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ABSTRACT 

The water or steam injection in oil fields is a usual method for enhanced oil recovery in petroleum 

engineering. The thermo-viscous fingering instability is one of the main problems with complex 

nature that decreases the efficiency of oil extraction. Actually, the oil wells are the porous medium 

with a level of anisotropy for permeability and diffusion. In this paper, the thermal viscous 

fingering instability in anisotropic media has been investigated using both linear stability analysis 

and CFD simulation. For stability analysis, the growth rate of disturbances is determined by 

solving quasi-steady state equations via shooting method. The CFD simulation is performed by 

solving the governing equations of heat and mass transfer using a spectral method. It is shown that 

the longitudinal direction permeability and the transverse direction dispersion have important 

effect on the instability. The value of thermal-lag coefficient and the Lewis number have opposite 

effects on the different types of displacements that are considered. For the case of sweeping the 

porous media via the cold fluid, increasing the Lewis number intensifies the level of flow 

instability.   

Keywords: Thermal viscous fingering, Anisotropic media, Linear stability analysis, Spectral 

method, Lewis number, Thermal lag. 
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Introduction 

The displacement of liquids through porous media is so important in industrial applications 

especially in enhanced oil recovery (EOR) (Vafai and Tien, 1981, Whitaker, 1986, Alizadeh, 

Karimi, Arjmandzadeh and Mehdizadeh, 2019, Yuan, Xu and Zhao, 2020). Among them, fingering 

instability represent a significant topic of research. The viscous fingering is happened in porous 

media when a low viscosity liquid displaces a high viscosity one. The difference of viscosity of 

the two fluids involved in displacements is known to be the key factor associated with this 

instability. However, the other characteristics  of the permeable medium and flow may also affect 

the severity of this instability. Viscous fingering appears in many environmental, geophysical and 

industrial processes such as petroleum reservoir engineering (water flooding operations), 

groundwater filtration, chemical engineering fluidized beds, fixed bed regeneration and so on 

(Homsy, 1987). In particular, miscible viscous fingering is known to be critical for EOR in 

geological porous media (Wang and Dong, 2009, Kong, Haghighi and Yortsos, 1992, Berg, Oedai, 

Landman, Brussee, Boele, Valdez and van Gelder, 2010, Nilsson, Kulkarni, Gerberich, Hammond, 

Singh, Baumhoff and Rothstein, 2013, Pei, Zhang, Ge, Zhang and Wang, 2014), wherein one fluid 

is injected to displace another fluid (e.g. crude oil) and the instability reduces the efficiency of this 

process.  

Many analytical, computational and experimental studies have been reported in literature about 

the viscous fingering instability. The first major contribution in this area is the study of Hill (1952). 

Subsequently this topic has stimulated considerable attention. Most studies communicated have 

however focused on isothermal flows through isotropic media. For example, Tan & Homsy (1988) 

have used the spectral method to numerically simulate the viscous fingering problem. More 

recently, Shokri, Kayhani, & Norouzi (2017) studied the effect of elasticity on  miscible 
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displacement of non-Newtonian liquids. Yazdi et al. (Yazdi and Norouzi, 2018, Norouzi, Yazdi 

and Birjandi, 2018) have investigated immiscible viscoelastic flows. These studies have identified 

that the elastic property of viscoelastic fluids can control the fingering instability and successfully 

increase the displacement efficiency.  

Since natural and industrial porous media environments are rarely isotropic, the investigation 

of flow through anisotropic porous media attracted the attention of some researchers since it more 

realistically models actual systems. Zimmerman & Homsy (1991) used Hartley transforms to 

numerically simulate an unstable miscible displacement with anisotropic dispersion. They 

observed some finger interaction mechanisms which are not present in isotropic dispersion, i.e. 

multiple coalescence and fading. More recently, Ghesmat and Azaiez (2008) studied the influence 

of anisotropy of dispersion on the Saffman-Taylor instability. They reported that an anisotropic 

velocity-dependent tensor has profound effects on the structure of the fingers, the sweep efficiency 

and the relative contact area of displacements. Norouzi & Shoghi (2014) studied the same problem 

by considering anisotropic behavior for both permeability and dispersion. They showed that the 

flow is stabilized by increasing the permeability ratio and decreasing the dispersion ratio of 

anisotropic porous media. Henderson and Pena (2017) modeled the immiscible water-oil 

displacement through the anisotropic and heterogeneous domain. They used a multi-parameter 

equation to model the anisotropy of heterogeneous water-flooded petroleum reservoirs. Their 

results showed that in some configurations, the anisotropy could stabilize the flow field which is 

assistive in EOR via water flooding technique. Shokri, Kayhani, & Norouzi. (2018) simulated 

viscoelastic fingering instability in anisotropic media with a Hartley transform and linear stability 

analysis (LSA), highlighting the influence of medium anisotropic characteristics on the fingering 

instability. 
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In all the afore-mentioned studies, the flow has been assumed to be isothermal, i.e. the displacing 

and displaced fluids have the same temperature and their viscosity is only depended on the 

concentration. In some practical petroleum operations such as hot water and steam flooding (Islam 

and Azaiez, 2010), the fingering instability appears in non-isothermal flows. This instability is 

termed thermo-viscous fingering instability and the material modulus (especially the viscosity) is 

depended on both concentration and temperature. In this instability, two fronts appear: the thermal 

front and the concentration front. The difference between the location and shape of these fronts is 

arisen from the difference of heat and mass transfer mechanisms in porous media.  

Saghir, Chaalal, & Islam (2000) investigated the non-linear double diffusive convection, both 

numerically (via a finite element technique) and experimentally. Sheorey and Muralidhar (2003) 

numerically investigated the displacement of heavy crude oil by pressurized hot water through 

porous media. Their results indicated that the oil recovery process is reliably improved for non-

isothermal injection. Pritchard (2004) described a stability analysis to investigate Saffman-Taylor 

instabilities of two-front (compositional and thermal fronts) systems, emphasizing that instabilities 

on the compositional front dominate due to the large ratio of thermal to mass diffusion. Moreover, 

Pritchard ( 2009) investigated the fingering instability for the scenario in which the viscosity at the 

front is changed by two factors that diffuse with different rates in his another study. Isalam and 

Azaiez ( 2010a, 2010b) investigated the thermo-viscous fingering using both LSA and CFD 

simulation. In these studies, the effect of mobility ratio and Lewis number have been studied in 

detail. Mishra, Trevelyan, Almarcha, & De Wit (2010) studied the differential diffusion of 

solutions on fingering instability. Islam and Azaiez ( 2011) modeled the thermal viscous fingering 

in a radial geometry. They showed that the flow in radial geometry has some obvious deviations 

from the rectilinear geometry which is mostly related to the difference in velocity gradients. Azaiez 
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and Sajjadi (2012) investigated the stability of two-component displacements in a homogeneous 

porous media, noting that the different convection speeds of the component fronts significantly 

alter the instability characteristics. Sajjadi and Azaiez (2013) further studied the non-isothermal 

displacement. They showed that by increasing the thermal diffusion rate in liquid phase, the lag 

between the fronts is decreased. Norouzi, Dorrani, Shokri and Beg ( 2018) investigated the effect 

of viscous dissipation on this instability, showing that increasing this parameter could stabilize the 

flow field. Recently, Shabouei and Nakshatrala ( 2020)  considered double-diffusive effects on the 

miscible displacement. In their research, the limitations of popular formulations used in viscous 

fingering study with double-diffusive effects are investigated. 

As elaborated earlier, most of previous works are limited to isotropic media. Motivated by 

providing a deeper insight into the characteristics of real porous media (which are typically 

anisotropic), in the present study, thermal viscous fingering of miscible flows through anisotropic 

porous media is investigated theoretically. Both linear stability analysis (LSA) and computational 

fluid dynamics (CFD) simulations are presented. Nonlinear simulations are carried out via a 

spectral method. The effects of different characteristics of the flow and media on the instability 

are studied in detail.  

 

MODELING 

Problem Statement 

In this paper, a horizontal flow through an anisotropic porous medium is studied. A schematic 

shape of the problem is illustrated in Figure 1. The displacing liquid is entered to the domain with 

a constant velocity and sweep the displaced one. Here, the subscribes 1 and 2 denote the displacing 



6 
 

and displaced liquids, respectively. Since the porous media is anisotropic, both on- and off-axis 

coordinates are deployed to simulate the permeability and dispersion characteristics of the 

anisotropic media. Here, K and D  are the dispersion and permeability of the domain. For 

anisotropic domains, K and D are usually measured along on-axis. The on-axis is the principle 

direction where non-diagonal components of K and D  are zero. A coordinate system for any 

observer can be considered as an off-axis. In this paper, the illustrated x- and y-axis in Fig. 1 (the 

main flow and lateral directions) is the off-axis. It is supposed that we can reach from off-axis to 

on-axis by rotation with angle −   around z direction. The Darcy law is employed to model the 

fluid flow and is valid for viscous-dominated scenarios at low Reynolds number. This law in on- 

and off-axis coordinates can be expressed as: 
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(2) 

 

where q  is the flow flux,   is viscosity, p  is pressure and ,i jK and 
,i jK are components of 

permeability coefficient tensors in the on-axis and off –axis, respectively. The rotation tensor is 

introduced as:  

( )
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 
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It follows that Eqn. (1) can be rewritten as: 

( ) ( )0

1
off n offT T p 


− = − −       q K  

(4) 

Equation (4) may further be rewritten as: 

( ) ( )
1

0

1
off n offT T p 



−

= − − −       q K  
(5) 

Comparing equations (5) and (2), Eqn. (6) can be deduced: 

( ) ( )
1

off onT T 
−

= − −      K K  (6) 

For convenience, in following, the off and on subscript used to show the off- and on- axis are 

omitted. 

Based on Eqns. (3) to (6), we have: 
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(7) 

The same equation can be derived for diffusion as follows: 
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Governing equations 

The governing equations consist of the continuity, Darcy’s law, and heat and mass transfer 

equations: 

0 =u  (9) 
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where u is velocity vector, p  is pressure,   is viscosity,  K is permeability,   is porosity, c  is 

the concentration, CD  is dispersion, T is temperature and TD  is the heat diffusion. The parameter 

  is the ratio of the advancement rate of the temperature field to the concentration field. It is 

designated as the thermal-lag coefficient and defined as: 

(1 )
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f

f p

f p s ps

C

C C
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(13) 

 

where   is the density and pC is the specific heat capacity. Here, the subscripts f and s denote to 

the fluid and solid phases. 

 

Boundary conditions and initial conditions 

In this study, the following boundary conditions are considered: 

( ) ( ) ( ) ( )1 10, , 0, , 0 0, ,       0, ,  u x y t U v x y t c x y t c T x y t T= = = = = = = =  (14) 

( ) ( ) ( ) ( ) 2, , , , 0 , , 0        , ,u x L y t U v x L y t c x L y t T x L y t T= = = = = = = =  (15) 

( )( ) ( )( ), , , 0, , , , ,c T x y t c T x y W t= = =u u  (16) 

The initial conditions are prescribed as follows: 
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where ( , )f x y denotes a random function. 0xL = , i.e. at the middle of the porous medium. 

 

 Scaling 

The following dimensionless groups are used in the present study: 
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Using Eq. (19), the non-dimensional form of Eqn. (9) to (12) can be derived as follows: 
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where 11 22/K K K =  and 22 11/D D D =  are the permeability and diffusion ratio, respectively. 

The terms K  and D  are also the angle between the off- and on-axis coordinates for permeability 

and diffusion. *

TD  is assumed to be equal to 
*

CLe D where Le  is the Lewis number. Here, a 

Lagrangian moving frame with constant velocity of U is used to solve the problem. The following 

correlations are employed to model the variation of viscosity with concentration and temperature: 

* * *exp( (1 ) (1 ))C Tc   = − + −  (26) 

where C  and T are two constants of above equation of state that should be measured based on 

viscometric data of any fluid for practical applications. The dimensionless boundary conditions 

are: 
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where 11/C CPe UL D =  is the Peclét number and /A L W= denotes the aspect ratio. The 

dimensionless initial conditions can be derived as: 
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Here, “ rand ” is a random function that generate the values in the range of -1 to 1 and   and   

are the size and diffusion of the disturbance, respectively. For simplification, the star superscript 

is removed from the next equations. 

 

Numerical method  

We used the stream function ( ) and vorticity ( ) relationships in 2D Cartesian coordinate 

systems to simulate the thermal viscous fingering problem: 
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By applying the curl operation on the Eq. (21) and then using the transformations, the final 

equations are expressed as follows: 

 



12 
 

1

2

3

2

2

2

( )

( 1)

2
(( 1)

1 ( 1)cos(2 )

( ) 2 )

(1 )cos 2 ( )

c t

c t

c t

k k k

c t

k k

c
H

x x x

c
H

y y y

c
H

y x x

c

x y y y x

y

 
 

 
 

 
  

  

  
 


 

    
− + −  

    
    

+ + +  
    

 
    = + + + 

+ + −     
 

     + − +       
 

 
−  

 

 

 

 

 

 

 

 

(34) 

2 2 2

1 2 32 2

c c c c c c
A A A

t y x x y x y y x

        
+ − = + +

        
 

(35) 

2 2 2

1 2 32 2
( 1) Le A A A

t y x x y x x y y x

        
 

          
+ − + − = + +  

            
 

(36) 

 where 

2 2

1 ( cos sin )K K KH   = +  (37) 

2 2

2H ( sin cos )K K K  = +  (38) 

3 ((1/ 2)(1 )sin 2 )K KH  = −  (39) 

2 2

1 (cos sin )D D DA   = +  (40) 

2 2

2A (sin cos )D D D  = +  (41) 

3 (1 )sin 2D DA  = −  (42) 

This set of equations is solved using a pseudo-spectral method. By applying the modified Hartley 

transformation, the PDEs become ordinary differential equations. In order to solve the problem via 

the mentioned method, it needs to use the periodic boundary conditions. Actually, the 
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concentration and temperature variables are not periodic in the x-direction. Following Manickam 

and Homsy (1993), theses parameters may be divided into two parts at any times; a basic solution 

and a disturbance component: 

( )( , , ) , ( , , )c x y t c x t c x y t= +  (43) 

( )( , , ) , ( , , )x y t x t x y t   = +  (44) 

Here, the disturbances decay according to the specified boundaries of the flow domain. The base 

state profiles are defined as: 

( )
1

, (1 ( ))
2 2

x
c x t erf

t
= −  

(45) 

( )
1 ( 1)

, (1 ( ))
2 2

x t
x t erf

Let




− −
= −  

(46) 

Now, we should find the disturbances to determine the total solutions. In this way, periodicity of 

all boundary conditions is enforced. The time-marching in the parameters is achieved with the 

popular and stable 4th order Adams-Bashforth method.  

 

LINEAR STABILITY ANALYSIS (LSA) 

In order to study the problem via LSA, a basic solution is considered for solving the governing 

equations as follows: 

0 0 0u v= =  (47) 

0 2
0

4

p H

x H



= −


 

(48) 
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(50) 

C 0 T 0(1 c ) (1 )
0 e

 − + −
 =  (51) 

In the above equations, 2H  and 1A  are defined by Eqns. (38) and (40), respectively. 4H  is 

expressed as: 

2 2 2 2 2

4 ( sin cos )*( cos sin ) (1/ 4)(( 1)sin 2 )k k k k k k k kH        = + + − −  (52) 

By considering disturbances in parameters of problem and subtracting the governing equations 

that contain the disturbances from the governing equations of basic solution, we have:  

0
u v

x y

  
+ =

 
 

(53) 

0 0
2 3

4 4 4

( ) 0
p

H u H v
x H H H

  
 + + + =


 

(54) 

0 0
3 1

4 4 4

( ) 0
p

H u H v
y H H H

  
 + + + =


 

(55) 

2 2 2

0
1 2 32 2

cc c c c
u A A A

t x x y x y

      
+ = + +

     
 

(56) 

( )
2 2 2

0
1 2 32 2

1u Le A A A
t x x x y x y

    
 

         
+ + − = + + 

       
 

(57) 

( )0 C TR c R   = − +   (58) 

1 4H −  and 1 3A −  are defined in equations (37-42) and (52). 

Combining the Eqns. (53) - (55), the following equation is obtained: 
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2 2 2 2 2

0 0
2 3 12 2 2

0 0 0 0

( ) 2 ( ) 0
u u u u u

H H H
y y y x y x x y x x x

  

   

              
+ + − − − + + = 

           
 

      (59) 

We considered the following relationships for unknowns of linearized equations: 

0( )
( , , ) ( , , )( )

t t ikyc u C U x e e
    =  (60) 

In Eq. (60),   and k are the growth rate and wave number of disturbances, respectively. By 

inserting equation (60) into the linearized equations, we have: 

2
20 0

1 3 2 32

0 0

2 2

3 2 3 2

2

     0C C T T

d d
H ikH k H ikH U

dx x dx x

d d
ik H k H C ik H k H

dx dx

 

 

    

     
+ − + − − +    

     
   

+ + + =   
   

 

 

(61) 

( )
2

2 0
0 1 2 32

dcd d
t A A k A ik C U

dx dx dx

 

− + − = − 
 

 
(62) 

( )
2

2 0
1 3 0 22

( 1) ( )
dd d

LeA A Leik t A Lek U
dx dxdx


   

 
− + − − + + = − 
 

 
(63) 

 

RESULTS AND DISCUSSION 

 Linear stability analysis (LSA) 

A sixth order shooting method is employed to solve the eigenvalue system specified by Eqns. (61-

63). Here, the largest possible eigenvalues that produced non-zero solution are computed. The 

numerical domain has been selected to be sufficiently large to determine these eigenvalues. Except 

some especial cases, the results are presented at 1000CPe = , 2A = , 1Le =  , 1.5C T = = , 

0.75 = , 0 0.1t =  , 1D K = =  and 0D K = =  . For verification, the growth rate of 
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disturbance of a non-isothermal movement through isotropic porous media is depicted in Figure 

2. The results of present study is illustrated by a continuous line and the results of (Islam and 

Azaiez, 2010) are shown via a dashed line with squares for βT = 1 and circles for βT = 2. Here, 

1Le = =  and 1C = .  Based on the figure, the results of present study have a good agreement 

with the work of Islam and Azaiez (Islam and Azaiez, 2010). Confidence in the present stability 

analysis is therefore justifiably high. 

In order to investigate the influence of anisotropic parameters of porous media on the thermo-

viscous fingering, the variation of the growth rate in terms of the wave number for different 

parameters of the porous medium is plotted. Figures 3 and 4 illustrate the growth rate at different 

anisotropic permeability ratios ( K ) and different anisotropic permeability angles ( K ), 

respectively. Increasing K  and decreasing K lead to more stable flows. The effects of the 

dispersion ratio ( D ) and the dispersion angle ( D ) on the stability characteristics are shown in 

Figures 5 and 6, respectively. These parameters exert a stabilizing effect and the growth rates 

decrease by increasing D  and D . 

Numerical simulation  

Here, the results of the CFD modeling are presented to show how the different dimensionless 

parameters  characterizing the flow displacement influence the fingering instability. Except some 

especial cases,  the CFD simulations are done at 1000CPe = , 2A = , 1Le =  and 0.75 = . 

Contours of results 

In the followings, the concentration and temperature iso-contours (c and T) were depicted as time 

sequences. Initially, the instability is started via inserting a fluctuation at interfaces between two 
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liquids. The finger-like patterns are rapidly created and grown in the domain. As mentioned before, 

the main factor on fingering instability is a difference between the viscosity of two liquids. The 

temperature and concentration dependency of viscosity are also adjusted by C  and T  (refer to 

Eq. (26)) and their values may be positive or negative. When higher viscosity fluid is ahead of the 

front, these parameters are positive and are therefore associated with instability. For negative 

values of these parameters, the conditions are the opposite. For clarity, the results of this section 

are ordered in three groups: 1) C and 0T  , 2) 0C   and 0T   and 3) 0C   and 0T  .  

 

Positive concentration and temperature mobility ratios 

In what follows, a hot liquid with low viscosity sweeps a cold one with higher value of viscosity. 

This means that we have 0C   and 0T  . Unless specified otherwise, the problem is simulated 

for 1.5C =  and 1.5T = . Figure 7 shows iso-contours of concentration and temperature at 

0.75 = and 1 = . In this figure, 1.8K = , 0.9D =  and / 3D K  = = . When the thermal-

lag coefficient is less than one, the heat transfer between the body of porous media and the liquids 

is considerable. So, the speed of progression of the thermal front is declined and as a result, this 

front lags behind the concentration front. For 1 = , there is no heat dissipation and both fronts 

progress together possessing the same structure. As a result, there is a complete interaction 

between the two fronts. Since both fronts have a destabilizing effect, it is normal that in the case 

of complete interaction ( 1 = ), the flow is more unstable. Close inspection of the contours 

indicates that the coalescence mechanism is recognizable. In this mechanism (which is specified 

by circulars), path of one of fingers is deviated to the neighboring one and merged together. 

Another mechanism that existed in this figure is the tip-splitting. Here, one finger is divided into 
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two fingers (see the case at 300t = ). Figure 8 shows the influnce of Lewis number on 

distributions of concentration and temperature. Here, 1.8K = , 0.9D =  and / 3D K  = = . 

Higher Lewis number physically means that the heat diffuses quicker than the species (solute) and 

the two fronts attain thermal equilibrium faster. For the cases in which the temperature of 

displacing liquid is more than the temperature of displaced one, the transfer of thermal energy 

causes a reduction in the viscosity of the displaced liquid (this acts in favor of stability). Therefore, 

at higher Lewis number, the flow is more stable. Since 1  , the thermal front is weaker than the 

concentration front. When 1Le  , it becomes weaker and its destabilizing effect decreases. It may 

be inferred that there is a wavy thermal front instead of a fingering thermal front. 

Figure 9 depicts the effect of K  on the thermo-viscous fingering. The other parameters are 

considered as 1D =  and 0K D = = . The ratio of the permeability along the longitudinal 

direction to the permeability along the transverse direction is named as K . In order to achieve 

finger growth, the primary disturbances should diffuse in perpendicular to the fluid flow direction. 

Therefore, at higher values of K , the favorable conditions for growing fingers become limited. 

It can be seen that the fingers on both fronts for 2.4K =  are smaller than 1.2K = . The iso-

contours of the flow displacements for 1K = , 0K D = =  and two values of D ( i.e. 0.3 and 

0.7) are depicted in Figure 10. The dispersion ratio is defined as dispersion in the lateral direction 

to that in the longitudinal one. In this figure, a large number of fingers is witnessed. The transversal 

dispersion equalizes the fronts of the fingers. At low values of this parameter, the hydrodynamic 

mechanisms of spreading and shielding have been weakened. In the spreading mechanism, the 

fingers are formed so that their width is increased and their number is reduced. In the shielding 

mechanism, some fingers shield the development of the nearby fingers and joint together to 
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procedure a bigger finger. Therefore, at lower values of D , the number of fingers is higher. An 

interesting phenomenon which is observed relates to the anchoring of the tip of the finger in the 

case of 0.3D = . This is shown via a square for 600t = . At 0.7D = , there is a more intensified 

interaction of fingers in the transverse direction than for 0.3D = . Therefore, at the last time of 

simulation, few numbers of fingers with more width can be seen in contours. It can be concluded 

that the flow is stabilized by increasing D .   

Figure 11 illustrated the influence of permeability angle K on the thermo-viscous fingering 

contours. As K increases, the permeability in the longitudinal direction ( 11K ) decreases whereas 

the permeability in the transverse direction ( 22K ) increases. As mentioned before, the reduction 

in the longitudinal permeability and elevation in transverse permeability results in a more unstable 

flow. Therefore, it follows that the flow through the porous medium with / 6K =  is more stable 

than that for / 3K = . Having a close look at the contours reveals that the fingers are smaller at 

lower values of K .  

 

Positive concentration ratio and negative temperature mobility ratio 

For 0C  and 0T  , a liquid with lower temperature and viscosity sweeps a hot liquid with 

higher viscosity. In this condition, the temperature gradient stabilizes the flow field but 

concentration gradient has a reverse effect and intensify the hydrodynamic instability. Unless 

specified otherwise, the results are presented for 3C =  and 1.5T = − . Figure 12 shows the 

influence of   on a flow displacement with 0C  and 0T  . Here, 1.8K = , 0.9D =  and 
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/ 3D K  = = . The flow is stabilized by growing  , which could be attributed to the stronger 

interactions between two fronts and increasing the positive influence of temperature gradient on 

the flow stability.  

Figure 13 shows the iso-contours for two Lewis numbers at 0C   and 0T  . The other 

parameters are 1.8K = , 0.9D =  and / 3D K  = = . Here, higher Le  means the displacing 

liquid cools the warmer displaced liquid faster. Therefore, the viscosity of displaced liquid 

increases and the factor of instability becomes stronger. As a result, the flow is destabilized by 

growing Le in these conditions and the thermal front morphs into a strong wavy shape, instead of 

the form of discrete weak narrow fingers. The iso-contours of c and T are shown in Figure 14 for 

1.2K =  and 2.4K = where 1D =  and 0K D = = . Similar to the previous case (i.e. positive 

concentration and temperature mobility ratios), K  does not have much effect on the structure of 

the fingers. However, it is also apparent in this case that the fingers seem to be shortened by 

increasing K . The effect of D  on the thermo-viscous fingering is shown in Figure 15. Here, 

1K = and 0K D = = . For this scenario, the number of fingers is very high and in fact exceeds 

the number computed in Figure 10 which has same porous medium properties. The fingers are 

narrower for lower D and it is seen the flow is stabilized by growing this parameter.  

Negative concentration mobility ratio and positive temperature mobility ratio 

Here, a liquid with high temperature and viscosity sweeps a cold liquid with lower viscosity. 

In the absence of  temperature gradients, this displacement is stable. However, temperature 

gradients have a destabilizing effect on flow. Unless specified otherwise, the concentration 

mobility ratio and temperature mobility ratio are fixed as 1.5C = −  and 3T = . For these 
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conditions, in Figure 16, the flow displacements with 0.75 =  and 0.85 =  are compared 

with one other. The parameters of the porous medium are prescribed as 1.8K = , 0.9D =  

and / 3D K  = = . Unlike the former scenarios, some backward fingers are created in the 

concentration distribution. Additionality, increasing   leads to a more unstable flow. As 

mentioned, temperature gradients have a destabilizing effect on flow. Therefore, as the 

temperature front is closer to the concentration front (higher  ), the temperature gradient 

instability impacts more strongly the concentration front. At 0.75 =  and 600t = , the tip-

splitting mechanism can be seen for concentration front. Then, two new branching-fingers 

bend towards their adjacent fingers and finally merge into their body. In other words, the 

coalescence mechanism follows the tip-splitting mechanism. With increasing instability, the 

fingers interaction mechanisms are observed in the concentration front. The coalescence 

mechanism was shown via squares for 700t = .  

 

Figure 17 depicts the contours of c and T at 1Le =  and 5Le = . Here, 1.8K = , 0.9D =  and 

/ 3D K  = = . In the case of 5Le = , there are no major fingers in the concentration and 

temperature contours. Indeed, heat transfer between liquids leads to a depletion in the viscosity of 

the displaced fluid. Therefore, the flow becomes more stable at higher Le, owing to the enhanced 

heat transfer. At high Lewis numbers, the destabilizing effect of temperature gradients   is  

cantlysignifi weakened.  

Figure 18. depicts the influence of K  on the c and T for two different values of 1.2 and 2.4. The 

other parameters of porous medium are 1D =   and 0K D = = . Here, by increasing K , the 
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fingers tend to advance in a straight line, i.e. they grow in the path with higher permeability and 

the bending of fingers is minimized.  

Figure 19 shows the effect of D  on displacements with 0C   and 0T   through a porous 

medium with 1K =  and 0K D = = . As in the earlier cases analyzed, the intensity of instability 

is reduced by increasing D . Here, the interesting point is appearance of tip-splitting mechanism 

in contours of concentration. This was shown via a circle at 800t = . Based on the figure, the 

intensity of instability is high in the case of 0.3D = .  

 

Transversely-Averaged Profiles 

Examining flow characteristic profiles averaged over one dimension is a common tool in the 

study of unstable miscible displacements. In this section, the transversely-averaged diagrams 

of c and T were reported. Figure 20 shows the influence of   on the c and T averaged 

profiles. Here, 1.8K = , 0.9D = , / 3D K  = =  and 450t = . The profiles are marked 

by C and   related to the averaged concentration and temperature, respectively. As   

decreases, the front of T marches with increasingly delay behind of the front of c. This is 

due to the decreasing the velocity of the thermal diffusion ( TU U= ) and increasing the 

heat transfer between the solid and fluids phases. Based on the Figure 20a, the concentration 

gradients intensify the instability, whereas the temperature gradients exert a stabilizing effect 

at 3C =  and 1.5T = − . Therefore, when the two fronts are closer, the flow is more stable 

and the intensity of peaks in the unstable concentration profiles decreases. The conditions 
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for Figure 20b are opposite, i.e. 1.5C = −  and 3T = . Here, the temperature gradients 

have a destabilizing effect. Therefore, the peaks appear on the temperature averaged profiles. 

For 1.5C T = = , both factors have a destabilizing effect. Therefore, more peaks are 

created when they match each other ( 1 =  ) and when they are away from each other, the 

intensity of instability decreases. 

 

Mixing length 

Another useful tool to characterize and quantify the mixing zone is the mixing length. It is defined 

as the distance of the zone where the transversely-averaged concentration changes from 0.99 to 

0.01. Figure 21 shows the history of mixing length for different   and three cases: (a) 3C =  

and 1.5T = −  ,(b). 1.5C = −  and 3T = , and (c) 1.5C T = = . Here, as with Figure 20, 

1.8K = , 0.9D = , / 3D K  = = . In cases (b) and (c), the temperature gradients intensify the 

fingering instability. Therefore, the thermal front progresses faster and the flow becomes more 

unstable. Hence, the mixing length increases by growing   in these cases. However, when T  is 

negative, such as in case (a),   acts to stabilize the flow and the mixing length decreases by 

growing this parameter. The influence of Le on the mixing length is shown in Figure 22. Here, 

1.8K = , 0.9D = , / 3D K  = =  and 0.85 = . By growing Le, the effect of T on the flow 

decreases. Therefore, when T is negative and it has a stabilizing effect, the higher Lewis number 

leads to a more unstable flow. Therefore, in case (a), the mixing length is reduced by growing Le

and in cases (b) and (c), the opposed trend is seen. Figure 23 depicts the influence of the 

permeability ratio ( K ) for 1D = , 0K D = = . Based on the results, the mixing length is 
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reduced by growing K for all cases. As mentioned, increasing the permeability in the longitudinal 

direction acts in favor of stability. When comparing the results for different K in Figure 24, it 

becomes clear that the intensity of instability is increased by growing K and the flow regime 

exhibits a higher mixing length at higher K in all cases. 

 

Sweep efficiency 

In fingering instability analysis, it is important to quantify how effective the displacement is and 

how different the fluid and porous media parameters influence the displacement. For example, in 

enhanced oil recovery, an important consideration is that the injected fluid could extract a larger 

amount of oil of the reservoir and therefore a means of measuring this ability is essential. This is 

termed the sweep efficiency. In petroleum engineering, this is defined as the percentage of a well 

which is swept via an injected liquid. In numerical simulations, following Ghesmat and Azaiez 

(Ghesmat and Azaiez, 2008), the sweep efficiency is calculated as the ratio of amount of grids 

with 0.5c   to the amount of grids placed behind the front. In Figure 25, the effect of   on the 

sweep efficiency is shown. Here, 1.8K = , 0.9D = , / 3D K  = = . As expected and in 

consistency with the earlier results, when T  is negative (case a),   has a stabilizing effect and 

the sweep efficiency increases by increasing  . However, when 0T  ( cases b and c), increasing 

  leads to a reduction in the sweep efficiency. Figure 26 depicts the diagrams of sweep efficiency 

versus the dimensionless time for different values of Le. Here, 1.8K = , 0.9D = , 

/ 3D K  = =  and 0.85 = . It can be seen that increasing Le  causes a reduction in the sweep 

efficiency for case (a) and increasing sweep efficiency for cases (b) and (c). For case (b), the sweep 
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efficiency is close to one, especially at higher Le . This is due to the uniform progression of the 

concentration front. In Figures 27 and 28, the sweep efficiency is displayed as a function of D  

and D , respectively. In general, increasing these parameters leads to increasing the sweep 

efficiency. However, it is evident that in the presence of stabilizing gradients, the effect of D on 

the sweep efficiency is too weak. 

 

Conclusions 

In this paper, the effect of anisotropy of porous media on thermal viscous fingering instability been 

investigated via both LSA and CFD approaches. The principal results have shown that: 

(i) When T is negative and temperature gradients act to stabilize the flow, increasing Le  

leads to a more stable flow.  

(ii)When T is positive and temperature gradients have a destabilizing effect, Le act to 

destabilize the flow.  

(iii) For  (thermal-lag coefficient), the trend is completely opposite to that computed for the 

influence of Le .  

(iv) In all cases, the flow is stabilized by increasing K , D  and D  and decreasing K . 

This implies that the longitudinal direction permeability and the transverse direction dispersion 

exert a significant controlling effect on the thermal viscous fingering instability. 
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All data, models and code that support the findings of this study are available from the 
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FIGURES 

 

Fig.1. Schematic of the problem. 

 

Fig. 2. Instability characteristics for non-isothermal viscous fingering instability: comparison 

between the results of the present study and those of Islam and Azaiez (2010a). 
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Fig. 3. Instability characteristics for different anisotropic permeability ratios ( K ). 

 

Fig. 4. Instability characteristics for different anisotropic permeability angles ( K ). 
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Fig. 5. Instability characteristics for different anisotropic dispersion ratios ( D ). 

 

Fig. 6. Instability characteristics for different anisotropic dispersion angles ( D ). 
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Fig. 7. The effect of the thermal-lag coefficient ( ) on the concentration and temperature contours 

( 1.5C T = = ). 
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Fig. 8. The effect of the Lewis number ( Le ) on the concentration and temperature contours (

1.5C T = = ). 
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Fig. 9. The effect of the permeability ratio ( K ) on the concentration and temperature contours  

( 1.5C T = = ). 
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Fig. 10. The effect of the dispersion ratio ( D ) on the concentration and temperature contours 

( 1.5C T = = ). 
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Fig. 11. The effect of permeability angle ( K ) on the concentration and temperature contours 

 ( 1.5C T = = ). 
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Fig. 12. The effect of the thermal-lag coefficient ( ) on the concentration and temperature 

contours ( 3C = and 1.5T = − ). 
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Fig. 13. The effect of the Lewis number ( Le ) on the concentration and temperature contours 

 ( 3C = and 1.5T = − ). 
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Fig. 14. The effect of the permeability ratio ( K ) on the concentration and temperature contours 

 ( 3C = and 1.5T = − ). 
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Fig. 15. The effect of the dispersion ratio ( D ) on the concentration and temperature contours 

( 3C = and 1.5T = − ). 
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Fig. 16. The effect of the thermal-lag coefficient ( ) on the concentration and temperature 

contours ( 1.5C = −  and 3T = ). 
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Fig. 17. The effect of the Lewis number ( Le ) on the concentration and temperature contours (

1.5C = −  and 3T = ). 
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Fig. 18. The effect of the permeability ratio ( K ) on the concentration and temperature contours 

( 1.5C = −  and 3T = ). 
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 Fig. 19. The effect of the dispersion ratio ( D ) one the concentration and temperature 

contours ( 1.5C = −  and 3T = ). 
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Fig. 20. a. The effect of the thermal-lag coefficient ( ) on the concentration and temperature 

averaged profiles 3C =  and 1.5T = −   

 

Fig. 20. b. The effect of the thermal-lag coefficient ( ) on the concentration and temperature 

averaged profiles 1.5C = −  and 3T =  
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Fig. 20. c  The effect of the thermal-lag coefficient ( ) on the concentration and temperature 

averaged profiles 1.5C T = = . 

 

Fig.21. a. The effect of the thermal-lag coefficient ( ) on the mixing length  3C =  and 

1.5T = −   
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Fig.21. b. The effect of the thermal-lag coefficient ( ) on the mixing length 1.5C = −  and 

3T =  

 

Fig.21. c. The effect of the thermal-lag coefficient ( ) on the mixing length 1.5C T = = . 
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Fig. 22. a. The effect of the Lewis number ( Le ) on the mixing length  3C =  and 1.5T = −  

 

Fig. 22.b. The effect of the Lewis number ( Le ) on the mixing length 1.5C = −  and 3T = ,  
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Fig. 22.c. The effect of the Lewis number ( Le ) on the mixing length 1.5C T = = . 

 

Fig. 23. a. The effect of the permeability ratio ( K ) on the mixing length 3C =  and 1.5T = −   
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Fig. 23.b. The effect of the permeability ratio ( K ) on the mixing length 1.5C = −  and 3T = . 

 

Fig. 23.c. The effect of the permeability ratio ( K ) on the mixing length 1.5C T = = . 
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Fig. 24.a. The effect of the permeability angle ( K ) on the mixing length 3C =  and 

1.5T = −   

 

Fig. 24.b. The effect of the permeability angle ( K ) on the mixing length 1.5C = −  and 

3T =  



51 
 

 

Fig. 24.c. The effect of the permeability angle ( K ) on the mixing length 1.5C T = = . 

 

Fig. 25.a. The effect of the thermal-lag coefficient ( ) on the sweep efficiency 3C =  and 

1.5T = −  . 
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Fig. 25.b. The effect of the thermal-lag coefficient ( ) on the sweep efficiency 1.5C = −  and 

3T = . 

 

Fig. 25.c. The effect of the thermal-lag coefficient ( ) on the sweep efficiency 1.5C T = =  
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Fig. 26.a. The effect of the Lewis number ( Le ) on the sweep efficiency 3C =  and 1.5T = −  . 

 

Fig. 26.b. The effect of the Lewis number ( Le ) on the sweep efficiency 1.5C = −  and 3T = . 
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Fig. 26.c. The effect of the Lewis number ( Le ) on the sweep efficiency 1.5C T = = . 

 

Fig. 27.a. The effect of the dispersion ratio ( D ) on the sweep efficiency 3C =  and 

1.5T = − . 
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Fig. 27.b. The effect of the dispersion ratio ( D ) on the sweep efficiency 1.5C = −  and 

3T = . 

 

Fig. 27.c. The effect of the dispersion ratio ( D ) on the sweep efficiency 1.5C T = = . 
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Fig. 28.a. The effect of the dispersion angle ( D ) on the sweep efficiency 3C =  and 

1.5T = −  . 

 

Fig. 28.b. The effect of the dispersion angle ( D ) on the sweep efficiency 1.5C = −  and 

3T = . 
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Fig. 28.c. The effect of the dispersion angle ( D ) on the sweep efficiency 1.5C T = = . 

 

 

 


