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Abstract: Breast cancer is one of the most prevalent cancer types with a high mortality rate in women
worldwide. This devastating cancer still represents a worldwide public health concern in terms of high
morbidity and mortality rates. The diagnosis of breast abnormalities is challenging due to different
types of tissues and textural variations in intensity. Hence, developing an accurate computer-aided
system (CAD) is very important to distinguish normal from abnormal tissues and define the abnormal
tissues as benign or malignant. The present study aims to enhance the accuracy of CAD systems and
to reduce its computational complexity. This paper proposes a method for extracting a set of statistical
features based on curvelet and wavelet sub-bands. Then the binary grey wolf optimizer (BGWO) is
used as a feature selection technique aiming to choose the best set of features giving high performance.
Using public dataset, Digital Database for Screening Mammography (DDSM), different experiments
have been performed with and without using the BGWO algorithm. The random forest classifier
with 10-fold cross-validation is used to achieve the classification task to evaluate the selected set of
features’ capability. The obtained results showed that when the BGWO algorithm is used as a feature
selection technique, only 30.7% of the total features can be used to detect whether a mammogram
image is normal or abnormal with ROC area reaching 1.0 when the fusion of both curvelet and
wavelet features were used. In addition, in case of diagnosing the mammogram images as benign or
malignant, the results showed that using BGWO algorithm as a feature selection technique, only 38.5%
of the total features can be used to do so with high ROC area result at 0.871.

Keywords: mammographic mass; early detection; wavelet transform; curvelet transform; random
forest; binary grey wolf optimization; feature selection

1. Introduction

Breast cancer is affecting around 2.1 million women each year. It is the most frequent cancer
among women and causes the highest number of cancer-related deaths [1]. In 2018, it was estimated
that approximately 15% of all cancer deaths in women were due to breast cancer [2]. However,
early detection is the key to decrease the death-rate. Screening programs using mammography
images have proven to be the most powerful tool for breast cancer detection in its earlier stage [1,3].
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A mammogram is an X-ray picture of the breast. The tumours have a high attenuation factor for X-rays.
One limitation is when the breast tissue consists mainly of dense tissues, as the case with young women,
and hence, challenges arise to detect these abnormalities. Therefore, an efficient method/system is
still needed to detect and classify cancer from mammograms while reducing false positive and false
negative ratios. Such method/system is important as a second reader to help the radiologists [4–6].

For mammogram analysis and classification, the multi-resolution analysis (MRA) approach [7]
has been successfully used [8,9]. In the literature, Refs. [10–12] applied multi-resolution techniques
to extract a set of different features. The mammographic images have been decomposed into several
sub-bands. Curvelet and wavelet, as an efficient MRA, are used to analyse the original mammogram
image in order to find out the features. In the literature, some authors selected the biggest coefficients [9],
while others selected some statistical features of sub-bands [12]. On the other hand, some authors have
combined the MRA features with the co-occurrence matrix features [10].

Eltoukhy et al. [13] used a set of features obtained using exact Gaussian–Hermite moments and
employed three different classifiers. The successful employment of orthogonal moments encourage
the authors to integrate three kinds of orthogonal moments in [14].

Pal [15] used a grey wolf optimization (GWO) algorithm to train feed foreword neural network
(FFNN), which is then used for mammogram breast cancer classification. The proposed GWO-FFNN
method showed promising results when evaluated using the Wisconsin Hospital Breast Cancer dataset.
In addition, Mohanty et al. [16] have also applied the GWO algorithm to optimize the hidden node
parameters of the extreme learning machine aiming to obtain a better performance of breast cancer
detection. In another study [17], the GWO was combined with the decision tree to classify gene
expression data. This combination was proposed to select a small set of genes from a group of genes to
identify cancer.

In addition to employing GWO algorithm in breast cancer detection, it has been used as a feature
selection technique in other applications in image processing. For example, it is used in the face
recognition system [18]. GWO was used for feature selection, where k-Nearest Neighbour (KNN) was
used for classification. The proposed method was estimated based on Yale face dataset. The obtained
results showed better accuracy and run time compared to related work. In addition, Sreedharan et al.
in [19], employed GWO as a feature selection technique for facial emotion recognition systems. They
also used it along with neural network (NN) as a classifier for emotions from selected features.
Comparing to conventional methods, NN-Levenberg–Marquardt (LM) and NN-particle swarm
optimization (PSO), the accuracy of the obtained results was better than that of traditional methods.

In this paper, the proposed work intends to employ the BGWO as an efficient feature
selection algorithm to select the most discriminative features that can distinguish between different
mammographic image classes. The obtained feature vector is introduced to the random forest
classifier to distinguish the normal mammographic image from the abnormal images in the first
classification step. Secondly, to define the benign from the malignant region. A critical contribution of
this work is to reduce the feature vector dimensionality. The computational complexity is scaled down,
i.e., the feature vector length has been reduced to a small number of features, that will increase the
speed of the extraction and matching processes. The random forest algorithm has the advantage of
combining multiple weak classifiers using the method of ensemble learning. It can be used to enhance
the prediction accuracy of unseen data. Its capabilities have been proven in mammographic mass
detection [13,20].

The rest of this paper is constructed as follows: the preliminaries of the wavelet and curvelet are
illustrated in Section 2. It is combined with a description of the statistical features applied in the study,
grey wolf optimizer and random forest classifier. The suggested method is explained in Section 3.
Section 4 presents the obtained results with an overview of the used dataset, evaluation criteria and a
comparison with related work. Finally, the most important findings and conclusions are presented
in Section 5.
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2. Preliminaries

The present part shows an overview of the methods and algorithms employed in the suggested
work. It highlights the wavelet, curvelet and grey wolf optimizer, and random forest classifier.

2.1. Wavelet Transform

Among the techniques for calculating the multi-resolution representation of signals, the wavelet
transform technique is considered the most. This is because the wavelet transform technique enables
the localization of information both in the time and frequency domain [21]. Equation (1) shows the
formula for calculating the wavelet transform.

Ψa,b =
1√
|a|

Ψ
(

x− b
a

)
(1)

In Equation (1), b represents the location parameter, while a is used for scaling. The main idea
of the wavelet transform is to approximately represent the signal using a set of basic mathematical
functions. Equation (2) shows the wavelet transform of a function f(x) ∈ L2(R) as shown below:

C f (a, b) =
1√
|a|

∫ ∞

−∞
f (x)Ψ

(
x− b

a

)
dx (2)

In the equation, the function f (x) is defined by its wavelet coefficients C f (a, b), where a > 0,
b ∈ R. The discrete wavelet transform (DWT) is produced by taking a = 2j, b = k2j = ka for k, j ∈ Z2.

2.2. Curvelet Transform

A discrete curvelet transform is an approach used for representing images. This approach allows
image codes to edge more efficiently. This is because of the geometric feature present in the curvelet
transform approach. The coefficients produced from the discrete curvelet transform approach are
used as a feature vector. Research conducted by [22] worked on A Fast Discrete Curvelet Transform
(FDCT) approach. Since curvelets are stored in terms of vectors, the research uses two dimensions for
storing features. These include R2 with x as a spatial variable, ω as frequency domain variable, r and
θ polar coordinates in the frequency domain. W(r) and V(t), which are a pair of windows, are also
defined. They are used as radial and angular windows, respectively. All vectors are smooth, positive
and real values, where W uses non-negative real arguments and supported on r ∈ (1/2, 2) and V uses
real arguments and supported on t ∈ [−1, 1]. Both windows W(r) and V(t) follow the admissibility
conditions defined by [21]. Equations (3) and (4) shows formulae for these windows, as shown below:

∞

∑
j=−∞

W2
(

2jr
)
= 1, r ∈

(
3
4

,
3
2

)
(3)

∞

∑
l=−∞

V2(t− l) = 1, t ∈
(
−1

2
,

1
2

)
(4)

For each j ≥ j0, a frequency window Uj is defined in the Fourier domain by

Uj(r, θ) = 2−
3
4 jW

(
2−jr

)
V

2
⌊

j
2

⌋
θ

2π

 (5)

In Equation (5), bj/2c is used as an integer. Moreover, Uj is used as a polar wedge which is
calculated using the results from the radial and angular windows W and V. To obtain real-valued
curvelets, the symmetrized version of Equation (5) can be obtained using Uj(r, θ) + Uj(r, θ + π).
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Similarly, the waveform ϕj(x) can be defined using Fourier transform ϕ̃j(ω) = Uj(ω) as shown
in Equation (6). Using Equation (5), we can obtain Uj (ω1, ω2) , where ω1, ω2 are the windows defined
in the polar coordinate system. In Equation (6), ϕj is used as the major curvelet which encapsulates
all curvelets at scale 2−j that are obtainable using rotations and translations of ϕj. Here, we introduce
rotation angles θl = 2π · 2−bj/2c · l, with l = 0, 1, . . . such that 0 ≤ θ ≤ 2π. Moreover, k = (k1, k2) ∈ Z2,
which identifies the sequence of translation parameters. The curvelets are defined (as a function of
x = (x1, x2)) at scale 2−j, orientation angle θl and position x(j,l)

k = R−1
θl

(
k1 · 2−j, k2 · 2−j/2

)
by

ϕj,l,k(x) = ϕj

(
Rθl

(
x− x(j,l)

k

))
(6)

where Rθ is the rotation by θ radians and R−1
θ its inverse,

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
, R−1

θ = RT
θ = R−θ

The inner product between an element f ∈ L2 (R2) and a curvelet ϕj,l,k, is defined as a
curvelet coefficient.

c(j, l, k) :=
∫

R2
f (x)ϕj.l.k(x)dx (7)

where R denotes the real line. Length ≈ 2−j/2, width = 2−j, i.e., width ≈ length 2 which is known as a
curve scaling law or anisotrpoy scaling relation [23].

2.3. Feature Extraction: Statistical Features of Wavelet and Curvelet

In this paper, the coefficients in each sub-band of both wavelet and curvelet will be described by
ten descriptors/features which are presented as follow. These features are produced according to grey
level distribution across the image. In our proposed method, the ten features are statistical ones which
are formally described below [24].

Mean: for a collection of numeric data, x1, x2, . . . , xn, the sample mean is the numerical
average [25]:

x̄ =
1
n
(x1 + x2 + . . . + xn) =

1
n

n

∑
i=1

xi (8)

The variance is a measure that shows the width of the histogram. It determines how much the
grey levels differ from their mean. The variance gives a sense of the spread of the values of a random
variable. The variance averages the square of the differences from the mean. The square root of the
variance is knowen as the standard deviation [25].

Var =
1

n− 1 ∑(P[i, j]− P[i, j])2 (9)

STD =

√
1

n− 1 ∑(P[i, j]− P[i, j])2 (10)

The third moment of the standardized random variable is called the skewness. Skewness µ3 is
used to measure the degree of histogram asymmetry around the mean. At the same time, kurtosis µ4

is used to measure the sharpness of the histogram. Significant skewness and kurtosis indicate that
data are not normal [24,26]. Skewness and kurtosis are defined as in Equations (11) and (12):

S = E

[(
X− µ

σ

)3
]

(11)
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K = E

[(
X− µ

σ

)4
]

(12)

Energy can be calculated as follows [25]:

Energy =
M

∑
i

N

∑
j

P2[i, j] (13)

The entropy is used to measure the randomness of an image. It is low for the smooth images and
high for the rough images. The entropy is calculated by [25]:

Entropy = −
M

∑
i

N

∑
j

P[i, j] log P[i, j] (14)

The maximum value is defined as the highest value in the given matrix. It is calculated as follow:

M, N
Max = max P[i, j]

i, j
(15)

Homogeneity is used as a measure of similarity of the distribution of elements in the grey levels.
Its value varies between 0 and 1. If the value is close to one, it means a smoother texture image, and so
on. Mathematically, homogeneity of an image is defined as [24]:

Homogeneity =
M

∑
i

N

∑
j

1
1 + (i− j)2 · P(i, j) (16)

Moment is employed as a global feature of an image that is widely used in pattern recognition
and image classification [24].

moment =
M

∑
i

N

∑
j

P(i, j)
(i− j)2 (17)

2.4. Feature Selection: Binary Grey Wolf Optimizer

Mirjalili et al. [27] proposed a metaheuristic optimization method namely grey wolf optimizer
(GWO). The name is given because the algorithm follows the hunting method and leadership pyramid
seen in grey wolves. The size of a grey wolves’ pack is usually between 5 to 12, where the population
is divided into ranks of Alpha, Beta, Delta and Omega. In this distribution, alpha is considered the
leader of the pack. The Alpha makes all the important decision making for the pack. Moving down
the chain, the Beta wolf assists the alpha wolf in decision making and other matters. Delta wolves
are known as subordinate wolves, which work directly under Alpha and Beta wolves, but have
dominance over Omega wolves. They help the pack by protecting them and following orders given by
Alpha and Beta wolves. Omega wolves are considered as a scapegoat or the expendables of the pack.
However, they play an essential role in providing and performing scouting, alerting regarding danger
and protecting the pack from foreigners. The notations used for Alpha, Beta, Delta and Omega are
α, β, γ and ω, respectively. This work employed the competitive binary grey wolf optimizer presented
in Ref [28].

2.5. Classification: Random Forests

Random forests [29] is an ensemble learning method for supervised machine learning. The ensemble
concept of random forest meaning that combining multiple weak classifiers could produce an accurate
classification rate. Random forest combined results of multiple decision trees to enhance the prediction
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accuracy. In this study, the classification step has been performed employing 10-fold cross-validation
to test the accuracy of the proposed method.

3. The Proposed Method

The proposed method, as explained in Figure 1, consists of four phases: Region of interest (ROI)
segmentation, feature extraction, feature selection and classification.

Figure 1. The proposed method for mammographic image classification.

In phase 1, the ROI is manually segmented in a way that the given centre of abnormality is the
centre of the cropped ROI. In phase 2, features are extracted using wavelet and curvelet. Using a
concatenation method, a fusion of wavelet and curvelet features are constructed. This gave three types
of features: wavelet, curvelet and fused wavelet and curvelet features.

The curvelet and wavelet transform have proved their capability to represent the image in the
frequency domain accurately. It decomposed the ROI into several sub-bands. The statistical features
described in Section 2.3 are calculated for each sub-band to construct the feature vectors. In this study,
we have the following three scenarios.

The first one is to compute the ten features from the curvelet sub-bands (i.e., wedge). In order
to achieve this task, the curvelet transform is applied to ROI, as shown in Figure 2. The ten features
(described above) for each wedge are calculated using Equations (8)–(17). In this work, the curvelet
is applied using four scales with 16 angles. Hence, the curvelet decomposition produced 81 wedges,
so a total of 810 features are calculated to construct a features vector of the curvelet.

The second scenario is to employ the wavelet decomposition of 16 bands to extract each band’s
ten features. This is accomplished as follows. Daubechies 4 (DB4) wavelet is proved to be efficient
as reported in [6]. This is why it was used in our proposed method to decompose the ROI image
into four levels. Each of these levels composes of four sub-bands: approximation (A), horizontal (H),
vertical (V) and diagonal (D). Hence, a total of 16 sub-bands can be obtained, see Figure 3. For each
sub-band, the ten features are calculated. Therefore, a total of 160 features will be extracted from each
ROI (i.e., 16 sub-bands × 10 Features) producing the wavelet feature vector.

The third scenario is to fuse the feature vector of both the curvelet and the wavelet. This produced
a feature vector with length (810 + 160 = 970 features). The obtained feature vectors could improve the
classification rate of mammographic images.
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Figure 2. The curvelet transform of the mass region of interest (ROI). (Left) Original ROI image,
(Right) the different wedges representation.

Figure 3. Four wavelet decomposition levels using Daubechies 4 (DB4).

In phase 3, the BGWO algorithm, described in Section 2.4, is applied to select the best set of
features given the best performance which is measured in the classification phase (i.e., phase 4). In this
phase, the random forest, introduced earlier in Section 2.5, has been used to classify the selected
features into normal or abnormal. The same set of features is also used to differentiate between benign
or malignant cases.

4. Experimental Results

The proposed method is applied to the DDSM dataset. The following subsection presents an
overview of the used DDSM dataset.
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4.1. Mammography Dataset (DDSM)

To assess the proposed method, we used the DDSM public dataset which is considered the largest
mammography dataset [30]. The dataset was collected by a research team at the University of South
Florida. It consists of 2620 patients classified into 43 different volumes with each patient having four
mammograms. Each mammogram is taken from two different views: Mediolateral oblique view
(MLO) and craniocaudal (CC). The average size of the mammograms is (3000 × 4800) pixels and each
mammogram has its ground truth information specified by experts, showing whether the image is
benign or malignant as well as the lesion localization [30]. Using the breast imaging-reporting and
data system (BI-RAD) scores, the DDSM database is classified by experts into three classes: normal,
benign and malignant [30].

The dataset used to test the proposed method consists of 400 ROIs. A total of 200 ROIs are
normal breast parenchyma and 200 ROIs are masses which are further classified into two sub-classes
(100 benign and 100 malignant). A sample of the used dataset is illustrated in Table 1. A sample of the
DDSM regions used in the study is shown in Figure 4.

Figure 4. Samples regions of the DDSM dataset; first row is regions with normal breast parenchyma,
second row is a set benign ROI, and malignant masses are shown in the third row.
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Table 1. The used ROI datasets for proposed method assessment.

Dataset
Abnormal ROI

Normal ROI
Benign Malignant

Detection (Normal-Abnormal) 100 100 200
Diagnosis (Benign-Malignant) 100 100 -

4.2. Evaluation Criteria

To assess the results of the proposed method, a set of popular benchmark metrics have been
applied. Considering the confusion matrix obtained from the classification step, as shown in Figure 5,
the following metric are used and they are briefly highlight as follows:

Figure 5. Confusion matrix, where TP = true positives, TN = true negatives, FP = false positives
and FN = false negatives.

Accuracy: This is to show percentage of correctly predicted classes to the total number of classes.
It can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision: This is show the percentage of correctly positive predicted classes to the total positive
predicted classes. A high precision confirms a low FP rate.

Precision =
TP

TP + FP

Recall (Sensitivity): This is show the percentage of correctly positive predicted samples to all
samples in an actual class. A high recall confirms a low FN rate.

Recall =
TP

TP + FN

The area under the ROC (Receiver Operating Characteristics) curve is a graph of two-dimensional
plot: sensitivity versus specificity. This curve is considered one of the important factors for evaluating the
performance of classification systems where value 1.0 reflects that the system has a perfect performance.

4.3. Results and Discussion

As presented in Figure 1, there are two variants of our method. One aims to classify ROI images
into normal and abnormal, i.e., detecting abnormal breast cases. The second variant is to detect benign
or malignant cases from the ROI images directly, i.e., diagnosing whether an ROI image is benign or
malignant. It is notable that the features used in both variants are the same, but the type of features
would be different based on the BGWO selection. There are two main scenarios (without using BGWO
and with using BGWO) in which the random forest algorithm is used to achieve the classification task.
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Without using BGWO as a feature selection technique: The first scenario is designed to understand
the performance of the feature sets (curvelet, wavelet and combining both curvelet and wavelet)
without using the BGWO algorithm as a feature selection technique. The summary of the results of
this scenario is shown in Table 2. From the obtained results, the following notes can be mentioned.
Firstly, in case of detecting normal or abnormal cases, the best results are achieved when the fusion of
both curvelet and wavelet was used with accuracy 99.0%, precision 99.0%, recall 99.0% and ROC area
1.00. These results would make sense as the fused features contain the most discriminative features
from each of the wavelet and curvelet. Secondly, in case of diagnosing a raw ROI image, whether it
is a benign or malignant case, the fused features and curvelet-based features gave the best results
with very close performance in terms of accuracy 74.0%, precision 74.0%, recall 74.0% and ROC area
0.871. The main difference between used features and curvelet-based features is the number of features
where the curvelet only needed 810 instead of 970 for the fused one. However, the results of the second
scenario are not as good as in detecting normal or abnormal cases.

Table 2. The classification performance without applying the binary grey wolf optimizer (BGWO).

Selected Features Number of Features Accuracy Precision Recall ROC Area

Normal vs.
Abnormal

Curvelet 810 97.5% 97.5% 97.5% 0.995
Wavelet 160 98.3% 98.3% 98.3% 0.998

Curvelet + Wavelet 970 99.0% 99.0% 99.0% 1.00

Benign vs.
Malignant

Curvelet 810 74.0% 74.2% 74.0% 0.863
Wavelet 160 73.0% 73.2% 73.0% 0.873

Curvelet + Wavelet 970 74.0% 74.1% 74.0% 0.871

With using BGWO as a feature selection technique: In the second scenario, as in the first one,
the same feature sets (i.e., the main features of curvelet (810), wavelet (160) and fused curvelet with
wavelet (970)) will be fed to the BGWO algorithm to select the best feature set that would discriminate
between different classes (normal, abnormal, benign or malignant).

This scenario is further divided into different sub-scenarios based on the feature type as shown
below. Before describing the results of these two scenarios, it is worth mentioning that BGWO
algorithm is a stochastic technique. Mittal et al. [31] reported that the stochastic algorithms need
to be run at least 10 times to produce meaningful results. Usually, the average of these results is
used to report the performance of these types of heuristic algorithms. In this paper, we followed the
same approach where the proposed BGWO-based method was run 20 times with each run, one set of
features was produced and then fed to the classifier (random forest) to evaluate whether this set would
give the best results in terms of accuracy, precision, recall and ROC. Tables 3–8 present a summary of
these results where the best result of these 20 sets is highlighted in each table. Specifically, Tables 3–5
summarize the results of using BGWO to detect normal or abnormal cases while Tables 6–8 summarize
the results of using BGWO to detect benign and malignant cases.

BGWO for normal and abnormal cases: To classify images into normal and abnormal, this scenario
aims to check which features (curvelet, wavelet and combining both curvelet and wavelet) can be
selected using BGWO algorithm to give the highest classification measures. The results of this scenario
can be summarized as follows.

1. When the 810 curvelet features were used, Set 15 gave the best results with the number of features
being 275, accuracy 98.0%, precision 98.0%, recall 98.0% and ROC area 0.999, see Table 3.

2. When the 160 wavelet features were used, Set 12 gave the best results with the number of features
being 46, accuracy 99.0%, precision 99.0%, recall 99.0% and ROC area 0.999, see Table 4.

3. When the 970 fusion of both curvelet and wavelet features were used, Set 15 gave the best results
with the number of features being 298, accuracy 100%, precision 100%, recall 100% and ROC area
1.00, see Table 5.
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Table 3. Detection of normal or abnormal using BGWO with curvelet features.

Selected Features Number of Features Accuracy Precision Recall ROC Area

Feat. set 1 250 93.8% 94.0% 93.8% 0.984
Feat. set 2 222 97.8% 97.8% 97.8% 0.997
Feat. set 3 241 95.8% 95.8% 95.8% 0.991
Feat. set 4 224 97.5% 97.5% 97.5% 0.996
Feat. set 5 264 95.0% 95.5% 95.0% 0.993
Feat. set 6 207 97.5% 97.6% 97.5% 0.999
Feat. set 7 251 98.3% 98.3% 98.2% 0.998
Feat. set 8 262 97.0% 97.0% 97.0% 0.995
Feat. set 9 258 94.3% 94.4% 94.3% 0.986

Feat. set 10 277 98.0% 98.0% 98.0% 0.999
Feat. set 11 294 94.8% 95.0% 94.8% 0.986
Feat. set 12 307 96.3% 96.3% 96.3% 0.99
Feat. set 13 188 97.0% 97.0% 97.0% 0.998
Feat. set 14 229 97.8% 97.8% 97.8% 0.999
Feat. set 15 275 98.0% 98.0% 98.0% 0.999
Feat. set 16 330 96.5% 96.7% 96.5% 0.995
Feat. set 17 296 97.5% 97.5% 97.5% 0.998
Feat. set 18 311 96.0% 96.2% 96.0% 0.99
Feat. set 19 194 98.0% 98.0% 98.0% 0.998
Feat. set 20 265 95.3% 95.4% 95.3% 0.995

Table 4. Detection of normal or abnormal using BGWO with wavelet features.

Selected Features Number of Features Accuracy Precision Recall ROC Area

Feat. set 1 56 98.0% 98.0% 98.0% 0.995
Feat. set 2 49 96.8% 96.8% 96.8% 0.996
Feat. set 3 50 96.0% 96.0% 96.0% 0.992
Feat. set 4 62 97.3% 97.3% 97.3% 0.995
Feat. set 5 67 96.3% 96.3% 96.3% 0.995
Feat. set 6 40 98.0% 98.1% 98.0% 0.997
Feat. set 7 54 98.5% 98.5% 98.5% 0.997
Feat. set 8 90 98.3% 98.3% 98.3% 0.997
Feat. set 9 62 97.8% 97.8% 97.8% 0.998

Feat. set 10 42 98.8% 98.8% 98.8% 0.998
Feat. set 11 42 96.8% 96.8% 96.8% 0.994
Feat. set 12 46 99.0% 99.0% 99.0% 0.999
Feat. set 13 49 97.8% 97.8% 97.8% 0.997
Feat. set 14 65 98.8% 98.8% 98.8% 0.998
Feat. set 15 55 95.8% 95.8% 95.8% 0.991
Feat. set 16 51 96.0% 96.0% 96.0% 0.995
Feat. set 17 52 98.5% 98.5% 98.5% 0.997
Feat. set 18 56 97.0% 97.0% 97.0% 0.997
Feat. set 19 54 97.3% 97.3% 97.3% 0.992
Feat. set 20 55 99.0% 99.0% 99.0% 0.998

From the above three sub-scenarios, it can be noticed that the BGWO algorithm worked very well
with the fused features where it has a big impact of the features reduction (i.e., 298 out of 970 were
selected to give the highest results). The BGWO as a feature selector with fused curvelet and wavelet
features gave the best results in terms of accuracy, precision, recall and ROC area among all the results
of other features i.e., wavelet and curvelet individually. This means that if the BGWO algorithm is
used as a feature selection technique, only 30.7% of the total mammogram features can be used to
detect whether a mammogram image is normal or abnormal.
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Table 5. Detection of normal or abnormal using BGWO with the fusion of curvelet and wavelet features.

Selected Features Number of Features Accuracy Precision Recall ROC Area

Feat. set 1 279 96.8% 96.8% 93.6% 0.994
Feat. set 2 270 98.5% 98.5% 97.0% 0.997
Feat. set 3 350 98.0% 98.0% 96.0% 0.998
Feat. set 4 336 97.5% 97.6% 95.1% 0.999
Feat. set 5 273 97.8% 97.8% 95.6% 0.998
Feat. set 6 318 97.8% 97.8% 95.5% 0.998
Feat. set 7 246 98.8% 98.8% 97.5% 0.999
Feat. set 8 375 98.8% 98.8% 97.5% 1.0
Feat. set 9 399 98.5% 98.5% 97.0% 0.998

Feat. set 10 408 98.8% 98.8% 97.5% 0.999
Feat. set 11 337 99.0% 99.0% 98.0% 1.0
Feat. set 12 301 97.0% 97.0% 94.0% 0.996
Feat. set 13 273 99.3% 99.3% 98.5% 0.999
Feat. set 14 269 97.0% 97.0% 94.0% 0.995
Feat. set 15 298 100% 100% 100% 1.0
Feat. set 16 333 98.3% 98.3% 96.5% 0.998
Feat. set 17 246 99.5% 99.5% 99.0% 1.0
Feat. set 18 349 97.8% 97.8% 95.5% 0.997
Feat. set 19 259 97.5% 97.5% 95.0% 0.996
Feat. set 20 281 98.3% 98.3% 96.5% 1.0

When comparing the results in Table 2 and in Tables 3–5, i.e., without and with using BGWO as
a feature selection technique, respectively, it can be noticed that the use of BGWO has improved the
results of all scenarios. In case of using the curvelet only, the results have improved by 0.5% for all
evaluation measures while the needed features have been reduced from 810 to 275. In case of using the
wavelet only, the results have also improved by 0.7% for accuracy, precision and recall and by 0.001 for
the ROC area while the used features were reduced from 160 to 46 (this is a big improvement in terms
of performance). For the last scenarios, i.e, when using fused curvelet and wavelet features, the results
of using BGWO showed an improvement of 1.0% for accuracy, precision and recall and giving the same
results (1.00) for the ROC area. This was achieved while only using 298 out of 970 features. Thus, it can
be claimed that using BGWO could improve the detection of abnormal mammogram cases in terms
of the processing requirements (i.e., using small size of features) and the performance requirements
(i.e., accuracy, precision, recall and the ROC area).

Using BGWO for benign and malignant cases: This scenario aims to classify mammogram
images as benign and malignant directly, i.e., helping in the cancer diagnosis process. In other words,
it investigates which set of features would give high classification (benign and malignant) performance.

1. When the curvelet features (810 features) were given to the BGWO algorithm, the best result
was obtained by Set 16 with a number of features 305, accuracy 77%, precision 77%, recall 77%
and ROC area 0.87, see Table 6.

2. When the wavelet features, 160 features, were fed to the BGWO algorithm, the results showed
that Set 4 gave the best results with the number of features being 67, accuracy 77.5%, precision
77.7%, recall 77.5% and ROC area 0.891, see Table 7.

3. When the fused features of both curvelet and wavelet features, 970 features, were given to the
BGWO algorithm, the results showed that Set 6 gave the best results with the number of features
being 374, accuracy 78%, precision 78.1%, recall 78% and ROC area 0.871, see Table 8.
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Table 6. Detection of benign or malignant using BGWO with curvelet features.

Selected Features Number of Features Accuracy Precision Recall ROC Area

Feat. set 1 313 71.5% 71.5% 71.5% 0.854
Feat. set 2 254 72.5% 72.6% 72.5% 0.851
Feat. set 3 275 72.5% 72.7% 72.5% 0.863
Feat. set 4 331 73.5% 73.7% 73.5% 0.875
Feat. set 5 279 72.5% 72.7% 72.5% 0.861
Feat. set 6 346 72.5% 72.6% 72.5% 0.855
Feat. set 7 268 69.0% 69.3% 69.0% 0.847
Feat. set 8 287 72.5% 72.9% 72.5% 0.857
Feat. set 9 266 72.0% 72.1% 72.0% 0.861

Feat. set 10 259 72.5% 72.5% 72.5% 0.856
Feat. set 11 266 72.5% 72.7% 72.5% 0.857
Feat. set 12 305 72.0% 72.0% 72.0% 0.855
Feat. set 13 315 70.5% 70.5% 70.5% 0.855
Feat. set 14 232 74.5% 74.7% 74.5% 0.858
Feat. set 15 246 71.0% 71.4% 71.0% 0.85
Feat. set 16 305 77.0% 77.0% 77.0% 0.87
Feat. set 17 315 74.5% 74.7% 74.5% 0.859
Feat. set 18 336 72.5% 72.5% 72.5% 0.863
Feat. set 19 268 72.0% 72.3% 72.0% 0.862
Feat. set 20 305 76.0% 76.0% 76.0% 0.872

Table 7. Detection of benign or malignant using BGWO with wavelet features.

Selected Features Number of Features Accuracy Precision Recall ROC Area

Feat. set 1 67 75.0% 75.3% 75.0% 0.868
Feat. set 2 74 72.0% 72.2% 72.0% 0.857
Feat. set 3 60 74.5% 74.9% 74.5% 0.872
Feat. set 4 67 77.5% 77.7% 77.5% 0.891
Feat. set 5 56 77.0% 77.4% 77.0% 0.868
Feat. set 6 55 74.5% 74.8% 74.5% 0.875
Feat. set 7 70 74.5% 74.7% 74.5% 0.867
Feat. set 8 71 74.0% 74.6% 74.0% 0.864
Feat. set 9 54 74.5% 74.9% 74.5% 0.863

Feat. set 10 44 76.0% 76.3% 76.0% 0.869
Feat. set 11 61 75.5% 75.9% 75.5% 0.868
Feat. set 12 60 77.5% 77.8% 77.5% 0.886
Feat. set 13 75 75.0% 75.1% 75.0% 0.882
Feat. set 14 44 76.5% 77.3% 76.5% 0.867
Feat. set 15 59 74.0% 74.0% 74.0% 0.849
Feat. set 16 54 75.0% 75.1% 75.0% 0.871
Feat. set 17 59 72.5% 72.8% 72.5% 0.863
Feat. set 18 92 75.0% 75.4% 75.0% 0.882
Feat. set 19 62 73.5% 73.7% 73.5% 0.862
Feat. set 20 54 74.5% 74.9% 74.5% 0.872

From these three sub-scenarios, it can be noticed that the BGWO performed very well with
the fused features, where it has a significant impact of the feature reduction (374 was selected from
970 features). Simultaneously, the results of the fused-based features were the best results in terms
of accuracy, precision, recall and ROC area among all the results of other scenarios i.e., when using
wavelet and curvelet individually, see Tables 6–8. This means that when the BGWO algorithm was used
as a feature selection technique, only 38.5% of total features can be used to diagnose the mammogram
images as benign or malignant with 0.871 ROC area results.
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Table 8. Detection of benign or malignant using BGWO with fusion features of curvelet and wavelet.

Selected Features Number of Features Accuracy Precision Recall ROC Area

Feat. set 1 365 73.0% 73.0% 73.0% 0.856
Feat. set 2 319 75.0% 75.1% 75.0% 0.87
Feat. set 3 409 72.0% 72.0% 72.0% 0.85
Feat. set 4 354 72.5% 72.6% 72.5% 0.85
Feat. set 5 367 76.5% 76.6% 76.5% 0.86
Feat. set 6 374 78.0% 78.1% 78.0% 0.871
Feat. set 7 304 74.5% 74.6% 74.5% 0.871
Feat. set 8 374 74.5% 74.6% 74.5% 0.865
Feat. set 9 418 77.5% 77.6% 77.5% 0.88

Feat. set 10 396 72.5% 72.7% 72.5% 0.859
Feat. set 11 388 77.5% 76.6% 76.5% 0.86
Feat. set 12 305 74.5% 74.5% 74.5% 0.865
Feat. set 13 351 73.5% 73.8% 73.5% 0.864
Feat. set 14 312 73.0% 73.5% 73.0% 0.871
Feat. set 15 303 72.5% 72.7% 72.5% 0.867
Feat. set 16 345 70.0% 70.2% 70.0% 0.851
Feat. set 17 405 72.5% 72.6% 72.5% 0.86
Feat. set 18 356 72.0% 72.2% 72.0% 0.865
Feat. set 19 365 73.0% 73.2% 73.0% 0.861
Feat. set 20 340 74.0% 74.5% 74.0% 0.872

When comparing the results in Table 2, without using BGWO, and in Tables 6–8, i.e., with using
BGWO as a feature selection technique for diagnosing mammogram images as benign or malignant,
it can be noticed that the use of BGWO has improved the results of all scenarios. In the case of
using the curvelet only, the results have improved by nearly 3.0% for evaluation measures: accuracy,
precision and recall and by 0.007 for the ROC area. This improvement comes with also a reduction
in the needed features, i.e., 305 out of 810. In case of using the wavelet only, the results have also
improved by nearly 4.5% for accuracy, precision and recall and by 0.018 for the ROC area, while 67 out
of 160 features were needed. For the last scenario, when using fused curvelet and wavelet features,
there was a better improvement where the results of using BGWO showed an improvement of around
4.0% for accuracy, precision and recall. Simultaneously, giving the same results (0.871) for the ROC
area. This was achieved while only using 374 out of 970 features. Thus, it can be claimed that using
BGWO could improve the diagnosis of benign and malignant mammogram cases from the raw images
with no processing except extracting the ROI. This improvement comes in terms of the processing
requirements (i.e., using small size of features) and the performance requirements (i.e., accuracy,
precision, recall and the ROC area).

4.4. Comparison with Related Feature Selection Methods

For further evaluation of our proposed methods, we compared it with 4 other feature selection
methods, namely Chi-Squared [32], Information Gain [33], Significant attributes [34] and Correlation
attributes [35]. Table 9 highlights the results of this comparison. This comparison was conducted using
the same features used in the results discussed in Section 4.3. From this table, two remarks would
be drawn. Firstly, in case of normal and abnormal detection, the proposed method is outperforming
the compared methods. This means that the BGWO-based selection method would help in detecting
abnormal cases with a fewer number of features while achieving high classification measures. Secondly,
for detecting malignant case, although there is no big improvement, the proposed method is still better
than the other feature selection methods, in terms of accuracy, precision and recall measures. However,
Chi-Squared, Information Gain and Significant attributes methods are better than the proposed method
in terms of the number of features.
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Table 9. The comparison study between the proposed method and some famous feature selection methods.

Classification
Problem

Feature
Selection Method

Number
of Features Accuracy Precision Recall Roc Area

Normal vs. Abnormal

Chi-Squared [32] 512 95.8% 95.9% 95.8% 0.996
Information Gain [33] 383 96.25% 96.3% 96.3% 0.996
Significant attribute [34] 512 99.0% 99.0% 99.0% 1.0
Correlation attributes [35] 627 94.0% 94.1% 94.0% 0.989
Proposed Method 298 100% 100% 100% 1.0

Benign vs. Malignant

Chi-Squared [32] 249 76.5% 76.6% 76.5% 0.867
Information Gain [33] 250 76.0% 76.0% 76.0% 0.871
Significant attributes [34] 249 75.5% 75.6% 75.5% 0.868
Correlation attributes [35] 706 74.0% 74.1% 74.0% 0.863
Proposed Method 374 78.0% 78.1% 78.0% 0.871

In short, the BGWO used in the proposed method has improved the results in terms of accuracy,
precision and recall which are the most important measures for breast cancer detection systems.
This would also mean that BGWO algorithm as a features selection has the capability to select the most
discriminative features to either detect the abnormal or malignant cases from mammogram images.

5. Conclusions

The extracted features plays an essential role in mammographic image classification. In addition,
the features selection could improve the detection performance and decrease the computational
complexity of the feature set. This paper investigates the impact of employing the BGWO algorithm
on statistical features extracted using decomposed curvelet and wavelet sub-bands from the ROI.
The BGWO is a feature selection algorithm aiming to choose the best set of features giving high
performance. Experiments were conducted without and with applying the BGWO using the public
dataset, DDSM. The results of these experiments are assessed in terms of accuracy, precision, recall
and ROC area employing random forests classifier using 10-fold cross validation. From the designed
scenarios, the results showed that the use of the BGWO algorithm as a feature selection technique has
improved the computational complexity for feature vector construction. The best results were obtained
when the fusion of both curvelet and wavelet was used where only 30.7% of total features can be used
to detect whether the ROI is normal tissue or abnormal (tumor) with ROC area reaching 1.0. In case
of diagnosing the mammogram images as benign or malignant, the results showed that the BGWO
algorithm could help to use only 38.5% of total features to diagnose that a given mammogram is
benign or malignant without prior checking whether it is normal or abnormal. The results showed that
this could be achieved with a high ROC area result at 0.871. In the future, it is planned to investigate
whether the diagnosis results can be improved by using different types of features as it was not high
as the case of the detection results.
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Abbreviations

The following abbreviations are used in this manuscript:

BGWO Binary Grey Wolf Optimization
CAD Computer-Aided System
MRA Multi-Resolution Analysis
FFNN Feed Foreword Neural Network
KNN k-Nearest Neighbour
PSO Particle Swarm Optimization
ROI Region of interest
DDSM Digital Database for Screening Mammography
ROC Receiver Operating Characteristics
AUC Area Under the ROC Curve
LM Levenberg Marquardt
MLO Mediolateral oblique view
CC Craniocaudal view
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