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Abstract

Objective: To investigate the usefulness of predicting the presence of a genetic 

mutation in a population based on data arising from physical examinations 

and its use as a validator of grading schemes.

Methods: We employ an inference algorithm adjusted for large scale appli-

cation and apply it to the particular case of Olfactomedin Like 3 (OLFML3) 

gene in the Border Collie, where essentially independent results of DNA test 

and physical exam exist, to find out to what extent the two predictions agree 

and highlight systematic discrepancies.

Results: Large scale inference over a population of 243,752 Border Collie dogs 

is combined with statistical data mining techniques on available DNA test and 

physical exam results corresponding to the OLFML3 gene and physical 

gonioscopy. Aside from validating the inference technique, the results are two 

fold: (1) sources of possible errors are identified indicating potential revisions of 

the physical examination grading scheme, and (2) the inference is found to 

approach close values within a short distance (1 or 2 steps away from a tested
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animal) based on physical examinations alone, supporting the usefulness of

predictions based solely on the results of a physical exam.

Conclusion: A systematic comparison of the inference results based on a

physical examination and on DNA tests highlights any problems with the

grading scheme used for the physical examinations. The proximity of physi-

cal examination and DNA based inference suggests that the method could be

employed to select the most informative subjects to explore when a method

of inheritance of a condition is suspected but only a physical examination is

possible.

Keywords Genetic inference · Physical examination · OLFML3 gene ·

Gonioscopy

Introduction

Reduction in expense, increase in speed and the ability to work at large scale

without needing to satisfy stringent approvals is fuelling a desire to use in

silico methods in the fields of genetic research [Lang et al. (2018)]. Indeed,

approaches range from pedigree analysis for tracking of genetic inheritance to

automatic predictions of deleterious missense variants. We hypothesise that

given a condition with a discernible physical manifestation, large scale infer-

ence combined with statistical data mining techniques can be used to validate

the results of a DNA test, physical examination and the inference algorithm

itself.

Previously, a pipeline of computational approaches has been used to iden-

tify highly deleterious missense single nucleotide polymorphisms (SNPs) com-

putationally, allowing for systematic exploration of numerous genetic loci for

particular traits (e.g. processing DNA extracted from a population of 69 os-
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triches to explore physiological and reproductive traits [Al-Shuhaib et al. (2018)]).

Such a technique can be used to influence a breeding program to potentially

increase desired outcomes such as yield (e.g. by focusing away from the highly

deleterious non synonymous SNPs (nsSNPs) found by investigating the effects

of amino acid substitutions of the prl gene on 223 members of the population

of Japanese quail, thus increasing egg production [Al-Shuhaib et al. (2019)]).

Existing datasets can also be exploited for comprehensive exploration of SNPs:

the database of single nucleotide polymorphisms [Sherry et al. (2001)] facili-

tated an exploration of the most deleterious nsSNPs of the bovine LEP gene

[Al-Shuhaib (2019)].

To avoid the need for animal / human testing, in silico methods have also

been used in toxicology, such as for the assessment of cosmetic substances.

These approaches include quantitative structure–activity relationship models

which predict the activities of new chemicals and read-across which allows par-

allels to extend existing results to new substances [Gellatly & Sewell (2019)].

A valuable contribution of computational approaches allows haplotypes to

be inferred from observed genotype data combined with pedigree structure. A

number of computational approaches are summarized in [Gao et al. (2009)].

While these approaches are known to have limitations – in particular, they

are not guaranteed to produce the true configuration [Lindholm et al. (2004)]

– they have been applied successfully on an increasing scale from relatively

small family investigations [Burdick et al. (2006)] to the large scale analyses

of plants [Velazco et al. (2019)].

Our investigation focuses on conditions with a suspected simple single-gene

inheritance which are discernible by a physical examination and have a (can-

didate) associated DNA test. In the case of complete penetrance, the results

of a physical exam and the DNA test should align, and, assuming no other

common causes of the condition, provide a validation of both types of test.
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However, the number of sample points with both DNA and physical results is

often very small, and the physical exam’s inability to distinguish carrier (with

alleles gG or Gg) from normal (alleles gg) status (for recessive inheritance)

or carrier (gG or Gg) from affected (GG) status (for dominant inheritance),

along with any errors of either evaluation type, further complicates analysis.

The discovery and subsequent verification of a specific genetic mutation

can prove to be an expensive process, with cost of the subsequent deployment

of a resulting DNA test in a population limited by the means of the individuals

or health organizations employing it. Lack of testing and misunderstandings

based on miscomprehension of the DNA test’s scope, for example when other

causes of the condition exist, could be detrimental to subsequent generations.

A basic understanding of simple genetics and a suspected mode of inheritance

can be used to make offspring → parent inferences – for example, to produce

affected progeny, both parents must be at least carriers in the case of recessive

inheritance – however large scale programming methods need to be employed

to make longer distance inferences over a large population. Such algorithms can

also account for degrees of error, incomplete penetrance or variable expression.

To explore our hypothesis, we require a dataset consisting of the following:

1. A large population with known pedigree information.

2. A single gene mutation present in the population with a suspected (or

confirmed) simple mode of inheritance.

3. Results of a physical examination for some animals within the population.

4. Results of a DNA test for some animals within the population.

To this end, the recently discovered olfactomedin like 3 (OLFML3) mutation

indicating a predisposition to the development of narrow angled glaucoma

in Border Collie dogs [Pugh et al. (2019)] was chosen. Initial whole genome

sequencing of six affected animals indicated the involvement of chromosome
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17, and further studies of the region with the lowest Bonferroni corrected

significance value SNP uncovered a missense variant (c.590G > A) in the

OLFML3 gene with the predicted change of arginine at position 197 to glu-

tamine (p.R197Q). The inheritance was suspected to be autosomal recessive

and prior to the publication of this manuscript, this was further supported

by a larger study [Oliver et al. (2020)] of 209 Border Collie dogs. While the

smaller study of 6 dogs manually utilised pedigree information, the larger did

not have access to pedigree information.

The physical exam consists of a gonioscopy performed by an ophthalmic

specialist assessing any drainage angle changes. The condition has been stud-

ied in the Border Collie since 2008, when a number of instances of primary

glaucoma presented in the breed, with the main screening tool employed in

the UK being a gonioscopic examination. The grading scheme used in the

gonioscopic evaluation has undergone a number of changes during this time.

The main objective of our work is to demonstrate that a large scale infer-

ence algorithm combined with statistical data mining techniques can be used

to validate the results of a DNA test, physical examination and the inference

algorithm itself. Moreover, the inference algorithm can also be used to ex-

plore the utility of a physical examination grading scheme or to highlight any

obvious errors in either the DNA test or physical examination results. As a

by product, the inference algorithm could be employed to suggest subjects to

consider for investigation in the quest for a disease’s DNA test.

Materials and Methods

A convergence adjusted form of the blocking Gibbs algorithm [Jensen et al. (1995)]

is used to make inferences over a population of 243,752 dogs based on available

DNA and physical exam results yielding two separate probability distributions
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(over affected-carrier-normal status) for each animal in the population by ex-

ploiting available parentage links. For the test case, an animal DNA OLFML3

tested carrier with a clear (i.e. normal or carrier) physical examination re-

sult will yield a (0.0, 1.0, 0.0) DNA probability distribution, while (assuming

no other information) the exam result probability distribution will contain

non zero values in both the normal and carrier fields (such that these sum to

1.0). An animal without test result(s) will have its probability distributions

inferred.1

The inferred probability distributions can be compared by statistical meth-

ods either directly, or they can be filtered by dates of birth or (more usefully)

their distance to the nearest tested animal – it is expected that as the distance

away from a tested animal increases the probability distributions will approach

a background probability and thus will not be particularly informative since

the data contains animals with dates of birth ranging from 1894 to 2019 (with

over 92% of the dogs having a date of birth listed).

Gonioscopic examination

The classification of the observed result has undergone numerous changes in

the UK, starting with a 0-5 scale (Table 1) of which G0-G2 are considered

clear and G3-G5 affected, reverting to a simple clear / affected distinction,

through to a new scheme supported by the British Veterinary Association

(BVA) assigning one of four grades (Table 2) with only 0 being clear. UK

results outside the dates listed and results from other countries are only re-

ported as “clear” or “affected”, with the distinction between the two left to

the individual ophthalmologists.

1 Note that the probability distribution is not fixed for tested animals and inference can
adjust the values based on other inputs – for example, if two parents are DNA tested affected
while an offspring is DNA tested normal, all three animals will have their probabilities
adjusted.



Physical exam vs DNA test 7

Table 1 UK gonioscopy grading scheme: 2007-2008

Grade Gonioscopic findings

G0 Wide. Open no apparent thickening of ligament.
G1 Normal. Some thick fibres.
G2 Normal. Some thick fibres, some sheets.
G3 Narrowed. Abnormal pectinate ligament or pectinate ligament not seen.
G4 Narrow. Pectinate ligament not seen.
G5 Very narrow. Pectinate ligament not seen, angle looks closed.

Table 2 UK gonioscopy grading scheme: 2017-

Grade Gonioscopic findings

0 Normal iridocorneal angle (ICA) with no/minimal (0%-1%) pectinate
ligament abnormality (PLA).

1 1-25% of ICA affected by PLA.
2 26-75% of ICA affected by PLA
3 >76% of ICA affected, and / or severe narrowing of ICA

Data

The dataset contains information on 243,752 Border Collie dogs (June 2019)

collected via the online interface of the freely available Anadune Border Collie

Database [Preiss, 2019-06-19]. Table 3 presents information contained in the

dataset at the time of evaluation: the total number of dogs, numbers of tested

dogs, the number of dogs with a minimum of complete 3 generation pedigrees.

The number of dogs at a given number of steps away from a tested animal is

also included, where the number of steps corresponds to the (shortest path)

Dijkstra distance [Dijkstra (1959)]: i.e. animals at step 0 are directly tested

themselves, step 1 have a directly tested parent or offspring, while siblings are

treated as 2 steps away as are grandparents and grandchildren etc. The counts

for gonioscopy affected include dogs that have developed primary glaucoma but

were not examined gonioscopicaly prior to this (this accounts for 6 animals).
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Table 3 Dataset statistics: breaking down numbers of directly tested dogs and the numbers
of dogs at a given number of steps from a tested animal

OLFML3 gonioscopy
normal carrier affected clear affected

Total dogs 243,752
Dogs with 3+ generations 197,840
Tested dogs 873 335 35 3,753 158

70.23% 26.95% 2.82% 95.96% 4.04%
1,243 3,911

Tested dog 1 step away 10,249 38,246
Tested dog 2 steps away 23,869 48,222
Tested dog 3 steps away 39,736 49,659

Inference algorithm

The size of the population examined makes full exact computation intractable.

Since the pedigree structure of the data can be represented as a Bayesian net-

work, we base our inference algorithm on blocking Gibbs [Jensen et al. (1995)],

a variant of a Markov chain Monte Carlo method which integrates exact local

calculations with Gibbs sampling. The performance gain of blocking Gibbs

over plain Gibbs is due to simultaneous sampling of sets (blocks) of variables

(rather than sampling of individual variables), which reduces the dependence

between the blocks and so increases the mixing rate (i.e. increasing the rate

of convergence).

Results and discussion

It is possible to find an average of the difference between the DNA and physical

examination generated probability distributions for each animal. An average

distance, defined in equation where D denotes the population, p the probabil-

ity distribution generated from DNA tests, q that from physical examinations,

thus p(a)(d) being used as shorthand for probability of affected status for dog

d based on DNA test inference, can be used to provide a normalized (between
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0 and 1) measure of similarity of the two distributions. A score close to 0

indicates that further statistical exploration of the inferred data is warranted.

1

|D|
∑
d∈D

1

2
(|p(a)(d)− q(a)(d)|+ |p(c)(d)− q(c)(d)|+ |p(n)(d)− q(n)(d)|) (1)

As only 660 (14.7% of either DNA or physically tested) dogs have both ob-

served sets of results, with only 14 affected animals, a better picture is provided

by comparing the outcomes (affected, carrier or normal) corresponding to the

highest inferred probability for each animal over the population. For example,

for an untested animal which has the two (normal, carrier, affected) inferred

probability distributions of (0.879, 0.117, 0.004) and (0.731, 0.263, 0.006) phys-

ical examination and DNA test respectively, the comparison will be of the two,

highest scoring, normal results. Exploring the proportion of the number of an-

imals with identical highest results generated by the two test methods out of

the total number of animals yields the Jaccard index and gives a measure of

similarity between two samples.

Using the inferred probabilities provides a larger sample while allowing

the hypothesis that an inference mechanism based on pedigrees can be used

reliably in the absence of a DNA test to be tested. The results can be further

broken down by:

1. Distance to nearest tested animal.

2. Result: affected, carrier or normal.

Although the effect of actual observations will be propagated through pedi-

grees, it is necessarily going to be larger closer to a tested animal – the DNA

test for OLFML3 became available in 2018, therefore a very small number (if

any) animals born before 2000 would be directly tested meaning the impact
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Table 4 Population metrics (average distance and Jaccard index) broken down by distance
to tested animal

Distance 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

Jaccard 0.691 0.734 0.789 0.830 0.880 0.908
Avg distance 0.391 0.246 0.202 0.183 0.171 0.169

of tested dogs on dogs born in 1900 would be negligible, unlike the effect of

the same on their parents and offspring. Separating by distance to the nearest

tested animal allows both an investigation of the performance of the inference

algorithm to a certain distance, as well as the correlation between physical

exam and the DNA test.

Lastly, Spearman’s correlation coefficient can be used to assess how well

the relationship between two variables can be described using a monotonic

function. It ranks the possible outcomes and examines the similarity of the

ranking. A direct comparison of each animal’s probability distribution turned

into ranks would only be based on three data points (n = 3) and although these

could be averaged over the entire population such a small value of n would not

be sufficient for significant results. Instead, the probability distributions are

converted into (n =) 11 bins (0.0, 0.1, . . . , 1.0) whose frequencies are gathered

over the population. The ranks of these bins (based on DNA and physical

examination tests) are then compared. Specifically, the rank of frequency of

assigning 0.0 to the carrier status based on the DNA test inference is compared

to the rank of frequency of assigning same based on physical examination based

inference.

The results of the average distance and Jaccard index broken down by dis-

tance to tested animal can be found in Table 4.2 Table 5 presents Spearman’s

correlation coefficient broken down by result and distance from tested animal.

2 The maximum distance is 19, however, the effect of tests reduces greatly after approxi-
mately 3 steps.
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Table 5 Spearman’s coefficient (n = 11): each row represents the results for a given distance
to tested animal

Distance Num dogs Normal Carrier Affected

0 660 -0.459 -0.179 0.857
≤ 1 9,967 0.482 0.673 0.866
≤ 2 32,980 0.555 0.745 0.943
≤ 3 71,377 0.609 0.773 0.943

Table 4 demonstrates the power of the inference algorithm: since a gonio-

scopic examination can only assign a clear or an affected result, the average

distance is expected to be high for directly tested, distance 0, animals (0.391)

but the two probabilities quickly tend towards similar values as the distance

away from the tested animals increases. The significant drop of the average

from directly tested to animals those just one step away shows that within a

short distance, the inference algorithm based on physical examination input

quickly approaches the probabilities generated from DNA test results.

Examining distance 2 carrier probabilities based on DNA and physical

examination based inference plotted against each other (Figure 1) indicates

the presence of a correlation (the line of best fit is shown). However, the

Figure also contains a large number of outliers, particularly around 0.5 and

1.0 (this is expected as for some animals DNA inference will be almost exact

due to the parents’ status). The outliers are further confirmed by the boxplots

shown in Figure 2: unequal whiskers with a non centered mean and a small

number of outliers for DNA based inference and a large number of outliers

for physical examination based inference indicate that a comparison based on

an assumption of bivariate normally distributed datasets, such as the Pearson

coefficient, would not be appropriate.

Jaccard index shows a clearly rising, strong, correlation between the two

probability distributions [Real (1999)], particularly given the large number of

points over which it is found (the number of dogs at a given distance away from
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Fig. 1 Carrier probabilities inferred from DNA test against those from physical examination
for distance 2 animals

Fig. 2 Boxplot of carrier probabilities inferred from DNA test against those from physical
examination for distance 2 animals

tested dogs can be seen in Table 5). Table 5 also shows a strong correlation

(based on Spearman’s coefficient) from distance 1 with significance levels of

0.1 for normal, 0.05 for carrier and 0.01 for affected (i.e. we can say with 99%

certainty that the inferred affected probabilities at distance 1 did not occur

by chance). There is also an obvious change from the observed (distance 0)
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animals’ Spearman correlation, where the negative value indicates that the

normal DNA probabilities are generally lower than the physical examination

based probabilities: this is due to the fact that a clear result on a physical

examination will be distributed between a normal and a carrier with a strong

bias towards normal due to the low number of affected animals, while DNA

tested carriers will have probabilities (close to) 1.0. As the distance away from

tested animals rises, this discrepancy reduces, supporting the hypothesis that

the inference algorithm is capable of being employed with physical test results

to yield results comparable to those generated from DNA test results.

The higher correlation at a small distance away from tested animals also

suggests that the approach is capable of addressing omissions in the dataset:

the data used in this work is based on voluntarily submitted results. Due to the

stigma attached to the mutation being known to exist in a breeding line, it is

possible that the database contains fewer affected (and probably carrier) ani-

mals than are present in the population. However, the distributions contained

are feasible: assuming independence and random, OLFML3 uninformed, se-

lection of partners (which would have been the case when DNA status was

unknown) and denoting P (affected) = x, P (carrier) = p, P (normal) = q(=

1−x− p), then in a subsequent generation P (carrier) = xp+ 2xq+ p2/2 + pq

as to produce a carrier, its parents must be either affected and carrier (xp/2),

affected and normal (xq), both carriers (p2/2), or one carrier other normal

(pq/2). Substituting in for P (normal) and ignoring x2 (as it is small) gives

P (affected) = p2

4(1−p) . Substituting in 27% carriers yields 2% affected, i.e. 31

affected animals, which is comparable to the current value of 35.3 Note that

the independence assumption is unlikely to be valid, as some stud dogs will

3 One testing laboratory, Animal Genetics UK, provided their tested numbers at June
2019, 753 normal (69%), 293 carrier (27%) and 40 affected (4%), showing that the number
of affected animals in the dataset is slightly lower than true values.
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be more popular than others and therefore it’s possible for a mutated gene to

be wider spread if a popular sire happens to be a carrier.

For completeness, animals which have both a physical gonioscopic exami-

nation result and a DNA test result are discussed. There are 660 such which

show agreement in 618 clear and 14 affected cases. The disagreeing 28 cases

consist of 9 dogs who were DNA tested affected but passed their physical

gonioscopic exam (out of 23 dogs with an affected DNA result and a physi-

cal examination), 10 (out of 188) dogs DNA tested carrier but found affected

during their physical gonioscopic exam and 9 (out of 449) dogs DNA tested

normal who were found to be physically affected. The unexpected affected go-

nioscopic result is consistent with difficulty with the applied grading system as

mentioned by [Oliver et al. (2017)]: for example, the 9 cases of disagreement

for the normal DNA test contain 6 animals that were tested in the UK since

the BVA grading scheme described in Table 2 was introduced with 5 of the

animals scoring BVA grade 1 (the remaining was found to have BVA grade 2).

BVA grade 1 is considered to be “mildly affected”, and is to be assigned to an

animal showing between 1 and 25% of changes. This range is rather large, and

means that any change is marked as being physically affected. In fact, of the 7

animals with a BVA grade 1 (subject to them also having a DNA test result),

5 are DNA tested normal and the remaining 2 are DNA tested carrier (all of

which would be expected to be unaffected using a physical exam) indicating

that this particular grade may benefit from further revision. It is expected that

some of the affected results also represent only minor changes and thus suffer

a similar problem to the BVA grade 1 assignment. In fact, based on personal

communication, this difficulty also appears in the other direction: animals as-

signed a “clear” (physical exam) result may display some changes, with an

ophthalmologist deciding that the animal in front of them is not “affected”.
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