
AN INTELLIGENT SYSTEM FOR THE

CLASSIFICATION AND SELECTION OF

NOVEL AND EFFICIENT LOSSLESS IMAGE

COMPRESSION ALGORITHMS

Mahmoud AL Qerom

Thesis Submitted in Partial Fulfilment of the Requirements of the Degree

of Doctor of Philosophy

School of Computing, Science and Engineering

University of Salford, Salford, UK

2020

Supervisor

Prof. Farid Meziane

I

Abstract

We are currently living in an era revolutionised by the development of smart phones and digital

cameras. Most people are using phones and cameras in every aspect of their lives. With this

development comes a high level of competition between the technology companies developing

these devices, each one trying to enhance its products to meet the new market demands. One

of the most sought-after criteria of any smart phone or digital camera is the camera’s resolution.

Digital imaging and its applications are growing rapidly; as a result of this growth, the image

size is increasing, and alongside this increase comes the important challenge of saving these

large-sized images and transferring them over networks. With the increase in image size, the

interest in image compression is increasing as well, to improve the storage size and transfer

time.

In this study, the researcher proposes two new lossless image compression algorithms. Both

proposed algorithms focus on decreasing the image size by reducing the image bit-depth

through using well defined methods of reducing the coloration between the image intensities.

The first proposed lossless image compression algorithm is called Column Subtraction

Compression (CSC), which aims to decrease the image size without losing any of the image

information by using a colour transformation method as a pre-processing phase, followed by

the proposed Column Subtraction Compression function to decrease the image size. The

proposed algorithm is specially designed for compressing natural images. The CSC algorithm

was evaluated for colour images and compared against benchmark schemes obtained from

(Khan et al., 2017). It achieved the best compression size over the existing methods by

enhancing the average storage saving of the BBWCA, JPEG 2000 LS, KMTF– BWCA, HEVC

and basic BWCA algorithms by 2.5%, 15.6%, 41.6%, 7.8% and 45.07% respectively. The CSC

algorithm simple implementation positively affects the execution time and makes it one of the

fastest algorithms, since it needed less than 0.5 second for compressing and decompressing

natural images obtained from (Khan et al., 2017). The proposed algorithm needs only 19.36

seconds for compressing and decompressing all of the 10 images from the Kodak image set,

while the BWCA, KMTF – BWCA and BBWCA need 398.5s, 429.24s and 475.38s

respectively. Nevertheless, the CSC algorithm achieved less compression ratio, when

compressing low resolution images since it was designed for compressing high resolution

images. To solve this issue, the researcher proposed the Low-Resolution Column Subtraction

II

Compression algorithm (LRCSC) to enhance the CSC low compression ratio related to

compressing low-resolution images.

The LRCSC algorithm starts by using the CSC algorithm as a pre-processing phase, followed

by the Huffman algorithm and Run-Length Coding (RLE) to decrease the image size as a final

compression phase. The LRCSC enhanced the average storage saving of the CSC algorithm

for raster map images by achieving 13.68% better compression size. The LRCSC algorithm

decreases the raster map image set size by saving 96% from the original image set size but did

not reach the best results when compared with the PNG, GIF, BLiSE and BBWCA where the

storage saving is 97.42%, 98.33%, 98.92% and 98.93% respectively. The LRCSC algorithm

enhanced the compression execution time with acceptable compression ratio.

Both of the proposed algorithms are effective with any image types such as colour or greyscale

images. The proposed algorithms save a lot of memory storage and dramatically decreased the

execution time.

Finally, to take full benefits of the two newly developed algorithms, anew system is developed

based on running both of the algorithm for the same input image and then suggest the

appropriate algorithm to be used for the de-compression phase.

Keywords: Image Compression, Image Classification, Lossless Image Compression

Techniques, Column Subtraction Compression (CSC), Low-Resolution Column Subtraction

Compression (LRCSC), Deep Conventional Neural Networks (DCNN), Artificial Intelligence

(AI), Image Classification.

III

Acknowledgements

My deep thanks and gratitude for my main supervisor Professor. Farid Meziane for all the

guidance and encouragement he provided during the time of developing this work, and for his

contribution in making this work successes. Your support and advice are invaluable. I also

wish to express my deep gratitude to Professor. Mohammad Otair for his efforts in developing

this work and for his helpful contributions and guidance during the last three years.

Furthermore, many thanks go to my family; especially to my sweet mother for all her supports

and encouragement and for all her prayers- thank you mum. For my brothers and sisters my

darling wife and my lovely daughters and dear sons; I wish to thank you all for your

encouragements, your supports and for the lovely time we had together. Finally, many thanks

to my friends for all of their supports.

IV

Dedication

This work is dedicated to my late Father; Mr. Mohammed Al-Qerom. The beautiful 24 years

that we had together looks like 24 minutes. During this time, I remember one of your wishes

of obtaining a Ph.D. degree for me; that’s why I dedicated this work for your pure soul.

V

Table of Contents

ABSTRACT ... I

CHAPTER ONE: INTRODUCTION AND MOTIVATION ... 16

OVERVIEW ... 16

1.1 INTRODUCTION AND MOTIVATION ... 16
1.2 RESEARCH AIM AND OBJECTIVES ... 17
1.3 RESEARCH METHODOLOGY .. 17

1.3.1 Design Science Research in Information Systems .. 18
1.3.2 Philosophical Ground of DSR .. 19
1.3.3 DSR Process Model .. 20
1.3.4 DSR Knowledge Contribution Framework ... 22

1.4 RESEARCH CONTRIBUTIONS TO KNOWLEDGE ... 23
1.5 THESIS STRUCTURE ... 24

CHAPTER TWO: RESEARCH BACKGROUND AND LITERATURE REVIEW ... 25

2 CHAPTER OVERVIEW ... 25

2.1 LITERATURE REVIEW ... 25
2.1.1 Digital Images ... 26
2.1.2 The Most Popular Used Image Formats ... 27
2.1.3 Digital Image Processing .. 28
2.1.4 Operations Performed on Digital Images .. 29

2.1.4.1 Image Segmentation .. 29
2.1.4.2 Image Compression ... 30

2.1.5 General Image Compression Model ... 31
2.1.6 Description of the Processes Used in the Current Techniques .. 33

2.1.6.1 Correlation ... 33
2.1.6.2 Quantization .. 34
2.1.6.3 Entropy Coding... 34

2.1.7 Measurement of Image Size and Quality .. 35
2.1.8 Classification of Compression Techniques ... 37

2.2 LOSSLESS COMPRESSION TECHNIQUES .. 38
2.2.1 Lossless Compression Techniques Phases .. 38
2.2.2 Lossless Compression Algorithms .. 39
2.2.3 Lossless Compression Related Work .. 40

2.2.3.1 Huffman Coding ... 40
2.2.3.2 Shannon’s Coding ... 41
2.2.3.3 Bit Plane Slicing (BPS) ... 41
2.2.3.4 Different Plus Coding Modulation Followed by Huffman .. 41
2.2.3.5 Improved Lempel-Ziv-Welch .. 41
2.2.3.6 Lempel-Ziv-Welch with Region of Interest ... 42
2.2.3.7 Run Length Coding ... 42
2.2.3.8 Arithmetic Coding .. 43
2.2.3.9 Median Edge Detection.. 44
2.2.3.10 Median Edge Detection and Different Plus Coding Modulation .. 44
2.2.3.11 Median Edge Detection and Activity Level Classification Model ... 44
2.2.3.12 BBWCA ... 44

2.3 LOSSY COMPRESSION TECHNIQUES .. 45
2.3.1 Lossy Compression Techniques Phases .. 45
2.3.2 Lossy Compression Algorithms .. 46
2.3.3 Lossy Compression Related Work .. 47

2.3.3.1 JPEG ... 47
2.3.3.2 JPEG 2000... 48

VI

2.3.3.3 Minimise-Matrix-Size algorithm ... 49
2.3.3.4 Discrete Cosine Transform Followed by Huffman .. 49
2.3.3.5 Different Plus Coding Modulation, Discrete Wavelet Transform Followed by Huffman........................ 49
2.3.3.6 Radial Basis Function Neural Networks and Discrete Wavelet Transform ... 50
2.3.3.7 Discrete Wavelet Transform and Set Partitioning in Hierarchical Coding Techniques 50
2.3.3.8 Rounding the Intensity Followed by Dividing ... 50
2.3.3.9 Fractal Compression .. 51
2.3.3.10 EZW .. 51

2.4 SUMMARY AND COMPARISON OF FUNDAMENTAL ALGORITHMS .. 52
2.5 CHAPTER SUMMARY ... 54

CHAPTER THREE: PROPOSED SOLUTIONS AND DEVELOPMENT TOOLS .. 55

3 CHAPTER OVERVIEW ... 55

3.1 PROPOSED SOLUTIONS .. 55
3.1.1 Huffman Limitation and the Proposed Solution .. 56
3.1.2 LZW Limitation and the Proposed Solution .. 56
3.1.3 RLC Limitation and the Proposed Solution ... 56

3.2 SOFTWARE DEVELOPMENT PROCESS .. 57
3.2.1 The first Iteration Requirements ... 58
3.2.2 The Second Iteration Requirements .. 59
3.2.3 The third Iteration Requirements .. 60

3.3 ALGORITHM COMPLEXITY ... 61
3.4 MATLAB ... 62
3.5 USED DEVICES AND OPERATING SYSTEM... 63
3.6 SET OF TESTED IMAGES ... 63

3.6.1 Image Set 1 ... 64
3.6.2 Image Set 2 ... 65
3.6.3 Image Set 3 ... 66
3.6.4 Image Set 4 ... 67
3.6.5 Image Set 5 ... 68

3.7 RATIONAL FOR THE SELECTION OF THE IMAGES SETS ... 68
3.8 CHARACTERISTICS OF THE SELECTED IMAGES .. 69
3.9 CHAPTER SUMMARY ... 69

CHAPTER FOUR: THE PROPOSED LOSSLESS ALGORITHM FOR NATURAL IMAGES COMPRESSION 70

4 CHAPTER OVERVIEW ... 70

4.1 INTRODUCING THE CSC COMPRESSION ALGORITHM ... 70
4.2 THE CSC FLOWCHART ... 73
4.3 DESCRIPTION OF THE CSC ALGORITHM ... 73

4.3.1 Colour Transformation: .. 74
4.3.2 Column Subtraction .. 77

4.4 CSC ALGORITHM TIME COMPLEXITY ANALYSES.. 80
4.4.1 CSC algorithm Time Complexity ... 80
4.4.2 Proof ... 82

4.5 VALIDATION AND TESTING ... 82
4.5.1 The CSC Algorithm Compression Size .. 83
4.5.2 The CSC Algorithm Image Quality. ... 86
4.5.3 The CSC Algorithm Execution Time.. 87

4.6 EVALUATIONS, RESULTS AND OBSERVATIONS... 90
4.6.1 Comparison Between the CSC Results and Huffman Algorithm Results. 90

4.6.1.1 Comparison Between the CSC Algorithm and Huffman Algorithm in Terms of Image Size 90
4.6.1.2 Comparison Between the CSC Algorithm and Huffman in Terms of Image Quality 94
4.6.1.3 Comparison Between the CSC and Huffman in Terms of Execution Time ... 94

4.6.2 Comparison Between the CSC Compression Size and Other State of the Art Algorithm. 96

VII

4.6.2.1 First Comparison for Natural Images Compression Size .. 97
4.6.2.2 Second Comparison for Natural Images Compression Size .. 98
4.6.2.3 Third Comparison for Raster Map Images Size .. 99

4.6.3 Comparison Between the CSC Execution Time and Other State of the Art Algorithms. 101
4.7 CHAPTER SUMMARY ... 102

CHAPTER FIVE: THE PROPOSED LOSSLESS ALGORITHM FOR RASTER MAP IMAGES COMPRESSION 104

5 CHAPTER OVERVIEW ... 104

5.1 INTRODUCING THE LRCSC COMPRESSION ALGORITHM ... 104
5.2 THE LRCSC FLOWCHART ... 109
5.3 DESCRIPTION OF THE LRCSC ALGORITHM ... 110

5.3.1 CSC Algorithm: .. 110
5.3.2 Negative Value Removing .. 113
5.3.3 Huffman Algorithm .. 115
5.3.4 Negative Value Restoration .. 116
5.3.5 RLE ... 120

5.4 LRCSC TIME COMPLEXITY ... 121
5.4.1 LRCSC algorithm Time Complexity Analyses .. 121
5.4.2 Proof ... 124

5.5 VALIDATION AND TESTING ... 124
5.5.1 The LRCSC Algorithm Compression Size ... 125
5.5.2 The LRCSC Algorithm Image Quality. .. 128
5.5.3 The LRCSC Algorithm Execution Time. ... 130

5.6 EVALUATIONS, RESULTS AND OBSERVATIONS... 133
5.6.1 Comparison Between the LRCSC Results and Huffman Algorithm Results................................ 133

5.6.1.1 Comparison Between the LRCSC Algorithm and Huffman Algorithm in Terms of Image Size 133
5.6.1.2 Comparison Between the LRCSC Algorithm and Huffman in Terms of Image Quality 136
5.6.1.3 Comparison Between the LRCSC and Huffman in Terms of Execution Time 136

5.6.2 Comparison Between the LRCSC Compression Size and Other State of the Art Algorithm. 139
5.6.2.1 First Comparison for Natural Images Compression Size .. 139
5.6.2.2 Second Comparison for Natural Images Compression Size ... 140
5.6.2.3 Third Compression for Raster Map Images Size ... 142

5.6.3 Comparison Between the LRCSC Execution Time and Other State of the Art Algorithm. 144
5.7 CHAPTER SUMMARY ... 145

CHAPTER SIX: AUTOMATED SYSTEM FOR IMAGE COMPRESSION .. 146

6 CHAPTER OVERVIEW ... 146

6.1 INTRODUCTION .. 146
6.2 THE FULLY AUTOMATED SYSTEM COMPRESSION SIZE .. 147
6.3 THE FULLY AUTOMATED SYSTEM EXECUTION TIME ... 147
6.4 THE FULLY AUTOMATED SYSTEM IMAGE QUALITY .. 148
6.5 CHAPTER SUMMARY ... 150

CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK ... 151

7 CHAPTER OVERVIEW ... 151

7.1 RESEARCH SUMMARY ... 151
7.2 RESEARCH CONTRIBUTIONS AND REVIEW OF THE RESEARCH OBJECTIVES .. 152

7.2.1 Lossless and Lossy Image Compression State-of-the-Art .. 152
7.2.2 Addressing the Challenges of Lossless Image Compression Techniques 152
7.2.3 Developing a Lossless Image Compression Algorithm for Natural Images 152
7.2.4 Developing a Lossless Image Compression Algorithm for Synthetic Images 153
7.2.5 Develop a Fully Automated System for Choosing the Suitable Algorithm for Compressing the

Images Regarding its Type. ... 153
7.3 RESEARCH LIMITATIONS .. 154

VIII

7.4 RECOMMENDATIONS FOR FUTURE WORK ... 154
7.4.1 The Proposed AI Algorithm (GF-FSAE) for Image Classification .. 155
7.4.2 Artificial Intelligence .. 156
7.4.3 The Chosen Artificial Intelligence Technique for Image Classification 157

REFERENCES ... 158

APPENDIX A LRCSC COMPRESSION .. 167

APPENDIX B LRCSC DE-COMPRESSION ... 170

APPENDIX C HUFFMAN CODING FUNCTION ... 172

APPENDIX D RLE CODING FUNCTION ... 173

IX

List of Figures

Figure 1. 1 - Levels of Research in Information Systems and DSR Role .. 18

Figure 1. 2 - DSR Process Model (Adapted from (Vijay, Bill and Stacie, 2015) 20

Figure 1. 3 - DSR Knowledge Contribution Framework. ... 23

Figure 2. 1 - Digital image (value and bit representing). Obtained From (Abdalla and Osman, 2016). 26

Figure 2. 2 - Colour Space Conversion from RGB to YCbCr. Adapted From (Kuppusamy and Mehala,

2013) ... 30

Figure 2. 3 - General Data Compression Scheme adapted by (Gupta, Bansal and Khanduja, 2017). .. 30

Figure 2. 4 - General Compression and Decompression Model ... 31

Figure 2. 5 - Lossless Compression Model .. 38

Figure 2. 6 - Lossless Compression Techniques and Algorithms Adaptive from (Zaineldin, Elhosseini

and Ali, 2015) .. 39

Figure 2. 7 - Lossy Compression Model .. 45

Figure 2. 8 - Lossy Compression Techniques and Algorithms Adaptive from (Zaineldin, Elhosseini and

Ali, 2015) ... 46

Figure 3. 1 - The Compression System Class Diagram .. 63

Figure 4. 1 - CSC Lossless Algorithm Flowchart ... 73

Figure 4. 2 - Transformation Example ... 76

Figure 4. 3 - Invers Transformation Example .. 77

Figure 4. 4 - CSC Example .. 79

Figure 4. 5 - CSC Decompression Example .. 80

Figure 4. 6 - The CSC Algorithm Storage saving .. 85

Figure 4. 7 - Compression and Decompression Time for the CSC Algorithm.. 90

Figure 4. 8 - The Average Compression Size for the CSC and Huffman algorithm 93

Figure 4. 9 - The Average Execution Time for Both Algorithms .. 96

Figure 4. 10 - Compression Ratio for the Five Algorithm .. 98

Figure 4. 11 - Total Compression Size for the Kodak Image Set ... 99

Figure 4. 12 - Average Compression Ratio for the Raster Map Image Set ... 101

Figure 4. 13 - Total Execution Time for the Kodak Image Set ... 102

Figure 5. 1 - LRCSC Lossless Algorithm Flowchart ... 109

Figure 5. 2 - Transformation Example ... 111

Figure 5. 3 - Invers Transformation Example .. 111

Figure 5. 4 - CSC Example .. 112

Figure 5. 5 - CSC Decompression Example .. 113

Figure 5. 6 - Negative Values Temporary Dictionary File .. 114

Figure 5. 7 - Positive Values Matrices ... 114

Figure 5. 8 - Huffman Dictionary Files ... 115

Figure 5. 9 - Huffman Results .. 116

Figure 5. 10 - Restoring the Negative Values .. 117

Figure 5. 11 - Negative Values Temporary Dictionary File .. 117

Figure 5. 12 - Positive Values matrices ... 118

Figure 5. 13 - Huffman Decompression Results .. 119

Figure 5. 14 - Huffman Positive Values matrices .. 119

Figure 5. 15 - RLE Results .. 120

Figure 5. 16 - The LRCSC Algorithm Storage Saving .. 127

Figure 5. 17 - The Average MSE Results for the Lossless LRCSC Algorithm .. 128

file:///D:/PHD/My%20Phd/Final%20Work/Viva%20FeedBack/Mahmoud%20thesis%20-%20updated6.docx%23_Toc55308339
file:///D:/PHD/My%20Phd/Final%20Work/Viva%20FeedBack/Mahmoud%20thesis%20-%20updated6.docx%23_Toc55308340
file:///D:/PHD/My%20Phd/Final%20Work/Viva%20FeedBack/Mahmoud%20thesis%20-%20updated6.docx%23_Toc55308341
file:///D:/PHD/My%20Phd/Final%20Work/Viva%20FeedBack/Mahmoud%20thesis%20-%20updated6.docx%23_Toc55308342
file:///D:/PHD/My%20Phd/Final%20Work/Viva%20FeedBack/Mahmoud%20thesis%20-%20updated6.docx%23_Toc55308353
file:///D:/PHD/My%20Phd/Final%20Work/Viva%20FeedBack/Mahmoud%20thesis%20-%20updated6.docx%23_Toc55308354
file:///D:/PHD/My%20Phd/Final%20Work/Viva%20FeedBack/Mahmoud%20thesis%20-%20updated6.docx%23_Toc55308355

X

Figure 5. 18 - Compression and Decompression Time for the LRCSC Algorithm 133

Figure 5. 19 - The Average Compression size for the LRCSC and Huffman algorithm 136

Figure 5. 20 - The Average Execution Time for Both Algorithms .. 139

Figure 5. 21 - Compression Ratio for the Five Algorithm .. 140

Figure 5. 22 - Total Compression Size for the Kodak Image Set ... 142

Figure 5. 23 - LRCSC Average Compression Ratio for the Raster Map Image Set 143

Figure 5. 24 - Total Execution Time for the Kodak Image Set ... 145

Figure 7. 1 - The Fully Automated AI system Flowchart ... 155

Figure 7. 2 - Relationship Between ML and Deep Learning (DL) (Edureka, 2019) 156

XI

List of Tables

Table 1. 1- Design Science Research Perspective. (Source: (Vijay, Bill and Stacie, 2015)) 19

Table 1. 2 - DSR Process Steps and the Corresponding chapters in this research 22

Table 2. 1 - Summary of Lossless algorithms. ... 52

Table 3. 1 - The Algorithms Working Environments ... 63

Table 3. 2 - Image set 1 ... 64

Table 3. 3 - Image Set 2 ... 65

Table 3. 4 - Image Set 3 ... 66

Table 3. 5 - Image Set 4 ... 67

Table 3. 6 - Image Set 5 ... 68

Table 4. 1 - R,Dg,Db Transformation and Invers Transformation Equations .. 74

Table 4. 2 - The Modified Transformation and Invers Transformation Equations 75

Table 4. 3 - The Average Compression Ratio for the Original and Modified Transformation 75

Table 4. 4 - CSC Algorithm Complexity .. 81

Table 4. 5 - The Lossless CSC Algorithm Compression Size ... 83

Table 4. 6 - The Lossless CSC Algorithm Average Compression Size... 85

Table 4. 7 - Sample Images from the Five Image Sets Before and After Compression 86

Table 4. 8 - The Lossless CSC Algorithm Compression Time in Seconds ... 88

Table 4. 9 - The Lossless CSC Algorithm Average Compression Time ... 89

Table 4. 10 - The Lossless CSC Compression Size and Huffman Compression Size 91

Table 4. 11 - The Average Lossless Approach Compression Size with Huffman Average Compression

Size .. 93

Table 4. 12 - The Lossless CSC Algorithm Execution Time with Huffman Execution Time 94

Table 4. 13 - The Average Execution Time for Both Algorithms in Seconds ... 96

Table 4. 14 - The Proposed Algorithm Results Compared with Other Four Algorithm Results 97

Table 4. 15 - Comparison Between the CSC and various benchmark systems in Term of Compressed

File Sizes of Kodak Colour Test Images (size in KBs) ... 98

Table 4. 16 - The CSC Results Compared with Other Four Algorithm Results 100

Table 4. 17 - System Requirements .. 101

Table 4. 18 - Execution Time in Seconds for the Kodak Image Set for Different Algorithms 101

Table 5.1 - LRCSC Algorithm Complexity ... 121

Table 5.2 - The Lossless LRCSC Algorithm Compression Size .. 125

Table 5.3 - The Lossless LRCSC Algorithm Average Compression Size .. 127

Table 5.4 - Image Quality Average Results for the Lossless LRCSC Algorithm 128

Table 5.5 - Sample Images for the Five Image Sets Before and After Compression by LRCSC 129

Table 5.6 - The LRCSC Algorithm Compression Time in Seconds .. 130

Table 5.7 - The LRCSC Algorithm Average Compression Time .. 132

Table 5.8 - The Lossless LRCSC Compression Size and Huffman Compression Size 133

Table 5.9 - The Average LRCSC Approach Compression Size with Huffman Average Compression Size

 .. 135

Table 5.10 - The Lossless LRCSC Algorithm Execution Time with Huffman Execution Time 136

Table 5.11 - The Average Execution Time for Both Algorithms in Seconds .. 138

Table 5.12 - The LRCSC Algorithm Results Compared with Other Four Algorithm Results 139

Table 5.13 - Comparison Between the LRCSC and various benchmark systems in Term of Compressed

File Sizes of Kodak Colour Test Images (size in KBs) ... 141

Table 5.14 - The LRCSC Results Compared with Other Four Algorithm Results 142

XII

Table 5.15 - Execution Time in Seconds for the Kodak Image Set for Different Algorithms 144

Table 6. 1 -Fully Automated System Compression Ratio .. 147

Table 6. 2 - The Fully Automated System Average Compression Time .. 148

Table 6. 3 - Sample Images from the Five Image Sets Before and After Compression 148

XIII

List of Abbreviations

2D Two Dimensional

AC Arithmetic Coding

AD Average Difference

AI Artificial Intelligence

AINN Artificial Intelligence Neural Network

ALCM Activity Level Classification Model

ALPC Adaptive Linear Prediction and Classification

BMP Bitmap File Format

BPS Bit Plane Slicing

BWT Burrows-Wheeler Transform

CALIC Context-Based, Adaptive, Lossless Image Codec

CSC Column Subtraction Compression

CNN Convolutional Neural Network

CR Compression Ratio

DCT Discrete Cosine Transform

DCNN Deep Conventional Neural Networks

DFT Discrete Fourier Transform

DIP Digital Image processing

DL Deep learning

DPCM Differential Pulse Code Modulation

DSR Design Science Research

DSRIS Design Science Research for Information System

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimised Truncation

EDT Enhanced Differential Pulse Code Modulation Transformation

ERIFD Enhanced Rounding the Intensity Followed by Dividing

EQ Equation

EZW Embedded Zero Tree Wavelet

F-DCT Forward-Discrete Cosine Transform

FMS Fast-Match-Search algorithm

XIV

FR Full Reference

GAP Gradient Adaptive Predictor

GCD Greatest Common Divisor

GIF Graphics Interchange Format

GPS Global Positioning System

GRC Gaps Removal Compression

HBC Hierarchic Pairwise Coding

HC Huffman coding

HEVC High Efficiency Video Coding Computing

HH High-High

HINT Hearing in Noise Test

HL High-Low

HRI High Resolution Image

HVS Human Visual System

IQA Image Quality Assessment

ISO/CCITT International Organization for Standardisation / International Telegraph and Telephone

Consultative Committee

JFIF File Interchange Format

JPEG Joint Photographic Expert Group

K-NN k-Nearest Neighbours Algorithm

LGRC Lossy Gaps Removal Compression

LH Low-High

LL Low-Low

LPB Local-Adaptive Block-Based Prediction

LPCDH Linear Predictive Coding (LPC) with Discrete Wavelet Transform (DWT) followed by

Huffman

LRCSC Low-Resolution Column Subtraction

LRI Low Resolution Image

LZW Lempel-Ziv-Welch

LZ77 Lempel-Ziv 77

LZ78 Lempel-Ziv 78

MAE Mean Absolute Error

https://en.wikipedia.org/wiki/International_Organization_for_Standardization

XV

MBIC Minimum Block Intensity Compression

MCIC Minimum Column Intensity Compression

MD Maximum Difference

MED Median Edge Detection

ML Machine learning

MRIC Minimum Row Intensity Compression

MSE Mean Squared Error

NK Normalised Cross-Correlation

PMSE Peak Mean Square Error

PNG Portable Network Graphics

PSNR Peak Signal to Noise Ratio

RAW Raw image formats

RBFNN Radial Basis Function Neural Networks

RCT Reversible Colour Transform

RGB Red, Green, Blue

RIFD Rounding the Intensity Followed by Dividing

RLE Run Length Encoding

RLC Run Length Coding

ROI Region of Interest

SPIHT Set Partitioning in Hierarchical Trees

SSIM Structural Similarity Index Metric

TIF Tagged Image File Format

TRLC Traditional Run Length Coding

UIQI Universal Image Quality Index

VQ Vector Quantization

WSN Wireless Sensor Network

YCbCr Luminance Green (Y), Chrominance Blue (Cb), Chrominance Red (Cr)

16

CHAPTER ONE: INTRODUCTION AND MOTIVATION

Overview

This chapter describes the research motivation and introduces the research topic in the field

of image compression. Then the research aim and objective are explained. This is followed

by the description of the adopted research methodology that is used to achieve the research

aim and objectives and the contribution to knowledge. The chapter concludes by providing

a short description of the remaining chapters constituting this thesis.

1.1 Introduction and Motivation

At the beginning of the 1960s, the need for digital imaging development arose. From that date

to the current time, there has been considerable growth in digital images and image

applications. Indeed, images have become an important part of our daily lives and activities.

Photos are now taken mainly by mobile phones for personal photos but also for newspapers,

websites and other media (Lyon, 2006).

Nowadays, cameras and their applications have seen unprecedented development. Each smart

phone has a good resolution digital camera, which provides more data about images such as

location, date and time. With the development of the digital camera and the increase in the

number of photos and their transmission through networks, comes the size issue of the images

as some motion images have 16 bit-depth with an image size of 50.3 megabytes. Regarding

the large image size, a massive amount of data is created and it is reported that approximately

2.5 quintillion bytes are created daily (Lu et al., 2014). The estimated amount of the data

created in the year 2020 is approximately 1.7 MB per second for every person (Anon, 2019).

Many researches had been developed to enhance the methods of displaying images in

applications; these researches gave computers and cell phones the capabilities of displaying

high resolution complex graphical images such as those used in computer games and medical

applications. Although the visual aesthetics of images in the applications is enhanced, these

applications need a lot of disk storage.

With the result of producing such a high number of high-resolution images, came the challenge

of saving and transmitting these images. The higher resolution images need more storage space

and transmitting time; image compression is about developing algorithms to solve this problem.

Given the enormous production rate of digital images, developing image compression

algorithms has become a very important field for researchers to save storage space and channel

bandwidth. Hence, the research motivation is to investigate the digital image processing

challenges in the area of lossless image compression by developing new algorithms that aim to

17

enhance the current image compression rates and execution times to meet the demands of the

information revolution and fast development of producing images with large sizes.

Lossless image compression aims to decrease the image size without effecting the image

quality (Shukla, Alwani and Tiwari, 2010). The efforts developed by the researchers in the

lossless domain aim to enhance the compression rate with zero distortion and an acceptable

execution time.

1.2 Research Aim and Objectives

Based on the motivation from the previous section, this research aims to create a fully

automated lossless image compression system, that decreases the image size with high

compression rate and zero percentage of distortion in a very fast time. To achieve this aim, the

following objectives are identified.

1- Reviewing the literature critically on current image compression techniques.

2- Identify the weaknesses of the current techniques.

3- Design the new compression algorithms.

4- Implement the new algorithms.

5- Validate the algorithm results.

6- Evaluate the compression results by conducting an empirical comparison of the new

algorithm with existing state of the art algorithms.

1.3 Research Methodology

Vijay, Bill and Stacie, (2015) generally defined research as some activity that participate in

understanding a particular phenomenon. The phenomenon is a set of interested actions for some

entities found by the researchers, and the research methods are to produce knowledge by the

researcher by using the convenient activities. (Hanid, 2014) defines research as an investigation

methodology that test the resources to expand the knowledge scope within domain. (Alan and

Samir, 2012) defined the difference between research and reasoning by providing the following

definitions; reasoning can work in an abstract environment that is highly separated from the

reality. However, research supports self-correcting by providing testing methods to obtain

results for validation. Information systems employed a lot of methods for developing

knowledge as it supports the phenomenon behaviours predictions (Vijay, Bill and Stacie,

2015).

18

1.3.1 Design Science Research in Information Systems

Design Science Research (DSR) is an Information Systems (IS) research methodology that

provides problems solving methods and can handle the industry sectors challenges to contribute

to the theories in the application domain (Hanid, 2014). Furthermore, DSR is a methodology

for finding and exploring alternative solutions for problem solving for a specific domain.

(Hevner, Chatterjee and Juhani, 2010) emphasised that the DSR methodology become one of

the best methodologies over the years. The DSR concentrates on organizations’ problem

solving by providing valid knowledge in a certain domain.

(Gregor and Hevner, 2013) stated that, the DSR is interested in the development of technical

artefacts in the IS domain, such as information system evaluation, decision support systems

and modelling tools. DSR become reliable information system research model, since it

provides effective solutions for the research problems.

Figure 1.1 illustrate the IS three levels of research and the DSR role for each level as described

by (Hevner, Chatterjee and Juhani, 2010).

Figure 1. 1 - Levels of Research in Information Systems and DSR Role

 (Adapted From: (Hevner, Chatterjee and Juhani, 2010)

19

The concepts of using the DSR with information systems (DSRIS) is continually evolving as

acquiring knowledge process through design practices (Kuechler and Vaishnavi, 2012). DSRIS

artefact and methodology is to decide what to build and the method of building it.

1.3.2 Philosophical Ground of DSR

(Ken Peffers et al., 2007) stated that, early in the 1990s, IS researchers are starting to pay more

attention to DSR. The DSRIS methodology is different from other methodologies in theory

building and testing methods. (Ken Peffers et al., 2007) described that the DSR is to develop

solutions or models that helps humans.

(Nunamaker, Chen and Purdin, 1990) noted that some researchers tried to create an integrated

model that combine the research process with the system development process to facilitate the

system developments with the support of suitable experiments. Furthermore, the IS research

can be enhanced by adopting the DSR methodology.

(Hanid, 2014) emphasise that the knowledge creation process begins with a substantive field

of inquiry known as philosophy, where the inquiry, theories, facts and alternatives are gathered

to help in the knowledge creation. (Scotland, 2012) noted that, several philosophical

approaches to thinking exists and they are commonly categorized into positivism,

interpretivism, phenomenology, realism, hermeneutics, critical theory and phenomenology.

The research strategy and research method selections rely on the philosophical stance.

However, the previous categories did not cover the Design Science Research (DSR) that is

interested in problem-solving (Hanid, 2014). Table 1.1 lists a comparison of DSR with some

other well-known research perspectives.

Table 1. 1- Design Science Research Perspective. (Source: (Vijay, Bill and Stacie, 2015))

Basic Belief
Research Perspectives

Positivist Interpretive Design

Ontology A single knowable

and probabilistic

reality

The construction of

multiple realities in a

social manner.

Multiple realities with

contextually situated

alternative world-states. Socio-

technologically enabled.

Epistemology Objective;

dispassionate.

Detached observer

of truth

Subjective, i.e. values

and knowledge emerge

from the researcher-

participant interaction.

Knowing through making

objectively constrained

construction within a context.

Iterative circumscription

reveals meaning.

Methodology Observational in

nature with

quantitative and

statistical measures

Participation;

qualitative.

Hermeneutical,

dialectical.

Developmental in nature with

an impact measurement of

artefact on compound systems

Axiology Truth: universal and

beautiful; prediction

Understanding: situated

and description

Control; creation; progress (i.e.

improvement); understanding

20

Observing Table 1.1, the DSR involves a multi-dimensional perspective from ontological and

epistemological beliefs. The methodological belief is suitable for IS domain, since its nature is

developmental. Furthermore, DSR controlled the environment and provide improvements to

the research process as the Axiological belief. This is why the researcher adapted the DSR in

this research as it supports the research objectives and meet the research requirements.

1.3.3 DSR Process Model

The DSR model describes the research environment and variables according to the variables

practiced. This research adapted the DSR process model from (Vijay, Bill and Stacie, 2015).

Figure 1.2 illustrate the adapted DSR process model in this research.

Figure 1. 2 - DSR Process Model (Adapted from (Vijay, Bill and Stacie, 2015)

Awareness of the Problem

Awareness of the problem is the first step in the DSR process model. It aims to gain the

knowledge of the research domain to cover and understand the research area and identifies the

research problem that needed to be solved (Alan and Samir, 2012). Critical review of the

existing literature in the research domain is conducted to identify the problem. Once the critical

review is completed, the gaps from the current literature were analysed to provide

21

comprehensive awareness of the current problem. Sections 2.1 to 2.3 in chapter two describe

this in detail.

Suggestion: The second DSR process model step is solutions suggestion. This step aims to

propose solutions to the problem from the previous step. This step suggested a solution for the

lossless image compression problems such as low compression rate and slow execution time.

Sections 3.1 in chapter three describe the solutions suggestion.

Development: The third step of the DSR process model is development. This step considers the

development of a solution for the problems from the first step by using the suggestions from

the second step to meet the research objectives. (Gregor and Hevner, 2013) emphasised that,

the development is to create artefact such as constructs, models or methods. The artefact should

meet the research contribution. Sections 4.1 to 4.3 in chapter four describe the development

phase for the first algorithm and sections 5.1 to 5.3 in chapter five describe the development

phase for the second algorithm.

Evaluation: The fourth step of the DSR process model is evaluation. (Gregor and Hevner,

2013) emphasised that evaluation should be rigorous and appropriately implemented to prove

that the developed artefact meets the research aim and objectives. It should clearly describe the

outputs as a solution for the research problem based on the requirements. The DSR evaluation

could uses one or more of the following evaluation methods:

• Observational.

• Analytical.

• Experimental.

• Testing.

• Descriptive.

Section 4.5 describe the evaluation process for the first algorithm and Section 5.5 describe the

evaluation process for second algorithm.

Conclusion: The final DSR process model step is the conclusion. This step is to describe how

the research achieves its aim and objectives from the research outputs, by identifying the

research problem in the domain, the design rigour, artefact and novelty (Offermann et al.,

2009). Furthermore, it provides recommendations for future research (Vijay, Bill and Stacie,

2015). Chapter 7 describe the conclusion phase for this research. Table 1.2 lists the DSR model

steps for this research and each process steps corresponding chapters.

22

Table 1. 2 - DSR Process Steps and the Corresponding chapters in this research

DSR Process Model Steps Corresponding Chapter(s) Outputs

Awareness of Problem Sections 2.1 to 2.3 Gain the knowledge of the research

domain and identifies the research

problem.

Suggestion Sections 3.1 Propose solution for lossless image

compression methods to enhance the

compression ratio and execution time.

Sections 3.2 to 3.4 Requirements specification for the

research area

Development Chapter 4 The proposed lossless image

compression algorithm for natural

images (CSC)

Chapter 5 The proposed lossless image

compression algorithm for synthetic

images (LRCSC)

Chapter 6 Automated System for image

compression

Evaluation Sections 4.5 Experimental Evaluation for the CSC

algorithm to evaluate the algorithm

performance.

Sections 5.5 Experimental Evaluation for the LRCSC

algorithm to evaluate the algorithm

performance.

Conclusion Chapter 7 Research Summaries

Research Contributions

Recommendations for future work in the

domain

Communication Chapters 1 to 7 Research Thesis

1.3.4 DSR Knowledge Contribution Framework

The DSR outputs contribute to the knowledge in specific domains. (Gregor and Hevner, 2013)

classified the knowledge contribution into four types.

1. Invention: provides knowledge contribution by inventing or providing new solutions to

a new problem area in a specific domain.

2. Improvement: develop new knowledge or solutions that contributes a well-known

problem area.

3. Adaptation: adapting knowledge solution for current problem from different area or

domain.

4. Routine Design: the use of existing knowledge or solutions for a well-known problem

area.

23

(Vijay, Bill and Stacie, 2015) mentioned that the DSR may uses more than one type of

knowledge contribution. Figure 1.3 displays the DSR knowledge contribution framework.

Figure 1. 3 - DSR Knowledge Contribution Framework.

Adapted from: (Gregor and Hevner, 2013).

This research aims to develop a new knowledge and solutions for known challenges within the

lossless image compression domain to enhance the current algorithms performance. Therefore,

this research is related to “Improvement” type on the DSR Knowledge Contribution

Framework.

1.4 Research Contributions to Knowledge

The research contributions to knowledge are:

1. A comprehensive literature review on lossless and lossy image compression

technologies.

2. Addressing the challenges of lossless image compression techniques.

3. Developing a lossless image compression algorithm for natural images.

4. Developing a lossless image compression algorithm for synthetic images.

5. Adapting an artificial intelligence system for image classification to develop a fully

automated system for choosing the suitable algorithm for compressing the images

regarding the image type.

6. Evaluating the compression algorithms.

24

1.5 Thesis Structure

The thesis is composed of seven chapters:

Chapter 1: Introduction

This chapter describes the research motivation and the research domain in the area of image

compression. Then the research aim and objective were explained. It also includes the adopted

research methodology to achieve the research contribution of knowledge, and finally, the

description of the thesis structure is described.

Chapter 2: Literature Review

This chapter covers the literature review for the digital image processing in the domain of

image compression; with a view of a critical analyses of the currently used algorithms

regarding the image compression domain. Furthermore, the advantages and limitations of the

current algorithms are described to identify the challenges related to the research problem to

provide directions for the development chapters.

Chapter 3: Solutions and Development Tools

This chapter covers the research requirements and the environmental parameters that surround

the research, such as the development tools, the used programming language and the tested

image sets.

Chapter 4: Column Subtraction Compression Algorithm

This chapter describes in detail the proposed lossless Column Subtraction Compression

algorithm (CSC). It starts with a detailed explanation for all the procedures used in the proposed

technique. This was then followed by validating the algorithm by testing its results and

verifying it by comparing it with the state-of-the-art algorithms.

Chapter 5: Low-Resolution Column Subtraction Compression Algorithm

This chapter describes in detail the proposed lossless Low-Resolution Column Subtraction

Compression algorithm (LRCSC). It starts with a detailed explanation of all the procedures

used in the proposed technique, followed by the validation of the algorithm by testing its

results, and its verification by a comparison between the lossless approach results with state-

of-the-art results.

Chapter 6: Automated System for Image Compression

This chapter describes in detail the concepts of artificial intelligence, machine learning,

artificial neural networks and deep learning, followed by the fully automated artificial

intelligence system for choosing the suitable compression algorithm.

Chapter 7: Conclusion and Recommendations

This chapter summarizes the research results and provides recommendations for future work.

25

CHAPTER TWO: RESEARCH BACKGROUND AND LITERATURE REVIEW

2 Chapter Overview

This chapter covers the literature review for digital image processing in the domain of image

compression; with a view of critically analysing the current state of the art used algorithms.

Furthermore, the advantages and limitations of the current algorithms are discussed to

identify the challenges related to the research problem and provide directions for the

development chapters.

2.1 Literature Review

Given the enormous production rate of digital images, image compression has become a very

important field for researchers. Image compression aims to decrease the image size without

losing its main information content, or it may have some acceptable loss provided that the

human visual system cannot notice it.

Image compression techniques are either lossless or lossy. The lossless compression techniques

aim to produce an image that is similar to the original one after the decompression phase. In

contrast, the lossy compression techniques miss some data from the source image during the

compression process; it aims to decrease the image size by enhancing the compression rate,

although the decompressed image quality will be less than the original image. In practice, the

lossy compression techniques is more used than the lossless compression techniques (Otair and

Shehadeh, 2016).

Most compression techniques take advantage of the fact that neighbouring pixels are strongly

related to each other and their values are very close or similar. In addition, each pixel should

have a high correlation with the surrounding pixels, which leads to a high data redundancy

called spectral correlation. Furthermore, an image can be compressed by removing this

redundancy and the compression algorithm will be more effective if we remove the data

redundancy before starting compression (Husseen, Mahmud and Mohammed, 2017).

Any image may include different information types, such as redundant information, which

helps in producing the original image without losing any of its information. Another type of

information is irrelevant information; this type saves enormous details, where the human visual

system cannot observe (Hussain and Al-Fayadh, 2018).

26

2.1.1 Digital Images

Several tools can be used to convert images in their original form (E.g. paper form) to a digital

image (computerised image), such as scanners and photography devices. Such tools have

contributed significantly in digital imaging development. A digital image is represented in the

form of a two-dimensional matrix (Shinde and Dani, 2011).

Each of the matrix values is referred to as a pixel or image element. An image could be

represented with a small number of pixels or with a large number of pixels (up to millions)

depending on its resolution (Abdalla and Osman, 2016). Intensity is used to represent the

pixel’s value, whereas the number of bits needed to represent each intensity is called bit-depth.

An example of a representation of a digital image is shown in Figure 2.1 where the f function

is used to locate the intensity address f(row, column) and 181 represent the value for the

acquired address which is the intensity of the pixel (in the Figure we also show the binary

representation of 181).

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2. 1 - Digital image (value and bit representing). Obtained From (Abdalla and Osman, 2016).

With the fast-growing use of digital images, image processing has become a significant aspect

in various fields. The image will be the input for processing, while the processed output could

be an image or information related to the input image.

Digital Images Types:

(Otair and Shehadeh, 2016), (Kuppusamy and Mehala, 2013), (John and Joe, 2005) and

(Padmavathi and Thangadurai, 2016) described the digital image types as:

1- Binary Image: represents the images in black and white only – black has the value zero

while white has the value one.

27

2- Greyscale Image: In this type of image, the image colour is black and white with all the

colour gradations between them. The colour values are assigned values from 0 to 255,

where each pixel is represented by 8 bits, and the internal value interval is from 0 to 2N-1

(where N is the bit-depth). For example, if the bit-depth is 8, then the intensity values range

should be between 0 and 255. These values are represented using binary code; For example,

135 is represented by 10000111 (Starosolski, 2007).

3- Colour Image: For images represented by colours, each colour can be represented by a

combination of the main three colours – Red, Green and Blue (RGB). Each pixel represents

any colour by three parts (RGB), each part consists of 8 bits with the total of 24 bits. It is

worth noting that, coloured image compression is derived from the greyscale compression

algorithm (Starosolski, 2007).

By combining all the RGB values, we can represent any colour. For example, the minimum

value of the three colours should be 24 bits of zeros, which represents the black colour, while

if we want to represent the white colour, we should set the value of the RGB to the maximum

value (255). All of the other colours can have values between 0 and 255 (John and Joe, 2005).

2.1.2 The Most Popular Used Image Formats

Images can use a huge amount of memory. Image size is different according to the information

they store and the format type they use; some image formats use more size than others due to

the application with which they are used (Chawla, Beri, and Mudgil, 2014).

1- Joint Photographic Expert Group (GPEG, JPEG or JPG) is a lossy compression technique

used with images that store a huge number of colours such as 24 bits (16 million colour)

photographic images. JPEG was created to compress continuous-tone images (colour or

greyscale) of normal daily-used real-world images, natural images, animations, documents

or videos. Nonetheless, the image quality will never be as before, since some of the data

will be lost during the compression process. This loss of data (distortion) may not be

noticed by the human visual system. JPEG/JFIF format is used by most of the digital

camera. One of the JPEG files’ limitations is generational degradation; the algorithm

suffers when we repeatedly edit and save an image. JPEG also provides lossless image

storage, but the lossless version is not widely supported.

Note that JPG files and GPEG files are pronounced “jay-peg”, and some GPEG files use

the JPG extension because they both have the exact same format, even though the

extension name is different. JPE and JPEG File Interchange Format (JFIF) files are also

extensions for GPEG, but they are not very commonly used (Lifewire, 2018).

https://en.wikipedia.org/wiki/Generation_loss

28

2- JPEG 2000 was created in the beginning of the year 2000 by the Joint Photographic Expert

Group. This standard supports both lossless and lossy techniques. It improves the image

quality and compression ratios. One of its limitations is that it needs more computational

power, which makes the JPEG format more common; it has been used in professional

movie editing and distribution.

3- Tagged Image File Format (TIF) is mostly used with lossless image compression

techniques, while some applications use it with lossy compression techniques. The image

with this format is normally represented with 8 bits or 16 bits for each colour (R, G, B) or

for 24 bits or 48 bits as well. The image compression algorithm should store in this format

the needed image compression details. TIF is not recommended to be used with web

images, as they produce a large image file size.

4- Graphics Interchange Format (GIF) is a lossless image compression format, used only with

black and white text or with greyscale images, which have fewer than 256 colours (8 bits);

consequently, it will not work with coloured images since most coloured images represent

the image with 24 bits. To solve this problem, we need to convert the colour image into an

8 bits image, but the compression will be lossy in this case.

5- Portable Network Graphics (PNG) is a lossless image compression format. It has a 10 –

30% compression rate enhancement compared to the GIF format; also, it can handle more

colour. It supports partial transparency, which may be used in fades and antialiasing for

text.

6- Bitmap (BMP) file format is used in Microsoft Windows’ operating system graphics files.

Normally, BMP files are of large size before compression. The main advantages of the

BMP file format are the wide use and simplicity.

7- The raw image formats family (RAW) generally uses lossless or nearly lossless

compression techniques that are available as options on some digital cameras. It has a

better compression rate than the TIF format since it produces smaller images from the

cameras. The drawback is that there are many manufacturers, and every manufacturer has

its own RAW format and application to view the image.

2.1.3 Digital Image Processing

Digital Image Processing (DIP) is described as the process of executing a computer algorithm

to perform image processing on a computerised image. DIP allows us to use several different

image compression algorithms to compress images; it also helps in avoiding many difficulties,

such as signal distortion (Madhu and Dalal, 2017). Due to the new image size, faster

https://en.wikipedia.org/wiki/JPEG_2000

29

transmitting and better representation are needed. DIP became a part of many fields such as

communications systems, Global Positioning System (GPS), Radiology Information Systems

(RIS), medical science, telemedicine networks, picture archiving, social media and image

compression (Kuppusamy and Mehala, 2013); (Li-Hui and Chen, 2017).

The development of digital image applications is growing continuously; with this growth

comes the real difficulties of transferring and saving the remarkable volume of images and their

related information (Abdalla and Osman, 2016);(Agustsson et al., 2019); (Li-Hui and Chen,

2017); (Poobal and Ravindran, 2014); (Talukder and Harada, 2010); (Vidal and Amigo, 2012)

2.1.4 Operations Performed on Digital Images

2.1.4.1 Image Segmentation

Image segmentation aims to group the digital image pixels using the benefits of the

neighbouring pixel, as they have a strong relationship with each other (their values are very

close to each other). Image segmentation is commonly used to calculate image features, which

helps to get information about numerous image parameters (Hazarika, Nath, and Bhuyan,

2015). Every pixel should have a high correlation with the surrounding pixels, which leads to

higher data redundancy. One of the major objectives of image compression is to decrease or

remove the data redundancy using the correlated pixels.

(Wei, 2008) and (Kuppusamy and Mehala, 2013) described the method of reducing the

correlation between pixels. Because of the high correlation in the neighbouring region or pixel,

an image can be compressed (each pixel is similar or close to its adjacent pixel). When we

decrease or remove each pixel’s correlations, we can decrease the image size by using statistical

characteristic and any compression techniques, such as variable length coding. The process of

compression starts with the conversion of colour space. We use the transform matrix to convert

the three dimensions’ colour matrix of the image from red, green and blue (RGB) to YCbCr,

pixel by pixel, as shown in Figure 2.2, where Y is commonly called the luminance and Cb, Cr

are commonly called the chrominance (blue difference and red difference). Luminance receives

the brightness of the light, which is proportional to the total energy in the visible band, while

chrominance describes the perceived colour tone of light, which depends on the wavelength

composition of the light. Chrominance is in turn characterised by two attributes: hue, which

specifies the colour tone (which depends on the peak wavelength of the light); and saturation,

which describes how pure the colour is (which depends on the spread or bandwidth of the light

spectrum). As displayed in Figure 2.2, the Y,Cb,Cr matrices maintain the same matrices

30

dimensions from the R,G,B matrices (m x n), the only deference is the values of the Y,Cb,Cr

matrices that are smaller than the R,G,B matrices.

Figure 2. 2 - Colour Space Conversion from RGB to YCbCr. Adapted From (Kuppusamy and

Mehala, 2013)

Quantization is a structure that is concerned with converting a continuous set of data into a

finite set of discrete data. The image should be the input to the quantizer while the output should

know the number of levels. The best quantizer should represent the original image (signal) with

the minimum loss of data (Ballé et al., 2017).

The objective of quantization is to produce a higher compression rate by reducing the image

accuracy. Each image compression standard, such as JPEG and JPEG 2000, has its own

quantization methods (Paul and Kumar, 2003); (Solomon and Breckon, 2011).

2.1.4.2 Image Compression

Compression is the process that is concerned with decreasing the number of bits required to

represent an image, audio or video files. Suppose that the image is using 8 bits to represent

each pixel; if we decrease the bit-depth to 6 bits to represent the intensity for each pixel, then

we should have a new image with less size. Figure 2.3 represents the structure of a general data

compression, which uses an encoder for compression and decoder for decompression (Gupta,

Bansal and Khanduja, 2017); (Li, Drew and Liu, 2014).

Input
Data

Data compressor

(Encoder)

Network

Storage Device

Data Decompressor
(Decoder)

Input

Data

Compressed

Data

Compressed

Data

Output

Data

Figure 2. 3 - General Data Compression Scheme adapted by (Gupta, Bansal and Khanduja,

2017).

Image compression is the process that is concerned with decreasing the number of bits required

to represent an image. It could use a lossless or lossy algorithm. A lossless algorithm is

responsible for decreasing the image size without losing any of its information; thus, it has a

low compression rate compared to a lossy algorithm. A lossy algorithm decreases the image

31

size by eliminating redundant and irrelevant data and is considered to have a high compression

rate, but it still loses some of the original image information(Otair and Shehadeh, 2016).

 Compression is achieved by the removal of one or more of the three basic data redundancies

(Mehanna, 2013);(Vijayvargiya, Silakari and Pandey, 2013). There are three types of

redundancies which are:

1. Coding redundancy, which is present when less than optimal (i.e. the smallest length) code

words are used, uses variable length code words to match the statistics of the source image.

Some of the algorithms that use this type of redundancy are the Huffman coding algorithm

(Huffman, 1951) and Arithmetic Coding algorithm (Shaw, Rahman and Routray, 2018).

2. Inter-pixel redundancy (spatial redundancy) results from the correlations between the pixels

of an image; Run length coding (RLE) is one of the algorithms that use this type of

redundancy (Al-Wahaib and Wong, 2010).

3. Psycho visual redundancy, which is due to data that is ignored by the human visual system

(i.e. visually non-essential information), is considered for use with a lossy compression

techniques, since some information is lost from the source image (Mehanna, 2013)

(Ernawan, Abu and Suryana, 2013).

2.1.5 General Image Compression Model

Figure 2.4 describes in detail the general image compression and decompression model. The

compression model aims to produce a compressed image, which comprises of two phases: pre-

processing and encoding. In contrast, the decompression model seeks to reconstruct the

compressed image by using the decoding phase and post-processing phase. To compress any

image, the digital image will be loaded into the compression algorithm.

Encoding Phase

Channel

Networks / Storage Devices

`̀

Compression Model

Decompression Model

Pre- Processing Phase

Data reduction

Mapping

Quantisation

Coding

Input

Original Image

Compressed Image

Post-Processing Phase

Decoding Phase

Decoding

Inverse Mapping

Output

Decompressed
 Image

Compressed Image

Figure 2. 4 - General Compression and Decompression Model

32

The general compression model starts with the pre-processing phase, which is responsible for

data reduction (elimination of the inter-pixel redundancy) (Sood, Bhathal, and Singh, 2018). It

aims to remove any irrelevant data (irrelevant data usually comes from applications) to prepare

the image for the next phase. After removing irrelevant data, the image will be loaded into the

mapping process to rearrange its data using a mathematical operation, which will make the

coming encoding phase much easier and more effective. This mathematical operation is

responsible mainly for removing the spatial redundancy, since neighbouring pixel values are

similar or very close to each other. The image is now ready to be compressed in the encoding

process.

As it can be seen in Figure 2.4, the second step in the compression phase is encoding. The input

for this phase will be an image that is smaller than the original one. A quantizer is responsible

for removing or decreasing psycho-visual redundancy (Sood, Bhathal and Singh, 2018). The

coding process is a reversible process, and no data should be lost during this process. The coder

delivers a 1:1 mapping where each input symbol should be coded to a unique output in the

decoding phase. The code may have two types: equal length code and unequal length code. In

the equal length code, the code-words have the same size, whereas in the unequal length code,

the code-words can have variable lengths (Sood, Bhathal and Singh, 2018).

It is important to note the following facts:

1- Some compression algorithms use all the previous processes while other algorithms may

use some of them only.

2- Some information might be lost in the quantization process, since quantization is not a

reversible process. Therefore, the decompression model does not have a quantization phase.

One exception for this role is the Discrete Wavelet Transform (DWT) algorithm, since it

has its own quantizer for compressing the image. The quantizer in the DWT is one of two

types, being reversible or non-reversible (Mehanna, 2013).

3- Non-reversible quantizer could be used with lossy compression techniques only, due to the

unrecoverable loss of information in this process.

The decompression model is responsible for reconstructing the compressed image in two

phases. The first phase is the decoding phase, which starts by loading the compressed image

into the decoder, where the codes will be mapped to the original quantized values using the

reversal process. Then, these values should be loaded to the inverse mapping process. The

second phase in the decompression model should be the post-processing, which places the last

detail that could enhance the view of the final image.

33

2.1.6 Description of the Processes Used in the Current Techniques

As it has been explained earlier, there are three main processes in the compression model. Some

algorithms use all three while others may use some of them; however, some algorithms use

more than one as a hybrid technique. Choosing the algorithm depends on the compression

technique type (lossless or lossy) and the applications’ needs. The following sections discuss

the main three compression processes (Wei, 2008).

2.1.6.1 Correlation

Correlation is also known as Transforming or Mapping. Images can be compressed by taking

advantage of the high correlation between neighbouring pixels. In another word, each pixel

value is similar or very close to the value of its adjacent pixels. When this correlation is

decreased, then any entropy coding algorithm can be used to decrease the image size. In fact,

decreasing the pixel correlation is the most important part in compressing the image.

Correlation usually starts with a prediction and is followed by an entropy coding algorithm to

enhance the compression rate. As such, prediction is used to reduce colour components’

redundancy (pixel intensity redundancy). Prediction methods are either low-complexity or high

complexity approaches; the main factors that may affect image prediction accuracy are edges

and noise (Novikov, Egorov, and Gilmutdinov, 2016).

There are various relevant processing techniques that are used to remove this correlation. The

most popular methods are:

1- Predictive Coding: such as Differential Pulse Code Modulation (DPCM), Median Edge

Detection (MED), Gradient Adaptive Predictor (GAP), Activity Level Classification

Model (ALCM) and Adaptive Linear Prediction and Classification (ALPC), which are all

algorithms that are used with lossless compression techniques, where the compressed

image should be exactly like the source image. Decorrelating the image data is to remove

the inter-pixel redundancy (mutual redundancy), which will lead to a much more efficient

and better compression rate. Furthermore, predictive coding is to remove the interpixel

redundancies by using the neighbouring pixel value to predict the current pixel value and

generate a new value; the new value should be encoded using a variable length algorithm.

Subtracting the predicted value from the original will produce the error signal value; this

value will be rounded to its nearest integer and then encoded by using a variable length

algorithm. Using the rounding function may cause some distortion since this function is not

reversible, which makes the predictive coding related to the lossy techniques; but predictive

coding is considered to be a lossless compression technique, since there is no need for a

34

quantizer. After removing the inter-pixel redundancies, the image will be compressed using

a variable length algorithm (Hussain and Al-Fayadh, 2018).

2- Orthogonal Transform: Discrete Cosine Transform (DCT) is the most popular transform

method in lossy compression techniques. It is used with the JPEG image compression

standard, where the original image loses some of its information during the compression

process. The transformation algorithm is to transform the pixels from the image domain

into another domain to produce a set of coefficients (Hussain and Al-Fayadh, 2018).

3- Subband Coding: Discrete Wavelet Transform (DWT) is the most common subband

method, which divides the image spectrum into high-pass and low-pass types. It is used in

the JPEG 2000 standard as a two-dimension matrix.

2.1.6.2 Quantization

Quantization is a lossy compression process that aims to increase the compression rate by

decreasing the image precision. For example, if the original image represents each intensity

bit-depth by 8 bits, and the bit-depth for the same image can be decreased to 5 bits, then we

can say that we reduced the image size and prepare the image to be compressed even more in

the entropy coding phase as a post processing phase. The limitation of this process is the loss

of data or, as it known, distortion. This distortion is not recoverable since the quantization

process is not reversible. JPEG and JPEG 2000 standards use different types of quantization.

Two of the most popular quantizers algorithms are the scaler quantizer and vector quantizer

(Ballé, Laparra and Simoncelli, 2017).

2.1.6.3 Entropy Coding

Entropy Coding is a lossless compression method that aims to reduce the coding redundancy

to reach less average length for the image, by implementing any of the entropy coding

algorithms such as Huffman coding. Entropy Coding maps the input data into bit sequences to

produce shorter output (Kodituwakku and Amarasinghe, 2010); (Manjinder and Gaganpreet,

2013). Entropy Coding depends on presenting the highest probability appearance symbols in

the original data stream (source image) with short code-words in the compressed bit stream

(compressed image), while the lowest probability appearance symbols should have the longest

code-words. Some lossy compression algorithms use Entropy Coding due to its efficacy in

decreasing the number of bits generated by the quantizer’s output (Zaineldin, Elhosseini, and

Ali, 2015).

35

2.1.7 Measurement of Image Size and Quality

After compressing any image we should have mathematical procedures to calculate the

percentage of compression, image quality efficiency, and algorithm performance, which will

lead us to a better understanding of the strongest and weakness points for each algorithms

(Hussain and Al-Fayadh, 2018).

• Measuring the compression proportion, known as the compression rate, is important to find

out the image compression percentage, which can be calculated by dividing the compressed

image size by the original image size, as in Eq. 2.1. This percentage is high in lossless

compression techniques, while it is low in lossy compression techniques (John and Joe,

2005); (Wang and Li, 2011).

compression rate =
Compressed Image Size

Original Image Size

2.1

The best compression percentage is when the compression rate equation result is far away from

one and near to zero; therefore, the compression algorithm should provide a compressed image

size smaller than the original image.

When we get the compression rate results, we can calculate the algorithm storage saving

percentage easily by using Eq. 2.2.

Storage Saving = 1 - compression rate 2.2

Image compression ratio (Cr): is the ratio between the original image size and the compressed

image size. Thus, when decreasing the image size from 100 MB to 20 MB then we can

represent the compression ratio of 10/2=5 or 5:1 (read five to one) Eq. 2.3. is for calculating

the algorithm Cr.

Cr =
Original Image Size

Compressed Image Size

2.3

• The image compression algorithm performance can be calculated by measuring the

compression speed and the decompression speed. Compression speed is the number of bits

that the compression algorithm can process per second while the decompression speed is

the number of bits that the decompression algorithm can process per second.

• Since the Cr equation is concerned only with image size, it cannot give us any hint about

the image quality. Therefore, we need to use different measurement techniques that can

36

measure the similarity and differences between both the source image and the compressed

image. There are two methods for measuring image quality: subjective assessment and

objective assessment (Gogoi and Ahmed, 2016); (Varnan et al., 2011).

1. Subjective evaluations can be done by selecting several observers who have been tested

for their visual abilities. The observers are then shown many test scenes to score their

quality. Image fidelity is to represent the similarity between the reference image and the

compressed image and how close they are. It is the only “correct” method of quantifying

visual image quality.

For the Human Visual System (HVS), the basic image quality measures are:

i. Universal Image Quality Index (UIQI)

ii. Structural Similarity Index Metric (SSIM).

Nevertheless, subjective evaluation has some limitations, such as:

i. It usually needs a lot of time for measuring images.

ii. It is expensive.

iii. It cannot be used with real-time systems.

2. Objective evaluation uses well-defined mathematical techniques for quality assessment. It

focuses on analysing the image and describing its quality by making a report, without

human involvement. During the past few years, objective methods have been used more

than the subjective methods because of their benefits, such as fast execution and no human

interaction.

A distortion measure aims to specify the degree of similarity between an original image and

the compressed image by using a mathematical procedure. We can classify image quality

metrics based on the availability of the source for original image (zero-distortion) compared

with the compressed image (distort-image). The existing methodologies are:

1- Full reference (FR): original image should be available.

2- No-reference: where the original image is not available.

3- Reduced reference: where the reference image is not available 100%.

Simple statistics error metrics is a method of full reference objective quality (distortion

assessment), which includes:

a) Mean Squared Error (MSE): the simplest and one of the most widely used methods, with

full-reference image quality measurement. Eq. 2.4 describes the MSE equation and its

parameter (Gogoi and Ahmed, 2016).

37

MSE =
∑ [𝑥1(r, j) − 𝑥2(r, j)]2𝑗

𝑟

r x j

2.4

Where r and j are the elements coordinates, and x1 represents the compressed image pixels and

x2 represents the source image pixels.

b) Peak Signal to Noise Ratio (PSNR): PSNR, as represented in Eq. 2.5, is also one of the

most widely used methods, with full-reference image quality measurement. It is

mathematically useful in the framework of optimisation (Gogoi and Ahmed, 2016).

PSNR =
10 x log10(Intensity)2

MSE

2.5

Limitation of MSE and PSNR: they both have computational complexities while assessing

image similarity through distortion types. They cannot model the human visual system.

c) Average Difference (AD): Calculates the average difference between the original image

and the compressed one.

d) Maximum Difference (MD): Calculates the difference between the original image and the

compressed image, by finding the maximum of the error signal.

e) Mean Absolute Error (MAE): Eq. 2.6 describes the MAE by calculating the average of the

absolute difference between the reference image and the compressed image (Gogoi and

Ahmed, 2016); (Varnan et al., 2011).

MAE =

∑ |𝑥1(r, j) − 𝑥2(r, j)|
𝑗

𝑟

r x j

2.6

Where r and j are the elements’ coordinates, and x1 represents the compressed image pixels

and x2 represents the source image pixels.

2.1.8 Classification of Compression Techniques

Image compression is mainly classified into two techniques, based on the capability of

reconstructing the image after decompressing (Hussain and Al-Fayadh, 2018); (Kavitha and

Anandhi, 2015); (Singh, Potnis and Kumar, 2016). These are namely: Lossless compression

techniques and Lossy Compression Techniques. These techniques will be described in the

following subsections.

38

2.2 Lossless Compression Techniques

Lossless compression results in no data being lost during the compression and decompression

phases, the decompressed image should be a bit-for-bit ideal match with the source image. The

lossless compression techniques have a low compression rate (Sharma, 2010).

2.2.1 Lossless Compression Techniques Phases

Figure 2.5 describes the lossless compression model phases:

1. Decorrelation (Transforming or Mapping): phase one is to remove the inter-pixel

redundancy by using any of several decorrelation techniques, such as run-length coding,

predictive techniques, or transform techniques (Kuppusamy and Mehala, 2013); (Yang and

Bourbakis, 2005).

2. Entropy Coding (phase two): used to reduce a coding redundancy, by using any of the

lossless algorithms such as LZW, Arithmetic Coding or Huffman coding (Kodituwakku and

Amarasinghe, 2010).

3. Decompressing the image starts at phase three by using the reversable entropy coding

algorithm.

4. Phase number four is for reconstructing the image by using the reversable transformation

method to reconstruct the decompressed image exactly as it was before compression.

Lossless compression techniques are used in many applications, where any loss of the original

image data leads to an improper diagnosis. Some of these applications are the medical

application (Lucas et al., 2017), digital radiography, camera systems (Sengupta and Roy, 2018)

and remote sensing applications such as monitoring forest fires (Rusyn et al., 2016). The next

section is to describe the most popular used lossless algorithms.

`

Channel
Networks / Storage Devices

Channel
Networks / Storage Devices

Phase 2:Entropy codingPhase 1:Transform
(Mapping)

Input
Original Image

Lossless Compression Model

 Phase 3:Entropy
Decoding

Reconstructed
Image

Phase 4:Inverse Transform
(Inverse Mapping)

Compressed Image

Lossless decompression Model

Compressed Im
age

Compressed Image

Compressed Image

Figure 2. 5 - Lossless Compression Model

39

2.2.2 Lossless Compression Algorithms

Figure 2.6 illustrates the hierarchical diagram that represents the lossless compression

techniques phases and each phase-related algorithm (Zaineldin, Elhosseini and Ali, 2015).

`̀

Lossless Compression Technique Phases & algorithm

Statistical Based

Algorithms
Character Based

Algorithms

Dictionary Based Algorithms

Entropy Coding
Decorrelation

(Mapping)

Prediction Based Algorithms Multi-resolution-Based Algorithms

Transformed-Based Algorithms

MED

GAP

ALCM

ALPC

TMW
EZW SPIHT EBCOT BWT WHT

HBC HINT

 Shanon- Fano Coding

Arithmetic Coding

Huffman Coding

LZW LZ77 LZ78

Bit Mapping

Run Length Coding
(RLC)

DPCM

Figure 2. 6 - Lossless Compression Techniques and Algorithms Adaptive from (Zaineldin, Elhosseini

and Ali, 2015)

1. Decorrelation techniques use the following methods to remove the inter-pixel redundancy:

a) Prediction-based methods use the following image compression algorithms (Shukla,

Alwani, and Tiwari, 2010).

i. Differential Pulse Code Modulation (DPCM) (Oliveira et al., 2013).

ii. Median Edge Detection (MED) (Dadgostar and Afsari, 2016).

iii. Gradient Adaptive Predictor (GAP) (Novikov, Egorov, and Gilmutdinov, 2016).

iv. Activity Level Classification Model (ALCM) (Karimi et al., 2015).

v. TMW (Shukla, Alwani and Tiwari, 2010); (Meyer and Tischer, 1997).

vi. Adaptive Linear Prediction and Classification (ALPC) (Motta, Storer, and

Carpentieri, 2000).

b) Multi-resolution-based method used the following image compression algorithms

(Carreto-Castro et al., 1993).

i. Hierarchic Pairwise Coding (HBC) (Begum and Aygun, 2012).

ii. Hearing in Noise Test (HINT) (Carreto-Castro et al., 1993).

c) Transform-based method use the following image compression algorithms (Shukla,

Alwani, and Tiwari, 2010).

i. Embedded Zero Tree Wavelet (EZW) (Singh, Potnis, and Kumar, 2016).

ii. Set Partitioning in Hierarchical Trees (SPIHT) (Paul et al., 2015).

40

iii. Embedded Block Coding with Optimised Truncation (EBCOT) (Wiseman, 2015).

iv. Burrows-Wheeler Transform (BWT) (Shukla, Alwani, and Tiwari, 2010).

v. WHT (Tajne and Kulkarni, 2015).

2. Entropy Coding techniques uses the following methods to remove coding redundancy

(Raghavendra, Sivasubramanian, and Kumaravel, 2018):

a) Statistical-based such as:

i. Huffman coding (Praisline Jasmi, Perumal, and Pallikonda Rajasekaran, 2015).

ii. Shannon-Fano Coding.

iii. Arithmetic Coding (AC) (Shaw, Rahman, and Routray, 2018)

b) Character-based such as:

i. Bit Mapping (Raghavendra, Sivasubramanian, and Kumaravel, 2018).

ii. Run Length Coding (RLC) (Al-Wahaib and Wong, 2010).

c) Dictionary-based such as:

i. Lempel-Ziv-Welch (LZW) (Gagie, Gawrychowski, and Puglisi, 2015).

ii. LZ77 (Gagie, Gawrychowski, and Puglisi, 2015).

iii. LZ78 (Gagie, Gawrychowski, and Puglisi, 2015).

2.2.3 Lossless Compression Related Work

The relevant literature has been reviewed. All of the conducted related work aims to improve

the compression rate and preserves the image quality with zero distortion. The main parameters

that may affect any compression algorithm are the compression rate, computational complexity

(explained in ch-3) and image quality (Mehanna, 2013). The researcher reviewed the last few

years’ related work, to understand the weaknesses and strengths of the most popularly used

techniques. Understanding the weaknesses can help in avoiding them in the proposed strategy

to reach the research objectives. The following section describes the current state-of-the-art in

lossless compression algorithms.

2.2.3.1 Huffman Coding

David A. Huffman presented his coding algorithm in 1952, which depends on the statistical

model of data, which starts with measuring the frequency of occurrence for each symbol

(giving for each intensity its weight), and then gives prefix codes to those symbols according

to their probabilities (creates a frequency Table of the symbols). Shorter codes will be assigned

to the more frequently occurring symbols while larger codes will be assigned to the less

frequently occurring ones. After that, the Huffman tree is formed to extract the Huffman codes

for each symbol. Huffman coding removes the redundancy from the two-dimensional image

41

and converts it into a one-dimension row of bits by assigning a binary code for all the image

intensity. This code is located in the Huffman Table (Huffman, 1951). Huffman algorithm has

a high-quality performance; therefore, it is one of the most popular lossless compression

algorithms. One limitation of Huffman is that when having more values in the dictionary Table,

this will increase the size of Huffman tree, which affects the code-word size to be larger

(Vidhya et al., 2016) (Kumar et al., 2015) (Gupta, Bansal and Khanduja, 2017).

2.2.3.2 Shannon’s Coding

Shannon’s algorithm is similar to the Huffman coding algorithm; the code-word creation is the

only difference, as they use different tree structures in creating code-words. Shannon algorithm

has a high-quality performance and low compression rate (Zhang et al., 2015).

2.2.3.3 Bit Plane Slicing (BPS)

The Bit Plane Slicing (BPS) is a greyscale image compression technique, which splits the

source image into 8-bit planes for the 256-level images. Coloured images should have 24-bit

planes, since it has three channels (RGB) and each channel is represented with 8-bit planes.

After splitting the image into its bit planes, the eight binary images can be compressed by using

any entropy coding algorithm such as Run Length Coding (RLC), Huffman or Lempel-Ziv-

Welch (LZW) (Maheshwari et al., 2019).

2.2.3.4 Different Plus Coding Modulation Followed by Huffman

(Tomar and Jain, 2015) produced a new lossless compression algorithm based on the

differential pulse code modulation (DPCM) followed by the Huffman algorithm, to enhance

the image compression rate. They developed a new transformation algorithm to improve the

(DPCM) and named it an Enhanced Differential Pulse Code Modulation Transformation

(EDT). The technique has two phases. The first phase is the transformation phase, which uses

the EDT algorithm to remove the inter-pixel redundancy, whereas the second phase is the

entropy encoding by using the Huffman algorithm to reduce the coding redundancy. The new

technique enhanced the lossless compression rate and complexity, but this enhancement is still

far away from a lossy techniques compression rate. The DPCM is efficient for lossless

compression and near-lossless medical image compression. One of the DPCM limitation is the

large error signal when there is a sharp change in the input image edges (Hussain and Al-

Fayadh, 2018) (Sanchez, 2015) (Oliveira et al., 2013).

2.2.3.5 Improved Lempel-Ziv-Welch

The Lempel-Ziv-Welch (LZW) compression algorithm starts with creating a dictionary for a

single symbol based on their probability of appearance, then represents each symbol with a

42

prefix code, starting from the first one to the last. When scanning each symbol, if the symbol

is not the last, it will be added to the dictionary until we reach the last symbol in the algorithm

output (Yan-li et al., 2010). LZW is a lossless data compression algorithm. It is simple to use

but has some limitations, though, such as:

1- The LZW algorithm has a problem with the big space redundancy, due to the dictionary file

having all the single characters from the source image, but only some of them have been

used in the coding process.

2- The LZW algorithm has a problem with the small and large dictionary. If the dictionary has

a small number of symbols, we will not have a good compression rate; furthermore, when

the dictionary has large number of symbols, it will overflow, due to its limited storage.

(Yan-li et al., 2010) proposed a new approach to enhance the lossless LZW algorithm for

Wireless Sensor Network (WSN); by understanding the LZW limitation, they avoid the

previous problems in the new improved LZW algorithm. The proposed algorithm aims to

decrease the dictionary length, which will enhance the compression rate.

 The new approach provides the following improvements for the LZW:

1. The dictionary should have no single symbol at the beginning, as it will reduce the

dictionary size.

2. The dictionary capacity is stored using two-bytes since the nodes have limited memory

space.

3. Reducing the dictionary size by adopting different methods for decreasing the data range;

this is positively reflected in high efficiency and memory size.

The proposed algorithms improve the compression rate dramatically by reducing the

dictionary size.

2.2.3.6 Lempel-Ziv-Welch with Region of Interest

The Region of Interest (ROI) image compression algorithm was developed to compress the

large medical images. The algorithm starts by locating the region of interest and use the LZW

for each region separately. The LZW is a dictionary-based algorithm, which scans the image

to find each symbol’s probability of appearance and creates the symbol dictionary, and then

replaces the symbol with single codes (Kaur and Kaur, 2017). The compression rate is

enhanced when using the ROI with LZ77, LZ78, LZW (Singh and Pandey, 2016).

2.2.3.7 Run Length Coding

The Run Length Coding (RLC), also known as Run Length Encoding (RLE), one of the

simplest lossless compression algorithms. It scans the image to find the runs (pixels with the

43

same value); the runs should be encoded by their probabilities and values (value; probability).

This value with its probability is called a unit, and each unit should be coded by using the

Huffman algorithm. The best (RLE) results come with the images that have large areas of

contiguous colour such as monochrome images (where the value is repeated often). On the

other hand, RLE is not an efficient compression algorithm with colour images, since they have

many values, with minimum probability of repetition (Husseen, Mahmud and Mohammed,

2017). (Al-Wahaib and Wong, 2010) proposed an algorithm to solve the duplication problem

from the traditional RLC algorithm (duplication comes from the escape character). Where the

proposed algorithm uses the traditional RLC to decode the three consecutive values (Run) and

uses the Traditional Run Length Coding1 algorithm (TRLC1) and the Traditional Run Length

Coding2 algorithm (TRLC2) to convert the consecutive two pixels of the same value into a

single code-word. The new compression algorithm has a better compression rate than the

traditional RLC. The proposed algorithm solves the problem of the large file size of the encoded

images and it is considered to be one of the simplest algorithms. RLC is highly efficient with

the images that have long runs of pixels with the same value and has low efficiency with images

that have high spatial activity, because of the high variation in pixel intensity values.(Szoke,

Lungeanu and Holban, 2015) (Al-Laham and Emary, 2007) (Carreto-Castro et al., 1993).

2.2.3.8 Arithmetic Coding

(Masmoudi, Puech and Masmoudi, 2015) developed a new lossless image compression

algorithm by using finite mixture models and adaptive Arithmetic Coding. The algorithm

separated the image into blocks and encoded each block separately by using Arithmetic

Coding. Arithmetic Coding provides the probability distribution for the image intensity to be

compressed. Each block should have its own probability distribution; the statistic for each

block will be estimated by a finite mixture model of non-parametric distributions by exploiting

the high correlation between neighbouring blocks. The algorithm enhanced lossless

compression algorithm efficiency and gave an effective result of 9.7% more than the JPEG-

LS, when switching between pixel and prediction error domains (Shaw, Rahman and Routray,

2018). An increase of the image number of blocks leads to a decrease in the compression

efficiency; this happens since the total overhead generated by block-based histogram-packing

methods depends on the number of blocks used in image and the mapping Table size (Jallouli

et al., 2017).

44

2.2.3.9 Median Edge Detection

The Median Edge Detection (MED) is a filtering technique, which is responsible for removing

the image signal (noise). The process of decreasing or removing the noise is a pre-processing

phase that should enhance the result of the next image compression phase. The MED predictor

has been used in the JPEG-LS format. The MED algorithm predicts the current pixel value by

examining three neighbours’ pixel values: the north (N), the west (W) and the north-west

(NW). If there is a high correlation in the horizontal direction, then the predictive value will be

calculated by using the following equation: N+W-NW (Sanchez, 2015); (Shukla, Alwani and

Tiwari, 2010); (Novikov, Egorov and Gilmutdinov, 2016).

2.2.3.10 Median Edge Detection and Different Plus Coding Modulation

The lossless algorithm was developed based on an intra-prediction method and the sample-

based angular prediction (SAP) with median and edge prediction (ME): SAP-ME. The main

objective to proposing the algorithm is to reduce the average bitrate for the current lossless

coding intra-prediction coding. It combines the DPCM, median prediction and edge prediction.

The proposed algorithm decreases the average bitrate by 16.13% when compared with the High

Efficiency Video Coding Computing (HEVC) intra-prediction coding. The algorithm predicts

each pixel value separately by using the neighbouring pixels’ values without increasing the

computational complexity (Sanchez, 2015).

2.2.3.11 Median Edge Detection and Activity Level Classification Model

A new pixel value prediction algorithm for lossless image compression was developed based

on a low-complexity predictors method and neighbouring blocks data analysis followed by an

entropy coding. The new algorithm is called local-adaptive block-based prediction (LPB), in

which the researchers combined between the MED, ALCM and GAP algorithms and used the

best advantage of each. The new algorithm aims to improve the prediction performance, which

will enhance the compression rate. The result of the algorithm shows that the LPB has the best

result in a comparison with the most popular low-complexity prediction methods (Shukla,

Alwani and Tiwari, 2010); (Novikov, Egorov and Gilmutdinov, 2016).

2.2.3.12 BBWCA

The Bi-level Burrows-Wheeler Compression (BBWCA) algorithm is developed based on block

sorting structure and it does not compress the image by itself, but works as a pre-processing

phase to prepare the image to be compressed by the next phase as in Kernel Move-To-Front

(KMTF). (Khan et al., 2017) modified the KMTF algorithm and developed the BBWCA by

using the Reversible Colour Transform (RCT) to transfer the image from the RGB colour space

45

to the UVU colour space with less coloration between the image pixels. The BBWCA achieve

high compression ratio with zero distortion (Burrows and Wheeler, 1994).

2.3 Lossy Compression Techniques

Lossy compression indicates that some information will be missed during the image

decompression phase. It depends on the fact that digital images save a lot of information, more

than a human can understand, so it evacuates some of the less important information from the

original image. Lossy compression techniques have a high compression rate but also they

cannot reconstruct the image exactly as it was, due to the loss of the less important information

(Sharma, 2010).

2.3.1 Lossy Compression Techniques Phases

Lossy compression techniques mostly have three compression phases, as displayed in Figure

2.7. Phase one is responsible for eliminating the inter-pixel redundancy, in phase two, the

quantizer is used to eliminate another kind of redundancy, called psycho-visuals, and create

quantized bits as an output, which compress the image a second time. Finally, in phase three,

the techniques compresses the image for the third time by encoding the quantized bits (Hussain

and Al-Fayadh, 2018); (Sood, Bhathal and Singh, 2018).

`

Channel
Networks / Storage Devices

Channel
Networks / Storage Devices

Phase 3:Entropy codingPhase 1:Transform
(Mapping)

Input
Original Image

Lossy Compression Model

 Phase 4:Entropy
Decoding

Reconstructed
Image

Phase 5:Inverse Transform
(Inverse Mapping)

Compressed Image

Lossy Decompression Model

Compressed Im
age

Compressed Image

Compressed Image

Phase 2:Quantization

Figure 2. 7 - Lossy Compression Model

To decompress the compressed image, we should inverse the compression phases, starting with

the entropy decoding as in phase four. Finally, the inverse transform is used in phase five to

reconstruct the image. Lossy compression is used in many applications such as transferring

46

images through the internet (Abubaker, Eshtay and AkhoZahia, 2016) and the construction of

image vegetation (Hussain and Al-Fayadh, 2018). The next section is to describe the most

popular used lossy algorithms.

2.3.2 Lossy Compression Algorithms

Figure 2.8 shows the hierarchical diagram that represent the lossy compression techniques

phases and each phase related algorithm (Zaineldin, Elhosseini and Ali, 2015).

Lossy Compression Technique Phases and Algorithm

Transform
Quantization

Non transform based

• Fractals Quantization

• Vector Quantization

DCT DFT

EZW

SPIHT

EBCOT

DWT

Entropy Coding

Statistical Based

Algorithms
Character Based

Algorithms

Dictionary Based Algorithms

 Shanon- Fano Coding

Arithmetic Coding

Huffman Coding

LZW LZ77 LZ78

Bit Mapping

Run Length Coding
(RLC)

Figure 2. 8 - Lossy Compression Techniques and Algorithms Adaptive from (Zaineldin, Elhosseini

and Ali, 2015)

1. Transformation algorithms such as:

i. Discrete Cosine Transform (DCT) (Masmoudi, Puech, and Masmoudi, 2015).

ii. Discrete Wavelet Transform (DWT) (Mofreh, Barakat, and Refaat, 2016).

iii. Embedded Zero Tree (EZW) (Kumar, Kumar, and Singh, 2016).

iv. Set Partitioning in Hierarchical Coding Techniques (SPIHT) (Paul et al., 2015).

v. Embedded Block Coding with Optimal Truncation (EBCOT) (Wiseman, 2015).

vi. Discrete Fourier Transform (DFT) (Ouyang, Coatrieux, and Shu, 2015).

2. Quantization algorithms such as:

i. Vector Quantization (VQ) (Karri and Jena, 2016).

ii. Fractals Quantization (Ibrahim, Youssef, and Elkaffas, 2015).

3. Entropy Coding techniques uses the following methods to remove coding redundancy

(Raghavendra, Sivasubramanian, and Kumaravel, 2018):

a) Statistical-based such as:

i. Huffman coding (Praisline Jasmi, Perumal, and Pallikonda Rajasekaran, 2015).

ii. Shannon-Fano Coding (Zhang et al., 2015).

iii. Arithmetic Coding (AC) (Shaw, Rahman, and Routray, 2018)

47

b) Character-based such as:

i. Bit Mapping (Raghavendra, Sivasubramanian, and Kumaravel, 2018).

ii. Run Length Coding (RLC) (Al-Wahaib and Wong, 2010).

c) Dictionary-based such as:

i. Lempel-Ziv-Welch (LZW) (Gagie, Gawrychowski, and Puglisi, 2015).

ii. LZ77 (Gagie, Gawrychowski, and Puglisi, 2015).

iii. LZ78 (Gagie, Gawrychowski, and Puglisi, 2015).

Lossy compression techniques can be a transform- or non-transform-based techniques:

1. Transform-based techniques are used to reduce the correlation in a vector (the original

image) by transforming it into a new, less correlated image, and then compressing it in the

quantization phase; some of the algorithms used in this technique are DCT and DWT.

2. Non-transform-based techniques depend on the vector quantizer as the quantization

process. Quantizers have two types: scalar and vector quantizers (Zaineldin, Elhosseini,

and Ali, 2015).

2.3.3 Lossy Compression Related Work

The relevant literature has been reviewed. All the related work from the literature aims to

improve the compression rate and provide less distortion for the compressed image quality. To

understand the weaknesses and strengths of the most popularly used techniques, the researcher

analyses the related work, to avoid the limitation from the current algorithms. The following

sections describes the current state of the art lossy compression algorithms.

2.3.3.1 JPEG

In recent years, the use of greyscale image and colour image is increasing, and an international

compression standard is needed to represent both types of images (Mehanna, 2013).

Accordingly, to this need, the International Organization for Standardisation (ISO) together

with the International Telegraph and Telephone Consultative Committee (CCITT) created the

JPEG standard for images and continuous-tone still images (video), such as MPEG and H.261

(Jeon, Park, and Jeong, 1998) (Wallace, 1992). The JPEG compression algorithm used the most

efficient and most common transform techniques, DCT (known as a lossy compression

techniques), to improve the compression process (Lakhani, 2004). This was followed by

entropy coding (a lossless compression techniques). The JPEG algorithm starts by converting

the RBG image into Y,Cb,Cr colour space by separating the luminance and the chrominance.

Then, the algorithm divides the image into 8*8 blocks of pixels and transforms each block

separately using forward DCT (F-DCT) to create the DCT coefficients (a number that

https://en.wikipedia.org/wiki/International_Organization_for_Standardization

48

represents the contribution of each block to the image). This coefficient will be normalised by

a specific quantization Table to get normalised coefficients (the process of removing the high-

frequency cosine waves that should have the smallest coefficient value, since they do not really

contribute very much to the image), and then an entropy coding algorithm, such as the Huffman

algorithm, will be used to reduce redundancy. As a result, the JPEG algorithm enhances the

compression rate. DCT-based algorithms, such as JPEG standard, cannot satisfy the image

coding required today because of its distortion. Although it provides good image quality, there

is still some distortion in the images, and several applications will not be satisfied using it, such

as medical applications. A higher JPEG compression rate leads to more distortion, due to the

artefacts that may result from the block based DCT. JPEG 2000 standard was developed to

solve the JPEG problem. JPEG 2000 is a Wavelet-based coding that enhances the image quality

at low bit rates (Wei, 2008).

2.3.3.2 JPEG 2000

The JPEG 2000 standard was developed to meet the new needs of image compression, such as

enhancing the compression rate and image quality more than the JPEG standard. The JPEG

2000 could be lossless or lossy techniques regarding the use of the JPEG 2000 quantizer

(Reversible Quantizer or Irreversible Quantizer). In addition, the JPEG 2000 uses its

transformation based on the Region-of-Interest Coding (ROI), and it has a powerful mechanism

for Error Resilience (Mehanna, 2013); (Wei, 2008).

The first process in JPEG 2000 is the Reversible Colour Transform (RCT), which is a modified

YUV colour transform that will not lead to any quantization error. The second process is the

use of subband coding application. Discrete Wavelet Transform (DWT) is used in the JPEG

2000 to reduce the image size by reducing the undesirable noise. The third process is the

quantization, which is conducted to decrease the number of bits that are required to represent

the transform coefficients. The final phase is the Entropy Coding, which is done by using the

embedded Block Coding with Optimised Truncation (EBCOT). EBCOT has two phases: the

first one uses the context formation and Arithmetic Coding by dividing the DWT coefficients

into code blocks, and each block should be encoded separately into block-based bit-stream; the

second entropy phase is to minimise the embedded bit-stream. In comparison, the JPEG 2000

enhances the image quality and the image compression rate more than the JPEG standard by

using the advantages of DWT, such as better energy compression property (Manjinder and

Gaganpreet, 2013) (Sudhakar, Karthiga and Jayaraman, 2005).

49

2.3.3.3 Minimise-Matrix-Size algorithm

Developing a new compression algorithm that enhanced the image quality more than the most

popular compression techniques such as JPEG and JPEG 2000 is increased. Regarding this

need, the Minimise-Matrix-Size algorithm was developed. This algorithm has four steps: first,

transforming the image by using a two-level DCT and a two-level DWT to create two matrices,

one for DC and the other one for AC (low- and high-frequency matrix); second, applying the

DCT again, but for the DC matrix only to create non-zero array and zero array; third, applying

the Minimise-Matrix-Size algorithm to the AC-matrix and to the high frequencies from the

second step; finally, the entropy coding, which is conducted by using AC algorithm on the data

resulting from the third step. The high frequencies are calculated by using a Fast-Match-Search

(FMS) algorithm through calculating the probabilities of the compressed data by using the

Table of probabilities. The Minimise-Matrix-Size algorithm enhanced the image quality more

than JPEG and JPEG 2000, as it removes the block artefacts from the 8x8 DCT matrix, and

also by using the levels of DWT (single level or two level) instead of multi-level DWT, which

reduced the blurring that typically exists in JPEG 2000. The main limitation of this approach

is the large number of steps and the execution time is more than JPEG 2000 standard (Siddeq

and Rodrigues, 2015).

2.3.3.4 Discrete Cosine Transform Followed by Huffman

A new hybrid compression algorithm is developed to enhance the image compression rate by

reducing the image redundancy. The new algorithm is a combination of the Discrete Cosine

Transform (DCT) and the Huffman coding algorithm. The algorithm starts by removing the

inter-pixel redundancy using the DCT algorithm as a transforming phase. Followed by the

Huffman algorithm to encode the image as a second phase. The algorithm enhanced the quality

of the compressed image with high PSNR value, and a higher compression rate was achieved

(Shukla and Gupta, 2015).

2.3.3.5 Different Plus Coding Modulation, Discrete Wavelet Transform Followed by

Huffman

A new medical image compression algorithm was developed by (Abo-Zahhad et al., 2015) to

enhance the compression rate. The algorithm called (DPCM-DWT-Huffman) and involved

three phases. The first phase is the pre-processing phase, which uses Differential Pulse Code

Modulator (DPCM) as transformation algorithm; the second phase receives the outcomes from

the first phase and uses them as input to the wavelet transformed (DWT) to reduce the

redundancy and spatial reputation; the third phase uses the Huffman algorithm to encode the

coefficients that resulted from the second phase. The algorithm performance has been measured

50

for the three phases: the new algorithm enhanced the compression rate (Abo-Zahhad et al.,

2015). (Mofreh, Barakat and Refaat, 2016) Emphasise that the enhancement in the compression

rate using the three phases algorithm (DPCM-DWT-Huffman) is done, but the image

compression algorithm is still suffering from the low compression rate. Furthermore, the

compression rate can be even better if we used some other compression techniques, such as

LPCDH, which presents the Linear Predictive Coding (LPC) with Discrete Wavelet Transform

(DWT) followed by Huffman (LPCDH).

2.3.3.6 Radial Basis Function Neural Networks and Discrete Wavelet Transform

Developing a new image compression algorithm that can be employed in both lossless and

lossy compression techniques is required to meet the organizational demands. A new algorithm

was developed in this regard by (Wozniak et al., 2015) and called the (DWT-RBFNN). The

algorithm was developed based on Radial Basis Function Neural Networks (RBFNN) and has

two processes: the first process uses the Radial Basis Function Neural Networks (RBFNN) to

decrease the wavelet coefficients’ numbers while maintaining the main features; the second

process implements the DWT algorithm on the outcomes from the first process. The new

algorithm enhanced the performance of time consuming and compression rate (Wozniak et al.,

2015).

2.3.3.7 Discrete Wavelet Transform and Set Partitioning in Hierarchical Coding

Techniques

(Vijayaran and Sakila, 2016) studied the current lossless and lossy compression techniques and

compared them according to their compression rate and image quality. Then, they proposed a

new hybrid image compression technique, which combined the DWT with the Set Partitioning

in Hierarchical Trees (SPIHT). The result of the hybrid algorithm produces better accuracy

than DWT and SPIHT.

2.3.3.8 Rounding the Intensity Followed by Dividing

Lossy Image Compression by Rounding the Intensity Followed by Dividing (RIFD) algorithm

is developed to reduce the image redundancy as much as possible; also, it is to reduce the image

bit-depth to 5 bits instead of 8 bits. More decreasing of the bit-depth should provide a higher

compression rate. For example, when reducing the bit-depth from 8 bits to 5 bits then the image

is compressed. The algorithm starts by rounding the intensities to the nearest ten, then the image

should be divided by ten to reduce the bit-depth from 8 bits to 5; the resulting matrix should be

encoded by the Huffman algorithm. The algorithm is suitable for greyscale image and coloured

image; since colour images are represented by RGB, then the algorithm should be applied three

times (one time for each colour). If the bit-depth in the original image is 16 bits, then the round

51

function should be rounded to the nearest thousand instead of ten. The algorithm enhances the

compression rate, but it still has some distortion regarding the use of the rounding function;

this distortion is not visible by the human visual system (Otair and Shehadeh, 2016).

2.3.3.9 Fractal Compression

Fractal compression is a lossy compression method, used fractals instead of pixels. Fractal

compression is suitable for natural images. It takes advantage from the similarity between

image fractions, since a part of the image can be identical to other parts. (Ibrahim, Youssef and

Elkaffas, 2015) introduced a new fractal compression algorithm, by using quantized quad trees

and entropy coding. The algorithm divided the quantized image into various blocks, via using

the threshold value and the most important features presented in the image. Then, they used an

entropy coding algorithm to improve the compression rate. After testing the new algorithm and

comparing the results with the fractal image compression and iterations technique, there was a

good improvement in compression rate and image quality (Ibrahim, Youssef and Elkaffas,

2015).

2.3.3.10 EZW

The EZW coding is an effective image-coding algorithm based on a wavelet transform and

works with lossless and lossy compression techniques. It depends on the fact that bits in the

bits array are generated based on their importance. EZW encoder depends on progressive

encoding to compress an image into a bit stream with increasing accuracy (Senturk and Kara,

2016).

The main important observations of EZW encoder are:

• Low pass spectrum (low scale means high resolution – highly correlated) usually comes

with natural images. When an image is wavelet transformed, the subband energy will

be decreased as the scale decreases, so the higher subband wavelet coefficients will be

smaller than those of the lower subband.

• Smaller wavelet coefficients are less important than the larger.

EZW uses a sequential approximation quantization process to present multi-representations of

the transformed coefficients. EZW coded the transformed coefficients in decreasing order in

several scans, where each scan has two phases: significant map encoding and refinement pass.

Some of the EZW limitation are:

• Requires complicated bit allocation procedures (Kale and Deshmukh, 2010).

• Pixel values of detailed images are mostly composed of zeros or close to zero, therefore, quantizing them

to zero leads to visually visible blurring. (Sudhakar, Karthiga and Jayaraman, 2005).

52

2.4 Summary and Comparison of Fundamental Algorithms

This section summarises the most important lossless algorithms by focusing on their advantages and disadvantages, as listed in Tables 2.1.

 Table 2. 1 - Summary of Lossless algorithms.

Algorithms Short Description Advantages Disadvantages

Huffman

algorithm

(Huffman,

(1951)

Huffman coding rely on the statistical model of data,

which starts by measuring the frequency of occurrence

for each symbol (giving for each intensity its weight),

and then gives prefix codes to those symbols according

to their probabilities (creates a frequency table of the

symbols). Shorter codes will be assigned to the more

frequently occurring symbols while larger codes will be

assigned to the less frequently occurring symbol. After

that, the Huffman tree is formed to extract the Huffman

codes for each symbol. Huffman coding removes the

redundancy from the two-dimensional image and

converts it into a one-diminution row of bits by assigning

a binary code for all the image intensity. This code is

located in the Huffman table.

Huffman algorithm stands as one

of the best compression

algorithms for JPEG and many

other standards, due to its high

compression rate.

Huffman algorithm has a high-

quality performance; therefore, it

is one of the most popular lossless

compression algorithms.

We cannot use the Huffman

algorithm unless we know the

probability distribution for each

symbol.

Likewise, we cannot use the

Huffman algorithm when changing

the source statistics.

The number of code-words should

be equal to the number of unique

values in the table of probability.

More values in this table will

increase the size of Huffman tree,

which affects the code-word size to

be larger.

RLC algorithm

Al-Wahaib

and Wong,

(2010);

RLC, known as RLE, scans the source image (row by

row from top left, downwards) to find any repeating

values (redundancies) and classifies this symbol to runs

for the consecutive sequences of the data (three as

minimum) or non-runs for the other data. Quite often,

most of the images have rows of the same colour. Then,

RLE saves each runs value and its length in a file. The

Simple to use.

Highly efficient with the images

that have long runs of pixels with

the same value (such as black and

white images) For example, the

runs (77778889999) will be

Low efficiency with images that

have high spatial activity, because of

the high variation in pixel intensity

values. For example, the non-

repeated sequence (non-runs) such

as (6 7 8 9) will be decoded as (1 6 1

7 1 8 1 9), which increases the

53

compression algorithm uses only the runs to compress

the source file.

RLC is used to compress the images or as a pre-

processor for other compression algorithms.

An RLC-encoded file will be decoded again, by using

any entropy coding algorithms to create variable length

code-words.

decoded as (4 7 3 8 4 9), the file

size is reduced from (11) to (6).

High image quality (Lossless

image compression technique)

cardinality (file size) instead of

decreasing it.

LZW

algorithm

Nelson, M. R.

(1989)

LZW is a dictionary-based algorithm derived from the

LZ78 algorithm. It scans the image to find each symbol’s

probability of appearance and creates the symbol

dictionary. It then replaces each symbol from the

dictionary with a single code.

High image quality (Lossless

image compression technique).

High performance algorithm in

terms of execution speed.

LZW is an adaptive algorithm;

because of the dynamic creation

of the dictionary in both processes

(compression and

decompression), there is no need

to transmit the dictionary with the

compressed message.

LZW has a problem with the big

space redundancy, due to the

dictionary file having all the single

characters from the source image,

but only some of them having been

used in the coding process.

LZW also has a problem with the

small and large dictionary, where if

the dictionary has a small number of

symbols it will not have a good

compression rate, and when the

dictionary has a large number of

symbols it will be overflowing, due

to the dictionary limit storage.

For the low repetition rate, the

dictionary size will be increased and

its contribution to the compression

rate improvement will be less.

54

2.5 Chapter Summary

This chapter presented a comprehensive review of the literature for the lossless and lossy

compression techniques by focusing on the lossless techniques as it is the pivotal contribution

of this research. Both techniques were critically reviewed to understand their impact on the

current challenges related to the image compression domain by reviewing each technique

development model; characteristics; advantages and limitations. The next chapter provide a

gap analyses for the current most popular used algorithm’s by describing their limitation and

the proposed solution for each of the limitations, followed by the development process.

55

CHAPTER THREE: PROPOSED SOLUTIONS AND

DEVELOPMENT TOOLS

3 Chapter Overview

This chapter covers the proposed solutions and the research requirements that are needed to

develop the proposed solutions, such as the development tools, the used programming

language and the tested image sets.

3.1 Proposed Solutions

From the previously mentioned literature review from chapter two, it can be understood that

the ideal image compression algorithm should provide a high image quality performance and

good compression rate. To achieve this objective, the researcher reviewed and analysed the

literature to understand the parameters that can affect the compression rate and the image

quality. Lossless compression techniques have good quality performance and low compression

rate, whereas lossy compression techniques have low quality performance and higher

compression rate.

In lossless compression techniques, the low compression rate is mostly related to the number

of unique values needed to represent the image. If the number of unique values is large, this

will affect the probability Table in the entropy algorithm to have more data and the dictionary

file size should be larger as will. In fact, entropy coding is a lossless compression technique

that has a great influence on both lossless and lossy compression techniques. It has three

approaches: dictionary based, statistical based, and character based. All these approaches share

some steps in their coding process. They scan the image to calculate each value probability of

appearance and store these values and their probability in a file (a dictionary or Table); this file

will be used to give codes for each unique symbol by using their probabilities. Each symbol

should represent the decoded image as a string of code-words or as a one-dimension row of

bits instead of the two-dimensional matrix. Huffman coding, Arithmetic Coding, run-length

encoding, LZW and Golomb-Rice coding are different algorithms that were used in entropy

coding; they all suffer from a low compression rate when compressing high resolution images.

To solve the problem of the low compression rate in the entropy coding approaches, we need

to understand how the algorithm works and what the limitations of the most popular entropy

coding algorithms are. The reviewed literature helped the researcher to determine some of these

limitations.

56

3.1.1 Huffman Limitation and the Proposed Solution

In Huffman coding, the table of probability will be created to use the symbol probabilities to

create the code-words for each unique symbol in the dictionary table. Shorter codes will be

assigned to the most frequently occurring symbols, whereas larger codes will be assigned to

the least frequently occurring symbols. The number of code-words should be equal to the

number of unique values in the table of probability. More values in this table will increase the

size of the Huffman tree, which enlarges the code-word size (Vidhya et al., 2016). Storage in

a single word is complex because of the least symbol probability represented by a large length

of code (Gupta, Bansal and Khanduja, 2017); (Hazarika, Nath and Bhuyan, 2015); (Muntean,

Căbulea and Vălean, 2014).

Reducing the image bit-depth before compressing the image using any entropy algorithms

should enhance the compression rate, the proposed algorithm uses a pre-processing

transformation phase to decrease the image bit-depth before compressing, followed by the CSC

compression phase to decrease the image size and to represent the compressed image with less

number of unique values.

3.1.2 LZW Limitation and the Proposed Solution

The Lempel-Ziv-Welch (LZW) algorithm is a dictionary-based approach. It scans the image to

find each symbol’s probability of appearance and creates the symbol dictionary, and then it

replaces the symbol with single codes (Kaur and Kaur, 2017). LZW has a problem with the big

space redundancy; this is due to the dictionary file having all the single characters from the

source image, only some of which were used in the coding process. In addition, it has a problem

with the small and large dictionary where if the dictionary has a small number of symbols, we

will not have a good compression rate, and when the dictionary has a large number of symbols,

it will be overflowing, due to its limited storage capacity (Li et al., 2018); (Yan-li et al., 2010).

Reducing the dictionary size by adopting different methods for decreasing the data range will

increase the probability value; this is positively reflected in the compression rate. The proposed

algorithms use well defined functions to represent the image with a smaller number of unique

values.

3.1.3 RLC Limitation and the Proposed Solution

The Run Length Coding (RLC), also known as Run Length Encoding (RLE), is one of the

simplest lossless compression algorithms. It scans the image (matrix) to find the runs (pixels

with the same value); the runs should be encoded by their probabilities and values (value;

57

probability). This value with its probability is called a unit. The RLC best results come with

the images that have large areas of contiguous colour such as monochrome images (where the

value is repeated often). On the other hand, RLC is not an efficient compression algorithm with

colour images (since they have many values, with minimum probability of repetition)

(Husseen, Mahmud, and Mohammed, 2017).

Reducing the colour image bit-depth will decrease the data range and increase the probability

value; this positively influences the compression rate. The proposed algorithm uses a pre-

processing transformation phase to decrease the image bit-depth before compressing to

decrease the data range; followed by using the CSC function for decreasing the number of

unique values.

This research aims for developing new lossless compression algorithms to enhance the current

algorithms compression rate and execution time by using a pre-processing transformation

phase for mapping the input image into new colour space to prepare the image to be compressed

by using the proposed CSC function; the CSC compression phase is to decrease the image size

by reducing the image bit-depth and to represent the compressed image with less number of

unique values.

3.2 Software Development Process
The proposed compression system model is developed based on the incremental prototype

methodology, where the system is divided into prototypes that represent the main system

functions, then the prototypes were developed and tested individually to provide feedback for

enhancing each of the current prototype by reworking it until it achieved the function aim.

Eventually, the different prototypes are merged into a single system to deliver a compressed

image.

(Hoffer, J. A., 2012) describe the incremental prototyping process phases as:

1. Requirements gathering and analysis.

This phase identifies the system requirements to define the system expectations through

understanding the gap in the current techniques.

2. Quick design.

A simple design of the system is created to helps in developing the prototype by

providing brief idea of the compression system. This phase is responsible for

identifying the main system functions (Prototypes).

3. Build a Prototype.

58

A small model of the required system is developed based on the quick design. The

model should combine all the prototypes to deliver a compressed image and should be

ready for evaluation.

4. Initial user evaluation.

The first prototype is ready for evaluation to find out its strength and weakness. This

phase should provide many feedback points to the developers. The evaluation phase is

to evaluate the output image size, quality, execution time and the algorithm complexity.

5. Refining prototype.

This phase uses the feedback from the previous phase to refine the current prototype.

Once the Initial user evaluation phase provides zero suggestion, then this phase is over,

and a final system is developed based on the approved final prototype.

6. Implement Product and maintenance.

The final system is developed based on the final prototype. The system deliverables

(compressed images) are evaluated in chapter four and five.

3.2.1 The first Iteration Requirements

The first compression model was designed, developed and tested in this iteration, to analyse its

strengths and weaknesses to provide feedback for the next iteration. The system development

phases are described as:

1. Requirements gathering and analysis phase.

The system should compress the input image with high compression rate and fast

execution time with zero percentage of distortion.

2. Quick design phase.

A simple design of the system is created to helps in developing the prototype by

providing brief idea of the compression system. This phase is responsible for

identifying the main system functions (Prototypes) as follows.

The proposed CSC compression system is divided into two prototypes:

• Read the input image and determine its information.

• Column Subtraction Compression.

Each of the functions (prototypes) should be programmed individually as a class and

should be called in the final system by using an object-oriented structure.

3. Build a Prototype.

59

A small model of the required system is developed based on the quick design. The

model should combine the two prototypes to deliver a compressed image and should be

ready for evaluation.

4. Initial user evaluation.

The evaluation phase is to evaluate the output image size, quality, execution time and

the algorithm complexity. The firs model achieved high compression speed

performance with zero distortion and less compression rate than expected.

5. Refining the prototype.

Having the feedback from the previous phase, we need to enhance the compression rate

in the next iteration without effecting the compression speed and the image quality.

3.2.2 The Second Iteration Requirements

The second compression model was designed, developed and tested in this iteration to enhance

the system compression rate and to analyse its strength and weaknesses points to provide

feedback for the next iteration. The system development phases are described as:

1. Requirements gathering and analysis phase.

The second system should enhance the compression rates of the first model by

compressing the input image with a higher compression rate and fast execution time

with zero percentage of distortion.

2. Quick design phase.

An updated version of the first design of the system is created to enhance the

compression rate. This phase is responsible for identifying the second system main

functions (Prototypes) as follows.

The second compression system is divided into three prototypes:

• Read the input image and determine its information.

• Transformation

• Column Subtraction Compression.

Each of the functions (prototypes) should be programmed individually as a class and

should be called in the final system by using an object-oriented structure.

3. Build a Prototype.

A small model of the required system is developed based on the quick design. The

model should combine the three prototypes to deliver a compressed image and should

be ready for evaluation.

4. Initial user evaluation.

60

The evaluation phase is to evaluate the output image size, quality, execution time and

the algorithm complexity. The second model achieved high compression speed

performance with zero distortion and enhances the compression rate. The only

limitation of this system is when compressing low-resolution images; the system

achieved less compression rates.

5. Refining prototype.

Having the feedback from the previous phase, we need to enhance the compression rate

of the low-resolution images in the next iteration without effecting the compression

speed and the image quality.

6. The final compression system for the High-Resolution images is developed based on

the final prototype. The system deliverables (compressed images) are evaluated in

chapter four.

3.2.3 The third Iteration Requirements

The third compression model is designed, developed and tested in this iteration, to enhance the

compression rate for the low-resolution images. The system development phases are described

as:

1. Requirements gathering and analysis phase.

The third system is to enhance the compression rates of the second model for the low-

resolution images by compressing the input image with a higher compression rate and

fast execution time with zero percentage of distortion.

2. Quick design phase.

An updated version of the second design of the system is created to enhance the

compression rate. This phase is responsible for identifying the third system main

functions (Prototypes) as follows.

The third compression system is divided into five prototypes:

• Read the input image and determine its information.

• Transformation

• Column Subtraction Compression.

• Huffman Algorithm.

• RLE Algorithm.

Each of the functions (prototypes) should be programmed individually as a class and

should be called in the final system by using an object-oriented structure.

3. Build a Prototype.

61

A small model of the required system is developed based on the quick design. The

model should combine the five prototypes to deliver a compressed image and should

be ready for evaluation.

4. Initial user evaluation.

The evaluation phase is to evaluate the output image size, quality, execution time and

the algorithm complexity. The second model achieved high compression speed

performance with zero distortion and enhances the compression rate for the low-

resolution images. The only limitation of this system is when compressing a high-

resolution image; the system achieved less compression rates with high-resolution

images.

5. Refining prototype.

Having the feedback from the previous phase, we need to develop a fully automated

system to compress the image according its type (Low-Resolution Image or High-

Resolution Image). The new system is to enhance the compression rate for the input

image.

6. Implement Product and Maintain.

The final compression system for the Low-Resolution images is developed based on

the final prototype. The system deliverables (compressed images) are evaluated in

chapter five.

3.3 Algorithm complexity

This work is about developing algorithms. The proposed algorithms time complexity is

measured by using the big O notation to describe the algorithm efficiency in term of

execution time. The big O notation focusses on the algorithm efficiency and how it

varies according to the size of the input image. (Bsoul, 2011) emphasise that, “the Big-

O notation is used to define an upper bound on the worst-case scenario for a given

algorithm.

Let f (n) be a function that approximate the worst-case running time of an algorithm of

input size n. Let g(n) be a function mapping nonnegative integer to real numbers. We

say that f (n) is O(g(n)), if there exist a constant C > 0 and an integer constant n0 > 0

such that f (n) <=cg(n) for sufficiently large n >= n0. This means that f is asymptotically

upper bounded by g. The definition is often referred to as the ”big-oh” notation. In

Chapter 4 and 5, an approximation of f (n) is analysed. and the corresponding g(n) is

proved using Eq. 3.1”.

62

Let f and g be two functions that

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
 Eq.3.1

exists and is equal to some number c > 0. Then f (n) = O(g(n))

The big O notation is used to calculate the algorithms complexities in the evaluation chapters.

The researcher testbed is composed of four parameters which are:

1- The algorithm time complexity by calculating the big O notation.

2- The compressed image size by calculating the compression ratio.

3- The image quality by calculating the (MSE and PSNR).

4- The algorithm execution time by using the Tic-Toc Matlab function.

Chapters four and five discuss the evaluation phase in detail.

3.4 Matlab

MATLAB is one of the fourth-generation programming languages. It provides an easy platform

for numerical analysis and a very suitable language for matrices operations. It provides a

graphical user interface and data visualisation. The MATLAB libraries have many pre-defined

functions that support most of the image processing researchers; therefore, it is very popular

among image processing. MATLAB has many different versions; in this research we will use

MATLAB R2016b version. Some of the MATLAB features include:

1. MATLAB supports matrices mathematical operation and provides analysis features

that facilitate the programmers’ work.

2. MATLAB has a very well-documented toolbox that helps any programmer to develop

their applications.

3. With MATLAB, programmers can draw Figure s to analyse data without the need to

export the data to other software.

Figure 3. 1 describe the compression system class diagram, by describing the main building

blocks of the object-oriented methods. The first class (Read Input Image Class) is responsible

for reading the image to specify its details, and the second class (Transformation Class) is to

map the image into new colour space to prepare it for the next phase. The (CSC Compression

Class) is to compress the image by using the proposed CSC function and followed by the

Huffman class to decrease the values of the resulted image from the CSC phase. The (RLE

Class) is used for decreasing the image size as a final phase.

63

+Huffman_Function()

-CRR_Matrix
-CRG_Matrix
-CRB_Matrix

Huffman_Compression_Class

+RLE_Function()

-Image_R3
-Image_G3
-Image_B3

RLE_Compression_Class

+Read the Image()

-Image_Type
-Image_Size
-Image_Resoulution
-R,G,B

Read_Input_Image

+CSC_Function()

-R_Matrix
-Dg_Matrix
-Db_Matrix

CSC_Compression_Class

+Transformation_Function()

-R_Matrix
-G_Matrix
-B_Matrix

Transformation_Class

Figure 3. 1 - The Compression System Class Diagram

3.5 Used Devices and Operating System

The researcher started programming the algorithm by using MATLAB programming language

on Microsoft Windows 10 operating system, and a laptop. Table 3.1 lists the hardware

specifications.

Table 3. 1 - The Algorithms Working Environments

Used Device Dell Laptop

Processor Intel (R) Core (TM) i7- 7500 CPU @ 2.7 GHz 2.9 GHz

Random Access Memory 8.00 GB

Display Adapter Intel (R) HD Graphics 620

Operating System windows 10 64-bit

Programming Language MATLAB R2016b

3.6 Set of Tested Images

To cover all the aspects that may affect the compression performance and to ensure the

accuracy and reliability of the results, the researcher used an inclusive set of test images from

different image types and different image resolutions. This test image samples should represent

the most popularly used formats, such as JPEG, BMP, GIF, PNG, and the most popularly used

images in the literature and image processing research community. To reach the best image

results, the researcher tested the algorithm on five images sets with a total of 52 images.

64

3.6.1 Image Set 1

Set one, includes nine of the most popularly used greyscale images, including Baboon, Barbara,

Boat, Camera Man, House, Lena, as shown in Table 3.2.

Table 3. 2 - Image set 1

Image set 1

Baboon (GIF) Barbara (PNG) Boats (PNG)

Boats (BMP) Camera Man (BMP) Camera Man (GIF)

House (PNG) Lena (PNG) Lena (JPEG)

65

3.6.2 Image Set 2

Set two, includes nine of the most popularly used coloured images, such as Airplane, Baboon,

Barbara, Boats, Gold Hill, Lena, Pepper, as shown in Table 3.3.

Table 3. 3 - Image Set 2

Image set 2

Airplane (BMP) Baboon (BMP) Barbara (BMP)

Boats (BMP) Gold Hill (BMP) Lena (BMP)

Lena (PNG) Lena (JPEG) Pepper (BMP)

66

3.6.3 Image Set 3

Set three, includes 14 images from the Stanford image set, as shown in Table 3.4. This image

set has more than 9000 images, so we choose different images from this image set with different

resolutions, to test their results on the proposed algorithms.

Table 3. 4 - Image Set 3

Image set 3

Boats (JPEG) Butterfly (JPEG) Earth (JPEG) Lake (JPEG)

Medic (JPEG) Medic1 (JPEG) Mountain (JPEG) Saturn (JPEG)

Swarm (JPEG) Waterfall (JPEG) Grandfather (JPEG) Car (JPEG)

Eagle (JPEG) Shape (JPEG)

67

3.6.4 Image Set 4

Set four, includes 10 natural images obtained from the Kodak image set

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html, as shown in Table 3.5. All of the

images in this image sets have the same resolution 768 X 512- and 24 bit-depth and PNG data

type.

Table 3. 5 - Image Set 4

Image set 4

Knob & Bolt (PNG) Houses (PNG) Landscape (PNG)

Light House (PNG) Barn (PNG) Parrots (PNG)

Flowers & Sill (PNG) Six-Shooter (PNG) Motocross (PNG)

Zentime (PNG)

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html

68

3.6.5 Image Set 5

Set five, includes 10 raster map images obtained from

https://sites.google.com/site/qinzoucn/documents/ image set, as shown in Table 3.6. All of

the images in this image sets have the same resolution 600 X 480 and 24 bit-depth and BMP

data type.

Table 3. 6 - Image Set 5

Image set 5

Map 1 (BMP) Map 2 (BMP) Map 3 (BMP) Map 4 (BMP)

Map 5 (BMP) Map 6 (BMP) Map 7 (BMP) Map 8 (BMP)

Map 9 (BMP) Map 10 (BMP)

3.7 Rational for the Selection of the Images Sets

All the images had been chosen carefully by the researcher to cover all the aspects that may

affect the compression performance. The first and second image sets represent the most used

images by the scientific community (Grayscale and Colour). (Al-azawi et al., 2011); (Kale and

Deshmukh, 2010) and (Shukla and Gupta, 2015) used some of these images in their research.

The third image set represent small size images obtained from the Stanford image set; this

image set is used to find out the algorithm performance on the small size images. The fourth

and fifth image sets are obtained from lossless benchmark compression schemes for kodak

https://sites.google.com/site/qinzoucn/documents/

69

colour images and raster map and they were used for evaluation. (Khan et al., 2017); (Khan et

al., 2016); (Mao et al., 2015) used this image sets in their research.

3.8 Characteristics of the Selected Images

• All the images from image set 1 are greyscale images, while the images in the other image

sets have coloured images only.

• The image size is different from one image to another, so we discuss the image size in the

discussion section in Chapters 4 and 5.

• A scope of various image scenes, such as medical image, natural image, architectural

images were used as displayed in image set three.

• Images that have smoothly graduating signals were used as displayed in image set four.

• Highly coloured images were used, such as images from image set four.

• Low coloured content images were used, such as images from image set five.

• Old and new images with different resolution were used, the minimum image resolution

used is (128x85) and the maximum used image resolution is (768x512).

• The used image formats are (GIF, PNG, BMP, JPG).

3.9 Chapter Summary

This chapter presented the gap analyses for the current most popular used algorithm’s in the

domain of lossless image compression by describing their limitation and the proposed solution

for each of the limitations, followed by the software development process and the research

requirements that are needed to develop the proposed solutions, such as the used programming

language and the tested image sets.

The next chapter describes the developments of the proposed image compression algorithms.

70

CHAPTER FOUR: THE PROPOSED LOSSLESS ALGORITHM FOR

NATURAL IMAGES COMPRESSION

4 Chapter Overview

This chapter describes in detail the proposed lossless Column Subtraction Compression

algorithm (CSC). It starts with a detailed explanation of all the procedures used in the

proposed technique, followed by the validation of the algorithm. Finally, the algorithm was

compared to the state-of-the-art algorithms.

4.1 Introducing the CSC Compression Algorithm

Lossless compression techniques have been used in many applications, where any loss of the

original image data leads to an improper diagnosis. Some of these applications are medical

application, Global Positioning System (GPS), digital radiography, camera systems (Sengupta

and Roy, 2018) and remote sensing applications such as monitoring forest fires (Rusyn et al.,

2016).

The lossless CSC algorithm is designed to work with any application and supports all image

formats whether the input image is of a high resolution or low-resolution. The CSC algorithm

is suitable for natural image compression and can be used as stand-alone algorithm or as a pre-

processing phase for any lossless or lossy techniques. The CSC algorithm includes two

procedures as follows.

Let NI be a coloured image referring to a Natural Image represented with three colour matrices

(R, G and B).The three matrices have the same resolution of (mxn) where m and n represents

the matrix dimensions (Row (m), Columns (n)).

1. Procedure transformation is to map the input natural image NI(R,G,B) from the RGB colour

space into RDgDb colour space. The transformation procedure output is an image with less

coloration matrices, it maps the pixel values into new space that includes smaller values

TI(R,Dg,Db). The transformed matrices have the same dimensions of the input matrices (m x

n). Dg refers to the transformed green matrix, Db refers to the transformed blue matrix and TI

referred to the Transformed Image.

2. Procedure compression is to decrease the size of the transformed image TI(R,Dg,Db) by using

the column subtraction compression where CRR refers to the compressed red channel, CRG

refers to the compressed green channel and CRB refers to the compressed blue channel. The

compression procedure output is the compressed image CI(CRR, CRG, CRB). Algorithm 1

illustrates the procedures of natural image compression.

71

Algorithm1: CSC For Natural Images Compression

1: Procedure Transformation

2: input NI: natural image NI(R,G,B)

3: m = total rows number; n = total columns number;

4: //Dg, Db are (m X n) matrices of natural number;

5: // Dg matrix is resulted by subtracting the G matrix from the R matrix using the following formula

Dg(row, column) = R(row, column) – G(row, column)

6: // Db matrix is resulted by subtracting the G matrix from the B matrix using the following formula

 Db(row, column) = B(row, column) - G(row, column)

7: output: transformed image TI(R,Dg,Db)

8: End Procedure Transformation

1: Procedure Compression

2: input TI: transformed image TI(R,Dg,Db)

3: //CRR, CRG, CRB; are matrices of natural number

4: // CRR matrix is resulted by the following nested for loop

5: from the first column to the last column - 1

6: for all rows in the column do

7: CRR (row, column) = R(row, column) - R(row, column+1);

8: end

9: end

10: // CRG matrix is resulted by the following nested for loop

11: from the first column to the last column - 1

12: for all rows in the column do

13: CRG (row, column) = Dg(row, column) - Dg(row, column+1);

14: end

15: end

16: // CRB matrix is resulted by the following nested for loop

17: from the first column to the last column - 1

18: for all rows in the column do

19: CRB (row, column) = Db(row, column) - Db(row, column +1);

20: end

21: end

22: output: compressed image CI(CRR, CRG, CRB)

23: End Procedure Compression

72

The Natural Images Decompression algorithm used two procedures for reconstructing the

compressed image as follows.

Algorithm2: CSC For Natural Images Decompression

1: Procedure Decompression

2: input compressed image CI(CRR, CRG, CRB)

3: m = total rows number; n = total columns number;

4: // R,Dg,Db are (m X n) matrices of natural number;

5: // R matrix is resulted by the following nested for loop

6: from the last column to the first column + 1

7: for all rows in the column do

8: R (row, column-1) = CRR(row, column) + CRR(row, column-1);

9: end

10: end

11: // Dg matrix is resulted by the following nested for loop

12: from the last column to the first column + 1

13: for all rows in the column do

14: Dg (row, column-1) = CRG(row, column) + CRG(row, column-1);

15: end

16: end

17: // Db matrix is resulted by the following nested for loop

18: from the last column to the first column + 1

19: for all rows in the column do

20: Db (row, column-1) = CRB(row, column) + CRB(row, column-1);

21: end

22: end

23: output: transformed image TI(R,Dg,Db)

24: End Procedure Decompression

1: Procedure Revers Transformation

2: input R,Dg,Db; matrices of natural number

3: // R,G,B are (m X n) matrices of natural number

4: // G matrix is resulted by subtracting the Dg matrix from the R matrix

5: G(row, column) = R(row, column) – DG(row, column)

6: // B matrix is resulted by adding the G matrix values to the Db matrix values

7: B(row, column) = G(row, column) + DB(row, column)

8: End Procedure Revers Transformation

73

By implementing the CSC algorithm, we expect to decrease the image size and maintain the

image quality as it was before compression in a very fast time. Figure 4.1 shows the CSC

flowchart.

4.2 The CSC Flowchart

Read Source Image(C3)
to determine its

Information

Start

Read Source Image to
determine its Information

Start

End

Matrix Dimensions
C1 = Column No

R1 = Row No
BD = Image_Bit_Depth

Image Red
Matrix

Transformation

Column Subtraction

Image Dg
Matrix

Image Db
Matrix

Image Red
Matrix

Image Green
Matrix

Image Blue
Matrix

Compressed
Image Red

Compressed
Image Dg

Compressed
Image Db

Combine the Three matrix
(Compressed Image)

If BD = 8Yes

No

Image Matrix

Column Subtraction

Compressed
Image

Figure 4. 1 - CSC Lossless Algorithm Flowchart

4.3 Description of the CSC Algorithm

The algorithm starts with loading the source image to identify the matrix dimension and the

input image bit-depth, followed by specifying the suitable compression steps that meet the

input image; if the image bit-depth is equal to eight then the image cannot be transformed, and

the image will be sent to the subtraction function phase directly, and if the image bit-depth is

74

24 then the image will be loaded to the transformation phase as a pre-processing to the column

subtraction function.

4.3.1 Colour Transformation:

It is a fact that the main three colours in the RGB colour space have high coloration in natural

images. That indicates that, two or more of the three main components have the same

information for the same pixel’s addresses, e.g., if a particular area of an image is bright in the

red channel then mostly it should be bright in the green and blue channels as well. The aim of

colour transformation is for decreasing the coloration between the image components (R,G,B)

to produce a new colour space with less correlation between the three components.

(Starosolski, 2014) described the most popular transformation methods such as R,Dg,Db and

YCoCg. In this research, the researcher implements and tests many transformation methods to

choose the best method that achieves the best compression rate with the proposed algorithm.

After implementing and testing many transformation methods; the researcher modified the

R,Dg,Db transformation method and used it as a pre-processing phase for the CSC algorithm

since it achieved the best compression rate. Table 4.1. lists the original R,Dg,Db transformation

formula. Where, the image colour space is transformed from RGB to R,Dg,Db colour space by

applying Eq 4.1 for the red colour space, Eq 4.2 for the green colour space and Eq 4.3 for the

blue colour space, where R represents the luminance and Dg, Db are used to represent the

chrominance. Eq 4.4, Eq 4.5, Eq 4.6 are used for the invers transformation.

Table 4. 1 - R,Dg,Db Transformation and Invers Transformation Equations

Colour Space Transformation Equation Inverse Colour Space Transformation Equation

R = R Eq 4.1 R = R Eq 4.4

Dg = R – G Eq 4.2 G = R - Dg Eq 4.5

Db = G – B Eq 4.3 B = G - Db Eq 4.6

The researcher modified the original R,Dg,Db transformation by using Eq. 4.9 for the Db

colour space instead of using Eq. 4.3. The modified transformation is used as pre-processing

phase for the CSC compression algorithm. Table 4.2 lists the modified transformation formula

where, the image colour space is transformed from RGB to R,Dg,Db colour space by applying

Eq 4.7 for the red colour space, Eq 4.8 for the green colour space and the modified Eq 4.9 for

the blue colour space, where R represents the luminance and Dg, Db are used to represent the

chrominance.

75

Table 4. 2 - The Modified Transformation and Invers Transformation Equations

Colour Space Transformation Equation Inverse Colour Space Transformation Equation

R = R Eq 4.7 R = R Eq 4.10

Dg = R – G Eq 4.8 G = R - Dg Eq 4.11

Db = B – G Eq 4.9 B = G + Db Eq 4.12

The inverse colour transform equations are used for restoring the original colour space values,

where Eq. 4.10 is used for restoring the red channel value and Eq. 4.11 and Eq. 4.12 for

restoring the green and blue channel values respectively.

As displayed in Table 4.3, the modified colour transformation enhances the average

compression ratio for the CSC algorithm by having 0.147 better compression ratio than the

original transformation.

Table 4. 3 - The Average Compression Ratio for the Original and Modified Transformation

Image Set
Average Compression Ratio

(Original Transformation)

Average Compression Ratio

(Modified Transformation)

Image Set 1 2.319 2.346

Image Set 2 2.384 2.571

Image Set 3 2.254 2.324

Image Set 4 3.094 3.541

Image Set 5 28.240 28.243

Average 7.6582 7.805

Figure 4.2 describe the modified transformation for the three colours space by using a sample

example of 8x8 block for the three matrices.

76

Sample 8x8 for the Red Matrix (R)

=

R = Red Matrix R

99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

99 99 99 102 106 108 111 111 99 99 99 102 106 108 111 111

99 99 99 106 110 114 120 120 99 99 99 106 110 114 120 120

99 99 99 114 114 115 126 122 99 99 99 114 114 115 126 122

99 99 97 121 125 132 148 146 99 99 97 121 125 132 148 146

99 99 97 121 125 133 155 153 99 99 97 121 125 133 155 153

99 99 97 121 127 136 152 151 99 99 97 121 127 136 152 151

99 99 97 121 128 132 148 147 99 99 97 121 128 132 148 147

Sample 8x8 for the Green Matrix (G)

➔

Dg = R - G

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 0

99 99 99 98 96 95 94 94 0 0 0 4 10 13 17 17

99 99 99 96 93 90 88 88 0 0 0 10 17 24 32 32

99 99 99 97 76 65 61 57 0 0 0 17 38 50 65 65

99 99 100 94 70 57 54 52 0 0 -3 27 55 75 94 94

99 99 100 94 70 59 58 57 0 0 -3 27 55 74 97 96

99 99 100 94 72 59 55 54 0 0 -3 27 55 77 97 97

99 99 100 94 73 55 51 50 0 0 -3 27 55 77 97 97

Sample 8x8 for the Blue Matrix (B)

➔

Db = B - G

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 0

99 99 99 96 94 92 90 90 0 0 0 -2 -2 -3 -4 -4

99 99 99 94 88 83 78 78 0 0 0 -2 -5 -7 -10 -10

99 99 99 93 69 52 43 39 0 0 0 -4 -7 -13 -18 -18

99 99 99 88 56 37 25 26 0 0 -1 -6 -14 -20 -29 -26

99 99 99 88 56 38 30 29 0 0 -1 -6 -14 -21 -28 -28

99 99 99 88 58 40 28 26 0 0 -1 -6 -14 -19 -27 -28

99 99 99 88 59 36 24 22 0 0 -1 -6 -14 -19 -27 -28

Figure 4. 2 - Transformation Example

77

Figure 4.3 describe the invers transformation for the three colours space by using the sample

example of 8x8 block for the three transformed matrices TI(R,Dg,Db).

4.3.2 Column Subtraction

Images can be compressed by taking advantage of the high correlation between neighbouring

pixels. In another word, each pixel value is similar or very close to the value of its adjacent

pixels (Novikov, Egorov, and Gilmutdinov, 2016). To accomplish a high compression ratio

from this fact, a new method called Column Subtraction Compression (CSC) is developed to

decrease the image intensities by subtracting each column from the nearest column and save

the resulting value in the first column starting from the first column from the left side of each

matrix. The resulting three matrices from the previous transformation phase TI(R, Dg and Db)

should be loaded to the CSC function to decrease the image size as a second phase by using

R Matrix

=

R Matrix

99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

99 99 99 102 106 108 111 111 99 99 99 102 106 108 111 111

99 99 99 106 110 114 120 120 99 99 99 106 110 114 120 120

99 99 99 114 114 115 126 122 99 99 99 114 114 115 126 122

99 99 97 121 125 132 148 146 99 99 97 121 125 132 148 146

99 99 97 121 125 133 155 153 99 99 97 121 125 133 155 153

99 99 97 121 127 136 152 151 99 99 97 121 127 136 152 151

99 99 97 121 128 132 148 147 99 99 97 121 128 132 148 147

Dg Matrix G = R - Dg

0 0 0 0 0 0 0 0

➔

99 99 99 99 99 99 99 99

0 0 0 4 10 13 17 17 99 99 99 98 96 95 94 94

0 0 0 10 17 24 32 32 99 99 99 96 93 90 88 88

0 0 0 17 38 50 65 65 99 99 99 97 76 65 61 57

0 0 -3 27 55 75 94 94 99 99 100 94 70 57 54 52

0 0 -3 27 55 74 97 96 99 99 100 94 70 59 58 57

0 0 -3 27 55 77 97 97 99 99 100 94 72 59 55 54

0 0 -3 27 55 77 97 97 99 99 100 94 73 55 51 50

Db Matrix

➔

B = G + Db

0 0 0 0 0 0 0 0 99 99 99 99 99 99 99 99

0 0 0 -2 -2 -3 -4 -4 99 99 99 96 94 92 90 90

0 0 0 -2 -5 -7 -10 -10 99 99 99 94 88 83 78 78

0 0 0 -4 -7 -13 -18 -18 99 99 99 93 69 52 43 39

0 0 -1 -6 -14 -20 -29 -26 99 99 99 88 56 37 25 26

0 0 -1 -6 -14 -21 -28 -28 99 99 99 88 56 38 30 29

0 0 -1 -6 -14 -19 -27 -28 99 99 99 88 58 40 28 26

0 0 -1 -6 -14 -19 -27 -28 99 99 99 88 59 36 24 22

Figure 4. 3 - Invers Transformation Example

78

Eq. 4.13 for the red matrix (R), Eq. 4.14 for the green matrix (Dg) and Eq. 4.15 for the blue

matrix (Db) respectively.

𝐶𝑅𝑅(𝑖, 𝑗) = 𝑅(𝑖, 𝑗) − 𝑅(𝑖, 𝑗 + 1) i,j; 1≤ i ≤m and 1≤ j ≤n-1 4.13

𝐶𝑅𝐺(𝑖, 𝑗) = 𝐷𝑔(𝑖, 𝑗) − 𝐷𝑔(𝑖, 𝑗 + 1) i,j; 1≤ i ≤m and 1≤ j ≤n-1 4.14

𝐶𝑅𝐵(𝑖, 𝑗) = 𝐷𝑏(𝑖, 𝑗) − 𝐷𝑏(𝑖, 𝑗 + 1) i,j; 1≤ i ≤m and 1≤ j ≤n-1 4.15

The three matrices (CRR, CRG and CRB) have the same resolution of (mxn) where m and n

represents the matrix dimensions (Row (m), Columns (n)) and (i,j) refers to the elements

coordinates, and CRR represents the compressed matrix for the red channel, CRG represents

the compressed matrix for the green channel and CRB represents the compressed matrix for

the blue channel. Figure 4.4 describes the CSC results for the three transformed matrices for

the sample example.

For reconstructing the compressed image, the three compressed matrices CRR, CRG and CRB

should be loaded to the decompression algorithm which uses the reversable CSC equations for

each of the three matrices separately, by applying Eq. 4.16 for the CRR matrix, Eq. 4.17 for

the CRG matrix and Eq. 4.18 for the CRB matrix.

𝑅(𝑖, 𝑗 − 1) = 𝐶𝑅𝑅(𝑖, 𝑗) + 𝐶𝑅𝑅(𝑖, 𝑗 − 1) i,j; 1≤ i ≤m and 2≤ j ≤n 4.16

𝐷𝑔(𝑖, 𝑗 − 1) = 𝐶𝑅𝐺(𝑖, 𝑗) + 𝐶𝑅𝐺(𝑖, 𝑗 − 1) i,j; 1≤ i ≤m and 2≤ j ≤n 4.17

𝐷𝑏(𝑖, 𝑗 − 1) = 𝐶𝑅𝐵(𝑖, 𝑗) + 𝐶𝑅𝐵(𝑖, 𝑗 − 1) i,j; 1≤ i ≤m and 2≤ j ≤n 4.18

Figure 4.4 describe the CSC compression phase for the three transformed matrices. The

resulted three matrices should be combined to produce the compressed image

CI(CRR,CRG,CRB).

79

Figure 4.5 describe the CSC decompression phase for the three compressed matrices

CI(CRR,CRG,CRB). The resulted three matrices should be combined to produce the

decompressed image TI(R,Dg,Db).

Red Matrix R

➔

CRR

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 99

99 99 99 102 106 108 111 111 0 0 -3 -4 -2 -3 0 111

99 99 99 106 110 114 120 120 0 0 -7 -4 -4 -6 0 120

99 99 99 114 114 115 126 122 0 0 -15 0 -1 -11 4 122

99 99 97 121 125 132 148 146 0 2 -24 -4 -7 -16 2 146

99 99 97 121 125 133 155 153 0 2 -24 -4 -8 -22 2 153

99 99 97 121 127 136 152 151 0 2 -24 -6 -9 -16 1 151

99 99 97 121 128 132 148 147 0 2 -24 -7 -4 -16 1 147

Dg Matrix

➔

CRG

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 4 10 13 17 17 0 0 -4 -6 -3 -4 0 17

0 0 0 10 17 24 32 32 0 0 -10 -7 -7 -8 0 32

0 0 0 17 38 50 65 65 0 0 -17 -21 -12 -15 0 65

0 0 -3 27 55 75 94 94 0 3 -30 -28 -20 -19 0 94

0 0 -3 27 55 74 97 96 0 3 -30 -28 -19 -23 1 96

0 0 -3 27 55 77 97 97 0 3 -30 -28 -22 -20 0 97

0 0 -3 27 55 77 97 97 0 3 -30 -28 -22 -20 0 97

Db Matrix

➔

CRB

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -2 -2 -3 -4 -4 0 0 2 0 1 1 0 -4

0 0 0 -2 -5 -7 -10 -10 0 0 2 3 2 3 0 -10

0 0 0 -4 -7 -13 -18 -18 0 0 4 3 6 5 0 -18

0 0 -1 -6 -14 -20 -29 -26 0 1 5 8 6 9 -3 -26

0 0 -1 -6 -14 -21 -28 -28 0 1 5 8 7 7 0 -28

0 0 -1 -6 -14 -19 -27 -28 0 1 5 8 5 8 1 -28

0 0 -1 -6 -14 -19 -27 -28 0 1 5 8 5 8 1 -28

Figure 4. 4 - CSC Example

80

4.4 CSC Algorithm Time Complexity Analyses
A simplified time-complexity analysis for the CSC algorithm is performed based on the Big-

O notation, which defines the worst-case scenario. The CSC algorithm starts by loading the

input (R,G,B) image to identifies the matrix size n. Then the transformation is used to map the

(R,G,B) image into new colour space (R,Dg,Db) by using the transformation equations,

followed by the proposed CSC compression as a final phase.

4.4.1 CSC algorithm Time Complexity

The CSC algorithm is divided into two main components (Transformation and Compression).

Table 4.4 lists the time complexity for each of the CSC algorithm components by using the O

notation for describing each components computation complexity.

CRR Matrix

➔

R

0 0 0 0 0 0 0 99 99 99 99 99 99 99 99 99

0 0 -3 -4 -2 -3 0 111 99 99 99 102 106 108 111 111

0 0 -7 -4 -4 -6 0 120 99 99 99 106 110 114 120 120

0 0 -15 0 -1 -11 4 122 99 99 99 114 114 115 126 122

0 2 -24 -4 -7 -16 2 146 99 99 97 121 125 132 148 146

0 2 -24 -4 -8 -22 2 153 99 99 97 121 125 133 155 153

0 2 -24 -6 -9 -16 1 151 99 99 97 121 127 136 152 151

0 2 -24 -7 -4 -16 1 147 99 99 97 121 128 132 148 147

CRG Matrix

➔

Dg Matrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -4 -6 -3 -4 0 17 0 0 -4 -6 -3 -4 0 17

0 0 -10 -7 -7 -8 0 32 0 0 -10 -7 -7 -8 0 32

0 0 -17 -21 -12 -15 0 65 0 0 -17 -21 -12 -15 0 65

0 3 -30 -28 -20 -19 0 94 0 3 -30 -28 -20 -19 0 94

0 3 -30 -28 -19 -23 1 96 0 3 -30 -28 -19 -23 1 96

0 3 -30 -28 -22 -20 0 97 0 3 -30 -28 -22 -20 0 97

0 3 -30 -28 -22 -20 0 97 0 3 -30 -28 -22 -20 0 97

CRB Matrix

➔

Db Matrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 1 1 0 -4 0 0 2 0 1 1 0 -4

0 0 2 3 2 3 0 -10 0 0 2 3 2 3 0 -10

0 0 4 3 6 5 0 -18 0 0 4 3 6 5 0 -18

0 1 5 8 6 9 -3 -26 0 1 5 8 6 9 -3 -26

0 1 5 8 7 7 0 -28 0 1 5 8 7 7 0 -28

0 1 5 8 5 8 1 -28 0 1 5 8 5 8 1 -28

0 1 5 8 5 8 1 -28 0 1 5 8 5 8 1 -28

Figure 4. 5 - CSC Decompression Example

81

Table 4. 4 - CSC Algorithm Complexity

Line Description O

1 Procedure Transformation -

2 input NI: natural image NI(R,G,B) O(n2)

3 m = total rows number; n = total columns number; O(1)

5 Dg(row, column) = R(row, column) – G(row, column) O(n2)

6 Db(row, column) = B(row, column) - G(row, column) O(n2)

1 Procedure Compression -

2 input TI: transformed image TI(R,Dg,Db) O(n2)

7 CRR (row, column) = R(row, column - R(row, column+1); O(n2)

13 CRG (row, column) = Dg(row, column) - Dg(row, column+1); O(n2)

19 CRB (row, column) = Db(row, column) - Db(row, column +1); O(n2)

1 Procedure De-Compression -

2 input compressed image CI(CRR, CRG, CRB) O(n2)

3 m = total rows number; n = total columns number; O(1)

8 R (row, column-1) = CRR(row, column) + CRR(row, column-1) O(n2)

14 Dg (row, column-1) = CRG(row, column) + CRG(row, column-1) O(n2)

20 Db (row, column-1) = CRB(row, column) + CRB(row, column-1) O(n2)

1 Procedure Revers Transformation -

2 input R,Dg,Db; matrices of natural number O(n2)

5 G(row, column) = R(row, column) – DG(row, column) O(n2)

7 B(row, column) = G(row, column) + DB(row, column) O(n2)

The growth rate function in terms of time for the CSC components is analysed as:

1- The growth rate function of the transformation component is

f(n) = 3O(n2) + O(1) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

2- The growth rate function of the CSC component is

The second phase of the algorithm is to compress the R,Dg,Db image by using the CSC

function. This phase is to apply the CSC function for each of the three matrices

individually. For each colour space we used nested two loops. The outer loop runs n

times and the inner loop runs n times for each iteration of the outer loop; this indicate

82

that, this function will be running for n2 total times, thus the function is running O(n2)

time for each colure and the complexity of this phase is

f(n) = 4 O(n2) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

The decompression phase is to reconstruct the image by using two reversable procedures.

3- The growth rate of the CSC decompression component is

f(n) = 4On2 + O(1) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

4- The growth rate of the invers transformation component is

f(n) = 3 O(n2) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

After approximating the computation complexity for the individual components of the system,

the overall complexity is calculated by summing up the overhead for the individual parts.

f(n) = [O(n2)]+ [O(n2)] + [O(n2)] + [O(n2)].

f(n) = 4 O(n2).

Therefore, the overall complexity of the algorithm is:

f(n) = O(n2) after removing the constants.

4.4.2 Proof

Assume that g(n) = n, the time complexity of f (n) is O(n2). To proof that f (n) in Equation 3.1

is O(g(n)), we will apply the limit to find a constant c > 0.

We have f(n) = O(n2) and g(n) = n. That is

lim
𝑛→∞

𝑓(𝑛)

g(𝑛)

lim
𝑛→∞

 𝑛2

𝑛
= 𝑛

As the proof shows, there is a constant c > 0 that satisfy the limit in the proof Theorem. Since

n0 must be positive integer, we can say the f (n) in Equation 3.1 is O(n), for n >=n.

4.5 Validation and Testing
After the implementation of the algorithm, the researcher needs to estimate the compression

performance by comparing the new algorithm results with other state-of-the-art results. The

main parameters that may affect any compression algorithm are compression size, image

83

quality and execution time. Using our testbed, we are going to evaluate the CSC algorithm

based on:

1- The compressed image size by calculating the compression ratio.

2- The image quality by calculating the (MSE and PSNR).

3- The algorithm execution time by using the Tic-Toc matlab function.

4.5.1 The CSC Algorithm Compression Size

Measuring the compression ratio (Cr) is important in order to find out the algorithm storage

saving, which can be measured by dividing the input image size by the output compressed

image size (John and Joe, 2005); (Wang and Li, 2011). The best compression ratio is when the

Cr results have larger values; therefore, the compression algorithm should provide a

compressed image size smaller than the original image. Table 4.5 lists the compression size

results for the CSC algorithm by listing the new image size, compression ratio, compression

rate and storage saving percentage for the three image sets results.

Table 4. 5 - The Lossless CSC Algorithm Compression Size

Image Set 1

Image Format Resolution
Original

Size in KBs
New Size

in KBs
Compression

Ratio (CR)
Compression

Rate
Storage Saving

 %

Baboon GIF 512*512 225 94 2.394 0.418 58.345

Barbara PNG 512*512 230 121 1.901 0.526 47.238

Boats PNG 512*512 239 113 2.115 0.473 52.728

Boats BMP 720*576 368 148 2.486 0.402 59.751

Camera Man BMP 256*256 60 26 2.308 0.433 56.423

Camera Man GIF 256*256 56 23 2.435 0.411 58.366

House PNG 256*256 59 21 2.81 0.356 64.995

Lena PNG 256*256 59 27 2.185 0.458 54.390

Lena JPG 512*512 226 91 2.484 0.403 59.510

Image Set 2

Image Format Resolution
Original

Size in KBs
New Size

in KBs
Compression

Ratio (CR)
Compression

Rate
Storage Saving

 %

Lena PNG 330*330 290 118 2.458 0.408 59.205

Lena BMP 220*220 129 46 2.804 0.355 64.452

Lena JPG 225*225 135 48 2.813 0.355 64.540

Airplane BMP 512*512 751 249 3.016 0.331 66.876

Baboon BMP 500*480 599 359 1.669 0.600 40.020

Barbara BMP 720*576 1064 397 2.680 0.373 62.690

Boats BMP 787*576 1148 373 3.078 0.324 67.556

Goldhill BMP 720*576 1031 378 2.728 0.367 63.307

Pepper BMP 512*512 651 346 1.882 0.531 46.899

Image Set 3

Image Format Resolution
Original

Size in KBs
New Size

in KBs
Compression

Ratio (CR)
Compression

Rate

Storage Saving
 %

Medic JPG 168*90 32 12 2.667 0.376 62.441

84

Medic1 JPG 160*90 24 11 2.182 0.444 55.650

Butterfly JPG 128*85 20 13 1.538 0.627 37.300

Mountain JPG 128*96 28 11 2.545 0.399 60.129

swarm JPG 128*85 25 11 2.273 0.436 56.360

Lake_jpg JPG 128*85 25 12 2.083 0.468 53.159

Saturn_jpg JPG 128*100 19 9 2.111 0.497 50.282

Earth_jpg JPG 225*225 78 43 1.814 0.551 44.921

boat_jpg JPG 128*85 25 10 2.5 0.404 59.609

Waterfall JPG 128*96 26 13 2 0.506 49.426

Eagle JPG 128*96 17 8 2.125 0.478 52.246

Grand_Sone JPG 128*96 28 12 2.333 0.425 57.475

Car JPG 128*85 28 10 2.8 0.353 64.744

Shape JPG 128*95 31 15 2.067 0.471 52.929

Image Set 4

Image Format Resolution
Original

Size in KBs
New Size

in KBs
Compression

Ratio (CR)
Compression

Rate

Storage Saving
 %

Knob & Bolt PNG 768*512 1155 320 3.609 0.277 72.31

Houses PNG 768*512 1149 395 2.909 0.344 65.64

Landscape PNG 768*512 1153 396 2.912 0.343 65.66

Light House PNG 768*512 1150 311 3.698 0.271 72.91

Barn PNG 768*512 1149 355 3.237 0.309 69.08

Parrots PNG 768*512 1153 297 3.882 0.258 74.20

Flowers & Sill PNG 768*512 1154 282 4.092 0.245 75.53

Six-Shooter PNG 768*512 1152 270 4.267 0.235 76.53

Motocross PNG 768*512 1150 376 3.059 0.327 67.34

Zentime PNG 768*512 1155 307 3.762 0.266 73.42

Image Set 5

Image Format Resolution
Original

Size in KBs
New Size

in KBs
Compression

Ratio (CR)
Compression

Rate

Storage Saving
 %

Map 1 BMP 600*480 761 149 5.107 0.195 80.46

Map 2 BMP 600*480 821 136 6.037 0.166 83.38

Map 3 BMP 600*480 801 141 5.681 0.176 82.39

Map 4 BMP 600*480 838 120 6.983 0.143 85.68

Map 5 BMP 600*480 800 151 5.298 0.188 81.15

Map 6 BMP 600*480 826 147 5.619 0.178 82.20

Map 7 BMP 600*480 838 133 6.301 0.158 84.17

Map 8 BMP 600*480 814 154 5.286 0.189 81.11

Map 9 BMP 600*480 769 158 4.867 0.205 79.46

Map 10 BMP 600*480 768 149 5.154 0.194 80.58

One of the main purposes of any compression algorithm is to decrease the image size. As listed

in Table 4.6, the CSC algorithm dramatically decreases the image size for the five image sets.

In image sets 1 and 2, the image size is decreased by having an average compression ratio of

2.35 for the first image set and 2.57 for the second image set, which indicates that the algorithm

saved 56.9% from the original size of the first image set and 59.5% from the original size of

the second image set. By observing the third image set results, the algorithm achieved the

85

lowest compression ratio of 2.22, since this image set is already compressed by the JPEG

algorithm; however, the algorithm decreases the JPEG images from the third image set as well,

by saving 54.1% from the original image’s size. The Cr resulted from the fourth image set is

3.54 and saved 71.3% from the original image size. The best Cr came with compressing the

fifth image set by having 5.63 Cr and saves 82.1 % from the original image set size.

Table 4. 6 - The Lossless CSC Algorithm Average Compression Size

Image Sets
Average Compression

Ratio CR

Average Compression

Rate

Average Storage

Saving %

Image Set 1 2.346 0.431 56.86

Image Set 2 2.571 0.405 59.51

Image Set 3 2.224 0.460 54.05

Image Set 4
3.543 0.288 71.26

Image Set 5 5.634 0.179 82.06

Average 3.263 0.352 64.74

Figure 4.6 describes the compression storage saving percentages for the proposed lossless

algorithm CSC. By observing the results for each of the image set, we can say that the CSC

algorithm decreases the image size by different percentages for different images types and

different images resolution.

Figure 4. 6 - The CSC Algorithm Storage saving

56.86 59.51
54.05

71.262

82.06

0

10

20

30

40

50

60

70

80

90

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5

St
o

ra
ge

 S
av

in
g

%

Image Sets

Average Storage Saving %

86

4.5.2 The CSC Algorithm Image Quality.

For distortion assessment, we used the following two metrics:

i. Mean Squared Error (MSE)

ii. Peak Signal to Noise Ratio (PSNR)

When the MSE is closer to zero we have better image quality, while in the PSNR, larger values

suggest better image quality. Since the CSC algorithm is a lossless technique, this indicates

that the image quality should not be compromised, and the original image is a 100% perfect

match with the decompressed image. The proposed algorithm MSE results is zero and the

PSNR is infinite for all the images in the five image sets, the PSNR is infinite, because we

calculate its value by dividing the distortion value on the MSE; in this case, the MSE is zero

so the PSNR should be infinite. After averaging the distortion value for the five image sets, we

prove that the proposed image compression algorithm is a lossless algorithm. All the images

from the five image sets have been restored exactly as they were before compression. The five

image sets have been perfectly restored after decompression with zero distortion, since the

MSE value is zero for all the test images. Table 4.7 display two image samples for each image

set.

Table 4. 7 - Sample Images from the Five Image Sets Before and After Compression

Image Set 1

Original Image Compressed Image Original Image De-Compressed Image

Camera Man (GIF) Lena (PNG)

Image Set 2

Original Image Compressed Image Original Image De-Compressed Image

Lena (PNG) Goldhill (BMP)

87

Image Set 3

Original Image Compressed Image Original Image De-Compressed Image

Medic (JPEG) Boat (JPEG)

Image Set 4

Original Image Compressed Image Original Image De-Compressed Image

Parrots (PING) Motocross (PING)

Image Set 5

Original Image Compressed Image Original Image De-Compressed Image

Map 1 (BMP) Map 2 (BMP)

4.5.3 The CSC Algorithm Execution Time.

Image compression algorithm performance can be calculated by measuring the compression

speed and the decompression speed in seconds. Compression speed is the time needed for

compressing the image while the decompression speed is the time needed for decompressing

the image. Table 4.8 displays the needed execution time for each image from the five sets in

seconds.

88

Table 4. 8 - The Lossless CSC Algorithm Compression Time in Seconds

Image Set 1

Image Compression Time Decompression Time Total Time

Baboon 0.303 0.003 0.306

Barbara 0.313 0.007 0.32

Boats 0.254 0.11 0.364

Boats 0.32 0.012 0.332

Camera Man 0.28 0.003 0.283

Camera Man 0.25 0.003 0.253

House 0.225 0.002 0.227

Lena 0.257 0.002 0.259

Lena 0.519 0.007 0.526

Image Set 2

Image Compression Time Decompression Time Total Time

Lena 0.22 0.01 0.23

Lena 0.12 0.009 0.129

Lena 0.15 0.009 0.159

Airplane 0.46 0.02 0.48

Baboon 0.5 0.02 0.52

Barbara 0.64 0.03 0.67

Boats 0.55 0.03 0.58

Goldhill 0.54 0.03 0.57

Pepper 0.56 0.02 0.58

Image Set 3

Image Compression Time Decompression Time Total Time

Medic 0.06 0.0003 0.0603

Medic1 0.08 0.0005 0.0805

Butterfly 0.08 0.0005 0.0805

Mountain 0.04 0.005 0.045

swarm 0.07 0.0004 0.0704

Lake_jpg 0.04 0.0004 0.0404

Saturn_jpg 0.04 0.0006 0.0406

Earth_jpg 0.04 0.002 0.042

boat_jpg 0.04 0.0006 0.0406

Waterfall 0.04 0.0006 0.0406

Eagle 0.04 0.0007 0.0407

Grand_Sone 0.04 0.0005 0.0405

Car 0.04 0.006 0.046

Shape 0.04 0.0004 0.0404

Image Set 4

Image Compression Time Decompression Time Total Time

Knob & Bolt 0.35 0.01 0.36

Houses 0.34 0.01 0.35

89

Landscape 0.38 0.01 0.39

Light House 0.35 0.01 0.36

Barn 0.41 0.01 0.42

Parrots 0.34 0.01 0.35

Flowers & Sill 0.3 0.01 0.31

Six-Shooter 0.36 0.01 0.37

Motocross 0.42 0.01 0.43

Zentime 0.34 0.01 0.35

Image Set 5

Image Compression Time Decompression Time Total Time

Map 1 0.12 0.01 0.13

Map 2 0.2 0.02 0.22

Map 3 0.13 0.018 0.148

Map 4 0.1 0.018 0.118

Map 5 0.14 0.01 0.15

Map 6 0.09 0.01 0.1

Map 7 0.1 0.01 0.11

Map 8 0.15 0.01 0.16

Map 9 0.12 0.01 0.13

Map 10 0.14 0.01 0.15

The CSC algorithm need 2.87 seconds to compress and decompress images for the first image

set, while the second image set needs 3.91 seconds for both compression and decompression.

The third image set has the best computation time with 0.7 seconds, because all of the images

in the third image sets are JPEG images (JPEG format represent images with small intensities

values). The fourth image set execution time is 3.69 seconds and the fifth image sets needed

1.41 second.

One of the main terms for measuring the compression algorithm performance is the

computation time. Table 4.9 lists the average execution time resulted by calculating the average

compression time and the average decompression time for the five image sets.

Table 4. 9 - The Lossless CSC Algorithm Average Compression Time

Image Sets
Average

 (Compression Time)

Average

 (De-Compression Time)

Average

(Total Time)

Image Set 1 0.302 0.017 0.319

Image Set 2 0.416 0.019 0.435

Image Set 3 0.049 0.001 0.051

Image Set 4 0.359 0.01 0.369

Image Set 5 0.129 0.126 0.255

Average 0.251 0.034 0.285

90

Figure 4.7 represents the execution time for each image set. For a better understanding of the

results, we displayed the algorithm results in bar-charts, where each column represents the

value for the average needed time for each image sets.

Figure 4. 7 - Compression and Decompression Time for the CSC Algorithm

4.6 Evaluations, Results and Observations

To describe the algorithm contribution, we investigated the results regarding the compression

size, image quality and execution time. To reach the best conclusion from the results

investigation, we need to compare our proposed lossless CSC algorithm results with the most

common state of the art lossless algorithms and describe the analytical results to reach the best

conclusion.

4.6.1 Comparison Between the CSC Results and Huffman Algorithm Results.

To compare the proposed lossless algorithm results with Huffman algorithm results, we need

to compare both algorithm results regarding the main three features (image size, image quality

and execution time).

4.6.1.1 Comparison Between the CSC Algorithm and Huffman Algorithm in Terms of

Image Size

By measuring the compression ratio for both algorithms, we can easily compare the results

between both algorithms, to determine which one has the better compression ratio. Therefore,

Table 4.10 lists the compression ratio for CSC algorithm and the Huffman algorithm.

0

0.1

0.2

0.3

0.4

0.5

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5C
o

m
p

u
ta

ti
o

n
al

 T
im

e
 in

 S
e

co
n

d
s

Image Sets

The Proposed Lossless CSC Algorithm
Image Execution Time in Seconds

Average (Compression Time) Average (De-Compression Time)

Average (Total Time)

91

Table 4. 10 - The Lossless CSC Compression Size and Huffman Compression Size

The Proposed Lossless CSC Algorithm Results Huffman Results

Image Set 1 Image Set 1

Image
Original

Size in KBs
New Size

in KBS
Compression Ratio Cr

New Size
in KBS

Compression
 Rate (Cr)

Baboon 225 94 2.394 104 2.163

Barbara 230 121 1.901 204 1.127

Boats 239 113 2.115 174 1.374

Boats 368 148 2.486 276 1.333

Camera Man 60 26 2.308 40 1.500

Camera Man 56 23 2.435 43 1.302

House 59 21 2.810 36 1.639

Lena 59 27 2.185 49 1.204

Lena 226 91 2.484 194 1.165

The Proposed Lossless CSC Algorithm Results Huffman Results

Image Set 2 Image Set 2

Image
Original

Size in KBs
New Size

in KBS
Compression Ratio Cr

New Size
in KBS

Compression
 Rate (Cr)

Lena 290 118 2.458 234 1.239

Lena 129 46 2.804 104 1.240

Lena 135 48 2.813 110 1.227

Airplane 751 249 3.016 459 1.636

Baboon 599 359 1.669 426 1.406

Barbara 1064 397 2.680 955 1.114

Boats 1148 373 3.078 898 1.278

Goldhill 1031 378 2.728 933 1.105

Pepper 651 346 1.882 526 1.238

The Proposed Lossless CSC Algorithm Results Huffman Results

Image Set 3 Image Set 3

Image
Original

Size in KBs
New Size

in KBS
Compression Ratio Cr

New Size
in KBS

Compression
 Rate (Cr)

Medic 32 12 2.667 32 1.000

Medic1 24 11 2.182 22 1.091

Butterfly 20 13 1.538 19 1.053

Mountain 28 11 2.545 26 1.077

swarm 25 11 2.273 24 1.042

Lake_jpg 25 12 2.083 24 1.042

Saturn_jpg 19 9 2.111 17 1.118

Earth_jpg 78 43 1.814 75 1.040

boat_jpg 25 10 2.500 24 1.042

Waterfall 26 13 2.000 25 1.040

Eagle 17 8 2.125 14 1.214

Grand_Sone 28 12 2.333 27 1.037

Car 28 10 2.800 21 1.333

Shape 31 15 2.067 25 1.240

The Proposed Lossless CSC Algorithm Results Huffman Results

Image Set 4 Image Set 4

92

Image
Original

Size in KBs
New Size

in KBS
Compression Ratio Cr

New Size
in KBS

Compression
 Rate (Cr)

Knob & Bolt 1155 320 3.609 544 2.123

Houses 1149 395 2.909 878 1.309

Landscape 1153 396 2.912 844 1.366

Light House 1150 311 3.698 754 1.525

Barn 1149 355 3.237 809 1.420

Parrots 1153 297 3.882 829 1.391

Flowers & Sill 1154 282 4.092 773 1.493

Six-Shooter 1152 270 4.267 632 1.823

Motocross 1150 376 3.059 851 1.351

Zentime 1155 307 3.762 749 1.542

The Proposed Lossless CSC Algorithm Results Huffman Results

Image Set 5 Image Set 5

Image
Original

Size in KBs
New Size

in KBS
Compression Ratio Cr

New Size
in KBS

Compression
 Rate (Cr)

Map 1 761 149 5.107 119 6.395

Map 2 821 136 6.037 115 7.139

Map 3 801 141 5.681 118 6.788

Map 4 838 120 6.983 110 7.618

Map 5 800 151 5.298 123 6.504

Map 6 826 147 5.619 118 7.000

Map 7 838 133 6.301 112 7.482

Map 8 814 154 5.286 119 6.840

Map 9 769 158 4.867 121 6.355

Map 10 768 149 5.154 117 6.564

As listed in Table 4.11, the proposed CSC algorithm decreases the image size more than the

Huffman algorithm for all of the image sets except image set five. In the first, second, third and

fourth image sets, the CSC algorithm results decrease the storage saving percentage more than

the Huffman algorithm by saving 29.8%, 38.85%, 45.55% and 37.79% respectively. By

observing the results for the fifth image sets, we conclude that the Huffman algorithm saved

3.35% more than the proposed algorithm, since the raster map image has low resolution and

less unique values to represent the image.

By averaging the five-test image storage saving results for both algorithms, the CSC algorithm

saved 29.72% more than the Huffman algorithm.

93

Table 4. 11 - The Average Lossless Approach Compression Size with Huffman Average Compression

Size

Figure 4.8 describes the average storage saving to the proposed CSC algorithm and Huffman

algorithm for each of the five image sets. For better results understanding, we displayed the

algorithm results in bar-charts, where each column represents the image set and the value for

the bits-saving percentage. The proposed lossless algorithm has a better compression ratio.

Figure 4. 8 - The Average Compression Size for the CSC and Huffman algorithm

56.9 59.48
53.85

71.26
82.05

27.1
20.63

8.3

33.47

85.4

0

20

40

60

80

100

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5

B
it

-S
av

in
g

%

Image Sets

Comparison Between The CSC Algorithm
Size and Huffman Algorithm Size

CCSC Average Storage Saving % Huffman Average Storage Saving %

The CSC Algorithm Average Results Huffman Average Results

Image Sets
Average Compression

Ratio Cr

Average Storage

Saving %

Average Compression

Ratio Cr

Average

Storage Saving

%

Image Set 1 2.35 56.9 1.42 27.10

Image Set 2 2.569 59.48 1.276 20.63

Image Set 3 2.224 53.85 1.10 8.3

Image Set 4
3.543 71.26 1.534 33.47

Image Set 5 5.635 82.05 6.868 85.4

Average 3.1688 63.828 2.4328 34.364

94

4.6.1.2 Comparison Between the CSC Algorithm and Huffman in Terms of Image Quality

Since both the proposed CSC algorithm and Huffman algorithm are lossless techniques, the

two algorithm results should have zero distortion after decompressing the tested image.

4.6.1.3 Comparison Between the CSC and Huffman in Terms of Execution Time

Table 4.12 lists the execution time (compression and decompression time) for the proposed

algorithm and the execution time for the Huffman algorithm, for all the five image sets.

Table 4. 12 - The Lossless CSC Algorithm Execution Time with Huffman Execution Time

CSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 1

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.303 0.003 0.306 0.4

2 0.313 0.007 0.32 0.8

3 0.254 0.11 0.364 0.06

4 0.32 0.012 0.332 0.4

5 0.28 0.003 0.283 0.4

6 0.25 0.003 0.253 0.4

7 0.225 0.002 0.227 0.4

8 0.257 0.002 0.259 0.6

9 0.519 0.007 0.526 0.6

CSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 2

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.22 0.01 0.23 0.2

2 0.12 0.009 0.129 0.3

3 0.15 0.009 0.159 0.06

4 0.46 0.02 0.48 0.8

5 0.5 0.02 0.52 0.55

6 0.64 0.03 0.67 1.6

7 0.55 0.03 0.58 1.6

8 0.54 0.03 0.57 1.8

9 0.56 0.02 0.58 1.8

CSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 3

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.06 0.0003 0.0603 0.12

2 0.08 0.0005 0.0805 0.12

3 0.08 0.0005 0.0805 0.1

4 0.04 0.005 0.045 0.08

95

5 0.07 0.0004 0.0704 0.08

6 0.04 0.0004 0.0404 0.06

7 0.04 0.0006 0.0406 0.06

8 0.04 0.002 0.042 0.34

9 0.04 0.0006 0.0406 0.06

10 0.04 0.0006 0.0406 0.06

11 0.04 0.0007 0.0407 0.06

12 0.04 0.0005 0.0405 0.02

13 0.04 0.006 0.046 0.06

14 0.04 0.0004 0.0404 0.15

CSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 4

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.35 0.01 0.36 2.34

2 0.34 0.01 0.35 2.3

3 0.38 0.01 0.39 2.2

4 0.35 0.01 0.36 2.2

5 0.41 0.01 0.42 2.2

6 0.34 0.01 0.35 2.2

7 0.3 0.01 0.31 2.1

8 0.36 0.01 0.37 2.1

9 0.42 0.01 0.43 2.2

10 0.34 0.01 0.35 2.1

CSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 5

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.12 0.01 0.13 0.14

2 0.2 0.02 0.22 0.16

3 0.13 0.018 0.148 0.16

4 0.1 0.018 0.118 0.15

5 0.14 0.01 0.15 0.2

6 0.09 0.01 0.1 0.15

7 0.1 0.01 0.11 0.16

8 0.15 0.01 0.16 0.16

9 0.12 0.01 0.13 0.16

10 0.14 0.01 0.15 0.15

Table 4.13 lists the average total time for compression and decompression for both algorithms

for each test image.

96

Table 4. 13 - The Average Execution Time for Both Algorithms in Seconds

Figure 4.9 shows the total execution time needed for compression and decompression for each

of the image sets for the two algorithms. The Figure shows that the CSC algorithm has better

execution time for all image sets. Due to the CSC algorithm’s simplicity of implementation

and execution speed.

Figure 4. 9 - The Average Execution Time for Both Algorithms

4.6.2 Comparison Between the CSC Compression Size and Other State of the Art

Algorithm.

The CSC algorithm was tested as lossless compression technique and compared against other

benchmark scheme for natural images compression obtained from (Khan et al., 2017), the

0.32 0.44

0.05

0.37
0.14

0.45

0.97

0.1

2.19

0.16

0

0.5

1

1.5

2

2.5

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5

A
V

ER
A

G
E

EX
EC

U
TI

O
N

 T
IM

E
IN

 S
EC

O
N

D
S

IMAGE SETS

Executing Time for The Propsed CSC
algorithm VS Huffman Algorithm

CCS Execution Time Huffman Execution Time

The Proposed Lossless CSC Algorithm Average Execution Time
Huffman Average

Execution Time

Image Sets
Average

Compression Time

Average

De-Compression Time

Total

Execution Time

Total

Execution Time

Image Set 1 0.30 0.02 0.32 0.45

Image Set 2 0.42 0.02 0.44 0.97

Image Set 3 0.05 0.001 0.05 0.10

Image Set 4 0.36 0.01 0.37 2.19

Image Set 5 0.13 0.01 0.14 0.16

Average 0.25 0.01 0.26 0.77

97

comparison with the most recent state of the art algorithms is needed for a better evaluation for

the proposed algorithm results.

4.6.2.1 First Comparison for Natural Images Compression Size

Table 4.14 shows the compression sizes in KBs and the compression ratios Cr, for the basic

BWCA, KMTF based BWCA, JPEG 2000 LS, RCT-BWCA algorithm obtained from (Khan

et al., 2017) and the proposed CSC algorithm results.

Table 4. 14 - The Proposed Algorithm Results Compared with Other Four Algorithm Results

Image
BWCA KMTF - BWCA JPEG-2000 LS RCT - BWCA CSC

Size Cr Size Cr Size Cr Size Cr Size Cr

Knob & Bolt 765 1.510 750 1.540 487 2.370 381 3.020 320 3.609

Houses 1008 1.140 981 1.170 578 1.990 463 2.490 395 2.909

Landscape 1020 1.130 965 1.190 612 1.880 352 3.270 396 2.912

Light House 827 1.390 783 1.470 509 2.260 480 2.400 311 3.698

Barn 891 1.290 839 1.370 525 2.190 358 3.220 355 3.237

Parrots 791 1.460 739 1.560 447 2.580 346 3.330 297 3.882

Flowers & Sill 780 1.480 743 1.550 457 2.520 350 3.290 282 4.092

Six-Shooter 591 1.950 560 2.060 433 2.660 332 3.470 270 4.267

Motocross 991 1.160 947 1.220 574 2.010 244 4.720 376 3.059

Zentime 837 1.380 800 1.440 494 2.330 297 3.880 307 3.762

AVERAGE 850 1.39 811 1.46 512 2.28 360 3.31 331 3.54

As described in Figure 4.10, the proposed CSC algorithm achieved the best compression ratio.

The CSC has 0.23 better compression ratio than the RCT – BWCA and 1.26 more than the

JPEG 2000 LS Cr and 2.08 more than the KMTF – BWCA and 2.15 more than the basic BWCA

Cr. The CSC algorithm reach the best compression ratio due to the use of the Column

Subtraction Compression function, this function provides better compression ratio with high

resolution images more than the low-resolution images, since the intensity values in the high-

resolution image are very close and those images are represented with large number of colours.

98

Figure 4. 10 - Compression Ratio for the Five Algorithm

4.6.2.2 Second Comparison for Natural Images Compression Size

Table 4.15 lists the images compression size in KBs for the proposed CSC algorithm and the

lossless benchmark compression schemes for Kodak colour images obtained from (Khan et al.,

2017).

Table 4. 15 - Comparison Between the CSC and various benchmark systems in Term of Compressed

File Sizes of Kodak Colour Test Images (size in KBs)

SCHEME

KODAK TEST IMAGE

Total

Size

K
n

o
b

 &
 B

o
lt

H
o

u
se

s

L
a

n
d

sc
a

p
e

L
ig

h
t

H
o

u
se

B
a
r
n

P
a

rr
o

ts

F
lo

w
e
r
s

&

S
il

l

S
ix

-S
h

o
o

te
r

M
o

to
c
ro

ss

Z
e
n

ti
m

e

1

ADVANCE

COMP
608 422 495 493 477 666 460 468 614 451 5154

2 ALLUME 386 576 487 503 699 407 788 370 410 372 4998

3 BBWCA 381 463 352 480 308 346 350 332 244 297 3553

4 BCM 457 785 628 490 532 737 375 381 507 390 5282

5 BULK ZIP 450 710 372 441 753 613 469 751 482 603 5644

6 CAESIUM 475 422 496 518 797 500 706 407 736 411 5468

7 CSC 320 395 396 311 355 297 282 270 376 307 3310

8 C-MIX 453 510 457 497 625 520 761 666 657 456 5602

9 COMPRESSOR.IO 413 765 425 597 380 415 392 391 603 668 5049

10 CRUSH 409 692 556 536 544 795 646 612 583 376 5749

11 FILE MINIMIZER 560 758 471 521 740 681 691 596 573 495 6086

0

1

2

3

4

5
C

O
M

P
R

ES
SI

O
N

 R
A

TI
O

 C
R

KODACK IMAGES

Compression Ratio for the five
algorithm for the Kodak Image Set

BWCA KMTF - BWCA JPEG-2000 LS RCT - BWCA CCSC

99

12 FILE OPTIMIZER 409 432 721 665 559 502 401 447 618 518 5272

13 HEVC (x265) 403 493 343 487 397 538 326 418 462 353 4220

14 LZ4X 370 420 412 373 402 537 465 456 444 429 4308

15 MRP 497 760 550 511 513 791 534 474 628 409 5667

16 NANOZIP 475 556 472 519 446 543 490 431 551 715 5198

17 PAQ8PXD_V4 450 490 598 607 489 655 733 596 372 569 5559

18 UPACK 0.25 661 710 379 675 503 529 371 572 587 568 5555

19 WINRK 3.1.2 598 515 398 783 674 457 374 611 456 593 5459

20 ZCM 0.92 495 631 772 542 408 714 565 597 416 450 5590

As displayed in Figure 4.11, the best compression came with the proposed CSC algorithm with

a total size of 3310 KBs and a Cr with 3.54. The second-best algorithm is the BBWCA followed

by the HEVC. The CSC decrease the image size with 243 KBs more than the BBWCA and 910

KBs more than the HEVC.

Figure 4. 11 - Total Compression Size for the Kodak Image Set

4.6.2.3 Third Comparison for Raster Map Images Size

Navigation systems used the raster maps images that is mostly created by systems. This type

of images is represented by a lot of redundant data between the three image channels RGB,

which indicate that, the number of unique values that represent the raster map image is much

less than the number of unique values that represent the high-resolution images, such as natural

images. Map transmission efficiency can affect the navigation systems over wireless networks.

0
1000
2000
3000
4000
5000
6000
7000

A
D

V
A

N
C

E
C

O
M

P

A
LL

U
M

E

B
B

W
C

A

B
C

M

B
U

LK
 Z

IP

C
A

ES
IU

M

C
-M

IX

C
O

M
P

R
ES

SO
R

.I
O

C
R

U
SH

FI
LE

 M
IN

IM
IZ

ER

FI
LE

 O
P

TI
M

IZ
ER

H
EV

C
 (

x2
6

5
)

LZ
4

X

M
R

P

N
A

N
O

ZI
P

P
A

Q
8

P
X

D
_

V
4

U
P

A
C

K
 0

.2
5

W
IN

R
K

 3
.1

.2

ZC
M

 0
.9

2

C
C

S

To
ta

l C
o

m
p

re
ss

io
n

 S
iz

e

Scheme

Total Size After Compression

Total Size

100

The use of lossless image technique is important to achieve high quality image at

decompression phase. The proposed CSC algorithm reaches the best compression ratio with

the high-resolution images, and less compression ratio with low resolution image.

The proposed CSC was tested, and the results were compared with another raster map

benchmark scheme. The comparison is done with the JPEG-LS, PNG, GIF, Bi-level Burrows

BBWCA and BLiSE algorithm. Table 4.16 lists the compression size in KBs and the

compression ratio for the previous algorithms and the CSC algorithm for 10 raster map images

obtained from https://sites.google.com/site/qinzoucn/documents/.

Table 4. 16 - The CSC Results Compared with Other Four Algorithm Results

Image
JPEG-LS PNG GIF BLiSE BBWCA CSC

Size Cr Size Cr Size Cr Size Cr Size Cr Size Cr

Map 1 235.32 3.23 29.79 25.55 20.92 36.38 12.28 61.98 11.72 64.94 149 5.11

Map 2 188.88 4.35 28.00 29.32 17.57 46.73 10.04 81.78 10.40 78.95 136 6.04

Map 3 185.36 4.32 27.15 29.50 18.39 43.55 10.94 73.21 11.22 71.38 141 5.68

Map 4 88.82 9.43 11.08 75.62 8.38 99.98 3.72 225.22 3.57 234.68 120 6.98

Map 5 238.76 3.35 34.67 23.08 22.86 35.01 16.35 48.95 16.15 49.55 151 5.30

Map 6 228.04 3.62 30.23 27.32 17.90 46.14 11.08 74.54 12.76 64.73 147 5.62

Map 7 157.13 5.33 23.59 35.52 14.21 58.96 7.37 113.69 10.41 80.49 133 6.30

Map 8 254.97 3.19 36.58 22.25 23.61 34.47 18.10 44.96 15.36 52.98 154 5.29

Map 9 265.47 2.90 41.62 18.49 25.14 30.61 19.43 39.60 17.22 44.68 158 4.87

Map 10 215.75 3.56 34.38 22.33 22.29 34.44 14.56 52.72 14.45 53.12 149 5.15

Average 2058.5 4.32 297.09 30.89 191.3 46.62 123.9 81.66 123.3 79.55 143.8 5.63

As displayed in Figure 4.12, BLiSE outperforms all other algorithms, since the BLiSE

algorithm is designed for raster maps compression and the other algorithms are designed for

general images type compression. The CSC algorithm results is better than the JPEG-LS and

less than the other algorithms.

https://sites.google.com/site/qinzoucn/documents/

101

Figure 4. 12 - Average Compression Ratio for the Raster Map Image Set

4.6.3 Comparison Between the CSC Execution Time and Other State of the Art

Algorithms.

For the best results evaluation, the CSC algorithm was tested on the same environments as

(Khan et al., 2017) by using the software and hardware listed in Table 4.17 and compared with

the BWCA, KMTF-BWCA and RCT_BWCA obtained from (Khan et al., 2017).

Table 4. 17 - System Requirements

Hardware Software

Intel Core 2 Quad CPU @ 2.4

GHz

Windows XP OS

2 GB RAM MATLAB

1 GB Virtual Memory

Table 4.18 presents the compression needed time (CT) and the de compression needed time

(DCT) for the BWCA, KMTF – BWCA, and RCT – BWCA obtained from (Khan et al., 2017).

Table 4. 18 - Execution Time in Seconds for the Kodak Image Set for Different Algorithms

Image
BWCA KMTF - BWCA RCT - BWCA CSC Win Xp CSC Win 10

CT DCT CT DCT CT DCT CT DCT CT DCT

Knob & Bolt 16.46 23.76 17.21 25.39 17.7 28.06 1.43 0.1 0.35 0.01

Houses 16.32 21.32 17.07 24.82 19.77 27.8 1.79 0.1 0.34 0.01

Landscape 17.37 22.77 18.12 25.55 18.18 28.66 1.99 0.1 0.38 0.01

Light House 19.17 21.46 19.92 22.63 19.48 28.95 1.85 0.1 0.35 0.01

4.329

30.897

46.627

81.664 79.551

5.635

0

20

40

60

80

100

JPEG-LS PNG GIF BLiSE BBWCA CCS

C
o

m
p

re
ss

io
n

 R
at

io

Technique

Average Compression ratio for raster map
images

Average Cr

102

Barn 16.91 21.97 17.66 22.19 19.6 22.87 2.21 0.1 0.41 0.01

Parrots 16.78 22.9 17.53 25.98 19.95 29.23 1.69 0.1 0.34 0.01

Flowers & Sill 17.58 22.46 18.33 25.95 18.41 30.6 1.48 0.1 0.3 0.01

Six-Shooter 18.82 21.17 19.57 24.4 20.98 27.46 2.07 0.1 0.36 0.01

Motocross 16.07 23.85 16.82 28.09 19.14 30.5 2.03 0.1 0.42 0.01

Zentime 18.02 23.34 18.77 23.24 19.49 28.55 1.82 0.1 0.34 0.01

Sum 173.5 225 181 248.24 192.7 282.68 18.36 1 3.59 .01

Total 398.5 429.24 475.38 19.36 3.69

The CSC algorithm achieved the best execution time by having 19.36s for compression and

decompression together and save 379.14s more than the BWCA algorithm.

By running the CSC algorithm using win 10 operating system 64-bit with Intel core i7-7500U

CPU @2.70GHz with 8 GB RAM the execution time is dramatically decreased to 3.69s. Figure

4.13 display the total execution time for the four algorithms in seconds.

Figure 4. 13 - Total Execution Time for the Kodak Image Set

4.7 Chapter Summary

The aim of this chapter was to develop a lossless image compression algorithm, which

enhances the current state of the art compression ratio, with zero distortion and acceptable

execution time.

Many different lossless compression algorithms where created by different researchers, and all

of them restored the image exactly as it was before compression. Some of the lossless

approaches have high compression rates with slow performance, such as LZW, while in other

398.5
429.24

475.38

19.36

0

100

200

300

400

500

BWCA KMTF - BWCA RCT - BWCA CCSC Win Xp

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 In

 S
e

co
n

d
s

Algorithms

Total Execution Time

103

approaches, a high-performance speed with a lower compression ratio is achieved, such as the

Huffman algorithm.

To reach the optimal solution between compression time and saving bits, the CSC algorithm

where proposed.

By taking the best features from the fastest algorithm and the best features from the highest

compression rate algorithms, and at the same time, by avoiding using any slow function or

irreversible function, we created a novel lossless algorithm that enhanced the compression ratio

more than the state of the art algorithm from the literature review, with an acceptable executing

time and zero percentage of distortion.

• The proposed CSC algorithm is designed to work with any image format and resolution.

• The algorithm achieved the best compression ratio for natural images.

• The CSC algorithm achieved the best computational time due to its simplicity of

implementation and speed of execution.

The only disadvantage of the CSC algorithm is when applying the algorithm on raster map

images, the compression ratio is not the best, since the CSC algorithm gives better results for

the high-resolution images.

To solve this issue, the researcher proposed a new algorithm that enhanced the compression

ratio for the low-resolution images. The next chapter describe the solution in detail.

104

CHAPTER FIVE: THE PROPOSED LOSSLESS ALGORITHM FOR

RASTER MAP IMAGES COMPRESSION

5 Chapter Overview

This chapter describes in detail the proposed lossless Low-Resolution Column Subtraction

Compression algorithm (LRCSC). It starts with a detailed explanation of all the procedures

used in the proposed algorithm, followed by the validation of the algorithm by testing its

results, and a comparison of the newly developed algorithm with state-of-the-art algorithms.

5.1 Introducing the LRCSC Compression Algorithm

The lossless LRCSC algorithm is designed to work with any application and supports all image

formats whether the input image is of a high resolution or low-resolution. The CSC algorithm

provided the best compression ratio with the high-resolution images such as natural images and

less compression ratio when compressing low resolution images such as raster map images, to

solve this issue, the researcher designed an updated algorithm for the CSC algorithm, called

the Low-Resolution Column Subtraction Compression algorithm (LRCSC).

Once the raster map image is compressed by using the CSC algorithm, the resulted three

matrices should be represented with a smaller number of unique values with large areas of

contiguous colour; where the value is repeated often (Runs).

By using the Huffman algorithm as a post-processing phase for the CSC algorithm we should

represent the image unique values with a smaller weight for enhancing the current compression

ratio.

Then the RLE compression algorithm should take place for enhancing the compression ratio

even more by encoding the runs using their probabilities and values (value; probability).

By combining the CSC algorithm with the Huffman coding and RLE coding algorithms we

enhanced the current compression ratio.

The proposed LRCSC algorithm uses the following reversible procedures:

Let RMI be a coloured image referred to a Raster Map Image represented with three colour

matrices (R, G and B).The three matrices have the same resolution of mxn where m and n

represents the matrix dimensions (Row (m), Columns (n)) and (i,j) refers to the elements

coordinates. Dg refers to the transformed green matrix, Db refers to the transformed blue matrix

and TI referred to the Transformed Image.

3. Procedure transformation is to map the input natural image NI(R,G,B) from the RGB colour

space into RDgDb colour space. The transformation procedure output is an image with three

105

less coloration matrices, it maps the pixel values into new space that includes smaller values

TI(R,Dg,Db). The transformed matrices have the same dimensions of the input matrices (m x

n). Dg refers to the transformed green matrix, Db refers to the transformed blue matrix and TI

referred to the Transformed Image.

1. Procedure CCS Compression is to decrease the size of the transformed image TI(R,Dg,Db)

by using the column subtraction compression. where CRR refers to the compressed red

channel, CRG refers to the compressed green channel and CRB refers to the compressed blue

channel. The compression procedure output is the compressed image CI(CRR, CRG, CRB).

2. Procedure Negative Huffman: is to decrease the number of unique values that represent the

image to enhance the compression ratio for the next phase (Huffman coding). It starts by

creating a temporary dictionary file that saves the addresses for the negative values for the three

matrices from the previous phase (CRR, CRG, CRB) and multiply all of the negative values

by (-1). Followed by applying the Huffman algorithm for the positive three matrices

(Image_R1, Image_G1, Image_B1). Finally, restoring the negative values by using the

temporary dictionary file. The output of this procedure is three matrices (Image_R3,

Image_G3, Image_B3).

3. Procedure RLE: starts by applying the RLE algorithm on the three matrices from the previous

phase (Image_R3, Image_G3, Image_B3). The output of this procedure is three matrices

(Image_R4, Image_G4, Image_B4).

Algorithm 3 illustrates the raster map image compression procedures.

Algorithm3: LRCSC For Raster Map Images Compression

1: Procedure Transformation

2: input RMI: Raster Map Image RMI(R,G,B)

3: m = total rows number; n = total columns number;

4: // Dg, Db are (m X n) matrices of natural number;

5: // Dg matrix is resulted by subtracting the G matrix from the R matrix using the following

formula
Dg(row, column) = R(row, column) – G(row, column)

6: // Db matrix is resulted by subtracting the G matrix from the B matrix using the following

formula
 Db(row, column) = B(row, column) - G(row, column)

7: output: transformed image TI(R,Dg,Db)

8: End Procedure Transformation

1: Procedure Compression

2: input TI: transformed image TI(R,Dg,Db)

3: //CRR, CRG, CRB; are matrices of natural number

4: // CRR matrix is resulted by the following nested for loop

106

5: from the first column to the last column - 1

6: for all rows in the column do

7: CRR (row, column) = R(row, column) - R(row, column+1);

8: end

9: end

10: // CRG matrix is resulted by the following nested for loop

11: from the first column to the last column - 1

12: for all rows in the column do

13: CRG (row, column) = Dg(row, column) - Dg(row, column+1);

14: end

15: end

16: // CRB matrix is resulted by the following nested for loop

17: from the first column to the last column - 1

18: for all rows in the column do

19: CRB (row, column) = Db(row, column) - Db(row, column +1);

20: end

21: end

22: output: compressed image CI(CRR, CRG, CRB)

23: End Procedure Compression

1: Procedure Negative Huffman

2: input CI: compressed image CI(CRR, CRG, CRB)

3: // convert the values of the CRR,CRG,CRB matrices to positive integer values

4: if (CRR (row, column) < 0)

5: Image_R1 (row, column) = CRR(row, column) * -1

6: Dictionary_R (row, column) = 1

7: else

8: Dictionary_R (row, column) = 0

9: endif

10: if (CRG (row, column) < 0)

11: Image _G1(row, column) = CRG row, column) * -1

12: Dictionary_G (row, column) = 1

13: else

14: Dictionary_G (row, column) = 0

15: endif

16: if (CRB (row, column) < 0)

17: Image_B1 (row, column) = CRB (row, column) * -1

18: Dictionary_B (row, column) = 1

19: else

20: Dictionary_B (row, column) = 0

21: endif

22:// Huffman Coding

23: Image_R2 (row, column) = Huffman (Image_R1 (row, column))

24: Image_G2 (row, column) = Huffman (Image_G1 (row, column))

25: Image_B2 (row, column) = Huffman (Image_B1 (row, column))

26: // Restore the negative values

27: if (Dictionary_R(row, column) =1)

28: Image_R3 (row, column) = Image_R2 (row, column) * -1

29: endif

107

30: if (Dictionary_G (row, column) = 1)

31: Image_G3 (row, column) = Image_G2 (row, column) * -1

32: endif

33: if (Dictionary_B (row, column) = 1)

34: Image_B3 (row, column) = Image_B2 (row, column) * -1

35: endif

36: output: compressed matrices Image_R3, Image_G3, Image_B3

37:End Procedure Negative Huffman

1: Procedure RLE

2: input Image_R3, Image_G3, Image_B3

3: Image_R4 = RLE(Image_R3)

4: Image_G4 = RLE(Image_G3)

5 Image_B4 = RLE(Image_B3)

6: output: compressed matrices (Image_R4, Image_G4 and Image_B4)

7: End Procedure RLE

By implementing the LRCSC algorithm, we expect to decrease the image size and maintain

the image quality as it was before compression in a very fast time. Figure 5.1 shows the LRCSC

flowchart. The decompression algorithm used the following procedures for reconstructing the

compressed image as follows.

Algorithm4: LRCSC For Raster Map Images De-Compression

1: Procedure RLE Decompression

2: input compressed image matrices Image_R4, Image_G4, Image_B4

3: Image_R3 = De_RLE(Image_R4)

4: Image_G3 = De_RLE(Image_G4)

5: Image_B3 = De_RLE(Image_B4)

6: output: RLE De compressed matrices (Image_R3, Image_G3 and Image_B3)

7: End Procedure RLE Decompression

1: Procedure Negative Huffman

2:input three matrices (Image_R3, Image_G3 and Image_B3)

3: // convert the values of the Image_R3, Image_G3 and Image_B3 matrices to positive

integer values

4: if (Image_R3 (row, column) < 0)

5: Image_R2 (row, column) = Image_R3 (row, column) * -1

6: Dictionary_R (row, column) = 1

7: Else

8: Dictionary_R (row, column) = 0

9: endif

10: if (Image_G3 (row, column) < 0)

11: Image_G2 (row, column) = Image_G3 (row, column) * -1

12: Dictionary_G (row, column) = 1

13: Else

14: Dictionary_G (row, column) = 0

15: endif

16: if (Image_B3 (row, column) < 0)

108

17: Image_B2 (row, column) = Image_B3 (row, column) * -1

18: Dictionary_B (row, column) = 1

19: Else

20: Dictionary_B (row, column) = 0

21: endif

22 // Huffman Decoding

23: Image_R1 (row, column) = Huffman_Decoding (Image_R2 (row, column))

24: Image_G1 (row, column) = Huffman_Decoding (Image_G2 (row, column))

25: Image_B1 (row, column) = Huffman_Decoding (Image_B2 (row, column))

26: // Restore the negative values

27: if (Dictionary_R (row, column) = 1)

28: CRR (row, column) = Image_R2 (row, column) * -1

29: endif

30: if (Dictionary_G (row, column) = 1)

31: CRG (row, column) = Image_G2 (row, column) * -1

32: endif

33: if (Dictionary_B (row, column) = 1)

34: CRB (row, column) = Image_B2 (row, column) * -1

35: endif

36: output: CI(CRR, CRG, CRB)

37: End Procedure Negative Huffman

1: Procedure LRCSC Decompression

2: input compressed image CI(CRR, CRG, CRB)

3: m = total rows number; n = total columns number;

4: // R,Dg,Db are (m X n) matrices of natural number;

5: // R matrix is resulted by the following nested for loop

6: from the last column to the first column + 1

7: for all rows in the column do

8: R (row, column-1) = CRR(row, column) + CRR(row, column-1);

9: end

10: end

11: // Dg matrix is resulted by the following nested for loop

12: from the last column to the first column + 1

13: for all rows in the column do

14: Dg (row, column-1) = CRG(row, column) + CRG(row, column-1);

15: end

16: end

17: // Db matrix is resulted by the following nested for loop

18: from the last column to the first column + 1

19: for all rows in the column do

20: Db (row, column-1) = CRB(row, column) + CRB(row, column-1);

21: end

22: end

23: output: transformed image TI(R,Dg,Db)

24: End Procedure LRCSC Decompression

1: Procedure Revers Transformation

2 input R,Dg,Db; matrices of natural number

3: // R,G,B are (m X n) matrices of natural number

4: // G matrix is resulted by subtracting the Dg matrix from the R matrix

109

5: G(row, column) = R(row, column) – DG(row, column)

6: // B matrix is resulted by adding the G matrix values to the Db matrix values

7: B(row, column) = G(row, column) + DB(row, column)

8: output: reconstructed image RMI (R,G,B)

9: End Procedure Revers Transformation

5.2 The LRCSC Flowchart

Read Source Image(C3)
to determine its

Information

Start

Read Source Image to
determine its Information

Start

End

Matrix Dimensions
C1 = Column No

R1 = Row No
BD = Image_Bit_Depth

Image Red
Matrix

Transformation

Column Subtraction

Image Dg
Matrix

Image Db
Matrix

Image Red
Matrix

Image Green
Matrix

Image Blue
Matrix

Compressed
Image Red

Compressed
Image Dg

Compressed
Image Db

If BD = 8Yes

No

Image Matrix

Column Subtraction

Compressed
Image

Positive Integer Values

PI_Image_R PI_Image_G PI_Image_B

Temporary Dictionary

Positive Value Restoration

Positive Integer Values

PI_Image_R

Huffman

Huffman Huffman_Dictionary

Huff_R Huff_G Huff_B

P_Image_R P_Image_G P_Image_B

RLE

RLE_R RLE_G RLE_B

Huff_R

Positive Value Restoration

P_Image_R

RLE

RLE_R

Figure 5. 1 - LRCSC Lossless Algorithm Flowchart

110

5.3 Description of the LRCSC Algorithm

The algorithm starts with loading the source image to identify the matrix dimension and the

input image bit-depth, followed by a procedure to specify the suitable compression steps that

meet the input image; if the image bit-depth is equal to eight then the image cannot be

transformed, and will be sent to the subtraction function phase directly, and if the image bit-

depth is 24 then the image will be loaded to the transformation phase as a pre-processing to the

column subtraction function.

5.3.1 CSC Algorithm:

The first phase of the LRCSC is using the CSC algorithm for the input image as a pre-

processing phase. This phase is responsible for colour transformation and decreasing the image

size by using the column subtraction compression algorithm from the previous chapter. To

illustrate how the algorithm work, we used, and example as shown in Figure 5.2 which describe

the transformation for the three colours space by using sample example for 8x8 block obtained

from a raster map image.

Sample 8x8 for the Red Matrix (R)

=

R = Red Matrix R

255 255 255 128 255 255 128 255 255 255 255 128 255 255 128 255
255 255 255 255 128 128 128 128 255 255 255 255 128 128 128 128
255 255 255 128 128 128 255 255 255 255 255 128 128 128 255 255
255 128 128 128 128 255 128 255 255 128 128 128 128 255 128 255
255 255 128 128 128 255 255 128 255 255 128 128 128 255 255 128
255 255 128 128 255 255 255 128 255 255 128 128 255 255 255 128
255 128 128 128 128 128 128 128 255 128 128 128 128 128 128 128
255 128 128 255 255 255 128 128 255 128 128 255 255 255 128 128

Sample 8x8 for the Green Matrix (G)

➔

Dg = R - G

255 255 255 128 255 255 128 255 0 0 0 0 0 0 0 0
255 255 255 255 128 128 128 128 0 0 0 0 0 0 0 0
255 255 255 128 128 128 255 255 0 0 0 0 0 0 0 0
255 128 128 128 128 255 128 255 0 0 0 0 0 0 0 0
255 255 128 128 128 255 255 128 0 0 0 0 0 0 0 0
255 255 128 128 255 255 255 128 0 0 0 0 0 0 0 0
255 128 128 128 128 128 128 128 0 0 0 0 0 0 0 0
255 128 128 255 255 255 128 128 0 0 0 0 0 0 0 0

111

Sample 8x8 for the Blue Matrix (B)

➔

Db = B - G

255 255 255 0 255 255 0 255 0 0 0 -128 0 0 -128 0

255 255 255 255 0 0 0 0 0 0 0 0 -128 -128 -128 -128

255 255 255 0 0 0 255 255 0 0 0 -128 -128 -128 0 0

255 0 0 0 0 255 0 255 0 -128 -128 -128 -128 0 -128 0

255 255 0 0 0 255 255 0 0 0 -128 -128 -128 0 0 -128

255 255 0 0 255 255 255 0 0 0 -128 -128 0 0 0 -128

255 0 0 0 0 0 0 0 0 -128 -128 -128 -128 -128 -128 -128

255 0 0 255 255 255 0 0 0 -128 -128 0 0 0 -128 -128

Figure 5. 2 - Transformation Example

Figure 5.3 describe the invers transformation for the three colours space by using the

TI(R,Dg,Db) matrix from the transformed example for the three matrices.

R Matrix

=

R Matrix
255 255 255 128 255 255 128 255 255 255 255 128 255 255 128 255
255 255 255 255 128 128 128 128 255 255 255 255 128 128 128 128
255 255 255 128 128 128 255 255 255 255 255 128 128 128 255 255
255 128 128 128 128 255 128 255 255 128 128 128 128 255 128 255
255 255 128 128 128 255 255 128 255 255 128 128 128 255 255 128
255 255 128 128 255 255 255 128 255 255 128 128 255 255 255 128
255 128 128 128 128 128 128 128 255 128 128 128 128 128 128 128
255 128 128 255 255 255 128 128 255 128 128 255 255 255 128 128

Dg Matrix G = R - Dg
0 0 0 0 0 0 0 0

➔

255 255 255 128 255 255 128 255
0 0 0 0 0 0 0 0 255 255 255 255 128 128 128 128
0 0 0 0 0 0 0 0 255 255 255 128 128 128 255 255
0 0 0 0 0 0 0 0 255 128 128 128 128 255 128 255
0 0 0 0 0 0 0 0 255 255 128 128 128 255 255 128
0 0 0 0 0 0 0 0 255 255 128 128 255 255 255 128
0 0 0 0 0 0 0 0 255 128 128 128 128 128 128 128
0 0 0 0 0 0 0 0 255 128 128 255 255 255 128 128

Db Matrix

➔

B = G + Db
0 0 0 -128 0 0 -128 0 255 255 255 0 255 255 0 255
0 0 0 0 -128 -128 -128 -128 255 255 255 255 0 0 0 0
0 0 0 -128 -128 -128 0 0 255 255 255 0 0 0 255 255
0 -128 -128 -128 -128 0 -128 0 255 0 0 0 0 255 0 255
0 0 -128 -128 -128 0 0 -128 255 255 0 0 0 255 255 0
0 0 -128 -128 0 0 0 -128 255 255 0 0 255 255 255 0
0 -128 -128 -128 -128 -128 -128 -128 255 0 0 0 0 0 0 0
0 -128 -128 0 0 0 -128 -128 255 0 0 255 255 255 0 0

Figure 5. 3 - Invers Transformation Example

112

Figure 5.4 describe the CSC results for the three transformed matrix TI(R,Dg,Db).

Figure 5.5 describe the CSC decompression phase for the three compressed matrices

CI(CRR,CRG,CRB) to restore the TI(R,Dg,Db).

R Matrix

=

CRR Matrix
255 255 255 128 255 255 128 255 0 0 127 -127 0 127 -127 255

255 255 255 255 128 128 128 128 0 0 0 127 0 0 0 128

255 255 255 128 128 128 255 255 0 0 127 0 0 -127 0 255

255 128 128 128 128 255 128 255 127 0 0 0 -127 127 -127 255

255 255 128 128 128 255 255 128 0 127 0 0 -127 0 127 128

255 255 128 128 255 255 255 128 0 127 0 -127 0 0 127 128

255 128 128 128 128 128 128 128 127 0 0 0 0 0 0 128

255 128 128 255 255 255 128 128 127 0 -127 0 0 127 0 128

Dg Matrix CRG Matrix
0 0 0 0 0 0 0 0

➔

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Db Matrix CRB Matrix
0 0 0 -128 0 0 -128 0

➔

0 0 128 -128 0 128 -128 0

0 0 0 0 -128 -128 -128 -128 0 0 0 128 0 0 0 -128

0 0 0 -128 -128 -128 0 0 0 0 128 0 0 -128 0 0

0 -128 -128 -128 -128 0 -128 0 128 0 0 0 -128 128 -128 0

0 0 -128 -128 -128 0 0 -128 0 128 0 0 -128 0 128 -128

0 0 -128 -128 0 0 0 -128 0 128 0 -128 0 0 128 -128

0 -128 -128 -128 -128 -128 -128 -128 128 0 0 0 0 0 0 -128

0 -128 -128 0 0 0 -128 -128 128 0 -128 0 0 128 0 -128

Figure 5. 4 - CSC Example

113

5.3.2 Negative Value Removing

This phase is responsible for converting the resulted matrix from the CSC algorithm phase

CI(CRR,CRG,CRB) into positive integer values matrices by using a temporary dictionary file

to avoid any distortion during the recovery phase. As displayed in Figure 5.6 the dictionary file

is a matrix of the same sample example dimension 8x8 and represent the positive values with

zero’s and the negative values with one’s.

CRR Temporary Dictionary File
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

CRR Matrix

=

R Matrix
0 0 127 -127 0 127 -127 255 255 255 255 128 255 255 128 255
0 0 0 127 0 0 0 128 255 255 255 255 128 128 128 128
0 0 127 0 0 -127 0 255 255 255 255 128 128 128 255 255

127 0 0 0 -127 127 -127 255 255 128 128 128 128 255 128 255
0 127 0 0 -127 0 127 128 255 255 128 128 128 255 255 128
0 127 0 -127 0 0 127 128 255 255 128 128 255 255 255 128

127 0 0 0 0 0 0 128 255 128 128 128 128 128 128 128
127 0 -

127
0 0 127 0 128 255 128 128 255 255 255 128 128

CRG Matrix Dg Matrix
0 0 0 0 0 0 0 0

➔

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CRB Matrix Db Matrix
0 0 128 -128 0 128 -128 0

➔

0 0 0 -128 0 0 -128 0

0 0 0 128 0 0 0 -128 0 0 0 0 -128 -128 -128 -128

0 0 128 0 0 -128 0 0 0 0 0 -128 -128 -128 0 0

128 0 0 0 -128 128 -128 0 0 -128 -128 -128 -128 0 -128 0

0 128 0 0 -128 0 128 -128 0 0 -128 -128 -128 0 0 -128

0 128 0 -128 0 0 128 -128 0 0 -128 -128 0 0 0 -128

128 0 0 0 0 0 0 -128 0 -128 -128 -128 -128 -128 -128 -128

128 0 -128 0 0 128 0 -128 0 -128 -128 0 0 0 -128 -128

Figure 5. 5 - CSC Decompression Example

114

CRG Temporary Dictionary File
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

CRB Temporary Dictionary File
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1

Figure 5. 6 - Negative Values Temporary Dictionary File

Each of the negative value in (CRR, CRG and CRB) should be multiplied by (-1) to produce

three positive values matrices (Image R1, Image G1 and Image B1) as displayed in Figure 5.7.

CRR

➔

Image R1
0 0 127 -127 0 127 -127 255 0 0 127 127 0 127 127 255
0 0 0 127 0 0 0 128 0 0 0 127 0 0 0 128
0 0 127 0 0 -127 0 255 0 0 127 0 0 127 0 255

127 0 0 0 -127 127 -127 255 127 0 0 0 127 127 127 255
0 127 0 0 -127 0 127 128 0 127 0 0 127 0 127 128
0 127 0 -127 0 0 127 128 0 127 0 127 0 0 127 128

127 0 0 0 0 0 0 128 127 0 0 0 0 0 0 128
127 0 -127 0 0 127 0 128 127 0 127 0 0 127 0 128

CRG

➔

Image G1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CRB

➔

Image B1
0 0 128 -128 0 128 -128 0 0 0 128 128 0 128 128 0
0 0 0 128 0 0 0 -128 0 0 0 128 0 0 0 128
0 0 128 0 0 -128 0 0 0 0 128 0 0 128 0 0

128 0 0 0 -128 128 -128 0 128 0 0 0 128 128 128 0
0 128 0 0 -128 0 128 -128 0 128 0 0 128 0 128 128
0 128 0 -128 0 0 128 -128 0 128 0 128 0 0 128 128

128 0 0 0 0 0 0 -128 128 0 0 0 0 0 0 128
128 0 -128 0 0 128 0 -128 128 0 128 0 0 128 0 128

Figure 5. 7 - Positive Values Matrices

The new three matrices are represented with a smaller number of unique values after

eliminating the negative values and they are ready to be compressed by the Huffman algorithm.

115

5.3.3 Huffman Algorithm

This phase is responsible for decreasing the intensities values that represents the image by

applying Huffman algorithm on the positive matrixes. Huffman algorithm starts by measuring

the frequency of occurrence for each symbol (giving for each intensity its weight), and then

gives prefix codes to those symbols according to their probabilities (creates a frequency Table

of the symbols). Shorter codes will be assigned to the more frequently occurring symbols while

larger codes will be assigned to the less frequently occurring symbol c. Figure 5.8 displays the

Huffman dictionary files for the three matrices.

Image R1

➔

Image R1 Dictionary File
0 0 127 127 0 127 127 255 Unique Values frequency weight
0 0 0 127 0 0 0 128 0 35 0
0 0 127 0 0 127 0 255 127 21 1

127 0 0 0 127 127 127 255 128 5 2
0 127 0 0 127 0 127 128 255 3 3
0 127 0 127 0 0 127 128

127 0 0 0 0 0 0 128
127 0 127 0 0 127 0 128

Image G1

➔

Image G1 Dictionary File
0 0 0 0 0 0 0 0 Unique Values frequency weight
0 0 0 0 0 0 0 0 0 64 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Image B1

➔

Image B1 Dictionary File
0 0 128 128 0 128 128 0 Unique Values frequency weight
0 0 0 128 0 0 0 128 0 38 0
0 0 128 0 0 128 0 0 128 26 1

128 0 0 0 128 128 128 0
0 128 0 0 128 0 128 128
0 128 0 128 0 0 128 128

128 0 0 0 0 0 0 128
128 0 128 0 0 128 0 128

Figure 5. 8 - Huffman Dictionary Files

The Huffman dictionary files are used to replace each of the three matrices values with their

related weight to produce a new smaller size matrix (Image R2, Image G2 and Image B2) as

displayed in Figure 5.9.

116

Image R1

➔

Image R2
0 0 127 127 0 127 127 255 0 0 1 1 0 1 1 3
0 0 0 127 0 0 0 128 0 0 0 1 0 0 0 2
0 0 127 0 0 127 0 255 0 0 1 0 0 1 0 3

127 0 0 0 127 127 127 255 1 0 0 0 1 1 1 3
0 127 0 0 127 0 127 128 0 1 0 0 1 0 1 2
0 127 0 127 0 0 127 128 0 1 0 1 0 0 1 2

127 0 0 0 0 0 0 128 1 0 0 0 0 0 0 2
127 0 127 0 0 127 0 128 1 0 1 0 0 1 0 2

Image G1

➔

Image G2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Image B1

➔

Image B2
0 0 128 128 0 128 128 0 0 0 1 1 0 1 1 0
0 0 0 128 0 0 0 128 0 0 0 1 0 0 0 1
0 0 128 0 0 128 0 0 0 0 1 0 0 1 0 0

128 0 0 0 128 128 128 0 1 0 0 0 1 1 1 0
0 128 0 0 128 0 128 128 0 1 0 0 1 0 1 1
0 128 0 128 0 0 128 128 0 1 0 1 0 0 1 1

128 0 0 0 0 0 0 128 1 0 0 0 0 0 0 1
128 0 128 0 0 128 0 128 1 0 1 0 0 1 0 1

Figure 5. 9 - Huffman Results

5.3.4 Negative Value Restoration

After decreasing the number of unique values by using Huffman algorithm from the previous

phase, the algorithm should restore the negative values by using the temporary dictionary files,

to avoid any distortion. Figure 5.10 displays the resulted matrices (Image R3, Image G3 and

Image B3).

Image R2

➔

Image R3
0 0 1 1 0 1 1 3 0 0 1 -1 0 1 -1 3
0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 2
0 0 1 0 0 1 0 3 0 0 1 0 0 -1 0 3
1 0 0 0 1 1 1 3 1 0 0 0 -1 1 -1 3
0 1 0 0 1 0 1 2 0 1 0 0 -1 0 1 2
0 1 0 1 0 0 1 2 0 1 0 -1 0 0 1 2
1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 2
1 0 1 0 0 1 0 2 1 0 -1 0 0 1 0 2

117

Image G2

➔

Image G3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Image B2

➔

Image B3
0 0 1 1 0 1 1 0 0 0 1 -1 0 1 -1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 -1
0 0 1 0 0 1 0 0 0 0 1 0 0 -1 0 0
1 0 0 0 1 1 1 0 1 0 0 0 -1 1 -1 0
0 1 0 0 1 0 1 1 0 1 0 0 -1 0 1 -1
0 1 0 1 0 0 1 1 0 1 0 -1 0 0 1 -1
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 -1
1 0 1 0 0 1 0 1 1 0 -1 0 0 1 0 -1

Figure 5. 10 - Restoring the Negative Values

For Huffman decompression, we need to create a temporary dictionary file for the negative

values for the three matrices (Image R3, Image GR3 and Image B3) to convert the three

matrices values into positive values. Figure 5.11 display the temporary dictionary files for the

three matrices.

CRR Temporary Dictionary File

0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

CRG Temporary Dictionary File
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

CRB Temporary Dictionary File
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1

Figure 5. 11 - Negative Values Temporary Dictionary File

118

After creating the dictionary files, we can convert each of the negative value in (Image R3,

Image GR3 and Image B3) by multiplying by (-1) to produce three positive values matrices

(Image R1_P, Image G1_P and Image B1_P) as displayed in Figure 5.12.

Image R3

➔

Image R3_P

0 0 1 -1 0 1 -1 3 0 0 1 1 0 1 1 3
0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 2
0 0 1 0 0 -1 0 3 0 0 1 0 0 1 0 3
1 0 0 0 -1 1 -1 3 1 0 0 0 1 1 1 3
0 1 0 0 -1 0 1 2 0 1 0 0 1 0 1 2
0 1 0 -1 0 0 1 2 0 1 0 1 0 0 1 2
1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 2
1 0 -1 0 0 1 0 2 1 0 1 0 0 1 0 2

Image G3

➔

Image G3_P
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Image B3

➔

Image B3_P
0 0 1 -1 0 1 -1 0 0 0 1 1 0 1 1 0
0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 1
0 0 1 0 0 -1 0 0 0 0 1 0 0 1 0 0
1 0 0 0 -1 1 -1 0 1 0 0 0 1 1 1 0
0 1 0 0 -1 0 1 -1 0 1 0 0 1 0 1 1
0 1 0 -1 0 0 1 -1 0 1 0 1 0 0 1 1
1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 1
1 0 -1 0 0 1 0 -1 1 0 1 0 0 1 0 1

Figure 5. 12 - Positive Values matrices

The three matrices are ready to be decoded by Huffman decompression phase, by using the

Huffman dictionary files we can replace each weight by its original value for the three matrices

as displayed in Figure 5.13.

Image R3_P

➔

Image R3_PHD
0 0 1 1 0 1 1 3 0 0 127 127 0 127 127 255
0 0 0 1 0 0 0 2 0 0 0 127 0 0 0 128
0 0 1 0 0 1 0 3 0 0 127 0 0 127 0 255
1 0 0 0 1 1 1 3 127 0 0 0 127 127 127 255
0 1 0 0 1 0 1 2 0 1 0 0 127 0 127 128
0 1 0 1 0 0 1 2 0 1 0 127 0 0 127 128
1 0 0 0 0 0 0 2 127 0 0 0 0 0 0 128
1 0 1 0 0 1 0 2 127 0 127 0 0 127 0 128

119

Image G3_P Image G3_PHD
0 0 0 0 0 0 0 0

➔

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Image B3_P Image B3_PHD
0 0 1 1 0 1 1 0

➔

0 0 128 128 0 128 128 0
0 0 0 1 0 0 0 1 0 0 0 128 0 0 0 128
0 0 1 0 0 1 0 0 0 0 128 0 0 128 0 0
1 0 0 0 1 1 1 0 128 0 0 0 128 128 128 0
0 1 0 0 1 0 1 1 0 128 0 0 128 0 128 128
0 1 0 1 0 0 1 1 0 128 0 128 0 0 128 128
1 0 0 0 0 0 0 1 128 0 0 0 0 0 0 128
1 0 1 0 0 1 0 1 128 0 128 0 0 128 0 128

Figure 5. 13 - Huffman Decompression Results

The final steep of Huffman decompression phase is to restore the negative values by using the

temporary dictionary file for each matrix as displayed in Figure 5.14.

.

Image R3_PHD CRR Matrix
0 0 127 127 0 127 127 255

➔

0 0 127 -127 0 127 -127 255
0 0 0 127 0 0 0 128 0 0 0 127 0 0 0 128
0 0 127 0 0 127 0 255 0 0 127 0 0 -127 0 255

127 0 0 0 127 127 127 255 127 0 0 0 -127 127 -127 255
0 1 0 0 127 0 127 128 0 1 0 0 -127 0 127 128
0 1 0 127 0 0 127 128 0 1 0 -127 0 0 127 128

127 0 0 0 0 0 0 128 127 0 0 0 0 0 0 128
127 0 127 0 0 127 0 128 127 0 -127 0 0 127 0 128

Image G3_PHD CRG Matrix

0 0 0 0 0 0 0 0

➔

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Image B3_PHD CRB Matrix

0 0 128 128 0 128 128 0

➔

0 0 128 -128 0 128 -128 0
0 0 0 128 0 0 0 128 0 0 0 128 0 0 0 -128
0 0 128 0 0 128 0 0 0 0 128 0 0 -128 0 0

128 0 0 0 128 128 128 0 128 0 0 0 -128 128 -128 0
0 128 0 0 128 0 128 128 0 128 0 0 -128 0 128 -128
0 128 0 128 0 0 128 128 0 128 0 -128 0 0 128 -128

128 0 0 0 0 0 0 128 128 0 0 0 0 0 0 -128
128 0 128 0 0 128 0 128 128 0 -128 0 0 128 0 -128

Figure 5. 14 - Huffman Positive Values matrices

120

5.3.5 RLE

Since the resulted matrices from the previous phase are represented by less unique values, the

RLE compression algorithm is applied to decrease the image size dramatically by scanning the

image to find the runs (pixels with the same value); the runs should be encoded by their

probabilities and values (value; probability) this value with its probability is called a unit. The

best RLE results come with the images that have large areas of contiguous colour (where the

value is repeated often) (Husseen, Mahmud and Mohammed, 2017). Figure 5.15 display the

RLE results for the three matrices (Image R4, Image G4 and Image B4).

Image R3
0 0 1 -1 0 1 -1 3
0 0 0 1 0 0 0 2
0 0 1 0 0 -1 0 3
1 0 0 0 -1 1 -1 3
0 1 0 0 -1 0 1 2
0 1 0 -1 0 0 1 2
1 0 0 0 0 0 0 2
1 0 -1 0 0 1 0 2

Image R4

3 1 2 2 4 2 2 1 1 1 4 2 1 3 1 5 2 3 1 1 1 1 3 1 1 2 1 2 2 1 1 2 4

0 1 0 1 0 1 0 1 0 1 0 -1 1 0 -1 0 -1 0 1 0 -1 1 0 1 -1 0 -1 1 0 3 2 3 2

Image B4

3 1 2 2 4 2 2 1 1 1 4 2 1 3 1 5 2 3 1 1 1 1 3 1 1 2 1 2 3 1 2 4

0 1 0 1 0 1 0 1 0 1 0 -1 1 0 -1 0 -1
0 1 0 -1 1 0 1 -1 0 -1 1 0 -

1

0 -1

Figure 5. 15 - RLE Results

Image G3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Image

G4

64

0

121

5.4 LRCSC Time Complexity
A simplified time-complexity analysis for the LRCSC algorithm is elaborated based on Big-O

notation.

5.4.1 LRCSC algorithm Time Complexity Analyses

The LRCSC algorithm starts by loading the input (R,G,B) image to identifies the matrix size

n. Then the transformation is used to map the (R,G,B) image into new colour space (R,Dg,Db)

by using the transformation equations as a second phase. followed by the Huffman encoding

as the third compression phase and the RLE compression algorithm as a final phase.

Table 5.1 lists the time complexity for each of the LRCSC algorithm phases by using the O

notation.

Table 5.1 - LRCSC Algorithm Complexity

Line Description O

1 Procedure Transformation -

2 input RMI: Raster Map Image RMI(R,G,B) O(n2)

3 M = total rows number; N = total columns number; O(1)

5 Dg(row, column) = R(row, column) – G(row, column) O(n2)

6 Db(row, column) = B(row, column) - G(row, column) O(n2)

1 Procedure Compression -

2 input TI: transformed image TI(R,Dg,Db) O(n2)

7 CRR (row, column) = R(row, column - R(row, column+1); O(n2)

13 CRG (row, column) = Dg(row, column) - Dg(row, column+1); O(n2)

19 CRB (row, column) = Db(row, column) - Db(row, column +1); O(n2)

1 Procedure Negative Huffman -

2 input CI: compressed image CI(CRR, CRG, CRB) O(n2)

5 Image_R1 (row, column) = CRR(row, column) * -1 O(n2)

6 Create the Dictionary_R O(n2)

11 Image _G1(row, column) = CRG row, column) * -1 O(n2)

12 Create the Dictionary_G O(n2)

17 Image_B1 (row, column) = CRB (row, column) * -1 O(n2)

18 Create the Dictionary_B O(n2)

23 Image_R2 (row, column) = Huffman (Image_R1 (row, column)) O(nlogn)

24 Image_G2 (row, column) = Huffman (Image_G1 (row, column)) O(nlogn)

25 Image_B2 (row, column) = Huffman (Image_B1 (row, column)) O(nlogn)

122

28 Image_R3 (row, column) = Image_R2 (row, column) * -1 O(n2)

31 Image_G3 (row, column) = Image_G2 (row, column) * -1 O(n2)

34 Image_B3 (row, column) = Image_B2 (row, column) * -1 O(n2)

1 Procedure RLE -

2 input Image_R3, Image_G3, Image_B3 O(n2)

3 Image_R4 = RLE(Image_R3) O(n)

4 Image_G4 = RLE(Image_G3) O(n)

5 Image_B4 = RLE(Image_B3) O(n)

1 Procedure RLE Decompression -

2 input compressed image matrices Image_R4, Image_G4, Image_B4 O(n2)

3 Image_R3 = De_RLE(Image_R4) O(n)

4 Image_G3 = De_RLE(Image_G4) O(n)

5 Image_B3 = De_RLE(Image_B4) O(n)

1 Procedure Negative Huffman Decoding -

2 input three matrices (Image_R3, Image_G3 and Image_B3) O(n2)

5 Image_R2 (row, column) = Image_R3 (row, column) * -1 O(n2)

6 Create the Dictionary_R O(n2)

11 Image_G2 (row, column) = Image_G3 (row, column) * -1 O(n2)

12 Create the Dictionary_G O(n2)

17 Image_B2 (row, column) = Image_B3 (row, column) * -1 O(n2)

18 Create the Dictionary_B O(n2)

23 Image_R1 (row, column) = Huffman_Decoding (Image_R2 (row, column)) O(nlogn)

24 Image_G1 (row, column) = Huffman_Decoding (Image_G2 (row, column)) O(nlogn)

25 Image_B1 (row, column) = Huffman_Decoding (Image_B2 (row, column)) O(nlogn)

28 CRR (row, column) = Image_R2 (row, column) * -1 O(n2)

31 CRG (row, column) = Image_G2 (row, column) * -1 O(n2)

34 CRB (row, column) = Image_B2 (row, column) * -1 O(n2)

1 Procedure LRCSC Decompression -

2 input compressed image CI(CRR, CRG, CRB) O(n2)

3 M = total rows number; N = total columns number; O(1)

8 R (row, column-1) = CRR(row, column) + CRR(row, column-1) O(n2)

14 Dg (row, column-1) = CRG(row, column) + CRG(row, column-1) O(n2)

123

20 Db (row, column-1) = CRB(row, column) + CRB(row, column-1) O(n2)

1 Procedure Revers Transformation -

2 input R,Dg,Db; matrices of natural number O(n2)

5 G(row, column) = R(row, column) – DG(row, column) O(n2)

7 B(row, column) = G(row, column) + DB(row, column) O(n2)

The growth rate function in terms of time for the LRCSC components is analysed as:

5- The growth rate function of the transformation component is

f(n) = 3O(n2) + O(1) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

6- The growth rate function of the LRCSC component is

The second phase of the algorithm is to compress the R,Dg,Db image by using the CSC

function. This phase is to apply the CSC function for each of the three matrices

individually. For each colour space we used nested two loops. The outer loop runs n

times and the inner loop runs n times for each iteration of the outer loop; this indicate

that, this function will be running for n2 total times, thus the function is running O(n2)

time for each colure and the complexity of this phase is

f(n) = 4 O(n2) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

7- The growth rate function of the Negative Huffman component is

f(n) = 10 O(n2) + 3 O(n log n) Therefore, the overall rate of growth for this component is

f(n) = O(n2) + O(n log n) after removing the constants.

8- The growth rate function of the RLE component is

 f(n) = 3O(n) + O(n2) Therefore, the overall rate of growth for this component is

f(n) = O(n)+ O(n2) after removing the constants.

The decompression phase is to reconstruct the image by using four reversable procedures.

1- The growth rate function of the RLE decompression component is

f(n) = 3O(n) + O(n2) Therefore, the overall rate of growth for this component is

f(n) = O(n) + O(n2) after removing the constants.

9- The growth rate function of the Negative Huffman decoding component is

f(n) = 10 O(n2) + 3 O(n log n) Therefore, the overall rate of growth for this component

is f(n) = O(n2) + O(n log n) after removing the constants.

124

10- The growth rate of the LRCSC decompression component is

f(n) = 4On2 + O(1) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

11- The growth rate of the invers transformation component is

f(n) = 3 O(n2) Therefore, the overall rate of growth for this component is

f(n) = O(n2) after removing the constants.

After approximating the computation complexity for the individual components of the system,

the overall complexity is calculated by summing up the overhead for the individual parts.

f(n) = [O(n2)] +[O(n2)]+ [O(n2) + O(n log n)] + [O(n)+ O(n2)] +

 [O(n)+ O(n2)] + [O(n2) + O(n log n)] + [O(n2))] + [O(n2))].

f(n) = 2 O(n) + 8 O(n2) + 2 O(n log n))

Therefore, the overall complexity of the algorithm is:

f(n) = O(n) + O(n2) + O(n log n)) after removing the constants.

5.4.2 Proof

Assume that g(n) = n, the time complexity of f (n) is O(n). To proof that f (n) in Equation 3.1

is O(g(n)), we will apply the limit to find a constant c > 0.

We have f(n) = O(n) + O(n2) + O(n log n)) and g(n) = n. That is

lim
𝑛→∞

𝑓(𝑛)

g(𝑛)

lim
𝑛→∞

 𝑛 + 𝑛2 + 𝑛 log 𝑛

𝑛

lim

𝑛→∞
(𝑛 + log 𝑛)

As the proof shows, there is a constant c > 0 that satisfy the limit in the proof theorem. Since

n0 must be positive integer, we can say the f (n) in Equation 3.1 is O(n + log n), for n >=n.

5.5 Validation and Testing

After implementing the algorithm, the compression performance needed to be evaluated and

then compare the proposed algorithm results with other state-of-the-art results regarding using

the main three parameters that may affect any compression algorithm, namely: compression

size, image quality and execution time. Using our testbed, we are going to evaluate the CSC

algorithm based on:

1- The compressed image size by calculating the compression ratio.

125

2- The image quality by calculating the (MSE and PSNR).

3- The algorithm execution time by using the Tic-Toc matlab function.

5.5.1 The LRCSC Algorithm Compression Size

Table 5.2 lists the compression ratio Cr, Compression rate and the algorithm storage saving

percentage resulting from applying the LRCSC algorithm on the five image sets. The

compression algorithm should provide a compressed image size smaller than the original

image.

Table 5.2 - The Lossless LRCSC Algorithm Compression Size

Image Set 1

Image Format Resolution
Original

Size in KBs
New Size

in KBS
Compression

Ratio (CR)
Compression

Rate
Storage

Saving %

Baboon GIF 512*512 225 94 2.394 0.418 58.22

Barbara PNG 512*512 230 154 1.494 0.670 33.04

Boats PNG 512*512 239 148 1.615 0.619 38.08

Boats BMP 720*576 368 201 1.831 0.546 45.38

Camera Man BMP 256*256 60 35 1.714 0.583 41.67

Camera Man GIF 256*256 56 32 1.750 0.571 42.86

House PNG 256*256 59 30 1.967 0.508 49.15

Lena PNG 256*256 59 32 1.844 0.542 45.76

Lena JPG 512*512 226 112 2.018 0.496 50.44

Image Set 2

Image Format Resolution
Original

Size in KBs
New Size

in KBS
Compression

Ratio (CR)
Compression

Rate
Storage

Saving %

Lena PNG 330*330 290 159 1.824 0.548 45.17

Lena BMP 220*220 129 49 2.633 0.380 62.02

Lena JPG 225*225 135 51 2.647 0.378 62.22

Airplane BMP 512*512 751 354 2.121 0.471 52.86

Baboon BMP 500*480 599 451 1.328 0.753 24.71

Barbara BMP 720*576 1064 474 2.245 0.445 55.45

Boats BMP 787*576 1148 543 2.114 0.473 52.70

Goldhill BMP 720*576 1031 452 2.281 0.438 56.16

Pepper BMP 512*512 651 451 1.443 0.693 30.72

Image Set 3

Image Format Resolution
Original

Size in KBs
New Size

in KBS
Compression

Ratio (CR)
Compression

Rate
Storage

Saving %

Medic JPG 168*90 32 10 3.200 0.313 68.75

Medic1 JPG 160*90 24 9 2.667 0.375 62.50

Butterfly JPG 128*85 20 16 1.250 0.800 20.00

Mountain JPG 128*96 28 14 2.000 0.500 50.00

swarm JPG 128*85 25 14 1.786 0.560 44.00

Lake_jpg JPG 128*85 25 15 1.667 0.600 40.00

Saturn_jpg JPG 128*100 19 11 1.727 0.579 42.11

Earth_jpg JPG 225*225 78 46 1.696 0.590 41.03

boat_jpg JPG 128*85 25 13 1.923 0.520 48.00

126

Waterfall JPG 128*96 26 16 1.625 0.615 38.46

Eagle JPG 128*96 17 8 2.125 0.471 52.94

Grand_Sone JPG 128*96 28 15 1.867 0.536 46.43

Car JPG 128*85 28 11 2.545 0.393 60.71

Shape JPG 128*95 31 19 1.632 0.613 38.71

Image Set 4

Image Format Resolution
Original

Size in KBs
New Size

in KBS
Compression

Ratio (CR)
Compression

Rate
Storage

Saving %

Knob & Bolt PNG 768*512 1155 455 2.536 0.394 60.606

Houses PNG 768*512 1149 535 2.149 0.466 53.438

Landscape PNG 768*512 1153 548 2.106 0.475 52.472

Light House PNG 768*512 1150 469 2.450 0.408 59.217

Barn PNG 768*512 1149 502 2.290 0.437 56.310

Parrots PNG 768*512 1153 438 2.632 0.380 62.012

Flowers & Sill PNG 768*512 1154 418 2.763 0.362 63.778

Six-Shooter PNG 768*512 1152 337 3.416 0.293 70.747

Motocross PNG 768*512 1150 519 2.216 0.451 54.870

Zentime PNG 768*512 1155 440 2.627 0.381 61.905

Image Set 5

Image Format Resolution
Original

Size in KBs
New Size

in KBS
Compression

Ratio (CR)
Compression

Rate
Storage

Saving %

Map 1 BMP 600*480 761 35 21.47 0.05 95.40

Map 2 BMP 600*480 821 30 27.53 0.04 96.35

Map 3 BMP 600*480 801 28 28.37 0.03 96.50

Map 4 BMP 600*480 838 11 78.39 0.01 98.69

Map 5 BMP 600*480 800 40 19.91 0.05 95.00

Map 6 BMP 600*480 826 43 19.07 0.05 94.79

Map 7 BMP 600*480 838 28 29.85 0.03 96.66

Map 8 BMP 600*480 814 40 20.59 0.05 95.09

Map 9 BMP 600*480 769 49 15.77 0.06 93.63

Map 10 BMP 600*480 768 36 21.46 0.05 95.31

As listed in Table 5.3, the LRCSC algorithm dramatically decreases the image size for all the

image sets. In image sets 1 and 2, the average compression ratios were 1.847 and 2.071

respectively, which indicates that the algorithm saved in terms of storage 44.95% from the first

image set and 49.1% from the original size of the second image set. By observing the third

image set results, the algorithm achieved the lowest compression ratio of 1.979, since this

image set is already compressed by the JPEG algorithm; however, the algorithm decreases the

JPEG images from the third image set as well, by saving 46.68% from the original image’s

size. The Cr resulted from the fourth image set is 2.52 and saved 59.54% from the original

image size. The best Cr came with compressing the fifth image set by having 28.245 Cr and

saves 95.74% from the original image set size, since this algorithm as designed for low

resolution images such as raster map images.

127

Table 5.3 - The Lossless LRCSC Algorithm Average Compression Size

Image Sets
Average Compression

Ratio CR

Average Compression

Rate

Average Storage

Saving %

Image Set 1
1.847 0.550 44.956

Image Set 2
2.071 0.509 49.113

Image Set 3
1.979 0.533 46.688

Image Set 4
2.52 0.40 59.54

Image Set 5
28.245 0.043 95.744

Average 7.33 0. 4 59.28

Figure 5.16 shows the compression storage saving for the proposed lossless algorithm LRCSC.

By observing the results for each of the image set, we conclude that the LRCSC algorithm

decreases the image size by different percentages for different images types and different

images resolution. The best results came with the fifth image set, since the LRCSC algorithm

is designed for low resolution images.

Figure 5. 16 - The LRCSC Algorithm Storage Saving

44.956
49.113 46.688

59.54

95.744

0

20

40

60

80

100

120

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5

Sa
vi

n
g

P
e

rc
e

n
ta

ge

Image Sets

Average Storage Saving %

128

5.5.2 The LRCSC Algorithm Image Quality.

For distortion assessment, we used the following two metrics:

i. Mean Squared Error (MSE).

ii. Peak Signal to Noise Ratio (PSNR).

Table 5.4 lists the average MSE and PSNR for the five image sets after applying the LRCSC

algorithm.

Table 5.4 - Image Quality Average Results for the Lossless LRCSC Algorithm

Image Sets Average (MSE) Average (PSNR)

Image Set 1 0 Inf

Image Set 2 0 Inf

Image Set 3 0 Inf

Image Set 4 0 Inf

Image Set 5 0 Inf

Average 0 ---

After averaging the distortion value for the five image sets, the results prove that the proposed

image compression algorithm is a lossless algorithm. Figure 5.17 shows that the MSE value is

zero for all the decompressed images for the five image sets.

Figure 5. 17 - The Average MSE Results for the Lossless LRCSC Algorithm

Average (MSE)
0

0.2

0.4

0.6

0.8

1

Image Set
1

Image Set
2

Image Set
3

Image Set
4

Image Set
5

0 0 0 0 0

M
SE

IMAGE SETS

LRCCS Average (MSE)

129

All the images from the five image sets have been perfectly restored after decompression with

zero distortion, since the MSE value is zero for all the test images. Table 5.5 displayed two

image samples from the five image sets.

Table 5.5 - Sample Images for the Five Image Sets Before and After Compression by LRCSC

Image Set 1

Original Image Compressed Image Original Image Compressed Image

Baboon (GIF) Boats (PNG)

Image Set 2

Original Image Compressed Image Original Image Compressed Image

Baboon (BMP) Barbara (BMP)

Image Set 3

Original Image Compressed Image Original Image Compressed Image

Medic (JPEG) Lake (JPEG)

Image Set 4

Original Image Compressed Image Original Image Compressed Image

Light House (PING) Houses (PING)

130

Image Set 5

Original Image Compressed Image Original Image Compressed Image

Map 9 (BMP) Map 10 (BMP0

5.5.3 The LRCSC Algorithm Execution Time.

Image compression algorithm execution time can be calculated by measuring the compression

speed and the decompression speed in seconds. Compression speed is the time needed for

compressing the image while the decompression speed is the time needed for decompressing

the image. Table 5.6 displays the needed execution time for each image from the five sets in

seconds.

Table 5.6 - The LRCSC Algorithm Compression Time in Seconds

Image Set 1

Image
Compression

Time
Decompression

Time
Total Time

Baboon 0.56 0.22 0.78

Barbara 1.1 0.34 1.44

Boats 1 0.35 1.35

Boats 1 0.34 1.34

Camera Man 0.29 0.08 0.37

Camera Man 0.29 0.08 0.37

House 0.24 0.07 0.31

Lena 0.28 0.09 0.37

Lena 0.74 0.34 1.08

Image Set 2

Image
Compression

Time
Decompression

Time
Total Time

Lena 0.8 0.27 1.07

Lena 0.93 0.14 1.07

131

Lena 0.37 0.14 0.51

Airplane 2.2 0.09 2.29

Baboon 2.3 0.8 3.1

Barbara 3.6 1.2 4.8

Boats 2.8 0.9 3.7

Goldhill 2.7 1.1 3.8

Pepper 2.8 0.9 3.7

Image Set 3

Image
Compression

Time
Decompression

Time
Total Time

Medic 0.27 0.06 0.33

Medic1 0.20 0.05 0.25

Butterfly 0.27 0.03 0.30

Mountain 0.23 0.04 0.27

swarm 0.15 0.05 0.20

Lake_jpg 0.18 0.04 0.22

Saturn_jpg 0.22 0.04 0.26

Earth_jpg 0.40 0.12 0.52

boat_jpg 0.19 0.03 0.22

Waterfall 0.19 0.04 0.23

Eagle 0.22 0.06 0.28

Grand_Sone 0.20 0.04 0.24

Car 0.17 0.04 0.21

Shape 0.27 0.07 0.34

Image Set 4

Image
Compression

Time
Decompression

Time
Total Time

Knob & Bolt 2.1 0.8 2.9

Houses 2.6 1.2 3.8

Landscape 2.7 1 3.7

Light House 2.4 1.1 3.5

Barn 2.6 1.1 3.7

Parrots 2.2 1 3.2

Flowers & Sill 2 0.8 2.8

Six-Shooter 2.3 0.9 3.2

Motocross 2.4 1.1 3.5

Zentime 2.4 0.9 3.3

Image Set 5

Image
Compression

Time
Decompression

Time
Total Time

Map 1 0.45 0.27 0.72

Map 2 0.4 0.22 0.62

Map 3 0.66 0.44 1.1

Map 4 0.44 0.22 0.66

132

Map 5 0.45 0.22 0.67

Map 6 0.37 0.19 0.56

Map 7 0.35 0.18 0.53

Map 8 0.57 0.29 0.86

Map 9 0.48 0.29 0.77

Map 10 0.45 0.25 0.7

One of the main parameters for measuring the compression algorithm performance is the

computation time. Table 5.7 lists the total average resulted by calculating the average

compression time and the average decompression time for the five image sets.

The LRCSC algorithm needs on average 0.82 seconds to compress and decompress images in

the first image set, while the second image set needs 2.67 seconds for both compression and

decompression. The third image set has the best computation time with 0.28 seconds, because

all the images in the third image set are JPEG images (JPEG format represent images with

small intensities values). The fourth image set execution time is 3.36 seconds and the fifth

image sets needed 0.71 second.

Table 5.7 - The LRCSC Algorithm Average Compression Time

Image Sets
Average

 (Compression Time)

Average

 (De-Compression Time)

Average

(Total Time)

Image Set 1 0.61 0.21 0.82

Image Set 2 2.06 0.62 2.67

Image Set 3 0.23 0.05 0.28

Image Set 4 2.37 0.99 3.36

Image Set 5 0.462 0.257 0.71

Average 1.15 0.43 1.57

Figure 5.18 represents the execution time for each image set. For a better understanding of the

results, we display the algorithm’s results in bar-charts, where each column represents the value

for the needed time for the image sets.

133

Figure 5. 18 - Compression and Decompression Time for the LRCSC Algorithm

5.6 Evaluations, Results and Observations

To describe the algorithm contribution, we investigated the results regarding the compression

size, image quality and execution time. To reach the best conclusion from the investigations’

results, we need to compare our proposed lossless LRCSC algorithm results with the most

common state of the art lossless algorithms and describe the analytical results to reach the best

conclusion.

5.6.1 Comparison Between the LRCSC Results and Huffman Algorithm Results.

To compare the proposed LRCSC lossless algorithm results with Huffman algorithm results,

we need to compare both algorithm results using the three main metrics (image size, image

quality and execution time).

5.6.1.1 Comparison Between the LRCSC Algorithm and Huffman Algorithm in Terms of

Image Size

Table 5.8 lists the compression rate and space saving for LRCSC and the Huffman algorithms.

Table 5.8 - The Lossless LRCSC Compression Size and Huffman Compression Size

The Proposed Lossless LRCSC Algorithm Results Huffman Results

Image Set 1 Image Set 1

Image
Original
Size in

KBs

New
Size

in KBs
Cr Rate

Storage
Saving %

New Size
in KBs

Cr
Space

Saving %

1 225 94 2.394 0.418 58.22 104 2.163 53.78

2 230 154 1.494 0.670 33.04 204 1.127 11.30

3 239 148 1.615 0.619 38.08 174 1.374 27.20

4 368 201 1.831 0.546 45.38 276 1.333 25.00

5 60 35 1.714 0.583 41.67 40 1.5 33.33

6 56 32 1.750 0.571 42.86 43 1.302 23.21

0.61

2.06

0.23

2.37

0.4620.21
0.62

0.05

0.99
0.257

0.82

2.67

0.28

3.36

0.71

0

1

2

3

4

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
 in

 S
e

co
n

d
s

Image Sets

The Proposed LRCS Algorithm Execution
Time in Seconds

Average (Compression Time) Average (De-Compression Time)

Average (Total Time)

134

7 59 30 1.967 0.508 49.15 36 1.639 38.98

8 59 32 1.844 0.542 45.76 49 1.204 16.95

9 226 112 2.018 0.496 50.44 194 1.165 14.16

The Proposed Lossless LRCSC Algorithm Results Huffman Results

Image Set 2 Image Set 2

Image
Original
Size in

KBs

New
Size

in KBs
Cr Rate

Storage
Saving %

New Size
in KBs

Cr
Storage

Saving %

1 290 159 1.824 0.548 45.17 234 1.239 19.31

2 129 49 2.633 0.380 62.02 104 1.24 19.38

3 135 51 2.647 0.378 62.22 110 1.227 18.52

4 751 354 2.121 0.471 52.86 459 1.636 38.88

5 599 451 1.328 0.753 24.71 426 1.406 28.88

6 1064 474 2.245 0.445 55.45 955 1.114 10.24

7 1148 543 2.114 0.473 52.70 898 1.278 21.78

8 1031 452 2.281 0.438 56.16 933 1.105 9.51

9 651 451 1.443 0.693 30.72 526 1.238 19.20

The Proposed Lossless LRCSC Algorithm Results Huffman Results

Image Set 3 Image Set 3

Image
Original
Size in

KBs

New
Size

in KBs
Cr Rate

Storage
Saving %

New Size
in KBs

Cr
Storage

Saving %

1 32 10 3.200 0.313 68.75 32 1 0.00

2 24 9 2.667 0.375 62.50 22 1.091 8.33

3 20 16 1.250 0.800 20.00 19 1.053 5.00

4 28 14 2.000 0.500 50.00 26 1.077 7.14

5 25 14 1.786 0.560 44.00 24 1.042 4.00

6 25 15 1.667 0.600 40.00 24 1.042 4.00

7 19 11 1.727 0.579 42.11 17 1.118 10.53

8 78 46 1.696 0.590 41.03 75 1.04 3.85

9 25 13 1.923 0.520 48.00 24 1.042 4.00

10 26 16 1.625 0.615 38.46 25 1.04 3.85

11 17 8 2.125 0.471 52.94 14 1.214 17.65

12 28 15 1.867 0.536 46.43 27 1.037 3.57

13 28 11 2.545 0.393 60.71 21 1.333 25.00

14 31 19 1.632 0.613 38.71 25 1.24 19.35

The Proposed Lossless LRCSC Algorithm Results Huffman Results

Image Set 4 Image Set 4

Image
Original
Size in

KBs

New
Size

in KBs
Cr Rate

Storage
Saving %

New Size
in KBs

Cr
Space

Saving %

1 1155 455 2.536 0.394 60.606 544 2.123 52.90

2 1149 535 2.149 0.466 53.438 878 1.309 23.59

3 1153 548 2.106 0.475 52.472 844 1.366 26.80

4 1150 469 2.450 0.408 59.217 754 1.525 34.43

5 1149 502 2.290 0.437 56.310 809 1.42 29.59

6 1153 438 2.632 0.380 62.012 829 1.391 28.10

7 1154 418 2.763 0.362 63.778 773 1.493 33.02

135

8 1152 337 3.416 0.293 70.747 632 1.823 45.14

9 1150 519 2.216 0.451 54.870 851 1.351 26.00

10 1155 440 2.627 0.381 61.905 749 1.542 35.15

The Proposed Lossless LRCSC Algorithm Results Huffman Results

Image Set 5 Image Set 5

Image
Original
Size in

KBs

New
Size

in KBs
Cr Rate

Storage
Saving %

New Size
in KBs

Cr
Space

Saving %

1 761 35 21.47 0.05 95.40 119 6.395 84.36

2 821 30 27.53 0.04 96.35 115 7.139 85.99

3 801 28 28.37 0.03 96.50 118 6.788 85.27

4 838 11 78.39 0.01 98.69 110 7.618 86.87

5 800 40 19.91 0.05 95.00 123 6.504 84.63

6 826 43 19.07 0.05 94.79 118 7 85.71

7 838 28 29.85 0.03 96.66 112 7.482 86.63

8 814 40 20.59 0.05 95.09 119 6.84 85.38

9 769 49 15.77 0.06 93.63 121 6.355 84.27

10 768 36 21.46 0.05 95.31 117 6.564 84.77

As listed in Table 5.9, the proposed LRCSC algorithm decreases the image size more than the

Huffman algorithm for all of the image sets. The LRCSC algorithm results decrease the image

size more than the Huffman algorithm by saving 17.73% for the first image set, 21.33% from

the second image set, 38.48% from the third image set, 36.34% from the fourth image sets and

10.34% from the fifth image set. By averaging the five test image results for both algorithms,

the LRCSC algorithm saved 24.97% more than the Huffman algorithm.

Table 5.9 - The Average LRCSC Approach Compression Size with Huffman Average Compression

Size

Figure 5.19 describes the compression storage saving of the proposed LRCSC algorithm and

Huffman algorithm for each of the five image sets. For a better result understanding, we

The LRCSC Algorithm Average Results Huffman Average Results

Image Sets
Average Compression

Ratio CR

Average Storage

Saving %

Average Compression

Ratio CR

Average Storage

Saving %

Image Set 1 1.847 44.95 1.425 27.22

Image Set 2 2.072 49.13 1.448 27.8

Image Set 3 1.979 46.688 1.096 8.2

Image Set 4 2.518 59.536 1.325 23.2
Image Set 5 28.041 95.742 6.87 85.4

Average 7.291 59.20 2.440 34.98

136

displayed the algorithm results in bar-charts, where each column represents the image set and

the value for the bits-saving percentage. The proposed lossless algorithm has a better

compression ratio.

Figure 5. 19 - The Average Compression size for the LRCSC and Huffman algorithm

5.6.1.2 Comparison Between the LRCSC Algorithm and Huffman in Terms of Image Quality

Since both the proposed LRCSC algorithm and Huffman algorithm are lossless techniques, the

two algorithm results should have zero distortion after decompressing the tested image.

All the images MSE value are zero.

5.6.1.3 Comparison Between the LRCSC and Huffman in Terms of Execution Time

Table 5.10 lists the execution time (compression and decompression time) for the proposed

algorithm and the execution time for the Huffman algorithm, for all the five image sets.

Table 5.10 - The Lossless LRCSC Algorithm Execution Time with Huffman Execution Time

LRCSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 1

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.56 0.22 0.78 0.4

2 1.1 0.34 1.44 0.8

3 1 0.35 1.35 0.06

4 1 0.34 1.34 0.4

5 0.29 0.08 0.37 0.4

6 0.29 0.08 0.37 0.4

7 0.24 0.07 0.31 0.4

8 0.28 0.09 0.37 0.6

9 0.74 0.34 1.08 0.6

44.95 49.13 46.688
59.536

95.742

27.22 27.8

8.2
23.2

85.4

0

20

40

60

80

100

120

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5

St
o

ra
ge

 S
av

in
g

%

Image Sets

Comparison Between The LRCSC algorithm size
and Huffman Algorithm size

LRCCS Average Storage Saving % Huffman Average Storage Saving %

137

LRCSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 2

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.8 0.27 1.07 0.2

2 0.93 0.14 1.07 0.3

3 0.37 0.14 0.51 0.06

4 2.2 0.09 2.29 0.8

5 2.3 0.8 3.1 0.55

6 3.6 1.2 4.8 1.6

7 2.8 0.9 3.7 1.6

8 2.7 1.1 3.8 1.8

9 2.8 0.9 3.7 1.8

LRCSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 3

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.27 0.06 0.33 0.12

2 0.20 0.05 0.25 0.12

3 0.27 0.03 0.30 0.1

4 0.23 0.04 0.27 0.08

5 0.15 0.05 0.20 0.08

6 0.18 0.04 0.22 0.06

7 0.22 0.04 0.26 0.06

8 0.40 0.12 0.52 0.34

9 0.19 0.03 0.22 0.06

10 0.19 0.04 0.23 0.06

11 0.22 0.06 0.28 0.06

12 0.20 0.04 0.24 0.02

13 0.17 0.04 0.21 0.06

14 0.27 0.07 0.34 0.15

LRCSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 4

Image Compression Time Decompression Time Total Time Huffman Total Time

1 2.1 0.8 2.9 2.34

2 2.6 1.2 3.8 2.3

3 2.7 1 3.7 2.2

4 2.4 1.1 3.5 2.2

5 2.6 1.1 3.7 2.2

6 2.2 1 3.2 2.2

7 2 0.8 2.8 2.1

8 2.3 0.9 3.2 2.1

9 2.4 1.1 3.5 2.2

138

10 2.4 0.9 3.3 2.1

LRCSC Algorithm Execution Time
Huffman Algorithm

Execution Time

Image Set 5

Image Compression Time Decompression Time Total Time Huffman Total Time

1 0.45 0.27 0.72 0.14

2 0.4 0.22 0.62 0.16

3 0.66 0.44 1.1 0.16

4 0.44 0.22 0.66 0.15

5 0.45 0.22 0.67 0.2

6 0.37 0.19 0.56 0.15

7 0.35 0.18 0.53 0.16

8 0.57 0.29 0.86 0.16

9 0.48 0.29 0.77 0.16

10 0.45 0.25 0.7 0.15

Table 5.11 lists the average total time for compression and decompression both algorithms for

each test image.

Table 5.11 - The Average Execution Time for Both Algorithms in Seconds

Figure 5.20 shows the total execution time needed for compression and decompression for each

of the image sets for the two algorithms. The Figure shows that the Huffman algorithm has

better execution time for all image sets.

The Proposed Lossless LRCSC Algorithm Average Execution Time
Huffman Average

Time

Image Sets
Average

Compression Time

Average

De-Compression

Time

Total

Execution Time

Total

Execution Time

Image Set 1 0.61 0.21 0.82 0.45

Image Set 2 2.06 0.62 2.67 0.97

Image Set 3 0.23 0.05 0.28 0.10

Image Set 4 2.37 0.99 3.36 2.19
Image Set 5 0.462 0.257 0.719 0.16

Average 1.15 0.43 1.57 0.77

139

Figure 5. 20 - The Average Execution Time for Both Algorithms

5.6.2 Comparison Between the LRCSC Compression Size and Other State of the Art

Algorithm.

The LRCSC algorithm was tested as lossless compression techniques and compared against

other benchmark scheme for natural images compression obtained from (Khan et al., 2017),

the comparison with the most recent state of the art algorithms is needed for a better evaluation

for the proposed algorithm results.

5.6.2.1 First Comparison for Natural Images Compression Size

Table 5.12 shows the compression sizes in KBs and the compression ratios Cr, for the basic

BWCA, KMTF based BWCA, JPEG 2000 LS, RCT-BWCA algorithm obtained from (Khan

et al., 2017) and the proposed LRCSC algorithm results.

Table 5.12 - The LRCSC Algorithm Results Compared with Other Four Algorithm Results

Image
BWCA

KMTF -

BWCA
JPEG-2000 LS RCT - BWCA LRCSC

Size Cr Size Cr Size Cr Size Cr Size Cr

Knob & Bolt 765 1.510 750 1.540 487 2.370 381 3.020 455 2.536

Houses 1008 1.140 981 1.170 578 1.990 463 2.490 535 2.149

Landscape 1020 1.130 965 1.190 612 1.880 352 3.270 548 2.106

Light House 827 1.390 783 1.470 509 2.260 480 2.400 469 2.450

Barn 891 1.290 839 1.370 525 2.190 358 3.220 502 2.290

Parrots 791 1.460 739 1.560 447 2.580 346 3.330 438 2.632

Flowers & Sill 780 1.480 743 1.550 457 2.520 350 3.290 418 2.763

0

0.5

1

1.5

2

2.5

3

3.5

4

Image Set 1 Image Set 2 Image Set 3 Image Set 4 Image Set 5

EX
EC

U
TI

O
N

 T
IM

E
IN

 S
EC

O
N

D
S

IMAGE SETS

Executing Time for The Propsed LRCSC
algorithm VS Huffman Algorithm

LRCCSTotal Execution Time Huffman Total Execution Time

140

Six-Shooter 591 1.950 560 2.060 433 2.660 332 3.470 337 3.416

Motocross 991 1.160 947 1.220 574 2.010 244 4.720 519 2.216

Zentime 837 1.380 800 1.440 494 2.330 297 3.880 440 2.627

AVERAGE 850 1.39 811 1.46 512 2.28 360 3.31 466 2.518

As described in Figure 5.21, the LRCSC has 1.28 better compression ratio than the BWCA and

1.05 more than the KMTF-BWCA Cr and 0.24 more than the JPEG-2000 LS. The compression

ratio is less than RCT-BWCA algorithm with 0.79.

Figure 5. 21 - Compression Ratio for the Five Algorithm

5.6.2.2 Second Comparison for Natural Images Compression Size

Table 5.13 lists the images compression size in KBs for the proposed LRCSC algorithm and

the lossless benchmark compression schemes for Kodak colour images obtained from (Khan

et al., 2017).

0

1

2

3

4

5

C
o

m
p

re
ss

io
n

 R
at

io
 C

r

Kodak Images

Compression Ratio for the five algorithm

BWCA KMTF - BWCA JPEG-2000 LS RCT - BWCA LRCCS

141

Table 5.13 - Comparison Between the LRCSC and various benchmark systems in Term of

Compressed File Sizes of Kodak Colour Test Images (size in KBs)

S.No

SCHEME

KODAK TEST IMAGE

Total

Size

K
n

o
b

 &
 B

o
lt

H
o

u
se

s

L
a

n
d

sc
a

p
e

L
ig

h
t

H
o

u
se

B
a
r
n

P
a

rr
o

ts

F
lo

w
e
r
s

&

S
il

l

S
ix

-S
h

o
o

te
r

M
o

to
c
ro

ss

Z
e
n

ti
m

e

1 ADVANCE COMP 608 422 495 493 477 666 460 468 614 451 5154

2 ALLUME 386 576 487 503 699 407 788 370 410 372 4998

3 BBWCA 381 463 352 480 308 346 350 332 244 297 3553

4 BCM 457 785 628 490 532 737 375 381 507 390 5282

5 BULK ZIP 450 710 372 441 753 613 469 751 482 603 5644

6 CAESIUM 475 422 496 518 797 500 706 407 736 411 5468

7 C-MIX 453 510 457 497 625 520 761 666 657 456 5602

8 COMPRESSOR.IO 413 765 425 597 380 415 392 391 603 668 5049

9 CRUSH 409 692 556 536 544 795 646 612 583 376 5749

10 FILE MINIMIZER 560 758 471 521 740 681 691 596 573 495 6086

11 FILE OPTIMIZER 409 432 721 665 559 502 401 447 618 518 5272

12 HEVC (x265) 403 493 343 487 397 538 326 418 462 353 4220

13 LZ4X 370 420 412 373 402 537 465 456 444 429 4308

14 LRCSC 455 535 548 469 502 438 418 337 519 440 4660

15 MRP 497 760 550 511 513 791 534 474 628 409 5667

16 NANOZIP 475 556 472 519 446 543 490 431 551 715 5198

17 PAQ8PXD_V4 450 490 598 607 489 655 733 596 372 569 5559

18 UPACK 0.25 661 710 379 675 503 529 371 572 587 568 5555

19 WINRK 3.1.2 598 515 398 783 674 457 374 611 456 593 5459

20 ZCM 0.92 495 631 772 542 408 714 565 597 416 450 5590

As displayed in Figure 5.22, the LRCSC algorithm provide good compression ratio. The best

compression came with the BWCA with a total size of 3553 KBs. The second-best algorithm

is the HEVC followed by the LZ4X by having 4220 and 4308 respectively. The LRCSC

decrease the image size with 4660 KBs.

142

Figure 5. 22 - Total Compression Size for the Kodak Image Set

5.6.2.3 Third Compression for Raster Map Images Size

The proposed LRCSC was tested, and the results were compared with another raster map

benchmark scheme. The comparison is done with the JPEG-LS, PNG, GIF, Bi-level Burrows

BBWCA and BLiSE algorithms as obtained from (Khan et al., 2017). Table 5.14 lists the

compression size in KBs and the compression ratio for the previous algorithms and the LRCSC

algorithm for 10 raster map images obtained from

https://sites.google.com/site/qinzoucn/documents/.

Table 5.14 - The LRCSC Results Compared with Other Four Algorithm Results

Image

JPEG-LS PNG GIF BLiSE BBWCA LRCSC

Size Cr Size Cr Size Cr Size Cr Size Cr Size Cr

Map 1 235.32 3.23 29.79 25.55 20.92 36.38 12.28 61.98 11.72 64.94 35 21.47

Map 2 188.88 4.35 28.00 29.32 17.57 46.73 10.04 81.78 10.40 78.95 30 27.53

Map 3 185.36 4.32 27.15 29.50 18.39 43.55 10.94 73.21 11.22 71.38 28 28.37

Map 4 88.82 9.43 11.08 75.62 8.38 99.98 3.72 225.22 3.57 234.68 11 78.39

Map 5 238.76 3.35 34.67 23.08 22.86 35.01 16.35 48.95 16.15 49.55 40 19.91

0

1000

2000

3000

4000

5000

6000

7000

A
D

V
A

N
C

E
C

O
M

P

A
LL

U
M

E

B
B

W
C

A

B
C

M

B
U

LK
 Z

IP

C
A

ES
IU

M

C
-M

IX

C
O

M
P

R
ES

SO
R

.I
O

C
R

U
SH

FI
LE

 M
IN

IM
IZ

ER

FI
LE

 O
P

TI
M

IZ
ER

H
EV

C
 (

x2
6

5
)

LZ
4

X

M
R

P

N
A

N
O

ZI
P

P
A

Q
8

P
X

D
_

V
4

U
P

A
C

K
 0

.2
5

W
IN

R
K

 3
.1

.2

ZC
M

 0
.9

2

LR
C

C
S

To
ta

l S
iz

e
in

 K
B

s

Scheme

Total Size

https://sites.google.com/site/qinzoucn/documents/

143

Map 6 228.04 3.62 30.23 27.32 17.90 46.14 11.08 74.54 12.76 64.73 43 19.07

Map 7 157.13 5.33 23.59 35.52 14.21 58.96 7.37 113.69 10.41 80.49 28 29.85

Map 8 254.97 3.19 36.58 22.25 23.61 34.47 18.10 44.96 15.36 52.98 40 20.59

Map 9 265.47 2.90 41.62 18.49 25.14 30.61 19.43 39.60 17.22 44.68 49 15.77

Map 10
215.75 3.56 34.38 22.33 22.29 34.44 14.56 52.72 14.45 53.12

36 21.46

Average 2058.5 4.32 297 30.89 191.27 46.62 123.87 81.66 123.26 79.55 34 28.243

As displayed in Figure 5.23, BLiSE outperforms all other algorithm, since the BLiSE algorithm

is designed for raster maps compression and the other techniques are designed for general

images type compression. The LRCSC algorithm results are better than the JPEG-LS but is

less than the other techniques; although, the LRCSC algorithm saved 95.7% from the total

image sets size.

Figure 5. 23 - LRCSC Average Compression Ratio for the Raster Map Image Set

4.329

30.897

46.627

81.664 79.551

28.243

0

20

40

60

80

100

JPEG-LS PNG GIF BLiSE BBWCA LRCCS

C
o

m
p

re
ss

io
n

 R
at

io
 C

r

Algorithms

LRCSC Average Compression Ratio for
Raster Map Images

Cr

144

5.6.3 Comparison Between the LRCSC Execution Time and Other State of the Art

Algorithm.

The LRCSC algorithm was tested in the same environments as described and used in (Khan et

al., 2017) by using the same hardware and software and compared with the BWCA, KMTF-

BWCA and RCT_BWCA. Table 5.15 presents the compression needed time (CT) and the de

compression needed time (DCT) for the LRCSC, BWCA, KMTF – BWCA, and RCT –

BWCA obtained from (Khan et al., 2017).

Table 5.15 - Execution Time in Seconds for the Kodak Image Set for Different Algorithms

Image
BWCA KMTF - BWCA RCT - BWCA

LRCSC Win

Xp

LRCSC

Win 10

CT DCT CT DCT CT DCT CT DCT CT DCT

Knob & Bolt 16.46 23.76 17.21 25.39 17.7 28.06 5.43 1.29 2.1 0.8

Houses 16.32 21.32 17.07 24.82 19.77 27.8 6.24 1.53 2.6 1.2

Landscape 17.37 22.77 18.12 25.55 18.18 28.66 5.61 1.34 2.7 1

Light House 19.17 21.46 19.92 22.63 19.48 28.95 7.61 1.44 2.4 1.1

Barn 16.91 21.97 17.66 22.19 19.6 22.87 6.91 1.85 2.6 1.1

Parrots 16.78 22.9 17.53 25.98 19.95 29.23 5.74 1.23 2.2 1

Flowers & Sill 17.58 22.46 18.33 25.95 18.41 30.6 5.01 1.84 2 0.8

Six-Shooter 18.82 21.17 19.57 24.4 20.98 27.46 6.20 2 2.3 0.9

Motocross 16.07 23.85 16.82 28.09 19.14 30.5 5.45 2.01 2.4 1.1

Zentime 18.02 23.34 18.77 23.24 19.49 28.55 7.55 1.52 2.4 0.9

Sum 173.5 225 181 248.24 192.7 282.68 61.75 16.05 23.7 9.9

Total 398.5 429.24 475.38 77.8 3.69

The LRCSC algorithm achieve the best execution time by having 77.8 s for compression and

decompression together and save 320.7 s more than the BWCA algorithm.

 By running the LRCSC algorithm in win 10 operating system (64-bit) with Intel core i7-7500U

CPU @2.70GHz with 8 GB RAM the execution time is 3.69 s. Figure 5.24 display the total

execution time for the four algorithms in seconds.

145

Figure 5. 24 - Total Execution Time for the Kodak Image Set

5.7 Chapter Summary

The aim of this chapter was to develop a lossless image compression algorithm, to enhance the

CSC compression ratio for the low-resolution images, with zero distortion and acceptable

execution time.

To reach the optimal solution between compression time and saving bits, the LRCSC algorithm

was proposed.

• The proposed LRCSC algorithm is designed to work with low resolution images.

• The LRCSC algorithm achieved high compression ratio for raster map images.

• The LRCSC algorithm achieved the best computational time due to its simplicity of

implementation and speed of execution.

The only disadvantage of the LRCSC algorithm is when applying the algorithm on natural

images, the compression rate is decreased, since the LRCSC algorithm is designed for low-

resolution images.

To solve this issue, the researcher adapted an artificial intelligence system that is responsible

for classifying the images before compression to enhance the compression ratio for the CSC

and LRCSC algorithms. The next chapter describe the solution in detail.

398.5
429.24

475.38

77.8

0

100

200

300

400

500

BBWCA KMTF - BWCA RCT - BWCA LRCCS

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

IN
 S

EC
O

N
D

S

ALGORITHMS

Total Execution Time for the Kodak
Image Set

Total Time

146

CHAPTER SIX: AUTOMATED SYSTEM FOR IMAGE

COMPRESSION

6 Chapter Overview

This chapter describes in detail the need for an automated compression system and the need

for a classification system, followed by detailed description of a possible automated

compression system.

6.1 Introduction

This research developed two image compression algorithms, the first algorithm is the CSC

algorithm, which was designed to compress any image format with any resolution and achieved

the best compression rate when compressing high resolution images (HRI) such as natural

images. The only disadvantage of the CSC algorithm is when applying it on low resolution

images such as synthetic images E.g. raster map images where the compression ratio

decreased. The second algorithm is the LRCSC which was developed to enhance the

compression ratio for the low-resolution images (LRI). The only disadvantage of the LRCSC

algorithm is when compressing HRI such as natural images where the compression ratio

decreases. Choosing the suitable compression algorithm (CSC or LRCSC) that gives the best

compression results with the input image without requiring human intervention would be a

better approach. This approach could be implemented by running both compression algorithms

(CSC and LRCSC) for the same input image to find out the best compression performance in

terms of compression ratio or by using an image classification system.

Human beings can distinguish easily between natural and synthetic images in a very short time.

Unfortunately, computer can’t distinguish between images without having an image

classification system to perform this task. Many features can be derived from the input images,

such as number of colours, edge map and energy level. In order to build a solid classifier, we

need to combine those features classification values, since if we used them separately, they

would lead to wrong classification results. An ideal image classification system will classify

images into different classes with no hesitation such as the human intelligence do (Khalsa and

Gudadhe 2014). Many Artificial Intelligence (AI) systems have been developed to mimic the

human brain functionality of image classification. This chapter is to enhance the compression

ratio of the proposed two algorithms by developing an automated compression system for

choosing the suitable algorithm with the input image.

147

The proposed automated compression system is developed to run both compression algorithms

(CSC and LRCSC) for the same input image to find out the best compression performance in

terms of compression ratio. The system will start by loading the input image to determine its

details followed by compressing the image by the CSC algorithm to calculate the compression

ratio, and then the system compress the input image for the second time using the LRCSC

algorithm to calculate its compression ratio. Both algorithm compression ratios are then

compared to identifies the best algorithm for the input image. The final phase is to restore the

image according to the suitable compression algorithm that achieved the best compression

ratio.

6.2 The Fully Automated System Compression Size
Table 6.1 lists the fully automated compression system results in term of compression ratio.

The system should provide the best compression ratio when comparing with the CSC and the

LRCSC.

Table 6. 1 -Fully Automated System Compression Ratio

Image Sets
CSC Average

Compression Ratio

LRCSC Average

Compression Ratio

automated system Compression

Ratio

Image Set 1 2.35 1.85 2.35

Image Set 2 2.57 2.07 2.57

Image Set 3 2.22 1.98 2.22

Image Set 4
3.54 2.52 3.54

Image Set 5 5.63 28.25 28.25

Average 3.26 7.33 7.79

As listed in Table 6.1, the fully automated compression system dramatically decreases the

image size for the five image sets. In image sets (1,2,3,4) the system achieved the best

compression ratio by using the CSC algorithm. By observing the fifth image set results, the

fully automated compression system achieved the best compression ratio by using the LRCSC

algorithm, since this image sets includes low resolution images.

6.3 The Fully Automated System Execution Time
The fully automated system execution time can be calculated by measuring the system

compression speed in seconds for the CSC and the LRCSC, and the decompression speed for

148

the chosen compression algorithm. Table 6.2 displays the average execution time for each

image sets in seconds.

Table 6. 2 - The Fully Automated System Average Compression Time

Image Sets
CSC Average

(Execution Time)

LRCSC Average

(Execution Time)

Automated System Average

(Execution Time)

Image Set 1 0.32 0.82 0.93

Image Set 2 0.44 2.67 2.5

Image Set 3 0.05 0.28 0.28

Image Set 4 0.37 3.36 2.74

Image Set 5 0.14 0.71 0.84

Average 0.264 1.568 1.449

The fully automated system execution time is increased when comparing with the CSC or

LRCSC. In the first, second, third and fourth image sets, the system needs 0.61, 2.06, 0.23,

2.37 seconds respectively more than the CSC algorithm. Were in the fifth image sets the

system needed 0.13 seconds more than the LRCSC algorithm.

6.4 The Fully Automated System Image Quality
The fully automated system uses the two lossless image compression algorithm and restore the

original image as a 100% perfect match from the decompressed image. The fully automated

system MSE value is zero for all the images in the five image sets. Table 6.3 display two image

samples for each image set.

Table 6. 3 - Sample Images from the Five Image Sets Before and After Compression

Image Set 1

Original Image Compressed Image Original Image De-Compressed Image

Camera Man (GIF) Lena (PNG)

Image Set 2

Original Image Compressed Image Original Image De-Compressed Image

149

Lena (PNG) Goldhill (BMP)

Image Set 3

Original Image Compressed Image Original Image De-Compressed Image

Medic (JPEG) Boat (JPEG)

Image Set 4

Original Image Compressed Image Original Image De-Compressed Image

Parrots (PING) Motocross (PING)

Image Set 5

Original Image Compressed Image Original Image De-Compressed Image

Map 1 (BMP) Map 2 (BMP)

Although the fully automated system is running well, one of the system limitations is every

time the user run the system to compress an image; the system run both algorithms. One way

of improving the current system is to develop an intelligence system that will classify the input

150

image first into (low-resolution or high- resolution images) and then chose the appropriate

algorithm to compress the image. Indeed, there are many AI modules that are developed to

classify images.

6.5 Chapter Summary

This chapter described the fully automated compression system to enhance the image

compression ratio by choosing the suitable image compression algorithm (CSC or LRCSC) for

compressing the image regarding its type (low-resolution or high- resolution images) images.

By adopting the previous fully automated compression system, the researcher solved the

problem of the low compression ratio when compressing low-resolution images such as

synthetic images by the CSC algorithm, and also, solved the problem of the low compression

ratio when compressing high- resolution images such natural images by LRCSC algorithm.

151

CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK

7 Chapter Overview
The entire research is summarized in this chapter. Starting with reviewing the research

activities, followed by the research contribution to the knowledge and the limitation

encountered by the researcher, and finally, some recommendation for future work in the

domain is described.

7.1 Research Summary

This research aims to address the challenge of saving and transmitting large size images by

developing two lossless image compression algorithms. The first chapter covered the research

background and motivation; the research aim and objectives were described, followed by the

research methodology and the expected contribution to knowledge. After establishing the

research foundation from the first chapter, the second chapter concentrated on reviewing the

literature for the two image compression techniques (lossless and lossy) to provide a

comprehensive state-of-the-art literature and analysed them by focusing on the research aim

and objectives to provide the research gaps for the lossless and lossy image compression

techniques.

Based on the research gap identified from chapter two, the third chapter describes the proposed

solutions and the research requirements that are needed to develop the proposed solutions, such

as the development tools, the used programming language and the tested image sets.

Chapter four described the first solution of enhancing the lossless image compression rate and

execution time by proposing the CSC algorithm for high resolution images such as natural

images. It starts with a detailed explanation for all the procedures used in the proposed

algorithm, followed by the validation of the algorithm and described some of its limitation.

Finally, the algorithm was compared to the state-of-the-art algorithms.

Chapter five described the solution for enhancing the lossless image compression rate and

execution time by proposing the LRCSC algorithm for the low-resolution images such as

synthetic images and raster map images, It starts with a detailed explanation for all the

procedures used in the proposed technique, followed by the validation of the algorithm by

testing its results, and a comparison of the newly developed algorithm with state-of-the-art

algorithms. Furthermore, the limitation of the LRCSC algorithm is described as well.

152

Chapter six provided solutions for the limitations from chapter four and five. By a fully

automated compression system for choosing the suitable compression algorithm.

7.2 Research Contributions and Review of the Research Objectives

The following sub sections describes in detail the research contributions to the body of

knowledge in the domain of lossless image compression, by achieving the research objectives.

7.2.1 Lossless and Lossy Image Compression State-of-the-Art

Conducting a comprehensive critical review of existing literature in the domain of lossless and

lossy image compression techniques to provide a critical review for leveraging existing image

compression techniques and summarising the research findings to provide a contribution to the

body of knowledge. This part is to provide a rich knowledge for researchers in the domain with

a guide for the gaps in the current research.

7.2.2 Addressing the Challenges of Lossless Image Compression Techniques

The research gaps from the literatures review is used to set a path for developing a new solution

to enhance the compression performance. A novel solution is developed by avoiding the

limitations from the current literatures and by adopting the advantages from some of the

literatures.

7.2.3 Developing a Lossless Image Compression Algorithm for Natural Images

Natural images mostly defined as high resolution images. Such images suffer from the low

compression rate and execution time regarding the reasons of having many colours to represent

it. Natural images share the fact of having a high coloration between neighbouring pixels; this

fact is the main feature that where considered in developing the CSC compression algorithm.

The proposed algorithm was developed by using MATLAB programming language and the

results was investigated regarding the compression size, image quality and execution time. To

reach the best conclusion from the results investigation, the results where compared with the

most common state of the art lossless algorithms.

The CSC lossless image compression algorithm enhanced the current state of the art

compression rate, with zero distortion and acceptable execution time. The CSC algorithm is

designed to work with any application and support all image formats whether the input image

is a high resolution or low-resolution image. The CSC algorithm is suitable for natural image

compression and can be used as stand-alone algorithm or as a pre-processing phase for any

lossless or lossy techniques.

153

The limitation of the CSC compression algorithm is when applying the algorithm on raster map

images, the compression rate is decreased, since the CSC algorithm gives better results for the

high-resolution images. To solve this issue, the researcher proposed a new algorithm that

enhanced the compression rate for the low-resolution images. The next section describes the

solution contribution.

7.2.4 Developing a Lossless Image Compression Algorithm for Synthetic Images

The LRCSC algorithm is designed to solve the low compression rate problem with low

resolution images in the CSC algorithm. The LRCSC algorithm is capable to work with low

resolution images and achieved higher compression rate than the CSC compression algorithm

for synthetic images such as raster map images.

The proposed algorithm was developed by using MATLAB programming language and the

results was investigated regarding the compression size, image quality and execution time. To

reach the best conclusion from the results investigation, the results where compared with the

most common state of the art lossless algorithms.

The LRCSC lossless image compression algorithm achieved high compression rate with zero

distortion and acceptable execution time. The LRCSC algorithm is designed to work with any

application and support all image formats whether the input image is a high resolution or low-

resolution image. The LRCSC achieved the best results when compressing low resolution

images and its suitable for raster map image compression and can be used as stand-alone

algorithm or as a pre-processing phase for any lossless or lossy techniques.

The limitation of the LRCSC compression algorithm is when applying the algorithm on natural

images, the compression rate is decreased, since the LRCSC algorithm gives better results for

the low-resolution images.

7.2.5 Develop a Fully Automated System for Choosing the Suitable Algorithm for

Compressing the Images Regarding its Type.

The CSC algorithm provide the best compression rate with natural images and resulted less

compression efficiency when compressing synthetic images, while, the LRCSC algorithm give

better results when applying it on synthetic images and less compression rate when dealing

with natural images.

The researcher designed a fully automated system to run both compression algorithms (CSC

and LRCSC) for the same input image to find out the best compression performance in terms

of compression ratio, and regarding the image type the system will choose to compress the

154

input image with the CSC or LRCSC algorithm. The fully automated system enhanced the

compression ratio by combining the two proposed algorithms in one system.

7.3 Research Limitations

After achieving the research aim and objectives, the researcher recognised the following

limitation which can be solved in the future work.

• The CSC and LRCSC algorithms dramatically decrease the execution time when

comparing with other algorithm from the literature review, while the enhancement in

compression rate is very small.

• Using the fully automated system enhanced the compression rate and increase the

execution time; the classification execution time should be added to the compression and

decompression time for measuring the system performance.

• Nowadays, images have larger size than before, finding a compression algorithm results

that uses new images in their research is to hard; hence, a comparison using new image

data sets is not applicable.

7.4 Recommendations for Future Work

Enhancing the compression rate and execution time while preserving the image quality as

100% perfect match with the original image is the main three parameters for evaluating any

lossless image compression algorithm. Further research in these regards are described as

follows:

• Adopting pre-processing phase before the CSC algorithm may enhance the

compression rate, the pre-processing phase should result in matrices with smaller values

and maintain the high correlation between intensities.

• The CSC algorithm can be used as a pre-processing phase for any other lossless or lossy

image compression techniques to enhance the compression rate.

• Creating a dynamic application that includes the most popular and effective image

compression algorithms by programming each of the algorithms to compare the

algorithms results for any input image. This application should be controlled and tested

correctly. Having such application, may help the researchers in making comparison

easily for any images (old or new) without the need for benchmark system that confines

the researcher to specific images.

155

• Implementing the GF-FSAE algorithm to provide details of the classification algorithm,

complexity and added execution time to calculate the classification system

performance.

7.4.1 The Proposed AI Algorithm (GF-FSAE) for Image Classification

Before compressing the image, an artificial intelligence system is used to classifies the input

image into (low-resolution or high- resolution images) by using an efficient deep learning

algorithm. The research problem is to choose the suitable compression algorithm (CSC or

LRCSC) that gives better compression results with the input image.

To reach the best results from the two proposed algorithms, the researcher adopted a fully

automated system by using a deep learning technique for classifying the input image to

determine its type (low-resolution or high- resolution images), and based on the image type,

the system will choose to compress the input image with the CSC or LRCSC algorithm. Figure

7.1 shows the fully automated system flowchart.

Read Source
Image(C3)

to determine its
Information

Start

Load Source Image

Start

End

AI-Image Classification System

Compressed Image

Image Type
High Resolution Image

(Natural Image)
Low Resolution Image

(Raster Map Image)

CSC Algorithm
LRCSC Algorithm

Compressed Image

Figure 7. 1 - The Fully Automated AI system Flowchart

156

7.4.2 Artificial Intelligence

Artificial intelligence (AI) is a computer science and engineering domain interested in

developing systems that mimic the intelligence from human behaviours, such as learning and

adaptation, image observation and classification, natural language processing, problem solving

and planning (Tecuci, 2012). AI is a way of making a computer or a software think

intelligently, like intelligent humans do. The main goal of AI is to simulate the intelligent

environment and principles in the human and animal behaviour (Chassagnon, Vakalopoulou

and Paragios, 2020).

Machine learning (ML): is part of AI which gives machines the ability of automatically learn

and improve from experience without being explicitly programmed to do so, it allows the

machine to solve problems by giving it the ability of thinking (Han, Liu. Mihaela, 2017).

Samuel was one of the first who identified ML in 1959, where the ML affected the development

of technological progress significantly since that day (Samuel., 1959). Since the ML revolution

starts to the current day, a massive amount of data is created. It is reported that the

estimated amount of the created data in the year 2020 will be approximately 1.7 MB per second

for every person (Anon, 2019). ML provides a path to create predictive models to analyse this

huge data to provide better and accurate results (Lu et al., 2014); (Stoyanov, Taylor and

Hutchison, 2018).

Drawbacks of the Machine Learning: (Edureka, 2019) demonstrate the relationship between

ML and Deep learning (DL) as shown in Figure 7.2.

Figure 7. 2 - Relationship Between ML and Deep Learning (DL) (Edureka, 2019)

• ML cannot process high dimensional data, since it contains a large set of variables.

• Not ideal for performing object detection and image processing:

The traditional ML algorithm is not effective in predicting when dealing with high

dimensional data, since it has too many inputs and outputs. E.g. in case of image

recognition, to reach the best prediction, the algorithm input should cover most of the

images features by having a huge input image sets with different image type.

• ML is not effective with feature extraction.

157

feature extraction is to give the computer the search parameters that distinguish the images

from each other’s and helps the algorithm to classifies images. The main objective of

feature extraction is to help the algorithm in predicting the outcome to have a better

accuracy. The limitation of feature extraction comes when loading raw data to the

algorithm where the feeding rarely worked, and that is why ML is struggling with feature

extraction. Therefore, the programmer faces a new challenge without using feature

extraction, since the algorithm efficiency will depend on the programmer skills of narrow

down only the significant predictors from the input predictor by manually studding the

relationship between the input data. Hence, complex problems are difficult to solve with

ML algorithms. Deep Learning by using Neural Networks is part of ML that focus on

solving complex problem with a huge data set (He et al., 2015).

Deep Learning (DL): is a sub-field of ML, created to solve the problem with analysing huge

data that needs a lot of computational resources, by using the Neural Networks (NN) concepts

to automates the feature extraction process and minimize the human interference as possible

(Pan, Shi and Xu, 2018) (Traore, Kamsu-foguem and Tangara, 2018).

7.4.3 The Chosen Artificial Intelligence Technique for Image Classification

Before compressing the image, an artificial intelligence system should be used to classifies the

input image into (synthetic images or natural images) by using an efficient deep learning

algorithm. One of the leading image classification algorithms is the Guided Filtering for Fine-

Tuning Stacked Autoencoder (GF-FSAE) algorithm. The (GF-FSAE) achieved high image

classification accuracy rate by having a 99% accuracy (Wang et al., 2017). The GF-FSAE

algorithm is proposed to be implemented as an image classification system, since it has a very

high accuracy.

The proposed classification system should load the input image and classifies it into (low-

resolution or high- resolution images) and send the original input image to the related

compression algorithm (CSC or LRCSC) to compress it according to its type.

The proposed AI technique for image classification (GF-FSAE) is not implemented in this

research and could be implemented in the future as future work. this section is to propose a

solution for classifying the image before compressing it to enhance the compression ratio and

to decrease the human interference as possible.

158

References
Abdalla, S. H. and Osman, S. E. (2016) ‘Digital Image Processing Technology based on

MATLAB’, International Journal of Advanced Research in Computer Science, 7(3), pp.

216–221.

Abo-Zahhad, M. et al. (2015) ‘Huffman Image Compression Incorporating DPCM and

DWT’, Journal of Signal and Information Processing, 06(02), pp. 123–135. doi:

10.4236/jsip.2015.62012.

Abubaker, A., Eshtay, M. and AkhoZahia, M. (2016) ‘Comparison Study of Different Lossy

Compression Techniques Applied on Digital Mammogram Images’, International Journal of

Advanced Computer Science and Applications (IJACSA), 7(12), pp. 149–155.

Agustsson, E. et al. (2019) ‘Generative Adversarial Networks for Extreme Learned Image

Compression’, In Proceedings of the IEEE International Conference on Computer Vision, 1,

pp. 221–231.

Al-azawi, S. et al. (2011) ‘LOW COMPLEXITY IMAGE COMPRESSION ALGORITHM

USING AMBTC AND BIT PLANE SQUEEZING’, International Workshop on Systems,

Signal Processing and their Applications, WOSSPA. IEEE, pp. 131–134. doi:

10.1109/WOSSPA.2011.5931432.

Al-Laham, M. and Emary, I. (2007) ‘Comparative Study Between Various Algorithms of

Data Compression Techniques’, International Journal of Computer Science and Network

Security(IJCSNS), 7(4), pp. 281–291. Available at:

http://paper.ijcsns.org/07_book/200704/20070440.pdf.

Al-Wahaib, M. and Wong, K. (2010) ‘A lossless Image Compression Algorithm Using

Duplication Free Run-Length Coding’, in Second International Conference on Network

Applications, Protocols and Services (NETAPPS), IEEE, pp. 245–250. doi:

10.1109/NETAPPS.2010.51.

Alan, H. and Samir, C. (2012) Integrated Series in Information Systems, Design Research in

Information Systems, Springer. New York. doi: 10.1007/978-1-4419-6108-2.

Anon (2019) ‘World’s First General Technology Platform for Borderless Data Sharing

Revealed.’, PR Newswire Europe Including UK Disclose, pp. 2019–2021. Available at:

https://www.prnewswire.com/news-releases/worlds-first-general-technology-platform-for-

borderless-data-sharing-revealed-300811548.html.

Ballé, J., Laparra, V. and Simoncelli, E. P. (2017) ‘End-to-End Optimized Image

Compression’, in ICLR arXiv preprint arXiv. doi: 1611.01704.

Begum, S. and Aygun, R. S. (2012) ‘Analyzing the Performance of Hierarchical Binary

Classifiers for Multi-Class Classification Problem Using Biological Data’, in International

Conference on Machine Learning and Applications IEEE, pp. 145–150.

Burrows, M. and Wheeler, D. J. (1994) ‘A Block-Sorting Lossless Data Compression

Algorithm’, Digital Systems Research.

Carreto-Castro, M. et al. (1993) ‘Comparison of Lossless Compression Techniques’,

Proceedings of 36th Midwest Symposium on Circuits and Systems IEEE, pp. 1268–1270.

Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=343329.

Chassagnon, G., Vakalopoulou, M. and Paragios, N. (2020) ‘Artificial Intelligence

159

Applications for Thoracic Imaging’, European Journal of Radiology, 123(November 2019).

Chawla, S., Beri, M. and Mudgil, R. (2014) ‘Image Compression Techniques : A Review’,

International Journal of Computer Science and Mobile Computing, 3(8), pp. 291–296.

Chou, C-H., K.-C. L. (2008) ‘Colour image compression based on the measure of just

noticeable colour difference’, IET Image Processing, 2(6), pp. 295–303. doi: 10.1049/iet-ipr.

Dadgostar, H. and Afsari, F. (2016) ‘Image Steganography Based on Interval-Valued

Intuitionistic Fuzzy Edge Detection and Modified LSB’, Journal of Information Security and

Applications. Elsevier, 30, pp. 94–104. Available at:

http://dx.doi.org/10.1016/j.jisa.2016.07.001.

Edureka (2019) Machine Learning Process. Available at: https://www.edureka.co/blog/what-

is-a-neural-network/.

Ernawan, F., Abu, N. A. and Suryana, N. (2013) ‘TMT Quantization Table Generation Based

on Psychovisual Threshold for Image Compression’, International Conference of Information

and Communication Technology, ICoICT. IEEE, pp. 202–207.

Gagie, T., Gawrychowski, P. and Puglisi, S. J. (2015) ‘Approximate Pattern Matching in

LZ77-Compressed Texts’, Journal of Discrete Algorithms. Elsevier, 32, pp. 64–68. Available

at: http://dx.doi.org/10.1016/j.jda.2014.10.003.

Gogoi, M. and Ahmed, M. (2016) ‘Image Quality Parameter Detection : A Study’,

International Journal of Computer Sciences and Engineering, 4(7), pp. 110–116.

Gregor, S. and Hevner, A. R. (2013) ‘Positioning and Presenting Design Science Research

for Maximum Impact’, MIS Quarterly, 37(2), pp. 337–355.

Gupta, A., Bansal, A. and Khanduja, V. (2017) ‘Modern Lossless Compression Techniques:

Review, Comparison and Analysis’, Proceedings of the 2nd International Conference on

Electrical, Computer and Communication Technologies, ICECCT, IEEE, pp. 1–8.

Han, Liu. Mihaela, C. (2017) ‘Granular Computing Based Machine Learning’:, in Big Data

Processing Approach. Warsaw,Poland: Springer, pp. 4–7.

Hanid, M. (2014) Design Science Research as an Approach to Develop Conceptual Solutions

for Improving Cost Management in Construction, Doctoral dissertation, University of

Salford.

Hazarika, D., Nath, V. K. and Bhuyan, M. (2015) ‘A lapped Transform Domain Enhanced

Lee Filter with Edge Detection for Speckle Noise Reduction in SAR Images’, IEEE 2nd

International Conference on Recent Trends in Information Systems (ReTIS), pp. 243–248.

He, X. et al. (2015) ‘Intelligence Science and Big Data Engineering. Big Data and Machine

Learning Techniques’, 5th International Conference, IScIDE Springer. Suzhou, China,

Vol(3243).

Hevner, A., Chatterjee, S. and Juhani, I. (2010) ‘Twelve Theses on Design Science Research

in Information Systems’, in Design Research in Information Systems. Boston, MA, pp. 43–

62. Available at: http://www.springerlink.com/index/10.1007/978-1-4419-5653-8.

Huffman, D. A. (1951) ‘A method for the Construction of Minimum-Redundancy Codes’,

Proceedings of the IRE, 40(9), pp. 1098–1101.

Hussain, A. and Al-Fayadh, A. (2018) ‘Image Compression Techniques: A Survey in

160

Lossless and Lossy Algorithms’, Neurocomputing. Elsevier B.V., 300, pp. 44–69. Available

at: https://doi.org/10.1016/j.neucom.2018.02.094.

Husseen, A. H., Mahmud, S. S. and Mohammed, R. J. (2017) ‘Image Compression Using

Proposed Enhanced Run Length Encoding Algorithm’, Ibn AL-Haitham Journal For Pure

and Applied Science, 24(1).

Ibrahim, R. A., Youssef, S. M. and Elkaffas, S. M. (2015) ‘An Enhanced Fractal Image

Compression Integrating Quantized Quadtrees and Entropy Coding’, in 11th International

Conference on Innovations in Information Technology, IIT, pp. 190–195.

Jallouli, S. et al. (2017) ‘A Preprocessing Technique for Improving the Compression

Performance of JPEG 2000 for Images with Sparse or Locally Sparse Histograms’, in 25th

European Signal Processing Conference, EUSIPCO. IEEE, pp. 1912–1916.

John, F. P. and Joe, L. (2005) ‘Making Better Use of Bandwidth: Data Compression and

Network Management Technologies.’, RAND ARROYO CENTER SANTA MONICA CA, p.

52.

Kale, V. U. and Deshmukh, S. M. (2010) ‘Visually Improved Image Compression by

Combining EZW Encoding with Texture Modeling Using Huffman Encoder’, International

Journal of Computer Science Issues (IJCSI), 7(3), pp. 10–28.

Karimi, N. et al. (2015) ‘Use of Symmetry in Prediction-Error Field for Lossless

Compression of 3D MRI Images’, Multimedia Tools and Applications, 74(24), pp. 11007–

11022.

Karri, C. and Jena, U. (2016) ‘Fast Vector Quantization Using a Bat Algorithm for Image

Compression’, Engineering Science and Technology, an International Journal. Elsevier B.V.,

19(2), pp. 769–781. Available at: http://dx.doi.org/10.1016/j.jestch.2015.11.003.

Kaur, R. and Kaur, M. (2017) ‘A Survey of Medical Image CompressionTechniques’,

International Journal of Advanced Research in Computer Science, 8(4), pp. 2015–2018.

Kavitha, S. and Anandhi, R. (2015) ‘A Survey of Image Compression Methods for Low

Depth-of-Field Images and Image Sequences’, Multimedia Tools and Applications, 74(18),

pp. 7943–7956.

Ken Peffers et al. (2007) ‘A Design Science Research Methodology for Information Systems

Research’, Journal of Management Information Systems, 24(3), pp. 45–77.

Khalsa, N., Gudadhe, P. and Ingole, V. (2014) ‘Advance Image Classification System’,

International Journal of Computer Science and Information Technology, 5(3), pp. 3210–

3214.

Khan, Aftab et al. (2017) ‘Lossless Image Compression : Application of Bi-Level Burrows

Wheeler Compression Algorithm (BBWCA) to 2-D data’, Multimedia Tools and

Applications. Multimedia Tools and Applications, 76(10), pp. 12391–12416.

Kodituwakku, S. and Amarasinghe, U. (2010) ‘Comparison of Lossless Data Compression

Algorithms for Text Data’, Indian Journal of Computer Science and Engineering, 1(4), pp.

416–425.

Kuechler, W. and Vaishnavi, V. (2012) ‘A Framework for Theory Development in Design

Science Research: Multiple Perspectives’, Journal of the Association for Information

Systems, 13(6), pp. 395–423. Available at: http://aisel.aisnet.org/jais/vol13/iss6/3.

161

Kumar, G. et al. (2015) ‘A Review: DWT-DCT Technique and Arithmetic-Huffman Coding

based Image Compression’, International Journal of Engineering and Manufacturing, 5(3),

pp. 20–33. Available at: http://www.mecs-press.org/ijem/ijem-v5-n3/v5n3-3.html.

Kumar, R., Kumar, A. and Singh, G. K. (2016) ‘Hybrid Method based on Singular Value

Decomposition and Embedded Zero Tree Wavelet Technique for ECG Signal Compression’,

Computer Methods and Programs in Biomedicine. Elsevier Ireland Ltd, 129, pp. 135–148.

Available at: http://dx.doi.org/10.1016/j.cmpb.2016.01.006.

Kuppusamy, K. and Mehala, R. (2013) ‘Sparse Transform Matrix at Low Complexity for

Color Image Compression’, International Journal of Computer Trends and Technology

(IJCTT), 4(6), pp. 2–7.

Lakhani, G. (2004) ‘Optimal Huffman Coding of DCT Blocks’, IEEE Transactions on

Circuits and Systems for VIdeo Technology, 14(4), pp. 522–527.

Li-Hui, L. and Chen, T.-J. (2017) ‘Mutual Information Correlation with Human Vision in

Medical Image Compression’, Current Medical Imaging Reviews, 14(1), pp. 64–70.

Available at: http://www.eurekaselect.com/156137/article.

Li, M. et al. (2018) ‘Efficient Trimmed Convolutional Arithmetic Encoding for Lossless

Image Compression’, arXiv preprint arXiv. Available at: http://arxiv.org/abs/1801.04662.

Li, S., Li, M. and Jiang, C. (2018) ‘Semantic Enhanced Deep Learning for Image

Classification’, Concurrency and Computation, 30(23), pp. 1–10.

Li, Z.-N., Drew, M. . and Liu, J. (2014) Fundamentals of Multimedia. Second Edi. Edited by

D. Gries and F. Schneider. Switzerland: Springer. doi: 10.1007/978-3-319-05290-8.

Lifewire (2018) JPEG Files, https://www.lifewire.com/jpg-jpeg-file-4139913.

Lu, R. et al. (2014) ‘Toward Efficient and Privacy-Preserving Computing in Big Data Era’,

IEEE Network. IEEE, 28(August), pp. 46–50.

Lucas, L. et al. (2017) ‘Lossless Compression of Medical Images’, IEEE Transactions on

Medical Imaging, 36(11), pp. 2250–2260.

Lyon, R. (2006) ‘A Brief History of “Pixel”’, International Society for Optics and Photonics,

In Digital Photography II, 6069, pp. 15–19. Available at:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=729181.

Madhu and Dalal, S. (2017) ‘Review Paper on Image Compression Using Lossless and Lossy

Technique’, International Journal of Advance Research , Ideas and Innovations in

Technology, 3(2), pp. 873–878.

Maheshwari, S. et al. (2019) ‘Automated Glaucoma Diagnosis Using Bit-Plane S and Local

Binary Pattern Techniques’, Computers in Biology and Medicine. Elsevier Ltd, 105, pp. 72–

80. Available at: https://doi.org/10.1016/j.compbiomed.2018.11.028.

Manjinder, K. and Gaganpreet, K. (2013) ‘A Survey of Lossless and Lossy Image

Compression Techniques’, International Journal of Advanced Research in Computer Science

and Software Engineering, 3(2), pp. 323–326.

Masmoudi, Atef, Puech, W. and Masmoudi, Afif (2015) ‘An Improved Lossless Image

Compression based Arithmetic Coding Using Mixture of Non-Parametric Distributions’,

Multimedia Tools and Applications, 74(23), pp. 10605–10619.

162

Mehanna, A. (2013) Novel Entropy Coding and its Application of the Compression of 3D

Image and Video Signals. Doctoral dissertation,Brunel University.

Meyer, B. and Tischer, P. (1997) ‘TMW-a New Method for Lossless Image Compression’,

Proc. Int. ITG FACHBERICHT, 2, pp. 533–540.

Mofreh, A., Barakat, T. and Refaat, A. (2016) ‘A New Lossless Medical Image Compression

Technique using Hybrid Prediction Model’, Signal Processing: An International Journal

(SPIJ), 10(3), pp. 20–30.

Motta, G., Storer, J. a. and Carpentieri, B. (2000) ‘Lossless Image Coding via Adaptive

Linear Prediction and Classification’, Proceedings of the IEEE, 88(11), pp. 1790–1796.

Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=892714.

Muntean, M., Căbulea, L. and Vălean, H. (2014) ‘A New Text Clustering Method Based on

KSEP’, in IEEE International Conference Journal of Software In Automation, Quality and

Testing, Robotics, pp. 1–6. Available at:

http://ojs.academypublisher.com/index.php/jsw/article/view/6197.

Novikov, D., Egorov, N. and Gilmutdinov, M. (2016) ‘Local-Adaptive Blocks-Based

Predictor for Lossless Image Compression’, in XV International Symposium ‘Problems of

Redundancy in Information and Control Systems’ (REDUNDANCY). Saint-Petersburg,

Russia: University of Aerospace Instrumentation, pp. 92–99.

Nunamaker, J. F., Chen, M. and Purdin, T. D. M. (1990) ‘Systems Development in

Information Systems Research’, Journal of Management Information Systems, 7(3), pp. 89–

106.

Offermann, P. et al. (2009) ‘Outline of a Design Science Research Process’, Proceedings of

the 4th International Conference on Design Science Research in Information Systems and

Technology, DESRIST ’09, (January), pp. 1–11.

Oliveira, F. D. V. R. et al. (2013) ‘CMOS Imager with Focal-Plane Analog Image

Compression Combining DPCM and VQ’, IEEE Transactions on Circuits and Systems I:

Regular Papers, 60(5), pp. 1331–1344.

Ososkov, G. and Goncharov, P. (2017) ‘Shallow and Deep Learning for Image

Classification’, Optical Memory and Neural Networks (Information Optics), 26(4), pp. 221–

248.

Otair, M. A. and Shehadeh, F. (2016) ‘Lossy Image Compression by Rounding the Intensity

Followed by Dividing (RIFD)’, Research Journal of Applied Sciences, Engineering and

Technology, 12(6), pp. 680–685. Available at:

http://maxwellsci.com/jp/mspabstract.php?jid=RJASET&doi=rjaset.12.2716.

Ouyang, J., Coatrieux, G. and Shu, H. (2015) ‘Robust Hashing for Image Authentication

Using Quaternion Discrete Fourier Transform and Log-Polar Transform’, Digital Signal

Processing. Elsevier Inc., 41, pp. 98–109. Available at:

http://dx.doi.org/10.1016/j.dsp.2015.03.006.

Padmavathi, K. and Thangadurai, K. (2016) ‘Implementation of RGB and Grayscale Images

in Plant Leaves Disease Detection - Comparative Study’, Indian Journal of Science and

Technology, 9(6), pp. 4–9.

Pan, B., Shi, Z. and Xu, X. (2018) ‘MugNet: Deep Learning for Hyperspectral Image

Classification using Limited Samples’, ISPRS Journal of Photogrammetry and Remote

163

Sensing. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS), 145,

pp. 108–119. Available at: https://doi.org/10.1016/j.isprsjprs.2017.11.003.

Paul, A. et al. (2015) ‘Iris Image Compression using Wavelets Transform Coding’, IEEE 2nd

International Conference on Signal Processing and Integrated Networks, SPIN, (February

2015), pp. 544–548.

Paul, S. and Kumar, S. (2003) ‘Subsethood Based Adaptive Linguistic Networks for Pattern

Classification’, IEEE Transactions on Systems, Man and Cybernetics, 33(2), pp. 248–258.

Poobal, S. and Ravindran, G. (2014) ‘The Performance of Fractal Image Compression on

Different Imaging Modalities Using Objective Quality Measures’, International Journal of

Engineering Science and Technology (IJEST), 3(August), pp. 2085–2087.

Praisline Jasmi, R., Perumal, B. and Pallikonda Rajasekaran, M. (2015) ‘Comparison of

Image Compression Techniques using Huffman Coding, DWT and Fractal Algorithm’, in

IEEE International Conference on Computer Communication and Informatics, ICCCI.

COMPARISON,INDIA, pp. 1–5.

Raghavendra, C., Sivasubramanian, S. and Kumaravel, A. (2018) ‘Improved Image

Compression Using Effective Lossless Compression Technique’, Cluster Computing.

Springer, 22(2), pp. 3911–3916. Available at: http://link.springer.com/10.1007/s10586-018-

2508-1.

Rusyn, B. et al. (2016) ‘Lossless Image Compression in the Remote Sensing Applications’,

IEEE First International Conference on Data Stream Mining & Processing 23-27, (August),

pp. 195–198.

Sanchez, V. (2015) ‘Lossless Screen Content Coding in HEVC Based on Sample-Wise

Median and Edge Prediction’, IEEE International Conference In Image Processing (ICIP),

pp. 4604–4608.

Scotland, J. (2012) ‘Exploring the Philosophical Underpinnings of Research: Relating

Ontology and Epistemology to the Methodology and Methods of the Scientific, Interpretive,

and Critical Research Paradigms’, English Language Teaching, 5(9), pp. 9–16.

Sengupta, A. and Roy, D. (2018) ‘Intellectual Property-Based Lossless Image Compression

for Camera Systems’, IEEE Consumer Electronics Magazine, 7(1), pp. 119–124.

Senturk, A. and Kara, R. (2016) ‘An Analysis of Image Compression Techniques in Wireless

Multimedia Sensor Networks’, Tehnicki vjesnik - Technical Gazette, 23(6), pp. 1863–1869.

Available at: http://hrcak.srce.hr/169375.

Sharma, M. (2010) ‘Compression Using Huffman Coding’, IJCSNS International Journal of

Computer Science and Network Security, 10(5), pp. 133–141.

Shaw, L., Rahman, D. and Routray, A. (2018) ‘Highly Efficient Compression Algorithms for

Multichannel EEG Laxmi’, IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 26(5), pp. 957–968.

Shinde, B. and Dani, A. (2011) ‘The Origins of Digital Image Processing & Application areas

in Digital Image Processing Medical Images’, IOSR Journal of Engineering (IOSRJEN), 1(1),

pp. 66–71.

Shukla, J., Alwani, M. and Tiwari, A. K. (2010) ‘A Survey on Lossless Image Compression

Methods’, in 2nd International Conference on Computer Engineering and Technology. IEEE.

164

Shukla, R. and Gupta, N. K. (2015) ‘Image Compression through DCT and Huffman Coding

Technique’, International Journal of Current Engineering and Technology, 5(3), pp. 1942–

1946.

Siddeq, M. M. and Rodrigues, M. A. (2015) ‘A Novel 2D Image Compression Algorithm

Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size

Algorithm for High Resolution Structured Light 3D Surface Reconstruction’, 3D Research,

6(3), pp. 1–26.

Singh, A., Potnis, A. and Kumar, A. (2016) ‘A Review on Latest Techniques of Image

Compression’, International Research Journal of Engineering and Technology (IRJET), 3(7),

pp. 262–271.

Singh, S. and Pandey, P. (2016) ‘Enhanced LZW Technique for Medical Image

Compression’, in 3rd International Conference In Computing for Sustainable Global

Development (INDIACom). INDIA: IEEE, pp. 1080–1084.

Singhal, V. et al. (2017) ‘Discriminative Robust Deep Dictionary Learning for Hyperspectral

Image Classification’, IEEE Transactions on Geoscience and Remote Sensing, 55(9), pp.

5274–5283.

Solomon, C. and Breckon, T. (2011) Fundamentals of Digital Image Processing: A Practical

Approach with Examples in Matlab. First Edit, Wiley’s global Scientifi. First Edit. Oxford.

doi: 10.1002/9780470689776.

Sood, A., Bhathal, V. and Singh, S. (2018) ‘Image Compression Techniques : A Review’,

International Research Journal of Engineering and Technology (IRJET), 5(4), pp. 3855–

3857.

Starosolski, R. (2007) ‘Simple Fast and Adaptive Lossless Image Compression Algorithm’,

Software - Practice and Experience, 37(1), pp. 65–91.

Starosolski, R. (2014) ‘New Simple and Efficient Color Space Transformations for Lossless

Image Compression’, Journal of Visual Communication and Image Representation, 25(5),

pp. 1056–1063. doi: 10.1016/j.jvcir.2014.03.003.

Stoyanov, D., Taylor, Z. and Hutchison, D. (2018) Deep Learning in Medical and

Multimodal Learning. Granada, Spain: Springer. doi: 10.1007/978-3-030-00889-5.

Sudhakar, R., Karthiga, M. R. and Jayaraman, S. (2005) ‘Image Compression using Coding

of Wavelet Coefficients – A Survey’, Icgst-Gvip, 5(6), pp. 25–38.

Szoke, I., Lungeanu, D. and Holban, S. (2015) ‘Image Compression Techniques Using Local

Binary Pattern’, IEEE 13th International Symposium on Applied Machine Intelligence and

Informatics, pp. 139–143.

Tajne, A. S. and Kulkarni, P. P. S. (2015) ‘A Survey on Medical Image Compression Using

Hybrid Technique’, International Journal of Computer Science and Mobile Computing, 4(2),

pp. 18–23.

Talukder, K. H. and Harada, K. (2010) ‘Haar Wavelet Based Approach for Image

Compression and Quality Assessment of Compressed Image’, IAENG International Journal

of Applied Mathematics, 36(1), pp. 1–9. Available at: http://arxiv.org/abs/1010.4084.

Tecuci, G. (2012) Advanced Neural Network Clustering Techniques for Liquid Crystal

Texture Classification, Doctoral dissertation, Kent State University).

165

Tomar, R. R. S. and Jain, K. (2015) ‘Lossless Image Compression Using Differential Pulse

Code Modulation and its Application’, IEEE, Fifth International Conference on

Communication Systems and Network Technologies, In Computational Intelligence and

Communication Networks (CICN), pp. 397–400. Available at:

http://ieeexplore.ieee.org/document/7279977/.

Traore, B. B., Kamsu-foguem, B. and Tangara, F. (2018) ‘Deep Convolution Neural Network

for Image Recognition’, Ecological Informatics. Elsevier, 48(September), pp. 257–268.

Available at: https://doi.org/10.1016/j.ecoinf.2018.10.002.

Uzair, M. et al. (2018) ‘Representation Learning with Deep Extreme Learning Machines for

Efficient Image Set Classification’, Neural Computing and Applications. Springer London,

30(4), pp. 1211–1223.

Varnan, C. S. et al. (2011) ‘Image Quality Assessment Techniques in Spatial’, International

Journal of Computer Science and Technology, 2(3), pp. 177–184. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.219.5535.

Vidal, M. and Amigo, J. M. (2012) ‘Pre-Processing of Hyperspectral Images. Essential Steps

Before Image Analysis’, Chemometrics and Intelligent Laboratory Systems. Elsevier B.V.,

117, pp. 138–148. Available at: http://dx.doi.org/10.1016/j.chemolab.2012.05.009.

Vidhya, K. et al. (2016) ‘A Review of Lossless and Lossy Image Compression Techniques’,

International Research Journal of Engineering and Technology (IRJET), 3(4), pp. 616–617.

Vijay, V., Bill, K. and Stacie, P. (2015) ‘Design Science Research in Information Systems’,

in Design research in information systems. Boston, MA: Springer, pp. 1–66. Available at:

http://www.desrist.org/design-research-in-information-systems/[Accessed 11 may 2017].

Vijayaran, S. and Sakila, A. (2016) ‘Document Image Compression using Hybrid

Compression Technique’, International Journal of Engineering Science, 6(11), pp. 3441–

3445.

Vijayvargiya, G., Silakari, S. and Pandey, R. (2013) ‘A Survey : Various Techniques of

Image Compression’, International Journal of Computer Science and Information Securtiy

(IJCSIS), 11(10).

Wang, K. et al. (2017) ‘Cost-Effective Active Learning for Deep Image Classification’, IEEE

Transactions on Circuits and Systems for Video Technology, 27(12), pp. 2591–2600.

Wang, L. et al. (2017) ‘Spectral–Spatial Multi-Feature-based Deep Learning for

Hyperspectral Remote Sensing Image Classification’, Soft Computing. Springer Berlin

Heidelberg, 21(1), pp. 213–221.

Wang, Z. and Li, Q. (2011) ‘Information Content Weighting for Perceptual Image Quality

Assessment’, IEEE Transactions on Image Processing, 20(5), pp. 1185–1198.

Wei, Y. (2008) ‘An Introduction to Fractal Image Compression’, National Taiwan

University, (October), p. 20. doi: 10.1016/0143-8166(91)90068-5.

Wiseman, Y. (2015) ‘The Still Image Lossy Compression Standard - JPEG’, in In

Encyclopedia of Information Science and Technology. Third. Encyclopedia of Information

Science and Technology, pp. 295–305.

Wozniak, M. et al. (2015) ‘A Multiscale Image Compressor with RBFNN and Discrete

Wavelet Decomposition’, in International Joint Conference on Neural Networks (IJCNN).

166

IEEE, pp. 1–7.

Yan-li, Z. et al. (2010) ‘Improved LZW Algorithm of Lossless Data Compression for WSN’,

3rd IEEE International Conference InComputer Science and Information Technology

(ICCSIT), 4, pp. 523–527.

Yang, M. and Bourbakis, N. (2005) ‘An Overview of Lossless Digital Image Compression

Techniques’, IEEE, 48th Midwest Symposium on Circuits and Systems, p. Vol. 2 PP.1099-

1102. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1594297.

Yuan, J. et al. (2019) ‘Multi-Criteria Active Deep Learning for Image Classification’,

Knowledge-Based Systems. Elsevier B.V., 172, pp. 86–94. Available at:

https://doi.org/10.1016/j.knosys.2019.02.013.

Zaineldin, H., Elhosseini, M. A. and Ali, H. A. (2015) ‘Image Compression Algorithms in

Wireless Multimedia Sensor Networks: A Survey’, Ain Shams Engineering Journal. Faculty

of Engineering, Ain Shams University, 6(2), pp. 481–490. Available at:

http://dx.doi.org/10.1016/j.asej.2014.11.001.

Zhang et al. (2015) ‘Acoustic Emission Detection of Rail Defect Based on Wavelet

Transform and Shannon Entropy’, Journal of Sound and Vibration. Elsevier, 339, pp. 419–

432. Available at: http://dx.doi.org/10.1016/j.jsv.2014.11.021.

167

Appendix A LRCSC Compression
%--

%-------------------- Read The Image and determine its Details ------------

%--

Img_Orignal = imread('Image_1.bmp'

imshow(Img_Orignal)

Img_Orignal_1 = Img_Orignal(:,:,1);

Img_Orignal_2 = Img_Orignal(:,:,2);

Img_Orignal_3 = Img_Orignal(:,:,3);

Img_Red = double(Img_Orignal_1);

Img_Green = double(Img_Orignal_2);

Img_Blue = double(Img_Orignal_3);

Row_Num = size(Img_Red,1);

Col_Num = size(Img_Red,2);

%--

%-------------------- Transformation Phase RGB-YUV ------------------------

%--

U = Img_Red - Img_Green;

V = Img_Blue - Img_Green;

Image_R1 = Img_Red;

Image_G1 = U ;

Image_B1 = V;

%--

%-------------------- Column Subtraction Phase ----------------------------

%------------------------- Red --

Image_R2 = Image_R1;

for j=1:Col_Num - 1

 for i=1:Row_Num

 Image_R2(i,j) = Image_R1(i,j) - Image_R1(i,j+1);

 end

end

%------------------------- Green --

Image_G2 = Image_G1;

for j=1:Col_Num - 1

 for i=1:Row_Num

 Image_G2(i,j) = Image_G1(i,j) - Image_G1(i,j+1);

 end

end

%------------------------- Blue ---

Image_B2 = Image_B1 ;

for j=1:Col_Num - 1

 for i=1:Row_Num

 Image_B2(i,j) = Image_B1(i,j) - Image_B1(i,j+1);

 end

end

Image_R3 = Image_R2;

Image_G3 = Image_G2;

Image_B3 = Image_B2;

168

%--

%-------------------- Positive Compression --------------------------------

%--------------------- Positive Image Red ---------------------------------

Bin_R = Image_R3;

Image_R4 = Image_R3;

for i=1:Row_Num

 for j=1:Col_Num

 if Image_R3(i,j)<=0

 Bin_R(i,j) = 0;

 Image_R4(i,j)= Image_R3(i,j)*(-1);

 else

 Bin_R(i,j) = 1;

 Image_R4(i,j)= Image_R3(i,j);

 end

 end

end

%--------------------- Positive Image Green ------------------------------

Bin_G = Image_G3;

Image_G4 = Image_G3;

for i=1:Row_Num

 for j=1:Col_Num

 if Image_G3(i,j)<=0

 Bin_G(i,j) = 0;

 Image_G4(i,j)= Image_G3(i,j)*(-1);

 else

 Bin_G(i,j) = 1;

 Image_G4(i,j)= Image_G3(i,j);

 end

 end

end

%--------------------- Positive Image Blue ------------------------------

Bin_B = Image_B3;

Image_B4 = Image_B3;

for i=1:Row_Num

 for j=1:Col_Num

 if Image_B3(i,j)<=0

 Bin_B(i,j) = 0;

 Image_B4(i,j)= Image_B3(i,j)*(-1);

 else

 Bin_B(i,j) = 1;

 Image_B4(i,j)= Image_B3(i,j);

 end

 end

end

%--

%-------------------- Huffman Coding ------------------------------------

%-------------------------- Red ---

[Image_R5, Image_R5_dic] = Func_My_Huff_1(Image_R4);

Image_R5_dic = Image_R5_dic(:,3);

BtC_Image_R5 = Fun_Bit_Count_PM(Image_R5);

BtC_Image_R5_dic = Fun_Bit_Count_PM(Image_R5_dic);

%-------------------------- Green ---

[Image_G5, Image_G5_dic] = Func_My_Huff_1(Image_G4);

Image_G5_dic = Image_G5_dic(:,3);

BtC_Image_G5 = Fun_Bit_Count_PM(Image_G5);

BtC_Image_G5_dic = Fun_Bit_Count_PM(Image_G5_dic);

169

%-------------------------- Blue --

[Image_B5, Image_B5_dic] = Func_My_Huff_1(Image_B4);

Image_B5_dic = Image_B5_dic(:,3);

BtC_Image_B5 = Fun_Bit_Count_PM(Image_B5);

BtC_Image_B5_dic = Fun_Bit_Count_PM(Image_B5_dic);

%--

%-------------------- Restore the Negative Value --------------------------

%-------------------------- Red ---

Image_R6 = Image_R5;

for i=1:Row_Num

 for j=1:Col_Num

 if Bin_R(i,j)==0

 Image_R6(i,j)= Image_R5(i,j) * (-1);

 else

 Image_R6(i,j)= Image_R5(i,j);

 end

 end

end

%-------------------------- Green ---

Image_G6 = Image_G5;

for i=1:Row_Num

 for j=1:Col_Num

 if Bin_G(i,j)==0

 Image_G6(i,j)= Image_G5(i,j) * (-1);

 else

 Image_G6(i,j)= Image_G5(i,j);

 end

 end

end

%-------------------------- Blue --

Image_B6 = Image_B5;

for i=1:Row_Num

 for j=1:Col_Num

 if Bin_B(i,j)==0

 Image_B6(i,j)= Image_B5(i,j) * (-1);

 else

 Image_B6(i,j)= Image_B5(i,j);

 end

 end

end

Dic_1 = BtC_Image_R5_dic + BtC_Image_G5_dic + BtC_Image_B5_dic;

BtC_Image_R6 = Fun_Bit_Count_PM(Image_R6);

BtC_Image_G6 = Fun_Bit_Count_PM(Image_G6);

BtC_Image_B6 = Fun_Bit_Count_PM(Image_B6);

A3 = Dic_1 + BtC_Image_R6 + BtC_Image_G6 + BtC_Image_B6 ;

%--

%-------------------- RLE Compression Phase -------------------------------

%--

[RLE_Image_R6]=My_Func_RLE(Image_R6);

[RLE_Image_G6]=My_Func_RLE(Image_G6);

[RLE_Image_B6]=My_Func_RLE(Image_B6);

[Btc_RLE_Image_R6] = Fun_Bit_Count_PM(RLE_Image_R6);

[Btc_RLE_Image_G6] = Fun_Bit_Count_PM(RLE_Image_G6);

[Btc_RLE_Image_B6] = Fun_Bit_Count_PM(RLE_Image_B6);

A3 = Dic_1 + Btc_RLE_Image_R6 + Btc_RLE_Image_G6 + Btc_RLE_Image_B6;

toc;

170

Appendix B LRCSC De-Compression
%--

%-------------------- Decompression ---------------------------------------

%------------------------- De_RLE ---

tic;

[De_RLE_Image_R5]=Fun_De_RLE(RLE_Image_R6);

De_Image_R5 = reshape(De_RLE_Image_R5,[Row_Num,Col_Num]);

[De_RLE_Image_G5]=Fun_De_RLE(RLE_Image_G6);

De_Image_G5 = reshape(De_RLE_Image_G5,[Row_Num,Col_Num]);

[De_RLE_Image_B5]=Fun_De_RLE(RLE_Image_B6);

De_Image_B5 = reshape(De_RLE_Image_B5,[Row_Num,Col_Num]);

%--

%-------------------- Positive Value De_Compression ----------------------

%------------------------------ Red ---------------------------------------

Bin_R1 = De_Image_R5;

De_Image_R = De_Image_R5;

for i=1:Row_Num

 for j=1:Col_Num

 if De_Image_R5(i,j)<=0

 Bin_R1(i,j) = 0;

 De_Image_R(i,j)= De_Image_R5(i,j)*(-1);

 else

 Bin_R1(i,j) = 1;

 De_Image_R(i,j)= De_Image_R5(i,j);

 end

 end

end

%------------------------------ Green -------------------------------------

Bin_G1 = De_Image_G5;

De_Image_G = De_Image_G5;

for i=1:Row_Num

 for j=1:Col_Num

 if De_Image_G5(i,j)<=0

 Bin_G1(i,j) = 0;

 De_Image_G(i,j)= De_Image_G5(i,j)*(-1);

 else

 Bin_G1(i,j) = 1;

 De_Image_G(i,j)= De_Image_G5(i,j);

 end

 end

end

%------------------------------ Blue --------------------------------------

Bin_B1 = De_Image_B5;

De_Image_B = De_Image_B5;

for i=1:Row_Num

 for j=1:Col_Num

 if De_Image_B5(i,j)<=0

 Bin_B1(i,j) = 0;

 De_Image_B(i,j)= De_Image_B5(i,j)*(-1);

 else

 Bin_B1(i,j) = 1;

 De_Image_B(i,j)= De_Image_B5(i,j);

 end

 end

end

171

%--

%-------------------- De_Huffman Code ------------------------------------

%-------------------------- Red ---

[DE_Huff_Image_R4] = Func_My_Huf_De_1(De_Image_R,Image_R5_dic);

[DE_Huff_Image_G4] = Func_My_Huf_De_1(De_Image_G,Image_G5_dic);

[DE_Huff_Image_B4] = Func_My_Huf_De_1(De_Image_B,Image_B5_dic);

%--

%-------------------- Restore the Negative Value --------------------------

%------------------------------ Red ---------------------------------------

De_Image_R3 = DE_Huff_Image_R4;

for i=1:Row_Num

 for j=1:Col_Num

 if Bin_R1(i,j)==0

 De_Image_R3(i,j)= DE_Huff_Image_R4(i,j) * (-1);

 else

 De_Image_R3(i,j)= DE_Huff_Image_R4(i,j) ;

 end

 end

end

%------------------------------ Green -------------------------------------

De_Image_G3 = DE_Huff_Image_G4;

for i=1:Row_Num

 for j=1:Col_Num

 if Bin_G1(i,j)==0

 De_Image_G3(i,j)= DE_Huff_Image_G4(i,j)* (-1) ;

 else

 De_Image_G3(i,j)= DE_Huff_Image_G4(i,j);

 end

 end

end

%------------------------------ Blue --------------------------------------

De_Image_B3 = DE_Huff_Image_B4;

for i=1:Row_Num

 for j=1:Col_Num

 if Bin_B1(i,j)==0

 De_Image_B3(i,j)= DE_Huff_Image_B4(i,j)* (-1) ;

 else

 De_Image_B3(i,j)= DE_Huff_Image_B4(i,j);

 end

 end

end

%--

%-------------------- CSC Decompression Column ---------------------------

%------------------------- Red --

D_R2 = De_Image_R3;

for j=Col_Num:-1:2

 for i=1:Row_Num

 D_R2(i,j-1) = D_R2(i,j) + D_R2(i,j-1);

 end

end

%------------------------- Green --

D_G2 = De_Image_G3;

for j=Col_Num:-1:2

 for i=1:Row_Num

 D_G2(i,j-1) = D_G2(i,j) + D_G2(i,j-1);

 end

end

172

%------------------------- Blue ---

D_B2 = De_Image_B3;

for j=Col_Num:-1:2

 for i=1:Row_Num

 D_B2(i,j-1) = D_B2(i,j) + D_B2(i,j-1);

 end

end

%--

%-------------------- Reverse Transformation ------------------------------

%--

U1 = D_R2 - D_G2;

V1 = U1 + D_B2 ;

toc;

%--

%-------------------- Reconstruct the Image -------------------------------

%--

De_Compressed_IMG_R = D_R2;

De_Compressed_IMG_G = U1;

De_Compressed_IMG_B = V1;

De_Comp(:,:,1) = De_Compressed_IMG_R;

De_Comp(:,:,2) = De_Compressed_IMG_G;

De_Comp(:,:,3) = De_Compressed_IMG_B;

%--

%-------------------- End Decompression -----------------------------------

%--

Appendix C Huffman Coding Function
%--

%--------- Huffman Coding Function ---------------------------------------

%--

function [Mat_My_Huff,Dic] = My_Huff_1(Mat_1)

Size_Row=size(Mat_1,1);

Size_Clm=size(Mat_1,2);

Mat_1= double(Mat_1);

Compressed_IMG_x = Mat_1;

symbols_1 = unique(Compressed_IMG_x);

s1=size(symbols_1,1);

for i=1 : s1

 UQ_Count_1 = sum(sum(Compressed_IMG_x==symbols_1(i)));

 UQ_Count_11(i,1) = UQ_Count_1;

end

%---

% Sort the Matrix in descending order with respect to the first two column

%---

 A1 = [UQ_Count_11,symbols_1];

 Dict_11= sortrows(A1,[1 2]);

 Dict_12=sortrows(Dict_11,[-1 2]);

 for i=1:s1

 Dict_13(i,:)= i;

 end

 Dict_1=[Dict_13,Dict_12];

 for i=1:s1

 Mat_My_Huff(Mat_1 == Dict_1(i,3))= Dict_1(i,1);

173

 end

 Mat_My_Huff1 = reshape(Mat_My_Huff,[Size_Row,Size_Clm]);

 Mat_My_Huff = Mat_My_Huff1;

 Dic=Dict_1;

end

%--

%--------- Huffman De-Coding Function -------------------------------------

%--

function [Img_2] = Func_My_Huf_De_1(Huff_1,Huff_1_Dic ,Row_Num,Cols_Num)

Huff_55 = Huff_1;

L4=length(Huff_1_Dic);

New_Row_Num = size(Huff_1,1);

New_Col_Num = size(Huff_1,2);

for i=1:L4

 Huff_1_Dic(i,2)=i;

end

for i=1:New_Row_Num

 for j=1:New_Col_Num

 for x=1:L4

 if(Huff_1(i,j) == Huff_1_Dic(x,2))

 Huff_55(i,j)=Huff_1_Dic(x,1);

 end

 end

 end

end

Img_2=double(Huff_55);

end

Appendix D RLE Coding Function
%--

%--------- RLE Coding Function ---

%--

function [output_args] = My_Func_RLE(Mat_x)

ImageArray = Mat_x(:).';

j=1;

a=length(ImageArray);

count=0;

for n=1:a

 b=ImageArray(n);

 if n==a

 count=count+1;

 c(j)=count;

 s(j)=ImageArray(n);

 elseif ImageArray(n)==ImageArray(n+1)

 count=count+1;

 elseif ImageArray(n)==b

 count=count+1;

174

 c(j)=count;

 s(j)=ImageArray(n);

 j=j+1;

 count=0;

 end

end

output_args=[c;s];

end

%--

%--------- RLE De-Coding Function --

%--

function [v] = Fun_De_RLE(input_args)

c=input_args(1,:);

s=input_args(2,:);

g=length(s);

j=1;

l=1;

for i=1:g

 v(l)=s(j);

 if c(j)~=0

 w=l+c(j)-1;

 for p=l:w

 v(l)=s(j);

 l=l+1;

 end

 end

 j=j+1;

end

ReconstructedImageArray=v;

v=v.';

end

