 6 modes 

being sufficient to obtain an energy content capture 

above 99.9%. It was decided to select 𝐾 = 8 modes 

(energy content above 99.95%) for generating the 

ROM. Density is the variable for which the energy 

content capture grows slowest as function of 𝐾, this 

being the reason for selecting the 𝐾 value based on 

density. 

The D-ANN which captures the unsteady behaviour 

of model has five hidden layers, but the number of 

neurons per layer is much reduced compared to the 

previous application, having only 4, 8, 16, 16 and 8 

neurons in the hidden layers. The activation 

functions, division of training data samples and the 

training algorithm remain the same as they were for 

the circular cylinder application. The S-ANN used 

for providing the approximations in the parameter 

space is now configured with 125 neurons in the 

hidden layer, a much higher number than before, but 

much more adequate for capturing the nonlinearities 

present. 

Testing of the ANN-ROM accuracy is done at a 

Mach number of 𝑀 = 0.835, a pitching amplitude 

�̂� = 4.5° and an angular frequency 𝜔 = 1.05 ×
2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, after checking that this point in the 

parameter space was not included in the ROM 

generation by the adaptive sampling procedure. 

Figure 9 shows contour plots of the Mach number at 

six selected instances in time, 𝑡 =
[0.15, 0.30, 0.45, 0.60, 0.75, 0.90]. There is a 

qualitative agreement between the ROM prediction 

and the full-order solution is terms of shock wave 

location, extend of supersonic flow over the aerofoil 

surface as well as the alternating appearance and 

subsidence of the supersonic flow over the upper and 

lower surfaces as the sinusoidal pitching motion 

progresses in time. 

In the case of flow around aerodynamic bodies such 

as aerofoils, obtaining a pressure coefficient 

distribution which is as accurate as possible over 

both upper and lower surfaces is very important, 

regardless of the distribution being obtained by a 

full-order or a reduced-order model. Figure 10 

depicts 𝐶𝑝 versus chordwise location at the same six 

instances in time as used for the qualitative overview 

presented earlier. 
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Figure 8. Singular values of density snapshots 

matrix and the energy content capture as 

function of the retained number of POD modes 

The ANN-ROM prediction is very good, as the two 

curves are superimposed for most of the aerofoil 

chord. The pressure increase across the shock wave 

is not captured as sharply as in the full-order 

solution, a much smoother variation in the pressure 

coefficient being present both in front and after the 

shock. However, the chordwise location of the shock 

wave is well captured, as is the maximum gradient 

across the shock. This smoothing effect is due to the 

shallow RBF network approximation across the 

entire parametric space, being mostly eliminated 

when the comparison is made at one of the parameter 

samples chosen in the ANN-ROM generation phase. 

The time variations of the force coefficients 

corresponding to the projection of the resultant 

aerodynamic force on the x-axis and z-axis are 

shown in Figure 11. The vertical force coefficient 𝐶𝑧 
is very well captured, while the ANN-ROM 

prediction of the horizontal force coefficient 𝐶𝑋 has 

a maximum error of approximately 10% (at 𝑡 =
0.27𝑠𝑒𝑐, the full-order value is 0.0538 while the 

reduced-order value is 0.0487). This is due to the 

smooth nature of the ANN-ROM pressure 

coefficient in front and after the shock wave. 

 

 

                            (a)                                                       (b)                                                        (c)  

 

                            (d)                                                       (e)                                                        (f) 

Figure 9. Plot of Mach number for full-order CFD and ANN-ROM solutions for the transonic flow 

around the pitching NACA 0012 aerofoil 
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                            (a)                                                       (b)                                                        (c) 

 

                            (d)                                                       (e)                                                        (f) 

Figure 10. Pressure coefficient distribution over the pitching NACA 0012 aerofoil 

 

Figure 11. Time variation of aerodynamic force coefficients for the pitching NACA 0012 aerofoil 

 

3.4 Computational costs 

Table 4 summarises the computational cost incurred 

in the generation of the ROM. All CPU times are 

normalised by the CPU time required to run one 

unsteady CFD solution. The unsteady CFD solution 

times used for normalisation are different for each 

test case. It will be noted that all the numerical 

experiments shown in this paper were conducted on 

an Intel i5-9600K workstation with 16GB of RAM 

and an NVIDIA RTX2070 GPU. 

By far, the largest amount of time of the offline 

phase of the algorithm is spent on running the full-

order CFD solver and collecting the required 

snapshots. Each circular cylinder run took 

approximately 3 hours (including writing/reading 

data and saving all snapshots), while each run of the 

transonic NACA0012 analysis took approximately 

15 minutes. Scaling the snapshots matrix and 

generating the POD basis is the least expensive step 

of the algorithm, amounting to only a small fraction 

of the CPU cost required to run one unsteady CFD 

solution. On the hardware used, this step took 

approximately 6 × 10−2𝑠 per parameter sample 

point and per flow variable, leading to a maximum 

time of around 30𝑠 for the second application, 

having 125 parameter sample points. 
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Table 4. Computational cost of ROM generation 

 
Circular Cylinder 

CPU Time 

Transonic Inviscid NACA0012 

CPU Time 

Snapshots Collection 3 125 

POD Basis 5.3 × 10−5 3 × 10−2 

D-ANN Training 8.3 × 10−3 5.55 

 

Table 5. Computational cost of ROM execution 

 
Circular Cylinder 

CPU Time 

Transonic Inviscid NACA0012 

CPU Time 

CFD Solution 9 × 105 4.4 × 103 
ROM Solution (one time instance) 1 1 

 

The second largest amount of time is spent on 

generating the D-ANNs. The CPU cost of this step 

is proportional to the number of networks to be 

trained and can be as costly as several CFD 

solutions. Leveraging the advantages of the 

massively-parallel architecture of the GPU, the 

average D-ANN training time was approximately 

10𝑠 per network, leading to a maximum training 

time (again for the second test case) of 1.35 hours. 

During the adaptive sampling procedure, additional 

time is spend generating the S-ANNs required for 

the relative influence coefficients. The training time 

of the single layer RBF-based networks was very 

fast, typically around 5 × 10−2𝑠 per network for the 

125 neuron architecture of the second test case. 

The CPU costs required to run the ROM are 

presented in Table 5. CPU times are normalised by 

the CPU time required to run the ANN-ROM. The 

ROM execution time provided in the table is for 

predicting the solution at one time instance. For 

multiple time instances, the ROM CPU time in 

Table 5 is simply multiplied by the number of 

instances. 

The CPU running time of the ROM is given by the 

number of parameter space samples. The CPU 

speed-up obtained for problems with a high number 

of samples and a low CFD solution time will be 

lower, as seen for second test case, but is still 

significant. For more complex CFD solutions, the 

CPU speed-up will be substantial, as observed for 

the first test case. The online computational costs are 

given by running the trained D-ANNs for all 

parameter samples, taking approximately 10−3𝑠 per 

run, and training the S-ANN once for each time 

instance at which the solution is to be calculated. 

Training times depend on the total number of 

parameter samples and can take approximately 1𝑠 
for the 125 neuron architecture. 

It must be noted that the hyperparameters of the D-

ANNs used in the current work were set based on a 

quick naïve study, and since the results obtained 

were satisfactory, a thorough search for optimal the 

network configuration and hyperparameter values 

was deemed unnecessary. Further improvement in 

D-ANN accuracy can be obtained by automating the 

search for the optimal number of hidden layers, 

neurons, batch size, learning rate, etc. This will 

significantly increase the D-ANN training time, but 

the procedure can be done for a single parameter 

sample point (a single network) and would be 

necessary for very complex unsteady flow fields. 

4. Conclusions 

In this work, a non-intrusive reduced-order model 

was proposed, based on proper orthogonal 

decomposition, and using both deep and shallow 

neural network architectures. The proposed 

approach consists of an efficient decoupling of the 

time-domain dynamics approximation, done with 

the deep network, from the parameter space 

approximation, done with the shallow network. The 

model developed is suitable for parametric unsteady 

flow problems. Numerical studies were conducted 

for incompressible laminar flow around a circular 

cylinder and inviscid transonic flow around a 

pitching NACA0012. Overall, the results indicate 

that the ANN-ROM model can achieve very good 

accuracy. The deep neural network can learn the 

unsteady variations of the POD coefficients to a 

good degree of accuracy even with as few as 100 

training samples in the time domain, as indicated by 

the two test cases. It was observed that the shallow 

neural network is good at capturing the solution 

variations across the parameter space, but sufficient 

training samples must be provided to avoid random 

fluctuations in the predicted values, as seen for the 

circular cylinder test case. The pressure coefficient 

distribution is well approximated by the ANN-ROM 

in both compressible and incompressible flows. 

Future directions in this work include the use of 

more complex deep neural networks to learn both 

unsteady and parameter space variations by a single 

network, although reconstructing the full solution 

would require a way to approximate the POD basis 

at arbitrary points. Use of a second deep neural 
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network to provide the POD basis approximation is 

an option being considered. Other future 

developments include tests on problems with higher 

number of degrees of freedom and more complex 

flow fields, as well as incorporation into unsteady 

aerodynamic optimisation frameworks in the longer 

term. 

References 

Alotaibi, M, Calo, VM, Efendiev, Y, Galvis, J and 

Ghommem, M. (2015) Global local nonlinear model 

reduction for flows in heterogeneous porous media. 

Computer Methods in Applied Mechanics and 

Engineering, Vol. 292, pp. 122-137. Special Issue 

on Advances in Simulations of Subsurface Flow and 

Transport (Honouring Professor Mary F. Wheeler). 

Amsallem, D and Farhat, C. (2012) Stabilization of 

projection-based reduced-order models. 

International Journal for Numerical Methods in 

Engineering, Vol. 91, No. 4, pp. 358–377. 

Amsallem, D, Zahr, M, Choi, Y and Farhat, C. 

(2015) Design optimization using hyper-reduced-

order models. Structural and Multidisciplinary 

Optimization, Vol. 51, pp. 919–940. 

Audouze, C, De Vuyst, F and Nair, P. (2009) 

Reduced-order modelling of parameterized PDEs 

using time–space-parameter principal component 

analysis. International Journal for Numerical 

Methods in Engineering, Vol. 80, No. 8, pp. 1025-

1057. 

Audouze, C, De Vuyst, F and Nair, P. (2013) 

Nonintrusive Reduced-Order Modelling of 

Parametrized Time-Dependent Partial Differential 

Equations. Numerical Methods for Partial 

Differential Equations, Vol. 29, No. 5, pp. 1587-

1628. 

Breitkopf, P and Coelho, RF. (2010) 

Multidisciplinary Design Optimization in 

Computational Mechanics. Wiley, New York, NY. 

Buchan, A, Calloo, A, Goffin, M, Dargaville, S, 

Fang, F, Pain, C and Navon, IM. (2015) A POD 

reduced order model for resolving angular direction 

in neutron/photon transport problems. Journal of 

Computational Physics, Vol. 296, pp. 138-157. 

Cao, Y, Navon, IM and Luo, Z. (2007) A reduced 

order approach to four-dimensional variational data 

assimilation using proper orthogonal 

decomposition. International Journal for Numerical 

Methods in Fluids, Vol. 53, pp. 1571-1583. 

Carlberg, K and Farhat C. (2011) Efficient non-

linear model reduction via a least-squares Petrov-

Galerkin projection and compressive tensor 

approximations. International Journal for 

Numerical Methods in Engineering, Vol. 86, pp. 

155-181. 

Chen W, Wang Q, Hesthaven JS and Zhang C. 

(2020) Physics-informed machine learning for 

reduced-order modelling of nonlinear problems. 

Preprint. 

Da Ronch, A, Badcock, K, Wang, Y, Wynn, A and 

Palacios, R. (2012) Nonlinear model reduction for 

flexible aircraft control design. In: AIAA 

Atmospheric Flight Mechanics Conference, AIAA 

Paper 2012-4404. 

Economon, TD, Palacios, F, Copeland, SR, 

Lukaczyk, TW and Alonso, JJ. (2016) SU2: An 

open-source suite for multiphysics simulation and 

design. AIAA Journal, Vol. 54, No. 3, pp. 828-846. 

Fang, F, Zhang, T, Pavlidis, D, Pain, C, Buchan, A 

and Navon, IM. (2014) Reduced order modelling of 

an unstructured mesh air pollution model and 

application in 2D/3D urban street canyons. 

Atmospheric Environment, Vol. 96, pp. 96-106. 

Gautier, N, Aider, JL, Duriez, T, Noack, B, Segond, 

M and Abel, M. (2015) Closed-loop separation 

control using machine learning. Journal of Fluid 

Mechanics, Vol. 770, pp. 442-457. 

Giere, S, Iliescu, T, John, V and Wells, D. (2015) 

SUPG reduced order models for convection-

dominated convection diffusion reaction equations. 

Computer Methods in Applied Mechanics and 

Engineering, Vol. 289, pp. 454-474. 

Guenot, M, Lepot, I, Sainvitu, S, Goblet, J and 

Coelho, RF. (2013) Adaptive sampling strategies for 

non-intrusive POD-based surrogates. International 

Journal for Computer-Aided Engineering and 

Software, Vol. 30, No. 4, pp. 521-547. 

Haykin, S. (2004) Neural Networks: A 

Comprehensive Foundation. Prentice Hall, Upper 

Saddle River, NJ. 

Hoang, K, Fu, Y and Song, J. (2016) An hp-proper 

orthogonal decomposition moving least squares 

approach for molecular dynamics simulation. 

Computer Methods in Applied Mechanics and 

Engineering, Vol. 298, pp. 548-575. 

Kani, JN and Elsheikh, AH. (2017) DR-RNN: A 

deep residual recurrent neural network for model 

reduction. arXiv preprint, arXiv:1709.00939. 

Kim, B, Azevedo, VC, Thuerey, N, Kim, T, Gross, 

M and Solenthaler, B. (2019) Deep fluids: A 

generative network for parameterized fluid 

simulations. In: Computer Graphics Forum, volume 

38, pp. 59–70, Wiley Online Library. 



16 

Int. J. Comput. Appl. Tech., Vol. X, No. Y, 2020 

Copyright © 2020 Inderscience Enterprises Ltd. 

Kingma, D and Ba, J. (2014) Adam: A method for 

stochastic optimization. arXiv preprint, 

arXiv:1412.6980. 

Landon, RH. (1982) NACA0012 oscillatory and 

transient pitching. In: Compendium of Unsteady 

Aerodynamics, AGARD-R-702. 

Ling, J, Kurzawski, A and Templeton, J. (2016) 

Reynolds averaged turbulence modelling using deep 

neural networks with embedded invariance. Journal 

of Fluid Mechanics, Vol. 807, pp. 155-166. 

Lovison, A and Rigoni, E. (2011) Adaptive 

sampling with a Lipschitz criterion for accurate 

metamodeling. Communications in Applied and 

Industrial Mathematics, Vol. 1, Issue 2, pp. 110-

126. 

Marquardt, DW. (1963) An algorithm for least-

squares estimation of nonlinear parameters. Journal 

of the Society for Industrial and Applied 

Mathematics, Vol. 11, No. 2, pp. 431-441. 

Maulik, R and San, O. (2017) A neural network 

approach for the blind deconvolution of turbulent 

flows. Journal of Fluid Mechanics, Vol. 831, pp. 

151-181. 

Moosavi, A, Stefanescu, R and Sandu, A. (2015) 

Efficient construction of local parametric reduced 

order models using machine learning techniques. 

arXiv preprint, arXiv:1511.02909. 

Noori, R, Karbassi, A, Mehdizadeh, H, Vesali-

Naseh, M and Sabahi, M. (2011) A framework 

development for predicting the longitudinal 

dispersion coefficient in natural streams using an 

artificial neural network. Environmental Progress 

and Sustainable Energy, Vol. 30, No. 3, pp. 439-

449. 

Pearson, K. (1901) On lines and planes of closest fit 

to systems of points in space. Philosophical 

Magazine, Vol. 2, No. 11, pp. 559-572. 

Regazzoni, F, Dede, L and Quarteroni, A. (2019) 

Machine learning for fast and reliable solution of 

time-dependent differential equations. Journal of 

Computational Physics, Vol. 397, 397: 108852. 

Renganathan, SA, Maulik, R and Rao, V. (2020) 

Machine learning for nonintrusive model order 

reduction of the parametric inviscid transonic flow 

past an airfoil. Physics of Fluids, Vol. 32, No. 4. 

San, O, Maulik, R and Ahmed, M. (2019) An 

artificial neural network framework for reduced 

order modelling of transient flows. Communications 

in Nonlinear Science and Numerical Simulation, 

Vol. 77, pp.271-287. 

Schlegel, M and Noack, BR. (2015) On long-term 

boundedness of Galerkin models. Journal of Fluid 

Mechanics, Vol. 765, pp. 325-352. 

Sirovich, L. (1987) Turbulence and the dynamics of 

coherent structures. Quarterly of Applied 

Mathematics, Vol. 45, No. 3, pp. 561-571. 

Swischuk R, Mainini L, Peherstorfer B and Willcox 

K. (2019) Projection-based model reduction: 

Formulations for physics-based machine learning. 

Computers & Fluids, Vol. 179, pp. 704-717. 

Thuerey, N, Weißenow, K, Prantl, L and Hu, X. 

(2020) Deep learning methods for Reynolds-

Averaged Navier–Stokes simulations of airfoil 

flows. AIAA Journal, Vol 58(1), pp. 25-36. 

Vaidyanathan, S, Pehlivan, I, Dolvis, LG, Jacques, 

K, Alcin, M, Tuna, M and Koyuncu, I. (2019) A 

novel ANN-based four-dimensional two-disk 

hyperchaotic dynamical system, bifurcation 

analysis, circuit realisation and FPGA-based TRNG 

implementation. International Journal of Computer 

Applications in Technology, Vol. 62, No. 1, pp. 20-

35. 

Wan, ZY, Vlachas, P, Koumoutsakos, P and Sapsis, 

T. (2018) Data-assisted reduced-order modelling of 

extreme events in complex dynamical systems. PloS 

One, Vol. 13, No. 5. 

Wang, Q, Hesthaven, JS and Ray, D. (2019) Non-

intrusive reduced order modelling of unsteady flows 

using artificial neural networks with application to a 

combustion problem. Journal of Computational 

Physics, Vol. 384, pp. 289-307. 

Xiao, D, Fang, F, Buchan, A, Pain, C, Navon, IM, 

Du, J and Hu, G. (2014) Non-linear model reduction 

for the Navier-Stokes equations using Residual 

DEIM method. Journal of Computational Physics, 

Vol. 263, pp. 1-18. 

Xiao, D, Fang, F, Buchan, A, Pain, C, Navon, IM 

and Muggeridge, A. (2015) Non-intrusive reduced 

order modelling of the Navier-Stokes equations. 

Computer Methods in Applied Mechanics and 

Engineering, Vol. 293, pp. 552-541. 

Xiao, D, Fang, F, Pain, C and Navon, IM. (2017) A 

parameterized non-intrusive reduced order model 

and error analysis for general time-dependent 

nonlinear partial differential equations and its 

applications. Computer Methods in Applied 

Mechanics and Engineering, Vol. 317, pp. 868-889. 

Xiao, D, Heaney, C, Fang, F, Mottet, L, Hu, R, 

Bistrian, D, Aristodemou, E, Navon, I and Pain, C. 

(2019) A domain decomposition non-intrusive 

reduced order model for turbulent flows. Computers 

and Fluids, Vol. 182, pp. 15-27. 



17 

Int. J. Comput. Appl. Tech., Vol. X, No. Y, 2020 

Copyright © 2020 Inderscience Enterprises Ltd. 

Yan, R, Gong, S and Zhong, S. (2019) Crowd 

counting via scale-adaptive convolutional neural 

network in extremely dense crowd images. 

International Journal of Computer Applications in 

Technology, Vol. 61, No. 4, pp. 318-324. 

Zhou, Q, Chen, G, Da Ronch, A and Li, Y. (2017) 

Reduced order unsteady aerodynamic model of a 

rigid aerofoil in gust encounters. Aerospace Science 

and Technology, Vol. 63, pp. 203-213. 

 

 


