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Abstract

The vibro-acoustic analysis of complex structures over a broadband frequency range is an extremely chal-

lenging problem that may often require the use of a hybrid deterministic-statistical approach. Due to

manufacturing imperfections, the frequency response functions (FRFs) of an ensemble of nominally iden-

tical systems can be considered to be random. These FRFs, however, have statistical properties that can

be potentially used in vibro-acoustic models. This work explores some of these fundamental properties by

using measured FRFs from an ensemble of nominally identical structures, obtained by randomising a thin

rectangular plate using point masses. It is first shown that the measured ensemble of FRFs satisfies the

analyticity-ergodicity condition, experimentally verifying this recently demonstrated fundamental property.

Then, the ensemble is used to explore whether the direct field dynamic stiffness, a key parameter in a

well-established hybrid deterministic-statistical formulation, can be obtained experimentally. The results

are compared against those computed using numerical techniques, showing that measured data may be a

suitable alternative provided that an ensemble of systems can be measured. Finally, an alternative method,

based on the use of virtual point masses, opposed to physical ones, is proposed for those cases where ex-

perimental randomisation is particularly challenging. It has been found, however, that the method may be

extremely sensitive to measurement imprecisions, specially when applied to lightly damped structures. It is

concluded that the statistical properties of random causal FRFs are not only interesting in themselves, but

can enhance and extend vibro-acoustic prediction models.

Keywords: Random frequency response functions; Experimental ensembles; Analyticity-ergodicity

condition; Direct field dynamic stiffness

1. Introduction1

The two main challenges that Finite Element (FE) models face when analysing the vibro-acoustic re-2

sponse of complex systems at high frequencies are (i) that an unreasonably large number of degrees of3
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freedom may be needed to represent the dynamic system accurately, and (ii) that the response of the sys-4

tem may be highly sensitive to small manufacturing imperfections. Both difficulties may be overcome by5

Statistical Energy Analysis (SEA), which provides a prediction of the mean response [1] and variance [1, 2]6

of an ensemble of nominally identical systems. A key advantage of SEA is that it requires only a small7

number of degrees of freedom, representing the vibrational energies of the subsystems, to model the entire8

vibro-acoustic system. Additional challenges arise when considering what is commonly referred as the mid-9

frequency problem, i.e., the range of frequencies where FE and SEA approaches are not suitable to model10

all the components of system. A solution to this problem was proposed by Shorter and Langley [3], who11

presented a hybrid FE-SEA formulation based on a diffuse field reciprocity result [4, 5]. The method con-12

siders that the complex system is divided into a deterministic component (the master system) and a set of13

statistical components coupled together via the deterministic one. The hybrid method has been numerically14

and experimentally validated [6] and has been extended to predict the ensemble variance of the response15

[7]. More recently, parametric uncertainty has been included on the deterministic components of the system16

[8, 9].17

The use of experimental data to extend the capabilities of hybrid FE-SEA models was recently studied in18

[10]. The work develops a case study which includes complex vibration sources that have been represented19

using experimental blocked forces [11], and resilient elements that have been experimentally characterised20

[12]. In the presented case studies, an analytical method has been used to represent the point junctions21

between the deterministic (i.e. the experimental components) and SEA subsystems. Several analytical and22

numerical techniques have been considered for different types of simple junctions, including: point [13], line23

[6] and area [14] connections. This work presents an alternative method to determine the properties of a24

junction, based on the use of statistical properties of an ensemble of random systems.25

The manufacturing variability of complex engineering systems suggest that vibration frequency response26

functions (FRFs) can be considered as random functions over an ensemble of systems [15]. The statistical27

properties of these complex FRF functions have been a question of interest for several authors. Lyon28

investigated the variance of their modulus [16] and the statistics of their phase [17], and Skudrzyk [18]29

and Cremer and Heckl [19] studied their mean value. More recently, Langley [20] showed that, under30

broad conditions, a complex FRF satisfies the analyticity-ergodicity (AE) condition, and presents extensive31

numerical evidence of this result. The AE condition had been previously considered by Mello et al. [21] in the32

context of random scattering matrices in nuclear physics [22]. An example of a related recent contribution33

is the work of Nock et al. [23], who obtained the probability density function of the real and imaginary34

components of an off-diagonal element of a scattering matrix. The work presented in [20] showed that the35

AE requirement considered in random scattering matrices can be also applied to vibrational FRFs. The36

validity of the AE condition is revisited in this work, which presents further experimental evidence of this37

result.38

2



The aims of this work are (i) to perform an experimental exploration of certain fundamental statistical39

properties of random FRFs, and (ii) to use these properties to extend the capabilities of the hybrid FE-SEA40

method. The remainder of this paper will be organised as follows: Section 2 describes the experimental41

set-up used in the work; The data obtained with this set-up is used in Section 3 to asses the validity of the42

AE condition, and to characterise experimentally the junctions between deterministic and statistical sub-43

systems; A methodology to overcome the limitations that can be encountered when measuring an ensemble44

of subsystems is discussed in Section 4. Finally, Section 5 summarises the main conclusions of this work.45

2. Experimental set-up46

In this work the properties of experimental random frequency response functions are studied using an47

ensemble of ”nominally identical” plates. This ensemble has been obtained by randomising experimentally48

a thin rectangular aluminium plate with dimensions 0.8 m (length) × 1 m (width) × 3 mm (thickness). Free49

boundary conditions have been approximately obtained by adding elastomeric pads along two parallel edges50

of the plate, leaving the remaining edges free. An ensemble of experimental systems has been obtained by51

adding a set of point masses to the plate, placed at randomly chosen locations considering (i) a minimum52

distance between them, (ii) a minimum distance between the masses and the measuring positions, and (iii)53

a minimum distance between the masses and the plate edges. A total of 11 masses were connected to the54

plate using magnetic bases. The total mass added was 800 g, which corresponds to approximately 12% of55

the initial mass of the plate.56

(a) Experimental set-up for a member of the ensemble of random

plates. Measuring positions are marked with red dots.

(b) Damping treatment added to the plate for the sec-

ond ensemble of systems.

Figure 1: Experimental set-up for building an ensemble of random plates

The mechanical parameters considered for the aluminium were; density ρ = 2700 kg·m−3, Young modulus57

E = 70 GPa, and Poisson ratio ν = 0.33. The modal density was computed using the asymptotic expression58

for the bending modes of a thin plate [1] n = L1L2/4π
√
ρh/Dp, giving n = 0.013 modes/(rad/s). The loss59
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factor of the plate was determined experimentally, and a frequency-averaged value η = 0.8% was obtained60

over the range of frequencies considered (1-5000 Hz). With these values, the modal overlap factor of the61

plate at 1000 Hz is m = ωnη = 0.67.62

The dynamic response of the plate was measured at six different positions, marked with red dots in63

Figure 1a, using accelerometers. They correspond to three points far from the plate edges, referred as64

interior points, and three points close to a plate edge, referred as near-edge points. The set of results were65

obtained by applying impact excitations at each one of these positions using an instrumented hammer, and66

measuring the response at all six positions. An accelerance matrix was obtained by dividing the measured67

acceleration spectra by the measured force spectrum for each excitation. An ensemble of random systems68

was obtained by repeating this test 20 times, with different mass locations each time.69

A second ensemble was considered by applying a damping treatment on the plate structure. As it is70

shown in Figure 1b the treatment consisted in several perspex strips glued to the bottom of the plate. As71

before, the loss factor of the plate was experimentally determined, obtaining a frequency-averaged value of72

1.45%. In this case, the modal overlap factor at 1000 Hz is m = 1.22. An experimental ensemble of damped73

plates was obtained using the method described above. The same accelerometer positions were considered74

in this case.75

3. Results obtained using experimental ensembles76

In this section, the experimental ensembles obtained in Section 2 have been used to, first, verify that77

AE condition [20] is satisfied, and second, to explore the possibility of obtaining an experimental direct field78

dynamic stiffness [3].79

3.1. Analyticity-ergodicity condition80

In nuclear physics the AE condition states that E[f(H)] = f(E[H]), where H is a random scattering81

matrix, f( ) is some function of H and E[] represents an ensemble average. It is demonstrated in [20] that82

the AE condition is also applicable to a random causal FRF H if the following broad conditions are satisfied:83

� The statistics of the natural frequencies of the system (poles) are described by a point process that84

is, at least, stationary for those natural frequencies that are close to the excitation frequency. This85

condition does not require the natural frequency distribution to conform to a universal distribution86

such as the Gaussian Orthogonal Ensemble (GOE) or the Poisson distribution [24].87

� The function f(H) must have a convergent Taylor series expansion, a condition that is likely to be88

met by the causal f(H) and, therefore, analytic in the lower half-plane.89
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The applicability of the AE condition to random causal FRFs was numerically verified in [20]. The90

aim of this section is to complement these numerical verifications with experimental ones, using the set91

of experimental ensembles described in Section 2. This aim is achieved by considering that the measured92

accelerance matrix A is the random causal FRF matrix considered, i.e. H = A, and comparing E[f(A)]93

with f(E[A]) for a given f().94

Figure 2 tests the validity of the AE condition for the case where f(A) = A−1, i.e., the function used95

is the matrix inverse performed to determine the apparent mass matrix. The experimental results used are96

the ones obtained by randomising the plate without added damping. The figure compares two components97

of the apparent mass matrices obtained by computing E[A−1] and E[A]
−1

. The variability of the apparent98

mass over the ensemble is also included by plotting A−1 for each member of the experimental ensemble.99

The results show that the AE condition is clearly satisfied for most of the range of frequencies considered,100

and for both driving (a) and transfer (b) components of the apparent mass matrix. The results also show101

a significant ensemble variance of the apparent mass, illustrating that the system response is sufficiently102

random over the ensemble. The results also show that, for a small set of frequencies, the result obtained103

by averaging the apparent mass matrix (in blue) is considerably noisier than the one obtained by inverting104

the ensemble average of the acceleration matrix (in red). This important result, which suggest a potential105

benefit of using the AE condition, will be discussed in more detail in later sections.106
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Figure 2: Experimental verification of the AE condition using the accelerance matrix of the plate without added damping,

and with f(A) = A−1. (a) Modulus of E[(A−1)11] (blue), (E[A]−1)11 (red) and (A−1)11 (gray). (b) Modulus of E[(A−1)12]

(blue), (E[A]−1)12 (red) and (A−1)12 (gray).

The robustness of the AE condition is studied in more detail in Figure 3, which shows the relative107
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difference, computed as
∣∣∣(E[A−1]− E[A]−1

)
ij

∣∣∣ / ∣∣∣(E[A−1]
)
ij

∣∣∣, for the two apparent mass components used108

in the previous figure. The results show that, in general, the AE condition is clearly satisfied at high109

frequencies. This result is in agreement with the fact that at low frequencies the amount of randomness110

added to the structure is insufficient to ensure that the statistics of the natural frequencies over the ensemble111

can be represented by a random point process [20]. This is one of the two conditions required to ensure the112

validity of the AE condition.113
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Figure 3: Relative difference in the AE condition for the case of a plate without added damping and f(A) = A−1. (a) Relative

difference
∣∣(E[A−1] − E[A]−1

)
11

∣∣ / ∣∣(E[A−1]
)
11

∣∣. (b) Relative difference
∣∣(E[A−1] − E[A]−1

)
12

∣∣ / ∣∣(E[A−1]
)
12

∣∣
The role that the modal overlap m plays in the validity of the AE condition can be studied using the114

experimental results obtained for the damped plate ensemble (see Figure 1b). The validity of the AE115

condition for f(A) = A−1 using the damped case data is presented in Figure 4. As before, the variability of116

the apparent mass over the ensemble has been also included in the figure. The results show again that the117

AE condition is satisfied for both driving (a) and transfer (b) components of the apparent mass matrix. As118

expected, the higher damping on the system results in a smaller ensemble variance of the apparent mass.119
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Figure 4: Experimental verification of the AE condition using the accelerance matrix of the plate with added damping, and

with f(A) = A−1. (a) Modulus of E[(A−1)11] (blue), (E[A]−1)11 (red) and (A−1)11 (gray). (b) Modulus of E[(A−1)12]

(blue), (E[A]−1)12 (red) and (A−1)12 (gray).

Figure 5 shows the relative difference
∣∣∣(E[A−1]− E[A]−1

)
ij

∣∣∣ / ∣∣∣(E[A−1]
)
ij

∣∣∣ for the case where A is the120

accelerance matrix of the plate with added damping. As before, the results show that the AE condition121

is clearly satisfied at high frequencies. The results also show that a larger modal overlap slightly smooths122

the relative difference, but does not have a significant effect in its frequency content. This result is also in123

agreement with the analysis presented in [20], which does not explicitly employ the modal overlap.124
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Figure 5: Relative difference in the AE condition for the case of a plate with added damping and f(A) = A−1. (a) Relative

difference
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The AE condition is expected to be satisfied by any function f( ) that has a convergent Taylor series125

expansion. Figure 6 tests the validity of the AE condition for f(A) = A2 using the ensemble of accelerance126

matrices obtained from the un-damped plate. As before, the variability over the ensemble is also included127

by plotting A2 for each member of the experimental ensemble. The results show that the AE is clearly128

satisfied across almost the entire range of frequencies considered. Discrepancies are again only observed at129

low frequencies and, as before, this can be justified by the fact that the amount of randomness added to the130

structure is insufficient to ensure that the AE conditions are satisfied.131
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Figure 6: Experimental verification of the AE condition using the accelerance matrix of the plate without added damping,

and with f(A) = A2. (a) Modulus of E[(A2)11] (blue), (E[A]2)11 (red) and (A2)11 (gray). (b) Modulus of E[(A2)12] (blue),

(E[A]2)12 (red) and (A2)12 (gray).

This subsection has presented an experimental verification of the AE condition for random causal FRFs.132

An application of this result will be shown in the next subsection, where the experimental determination of133

a direct field dynamic stiffness is investigated.134

3.2. An experimental direct field dynamic stiffness135

The hybrid FE-SEA method presented by Shorter and Langley [3] considers a complex structure as136

an assembly of components with a dynamic response that is either highly sensitive or insensitive to ran-137

dom manufacturing uncertainties. These are identified collectively as the statistical subsystems, and the138

FE/deterministic system, respectively. The method assumes that the statistical subsystems are either con-139

nected to deterministic components, or to other statistical components, by deterministic junctions. With140

this assumptions, the response of all the deterministic components is represented by a set of displacement141

degrees of freedom (dof) qd, and the response of each statistical subsystem is represented by its (ensem-142

ble and time average) vibrational energy E. Following the formulation presented in [5], a subset of these143

displacements are referred to as the boundary dofs q. It is through these boundary dofs that a statistical144

subsystem is connected to either the deterministic system, or other statistical subsystems. Then, for a given145

harmonic frequency ω, the governing equations of motion if external forces f(ω) are applied to the boundary146

dofs are147

D(ω)q(ω) = f(ω), (1)
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where D(ω) is the dynamic stiffness matrix of the subsystem, and f(ω) is the force applied at the boundary148

dof. The ω dependence will be later omitted for brevity.149

The hybrid FE-SEA method considers that the wave field generated in a statistical subsystems can be150

understood as the combination of the initially generated waves (direct field), and the waves generated by151

the reflections at the subsystem’s unknown boundaries (reverberant field). The direct field contribution is152

represented by a direct field dynamic stiffness matrix Ddir, which can be understood as the dynamic stiffness153

contribution of the statistical subsystem, at the boundary dofs q, if there were no unknown boundaries in154

the subsystem [3], i.e. if the subsystem was infinite and waves emanating from q were not reflected back to155

it. The added contribution of the reverberant field is included by means of a blocked reverberant force frev.156

By definition, the direct field contribution is equal for all the members of an ensemble of random systems,157

but the reverberant field contribution varies along the ensemble. Taking all this into account, Eq. (1) can158

be then expressed as159

Ddirq = f + frev, (2)

where the dynamic stiffness D contribution has been separated into the (deterministic) direct field dynamic160

stiffness Ddir and the (random) reverberant field force vector frev. If the considered statistical subsystem161

carries a diffuse field over the ensemble [4], then E[frev] = 0 and, taking the ensemble average in Eq. (2)162

and considering that the applied force is deterministic, the expected value of the system response can be163

written as164

E[q] = D−1
dirf. (3)

On the other hand, by inverting Eq. (1) and taking the ensemble average, this response is given by165

E[q] = E[H]f, (4)

where H = D−1 is the receptance matrix of the system. Then, considering the AE condition for the case166

f(H) = H−1, which has been discussed in the previous subsection, the direct field dynamic stiffness can be167

finally expressed as168

Ddir = E[H]−1 = E[D]. (5)

Eq. (5) was previously deduced in [5] without explicitly invoking the AE condition.169

Several analytical and numerical techniques have been proposed to evaluate the Ddir. Examples for170

point, line and area junctions can be found in [13], [6] and [14], respectively. Eq. (5), however, suggests171

an alternative method for determining it: Provided that (i) the receptance matrix H associated to the172
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boundary dof can be measured, and (ii) an ensemble of random subsystems can be built experimentally,173

Ddir can be determined as an ensemble average of measured dynamic stiffness. The validity and advantages174

of the proposed approach are presented in the following subsections, which use the sets of experimental data175

described in Section 2 to discuss three types of point connections in a thin plate.176

3.2.1. Interior single point connection177

The direct field dynamic stiffness of a point connection far from any of the plate’s edges can be obtained178

using a wave analysis [13]. In general six physical dof are associated to a point connection and the corre-179

sponding Ddir will be a 6× 6 matrix. However, if the component connected to the statistical thin plate is a180

resilient element, such as a antivibration mount, it may be sufficient to consider the dof that represents the181

displacement perpendicular to the plate, referred here as vertical displacement. Then, Ddir can be computed182

using the vertical driving-point response of an infinite thin plate Hdp. This stiffness can be expressed as [19]183

Ddir = H−1
dp = 8iω

√
Dpρh (6)

where ρ is the plate’s mass density, h is its thickness, and Dp = Eh3/12(1 − ν2) is its flexural rigidity, E184

being its Young's modulus and ν its Poisson's ratio.185

According to Eq. (5), Ddir can be also obtained using the experimental results described in Section 2.186

In this case, the dynamic stiffness can be expressed as187

Ddir = E[D] = −ω2E[A−1
ii ] = −ω2(E[Aii])

−1 (7)

where Aii is a diagonal component of the measured accelerance matrix related to a point in the interior of188

the plate, and where the AE condition has been used in the rightmost equality.189

Figure 7 compares the (a) real and (b) imaginary components of the analytical dynamic stiffness obtained190

from Eq. (6), with the experimental dynamic stiffness obtained using Eq. (7). The dynamic stiffness D191

corresponding to each member of the experimental ensemble has been also included in the figure. To take into192

account the presence of the accelerometers, a mass correction factor has been applied to the experimental193

results [25]. The results correspond to the first dof marked in Figure 1a, but very similar results where194

obtained for dof two and three.195
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Figure 7: Direct field dynamic stiffness for a single point connection far from the plate’s edges. Red: Experimental ensemble

mean using f(E[H]); Green: Experimental ensemble mean using E[f(H)]; blue: analytical expression; gray: Dynamic stiffness

of the 20 members of the ensemble. (a) Real components. (b) Imaginary components.

The results show a very good agreement between the ensemble average of the experimental dynamic196

stiffness and the analytical expression for Ddir. As expected the real component of the ensemble average197

dynamic stiffness oscillates around zero. Almost no difference can be observed between inverting the ensemble198

average receptance and ensemble averaging the dynamic stiffness. This result is consistent with the AE199

condition tests presented in Subsection 3.1.200

3.2.2. Interior multi-point connection201

If one or more resilient elements are connected to the statistical thin plate via multiple point connections202

that are close to each other, then it may be necessary to take into account the coherence between them.203

If, as in the previous case, it is assumed that it is sufficient to consider only the vertical displacement of204

each point connection, then Ddir can be computed using the vertical response of an infinite plate to vertical205

excitations. Considering i as the response position and j as the position where the vertical point load is206

applied, the plate response can be expressed as [19]207

Hij = H(rij) =
H

(2)
0 (kBrij)− (2i/π)K0(kBrij)

8iω
√
Dpρh

, (8)

where H
(2)
0 is the zeroth order Hankel function of the second kind, K0 is the zeroth order modified Bessel208

function of the second kind, rij is the distance between both positions and kB =
(
ρhω2/Dp

)1/4
is the plate209

bending wavenumber.210
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Eq. (8) can be used to build a matrix of receptances H for an arbitrary number dofs representing vertical211

displacements far from any edge of the plate. Then Ddir can be obtained by inverting H. In the case of a212

two-point connection, the dynamic stiffness can be written as follows213

Ddir = H−1 =

H11 H12

H21 H22

−1

(9)

where H11 = H22 and H12 = H21 are computed using Eq. (8).214

As before, Eq. (5) and the experimental results described in Section 2 can be also used to obtain the215

Ddir of a connection consisting of two interior points. In this case, the dynamic stiffness can be expressed216

as217

Ddir = E[D] = −ω2E[A−1] = −ω2E[A]−1 (10)

where, A now represents a 2 × 2 block of the measured 6 × 6 accelerance matrix, and again, the AE218

condition has been used in the rightmost equality.219

Figure 8 compares the (a,c) real and (b,d) imaginary components of the driving (a,b) and transfer (c,d)220

components of Ddir. The analytical dynamic stiffness matrix is obtained from Eq. (9) and the experimental221

dynamic stiffness is obtained using Eq. (10). The dynamic stiffness D corresponding to each member of the222

experimental ensemble has been also included in the figure. The positions considered in this case are dofs223

one and three in Figure 1a, which are 11 cm apart. Again, the presence of accelerometers have been taken224

into account by applying a mass correction to the experimental results [25].225
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Figure 8: Direct field dynamic stiffness for a two-point connection far from the plate’s edges. Red: Experimental ensemble

mean using f(E[H]); Green: Experimental ensemble mean using E[f(H)]; blue: analytical expression; gray: Dynamic stiffness

of the 20 members of the ensemble. (a) Real part of a driving component. (b) Imaginary part of a driving component. (c)

Real part of a transfer component. (d) Imaginary part of a transfer component.

The results show again a very good agreement between the ensemble average of the experimental dynamic226

stiffness and the analytical expression for Ddir. This agreement can be seen in both driving and transfer227

components of the stiffness. As before, the agreement found between the result of inverting the ensemble228

average receptance and of ensemble averaging the dynamic stiffness shows that the AE condition is clearly229

satisfied.230
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3.2.3. Near-edge point connection231

The cases of a single and a multiple point connection presented in the previous subsections have shown232

that experimental data can be used to obtain the Ddir associated to a deterministic junction. In these two233

cases, however, the advantage of using this method is rather limited, as rather simple analytical expressions234

can be obtained. The case presented in this subsection, that of a point lying near one of the edges of the235

plate, offers a first insight of the potential of the proposed method.236

In general, the previously presented analytical expressions for points in the interior of a plate cannot be237

used for a point that lies near one of its edges. The edge may have a deterministic effect on the ensemble238

response that has to be included in Ddir. This work presents a numerical strategy to compute the direct239

field dynamic stiffness for such cases. The method assumes that the point is near the edge of a semi-infinite240

plate, i.e. assumes that other edges of the plate are part of the unknown boundaries of the statistical system.241

The dynamic stiffness of interest is then obtained combining the dynamic stiffness of a plate strip with a242

width equal to the point-edge distance, and the dynamic stiffness of the edge of a semi-infinite plate. The243

details of the formulation can be found in Appendix A. As before, an experimental Ddir can be obtained244

using Eq. (7) from the experimental results described in Section 2.245

Figure 9 compares the (a) real and (b) imaginary components of the analytical dynamic stiffness obtained246

using the numerical approach described in Appendix A, with the experimental dynamic stiffness obtained247

using Eq. (7). The dynamic stiffness D corresponding to each member of the experimental ensemble has248

been also included in the figure. In this case, the results correspond to the sixth dof marked in Figure 1a249

and, as before, a correction factor was applied to take into account the accelerometer mass.250
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Figure 9: Direct field dynamic stiffness for a single point connection near one plate edge. Red: Experimental ensemble mean

using f(E[H]); Green: Experimental ensemble mean using E[f(H)]; blue: analytical expression; gray: Dynamic stiffness of the

20 members of the ensemble. (a) Real components. (b) Imaginary components.

The results show a good agreement between the ensemble average of the experimental dynamic stiffness251

and the analytical expression for Ddir. In this case, the result of inverting the ensemble average receptance252

is clearer than the result of ensemble averaging the dynamic stiffness. In such situations, the AE condition253

can be invoked, and the better result can be used.254

The results presented in this last subsection show that the experimental approach is suitable for modelling255

connections that may be significantly challenging to represent using analytic or numerical techniques. How-256

ever, in some cases the procedure to obtain an ensemble of ”nominally identical” subsystems, by randomising257

experimentally the original structure as described in Section 2, may not be applicable. An alternative pro-258

cedure, which combines the use of experimental measurements and analytical results, is presented in the259

next section.260

4. Extending the ensemble using virtual masses261

The results shown in Section 3 suggest that experimental measurements can be used to determine Ddir262

for those connections that can be challenging (or even impossible) to represent using analytical or numerical263

techniques. As it has been explained in Section 2, an ensemble of random subsystems can be built exper-264

imentally by attaching point masses at random locations of a structure. However, there may be cases in265

which either the nature of the structure impedes the attachment of these additional masses on it, or the266

procedure becomes extremely time consuming. For these cases, an alternative method is proposed in this267
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section. The method is based on the generation of new members of an ensemble of ”nominally identical”268

systems without having to physically randomise it. Therefore, to differentiate them from the ensembles ob-269

tained using the method described in Section 2, ensembles that have been created using this new approach270

will be referred as ”artificial ensembles”.271

4.1. Description of the proposed methodology272

The aim of the proposed methodology is to reproduce the procedure described in Section 2 adding the273

random point masses numerically instead of physically attaching them. The procedure consist then of the274

following steps:275

1. A set of measurement positions are defined. This set consists of:276

� NI positions of interest. For the rectangular plate discussed in Section 2 these would be the six277

points marked with red dots in Figure 1a.278

� NP additional positions where ”artificial” point masses will be added. These positions should be279

randomly distributed along the system and, as it will be later discussed, NP should, in principle,280

be significantly larger than the number of masses NM that will be numerically added.281

2. Impact excitations are applied at each measurement position using an instrumented hammer, and the282

response at all positions is measured using accelerometers. For those positions (or dofs) that cannot283

be directly accessed or excited, alternative techniques such as the round trip method [26] can be284

considered.285

3. An initial accelerance matrix Aini is obtained dividing the measured acceleration spectra by the mea-286

sured force spectrum for each excitation. Note that this accelerance matrix will be significantly larger287

than the one obtained in Section 2. It is however, only measured once.288

4. The corresponding initial apparent mass matrix is obtained by inversion as Mini = A−1
ini .289

5. For each member i of the ensemble, a modified apparent mass matrix is obtained,290

Mmod,i = Mini + Madd,i (11)

where Madd,i is a diagonal matrix that contains the apparent mass matrix contribution added by the291

NM numerical point masses. Therefore, the only non-zero components of this matrix are those NM292

diagonal components that correspond to the positions where the point masses have been added, and293

these will be equal to the added point mass madded. For each ensemble member i the positions of294

the point masses are chosen randomly from the larger set of positions NP . It is important to note295

that (i) point masses should not be added to any of the NI positions of interest, and (ii) if NP is not296

significantly larger than NM there will be a limited number of possible mass ”permutations”, and a297
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limited amount of uncertainty in the obtained artificial ensemble. The later limitation, however, can298

be overcome to some extent if the amount of mass madded added is also considered to be random over299

the ensemble. Note also that, with this method, alternative components, such as a random stiffness,300

could be also included with no extra effort.301

6. For each member i of the ensemble, the corresponding modified accelerance matrix is obtained inverting302

the modified apparent mass matrix Amod,i = M−1
mod,i. Each one of these modified accelerance matrices303

can be expressed as304

Amod,i =

Adidi,i Adidp,i

Adpdi,i Adpdp,i

 (12)

where di refers to the dofs that are not modified in the randomisation strategy, i.e. the positions of305

interest, and dp refers to those that are.306

There are some potential benefits of building an artificial ensemble instead of an experimental one.307

The method for building them will be, in most cases, significantly less time consuming than the physical308

randomisation of the system, specially for those cases where a large ensemble may be required. The efficiency309

of the new methodology is particularly clear when NI , and therefore the size of Aini, is rather small. As310

mentioned before, this small size could be achieved by considering that the mass values madded of each one311

of the added point masses is a random value. Finally, it should be also mentioned that the applicability of312

the proposed method is not limited to the experimental cases described in this work and, for example, the313

method could be also applied to randomise an FE model of a statistical system.314

In the next subsection the proposed methodology has been used to obtain an artificial ensemble of plates315

using the rectangular aluminium plate described in the previous sections.316

4.2. Results obtained using artificial ensembles317

4.2.1. Plate without added damping318

The proposed methodology has been used to build an artificial ensemble of thin rectangular plates. The319

response of the plate to hammer impacts was measured, using accelerometers, at 30 different positions.320

These positions, which have been marked with dots in Figure 10b, include the six positions considered in321

the experimental ensembles of section 3, i.e. the positions of interest, and 24 additional positions randomly322

scattered across the plate structure. The artificial ensemble has been obtained considering NI = 9 positions323

of interest: the six measuring positions considered in Section 2 and three additional positions far from the324

plate’s edges. For each member of the ensemble, point masses of 70g have been added at 11 positions that325

are randomly chosen from the NP = 30 − NI = 21 positions. As in the experimental case, the proposed326

method has been used to build an ensemble of 20 members.327
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(a) Experimental set-up used for measuring the

accelerance matrix Aini.

(b) Positions considered in measuring Aini (green dots).

Figure 10: Experimental set-up for building an artificial ensemble of random plates

A comparison between the accelerance matrix obtained by physically randomising the system, and by328

virtual randomisation (i.e. using virtual point masses) is presented in Figure 11. The comparison shows the329

ensemble average of the driving component corresponding to the first dof (see Figure 1a). The accelerance330

for each of 20 ensemble members, both artificial and experimental, have also been included in the figure.331
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Figure 11: Accelerance matrix component A1,1. Red: Experimental ensemble mean; gray: Accelerance of the 20 members of the

ensemble. (a) Artificial ensemble. The experimental ensemble mean has been included as a darker thin line (b) Experimental

ensemble.

The results show that the accelerances obtained using virtual masses are considerably noisier than the332

experimental ones. This is clearly an unexpected result, as both methods are randomising the same dynamic333

structure. However, a direct comparison of accelerance components may be insufficient to quantify the im-334
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portance of the differences observed, and further insight may be gained if the statistics of both experimental335

and artificial ensembles are compared to SEA mean and variance predictions. The expressions used to obtain336

these predictions are summarised in the following paragraphs.337

The time and ensemble average vibrational energy E of a single subsystem is given by [1]338

ηωE = P, (13)

where η is the subsystem loss factor and P is the time and ensemble average power input applied to the339

subsystem. For a point load excitation, it is shown in [1] that, when the resonance frequencies of the system340

are random and uniformly distributed over some frequency interval, the power input averaged over the341

source location is given by342

P =
πn

4mp
|F |2, (14)

where n is the subsystem’s modal density (which, for the case of a plate, was defined in Section 2), mp is343

the mass of the statistical subsystem and |F | is the amplitude of the excitation.344

Langley and Brown [24] obtained an estimate of the response relative variance (i.e the variance divided345

by the square of the mean) by considering the statistics of the time averaged kinetic energy density of the346

system, which is given by347

T (ω) =
∑
n

ω2an
[(ω2

n − ω2)2 + (ηωωn)2]
, (15)

where ωn is the nth natural frequency of the system and an are coefficients that depend on the type of348

loading assumed. In their study, by assuming that the natural frequencies of a subsystem are random and349

conform to the GOE statistics [27, 28], they obtained the following expression for the relative variance of a350

subsystem in terms of the modal overlap factor m = ωnη and of the spatial factor α = E[a2
n]/E[an]2351

r2(α,m) =
1

πm

{
α− 1 +

1− exp(−2πm)

2πm
+ E1(πm)

(
cosh(πm)− sinh(πm)

πm

)}
, (16)

where E1 is the exponential integral. The spatial factor for a single point load excitation is α = K =352

E[φ4
n(x)]/E[φ2

n(x)]2, φn(x) being the mode shape at some location x. Numerical studies have shown that353

K = 2.75 is an appropriate value for a plate structure [28, 24].354

In the case of the experimental ensemble, the vibration energy of the plate has been estimated from the355

experimental results by averaging the response of two of the interior dof when the third one is excited to356

give 〈|v|2〉a, and then noting that E[E] = mp〈|v|2〉a/2. With this approach, an ensemble of 20 experimental357

estimations of the plate energy have been obtained.358

Figure 12 presents a comparison between the experimental vibrational energy of the plate and the energy359

predicted by the SEA equations. The ensemble mean and relative variance predictions have been calculated360
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using Eqs. (13) and (16), respectively. The SEA predictions have been calculated using the mechanical361

parameters and loss factor defined in Section 2. The energy predicted for each one of the 20 members of the362

ensemble has been also included in the results.363
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Figure 12: (a) Energy of the plate without added damping due to a unit point force excitation. Gray: response of the

20 members of the experimental ensemble; red: experimental ensemble mean response; blue: SEA prediction. (b) Relative

variance of the energy. Red: experimental ensemble variance; blue: SEA prediction.

The results show a good agreement between the measured plate ensemble average response and the364

response predicted by the SEA equations. The SEA equations seem to slightly overestimate the response365

between 800 Hz and 2 kHz but this can be explained by the frequency-dependent effect that the damping366

treatment has on the plate response. This effect can be also observed in the relative variance comparison.367

In both cases a slightly better agreement could be obtained if a frequency-dependent subsystem loss factor368

was used. Additional differences may arise as a result of the performed space averaging, which considers369

only two (near) positions. Nevertheless, the results show that the statistics of the experimental ensemble370

agree well with the theoretical predictions.371

A similar comparison can be performed by estimating the vibration energy of the plate from the artificial372

ensemble of accelerances. It was mentioned before that, in obtaining of the artificial ensemble, NI = 9373

positions of interest have been considered, and six of them are positions far from any of the plate’s edges.374

In this case the vibration energy of the plate has been estimated by averaging the response of five of these375

interior dofs when the sixth one is excited.376

Figure 13 presents a comparison between the vibrational energy of the plate estimated using the artificial377

ensemble results and the energy predicted by the SEA equations. As before, the SEA predictions have been378
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calculated using Eqs. (13) and (16) with the mechanical parameters and loss factor defined in Section 2.379

Again, the energy predicted for each one of the 20 members of the ensemble has been also included in the380

results.381
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Figure 13: (a) Energy of the plate without added damping due to a unit point force excitation. Gray: response of the 20

members of the artificial ensemble; red: artificial ensemble mean response; blue: SEA prediction. (b) Relative variance of the

energy. Red: artificial ensemble variance; blue: SEA prediction.

The results clearly show that both the ensemble mean and relative variance obtained from the artificial382

ensemble are extremely noisy. This fact suggests that the proposed methodology may have numerical or383

experimental issues that need to be understood. Further insights into the nature of these issues can be gained384

by examining the components of the measured initial accelerance matrix Aini and of the corresponding initial385

apparent mass of the system Mini = A−1
ini . The modulus of a component of each one of these 30×30 matrices386

is shown in Figure 14.387
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Figure 14: (a) Modulus of the component (3,9) of the initial accelerance matrix Aini for the plate without added damping. (b)

Modulus of the component (1,3) of the initial apparent mass matrix Mini for the plate without added damping.

The frequency response of the accelerance component has an expected dynamic behaviour. There is388

an increase on the peaks bandwidth proportional to the excitation frequency, and at high frequencies the389

response is clearly smoothed due to the overlapping of modes. On the contrary, the results for the apparent390

mass component are rather unexpected. They exhibit a considerable number of very sharp peaks across391

the entire frequency range considered, and the bandwidth of these peaks seems to be insensitive to the392

corresponding excitation frequency. The correctness of the matrix inversion has been verified by checking393

that MiniAini − I (where I is the identity matrix) is 0 to several significant digits. This result ensures that394

these peaks are not caused by a numerical instability of the matrix inversion, and that they may likely have395

an experimental cause.396

Additional information can be obtained by noting that Mini = A−1
ini = adj(Aini)/det(Aini), where adj397

stands for adjoint and det for determinant. Figure 15 presents an expanded view of one of these unexpected398

spikes in the apparent mass components (a), and details the frequency content of the modulus of det(Aini)399

and adj(Aini) around this spike. For the case of the determinant, the modulus of both real and imaginary400

components have been also included in the figure.401
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Figure 15: (a) Zoomed view of one of the spikes observed in the apparent mass matrix component shown in Figure 14. (b)

Modulus of the terms involved in calculating A−1
ini . black: determinant; dashed blue: real component of the determinant;

dashed red: imaginary part of the determinant, yellow: adjoint.

The results show that the spike occurrence is related to a sharp decay in the determinant value and not402

to a decay in the adjoint’s magnitude. The same behaviour has been observed in many other apparent mass403

spikes.404

The results presented in Figures 14 and 15 shows that main issues in building an artificial ensemble405

arise from inverting the experimentally determined initial accelerance matrix. As explained in Section 2406

and Subsection 4.1, the dynamic response of the plate was obtained by applying impact excitations on each407

one of the accelerometers positions using an instrumented hammer. It is interesting to note that, due to408

the nature of the experimental procedure, the hammer impacts will have a limited precision, and may not409

be applied at the exact position where the corresponding accelerometer is located. In the next section, the410

effect that this imprecision on the obtained results is assessed using an analytical model of the plate.411

4.2.2. Exploration of the spikes412

The limited precision associated with the experimental determination of the accelerance matrix Aini is413

studied in this section using an analytical model. The rectangular plate described in Section 2 is modelled414

here as a thin plate that is simply-supported on its four edges. The fact that the assumed boundary415

conditions do not represent the experimental ones is of little importance for the aim of this study. With416

these assumptions, the response H(xr, yr) at a receiver position (xr, yr) due to a harmonic unit point load417
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excitation applied at a force position (xf , yf ) can be expressed as the following modal sum418

H(xr, yr) =

∞∑
m=1

∞∑
n=1

sin

(
nπxf
Lx

)
sin

(
mπyf
Ly

)
sin

(
nπxr
Lx

)
sin

(
mπyr
Ly

)
e−iφnm

Cnmρh
√

(ω2
nm − ω2)2 + ω4

nmη
2

, (17)

where Lx and Ly are the length and width of the plate,419

φnm = arctan

(
η

1− (ω/ωnm)2

)
, (18)

ωnm =

[(
nπ

Lx

)2

+

(
mπ

Ly

)2
]√

Dp

ρh
(19)

and420

Cnm =

Lx∫
0

Ly∫
0

[
sin

(
nπx

Lx

)
sin

(
mπy

Ly

)]2

dydx =
LxLy

4
. (20)

Eq. (17) can be used to assess the effect of a potential experimental imprecision in the determination421

of the accelerance matrix Aini. This aim is achieved by building two FRF accelerance matrices. The first422

one considers that the force positions are collocated with the receiver positions (xr1 , yr1), . . . , (xrN , yrN ),423

which represents the (idealised) case where hammer impacts are applied exactly at each accelerometer424

position. The second case assumes a small random distance between excitation and response positions, so425

that (xfk , yfk) = (xrk , yrk) + (εxk
, εyk). This case represents the (realistic) situation where hammer impacts426

may not be exactly applied at the accelerometers positions. The obtained matrices are referred as collocated427

and non-collocated accelerance matrix, respectively.428

The experimental procedure described in Subsection 4.1 has been simulated by choosing 30 positions429

across the plate. The positions have been placed randomly considering a minimum distance of 3 cm between430

them and the plate’s edges. The random variables εx and εy are taken as uniformly distributed in the range431

[-1,1] cm. The force and receiver positions considered for the case of the non-collocated accelerance matrix432

are shown in Figure 16. The mechanical properties and loss factor described in Section 2 have been used in433

the calculations.434
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Figure 16: Force (red dots) and receiver (black dots) positions considered in the obtention of a non-collocated analytical

accelerance matrix.

Figure 17 compares (a) the modulus of a component of both accelerance matrices (collocated and non-435

collocated) and (b) the modulus of a component of their respective apparent mass matrices. The results436

show that non-collocation has little effect on the accelerance obtained. However, huge differences can be437

observed in the apparent mass. The non-collocated FRF shows a large number of unexpected sharp spikes,438

and the bandwidth of these spikes is unaffected by the excitation frequency considered.439
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Figure 17: Results obtained using the analytical model for a lightly damped plate. (a) Modulus of the component (3,9) of

the simulated collocated (blue) and non-collocated (red) accelerance matrices. (b) Modulus of the component (1,3) of the

corresponding collocated (blue) and non-collocated (red) apparent mass matrices.
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The non-collocated results presented in Figure 17 seem to be consistent with the experimental results440

presented in Figure 14. The consistency between the experimental results and the analytical simulations can441

be also observed in Figure 18, which presents an expanded view of one of the spikes of the non-collocated442

apparent mass component, and the frequency content of the accelerance matrix determinant and adjoint.443

As in Figure 15, the spike occurrence is related to a sharp decay in the determinant value.444
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Figure 18: (a) Zoomed view of one of the spikes observed in the apparent mass matrix component shown in Figure 17. (b)

Modulus of the terms involved in calculating the non-collocated apparent mass matrix. black: determinant; dashed blue: real

component of the determinant; dashed red: imaginary part of the determinant, yellow: adjoint.

If an excitation vector f is applied at the force positions, the resulting acceleration vector a (i.e the445

response at the receiver positions) will be given by a = Af, A being the considered accelerance matrix.446

The results presented in Figure 18 show that an unexpected spike in the apparent mass is related to a447

sharp decay in the non-collocated accelerance matrix Anc determinant. Therefore, each of these peaks448

where det(Anc)→ 0, can be associated with a force eigenvector. Then, if one of these force eigenvectors is449

multiplied by Anc, the receiver positions should not be accelerated. However, if that same force eigenvector450

is multiplied by the corresponding collocated accelerance matrix Ac the receiver positions will move. This451

result has been verified by applying the force eigenvector associated with the spike observed in Figure 18452

to (a) the force positions (xfk , yfk) considered in the non-collocated case, and (b) to the force positions453

considered in the collocated one. The response of the plate to these excitations is presented in Figure 19.454
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Figure 19: Modulus of the plate acceleration when it is excited by the force eigenvector corresponding to the spike presented

in Figure 18. (a) Force positions are non-collocated (b) Force positions are collocated.

The results show that a small change in the force positions can have a huge effect on the plate response455

field. For the non-collocated case, the results also indicate that the response at the receiver positions (marked456

in this case using red dots) is almost zero. This result ensures that the applied force vector is in fact a force457

eigenvector, and verifies that a sharp peak in the apparent mass matrix can be related to an eigenvalue458

problem.459

The lack of unexpected spikes for the collocated case can be justified noting that, when the force and460

receiver points are the same, a force vector giving Acf = 0 would be a blocked force vector. If this blocked461

force existed and was applied to the receiver positions, it would give a zero input power to the system. This462

situation would not be consistent with the principle of conservation of energy, due to the fact that energy463

will be dissipated due to the plate’s damping. Therefore, the type of spikes observed the non-collocated case464

cannot happen in this case.465

A near-zero response at multiple positions would be also compatible with the unexpected case where466

these positions lie in nodal lines of the particular mode shape that dominates the response at the considered467

excitation frequency. However, a more detailed examination of contribution that each plate mode has on the468

plate response has shown that (i) the unexpected spikes in the apparent mass matrix occur at frequencies469

that are not related to the plate eigenfrequencies, and (ii) the response of the plate at these frequencies470

includes the contribution of a large number of modes.471

Further insights into the conditions in which unexpected spikes occur can be obtained if the determinant472

of the non-collocated accelerance matrix is expressed as det |Anc| =
N∏
i=1

λi, being λi the (complex) matrix473

eigenvalues. This product of eigenvalues suggests that it is sufficient to have one |λi| = 0 to find a spike in474

the apparent mass matrix. However, such condition implies that both real and imaginary components of475

the eigenvector vanish. As the complex component of an off-resonance response is small for low damping476
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values, it is expected that a zero eigenvalue, and therefore a spike in the apparent mass matrix, would be477

less likely to happen if the measurements are performed with a heavily damped system rather than with a478

lightly damped one.479

This result has been verified in Figure 20, where components of the collocated and non-collocated ac-480

celerance and apparent mass matrices are compared for a heavily damped (η = 3.2%) plate. The results481

show that the non-collocated apparent mass matrix does not have any unexpected spikes, a result that is482

consistent with the previous discussion.483
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Figure 20: Results obtained using the analytical model for a heavily damped plate. (a) Modulus of the component (3,9) of

the simulated collocated (blue) and non-collocated (red) accelerance matrices. (b) Modulus of the component (1,3) of the

corresponding collocated (blue) and non-collocated (red) apparent mass matrices.

4.2.3. Plate with added damping484

A second artificial ensemble of thin rectangular plates has been obtained using the plate with an added485

damping treatment (see Figure 1b). As in the previous case, the response of the damped plate to hammer486

impacts was measured at the 30 positions marked with dots in Figure 10b. The same NI = 9 positions487

of interest have been considered and, for each member of the ensemble, point masses of 70g have been488

numerically added at 11 positions that are randomly chosen from the NP = 30−NI = 21 positions. Again,489

the method has been used to build a 20 member ensemble.490

Figure 21 shows the modulus of a component of the initial accelerance matrix Aini and of the initial491

apparent mass matrix Mini for the plate with added damping. When compared to the case without added492

damping (see Figure 14), it is clear that the apparent mass matrix for this case presents far fewer unexpected493

spikes. This reduction is consistent with the discussion of the results obtained using the analytical plate494
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model.495
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Figure 21: (a) Modulus of the component (3,9) of the initial accelerance matrix Aini for the plate with added damping. (b)

Modulus of the component (1,3) of the initial apparent mass matrix Mini for the plate with added damping.

The statistics of both experimental and artificial ensembles have been again compared to SEA mean and496

variance predictions. As in the case of the plate without added damping, the vibration energy of the plate497

has been estimated using E[E] = mp〈|v|2〉a/2. As before, for the experimental ensemble case, the space498

average considers two of the interior points when the third one is excited and, for the artificial ensemble499

one, the average uses five of the interior positions when the sixth one is excited.500

Figure 22 compares the ensemble mean and relative variance of the estimated experimental vibrational501

energy of the plate with the SEA ensemble mean and relative variance predictions, calculated using Eqs.502

(13) and (16), respectively. These predictions have been calculated using the experimentally determined503

loss factor for the damped plate, defined in Section 2. The energy predicted for each one of the 20 members504

of the ensemble has been also included in the results.505
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Figure 22: (a) Energy of the plate with added damping due to a unit point force excitation. Gray: response of the 20 members

of the experimental ensemble; red: experimental ensemble mean response; blue: SEA prediction. (b) Relative variance of the

energy. Red: experimental ensemble variance; blue: SEA prediction.

The results show that, despite having used only two (near) positions to estimate the plate energy, the506

statistics of the experimental ensemble agree well with the theoretical predictions.507

The same comparison has been performed in Figure 23 using the artificially generated ensemble. The508

results are slightly better than the ones for the plate without added damping (Figure 13) but, specially509

in the relative variance case, the results are still quite noisy. Despite that, it can be concluded that the510

experimental issues found in the generation of artificial ensembles mainly occur due to a low damping value511

in the considered subsystem.512
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Figure 23: (a) Energy of the plate with added damping due to a unit point force excitation. Gray: response of the 20 members

of the artificial ensemble; red: artificial ensemble mean response; blue: SEA prediction. (b) Relative variance of the energy.

Red: artificial ensemble variance; blue: SEA prediction.

The results presented in Figure 23 show that an artificial ensemble may be of limited use in determining513

the energy statistics of a subsystem having uncertainties. However, this type of ensemble could also be used514

to obtain another result of interest: a direct field dynamic stiffness matrices. This potential application is515

studied in Figure 24, in which dynamic stiffness ensemble averages are used to determine Ddir for a point far516

from any of the plate’s edges, referred as interior point, and for a point lying near one of these edges, referred517

as near edge point. Both experimental and artificial ensemble averages are compared with the analytical518

expressions for Ddir, which are computed, for the interior point case, using Eq. (6) and, for the near edge519

one, using the methodology presented in Appendix A. As in Subsection 3.2, both experimental dynamic520

stiffness are obtained using Eq. (7). As in previous cases, the experimental results have been obtained using521

the inverse of the ensemble average instead of the ensemble average of the inverse.522
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Figure 24: Direct field dynamic stiffness. Black: Experimental ensemble mean; red: Artificial ensemble mean; thick blue:

analytical expression; gray: Dynamic stiffness of the 20 members of the artificial ensemble. (a) Interior point. (b) Near edge

point.

The results show a reasonably good agreement between both ensemble averages and the analytical523

predictions. The predicted stiffness is slightly higher than the experimental results, a result that can be524

attributed to a local effect of the applied damping treatment (see Figure 1b). As before, the artificial525

ensemble results are nosier than the experimental ones.526

One of the key advantages of considering an ensemble generated by randomising virtual masses instead527

of physical ones is that, once the initial accelerance matrix has been determined, large ensembles can be528

generated with very little effort. This advantage has been used in Figure 25 to investigate if the use of529

a larger ensemble can improve the agreement between artificial and experimental ensemble averages. In530

particular, an artificial ensemble of 1280 members has been used in the figure.531

33



Figure 25: Direct field dynamic stiffness. Black: Experimental ensemble mean; red: Artificial ensemble mean; thick blue:

analytical expression; gray: Dynamic stiffness of the 1280 members of the artificial ensemble. (a) Interior point. (b) Near edge

point.

The results show that the new artificial ensemble average agrees very well with the experimental one.532

The unexpected high-frequency spikes have been clearly smoothed in this case. However, the huge statistical533

spread of the response also suggests that a larger ensemble would not improve the variance results presented534

in Figure 23. Additional calculations have confirmed this result.535

This section has shown that ensembles generated using virtual point masses have potential advantages536

over ensembles generated by physically randomising the system of interest. However, the applicability of537

these artificial ensembles may be limited to those cases where the system is significantly damped.538

5. Conclusions539

This work has presented an experimental study of certain fundamental properties of random causal540

frequency response functions. This exploration has been performed by measuring the dynamic response of541

an ensemble of random plates. Two experimental ensembles have been obtained by physically randomising542

the considered structure with and without an added damping treatment.543

The experimental results have been initially used to verify that ensembles of measured accelerances satisfy544

the analyticity-ergodicity condition. This result represents a first experimental validation of a property that545

has been recently demonstrated to be applicable to random engineering systems.546

The ensembles have been also used to demonstrate that the direct field dynamic stiffness of a junction547

between systems, a key parameter in the hybrid FE-SEA method, can be determined using experimental548
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data. This property has been successfully applied to three types of point connections of increasing complexity.549

A methodology to generate an ensemble of random system using virtual masses has been proposed for550

those cases where an experimental randomisation is impractical. The results, however, have shown that for551

lightly damped systems this methodology is extremely sensitive to small experimental imprecisions. The552

effect of these small imprecisions was further discussed using an analytical model, and the results have shown553

that the experimental issues are clearly reduced when a system is heavily damped. Experimental results for554

a plate with added damping treatment has supported this numerical result.555
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Appendix A. Modelling a near edge point562

Appendix A.1. Proposed numerical approach563

This appendix presents a numerical strategy to compute the dynamic stiffness associated with the trans-564

verse response of a point connection close to the edge of a semi-infinite plate. The first step of the approach565

consists of dividing the initial structure, presented in Figure A.1a, into an infinite strip with a thickness566

equal to the distance point-edge distance, and a semi-infinite plate in which the point connection lies exactly567

on its edge, as shown in Figure A.1b.568

(a) Scheme of a point near the edge of a semi-

infinite plate.

(b) Substructuring approach used to compute the point stiffness for a

point near the edge of a semi-infinite plate.

Figure A.1: Method used to compute Ddir for a point near a plate’s edge.
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Assuming plane wave propagation, the dynamic stiffness of the original structure along the dividing line,569

noted as Dnear(k, ω), can be expressed as570

Dnear(k, ω) = De(k, ω) + Dstrip(k, ω) (A.1)

where De(k, ω) is the dynamic stiffness along the edge of a semi-infinite plate, and Dstrip(k, ω) is dynamic571

stiffness along the edge of an infinite plate strip. The wavenumber and frequency dependence (k, ω) has572

been explicitly written, but will be omitted for brevity in what follows.573

The dynamic stiffness along the edge of a semi-infinite plate De(k, ω) can be computed using the formu-

lation presented in [6]. Assuming plane wave propagation, the out-of-plane displacement w and rotation θ

of the plate’s edge caused by edge tractions S and M can be expressed as

De

w
θ

 =

 S

M

 , (A.2)

where the components of the dynamic stiffness matrix De can be found in [29].574

The dynamic stiffness of the edges of an infinite strip plate can be obtained extending the formulation575

presented in [30], which considers a finite plate strip simply-supported on its narrow sides, to the infinite576

case. The formulation is extended by assuming a continuous set of wavenumbers k instead of a discrete one.577

Assuming plane wave propagation, the out-of-plane response of both strip edges due to edge tractions can578

be expressed as579


−Sl
Ml

Sr

−Mr

 =

Dll Dlr

Drl Drr




wl

w′l

wr

−w′r

 (A.3)

where the subindex r refers to a ”right edge” term, and l to a ”left edge” term, and where the expression of580

the block matrices can be found in [30]. Assuming free-boundary conditions on the right edge of the strip,581

i.e. Sr = −Mr = 0, the left edge dynamic stiffness can be expressed as the following condensed dynamic582

stiffness matrix583

Dstrip = Dll −DlrD
−1
rr Drl. (A.4)

The receptance matrix along the dividing line Hnear will be given by Hnear = D−1
near. The receptance584

of a point near the semi-infinite edge Hdp can be obtained by applying an inverse Fourier transform to the585

first component of Hnear as follows586

Hdp(ω) =
1

2π

∞∫
−∞

Hnear,11(k, ω)dk, (A.5)
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where the wavenumber and frequency dependencies have been added for clarity. Finally, the direct field587

dynamic stiffness for a near edge point connection will be given by Ddir(ω) = 1/Hdp(ω).588

Appendix A.2. Numerical validation589

The validity of the proposed method is assessed in this subsection by comparing it to a FE approach. The590

comparison has been performed considering a point situated at 2.5cm from one of the edges of a rectangular591

thin aluminium plate, with dimensions 1.52 m (length) × 0.95 m (width) × 2 mm (thickness). An ensemble592

of 20 systems has been obtained by randomising the numerical model using 10 point masses, each of them593

having 1% of the bare plate’s mass. The model has been used to compute an ensemble of driving point594

responses for a dof representing the out-of-plane displacement of a node near one of the plate’s edge. The595

corresponding FE direct field dynamic stiffness has been then computed using Eq. 5.596

Figure A.2 compares the (a) real and (b) imaginary components of the dynamic stiffness obtained using597

the proposed numerical approach with the one obtained ensemble averaging the FE results. Two loss factor598

values have been considered in the comparison: η = 0.004 and η = 0.03. A very good agreement between599

both methods has been found, ensuring that the proposed approach is a computationally efficient method600

for obtaining the direct field dynamic stiffness associated with the transverse response of a near-edge point601

in a thin plate.602
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Figure A.2: Direct field dynamic stiffness for a single point connection near one plate edge. Red: FE ensemble mean with

η = 0.03; dashed red: FE ensemble mean with η = 0.004; blue: wave-based calculation with η = 0.03; dashed blue: wave-based

calculation with η = 0.004. (a) Real components. (b) Imaginary components.
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