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ABSTRACT

The non-lmear, steady, mixed convective boundary layer flow and heat transfer of an
meompressible tangent hvperbolic non-Newtonian flwd from an 1sothermal wedge in the presence
of magnetic field is analyzed numerically usmg the Keller Box implicit finite difference technique.
The entropy analysis due to MHD flow of tangent hyperbolic fluid past an 1sothermal wedge and
viscous dissipation 15 also mcluded The mumerical code is validated with previous Newtonian
studies available in the literature. Graphical and tabulated results are analyzed to study the behavior
of flmid velocity, temperature, concenfration, shear stress, heat transfer rate, enfropy generation
mumber and Bejan number for various emerging thermo physical parameters, namely, Weissenberg
mimber (e), power law mdex (n), mixed convection parameter (1), pressure gradient parameter
(m). Prandt] number (Pr), Biot number (), Hartmann mmber (Ha), Brinkmann number (Br),
Reynolds number (Re) and temperature gradient (/J). It is observed that velocity, entropy. Bejan
mumber and surface heat transfer rate are reduced with increasing Weissenberg number, but
temperature and local skin fiction are increased. Increasmg pressure gradient enhances velocity,
entropy, local skin friction and surface heat transfer rate but reduces temperature and Bejan
number. An increase m an isothermal power law index (n) 1s observed to increase velocity, Bejan
mimber and surface heat transfer rate but decreases temperature, entropy and local skin friction.
Increasing magnetic parameter (Ho) is found to decrease temperature, entropy, surface heat
transfer rate and local skin friction and mcreases velocity and Bejan number. The research 1s
applicable for coating materials in chemical engmeering for instance, robust paints, production of
aerosol deposition and water soluble solution thermal treatment.
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NOMENCLATURE

By | externally imposed radial magnetic field Greek Symbols

Be | Dimensionless Bejan number a | Thermal diffusivity

Br | Brinkmann number B | The coefficient of thermal expansion

C | Positive constant 2 | Wedge angle

Cr | Skin Friction Coefficient g | Electric conductivity of the fluid

* | Dimensionless stream fimction n | Non-dimensional radial coordinate

g Gravitational acceleration i | Dynamic viscosity

Gr: | Local Grashof mumber Z | Non-dimensional tangential coordinate

Ha | Hartmann number (magnetic parameter) v | Non-dimensional stream function

hw | comvective heat transfer coefficient v | Kinematic viscosity

k Thermal conductivity of the fluid I" | Time dependent material constant

m | Pressure gradient & | Dimensionless temperature

n | Power law index i.e. flow behavior index @ | Fluid density

Ng | Enfropy generation mimber IT | Second ivariant strain tensor

Nu | Heat tramsfer cogfficient . | mfinite shear rate viscosity

Pr | Prandtl number Biot number

Rex | Reynolds Number r | extra stress tensor

I | Fluid temperature [T} | Temperature gradient

Tw | Comvective fluid temperature Gy | Total angle of the wedge

Uy | Fres steam velocity Mixed convection parameter
Dimensionless velocify components in X and L

v | o J4, | zero shear rate viscosity
Ydirection respectively

V| Velocity vector | shear rate

We | Local Weissenberg mumber Subscripts

X Stream wise coordinate w | Conditions on the wall

¥ Tramsverse coordinate 0 | Free stream condition




INTRODUCTION

Due to constantly new advances m technology and engineering. non-Newtoman Liquids
became an 1ssue of considerable interest fo researchers for over past few decades. Sources of these
fluids comprise coal-oil shurries, detergents, pam, smart coatings and suspension, grease.
Cosmetics, custard, biological liquids, etc. The non-Newtontan fluids constitutive equations can
never be characterized with one constitutive relation mvolving rate of stramn and stress like the
viscous (Newtonian) flids. These fluids have complex attributes in nature and mdustry. Generally,
the mathematical model of the non-Newtontan liquds 15 complex due to the sigmficant non-
lineartty and higher order differential transportation equations especially as compared to viscous
fluids. Considering thewr complications, researchers are mvolved i dynamics of non-Newtonian
liquids as such flmds have wide applications in biotechnological production plastic
manufacturing, medical sciences, etc. Though the system of equations evolving in non-Newtonian
fluids typically need access to numerical techniques. m some restricted cases closed form
analvtical solutions were achieved. Fetecau ef al [1] presented the Caputo-Fabrizio's concept of
nonlinear systems to obtain appropriate solution for second-grade hydromagnetic movement of
fluids past a moving infinite flat plate. Geethan of al [2] considered the 3D hvdromagnetic
chemically radiative flows of Jeffery's fluid past the stretchable porous surface considering the
effects of heat source/smk and Soret mumber. Shehzad ef al. [3] under the mmplications of
thermophoresis and the Cattaneo-Christov principle conducted the mumerical study of Maxwell
fluid flows past revolving disk. Panchun ef al. [4] studied the rotational electro-osmotic flow of
Oldroyd-B flmd m a microchannel They also considered the Oldroyd-B flwd’s viscoelasticity and
slip effect on electroosmotic flow velocity distributions. [jaz ef al_ [3] discussed the Carreau flud’s
stagnation pomt MHD flows past a stretching and shrinking cyhndrical surface. Meenakumari and
Lakshminaravana [6] emploved shooting fechmique to mvestigate the unsteady chenucally
radiative MHD 3D Williamson flusd flow past a stretching surface considering the effects of Hall
current and heat source/sink. Sayer ef al. [7] discussed the entropy generation of MHD thermally
radiative Eyring-Powell flud through an unstable oscillating porous stretchable surface. Das ef al
[8] examined the impact of Soret and variable heat absorption on unsteady chemically radiative
MHD flows of Casson fluid through a stretchable porous surface. Chamkha ef al. [9] mnvestigated
the entropy generation of MHD mmed convective nanoflud flows m a Gamma shaped porous
cavity.



The Tangent Hyperbolic fluid 15 a four-constant fluid model, designed to explain the shear
thinning charactenstics, 15 amongst the non-Newtonan constitutive models that have arisen [10]
—[11]. This Tangent Hyperbolic flud model has many applications in chemical engineering and
it does have few benefits over many various non-Newtonian hiquid models. It has be observed i
lab experiments that the presenf model accurately describes the blood flows. The tangent
hyperbolic flmid is a rate type fluid model that deseribes the attributes of relaxation and the
retardation fimes. This model represents the viscosity depending on shear rate as a mathematical
hyperbolic tangent function The apparent viscosity of such fluids steadily varies from zero shear
rate to infinity shear rate. Few prime examples of such fluid include, magma, ketchup, whipped
cream. blood, sprays coating and so on. Using the hyperbolic tangent model calendaring, which
15 a confiuous production actvify for thermoplastic sheets or films of umiform thickness
accomplished via a parr of heated driven rolls of equal or unequal diameters, was sinmlated by
Eiparissides and Vlachopoulos [12]. Magnetohvdrodynamics abbreviated as MHD, 1s the study of
extremely electrically conductive fluids with magnetic characteristics. The electrically induced
finid flows all over the magnetic field and current penerates and hence the flow and the magnetic
field effects variate. In various fields such as oil and natural gases atmospheric sciences,
agricultural production, geosciences, solar and astro physics, MHD plays a leading role. Examples
of magento liquids mclue electrolytes, sea water, oil metals and plasma. Zakar ef al. [10] presented
the Lie group analysis of an incompressible tangent-hvperbolic fluid MHD convection considering
the velocity and thermal slip effects along with suction/injection effects. Ovelakin and P. Sibanda
[13] analvzed the importance of variable viscosity and thermal conductivity i tangent-hyperbolic
MHD flows. Veera and Chamkha [14] addressed the impacts of Dufor, radiation and heat
generation on MHD convection Nanofluid flows past a semu-infinite porous plate considermg the
Hall and lonslip effects. Kumar ef af [15] examined the MHD mixed convection flows of optically
thin fluid past a vertical plate considering the radiation and dissipation effects. Mamata ef al [16]
employed the shooting technique to explore the impacts of heat source on chemucally radiative
MHD flows of tangent-hyperbolic liquad past an exponentially expanding sheet. Farooq ef al. [17]
examined the slip and chenucal reaction effects on peristalsis of tangent hyperbolic flmd m a
curved channel Ganesh ef al. [18] proposed the thermally radiative MHD flows of tangent
hyperbolic flwid over a strefching sheet with suspension of the flmd parficles. Jitendra ef al. [19]
mvestigates the effects of Hall current on MHD mixed convection flows of viscoelastic fluid past



vertical surface using the perturbation techmique. Venkatadn ef al. [21] theoretically presented the
radiative MHD nanofluid flows across a progressively strefching/shrinkmg permeable surface with
melting. Aziz ef al. [21] presented the theological charactersstics of 3D couple stress chemucally
radiative nanofluid MHD flows mduced by oscillating stretchable surface.

Falkner-Skan flows [22] have been considered by very few researchers. The 2D wedge
design is connected with this fanuly of boundary laver flows. Non-Newtontan flows past wedge
geometries emerge in various chenucal engmeering fields using the second-order Remner-Rivlin
model A significant attention has been drawn towards the mmxed convection boundary laver flux
past 3 wedge. In the presence of thermal radiation with a Rosseland diffiision approximation, a
non-similar solution of mxed convection flow of a Nanofluid past an isothermal wedge immersed
in a permeable porous medmm was examined by Chamkha ef al. [23]. Takhar ef al. [24] discussed
in the presence of magnetic field, the unsteady mixed convection flow over a rotating vertical cone.
Gorla ef al. [25] analvzed the mixed convection boundary laver flows of Nanofluid past a vertical
wedge immersed m a permeable porous medmim Thameem ef al [20] reported the forced
convection Falkner-Skan flow of a smgle walled carbon NanoHom and water Nanofluid past a
wedge, plate and stagnation point m the presence of nonlinear radiation and mduced magnetic
field Chamkha ef al [27] explored the radiatrve mixed convection boundary layer flow of
Nanofluid past a vertical cone immersed in a porous media.

Convective heat transfer has generated significant attention due fo its significance in energy
and biological innovations like power generation, diesel generators, nuclear power plants, mussile
techmology, hydroelectric reserves, photovoltaic svstems efc. Also, the convective boundary
condition has fascinated considerable attention and i typically synchromzed in the thermal
boundary condition of the wall via a Biot number. Nurul ef al. [28] examuned the MHD mixed
convection stagnation point flow of hybrid nanofinid through a vertical flat plate with convective
boundary condition Hayat ef al [29] dealt with the impact of binary chemical reaction and
actrvation energy m third grade nanoflmd hydromagnetic flow combmed with convective
boundary condition via non-linearly stretched sheet. Najryah ef al. [30] discussed the mmpacts of
veloctty ship and convective boundary condition on 3D hybnd nanoflmd flow past a
stretching/shrinking surface. Rai ef al. [31] analyzed the heterogeneous and homogeneous effects
on the viscous fluid flow past a non-linear shaped stretchable surface with convective heating
mechamism. Patel and Rajiv [32] studied the computational modelling of chemically radiative



MHD mixed convection flows of microplar fluid past non-linear stretching surface embedded 1
porous media considering the effects of viscous dissipation, Joule heating and convective boundary
condition Sudarsana ef al. [33] examined the heat flow behavior of nanofluid past a vertical cone
embedded in porous media considering the effects of magnetic field, thermal radiation and
chemical reaction of first order due to convective boundary condition. Gajjela and Garvandha [34]
considered the MHD free convection flow, double-diffusion couple stress fluid past a stretchmg
cylinder with surface imposed Robm boundary condition.

In thermodynamics, entropy is the sum of inaccessible energy in the process. Entropy refers
to irreversibility of the device and the concept is widely seen in thermodynamics architecture. High
entropy decreases the usable energy and has a sigmficant effect on the efficiency of the device.
Entropy demonstrates the means of separating the real matersals through its components. In the
irreversible processes, the initial state of the process and nearby environment cannot be preserved.
Entropy and mrreversibility analysis are directly proportional. Also, entropy tells us how the energy
15 utilized. The process is flexible due to the difference in temperature which induces energy
transfer. The gradient of the system stinmwlates wreversibility to the process. Entropy leads to an
mcrease i disorder in process which mduces energy loss in the system and leads to a reduction m
work potential. Thus, as we process the system we restrict entropy generation and 1t 1s critical m
various engineering applications, one of which is the power generation in power plants. Many
researchers are focused on various approaches for enfropy mumimization mn fluid flow problems.
Bejan [28, 29] was the first fo propose entropy generation mminuzation (EGM) to measure the
disorders in isolated system. Rashad ef al. [37] emploved finite volume technique to mvestigate
the entropy analysis and MHD mixed convection flow of Nanofluid i a lid driven U-shaped cavity
with heat source. Mansour ef al. [38] discussed the entropy generation and MHD mixed convection
flow of Nanofhud in a C-shaped cavity with a corner heater and heat source. Chamkha ef al. [39]
presented the entropy generation analysis on MHD mixed convection flows of Nanofluid past a
porous enclosure considermg the effects of heat sowrce/smk. Armagham [40] studied the analytical
simulation of thermal efficiency using entropy generation of MHD mmed convection flow of
Nanoflud m an [-shaped duct using finite volume method. Fatunmbi and Adentyan [41] reported
the entropy generation and mrreversibility analysis of nonlinearly radiative MHD mucropolar flwd
flow past a non-lmear and non-permeable stretching surface using RK techmque considering the
effects of Joule heating and viscous dissipation. L1 ef al [42] analyzed the entropy generation of



radiative MHD nanofluid m a square cavity. Zafar ef al. [43] presented the entropy generation of
triple diffusive flow past a horizontal plate. Armaghami ef al [44] mvestigated the enfropy
generation in a porous I shaped cavity owing to MHD convection of Nanoflwid mn the presence of
heat generation/absorption using finite difference technique.

There has been several liferature reports i numerous perspectives relating to the dynamics
of Tangent Hyperbolic liquid through an 1sothermal wedge. But as per the authors knowledge the
non-similar solutions of Tangent Hyperbolic fluid past an sothermal wedge flows has not been
considered. Therefore, the objective of the present study 15 to examune the MHD flow and heat
transfer of tangent hyperbolic fluid through an isothermal wedge with convection boundary
condition Approprate non-sinular fransformations are deploved fo render the conservation
equations dimensionless. The emerging non-dimensional partial differential equations with
associated dimensionless boundary conditions constitute a highly nonlinear, coupled two-point
boundary value problem making exact solufions practically impossible. The transformed
dimensionless equations with appropriate boundary conditions are solved using the Keller's box
implicit finite difference technique [45]. The impacts of various thermo-phyvsical parameters,
mamely local Weissenberg mumber (We), local magnetic parameter (Ha), local biot number (),
mixed convection parameter (1), pressure gradient parameter (m) and Prandtl number (Pr) on
velocity, temperature, shear stress, enfropy generation number, Bejan mumber and heat transfer
rate are presented both graphically and mumerically. The research 15 applicable for coating
materials i chemical engineering for mstance, robust paints, production of aerosol deposition and
water soluble solution thermal freatment.

TANGENT HYPERBOLIC FLUID MODEL
Due to its simplicity, the current work employs a subclass of non-Newtonian fluids called the
tangent hyperbolic fluid. The Canchy stress tensor for a fangent hyperbolic fluid [10 - 11] s

g
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where the shear rate, r 15 defined as:
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Here H=%i‘r[gradlr'+{grad1'f']?]-. We consider the case where u_=0 as mumerical

computations are not possible at infinite shear rate viscostty. Moreover, we confine fo tangent

hyperbolic fluid that describes shear thinning effects_ ie.. [y<l. Taking these assumptions into
consideration. Eqn (1) can be written as,

R P - 5\
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MATHEMATICAL MODEL

An mncompressible, steady, laminar mixed convection flow of fangent hyperbolic fluid over an
1sothermal wedge with convective boundary condition and magnetohydrodynamic 15 exanuned.
The physical schematic diagram of the problem s illustrated m Fig. 1. The x (streantwise) and y
(transverse) coordinates are considered along the wedge and normal to the surface respectively.
The gravitational acceleration, g 15 considered fo act downwards. A untform magnetic field of
strength By 15 applied parallel to the y-axis 1. transverse to the wedge surface. Magnetic mduction,
Hall current, 1onslip and Maxwell displacement currents are neglected. Magnetic Reynolds number
15 small and the electric field due to polarization of charges i negligible. Both the fhud and wedge
surface are mitially held at a fixed temperature. Additionally, the electron pressure (for weakly
conducting fluids) and the thermo-electric pressure are neglected. The applied magnetic field. By,
15 generated by passing a steady electric current along the longitudinal (z-axis) parallel to the cone,
where the wedge edges ternunate af perfect electrodes which are connected via a load. Further,
under usual boundary layer and Boussimesq approximations, the relevant equations for mass, lmear
momentum and energy are as follows:

—+—=0 4
o o (4)
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The non-Newtomian mmpacts only display m the shear terms m eqn. (3) and not m the convection
term. though they often make the fluid dynamucs quite intensely non-linear relative fo the

Mewtonian fluids.

At y=0, u=0 v=0. —k{i—r=h‘[_i:—ﬂ
cy
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Here m=—2 and i-” The stream function ¥ is defined as #=— and y=-2¥_
2-4, v i
Consequently, Eqn. (4) 1s satisfied. The following dimensionless quantities are adopted:
L ox r?=lRe]:1, p;r=[L",nxu]mf_. E=T—TI, REI=LIII ®)
U, X L-L v
In the light of Eqn. (8), the governing equations (3) — (7) can be written as:
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The transformed dimensionless boundary conditions are:
EI
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¥ (12)
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Due to non-similar nature of the flow, the parameters We, Gry, yand Ha are local 1e, they are

function of the tangential coordinate x. The thermal boundary condition at the wall m Eqn. (12)



refers to the convective cooling. The shear stress rate and heat transfer rate at the wedge surface
are defined as:

Rel® ::*I=|:1-n:.f"g;__n;|+gﬁj,[f"q;n;@’ (13)
Re" Nu=-6'£,0) (14
ENTROPY ANALYSIS

The entropy analysis for the present flow regime mn line with Bejan [33] 15 considered in
this section. The volumetric rate of entropy generation due to magnetic field with heat transfer 1s

gIven as:
1
. k(ery . (éu | oBW
5= — (1-n)+ : 15
= ey | J’E al\a) T ®

The first term m eqn. (15) signifies the entropy generation produced by heat fransfer, the second
term denotes the entropy generation due to fTuid friction and the third term is the entropy generation
due to the magnetic Lorentz force. The non-dimensional enfropy heat generation (Ng) 1s defined

as
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The Bejan number (Be) 15 defined as the ratio of entropy heat generation due to heat and mass
transfer to the overall entropy heat generation 1e.:

oe Entropy dueto Heat transfer
Total entropy

(18)

10



NUMERICAL SOLUTION WITH IMPLICIT KELLER BOX METHOD (KBM)

The non-dimensional Eqns. (10) —(12) form a 5® order non-linear boundary value problem
that needs a mumenical solution. To solve this system of equations we implement the implhictt finite
differences scheme proposed by Keller known as Eeller-Box Techmcue [45]. This approach
remains highly popular and has retained comparative reliability than other mumerical techniques.
However, the drawback of this method 15 that because of its step, which must substitute the higher
derivative with the first dertvative, the computational effort per tume step 15 costly, so that the
second order dertvatives can be written as a system of two first order dervatives. The discretized
equations produce laborious algebraic expressions. The KBM however, has a second order
accuracy with arbifrary spacing and appealing extrapolation charactenstics. This mefhod 1s very
stable and outstanding precision 15 achieved. It converges easily and offers mimerical meshing
functions that are secure. The KBM offers an merease in the consistency of explicit or semu-
umplicit frameworks and uses a completely implicit methodology. For further details the readers
can refer to [46] — [50]. The present KBM solutions are validated with the previous Newtonian
computations. KBM comprises of the following 4 steps:

1. Reduction of Nth order partial differential system to N first order differential equations.
2. Finite difference discretization

3. Newton quasilinearization of non-linear Keller algebraic equations.

4. Block-Tridiagonal elimination of Eeller algebraic equations.

Stepl: Reduction of the Norder partial differential equation system io N first order equations
New variables are infroduced to Eqns. (10)+(12), to render the boundary value problem as a
mmiltiple system of first order equations. A set of five sumultaneous first order differential equations

are therefore generated by introducing the new variables:

u(x.yy=f"vx.y)=1" s(x.y)=&. t(x,y) = &' (19)
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where primes denote differentiation with respect to n. In terms of the dependent variables, the
boundary conditions become:
At n=0, =0, wu=0 s5=1

y f 5
A5 n—ow u—=0, 50
Step 2: Finite Difference Discrefization

A two-dimensional computational grid 15 imposed on the # plane as sketched m Fig. 2. The

stepping process 1s defined by
n=0 n=n.+h. j=12..J  n=n (26)
o0 s=k, n=l2.N )

where k, isthe A - spacing and hj isthe Ay -spacing. If g denotes the value of any variable

at(,,£"). then the variables and derivatives of Equations (20) — (24) at (1, £™7) are

replaced by:

g?.‘,i- &gt gl (28)
¢ . melil

C n1

L (g-gy g (29)
'\.CIF.-'.‘] =112 Qh

PR = [ 1

C’E " n n=1 r-l

- =——|g -g4+8 —£a (30)
B ) QP[ Joa) i J

The resulting finite - difference approximation of equations (20) — (24) for the mud - pomt
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where we have used the abbreviations
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The boundary conditions are:
fo =y =05 =1 ui=05=0 (38)

Stage 3: Quasilinearizafion of Non-Linear Keller Algebraic Equations

n=l _m-l r:] r-1

1
[f we assume f' HJ 2V, .8, .1 tobe known for 0< j <., this leads to a system of 5/+3

equations for the solution of 8/+§ unknowns Jﬂ",ﬂf,ﬂ?ﬂ,f: . j=0,1,2....J . This non-linear

system of algebraic equations 15 linearized by means of Newton's method.

Stage 4: Block-tridiagonal Elimination Solution of Linear Keller Algebraic Equations

The linearized system 15 solved by the block-elimination method, since it possess a block-
tridiagonal structure. The bock-tridiagonal structure generated consists of block martrices. The
complete linearized system 15 fornmlated as a block matrix system, where each element in the



coefficient matrix 15 a matrix itself. and this system 1s solved using the efficient Keller-box method.
The numerical results are strongly influenced by the number of mesh points m both directions.
After some trials m the »-durection (radial coordmnate) a larger number of mesh points are selected
whereas in the ~direction (tangential coordinate) significantly less mesh points are ufdized. ,_
has been set at 8.0 and this defines an adequately large value at which the prescribed boundary
conditions are safisfied. Sue 15 set at 3.0 for this flow domam Mesh mdependence 1s achieved in
the present computations. The numerical algorithm is executed n MATLAB ona PC. The method

demonstrates excellent stability, convergence and consistency, as elaborated by Eeller [45].

RESULTS AND DISCUSSION
Table 1 provides the shear stress rate (Cy) values for various m values. The existing findings

are compared with Khan and Pop [51]. Yacob ef al. [52] and White [53] and are found to be in
excellent correlation that supports the reliability of the current KBM code. Table 2 illustrates the
mmpacts of e, n, m, v, Ha and /. on Crand Nu along with a variation in Z An mcrease m e is
seen to enhance C; whereas Nu is reduced. The parameter e defines the relative effect of viscous
force to elastic force for flows. It is perhaps mversely or directly related to viscous force. Also, it
characterizes the association between the flmd’s stress relaxation time and the particular time of
operation. In general Weissenberg mumber arises from scaling the evolution of stress m
rheological research and embedded withm this are available alternatives for flwds with various
| JrRe |

shear or elongation rate and length scales. From the def.. Fﬁ?i Tr

b /

1s directly proportional

to Time dependent material constant (I7), fluid elasticity and mversely proportional to ¥* . Hence
the Weissenberg number 1s lowered for higher viscosity and as the velocity is decreased, this helps
to maxumuze skin friction. As e reaches 0, the flow become Newtoman It 1 further noted that
with rising n values reduces C; but enhance Mu. A rise in power law index mduces the stream fo
differ from Newtonian flows and reduces the velocity and hence the shear stress also reduces.
Also, rising m 15 found to enhance both Crand Nu. A rise in v 15 noted to enhance both Crand Nu.
It has been observed that a rise i A enhance both Crand M. There is a significant decline in C;
and Nu with lugher Ha values (Ho represents relative mfluence of Lorentz's magnetic drag force

to viscous hydrodynanuc and buoyancy forces). A rise in magnetic drag force obviously prevents
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the movement of boundary laver and allowing a retardation and a reduction m the skin friction
Hence, the momentum boundary laver thickness will be improved. Also, the thermal improvement
coupled with an mcrease i magnefic field leads the flmd temperature to exceed the wall
temperature that counteracts the heat transfer from wall to fluid body. Hence the heat transfer rate
15 essentially reduced.

Figs. 3 - 6 depicts the influence 7% on velocity( /') . temperature (4). entropy (Ng) and
Bejan mumber (5e) profiles. A reduction in velocify 1s observed near-wall region, with nsmg e
(fig. 3). The parameter [Tz characterizes the association between the fluid’s stress relaxation time
and the particular time of operation. Hence for greater e values, the relaxation tume 15 mereased
and hence the velocity decreases. There seems to be a low viscosity effect with greater e values
and hence the flow 13 less deformable. The momentum development is hampered by tougher fluids
(low elasticity) and the boundary laver is thickened due to the inverse relation between Tz and
viscosity. However, such impact 15 not retained in the far field regime where the momentum
diffusion 15 promoted with greater fluid relaxation and a week acceleration with higher e 15
mduced. It can be nfimately related to the alteration in tensile stresses m the structure of the
theological boundary layer when shifting from the near wall regime to the free stream regime. The
effects of e is temperature consistent, while the velocity i1s turned over. Evidently, the rheology
of the fhud 15 more closely related to the diffusion of momentum than to thermal diffusion. The
latter 15 affected indirectly, Le. by the primary nfluence of flmd viscoelasticity, which 1s a
secondary effect. In the boundary layer, there 15 naturally a rivalry between elastic and viscous
forces, which depends. among other variables. on the proximity to the wedge surface. In context
of the evolution of temperature this is not clear. The presumption is that a consistent and umform
temperature distribution during the coating process should be achieved, regardless of the degree
of elasticity of the liquid (e.g. spray pawmt). Indeed, as I7; mcreases, the temperature distributions
mcrease shghtly (fig. 4) and hence the thermal thickness of the boundary layer also mncreases. Also
m figs. 5 and 6, it 1s observed that Ng 15 increased slightly for greater e values whereas Be 15
lowered for greater [z values. Physically, the relaxation time rises with larger e values implies
that fluid particles resist more that results m loss in heat.

Figs. 7 — 10 1llustrates the mfluence »n on velocity| f'), temperature (5), Ng and Be
profiles. The flmd velocity (Fig. 6) 15 sigmficantly increased with mereasing n. A rise i 7 values
shortens the fluid’s friction and hence the velocity 1s mcreased. For greater »n values, the flud
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passes on fo a viscous medm and leaves elastic properties. Hence the momentum diffusion 15
mereased and hydromagnetic boundary laver thickness 1s reduced. Conversely, temperature, Ng
and Be are reduced with a rise m » values. An increase in n values, steadily decreases temperature
as momentum diffusion rate exceeds thermal diffiision rate resulting in cooling the boundary laver
regime.

Figs. 11 — 14 presents the influence m on velocity( /7). temperature (4). Ng and Be
profiles. It 15 reported with increasing m values, the velocity mereased sigmificantly while the
temperature fell considerably. For increasing m values a mge rise i Ng and Be 15 observed. For
m =0 eqn. (10) the Blasius flow past a flat plate 1s achieved. The momentum boundary laver
thickness 1s lowered efficiently with greater pressure gradient and the thermal boundary layer
thickness 1s also reduced. With m = 1, we obtam the case of flow on an mfinite plate i the vicinity
of the stagnation pownt flow. Although these two wmstances of flow are of mathematical interest,
they are not in finctional polymer production For m = 0, the generalized wedge case is more
important.

Figs. 15 - 18 depict the influence . on velocity( /'), temperature (#) . Ng and Be profiles.

With mncreasing ./ values, a small nse m velocity 15 noted. By def, ./ represents the ratio of
buovancy force to the viscous force. Greater .. values lead to improved natural convection The
viscous effect 1s less with greater 1 values and hence velocity mcreases. Physically, greater ./
values leads to mcrease m the convective cooling phenomenon and hence the fhud velocity
merease. On the other hand, the flmd temperature 15 shghtly reduced with mereasing 1 values
which 15 due to the acceleration in the convective cooling phenomenon of the system Fig. 17
reveals that there 15 an improvement in the Ng in near vicinity to the wedge surface with an increase
m 4 values, although there 1s a decline further from the wedge surface. Also for ) = 2, the enfropy
converges asymptotically to zero. With mcreasing /4 values, the Bejan number is significantly
enhanced near the surface and reduced far from the surface. Nevertheless, the Bejan number
profiles converse at an intermediate distance from the wedge surface, suggesting that there 1s no

tangible effect of the mixed convection in this area.
Figs. 19— 22 presents the influence yon velocity( /') . temperature (#) . Ng and Be profiles.

With rising » values, a very small change ie. a small merease i velocity is observed. And with
mcreasing values, a significant rise in temperature, Ng and Be 1s observed. A rise m Boit number
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mcreases the buoyancy force and the flwd carries the heat energy with higher velocity. Therefore,
as ) mcreases, the veloctty also mcreases. The flmd considered i the present study 1s
mcompressible with respect to pressure but not temperature. Therefore, the flmd density changes
with temperature vaniation due to thermal expandability and the flow 1s mfluenced by the buoyancy
force. Hence, as y rises the temperature also mses. The entropy and Bejan mumbers are also
enhanced with a rise m Biot number. The regime 15 often reffered to as thermally simple for </
and there 15 exists more consistent temperature fields within the boundary layer and solid wedge
surface. The thermal fields are predicted to be nonlinear mside the solid wedge surface for y=1.
The Biot number essentially relates the conduction resistance inside a solid body to the convection

resistance external to the body for heat transfer. It can also be observed that, » > 0.1 refers to a

thermally dense component, while a thermally thin component 1s mdicated for = 0.1. By def

15 wversely proportional to thermal conductivity, hence the thermal conductivity at the wedge
surface will decrease as the biot mumber mereases and this leads fo a reduction in the heat transfer
rate from the boundary layer to mside the wedge, extubiting in an increase i temperature at the
wedge surface and the maxinuim effect at the surface will be preserved m the fluid body.

Figs. 23 - 26 depict the influence Qon velocity( /') . temperature (¢) . Ng and Be profiles.

When the inclination angle mereases, the velocity 1s seen to increase slightly while the temperature
distribution is found to decrease shightly. Also. the enfropy generation mimber & seen fo enhance
as the mclination angle rises while the Bejan number is slightly reduced with increasing iclination
angle.

Figs. 27— 30 depict the influence Ha on velocity( /') . temperature (#) . Nz and Be profiles.
Fig. 27 illustrates that the velocity profiles are depleted by increasing magnetic effects. Increasing
the Ha values results in an improvement in the Lorentzian magnetohydrodynamic drag force. Thus
Lorentz force reduces the shear effect on the wedge surface and thus decreases flud velocity
rapidly. The strong applied magnetic field resists the momentum flow which causes decline i the
flow and thus mereases the momentum boundary laver thickness. Alternatively, with an increase
in Ha values, the temperature magnitudes are augmented slightly thereby mncreasing the thermal
boundary laver thickness. Fig. 29 demonstrates that with an mcrease i Ha, a significant downfall

i Ng 1s produced. The Bejan mimber 1s notably augmented with an increase m Ha values.
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Figs. 31 - 3 illustrates the influence Br and Re on Ng and Be profiles respectively. The
variations of Br on Ng and Be are illustrated in Figs. 31 & 32 respectively. It 15 obvious fom fig.
31 that the Ng profiles are greatly increased with increasing Br and the impact 15 more pronounced
near the wedge surface. Initially, the energy is produced due to the dragged Lorentz forces
produced which mereases the entropy of the fhud. The thermal conductivity of the fluid declines
with the rising Br, so that a greater amount of heat 15 transmutted through the fhud. The parameter
Br characterizes the heat generated by viscous dissipation. This results in an enhancement in the
entropy generation Conversely, the Bejan number s reduced with respect to Br which is due to
the domunant influence of viscous wreversibilities compared with wreversibilities m heat transfer.
Figs. 33 & 34 presents the distributions of Ng and Be for various values of Re. Both Ng and Be are
mereased with a rise in Re values. The mertial force dominates the flow with reduced viscous force
and results n a sigmificant contribution of heat transfer fo the entropy. The Eeynolds number and
entropy generation are proportional fo each other. The Bejan number 15 also seen to mcrease with

mereasing values of Re.

CONCLUSIONS
The entropy geperation of mixed convection flows of tangent hyperbolic flud past
1sothermal wedge 1s considered. The Keller's implicit finite difference numerical techmigque 1s used
to solve the modified non-dimensional governing equations, subject to practical boundary
conditions effectively. Absolutely brillianf association with prior research testifving to validity of
this code 15 illustrated. The second law thermodynanucs analysis of the flow 15 conducted by
adopting the Bejan's enfropy generation minmuzation approach. The calculations showed that:
I Anincrease in ITe 15 seen fo reduce velocity, Ng and Be whereas if elevates temperature.
II. Increasing n increases the velocity whereas depresses temperature, entropy generation
number and Bejan number.
IIT. An increase in v is seen to mcrease velocity, temperature, entropy generation mumber and
Bejan number.
IV. An increase mn m 15 seen to increase veloctty, Ne and Be but reduces the temperature.
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TABLES
Table 1: Comparison of the values of Cr for various values of m when 1 =0

Khanand | Yacober | White Present
Pop [51] al. [32] [33] results

0 0.4696 0.4696 0.4696 0.4696
1/11 0.6550 0.6550 0.6550 0.6549
1/5 0.8021 0.8021 0.8021 0.8019
173 09277 0.9276 0.9277 0.9275
112 1.0389 1.0388 1.0389 1.0387

0 12326 1.2326 1.2326 12324

m




Table 2: Vatues of Crand Mu for different 1Mo, n.m, ), 4, Haand 2
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FIGURES

Fig. 1 Flow analvsis along the wall of the edge
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Fig. 1: Keller box computational call
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