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Abstract 
 

We are currently living in an era revolutionised by the development of smart phones and digital 

cameras. Most people are using phones and cameras in every aspect of their lives. With this 

development comes a high level of competition between the technology companies developing 

these devices, each one trying to enhance its products to meet the new market demands. One 

of the most sought-after criteria of any smart phone or digital camera is the camera’s resolution. 

Digital imaging and its applications are growing rapidly; as a result of this growth, the image 

size is increasing, and alongside this increase comes the important challenge of saving these 

large-sized images and transferring them over networks. With the increase in image size, the 

interest in image compression is increasing as well, to improve the storage size and transfer 

time.  

In this study, the researcher proposes two new lossless image compression algorithms. Both 

proposed algorithms focus on decreasing the image size by reducing the image bit-depth 

through using well defined methods of reducing the coloration between the image intensities. 

The first proposed lossless image compression algorithm is called Column Subtraction 

Compression (CSC), which aims to decrease the image size without losing any of the image 

information by using a colour transformation method as a pre-processing phase, followed by 

the proposed Column Subtraction Compression function to decrease the image size. The 

proposed algorithm is specially designed for compressing natural images. The CSC algorithm 

was evaluated for colour images and compared against benchmark schemes obtained from 

(Khan et al., 2017). It achieved the best compression size over the existing methods by 

enhancing the average storage saving of the BBWCA, JPEG 2000 LS, KMTF– BWCA, HEVC 

and basic BWCA algorithms by 2.5%, 15.6%, 41.6%, 7.8% and 45.07% respectively. The CSC 

algorithm simple implementation positively affects the execution time and makes it one of the 

fastest algorithms, since it needed less than 0.5 second for compressing and decompressing 

natural images obtained from (Khan et al., 2017). The proposed algorithm needs only 19.36 

seconds for compressing and decompressing all of the 10 images from the Kodak image set, 

while the BWCA, KMTF – BWCA and BBWCA need 398.5s, 429.24s and 475.38s 

respectively. Nevertheless, the CSC algorithm achieved less compression ratio, when 

compressing low resolution images since it was designed for compressing high resolution 

images. To solve this issue, the researcher proposed the Low-Resolution Column Subtraction 
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Compression algorithm (LRCSC) to enhance the CSC low compression ratio related to 

compressing low-resolution images. 

The LRCSC algorithm starts by using the CSC algorithm as a pre-processing phase, followed 

by the Huffman algorithm and Run-Length Coding (RLE) to decrease the image size as a final 

compression phase. The LRCSC enhanced the average storage saving of the CSC algorithm 

for raster map images by achieving 13.68% better compression size. The LRCSC algorithm 

decreases the raster map image set size by  saving 96% from the original image set size but did 

not reach the best results when compared with the PNG, GIF, BLiSE and BBWCA where the 

storage saving is 97.42%, 98.33%, 98.92% and 98.93% respectively. The LRCSC algorithm 

enhanced the compression execution time with acceptable compression ratio.  

Both of the proposed algorithms are effective with any image types such as colour or greyscale 

images. The proposed algorithms save a lot of memory storage and dramatically decreased the 

execution time. 

Finally, to take full benefits of the two newly developed algorithms, anew system is developed 

based on running both of the algorithm for the same input image and then suggest the 

appropriate algorithm to be used for the de-compression phase. 

Keywords: Image Compression, Image Classification, Lossless Image Compression 

Techniques, Column Subtraction Compression (CSC), Low-Resolution Column Subtraction 

Compression (LRCSC), Deep Conventional Neural Networks (DCNN), Artificial Intelligence 

(AI), Image Classification. 
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CHAPTER ONE: INTRODUCTION AND MOTIVATION 

Overview 

This chapter describes the research motivation and introduces the research topic in the field 

of image compression. Then the research aim and objective are explained. This is followed 

by the description of the adopted research methodology that is used to achieve the research 

aim and objectives and the contribution to knowledge. The chapter concludes by providing 

a short description of the remaining chapters constituting this thesis. 

1.1 Introduction and Motivation 

At the beginning of the 1960s, the need for digital imaging development arose. From that date 

to the current time, there has been considerable growth in digital images and image 

applications. Indeed, images have become an important part of our daily lives and activities. 

Photos are now taken mainly by mobile phones for personal photos but also for newspapers, 

websites and other media (Lyon, 2006). 

Nowadays, cameras and their applications have seen unprecedented development. Each smart 

phone has a good resolution digital camera, which provides more data about images such as 

location, date and time. With the development of the digital camera and the increase in the 

number of photos and their transmission through networks, comes the size issue of the images 

as some motion images have 16 bit-depth with an image size of 50.3 megabytes.  Regarding 

the large image size, a massive amount of data is created and it is reported that approximately 

2.5 quintillion bytes are created daily (Lu et al., 2014). The estimated amount of the data 

created  in the year 2020 is approximately 1.7 MB per second for every person (Anon, 2019).  

Many researches had been developed to enhance the methods of displaying images in 

applications; these researches gave computers and cell phones the capabilities of displaying 

high resolution complex graphical images such as those used in computer games and medical 

applications. Although the visual aesthetics of images in the applications is enhanced, these 

applications need a lot of disk storage.  

With the result of producing such a high number of high-resolution images, came the challenge 

of saving and transmitting these images. The higher resolution images need more storage space 

and transmitting time; image compression is about developing algorithms to solve this problem.  

Given the enormous production rate of digital images, developing image compression 

algorithms has become a very important field for researchers to save storage space and channel 

bandwidth. Hence, the research motivation is to investigate the digital image processing 

challenges in the area of lossless image compression by developing new algorithms that aim to 
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enhance the current image compression rates and execution times to meet the demands of the 

information revolution and fast development of producing images with large sizes.   

Lossless image compression aims to decrease the image size without effecting the image 

quality (Shukla, Alwani and Tiwari, 2010). The efforts developed by the researchers in the 

lossless domain aim to enhance the compression rate with zero distortion and an acceptable 

execution time.  

1.2 Research Aim and Objectives 

Based on the motivation from the previous section, this research aims to create a fully 

automated lossless image compression system, that decreases the image size with high 

compression rate and zero percentage of distortion in a very fast time. To achieve this aim, the 

following objectives are identified. 

1- Reviewing the literature critically on current image compression techniques. 

2- Identify the weaknesses of the current techniques. 

3- Design the new compression algorithms. 

4- Implement the new algorithms. 

5- Validate the algorithm results. 

6- Evaluate the compression results by conducting an empirical comparison of the new 

algorithm with existing state of the art algorithms. 

1.3 Research Methodology 

Vijay, Bill and Stacie, (2015) generally defined research as some activity that participate in 

understanding a particular phenomenon. The phenomenon is a set of interested actions for some 

entities found by the researchers, and the research methods are to produce knowledge by the 

researcher by using the convenient activities. (Hanid, 2014) defines research as an investigation 

methodology that test the resources to expand the knowledge scope within domain. (Alan and 

Samir, 2012) defined the difference between research and reasoning by providing the following 

definitions; reasoning can work in an abstract environment that is highly separated from the 

reality. However, research supports self-correcting by providing testing methods to obtain 

results for validation. Information systems employed a lot of methods for developing 

knowledge as it supports the phenomenon behaviours predictions (Vijay, Bill and Stacie, 

2015). 
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1.3.1 Design Science Research in Information Systems 

Design Science Research (DSR) is an Information Systems (IS) research methodology that 

provides problems solving methods and can handle the industry sectors challenges to contribute 

to the theories in the application domain (Hanid, 2014). Furthermore, DSR is a methodology 

for finding and exploring alternative solutions for problem solving for a specific domain. 

(Hevner, Chatterjee and Juhani, 2010) emphasised that the DSR methodology become one of 

the best methodologies over the years. The DSR concentrates on organizations’ problem 

solving by providing valid knowledge in a certain domain. 

(Gregor and Hevner, 2013) stated that, the DSR is interested in the development of technical 

artefacts in the IS domain, such as information system evaluation, decision support systems 

and modelling tools. DSR become reliable information system research model, since it 

provides effective solutions for the research problems. 

Figure 1.1 illustrate the IS three levels of research and the DSR role for each level as described 

by (Hevner, Chatterjee and Juhani, 2010). 

 

 

Figure 1. 1 - Levels of Research in Information Systems and DSR Role 

 (Adapted From: (Hevner, Chatterjee and Juhani, 2010)  



19 
 

The concepts of using the DSR with information systems (DSRIS) is continually evolving as 

acquiring knowledge process through design practices (Kuechler and Vaishnavi, 2012). DSRIS 

artefact and methodology is to decide what to build and the method of building it. 

1.3.2 Philosophical Ground of DSR 

(Ken Peffers et al., 2007) stated that, early in the 1990s, IS researchers are starting to pay more 

attention to DSR. The DSRIS methodology is different from other methodologies in theory 

building and testing methods. (Ken Peffers et al., 2007) described that the DSR is to develop 

solutions or models that helps humans. 

(Nunamaker, Chen and Purdin, 1990) noted that some researchers tried to create an integrated 

model that combine the research process with the system development process to facilitate the 

system developments with the support of suitable experiments. Furthermore, the IS research 

can be enhanced by adopting the DSR methodology.  

(Hanid, 2014) emphasise that the knowledge creation process begins with a substantive field 

of inquiry known as philosophy, where the inquiry, theories, facts and alternatives are gathered 

to help in the knowledge creation. (Scotland, 2012) noted that, several philosophical 

approaches to thinking exists and they are commonly categorized into positivism, 

interpretivism, phenomenology, realism, hermeneutics, critical theory and phenomenology.  

The research strategy and research method selections rely on the philosophical stance. 

However, the previous categories did not cover the Design Science Research (DSR) that is 

interested in problem-solving (Hanid, 2014). Table 1.1 lists a comparison of DSR with some 

other well-known research perspectives. 

Table 1. 1- Design Science Research Perspective. (Source: (Vijay, Bill and Stacie, 2015)) 

Basic Belief  
Research Perspectives 

Positivist Interpretive Design 

Ontology  A single knowable 

and probabilistic 

reality  

The construction of 

multiple realities in a 

social manner.  

Multiple realities with 

contextually situated 

alternative world-states. Socio-

technologically enabled.  

Epistemology  Objective; 

dispassionate. 

Detached observer 

of truth  

Subjective, i.e. values 

and knowledge emerge 

from the researcher-

participant interaction.  

Knowing through making 

objectively constrained 

construction within a context. 

Iterative circumscription 

reveals meaning.  

Methodology  Observational in 

nature with 

quantitative and 

statistical measures  

Participation; 

qualitative. 

Hermeneutical, 

dialectical.  

Developmental in nature with 

an impact measurement of 

artefact on compound systems  

Axiology  Truth: universal and 

beautiful; prediction  

Understanding: situated 

and description  

Control; creation; progress (i.e. 

improvement); understanding  
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Observing Table 1.1, the DSR involves a multi-dimensional perspective from ontological and 

epistemological beliefs. The methodological belief is suitable for IS domain, since its nature is 

developmental. Furthermore, DSR controlled the environment and provide improvements to 

the research process as the Axiological belief. This is why the researcher adapted the DSR in 

this research as it supports the research objectives and meet the research requirements. 

1.3.3 DSR Process Model 

The DSR model describes the research environment and variables according to the variables 

practiced. This research adapted the DSR process model from (Vijay, Bill and Stacie, 2015). 

Figure 1.2 illustrate the adapted DSR process model in this research. 

 

 

Figure 1. 2 - DSR Process Model (Adapted from (Vijay, Bill and Stacie, 2015) 

Awareness of the Problem  

Awareness of the problem is the first step in the DSR process model. It aims to gain the 

knowledge of the research domain to cover and understand the research area and identifies the 

research problem that needed to be solved (Alan and Samir, 2012). Critical review of the 

existing literature in the research domain is conducted to identify the problem. Once the critical 

review is completed, the gaps from the current literature were analysed to provide 
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comprehensive awareness of the current problem. Sections 2.1 to 2.3 in chapter two describe 

this in detail. 

Suggestion: The second DSR process model step is solutions suggestion. This step aims to 

propose solutions to the problem from the previous step.  This step suggested a solution for the 

lossless image compression problems such as low compression rate and slow execution time. 

Sections 3.1 in chapter three describe the solutions suggestion.  

Development: The third step of the DSR process model is development. This step considers the 

development of a solution for the problems from the first step by using the suggestions from 

the second step to meet the research objectives. (Gregor and Hevner, 2013) emphasised that, 

the development is to create artefact such as constructs, models or methods. The artefact should 

meet the research contribution. Sections 4.1 to 4.3 in chapter four describe the development 

phase for the first algorithm and sections 5.1 to 5.3 in chapter five describe the development 

phase for the second algorithm. 

Evaluation: The fourth step of the DSR process model is evaluation. (Gregor and Hevner, 

2013) emphasised that evaluation should be rigorous and appropriately implemented to prove 

that the developed artefact meets the research aim and objectives. It should clearly describe the 

outputs as a solution for the research problem based on the requirements. The DSR evaluation 

could uses one or more of the following evaluation methods: 

• Observational. 

• Analytical. 

• Experimental. 

• Testing. 

• Descriptive. 

Section 4.5 describe the evaluation process for the first algorithm and Section 5.5 describe the 

evaluation process for second algorithm. 

Conclusion:  The final DSR process model step is the conclusion. This step is to describe how 

the research achieves its aim and objectives from the research outputs, by identifying the 

research problem in the domain, the design rigour, artefact and novelty (Offermann et al., 

2009). Furthermore, it provides recommendations for future research (Vijay, Bill and Stacie, 

2015). Chapter 7 describe the conclusion phase for this research. Table 1.2 lists the DSR model 

steps for this research and each process steps corresponding chapters. 
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Table 1. 2 - DSR Process Steps and the Corresponding chapters in this research 

DSR Process Model Steps Corresponding Chapter(s) Outputs 

Awareness of Problem  Sections 2.1 to 2.3 Gain the knowledge of the research 

domain and identifies the research 

problem. 

Suggestion Sections 3.1  Propose solution for lossless image 

compression methods to enhance the 

compression ratio and execution time. 

Sections 3.2 to 3.4 Requirements specification for the 

research area 

Development  Chapter 4  The proposed lossless image 

compression algorithm for natural 

images (CSC) 

Chapter 5  The proposed lossless image 

compression algorithm for synthetic 

images (LRCSC) 

Chapter 6  Automated System for image 

compression 

Evaluation  Sections 4.5  Experimental Evaluation for the CSC 

algorithm to evaluate the algorithm 

performance. 

Sections 5.5  Experimental Evaluation for the LRCSC 

algorithm to evaluate the algorithm 

performance. 

Conclusion  Chapter 7  Research Summaries  

Research Contributions  

Recommendations for future work in the 

domain  

Communication  Chapters 1 to 7  Research Thesis  

 

1.3.4 DSR Knowledge Contribution Framework 

The DSR outputs contribute to the knowledge in specific domains. (Gregor and Hevner, 2013) 

classified the knowledge contribution into four types. 

1. Invention: provides knowledge contribution by inventing or providing new solutions to 

a new problem area in a specific domain. 

2. Improvement: develop new knowledge or solutions that contributes a well-known 

problem area. 

3. Adaptation: adapting knowledge solution for current problem from different area or 

domain. 

4. Routine Design: the use of existing knowledge or solutions for a well-known problem 

area.  
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(Vijay, Bill and Stacie, 2015) mentioned that the DSR may uses more than one type of 

knowledge contribution. Figure 1.3 displays the DSR knowledge contribution framework. 

 

 

Figure 1. 3 - DSR Knowledge Contribution Framework.  

Adapted from: (Gregor and Hevner, 2013). 

This research aims to develop a new knowledge and solutions for known challenges within the 

lossless image compression domain to enhance the current algorithms performance. Therefore, 

this research is related to “Improvement” type on the DSR Knowledge Contribution 

Framework. 

1.4 Research Contributions to Knowledge 

The research contributions to knowledge are: 

1. A comprehensive literature review on lossless and lossy image compression 

technologies. 

2. Addressing the challenges of lossless image compression techniques. 

3. Developing a lossless image compression algorithm for natural images. 

4. Developing a lossless image compression algorithm for synthetic images. 

5. Adapting an artificial intelligence system for image classification to develop a fully 

automated system for choosing the suitable algorithm for compressing the images 

regarding the image type. 

6. Evaluating the compression algorithms. 



24 
 

1.5 Thesis Structure 

The thesis is composed of seven chapters: 

Chapter 1: Introduction  

This chapter describes the research motivation and the research domain in the area of image 

compression. Then the research aim and objective were explained. It also includes the adopted 

research methodology to achieve the research contribution of knowledge, and finally, the 

description of the thesis structure is described. 

Chapter 2: Literature Review  

This chapter covers the literature review for the digital image processing in the domain of 

image compression; with a view of a critical analyses of the currently used algorithms 

regarding the image compression domain. Furthermore, the advantages and limitations of the 

current algorithms are described to identify the challenges related to the research problem to 

provide directions for the development chapters. 

Chapter 3: Solutions and Development Tools  

This chapter covers the research requirements and the environmental parameters that surround 

the research, such as the development tools, the used programming language and the tested 

image sets. 

Chapter 4: Column Subtraction Compression Algorithm 

This chapter describes in detail the proposed lossless Column Subtraction Compression 

algorithm (CSC). It starts with a detailed explanation for all the procedures used in the proposed 

technique. This was then followed by validating the algorithm by testing its results and 

verifying it by comparing it with the state-of-the-art algorithms. 

Chapter 5: Low-Resolution Column Subtraction Compression Algorithm 

This chapter describes in detail the proposed lossless Low-Resolution Column Subtraction 

Compression algorithm (LRCSC). It starts with a detailed explanation of all the procedures 

used in the proposed technique, followed by the validation of the algorithm by testing its 

results, and its verification by a comparison between the lossless approach results with state-

of-the-art results. 

Chapter 6: Automated System for Image Compression 

This chapter describes in detail the concepts of artificial intelligence, machine learning, 

artificial neural networks and deep learning, followed by the fully automated artificial 

intelligence system for choosing the suitable compression algorithm.  

Chapter 7: Conclusion and Recommendations  

This chapter summarizes the research results and provides recommendations for future work. 
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CHAPTER TWO: RESEARCH BACKGROUND AND LITERATURE REVIEW 

2 Chapter Overview 

This chapter covers the literature review for digital image processing in the domain of image 

compression; with a view of critically analysing the current state of the art used algorithms. 

Furthermore, the advantages and limitations of the current algorithms are discussed to 

identify the challenges related to the research problem and provide directions for the 

development chapters.  

2.1  Literature Review 

Given the enormous production rate of digital images, image compression has become a very 

important field for researchers. Image compression aims to decrease the image size without 

losing its main information content, or it may have some acceptable loss provided that the 

human visual system cannot notice it. 

Image compression techniques are either lossless or lossy. The lossless compression techniques 

aim to produce an image that is similar to the original one after the decompression phase. In 

contrast, the lossy compression techniques miss some data from the source image during the 

compression process; it aims to decrease the image size by enhancing the compression rate, 

although the decompressed image quality will be less than the original image. In practice, the 

lossy compression techniques is more used than the lossless compression techniques (Otair and 

Shehadeh, 2016). 

Most compression techniques take advantage of the fact that neighbouring pixels are strongly 

related to each other and their values are very close or similar. In addition, each pixel should 

have a high correlation with the surrounding pixels, which leads to a high data redundancy 

called spectral correlation. Furthermore, an image can be compressed by removing this 

redundancy and the compression algorithm will be more effective if we remove the data 

redundancy before starting compression (Husseen, Mahmud and Mohammed, 2017). 

Any image may include different information types, such as redundant information, which 

helps in producing the original image without losing any of its information. Another type of 

information is irrelevant information; this type saves enormous details, where the human visual 

system cannot observe (Hussain and Al-Fayadh, 2018). 
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2.1.1 Digital Images 

Several tools can be used to convert images in their original form (E.g. paper form) to a digital 

image (computerised image), such as scanners and photography devices. Such tools have 

contributed significantly in digital imaging development. A digital image is represented in the 

form of a two-dimensional matrix (Shinde and Dani, 2011).  

Each of the matrix values is referred to as a pixel or image element. An image could be 

represented with a small number of pixels or with a large number of pixels (up to millions) 

depending on its resolution (Abdalla and Osman, 2016). Intensity is used to represent the 

pixel’s value, whereas the number of bits needed to represent each intensity is called bit-depth. 

An example of a representation of a digital image is shown in Figure 2.1 where the f function 

is used to locate the intensity address f(row, column) and 181 represent the value for the 

acquired address which is the intensity of the pixel (in the Figure we also show the binary 

representation of 181). 
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Figure 2. 1 - Digital image (value and bit representing). Obtained From (Abdalla and Osman, 2016). 

With the fast-growing use of digital images, image processing has become a significant aspect 

in various fields. The image will be the input for processing, while the processed output could 

be an image or information related to the input image. 

Digital Images Types: 

(Otair and Shehadeh, 2016), (Kuppusamy and Mehala, 2013), (John and Joe, 2005) and 

(Padmavathi and Thangadurai, 2016) described the digital image types as: 

1- Binary Image: represents the images in black and white only – black has the value zero 

while white has the value one. 
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2- Greyscale Image: In this type of image, the image colour is black and white with all the 

colour gradations between them. The colour values are assigned values from 0 to 255, 

where each pixel is represented by 8 bits, and the internal value interval is from 0 to 2N-1 

(where N is the bit-depth). For example, if the bit-depth is 8, then the intensity values range 

should be between 0 and 255. These values are represented using binary code; For example, 

135 is represented by 10000111 (Starosolski, 2007). 

3- Colour Image: For images represented by colours, each colour can be represented by a 

combination of the main three colours – Red, Green and Blue (RGB). Each pixel represents 

any colour by three parts (RGB), each part consists of 8 bits with the total of 24 bits. It is 

worth noting that, coloured image compression is derived from the greyscale compression 

algorithm (Starosolski, 2007).  

By combining all the RGB values, we can represent any colour. For example, the minimum 

value of the three colours should be 24 bits of zeros, which represents the black colour, while 

if we want to represent the white colour, we should set the value of the RGB to the maximum 

value (255). All of the other colours can have values between 0 and 255 (John and Joe, 2005). 

2.1.2 The Most Popular Used Image Formats 

Images can use a huge amount of memory. Image size is different according to the information 

they store and the format type they use; some image formats use more size than others due to 

the application with which they are used (Chawla, Beri, and Mudgil, 2014). 

1- Joint Photographic Expert Group (GPEG, JPEG or JPG) is a lossy compression technique 

used with images that store a huge number of colours such as 24 bits (16 million colour) 

photographic images. JPEG was created to compress continuous-tone images (colour or 

greyscale) of normal daily-used real-world images, natural images, animations, documents 

or videos. Nonetheless, the image quality will never be as before, since some of the data 

will be lost during the compression process. This loss of data (distortion) may not be 

noticed by the human visual system. JPEG/JFIF format is used by most of the digital 

camera. One of the JPEG files’ limitations is generational degradation; the algorithm 

suffers when we repeatedly edit and save an image. JPEG also provides lossless image 

storage, but the lossless version is not widely supported. 

Note that JPG files and GPEG files are pronounced “jay-peg”, and some GPEG files use 

the JPG extension because they both have the exact same format, even though the 

extension name is different. JPE and JPEG File Interchange Format (JFIF) files are also 

extensions for GPEG, but they are not very commonly used (Lifewire, 2018). 

https://en.wikipedia.org/wiki/Generation_loss
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2- JPEG 2000 was created in the beginning of the year 2000 by the Joint Photographic Expert 

Group. This standard supports both lossless and lossy techniques. It improves the image 

quality and compression ratios. One of its limitations is that it needs more computational 

power, which makes the JPEG format more common; it has been used in professional 

movie editing and distribution. 

3- Tagged Image File Format (TIF) is mostly used with lossless image compression 

techniques, while some applications use it with lossy compression techniques. The image 

with this format is normally represented with 8 bits or 16 bits for each colour (R, G, B) or 

for 24 bits or 48 bits as well. The image compression algorithm should store in this format 

the needed image compression details. TIF is not recommended to be used with web 

images, as they produce a large image file size.  

4- Graphics Interchange Format (GIF) is a lossless image compression format, used only with 

black and white text or with greyscale images, which have fewer than 256 colours (8 bits); 

consequently, it will not work with coloured images since most coloured images represent 

the image with 24 bits. To solve this problem, we need to convert the colour image into an 

8 bits image, but the compression will be lossy in this case. 

5- Portable Network Graphics (PNG) is a lossless image compression format. It has a 10 –

30% compression rate enhancement compared to the GIF format; also, it can handle more 

colour. It supports partial transparency, which may be used in fades and antialiasing for 

text. 

6- Bitmap (BMP) file format is used in Microsoft Windows’ operating system graphics files. 

Normally, BMP files are of large size before compression. The main advantages of the 

BMP file format are the wide use and simplicity. 

7- The raw image formats family (RAW) generally uses lossless or nearly lossless 

compression techniques that are available as options on some digital cameras. It has a 

better compression rate than the TIF format since it produces smaller images from the 

cameras. The drawback is that there are many manufacturers, and every manufacturer has 

its own RAW format and application to view the image. 

2.1.3 Digital Image Processing  

Digital Image Processing (DIP) is described as the process of executing a computer algorithm 

to perform image processing on a computerised image. DIP allows us to use several different 

image compression algorithms to compress images; it also helps in avoiding many difficulties, 

such as signal distortion (Madhu and Dalal, 2017). Due to the new image size, faster 

https://en.wikipedia.org/wiki/JPEG_2000
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transmitting and better representation are needed. DIP became a part of many fields such as 

communications systems, Global Positioning System (GPS), Radiology Information Systems 

(RIS), medical science, telemedicine networks, picture archiving, social media and image 

compression (Kuppusamy and Mehala, 2013); (Li-Hui and Chen, 2017). 

The development of digital image applications is growing continuously; with this growth 

comes the real difficulties of transferring and saving the remarkable volume of images and their 

related information (Abdalla and Osman, 2016);(Agustsson et al., 2019); (Li-Hui and Chen, 

2017); (Poobal and Ravindran, 2014); (Talukder and Harada, 2010); (Vidal and Amigo, 2012) 

2.1.4 Operations Performed on Digital Images 

2.1.4.1 Image Segmentation  

Image segmentation aims to group the digital image pixels using the benefits of the 

neighbouring pixel, as they have a strong relationship with each other (their values are very 

close to each other). Image segmentation is commonly used to calculate image features, which 

helps to get information about numerous image parameters (Hazarika, Nath, and Bhuyan, 

2015). Every pixel should have a high correlation with the surrounding pixels, which leads to 

higher data redundancy. One of the major objectives of image compression is to decrease or 

remove the data redundancy using the correlated pixels. 

(Wei, 2008) and (Kuppusamy and Mehala, 2013) described the method of reducing the 

correlation between pixels. Because of the high correlation in the neighbouring region or pixel, 

an image can be compressed (each pixel is similar or close to its adjacent pixel). When we 

decrease or remove each pixel’s correlations, we can decrease the image size by using statistical 

characteristic and any compression techniques, such as variable length coding. The process of 

compression starts with the conversion of colour space. We use the transform matrix to convert 

the three dimensions’ colour matrix of the image from red, green and blue (RGB) to YCbCr, 

pixel by pixel, as shown in Figure 2.2, where Y is commonly called the luminance and Cb, Cr 

are commonly called the chrominance (blue difference and red difference). Luminance receives 

the brightness of the light, which is proportional to the total energy in the visible band, while 

chrominance describes the perceived colour tone of light, which depends on the wavelength 

composition of the light. Chrominance is in turn characterised by two attributes: hue, which 

specifies the colour tone (which depends on the peak wavelength of the light); and saturation, 

which describes how pure the colour is (which depends on the spread or bandwidth of the light 

spectrum). As displayed in Figure 2.2, the Y,Cb,Cr matrices maintain the same matrices 
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dimensions from the R,G,B matrices (m x n), the only deference is the values of the Y,Cb,Cr 

matrices that are smaller than the R,G,B matrices.     

 

 

Figure 2. 2 - Colour Space Conversion from RGB to YCbCr. Adapted From (Kuppusamy and 

Mehala, 2013) 

Quantization is a structure that is concerned with converting a continuous set of data into a 

finite set of discrete data. The image should be the input to the quantizer while the output should 

know the number of levels. The best quantizer should represent the original image (signal) with 

the minimum loss of data (Ballé et al., 2017). 

The objective of quantization is to produce a higher compression rate by reducing the image 

accuracy. Each image compression standard, such as JPEG and JPEG 2000, has its own 

quantization methods (Paul and Kumar, 2003); (Solomon and Breckon, 2011). 

2.1.4.2 Image Compression 

Compression is the process that is concerned with decreasing the number of bits required to 

represent an image, audio or video files. Suppose that the image is using 8 bits to represent 

each pixel; if we decrease the bit-depth to 6 bits to represent the intensity for each pixel, then 

we should have a new image with less size. Figure 2.3 represents the structure of a general data 

compression, which uses an encoder for compression and decoder for decompression (Gupta, 

Bansal and Khanduja, 2017); (Li, Drew and Liu, 2014). 
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Figure 2. 3 - General Data Compression Scheme adapted by (Gupta, Bansal and Khanduja, 

2017). 

Image compression is the process that is concerned with decreasing the number of bits required 

to represent an image. It could use a lossless or lossy algorithm. A lossless algorithm is 

responsible for decreasing the image size without losing any of its information; thus, it has a 

low compression rate compared to a lossy algorithm. A lossy algorithm decreases the image 
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size by eliminating redundant and irrelevant data and is considered to have a high compression 

rate, but it still loses some of the original image information(Otair and Shehadeh, 2016). 

 Compression is achieved by the removal of one or more of the three basic data redundancies 

(Mehanna, 2013);(Vijayvargiya, Silakari and Pandey, 2013). There are three types of 

redundancies which are: 

1. Coding redundancy, which is present when less than optimal (i.e. the smallest length) code 

words are used, uses variable length code words to match the statistics of the source image. 

Some of the algorithms that use this type of redundancy are the Huffman coding algorithm 

(Huffman, 1951) and Arithmetic Coding algorithm (Shaw, Rahman and Routray, 2018). 

2. Inter-pixel redundancy (spatial redundancy) results from the correlations between the pixels 

of an image; Run length coding (RLE) is one of the algorithms that use this type of 

redundancy (Al-Wahaib and Wong, 2010). 

3. Psycho visual redundancy, which is due to data that is ignored by the human visual system 

(i.e. visually non-essential information), is considered for use with a lossy compression 

techniques, since some information is lost from the source image (Mehanna, 2013) 

(Ernawan, Abu and Suryana, 2013). 

2.1.5 General Image Compression Model 

Figure 2.4 describes in detail the general image compression and decompression model. The 

compression model aims to produce a compressed image, which comprises of two phases: pre-

processing and encoding. In contrast, the decompression model seeks to reconstruct the 

compressed image by using the decoding phase and post-processing phase. To compress any 

image, the digital image will be loaded into the compression algorithm. 
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Figure 2. 4 - General Compression and Decompression Model 
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The general compression model starts with the pre-processing phase, which is responsible for 

data reduction (elimination of the inter-pixel redundancy) (Sood, Bhathal, and Singh, 2018). It 

aims to remove any irrelevant data (irrelevant data usually comes from applications) to prepare 

the image for the next phase. After removing irrelevant data, the image will be loaded into the 

mapping process to rearrange its data using a mathematical operation, which will make the 

coming encoding phase much easier and more effective. This mathematical operation is 

responsible mainly for removing the spatial redundancy, since neighbouring pixel values are 

similar or very close to each other. The image is now ready to be compressed in the encoding 

process. 

As it can be seen in Figure 2.4, the second step in the compression phase is encoding. The input 

for this phase will be an image that is smaller than the original one. A quantizer is responsible 

for removing or decreasing psycho-visual redundancy (Sood, Bhathal and Singh, 2018). The 

coding process is a reversible process, and no data should be lost during this process. The coder 

delivers a 1:1 mapping where each input symbol should be coded to a unique output in the 

decoding phase. The code may have two types: equal length code and unequal length code. In 

the equal length code, the code-words have the same size, whereas in the unequal length code, 

the code-words can have variable lengths (Sood, Bhathal and Singh, 2018). 

It is important to note the following facts: 

1- Some compression algorithms use all the previous processes while other algorithms may 

use some of them only. 

2- Some information might be lost in the quantization process, since quantization is not a 

reversible process. Therefore, the decompression model does not have a quantization phase. 

One exception for this role is the Discrete Wavelet Transform (DWT) algorithm, since it 

has its own quantizer for compressing the image. The quantizer in the DWT is one of two 

types, being reversible or non-reversible (Mehanna, 2013).  

3- Non-reversible quantizer could be used with lossy compression techniques only, due to the 

unrecoverable loss of information in this process. 

The decompression model is responsible for reconstructing the compressed image in two 

phases. The first phase is the decoding phase, which starts by loading the compressed image 

into the decoder, where the codes will be mapped to the original quantized values using the 

reversal process. Then, these values should be loaded to the inverse mapping process. The 

second phase in the decompression model should be the post-processing, which places the last 

detail that could enhance the view of the final image. 
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2.1.6 Description of the Processes Used in the Current Techniques  

As it has been explained earlier, there are three main processes in the compression model. Some 

algorithms use all three while others may use some of them; however, some algorithms use 

more than one as a hybrid technique. Choosing the algorithm depends on the compression 

technique type (lossless or lossy) and the applications’ needs. The following sections discuss 

the main three compression processes (Wei, 2008).  

2.1.6.1 Correlation 

Correlation is also known as Transforming or Mapping. Images can be compressed by taking 

advantage of the high correlation between neighbouring pixels. In another word, each pixel 

value is similar or very close to the value of its adjacent pixels. When this correlation is 

decreased, then any entropy coding algorithm can be used to decrease the image size. In fact, 

decreasing the pixel correlation is the most important part in compressing the image. 

Correlation usually starts with a prediction and is followed by an entropy coding algorithm to 

enhance the compression rate. As such, prediction is used to reduce colour components’ 

redundancy (pixel intensity redundancy). Prediction methods are either low-complexity or high 

complexity approaches; the main factors that may affect image prediction accuracy are edges 

and noise (Novikov, Egorov, and Gilmutdinov, 2016).  

There are various relevant processing techniques that are used to remove this correlation. The 

most popular methods are: 

1- Predictive Coding: such as Differential Pulse Code Modulation (DPCM), Median Edge 

Detection (MED), Gradient Adaptive Predictor (GAP), Activity Level Classification 

Model (ALCM) and Adaptive Linear Prediction and Classification (ALPC), which are all 

algorithms that are used with lossless compression techniques, where the compressed 

image should be exactly like the source image. Decorrelating the image data is to remove 

the inter-pixel redundancy (mutual redundancy), which will lead to a much more efficient 

and better compression rate. Furthermore, predictive coding is to remove the interpixel 

redundancies by using the neighbouring pixel value to predict the current pixel value and 

generate a new value; the new value should be encoded using a variable length algorithm. 

Subtracting the predicted value from the original will produce the error signal value; this 

value will be rounded to its nearest integer and then encoded by using a variable length 

algorithm. Using the rounding function may cause some distortion since this function is not 

reversible, which makes the predictive coding related to the lossy techniques; but predictive 

coding is considered to be a lossless compression technique, since there is no need for a 
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quantizer. After removing the inter-pixel redundancies, the image will be compressed using 

a variable length algorithm (Hussain and Al-Fayadh, 2018). 

2- Orthogonal Transform: Discrete Cosine Transform (DCT) is the most popular transform 

method in lossy compression techniques. It is used with the JPEG image compression 

standard, where the original image loses some of its information during the compression 

process. The transformation algorithm is to transform the pixels from the image domain 

into another domain to produce a set of coefficients (Hussain and Al-Fayadh, 2018). 

3- Subband Coding: Discrete Wavelet Transform (DWT) is the most common subband 

method, which divides the image spectrum into high-pass and low-pass types. It is used in 

the JPEG 2000 standard as a two-dimension matrix. 

2.1.6.2 Quantization 

Quantization is a lossy compression process that aims to increase the compression rate by 

decreasing the image precision. For example, if the original image represents each intensity 

bit-depth by 8 bits, and the bit-depth for the same image can be decreased to 5 bits, then we 

can say that we reduced the image size and prepare the image to be compressed even more in 

the entropy coding phase as a post processing phase. The limitation of this process is the loss 

of data or, as it known, distortion. This distortion is not recoverable since the quantization 

process is not reversible. JPEG and JPEG 2000 standards use different types of quantization. 

Two of the most popular quantizers algorithms are the scaler quantizer and vector quantizer 

(Ballé, Laparra and Simoncelli, 2017). 

2.1.6.3 Entropy Coding 

Entropy Coding is a lossless compression method that aims to reduce the coding redundancy 

to reach less average length for the image, by implementing any of the entropy coding 

algorithms such as Huffman coding. Entropy Coding maps the input data into bit sequences to 

produce shorter output (Kodituwakku and Amarasinghe, 2010); (Manjinder and Gaganpreet, 

2013). Entropy Coding depends on presenting the highest probability appearance symbols in 

the original data stream (source image) with short code-words in the compressed bit stream 

(compressed image), while the lowest probability appearance symbols should have the longest 

code-words. Some lossy compression algorithms use Entropy Coding due to its efficacy in 

decreasing the number of bits generated by the quantizer’s output (Zaineldin, Elhosseini, and 

Ali, 2015).  
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2.1.7 Measurement of Image Size and Quality  

After compressing any image we should have mathematical procedures to calculate the 

percentage of compression, image quality efficiency, and algorithm performance, which will 

lead us to a better understanding of the strongest and weakness points for each algorithms 

(Hussain and Al-Fayadh, 2018). 

• Measuring the compression proportion, known as the compression rate, is important to find 

out the image compression percentage, which can be calculated by dividing the compressed 

image size by the original image size, as in Eq. 2.1. This percentage is high in lossless 

compression techniques, while it is low in lossy compression techniques (John and Joe, 

2005); (Wang and Li, 2011). 

 

compression rate =
Compressed Image Size 

Original Image Size
 

2.1 

The best compression percentage is when the compression rate equation result is far away from 

one and near to zero; therefore, the compression algorithm should provide a compressed image 

size smaller than the original image.  

When we get the compression rate results, we can calculate the algorithm storage saving 

percentage easily by using Eq. 2.2. 

Storage Saving = 1 - compression rate 2.2 

Image compression ratio (Cr): is the ratio between the original image size and the compressed 

image size. Thus, when decreasing the image size from 100 MB to 20 MB then we can 

represent the compression ratio of 10/2=5 or 5:1 (read five to one) Eq. 2.3. is for calculating 

the algorithm Cr. 

Cr =
Original Image Size 

Compressed Image Size
 

2.3 

• The image compression algorithm performance can be calculated by measuring the 

compression speed and the decompression speed. Compression speed is the number of bits 

that the compression algorithm can process per second while the decompression speed is 

the number of bits that the decompression algorithm can process per second. 

• Since the Cr equation is concerned only with image size, it cannot give us any hint about 

the image quality. Therefore, we need to use different measurement techniques that can 
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measure the similarity and differences between both the source image and the compressed 

image. There are two methods for measuring image quality: subjective assessment and 

objective assessment (Gogoi and Ahmed, 2016); (Varnan et al., 2011). 

1. Subjective evaluations can be done by selecting several observers who have been tested 

for their visual abilities. The observers are then shown many test scenes to score their 

quality. Image fidelity is to represent the similarity between the reference image and the 

compressed image and how close they are. It is the only “correct” method of quantifying 

visual image quality.  

For the Human Visual System (HVS), the basic image quality measures are: 

i. Universal Image Quality Index (UIQI) 

ii. Structural Similarity Index Metric (SSIM). 

Nevertheless, subjective evaluation has some limitations, such as:  

i. It usually needs a lot of time for measuring images. 

ii. It is expensive. 

iii. It cannot be used with real-time systems. 

2. Objective evaluation uses well-defined mathematical techniques for quality assessment. It 

focuses on analysing the image and describing its quality by making a report, without 

human involvement. During the past few years, objective methods have been used more 

than the subjective methods because of their benefits, such as fast execution and no human 

interaction.  

A distortion measure aims to specify the degree of similarity between an original image and 

the compressed image by using a mathematical procedure. We can classify image quality 

metrics based on the availability of the source for original image (zero-distortion) compared 

with the compressed image (distort-image). The existing methodologies are: 

1- Full reference (FR): original image should be available. 

2- No-reference: where the original image is not available. 

3- Reduced reference: where the reference image is not available 100%. 

Simple statistics error metrics is a method of full reference objective quality (distortion 

assessment), which includes: 

a) Mean Squared Error (MSE): the simplest and one of the most widely used methods, with 

full-reference image quality measurement. Eq. 2.4 describes the MSE equation and its 

parameter (Gogoi and Ahmed, 2016). 
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MSE =
∑ [𝑥1(r, j) − 𝑥2(r, j)]2𝑗

𝑟
 

r x j
 

2.4 

Where r and j are the elements coordinates, and x1 represents the compressed image pixels and 

x2 represents the source image pixels. 

b) Peak Signal to Noise Ratio (PSNR): PSNR, as represented in Eq. 2.5, is also one of the 

most widely used methods, with full-reference image quality measurement. It is 

mathematically useful in the framework of optimisation (Gogoi and Ahmed, 2016). 

 

PSNR =
10 x log10(Intensity )2

MSE
 

2.5 

Limitation of MSE and PSNR: they both have computational complexities while assessing 

image similarity through distortion types. They cannot model the human visual system. 

c) Average Difference (AD): Calculates the average difference between the original image 

and the compressed one. 

d) Maximum Difference (MD): Calculates the difference between the original image and the 

compressed image, by finding the maximum of the error signal. 

e) Mean Absolute Error (MAE): Eq. 2.6 describes the MAE by calculating the average of the 

absolute difference between the reference image and the compressed image (Gogoi and 

Ahmed, 2016); (Varnan et al., 2011). 

MAE =

∑ |𝑥1(r, j) − 𝑥2(r, j)|
𝑗

𝑟
 

r x j
 

2.6 

Where r and j are the elements’ coordinates, and x1 represents the compressed image pixels 

and x2 represents the source image pixels. 

2.1.8 Classification of Compression Techniques 

Image compression is mainly classified into two techniques, based on the capability of 

reconstructing the image after decompressing (Hussain and Al-Fayadh, 2018); (Kavitha and 

Anandhi, 2015); (Singh, Potnis and Kumar, 2016). These are namely: Lossless compression 

techniques and Lossy Compression Techniques. These techniques will be described in the 

following subsections.  
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2.2 Lossless Compression Techniques 

Lossless compression results in no data being lost during the compression and decompression 

phases, the decompressed image should be a bit-for-bit ideal match with the source image. The 

lossless compression techniques have a low compression rate (Sharma, 2010).  

2.2.1 Lossless Compression Techniques Phases 

Figure 2.5 describes the lossless compression model phases:  

1. Decorrelation (Transforming or Mapping): phase one is to remove the inter-pixel 

redundancy by using any of several decorrelation techniques, such as run-length coding, 

predictive techniques, or transform techniques (Kuppusamy and Mehala, 2013); (Yang and 

Bourbakis, 2005). 

2. Entropy Coding (phase two): used to reduce a coding redundancy, by using any of the 

lossless algorithms such as LZW, Arithmetic Coding or Huffman coding (Kodituwakku and 

Amarasinghe, 2010).  

3. Decompressing the image starts at phase three by using the reversable entropy coding 

algorithm. 

4. Phase number four is for reconstructing the image by using the reversable transformation 

method to reconstruct the decompressed image exactly as it was before compression. 

Lossless compression techniques are used in many applications, where any loss of the original 

image data leads to an improper diagnosis. Some of these applications are the medical 

application (Lucas et al., 2017), digital radiography, camera systems (Sengupta and Roy, 2018) 

and remote sensing applications such as monitoring forest fires (Rusyn et al., 2016). The next 

section is to describe the most popular used lossless algorithms. 
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Figure 2. 5 - Lossless Compression Model 
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2.2.2 Lossless Compression Algorithms  

Figure 2.6 illustrates the hierarchical diagram that represents the lossless compression 

techniques phases and each phase-related algorithm (Zaineldin, Elhosseini and Ali, 2015).  
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Figure 2. 6 - Lossless Compression Techniques and Algorithms Adaptive from (Zaineldin, Elhosseini 

and Ali, 2015) 

1. Decorrelation techniques use the following methods to remove the inter-pixel redundancy: 

a) Prediction-based methods use the following image compression algorithms (Shukla, 

Alwani, and Tiwari, 2010). 

i. Differential Pulse Code Modulation (DPCM) (Oliveira et al., 2013). 

ii. Median Edge Detection (MED) (Dadgostar and Afsari, 2016). 

iii. Gradient Adaptive Predictor (GAP) (Novikov, Egorov, and Gilmutdinov, 2016). 

iv. Activity Level Classification Model (ALCM) (Karimi et al., 2015). 

v.  TMW (Shukla, Alwani and Tiwari, 2010); (Meyer and Tischer, 1997). 

vi. Adaptive Linear Prediction and Classification (ALPC) (Motta, Storer, and 

Carpentieri, 2000). 

b) Multi-resolution-based method used the following image compression algorithms 

(Carreto-Castro et al., 1993). 

i. Hierarchic Pairwise Coding (HBC) (Begum and Aygun, 2012). 

ii. Hearing in Noise Test (HINT) (Carreto-Castro et al., 1993). 

c) Transform-based method use the following image compression algorithms (Shukla, 

Alwani, and Tiwari, 2010). 

i. Embedded Zero Tree Wavelet (EZW) (Singh, Potnis, and Kumar, 2016). 

ii. Set Partitioning in Hierarchical Trees (SPIHT) (Paul et al., 2015). 
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iii. Embedded Block Coding with Optimised Truncation (EBCOT) (Wiseman, 2015). 

iv. Burrows-Wheeler Transform (BWT) (Shukla, Alwani, and Tiwari, 2010). 

v. WHT (Tajne and Kulkarni, 2015). 

2. Entropy Coding techniques uses the following methods to remove coding redundancy 

(Raghavendra, Sivasubramanian, and Kumaravel, 2018): 

a) Statistical-based such as: 

i. Huffman coding (Praisline Jasmi, Perumal, and Pallikonda Rajasekaran, 2015). 

ii. Shannon-Fano Coding. 

iii. Arithmetic Coding (AC) (Shaw, Rahman, and Routray, 2018) 

b) Character-based such as: 

i. Bit Mapping (Raghavendra, Sivasubramanian, and Kumaravel, 2018). 

ii. Run Length Coding (RLC) (Al-Wahaib and Wong, 2010). 

c) Dictionary-based such as:  

i. Lempel-Ziv-Welch (LZW) (Gagie, Gawrychowski, and Puglisi, 2015). 

ii. LZ77 (Gagie, Gawrychowski, and Puglisi, 2015).  

iii. LZ78 (Gagie, Gawrychowski, and Puglisi, 2015). 

2.2.3 Lossless Compression Related Work 

The relevant literature has been reviewed. All of the conducted related work aims to improve 

the compression rate and preserves the image quality with zero distortion. The main parameters 

that may affect any compression algorithm are the compression rate, computational complexity 

(explained in ch-3) and image quality (Mehanna, 2013). The researcher reviewed the last few 

years’ related work, to understand the weaknesses and strengths of the most popularly used 

techniques. Understanding the weaknesses can help in avoiding them in the proposed strategy 

to reach the research objectives. The following section describes the current state-of-the-art in 

lossless compression algorithms.  

2.2.3.1 Huffman Coding 

David A. Huffman presented his coding algorithm in 1952, which depends on the statistical 

model of data, which starts with measuring the frequency of occurrence for each symbol 

(giving for each intensity its weight), and then gives prefix codes to those symbols according 

to their probabilities (creates a frequency Table of the symbols). Shorter codes will be assigned 

to the more frequently occurring symbols while larger codes will be assigned to the less 

frequently occurring ones. After that, the Huffman tree is formed to extract the Huffman codes 

for each symbol. Huffman coding removes the redundancy from the two-dimensional image 
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and converts it into a one-dimension row of bits by assigning a binary code for all the image 

intensity. This code is located in the Huffman Table (Huffman, 1951). Huffman algorithm has 

a high-quality performance; therefore, it is one of the most popular lossless compression 

algorithms. One limitation of Huffman is that when having more values in the dictionary Table, 

this will increase the size of Huffman tree, which affects the code-word size to be larger 

(Vidhya et al., 2016) (Kumar et al., 2015) (Gupta, Bansal and Khanduja, 2017). 

2.2.3.2 Shannon’s Coding 

Shannon’s algorithm is similar to the Huffman coding algorithm; the code-word creation is the 

only difference, as they use different tree structures in creating code-words. Shannon algorithm 

has a high-quality performance and low compression rate (Zhang et al., 2015). 

2.2.3.3 Bit Plane Slicing (BPS) 

The Bit Plane Slicing (BPS) is a greyscale image compression technique, which splits the 

source image into 8-bit planes for the 256-level images. Coloured images should have 24-bit 

planes, since it has three channels (RGB) and each channel is represented with 8-bit planes. 

After splitting the image into its bit planes, the eight binary images can be compressed by using 

any entropy coding algorithm such as Run Length Coding (RLC), Huffman or Lempel-Ziv-

Welch (LZW) (Maheshwari et al., 2019). 

2.2.3.4  Different Plus Coding Modulation Followed by Huffman 

(Tomar and Jain, 2015) produced a new lossless compression algorithm based on the 

differential pulse code modulation (DPCM) followed by the Huffman algorithm, to enhance 

the image compression rate. They developed a new transformation algorithm to improve the 

(DPCM) and named it an Enhanced Differential Pulse Code Modulation Transformation 

(EDT). The technique has two phases. The first phase is the transformation phase, which uses 

the EDT algorithm to remove the inter-pixel redundancy, whereas the second phase is the 

entropy encoding by using the Huffman algorithm to reduce the coding redundancy. The new 

technique enhanced the lossless compression rate and complexity, but this enhancement is still 

far away from a lossy techniques compression rate. The DPCM is efficient for lossless 

compression and near-lossless medical image compression. One of the DPCM limitation is the 

large error signal when there is a sharp change in the input image edges (Hussain and Al-

Fayadh, 2018) (Sanchez, 2015) (Oliveira et al., 2013). 

2.2.3.5 Improved Lempel-Ziv-Welch  

The Lempel-Ziv-Welch (LZW) compression algorithm starts with creating a dictionary for a 

single symbol based on their probability of appearance, then represents each symbol with a 
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prefix code, starting from the first one to the last. When scanning each symbol, if the symbol 

is not the last, it will be added to the dictionary until we reach the last symbol in the algorithm 

output (Yan-li et al., 2010). LZW is a lossless data compression algorithm. It is simple to use 

but has some limitations, though, such as: 

1- The LZW algorithm has a problem with the big space redundancy, due to the dictionary file 

having all the single characters from the source image, but only some of them have been 

used in the coding process. 

2- The LZW algorithm has a problem with the small and large dictionary. If the dictionary has 

a small number of symbols, we will not have a good compression rate; furthermore, when 

the dictionary has large number of symbols, it will overflow, due to its limited storage. 

(Yan-li et al., 2010) proposed a new approach to enhance the lossless LZW algorithm for 

Wireless Sensor Network (WSN); by understanding the LZW limitation, they avoid the 

previous problems in the new improved LZW algorithm. The proposed algorithm aims to 

decrease the dictionary length, which will enhance the compression rate. 

 The new approach provides the following improvements for the LZW: 

1. The dictionary should have no single symbol at the beginning, as it will reduce the 

dictionary size.  

2. The dictionary capacity is stored using two-bytes since the nodes have limited memory 

space. 

3. Reducing the dictionary size by adopting different methods for decreasing the data range; 

this is positively reflected in high efficiency and memory size. 

The proposed algorithms improve the compression rate dramatically by reducing the 

dictionary size. 

2.2.3.6  Lempel-Ziv-Welch with Region of Interest 

The Region of Interest (ROI) image compression algorithm was developed to compress the 

large medical images. The algorithm starts by locating the region of interest and use the LZW 

for each region separately. The LZW is a dictionary-based algorithm, which scans the image 

to find each symbol’s probability of appearance and creates the symbol dictionary, and then 

replaces the symbol with single codes (Kaur and Kaur, 2017). The compression rate is 

enhanced when using the ROI with LZ77, LZ78, LZW (Singh and Pandey, 2016). 

2.2.3.7 Run Length Coding 

The Run Length Coding (RLC), also known as Run Length Encoding (RLE), one of the 

simplest lossless compression algorithms. It scans the image to find the runs (pixels with the 
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same value); the runs should be encoded by their probabilities and values (value; probability). 

This value with its probability is called a unit, and each unit should be coded by using the 

Huffman algorithm. The best (RLE) results come with the images that have large areas of 

contiguous colour such as monochrome images (where the value is repeated often). On the 

other hand, RLE is not an efficient compression algorithm with colour images, since they have 

many values, with minimum probability of repetition (Husseen, Mahmud and Mohammed, 

2017). (Al-Wahaib and Wong, 2010) proposed an algorithm to solve the duplication problem 

from the traditional RLC algorithm (duplication comes from the escape character). Where the 

proposed algorithm uses the traditional RLC to decode the three consecutive values (Run) and 

uses the Traditional Run Length Coding1 algorithm (TRLC1) and the Traditional Run Length 

Coding2 algorithm (TRLC2) to convert the consecutive two pixels of the same value into a 

single code-word. The new compression algorithm has a better compression rate than the 

traditional RLC. The proposed algorithm solves the problem of the large file size of the encoded 

images and it is considered to be one of the simplest algorithms. RLC is highly efficient with 

the images that have long runs of pixels with the same value and has low efficiency with images 

that have high spatial activity, because of the high variation in pixel intensity values.(Szoke, 

Lungeanu and Holban, 2015) (Al-Laham and Emary, 2007) (Carreto-Castro et al., 1993).  

2.2.3.8  Arithmetic Coding 

(Masmoudi, Puech and Masmoudi, 2015) developed a new lossless image compression 

algorithm by using finite mixture models and adaptive Arithmetic Coding. The algorithm 

separated the image into blocks and encoded each block separately by using Arithmetic 

Coding. Arithmetic Coding provides the probability distribution for the image intensity to be 

compressed. Each block should have its own probability distribution; the statistic for each 

block will be estimated by a finite mixture model of non-parametric distributions by exploiting 

the high correlation between neighbouring blocks. The algorithm enhanced lossless 

compression algorithm efficiency and gave an effective result of 9.7% more than the JPEG-

LS, when switching between pixel and prediction error domains (Shaw, Rahman and Routray, 

2018). An increase of the image number of blocks leads to a decrease in the compression 

efficiency; this happens since the total overhead generated by block-based histogram-packing 

methods depends on the number of blocks used in image and the mapping Table size (Jallouli 

et al., 2017). 
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2.2.3.9 Median Edge Detection 

The Median Edge Detection (MED) is a filtering technique, which is responsible for removing 

the image signal (noise). The process of decreasing or removing the noise is a pre-processing 

phase that should enhance the result of the next image compression phase. The MED predictor 

has been used in the JPEG-LS format. The MED algorithm predicts the current pixel value by 

examining three neighbours’ pixel values: the north (N), the west (W) and the north-west 

(NW). If there is a high correlation in the horizontal direction, then the predictive value will be 

calculated by using the following equation: N+W-NW (Sanchez, 2015); (Shukla, Alwani and 

Tiwari, 2010); (Novikov, Egorov and Gilmutdinov, 2016). 

2.2.3.10 Median Edge Detection and Different Plus Coding Modulation 

The lossless algorithm was developed based on an intra-prediction method and the sample-

based angular prediction (SAP) with median and edge prediction (ME): SAP-ME. The main 

objective to proposing the algorithm is to reduce the average bitrate for the current lossless 

coding intra-prediction coding. It combines the DPCM, median prediction and edge prediction. 

The proposed algorithm decreases the average bitrate by 16.13% when compared with the High 

Efficiency Video Coding Computing (HEVC) intra-prediction coding. The algorithm predicts 

each pixel value separately by using the neighbouring pixels’ values without increasing the 

computational complexity (Sanchez, 2015). 

2.2.3.11  Median Edge Detection and Activity Level Classification Model 

A new pixel value prediction algorithm for lossless image compression was developed based 

on a low-complexity predictors method and neighbouring blocks data analysis followed by an 

entropy coding. The new algorithm is called local-adaptive block-based prediction (LPB), in 

which the researchers combined between the MED, ALCM and GAP algorithms and used the 

best advantage of each. The new algorithm aims to improve the prediction performance, which 

will enhance the compression rate. The result of the algorithm shows that the LPB has the best 

result in a comparison with the most popular low-complexity prediction methods (Shukla, 

Alwani and Tiwari, 2010); (Novikov, Egorov and Gilmutdinov, 2016). 

2.2.3.12 BBWCA  

The Bi-level Burrows-Wheeler Compression (BBWCA) algorithm is developed based on block 

sorting structure and it does not compress the image by itself, but works as a pre-processing 

phase to prepare the image to be compressed by the next phase as in Kernel Move-To-Front 

(KMTF). (Khan et al., 2017) modified the KMTF algorithm and developed the BBWCA by 

using the Reversible Colour Transform (RCT) to transfer the image from the RGB colour space 
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to the UVU colour space with less coloration between the image pixels. The BBWCA achieve 

high compression ratio with zero distortion (Burrows and Wheeler, 1994).    

2.3 Lossy Compression Techniques 

Lossy compression indicates that some information will be missed during the image 

decompression phase. It depends on the fact that digital images save a lot of information, more 

than a human can understand, so it evacuates some of the less important information from the 

original image. Lossy compression techniques have a high compression rate but also they 

cannot reconstruct the image exactly as it was, due to the loss of the less important information 

(Sharma, 2010). 

2.3.1 Lossy Compression Techniques Phases 

Lossy compression techniques mostly have three compression phases, as displayed in Figure 

2.7. Phase one is responsible for eliminating the inter-pixel redundancy, in phase two, the 

quantizer is used to eliminate another kind of redundancy, called psycho-visuals, and create 

quantized bits as an output, which compress the image a second time. Finally, in phase three, 

the techniques compresses the image for the third time by encoding the quantized bits (Hussain 

and Al-Fayadh, 2018); (Sood, Bhathal and Singh, 2018). 
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Figure 2. 7 - Lossy Compression Model 

To decompress the compressed image, we should inverse the compression phases, starting with 

the entropy decoding as in phase four. Finally, the inverse transform is used in phase five to 

reconstruct the image. Lossy compression is used in many applications such as transferring 
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images through the internet (Abubaker, Eshtay and AkhoZahia, 2016) and the construction of 

image vegetation (Hussain and Al-Fayadh, 2018). The next section is to describe the most 

popular used lossy algorithms. 

2.3.2 Lossy Compression Algorithms  

Figure 2.8 shows the hierarchical diagram that represent the lossy compression techniques 

phases and each phase related algorithm (Zaineldin, Elhosseini and Ali, 2015). 
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Figure 2. 8 - Lossy Compression Techniques and Algorithms Adaptive from (Zaineldin, Elhosseini 

and Ali, 2015) 

1. Transformation algorithms such as: 

i. Discrete Cosine Transform (DCT) (Masmoudi, Puech, and Masmoudi, 2015). 

ii. Discrete Wavelet Transform (DWT) (Mofreh, Barakat, and Refaat, 2016). 

iii. Embedded Zero Tree (EZW) (Kumar, Kumar, and Singh, 2016). 

iv. Set Partitioning in Hierarchical Coding Techniques (SPIHT) (Paul et al., 2015). 

v. Embedded Block Coding with Optimal Truncation (EBCOT) (Wiseman, 2015). 

vi. Discrete Fourier Transform (DFT) (Ouyang, Coatrieux, and Shu, 2015). 

2. Quantization algorithms such as: 

i. Vector Quantization (VQ) (Karri and Jena, 2016). 

ii. Fractals Quantization (Ibrahim, Youssef, and Elkaffas, 2015). 

3. Entropy Coding techniques uses the following methods to remove coding redundancy 

(Raghavendra, Sivasubramanian, and Kumaravel, 2018): 

a) Statistical-based such as: 

i. Huffman coding (Praisline Jasmi, Perumal, and Pallikonda Rajasekaran, 2015). 

ii. Shannon-Fano Coding (Zhang et al., 2015). 

iii. Arithmetic Coding (AC) (Shaw, Rahman, and Routray, 2018) 
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b) Character-based such as: 

i. Bit Mapping (Raghavendra, Sivasubramanian, and Kumaravel, 2018). 

ii. Run Length Coding (RLC) (Al-Wahaib and Wong, 2010). 

c) Dictionary-based such as:  

i. Lempel-Ziv-Welch (LZW) (Gagie, Gawrychowski, and Puglisi, 2015). 

ii. LZ77 (Gagie, Gawrychowski, and Puglisi, 2015).  

iii. LZ78 (Gagie, Gawrychowski, and Puglisi, 2015). 

Lossy compression techniques can be a transform- or non-transform-based techniques:  

1. Transform-based techniques are used to reduce the correlation in a vector (the original 

image) by transforming it into a new, less correlated image, and then compressing it in the 

quantization phase; some of the algorithms used in this technique are DCT and DWT. 

2. Non-transform-based techniques depend on the vector quantizer as the quantization 

process. Quantizers have two types: scalar and vector quantizers (Zaineldin, Elhosseini, 

and Ali, 2015). 

2.3.3 Lossy Compression Related Work 

The relevant literature has been reviewed. All the related work from the literature aims to 

improve the compression rate and provide less distortion for the compressed image quality. To 

understand the weaknesses and strengths of the most popularly used techniques, the researcher 

analyses the related work, to avoid the limitation from the current algorithms. The following 

sections describes the current state of the art lossy compression algorithms.  

2.3.3.1 JPEG  

In recent years, the use of greyscale image and colour image is increasing, and an international 

compression standard is needed to represent both types of images (Mehanna, 2013). 

Accordingly, to this need, the International Organization for Standardisation (ISO) together 

with the International Telegraph and Telephone Consultative Committee (CCITT) created the 

JPEG standard for images and continuous-tone still images (video), such as MPEG and H.261 

(Jeon, Park, and Jeong, 1998) (Wallace, 1992). The JPEG compression algorithm used the most 

efficient and most common transform techniques, DCT (known as a lossy compression 

techniques), to improve the compression process (Lakhani, 2004). This was followed by 

entropy coding (a lossless compression techniques). The JPEG algorithm starts by converting 

the RBG image into Y,Cb,Cr colour space by separating the luminance and the chrominance. 

Then, the algorithm divides the image into 8*8 blocks of pixels and transforms each block 

separately using forward DCT (F-DCT) to create the DCT coefficients (a number that 

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
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represents the contribution of each block to the image). This coefficient will be normalised by 

a specific quantization Table to get normalised coefficients (the process of removing the high-

frequency cosine waves that should have the smallest coefficient value, since they do not really 

contribute very much to the image), and then an entropy coding algorithm, such as the Huffman 

algorithm, will be used to reduce redundancy. As a result, the JPEG algorithm enhances the 

compression rate. DCT-based algorithms, such as JPEG standard, cannot satisfy the image 

coding required today because of its distortion. Although it provides good image quality, there 

is still some distortion in the images, and several applications will not be satisfied using it, such 

as medical applications. A higher JPEG compression rate leads to more distortion, due to the 

artefacts that may result from the block based DCT. JPEG 2000 standard was developed to 

solve the JPEG problem. JPEG 2000 is a Wavelet-based coding that enhances the image quality 

at low bit rates (Wei, 2008).  

2.3.3.2  JPEG 2000  

The JPEG 2000 standard was developed to meet the new needs of image compression, such as 

enhancing the compression rate and image quality more than the JPEG standard. The JPEG 

2000 could be lossless or lossy techniques regarding the use of the JPEG 2000 quantizer 

(Reversible Quantizer or Irreversible Quantizer). In addition, the JPEG 2000 uses its 

transformation based on the Region-of-Interest Coding (ROI), and it has a powerful mechanism 

for Error Resilience (Mehanna, 2013); (Wei, 2008). 

The first process in JPEG 2000 is the Reversible Colour Transform (RCT), which is a modified 

YUV colour transform that will not lead to any quantization error. The second process is the 

use of subband coding application. Discrete Wavelet Transform (DWT) is used in the JPEG 

2000 to reduce the image size by reducing the undesirable noise. The third process is the 

quantization, which is conducted to decrease the number of bits that are required to represent 

the transform coefficients. The final phase is the Entropy Coding, which is done by using the 

embedded Block Coding with Optimised Truncation (EBCOT). EBCOT has two phases: the 

first one uses the context formation and Arithmetic Coding by dividing the DWT coefficients 

into code blocks, and each block should be encoded separately into block-based bit-stream; the 

second entropy phase is to minimise the embedded bit-stream. In comparison, the JPEG 2000 

enhances the image quality and the image compression rate more than the JPEG standard by 

using the advantages of DWT, such as better energy compression property (Manjinder and 

Gaganpreet, 2013) (Sudhakar, Karthiga and Jayaraman, 2005). 
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2.3.3.3  Minimise-Matrix-Size algorithm 

Developing a new compression algorithm that enhanced the image quality more than the most 

popular compression techniques such as JPEG and JPEG 2000 is increased. Regarding this 

need, the Minimise-Matrix-Size algorithm was developed. This algorithm has four steps: first, 

transforming the image by using a two-level DCT and a two-level DWT to create two matrices, 

one for DC and the other one for AC (low- and high-frequency matrix); second, applying the 

DCT again, but for the DC matrix only to create non-zero array and zero array; third, applying 

the Minimise-Matrix-Size algorithm to the AC-matrix and to the high frequencies from the 

second step; finally, the entropy coding, which is conducted by using AC algorithm on the data 

resulting from the third step. The high frequencies are calculated by using a Fast-Match-Search 

(FMS) algorithm through calculating the probabilities of the compressed data by using the 

Table of probabilities. The Minimise-Matrix-Size algorithm enhanced the image quality more 

than JPEG and JPEG 2000, as it removes the block artefacts from the 8x8 DCT matrix, and 

also by using the levels of DWT (single level or two level) instead of multi-level DWT, which 

reduced the blurring that typically exists in JPEG 2000. The main limitation of this approach 

is the large number of steps and the execution time is more than JPEG 2000 standard (Siddeq 

and Rodrigues, 2015). 

2.3.3.4  Discrete Cosine Transform Followed by Huffman 

A new hybrid compression algorithm is developed to enhance the image compression rate by 

reducing the image redundancy. The new algorithm is a combination of the Discrete Cosine 

Transform (DCT) and the Huffman coding algorithm. The algorithm starts by removing the 

inter-pixel redundancy using the DCT algorithm as a transforming phase. Followed by the 

Huffman algorithm to encode the image as a second phase. The algorithm enhanced the quality 

of the compressed image with high PSNR value, and a higher compression rate was achieved 

(Shukla and Gupta, 2015). 

2.3.3.5  Different Plus Coding Modulation, Discrete Wavelet Transform Followed by 

Huffman  

A new medical image compression algorithm was developed by (Abo-Zahhad et al., 2015) to 

enhance the compression rate. The algorithm called (DPCM-DWT-Huffman) and involved 

three phases. The first phase is the pre-processing phase, which uses Differential Pulse Code 

Modulator (DPCM) as transformation algorithm; the second phase receives the outcomes from 

the first phase and uses them as input to the wavelet transformed (DWT) to reduce the 

redundancy and spatial reputation; the third phase uses the Huffman algorithm to encode the 

coefficients that resulted from the second phase. The algorithm performance has been measured 
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for the three phases: the new algorithm enhanced the compression rate (Abo-Zahhad et al., 

2015). (Mofreh, Barakat and Refaat, 2016) Emphasise that the enhancement in the compression 

rate using the three phases algorithm (DPCM-DWT-Huffman) is done, but the image 

compression algorithm is still suffering from the low compression rate. Furthermore, the 

compression rate can be even better if we used some other compression techniques, such as 

LPCDH, which presents the Linear Predictive Coding (LPC) with Discrete Wavelet Transform 

(DWT) followed by Huffman (LPCDH). 

2.3.3.6 Radial Basis Function Neural Networks and Discrete Wavelet Transform 

Developing a new image compression algorithm that can be employed in both lossless and 

lossy compression techniques is required to meet the organizational demands. A new algorithm 

was developed in this regard by (Wozniak et al., 2015) and called the (DWT-RBFNN).  The 

algorithm was developed based on Radial Basis Function Neural Networks (RBFNN) and has 

two processes: the first process uses the Radial Basis Function Neural Networks (RBFNN) to 

decrease the wavelet coefficients’ numbers while maintaining the main features; the second 

process implements the DWT algorithm on the outcomes from the first process. The new 

algorithm enhanced the performance of time consuming and compression rate (Wozniak et al., 

2015). 

2.3.3.7  Discrete Wavelet Transform and Set Partitioning in Hierarchical Coding 

Techniques 

(Vijayaran and Sakila, 2016) studied the current lossless and lossy compression techniques and 

compared them according to their compression rate and image quality. Then, they proposed a 

new hybrid image compression technique, which combined the DWT with the Set Partitioning 

in Hierarchical Trees (SPIHT). The result of the hybrid algorithm produces better accuracy 

than DWT and SPIHT.  

2.3.3.8  Rounding the Intensity Followed by Dividing 

Lossy Image Compression by Rounding the Intensity Followed by Dividing (RIFD) algorithm 

is developed to reduce the image redundancy as much as possible; also, it is to reduce the image 

bit-depth to 5 bits instead of 8 bits. More decreasing of the bit-depth should provide a higher 

compression rate. For example, when reducing the bit-depth from 8 bits to 5 bits then the image 

is compressed. The algorithm starts by rounding the intensities to the nearest ten, then the image 

should be divided by ten to reduce the bit-depth from 8 bits to 5; the resulting matrix should be 

encoded by the Huffman algorithm. The algorithm is suitable for greyscale image and coloured 

image; since colour images are represented by RGB, then the algorithm should be applied three 

times (one time for each colour). If the bit-depth in the original image is 16 bits, then the round 
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function should be rounded to the nearest thousand instead of ten. The algorithm enhances the 

compression rate, but it still has some distortion regarding the use of the rounding function; 

this distortion is not visible by the human visual system (Otair and Shehadeh, 2016). 

2.3.3.9 Fractal Compression 

Fractal compression is a lossy compression method, used fractals instead of pixels. Fractal 

compression is suitable for natural images. It takes advantage from the similarity between 

image fractions, since a part of the image can be identical to other parts. (Ibrahim, Youssef and 

Elkaffas, 2015) introduced a new fractal compression algorithm, by using quantized quad trees 

and entropy coding. The algorithm divided the quantized image into various blocks, via using 

the threshold value and the most important features presented in the image. Then, they used an 

entropy coding algorithm to improve the compression rate. After testing the new algorithm and 

comparing the results with the fractal image compression and iterations technique, there was a 

good improvement in compression rate and image quality (Ibrahim, Youssef and Elkaffas, 

2015). 

2.3.3.10 EZW 

The EZW coding is an effective image-coding algorithm based on a wavelet transform and 

works with lossless and lossy compression techniques. It depends on the fact that bits in the 

bits array are generated based on their importance. EZW encoder depends on progressive 

encoding to compress an image into a bit stream with increasing accuracy (Senturk and Kara, 

2016). 

The main important observations of EZW encoder are: 

• Low pass spectrum (low scale means high resolution – highly correlated) usually comes 

with natural images. When an image is wavelet transformed, the subband energy will 

be decreased as the scale decreases, so the higher subband wavelet coefficients will be 

smaller than those of the lower subband. 

• Smaller wavelet coefficients are less important than the larger. 

EZW uses a sequential approximation quantization process to present multi-representations of 

the transformed coefficients. EZW coded the transformed coefficients in decreasing order in 

several scans, where each scan has two phases: significant map encoding and refinement pass. 

Some of the EZW limitation are: 

• Requires complicated bit allocation procedures (Kale and Deshmukh, 2010). 

 

• Pixel values of detailed images are mostly composed of zeros or close to zero, therefore, quantizing them 

to zero leads to visually visible blurring. (Sudhakar, Karthiga and Jayaraman, 2005). 
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2.4 Summary and Comparison of Fundamental Algorithms 
 

This section summarises the most important lossless algorithms by focusing on their advantages and disadvantages, as listed in Tables 2.1. 

 Table 2. 1 - Summary of Lossless algorithms. 

Algorithms Short Description Advantages Disadvantages 

Huffman 

algorithm 

(Huffman, 

(1951) 

Huffman coding rely on the statistical model of data, 

which starts by measuring the frequency of occurrence 

for each symbol (giving for each intensity its weight), 

and then gives prefix codes to those symbols according 

to their probabilities (creates a frequency table of the 

symbols). Shorter codes will be assigned to the more 

frequently occurring symbols while larger codes will be 

assigned to the less frequently occurring symbol. After 

that, the Huffman tree is formed to extract the Huffman 

codes for each symbol. Huffman coding removes the 

redundancy from the two-dimensional image and 

converts it into a one-diminution row of bits by assigning 

a binary code for all the image intensity. This code is 

located in the Huffman table.  

Huffman algorithm stands as one 

of the best compression 

algorithms for JPEG and many 

other standards, due to its high 

compression rate. 

 

Huffman algorithm has a high-

quality performance; therefore, it 

is one of the most popular lossless 

compression algorithms. 

 

We cannot use the Huffman 

algorithm unless we know the 

probability distribution for each 

symbol. 

 

Likewise, we cannot use the 

Huffman algorithm when changing 

the source statistics.  

 

The number of code-words should 

be equal to the number of unique 

values in the table of probability. 

More values in this table will 

increase the size of Huffman tree, 

which affects the code-word size to 

be larger. 

RLC algorithm 

Al-Wahaib 

and Wong, 

(2010); 

 

RLC, known as RLE, scans the source image (row by 

row from top left, downwards) to find any repeating 

values (redundancies) and classifies this symbol to runs 

for the consecutive sequences of the data (three as 

minimum) or non-runs for the other data. Quite often, 

most of the images have rows of the same colour. Then, 

RLE saves each runs value and its length in a file. The 

Simple to use. 

Highly efficient with the images 

that have long runs of pixels with 

the same value (such as black and 

white images) For example, the 

runs (77778889999) will be 

Low efficiency with images that 

have high spatial activity, because of 

the high variation in pixel intensity 

values. For example, the non-

repeated sequence (non-runs) such 

as (6 7 8 9) will be decoded as (1 6 1 

7 1 8 1 9), which increases the 
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compression algorithm uses only the runs to compress 

the source file. 

RLC is used to compress the images or as a pre-

processor for other compression algorithms. 

An RLC-encoded file will be decoded again, by using 

any entropy coding algorithms to create variable length 

code-words. 

decoded as (4 7 3 8 4 9), the file 

size is reduced from (11) to (6).  

 

High image quality (Lossless 

image compression technique) 

cardinality (file size) instead of 

decreasing it. 

 

LZW 

algorithm 

 

Nelson, M. R. 

(1989)  

LZW is a dictionary-based algorithm derived from the 

LZ78 algorithm. It scans the image to find each symbol’s 

probability of appearance and creates the symbol 

dictionary. It then replaces each symbol from the 

dictionary with a single code. 

 

High image quality (Lossless 

image compression technique). 

 

High performance algorithm in 

terms of execution speed.  

 

LZW is an adaptive algorithm; 

because of the dynamic creation 

of the dictionary in both processes 

(compression and 

decompression), there is no need 

to transmit the dictionary with the 

compressed message. 

 

LZW has a problem with the big 

space redundancy, due to the 

dictionary file having all the single 

characters from the source image, 

but only some of them having been 

used in the coding process. 

LZW also has a problem with the 

small and large dictionary, where if 

the dictionary has a small number of 

symbols it will not have a good 

compression rate, and when the 

dictionary has a large number of 

symbols it will be overflowing, due 

to the dictionary limit storage. 

For the low repetition rate, the 

dictionary size will be increased and 

its contribution to the compression 

rate improvement will be less. 
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2.5 Chapter Summary 

This chapter presented a comprehensive review of the literature for the lossless and lossy 

compression techniques by focusing on the lossless techniques as it is the pivotal contribution 

of this research. Both techniques were critically reviewed to understand their impact on the 

current challenges related to the image compression domain by reviewing each technique 

development model; characteristics; advantages and limitations. The next chapter provide a 

gap analyses for the current most popular used algorithm’s by describing their limitation and 

the proposed solution for each of the limitations, followed by the development process. 
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CHAPTER THREE: PROPOSED SOLUTIONS AND 

DEVELOPMENT TOOLS  

3 Chapter Overview 

This chapter covers the proposed solutions and the research requirements that are needed to 

develop the proposed solutions, such as the development tools, the used programming 

language and the tested image sets. 

3.1 Proposed Solutions  

From the previously mentioned literature review from chapter two, it can be understood that 

the ideal image compression algorithm should provide a high image quality performance and 

good compression rate. To achieve this objective, the researcher reviewed and analysed the 

literature to understand the parameters that can affect the compression rate and the image 

quality. Lossless compression techniques have good quality performance and low compression 

rate, whereas lossy compression techniques have low quality performance and higher 

compression rate. 

In lossless compression techniques, the low compression rate is mostly related to the number 

of unique values needed to represent the image. If the number of unique values is large, this 

will affect the probability Table in the entropy algorithm to have more data and the dictionary 

file size should be larger as will. In fact, entropy coding is a lossless compression technique 

that has a great influence on both lossless and lossy compression techniques. It has three 

approaches: dictionary based, statistical based, and character based. All these approaches share 

some steps in their coding process. They scan the image to calculate each value probability of 

appearance and store these values and their probability in a file (a dictionary or Table); this file 

will be used to give codes for each unique symbol by using their probabilities. Each symbol 

should represent the decoded image as a string of code-words or as a one-dimension row of 

bits instead of the two-dimensional matrix. Huffman coding, Arithmetic Coding, run-length 

encoding, LZW and Golomb-Rice coding are different algorithms that were used in entropy 

coding; they all suffer from a low compression rate when compressing high resolution images. 

To solve the problem of the low compression rate in the entropy coding approaches, we need 

to understand how the algorithm works and what the limitations of the most popular entropy 

coding algorithms are. The reviewed literature helped the researcher to determine some of these 

limitations. 
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3.1.1 Huffman Limitation and the Proposed  Solution  

In Huffman coding, the table of probability will be created to use the symbol probabilities to 

create the code-words for each unique symbol in the dictionary table. Shorter codes will be 

assigned to the most frequently occurring symbols, whereas larger codes will be assigned to 

the least frequently occurring symbols. The number of code-words should be equal to the 

number of unique values in the table of probability. More values in this table will increase the 

size of the Huffman tree, which enlarges the code-word size (Vidhya et al., 2016). Storage in 

a single word is complex because of the least symbol probability represented by a large length 

of code (Gupta, Bansal and Khanduja, 2017); (Hazarika, Nath and Bhuyan, 2015); (Muntean, 

Căbulea and Vălean, 2014). 

Reducing the image bit-depth before compressing the image using any entropy algorithms 

should enhance the compression rate, the proposed algorithm uses a pre-processing 

transformation phase to decrease the image bit-depth before compressing, followed by the CSC 

compression phase to decrease the image size and to represent the compressed image with less 

number of unique values. 

3.1.2 LZW Limitation and the Proposed  Solution  

The Lempel-Ziv-Welch (LZW) algorithm is a dictionary-based approach. It scans the image to 

find each symbol’s probability of appearance and creates the symbol dictionary, and then it 

replaces the symbol with single codes (Kaur and Kaur, 2017). LZW has a problem with the big 

space redundancy; this is due to the dictionary file having all the single characters from the 

source image, only some of which were used in the coding process. In addition, it has a problem 

with the small and large dictionary where if the dictionary has a small number of symbols, we 

will not have a good compression rate, and when the dictionary has a large number of symbols, 

it will be overflowing, due to its limited storage capacity (Li et al., 2018); (Yan-li et al., 2010). 

Reducing the dictionary size by adopting different methods for decreasing the data range will 

increase the probability value; this is positively reflected in the compression rate. The proposed 

algorithms use well defined functions to represent the image with a smaller number of unique 

values. 

3.1.3 RLC Limitation and the Proposed  Solution  

The Run Length Coding (RLC), also known as Run Length Encoding (RLE), is one of the 

simplest lossless compression algorithms. It scans the image (matrix) to find the runs (pixels 

with the same value); the runs should be encoded by their probabilities and values (value; 
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probability). This value with its probability is called a unit. The RLC best results come with 

the images that have large areas of contiguous colour such as monochrome images (where the 

value is repeated often). On the other hand, RLC is not an efficient compression algorithm with 

colour images (since they have many values, with minimum probability of repetition) 

(Husseen, Mahmud, and Mohammed, 2017). 

Reducing the colour image bit-depth will decrease the data range and increase the probability 

value; this positively influences the compression rate. The proposed algorithm uses a pre-

processing transformation phase to decrease the image bit-depth before compressing to 

decrease the data range; followed by using the CSC function for decreasing the number of 

unique values. 

This research aims for developing new lossless compression algorithms to enhance the current 

algorithms compression rate and execution time by using a pre-processing transformation 

phase for mapping the input image into new colour space to prepare the image to be compressed 

by using the proposed CSC function; the CSC compression phase is to decrease the image size 

by reducing the image bit-depth and to represent the compressed image with less number of 

unique values. 

3.2 Software Development Process  
The proposed compression system model is developed based on the incremental prototype 

methodology, where the system is divided into prototypes that represent the main system 

functions, then the prototypes were developed and tested individually to provide feedback for 

enhancing each of the current prototype by reworking it until it achieved the function aim. 

Eventually, the different prototypes are merged into a single system to deliver a compressed 

image. 

(Hoffer, J. A., 2012) describe the incremental prototyping process phases as: 

1. Requirements gathering and analysis. 

This phase identifies the system requirements to define the system expectations through 

understanding the gap in the current techniques.  

2. Quick design. 

A simple design of the system is created to helps in developing the prototype by 

providing brief idea of the compression system. This phase is responsible for 

identifying the main system functions (Prototypes). 

3. Build a Prototype. 
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A small model of the required system is developed based on the quick design. The 

model should combine all the prototypes to deliver a compressed image and should be 

ready for evaluation.  

4. Initial user evaluation. 

The first prototype is ready for evaluation to find out its strength and weakness. This 

phase should provide many feedback points to the developers. The evaluation phase is 

to evaluate the output image size, quality, execution time and the algorithm complexity. 

5. Refining prototype. 

This phase uses the feedback from the previous phase to refine the current prototype. 

Once the Initial user evaluation phase provides zero suggestion, then this phase is over, 

and a final system is developed based on the approved final prototype. 

6. Implement Product and maintenance. 

The final system is developed based on the final prototype. The system deliverables 

(compressed images) are evaluated in chapter four and five. 

3.2.1 The first Iteration Requirements  

The first compression model was designed, developed and tested in this iteration, to analyse its 

strengths and weaknesses  to provide feedback for the next iteration. The system development 

phases are described as: 

1. Requirements gathering and analysis phase. 

The system should compress the input image with high compression rate and fast 

execution time with zero percentage of distortion. 

2. Quick design phase. 

A simple design of the system is created to helps in developing the prototype by 

providing brief idea of the compression system. This phase is responsible for 

identifying the main system functions (Prototypes) as follows. 

The proposed CSC compression system is divided into two prototypes: 

• Read the input image and determine its information. 

• Column Subtraction Compression.  

Each of the functions (prototypes) should be programmed individually as a class and 

should be called in the final system by using an object-oriented structure.  

3. Build a Prototype. 
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A small model of the required system is developed based on the quick design. The 

model should combine the two prototypes to deliver a compressed image and should be 

ready for evaluation.  

4. Initial user evaluation. 

The evaluation phase is to evaluate the output image size, quality, execution time and 

the algorithm complexity. The firs model achieved high compression speed 

performance with zero distortion and  less compression rate than expected. 

5. Refining the prototype. 

Having the feedback from the previous phase, we need to enhance the compression rate 

in the next iteration without effecting the compression speed and the image quality. 

3.2.2 The Second Iteration Requirements  

The second compression model was designed, developed and tested in this iteration to enhance 

the system compression rate and to analyse its strength and weaknesses points to provide 

feedback for the next iteration. The system development phases are described as: 

1. Requirements gathering and analysis phase. 

The second system should enhance the compression rates of the first model by 

compressing the input image with a higher compression rate and fast execution time 

with zero percentage of distortion. 

2. Quick design phase. 

An updated version of the first design of the system is created to enhance the 

compression rate. This phase is responsible for identifying the second system main 

functions (Prototypes) as follows. 

The second compression system is divided into three prototypes: 

• Read the input image and determine its information. 

• Transformation  

• Column Subtraction Compression.  

Each of the functions (prototypes) should be programmed individually as a class and 

should be called in the final system by using an object-oriented structure.  

3. Build a Prototype. 

A small model of the required system is developed based on the quick design. The 

model should combine the three prototypes to deliver a compressed image and should 

be ready for evaluation.  

4. Initial user evaluation. 
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The evaluation phase is to evaluate the output image size, quality, execution time and 

the algorithm complexity. The second model achieved high compression speed 

performance with zero distortion and  enhances the compression rate. The only 

limitation of this system is when compressing low-resolution images; the system 

achieved less compression rates. 

5. Refining prototype. 

Having the feedback from the previous phase, we need to enhance the compression rate 

of the low-resolution images in the next iteration without effecting the compression 

speed and the image quality. 

6. The final compression system for the High-Resolution images is developed based on 

the final prototype. The system deliverables (compressed images) are evaluated in 

chapter four. 

3.2.3 The third Iteration Requirements  

The third compression model is designed, developed and tested in this iteration, to enhance the 

compression rate for the low-resolution images. The system development phases are described 

as: 

1. Requirements gathering and analysis phase. 

The third system is to enhance the compression rates of the second model for the low-

resolution images by compressing the input image with a higher compression rate and 

fast execution time with zero percentage of distortion. 

2. Quick design phase. 

An updated version of the second design of the system is created to enhance the 

compression rate. This phase is responsible for identifying the third system main 

functions (Prototypes) as follows. 

The third compression system is divided into five prototypes: 

• Read the input image and determine its information. 

• Transformation  

• Column Subtraction Compression.  

• Huffman Algorithm. 

• RLE Algorithm. 

Each of the functions (prototypes) should be programmed individually as a class and 

should be called in the final system by using an object-oriented structure.  

3. Build a Prototype. 
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A small model of the required system is developed based on the quick design. The 

model should combine the five prototypes to deliver a compressed image and should 

be ready for evaluation.  

4. Initial user evaluation. 

The evaluation phase is to evaluate the output image size, quality, execution time and 

the algorithm complexity. The second model achieved high compression speed 

performance with zero distortion and enhances the compression rate for the low-

resolution images. The only limitation of this system is when compressing a high-

resolution image; the system achieved less compression rates with high-resolution 

images. 

5. Refining prototype. 

Having the feedback from the previous phase, we need to develop a fully automated 

system to compress the image according its type (Low-Resolution Image or High-

Resolution Image). The new system is to enhance the compression rate for the input 

image.  

6. Implement Product and Maintain. 

The final compression system for the Low-Resolution images is developed based on 

the final prototype. The system deliverables (compressed images) are evaluated in 

chapter five. 

3.3 Algorithm complexity 

This work is about developing algorithms. The proposed algorithms time complexity is 

measured by using the big O notation to describe the algorithm efficiency in term of 

execution time. The big O notation focusses on the algorithm efficiency and how it 

varies according to the size of the input image. (Bsoul, 2011) emphasise that, “the Big-

O notation is used to define an upper bound on the worst-case scenario for a given 

algorithm.  

Let f (n) be a function that approximate the worst-case running time of an algorithm of 

input size n. Let g(n) be a function mapping nonnegative integer to real numbers. We 

say that f (n) is O(g(n)), if there exist a constant C > 0 and an integer constant n0 > 0 

such that  f (n) <=cg(n) for sufficiently large n >= n0. This means that f is asymptotically 

upper bounded by g. The definition is often referred to as the ”big-oh” notation. In 

Chapter 4 and 5, an approximation of f (n) is analysed. and the corresponding g(n) is 

proved using Eq. 3.1”.  
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Let f and g be two functions that 

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
    Eq.3.1 

exists and is equal to some number c > 0. Then f (n) = O(g(n))  

The big O notation is used to calculate the algorithms complexities in the evaluation chapters. 

The researcher testbed is composed of four parameters which are: 

1- The algorithm time complexity by calculating the big O notation. 

2- The compressed image size by calculating the compression ratio. 

3- The image quality by calculating the (MSE and PSNR). 

4- The algorithm execution time by using the Tic-Toc Matlab function. 

Chapters four and five discuss the evaluation phase in detail.  

3.4 Matlab 

MATLAB is one of the fourth-generation programming languages. It provides an easy platform 

for numerical analysis and a very suitable language for matrices operations. It provides a 

graphical user interface and data visualisation. The MATLAB libraries have many pre-defined 

functions that support most of the image processing researchers; therefore, it is very popular 

among image processing. MATLAB has many different versions; in this research we will use 

MATLAB R2016b version. Some of the MATLAB features include: 

1. MATLAB supports matrices mathematical operation and provides analysis features 

that facilitate the programmers’ work. 

2. MATLAB has a very well-documented toolbox that helps any programmer to develop 

their applications.  

3. With MATLAB, programmers can draw Figure s to analyse data without the need to 

export the data to other software.  

Figure 3. 1 describe the compression system class diagram, by describing the main building 

blocks of the object-oriented methods. The first class (Read Input Image Class) is responsible 

for reading the image to specify its details, and the second class (Transformation Class) is to 

map the image  into new colour space to prepare it for the next phase. The (CSC Compression 

Class) is to compress the image by using the proposed CSC function and followed by the 

Huffman class to decrease the values of the resulted image from the CSC phase. The (RLE 

Class) is used for decreasing the image size as a final phase. 
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+Huffman_Function()

-CRR_Matrix
-CRG_Matrix
-CRB_Matrix

Huffman_Compression_Class

+RLE_Function()

-Image_R3
-Image_G3
-Image_B3

RLE_Compression_Class

+Read the Image()

-Image_Type
-Image_Size
-Image_Resoulution
-R,G,B

Read_Input_Image

+CSC_Function()

-R_Matrix
-Dg_Matrix
-Db_Matrix

CSC_Compression_Class

+Transformation_Function()

-R_Matrix
-G_Matrix
-B_Matrix

Transformation_Class

 

Figure 3. 1 - The Compression System Class Diagram 

3.5 Used Devices and Operating System 

The researcher started programming the algorithm by using MATLAB programming language 

on Microsoft Windows 10 operating system, and a laptop. Table 3.1 lists the hardware 

specifications. 

Table 3. 1 - The Algorithms Working Environments 

Used Device Dell Laptop 

Processor Intel (R) Core (TM) i7- 7500 CPU @ 2.7 GHz 2.9 GHz 

Random Access Memory  8.00 GB 

Display Adapter Intel (R) HD Graphics 620 

Operating System  windows 10 64-bit  

Programming Language MATLAB R2016b 

 

3.6 Set of Tested Images 

To cover all the aspects that may affect the compression performance and to ensure the 

accuracy and reliability of the results, the researcher used an inclusive set of test images from 

different image types and different image resolutions. This test image samples should represent 

the most popularly used formats, such as JPEG, BMP, GIF, PNG, and the most popularly used 

images in the literature and image processing research community. To reach the best image 

results, the researcher tested the algorithm on five images sets with a total of 52 images. 
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3.6.1 Image Set 1 

Set one, includes nine of the most popularly used greyscale images, including Baboon, Barbara, 

Boat, Camera Man, House, Lena, as shown in Table 3.2. 

 

Table 3. 2 - Image set 1 

Image set 1 

   

Baboon (GIF) Barbara (PNG) Boats (PNG) 

   

Boats (BMP) Camera Man (BMP) Camera Man (GIF) 

   

House (PNG) Lena (PNG) Lena (JPEG) 
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3.6.2 Image Set 2 

Set two, includes nine of the most popularly used coloured images, such as Airplane, Baboon, 

Barbara, Boats, Gold Hill, Lena, Pepper, as shown in Table 3.3. 

 

Table 3. 3 - Image Set 2 

Image set 2 

   

Airplane (BMP) Baboon (BMP) Barbara (BMP) 

   

Boats (BMP) Gold Hill (BMP) Lena (BMP) 

   

Lena (PNG) Lena (JPEG) Pepper (BMP) 

  

 

 

 



66 
 

3.6.3 Image Set 3 

Set three, includes 14 images from the Stanford image set, as shown in Table 3.4. This image 

set has more than 9000 images, so we choose different images from this image set with different 

resolutions, to test their results on the proposed algorithms. 

 

Table 3. 4 - Image Set 3 

Image set 3  

    

Boats (JPEG) Butterfly (JPEG) Earth (JPEG) Lake (JPEG) 

    

Medic (JPEG) Medic1 (JPEG) Mountain (JPEG) Saturn (JPEG) 

    

Swarm (JPEG) Waterfall (JPEG) Grandfather (JPEG) Car (JPEG) 

  

Eagle (JPEG) Shape (JPEG) 
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3.6.4 Image Set 4 

Set four, includes 10 natural images obtained from the Kodak image set  

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html, as shown in Table 3.5. All of the 

images in this image sets have the same resolution 768 X 512- and 24 bit-depth and PNG data 

type. 

 
Table 3. 5 - Image Set 4 

Image set 4 

   

Knob & Bolt (PNG) Houses (PNG) Landscape (PNG) 

   

Light House (PNG) Barn (PNG) Parrots (PNG) 

   

Flowers & Sill (PNG) Six-Shooter (PNG) Motocross (PNG) 

 

Zentime (PNG) 

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html
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3.6.5 Image Set 5 

Set five, includes 10 raster map images obtained from 

https://sites.google.com/site/qinzoucn/documents/ image set, as shown in Table 3.6. All of 

the images in this image sets have the same resolution 600 X 480 and 24 bit-depth and BMP 

data type. 

Table 3. 6 - Image Set 5 

Image set 5  

    

Map 1 (BMP) Map 2 (BMP) Map 3 (BMP) Map 4 (BMP) 

    

Map 5 (BMP) Map 6 (BMP) Map 7 (BMP) Map 8 (BMP) 

  

  

Map 9 (BMP) Map 10 (BMP)   

 

3.7 Rational for the Selection of the Images Sets  

All the images had been chosen carefully by the researcher to cover all the aspects that may 

affect the compression performance. The first and second image sets represent the most used 

images by the scientific community (Grayscale and Colour). (Al-azawi et al., 2011); (Kale and 

Deshmukh, 2010) and (Shukla and Gupta, 2015) used some of these images in their research. 

The third image set represent small size images obtained from the Stanford image set; this 

image set is used to find out the algorithm performance on the small size images. The fourth 

and fifth image sets are obtained from lossless benchmark compression schemes for kodak 

https://sites.google.com/site/qinzoucn/documents/
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colour images and  raster map and they were used for evaluation. (Khan et al., 2017); (Khan et 

al., 2016); ( Mao et al., 2015) used this image sets in their research. 

3.8 Characteristics of the Selected Images 

• All the images from image set 1 are greyscale images, while the images in the other image 

sets have coloured images only.  

• The image size is different from one image to another, so we discuss the image size in the 

discussion section in Chapters 4 and 5. 

• A scope of various image scenes, such as medical image, natural image, architectural 

images were used as displayed in  image set three. 

• Images that have smoothly graduating signals were used as displayed in  image set four. 

• Highly coloured images were used, such as images from image set four. 

• Low coloured content images were used, such as images from image set five. 

• Old and new images with different resolution were used, the minimum image resolution 

used is (128x85) and the maximum used image resolution is (768x512). 

• The used image formats are (GIF, PNG, BMP, JPG). 

3.9 Chapter Summary 

This chapter presented the gap analyses for the current most popular used algorithm’s in the 

domain of lossless image compression by describing their limitation and the proposed solution 

for each of the limitations, followed by the software development process and the research 

requirements that are needed to develop the proposed solutions, such as the used programming 

language and the tested image sets.  

 

The next chapter describes the developments of the proposed image compression algorithms. 
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CHAPTER FOUR: THE PROPOSED LOSSLESS ALGORITHM FOR 

NATURAL IMAGES COMPRESSION 

4 Chapter Overview 

This chapter describes in detail the proposed lossless Column Subtraction Compression 

algorithm (CSC). It starts with a detailed explanation of all the procedures used in the 

proposed technique, followed by the validation of the algorithm. Finally, the algorithm was 

compared to the state-of-the-art algorithms. 

4.1 Introducing the CSC Compression Algorithm 

Lossless compression techniques have been used in many applications, where any loss of the 

original image data leads to an improper diagnosis. Some of these applications are medical 

application, Global Positioning System (GPS), digital radiography, camera systems (Sengupta 

and Roy, 2018) and remote sensing applications such as monitoring forest fires (Rusyn et al., 

2016).  

The lossless CSC algorithm is designed to work with any application and supports all image 

formats whether the input image is of a high resolution or low-resolution. The CSC algorithm 

is suitable for natural image compression and can be used as stand-alone algorithm or as a pre-

processing phase for any lossless or lossy techniques. The CSC algorithm includes two 

procedures as follows. 

Let NI be a coloured image referring to a Natural Image represented with three colour matrices 

(R, G and B).The three matrices have the same resolution of (mxn) where m and n represents 

the matrix dimensions (Row (m), Columns (n)).  

1. Procedure transformation is to map the input natural image NI(R,G,B) from the RGB colour 

space into RDgDb colour space. The transformation procedure output is an image with less 

coloration matrices, it maps the pixel values into new space that includes smaller values 

TI(R,Dg,Db). The transformed matrices have the same dimensions of the input matrices (m x 

n). Dg refers to the transformed green matrix, Db refers to the transformed blue matrix and TI 

referred to the Transformed Image. 

2. Procedure compression is to decrease the size of the transformed image TI(R,Dg,Db) by using 

the column subtraction compression where CRR refers to the compressed red channel, CRG 

refers to the compressed green channel and CRB refers to the compressed blue channel. The 

compression procedure output is the compressed image CI(CRR, CRG, CRB). Algorithm 1 

illustrates the procedures of natural image compression. 
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Algorithm1: CSC For Natural Images Compression 

1: Procedure Transformation 

2:  input NI: natural image NI(R,G,B) 

3: m  = total rows number;  n  = total columns number;  

4: //Dg, Db are (m X n) matrices of natural number;     

5: // Dg matrix is resulted by subtracting the G matrix from the R matrix  using the following formula 

Dg(row, column)  = R(row, column)  – G(row, column)    

6: // Db matrix is resulted by subtracting the G matrix from the B matrix using the following formula 

 Db(row, column)  = B(row, column)  - G(row, column)     

7: output: transformed image TI(R,Dg,Db) 

8: End Procedure Transformation 

1: Procedure Compression 

2:  input TI: transformed image TI(R,Dg,Db) 

3: //CRR, CRG, CRB; are matrices of natural number 

4: // CRR matrix is resulted by the following nested for loop 

5: from the first column to the last column - 1   

6:     for all rows in the column do       

7:        CRR (row, column)   =  R(row, column) - R(row, column+1); 

8:   end 

9: end 

10: // CRG matrix is resulted by the following nested for loop 

11:  from the first column to the last column - 1 

12:  for all rows in the column do       

13:     CRG (row, column)   =  Dg(row, column) - Dg(row, column+1); 

14:     end 

15: end 

16: // CRB matrix is resulted by the following nested for loop 

17: from the first column to the last column - 1 

18:     for all rows in the column do       

19:       CRB (row, column)   =  Db(row, column) - Db(row, column +1); 

20:    end 

21: end 

22: output: compressed image CI(CRR, CRG, CRB) 

23: End Procedure Compression 
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The Natural Images Decompression algorithm used two procedures for reconstructing the 

compressed image as follows. 

Algorithm2: CSC For Natural Images Decompression 

1: Procedure Decompression 

2:    input compressed image CI(CRR, CRG, CRB) 

3: m  = total rows number;  n  = total columns number;  

4: // R,Dg,Db are (m X n) matrices of natural number;   

5: // R matrix is resulted by the following nested for loop  

6: from the last column to the first column + 1   

7:     for all rows in the column do       

8:        R (row, column-1)   =  CRR(row, column) + CRR(row, column-1); 

9:   end 

10: end 

11: // Dg matrix is resulted by the following nested for loop  

12: from the last column to the first column + 1   

13:     for all rows in the column do       

14:        Dg (row, column-1)   =  CRG(row, column) + CRG(row, column-1); 

15:   end 

16: end 

17: // Db matrix is resulted by the following nested for loop  

18: from the last column to the first column + 1  

19:     for all rows in the column do       

20:        Db (row, column-1)   =  CRB(row, column) + CRB(row, column-1); 

21:   end 

22: end 

23:   output: transformed image TI(R,Dg,Db) 

24: End Procedure Decompression  

1: Procedure Revers Transformation 

2:  input R,Dg,Db; matrices of natural number 

3: //  R,G,B are (m X n) matrices of natural number  

4: //    G matrix is resulted by subtracting the Dg matrix from the R matrix   

5: G(row, column)  = R(row, column)  – DG(row, column)  

6: // B matrix is resulted by adding the G matrix values to the Db matrix values 

7: B(row, column)  = G(row, column)  + DB(row, column)  

8: End Procedure Revers Transformation 
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By implementing the CSC algorithm, we expect to decrease the image size and maintain the 

image quality as it was before compression in a very fast time. Figure 4.1 shows the CSC 

flowchart. 

4.2 The CSC Flowchart  

Read Source Image(C3)
to determine its 

Information

Start

Read Source Image to  
determine its Information

Start

End

Matrix Dimensions
C1 = Column No

R1 = Row No
BD = Image_Bit_Depth

Image Red
Matrix

Transformation

Column Subtraction 

Image Dg
Matrix

Image Db
Matrix

Image Red
Matrix

Image Green
Matrix

Image Blue
Matrix

Compressed 
Image Red

Compressed 
Image Dg

Compressed 
Image Db

Combine the Three matrix
(Compressed Image)

If BD = 8Yes

No

Image Matrix

Column Subtraction 

Compressed 
Image 

 

Figure 4. 1 - CSC Lossless Algorithm Flowchart 

 

4.3 Description of the CSC Algorithm  

The algorithm starts with loading the source image to identify the matrix dimension and the 

input image bit-depth, followed by specifying the suitable compression steps that meet the 

input image; if the image bit-depth is equal to eight then the image cannot be transformed, and 

the image will be sent to the subtraction function phase directly, and if the image bit-depth is 
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24 then the image will be loaded to the transformation phase as a pre-processing to the column 

subtraction function. 

4.3.1 Colour Transformation: 

It is  a fact that the main three colours in the RGB colour space have high coloration in natural 

images. That indicates that, two or more of the three main components have the same 

information for the same pixel’s addresses, e.g., if a particular area of an image is bright in the 

red channel then mostly it should be bright in the green and blue channels as well. The aim of 

colour transformation is for decreasing the coloration between the image components (R,G,B) 

to produce a new colour space with less correlation between the three components.  

(Starosolski, 2014) described the most popular transformation methods such as R,Dg,Db and  

YCoCg. In this research, the researcher implements and tests many transformation methods to 

choose the best method that achieves the best compression rate with the proposed algorithm.  

After implementing and testing many transformation methods; the researcher modified the   

R,Dg,Db transformation method and used it as a pre-processing phase for the CSC algorithm 

since it achieved the best compression rate. Table 4.1. lists the original R,Dg,Db transformation 

formula. Where, the image colour space is transformed from RGB to R,Dg,Db colour space by 

applying Eq 4.1 for the red colour space, Eq 4.2 for the green colour space and Eq 4.3 for the 

blue colour space, where R represents the luminance and Dg, Db are used to represent the 

chrominance. Eq 4.4, Eq 4.5, Eq 4.6 are used for the invers transformation.  

Table 4. 1 - R,Dg,Db Transformation and Invers Transformation Equations 

Colour Space Transformation Equation Inverse Colour Space Transformation Equation 

R = R Eq 4.1 R = R Eq 4.4 

Dg = R – G Eq 4.2 G = R - Dg Eq 4.5 

Db = G – B Eq 4.3 B = G - Db Eq 4.6 

 

The researcher modified the original R,Dg,Db transformation by using Eq. 4.9 for the Db 

colour space instead of using Eq. 4.3. The modified transformation is used as pre-processing 

phase for the CSC compression algorithm. Table 4.2 lists the modified transformation formula 

where, the image colour space is transformed from RGB to R,Dg,Db colour space by applying 

Eq 4.7 for the red colour space, Eq 4.8 for the green colour space and the modified Eq 4.9 for 

the blue colour space, where R represents the luminance and Dg, Db are used to represent the 

chrominance.  
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Table 4. 2 - The Modified Transformation and Invers Transformation Equations 

Colour Space Transformation Equation Inverse Colour Space Transformation Equation 

R = R Eq 4.7 R = R Eq 4.10 

Dg = R – G Eq 4.8 G = R - Dg Eq 4.11 

Db = B – G Eq 4.9 B = G + Db Eq 4.12 

 

The inverse colour transform equations are used for restoring the original colour space values, 

where Eq. 4.10 is used for restoring the red channel value and Eq. 4.11 and Eq. 4.12 for 

restoring the green and blue channel values respectively.  

As displayed in Table 4.3, the modified colour transformation enhances the average 

compression ratio for the CSC algorithm by having 0.147 better compression ratio than the 

original transformation. 

Table 4. 3 - The Average Compression Ratio for the Original and Modified Transformation 

Image Set 
Average Compression Ratio 

(Original Transformation)  

Average Compression Ratio 

(Modified Transformation) 

Image Set 1 2.319 2.346 

Image Set 2 2.384 2.571 

Image Set 3 2.254 2.324 

Image Set 4 3.094 3.541 

Image Set 5 28.240 28.243 

Average 7.6582 7.805 

 

Figure 4.2 describe the modified transformation for the three colours space by using a sample 

example of 8x8 block for the three matrices.  
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Sample 8x8 for the Red Matrix (R) 

 

= 

R = Red Matrix R 

99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 

99 99 99 102 106 108 111 111 99 99 99 102 106 108 111 111 

99 99 99 106 110 114 120 120 99 99 99 106 110 114 120 120 

99 99 99 114 114 115 126 122 99 99 99 114 114 115 126 122 

99 99 97 121 125 132 148 146 99 99 97 121 125 132 148 146 

99 99 97 121 125 133 155 153 99 99 97 121 125 133 155 153 

99 99 97 121 127 136 152 151 99 99 97 121 127 136 152 151 

99 99 97 121 128 132 148 147 99 99 97 121 128 132 148 147 

 

Sample 8x8 for the Green Matrix (G) 

 

➔ 

Dg = R - G 

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 0 

99 99 99 98 96 95 94 94 0 0 0 4 10 13 17 17 

99 99 99 96 93 90 88 88 0 0 0 10 17 24 32 32 

99 99 99 97 76 65 61 57 0 0 0 17 38 50 65 65 

99 99 100 94 70 57 54 52 0 0 -3 27 55 75 94 94 

99 99 100 94 70 59 58 57 0 0 -3 27 55 74 97 96 

99 99 100 94 72 59 55 54 0 0 -3 27 55 77 97 97 

99 99 100 94 73 55 51 50 0 0 -3 27 55 77 97 97 

 

Sample 8x8 for the Blue Matrix (B) 

 

➔ 

Db = B - G 

 

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 0 

99 99 99 96 94 92 90 90 0 0 0 -2 -2 -3 -4 -4 

99 99 99 94 88 83 78 78 0 0 0 -2 -5 -7 -10 -10 

99 99 99 93 69 52 43 39 0 0 0 -4 -7 -13 -18 -18 

99 99 99 88 56 37 25 26 0 0 -1 -6 -14 -20 -29 -26 

99 99 99 88 56 38 30 29 0 0 -1 -6 -14 -21 -28 -28 

99 99 99 88 58 40 28 26 0 0 -1 -6 -14 -19 -27 -28 

99 99 99 88 59 36 24 22 0 0 -1 -6 -14 -19 -27 -28 

 

 

Figure 4. 2 - Transformation Example 
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Figure 4.3 describe the invers transformation for the three colours space by using the sample 

example of 8x8 block for the three transformed matrices TI(R,Dg,Db). 

 

4.3.2 Column Subtraction 

Images can be compressed by taking advantage of the high correlation between neighbouring 

pixels. In another word, each pixel value is similar or very close to the value of its adjacent 

pixels (Novikov, Egorov, and Gilmutdinov, 2016). To accomplish a high compression ratio 

from this fact, a new method called Column Subtraction Compression (CSC) is developed to 

decrease the image intensities by subtracting each column from the nearest column and save 

the resulting value in the first column starting from the first column from the left side of each 

matrix. The resulting three matrices from the previous transformation phase TI(R, Dg and Db) 

should be loaded to the CSC function to decrease the image size as a second phase by using 

R Matrix  

= 

R Matrix  

99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 

99 99 99 102 106 108 111 111 99 99 99 102 106 108 111 111 

99 99 99 106 110 114 120 120 99 99 99 106 110 114 120 120 

99 99 99 114 114 115 126 122 99 99 99 114 114 115 126 122 

99 99 97 121 125 132 148 146 99 99 97 121 125 132 148 146 

99 99 97 121 125 133 155 153 99 99 97 121 125 133 155 153 

99 99 97 121 127 136 152 151 99 99 97 121 127 136 152 151 

99 99 97 121 128 132 148 147 99 99 97 121 128 132 148 147 

 

Dg Matrix G =  R - Dg 

0 0 0 0 0 0 0 0 

➔ 

99 99 99 99 99 99 99 99 

0 0 0 4 10 13 17 17 99 99 99 98 96 95 94 94 

0 0 0 10 17 24 32 32 99 99 99 96 93 90 88 88 

0 0 0 17 38 50 65 65 99 99 99 97 76 65 61 57 

0 0 -3 27 55 75 94 94 99 99 100 94 70 57 54 52 

0 0 -3 27 55 74 97 96 99 99 100 94 70 59 58 57 

0 0 -3 27 55 77 97 97 99 99 100 94 72 59 55 54 

0 0 -3 27 55 77 97 97 99 99 100 94 73 55 51 50 

 

Db Matrix 

➔ 

B = G + Db 

0 0 0 0 0 0 0 0 99 99 99 99 99 99 99 99 

0 0 0 -2 -2 -3 -4 -4 99 99 99 96 94 92 90 90 

0 0 0 -2 -5 -7 -10 -10 99 99 99 94 88 83 78 78 

0 0 0 -4 -7 -13 -18 -18 99 99 99 93 69 52 43 39 

0 0 -1 -6 -14 -20 -29 -26 99 99 99 88 56 37 25 26 

0 0 -1 -6 -14 -21 -28 -28 99 99 99 88 56 38 30 29 

0 0 -1 -6 -14 -19 -27 -28 99 99 99 88 58 40 28 26 

0 0 -1 -6 -14 -19 -27 -28 99 99 99 88 59 36 24 22 

Figure 4. 3 - Invers Transformation Example 
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Eq. 4.13 for the red matrix (R), Eq. 4.14 for the green matrix (Dg) and Eq. 4.15 for the blue 

matrix (Db) respectively. 

𝐶𝑅𝑅(𝑖, 𝑗) = 𝑅(𝑖, 𝑗) − 𝑅(𝑖, 𝑗 + 1)               i,j; 1≤ i ≤m and 1≤ j ≤n-1 4.13 

𝐶𝑅𝐺(𝑖, 𝑗) = 𝐷𝑔(𝑖, 𝑗) − 𝐷𝑔(𝑖, 𝑗 + 1)           i,j; 1≤ i ≤m and 1≤ j ≤n-1 4.14 

𝐶𝑅𝐵(𝑖, 𝑗) = 𝐷𝑏(𝑖, 𝑗) − 𝐷𝑏(𝑖, 𝑗 + 1)            i,j; 1≤ i ≤m and 1≤ j ≤n-1 4.15 

 

The three matrices (CRR, CRG and CRB) have the same resolution of (mxn) where m and n 

represents the matrix dimensions (Row (m), Columns (n)) and (i,j) refers to the elements 

coordinates, and CRR represents the compressed matrix for the red channel, CRG represents 

the compressed matrix for the green channel and CRB represents the compressed matrix for 

the blue channel. Figure 4.4 describes the CSC results for the three transformed matrices for 

the sample example. 

For reconstructing the compressed image, the three compressed matrices CRR, CRG and CRB 

should be loaded to the decompression algorithm which uses the reversable CSC equations for 

each of the three matrices separately, by applying Eq. 4.16 for the CRR matrix, Eq. 4.17 for 

the CRG matrix and Eq. 4.18 for the CRB matrix.  

𝑅(𝑖, 𝑗 − 1) = 𝐶𝑅𝑅(𝑖, 𝑗) + 𝐶𝑅𝑅(𝑖, 𝑗 − 1)            i,j; 1≤ i ≤m and 2≤ j ≤n 4.16 

𝐷𝑔(𝑖, 𝑗 − 1) = 𝐶𝑅𝐺(𝑖, 𝑗) + 𝐶𝑅𝐺(𝑖, 𝑗 − 1)          i,j; 1≤ i ≤m and 2≤ j ≤n 4.17 

𝐷𝑏(𝑖, 𝑗 − 1) = 𝐶𝑅𝐵(𝑖, 𝑗) + 𝐶𝑅𝐵(𝑖, 𝑗 − 1)          i,j; 1≤ i ≤m and 2≤ j ≤n 4.18 

Figure 4.4 describe the CSC compression phase for the three transformed matrices. The 

resulted three matrices should be combined to produce the compressed image 

CI(CRR,CRG,CRB). 
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Figure 4.5 describe the CSC decompression phase for the three compressed matrices 

CI(CRR,CRG,CRB). The resulted three matrices should be combined to produce the 

decompressed image TI(R,Dg,Db). 

 
 

 

 

 

Red Matrix R 

 
➔ 

CRR 

99 99 99 99 99 99 99 99  0 0 0 0 0 0 0 99 

99 99 99 102 106 108 111 111 0 0 -3 -4 -2 -3 0 111 

99 99 99 106 110 114 120 120 0 0 -7 -4 -4 -6 0 120 

99 99 99 114 114 115 126 122 0 0 -15 0 -1 -11 4 122 

99 99 97 121 125 132 148 146 0 2 -24 -4 -7 -16 2 146 

99 99 97 121 125 133 155 153 0 2 -24 -4 -8 -22 2 153 

99 99 97 121 127 136 152 151 0 2 -24 -6 -9 -16 1 151 

99 99 97 121 128 132 148 147 0 2 -24 -7 -4 -16 1 147 

 

Dg Matrix 

 

➔ 

CRG 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 4 10 13 17 17 0 0 -4 -6 -3 -4 0 17 

0 0 0 10 17 24 32 32 0 0 -10 -7 -7 -8 0 32 

0 0 0 17 38 50 65 65 0 0 -17 -21 -12 -15 0 65 

0 0 -3 27 55 75 94 94 0 3 -30 -28 -20 -19 0 94 

0 0 -3 27 55 74 97 96 0 3 -30 -28 -19 -23 1 96 

0 0 -3 27 55 77 97 97 0 3 -30 -28 -22 -20 0 97 

0 0 -3 27 55 77 97 97 0 3 -30 -28 -22 -20 0 97 

 

Db Matrix 

 

➔ 

CRB 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 -2 -2 -3 -4 -4 0 0 2 0 1 1 0 -4 

0 0 0 -2 -5 -7 -10 -10 0 0 2 3 2 3 0 -10 

0 0 0 -4 -7 -13 -18 -18 0 0 4 3 6 5 0 -18 

0 0 -1 -6 -14 -20 -29 -26 0 1 5 8 6 9 -3 -26 

0 0 -1 -6 -14 -21 -28 -28 0 1 5 8 7 7 0 -28 

0 0 -1 -6 -14 -19 -27 -28 0 1 5 8 5 8 1 -28 

0 0 -1 -6 -14 -19 -27 -28 0 1 5 8 5 8 1 -28 

Figure 4. 4 - CSC Example 
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4.4 CSC Algorithm Time Complexity Analyses  
A simplified time-complexity analysis for the CSC algorithm is performed based on the Big-

O notation, which defines the worst-case scenario. The CSC algorithm starts by loading the 

input (R,G,B) image to identifies the matrix size n. Then the transformation is used to map the 

(R,G,B) image into new colour space (R,Dg,Db) by using the transformation equations, 

followed by the proposed CSC compression as a final phase.  

4.4.1 CSC algorithm Time Complexity 

The CSC algorithm is divided into two main components (Transformation and Compression). 

Table 4.4 lists the time complexity for each of the CSC algorithm components by using the O 

notation for describing each components computation complexity. 

CRR Matrix  

 

➔ 

R 

0 0 0 0 0 0 0 99 99 99 99 99 99 99 99 99 

0 0 -3 -4 -2 -3 0 111 99 99 99 102 106 108 111 111 

0 0 -7 -4 -4 -6 0 120 99 99 99 106 110 114 120 120 

0 0 -15 0 -1 -11 4 122 99 99 99 114 114 115 126 122 

0 2 -24 -4 -7 -16 2 146 99 99 97 121 125 132 148 146 

0 2 -24 -4 -8 -22 2 153 99 99 97 121 125 133 155 153 

0 2 -24 -6 -9 -16 1 151 99 99 97 121 127 136 152 151 

0 2 -24 -7 -4 -16 1 147 99 99 97 121 128 132 148 147 

 

CRG Matrix 

 

➔ 

Dg Matrix 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 -4 -6 -3 -4 0 17 0 0 -4 -6 -3 -4 0 17 

0 0 -10 -7 -7 -8 0 32 0 0 -10 -7 -7 -8 0 32 

0 0 -17 -21 -12 -15 0 65 0 0 -17 -21 -12 -15 0 65 

0 3 -30 -28 -20 -19 0 94 0 3 -30 -28 -20 -19 0 94 

0 3 -30 -28 -19 -23 1 96 0 3 -30 -28 -19 -23 1 96 

0 3 -30 -28 -22 -20 0 97 0 3 -30 -28 -22 -20 0 97 

0 3 -30 -28 -22 -20 0 97 0 3 -30 -28 -22 -20 0 97 

 

CRB Matrix 

 

➔ 

Db Matrix 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 2 0 1 1 0 -4 0 0 2 0 1 1 0 -4 

0 0 2 3 2 3 0 -10 0 0 2 3 2 3 0 -10 

0 0 4 3 6 5 0 -18 0 0 4 3 6 5 0 -18 

0 1 5 8 6 9 -3 -26 0 1 5 8 6 9 -3 -26 

0 1 5 8 7 7 0 -28 0 1 5 8 7 7 0 -28 

0 1 5 8 5 8 1 -28 0 1 5 8 5 8 1 -28 

0 1 5 8 5 8 1 -28 0 1 5 8 5 8 1 -28 

Figure 4. 5 - CSC Decompression Example 
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Table 4. 4 - CSC Algorithm Complexity 

Line Description O 

1 Procedure Transformation - 

2 input NI: natural image NI(R,G,B) O(n2) 

3 m  = total rows number;  n  = total columns number; O(1) 

5 Dg(row, column)  = R(row, column)  – G(row, column) O(n2) 

6 Db(row, column)  = B(row, column)  - G(row, column) O(n2) 

1 Procedure Compression - 

2 input TI: transformed image TI(R,Dg,Db) O(n2) 

7 CRR (row, column)    = R(row, column     - R(row, column+1); O(n2) 

13 CRG (row, column)   =  Dg(row, column) - Dg(row, column+1); O(n2) 

19 CRB (row, column)   =  Db(row, column) - Db(row, column +1); O(n2) 

1 Procedure De-Compression - 

2 input compressed image CI(CRR, CRG, CRB) O(n2) 

3 m  = total rows number;  n  = total columns number; O(1) 

8 R (row, column-1)   =  CRR(row, column) + CRR(row, column-1) O(n2) 

14 Dg (row, column-1)   =  CRG(row, column) + CRG(row, column-1) O(n2) 

20 Db (row, column-1)   =  CRB(row, column) + CRB(row, column-1) O(n2) 

1 Procedure Revers Transformation - 

2 input R,Dg,Db; matrices of natural number O(n2) 

5 G(row, column)  = R(row, column)  – DG(row, column) O(n2) 

7 B(row, column)  = G(row, column)  + DB(row, column) O(n2) 

 

The growth rate function in terms of time for the  CSC components is analysed as: 

1- The growth rate function of the transformation component is  

f(n) = 3O( n2) + O(1) Therefore, the overall rate of growth for this component is 

f(n) = O(n2) after removing the constants. 

2- The growth rate function of the CSC component is  

The second phase of the algorithm is to compress the R,Dg,Db image by using the CSC 

function. This phase is to apply the CSC function for each of the three matrices 

individually. For each colour space we used nested two loops. The outer loop runs n 

times and the inner loop runs n times for each iteration of the outer loop; this indicate 
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that, this function will be running for n2  total times, thus the function is running O(n2) 

time for each colure and the complexity of this phase is  

f(n) = 4 O(n2)  Therefore, the overall rate of growth for this component is 

f(n) = O(n2) after removing the constants. 

The decompression phase is to reconstruct the image by using two reversable procedures.  

3- The growth rate of the CSC decompression component is 

f(n) = 4On2 + O(1) Therefore, the overall rate of growth for this component is 

f(n) = O(n2)  after removing the constants. 

4- The growth rate of the invers transformation component is 

f(n) = 3 O(n2) Therefore, the overall rate of growth for this component is 

f(n) =  O(n2) after removing the constants. 

After approximating the computation complexity for the individual components of the system, 

the overall complexity is calculated by summing up the overhead for the individual parts.  

f(n) = [O(n2)]+ [O(n2)] + [O(n2)] + [O(n2)]. 

f(n) = 4 O(n2). 

Therefore, the overall complexity of the algorithm is: 

f(n) = O(n2) after removing the constants. 

4.4.2 Proof 

Assume that g(n) = n, the time complexity of f (n) is O(n2). To proof that f (n) in Equation 3.1 

is O(g(n)), we will apply the limit to find a constant c > 0.  

We have f(n) = O(n2) and g(n) = n. That is 

 

lim
𝑛→∞

𝑓(𝑛)

g(𝑛)
 

 

lim
𝑛→∞

  𝑛2

𝑛
= 𝑛 

 

As the proof shows, there is a constant c > 0 that satisfy the limit in the proof Theorem. Since 

n0 must be positive integer, we can say the f (n) in Equation 3.1 is O(n), for n >=n. 

4.5 Validation and Testing 
After the implementation of the algorithm, the researcher needs to estimate the compression 

performance by comparing the new algorithm results with other state-of-the-art results. The 

main parameters that may affect any compression algorithm are compression size, image 
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quality and execution time. Using our testbed, we are going to evaluate the CSC algorithm 

based on: 

1- The compressed image size by calculating the compression ratio. 

2- The image quality by calculating the (MSE and PSNR). 

3- The algorithm execution time by using the Tic-Toc matlab function. 

4.5.1 The CSC Algorithm Compression Size  

Measuring the compression ratio (Cr) is important in order to find out the algorithm storage 

saving, which can be measured by dividing the input image size by the output compressed 

image size (John and Joe, 2005); (Wang and Li, 2011). The best compression ratio is when the 

Cr results have larger values; therefore, the compression algorithm should provide a 

compressed image size smaller than the original image. Table 4.5 lists the compression size 

results for the CSC algorithm by listing the new image size, compression ratio, compression 

rate and storage saving percentage for the three image sets results. 

Table 4. 5 - The Lossless CSC Algorithm Compression Size 

Image Set 1 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBs 
Compression 

Ratio (CR) 
Compression 

Rate  
Storage Saving 

 % 

Baboon GIF 512*512 225 94 2.394 0.418 58.345 

Barbara PNG 512*512 230 121 1.901 0.526 47.238 

Boats PNG 512*512 239 113 2.115 0.473 52.728 

Boats BMP 720*576 368 148 2.486 0.402 59.751 

Camera Man  BMP 256*256 60 26 2.308 0.433 56.423 

Camera Man  GIF 256*256 56 23 2.435 0.411 58.366 

House  PNG 256*256 59 21 2.81 0.356 64.995 

Lena  PNG 256*256 59 27 2.185 0.458 54.390 

Lena  JPG 512*512 226 91 2.484 0.403 59.510 

Image Set 2 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBs 
Compression 

Ratio (CR) 
Compression 

Rate  
Storage Saving 

 % 

Lena  PNG 330*330 290 118 2.458 0.408 59.205 

Lena  BMP 220*220 129 46 2.804 0.355 64.452 

Lena  JPG 225*225 135 48 2.813 0.355 64.540 

Airplane  BMP 512*512 751 249 3.016 0.331 66.876 

Baboon  BMP 500*480 599 359 1.669 0.600 40.020 

Barbara  BMP 720*576 1064 397 2.680 0.373 62.690 

Boats  BMP 787*576 1148 373 3.078 0.324 67.556 

Goldhill  BMP 720*576 1031 378 2.728 0.367 63.307 

Pepper BMP 512*512 651 346 1.882 0.531 46.899 

Image Set 3 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBs 
Compression 

Ratio (CR) 
Compression 

Rate  

Storage Saving 
 % 

Medic JPG 168*90 32 12 2.667 0.376 62.441 
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Medic1 JPG 160*90 24 11 2.182 0.444 55.650 

Butterfly JPG 128*85 20 13 1.538 0.627 37.300 

Mountain JPG 128*96 28 11 2.545 0.399 60.129 

swarm JPG 128*85 25 11 2.273 0.436 56.360 

Lake_jpg JPG 128*85 25 12 2.083 0.468 53.159 

Saturn_jpg JPG 128*100 19 9 2.111 0.497 50.282 

Earth_jpg JPG 225*225 78 43 1.814 0.551 44.921 

boat_jpg JPG 128*85 25 10 2.5 0.404 59.609 

Waterfall JPG 128*96 26 13 2 0.506 49.426 

Eagle JPG 128*96 17 8 2.125 0.478 52.246 

Grand_Sone JPG 128*96 28 12 2.333 0.425 57.475 

Car JPG 128*85 28 10 2.8 0.353 64.744 

Shape JPG 128*95 31 15 2.067 0.471 52.929 

Image Set 4 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBs 
Compression 

Ratio (CR) 
Compression 

Rate  

Storage Saving 
 % 

Knob & Bolt PNG 768*512 1155 320 3.609 0.277 72.31 

Houses PNG 768*512 1149 395 2.909 0.344 65.64 

Landscape PNG 768*512 1153 396 2.912 0.343 65.66 

Light House PNG 768*512 1150 311 3.698 0.271 72.91 

Barn PNG 768*512 1149 355 3.237 0.309 69.08 

Parrots PNG 768*512 1153 297 3.882 0.258 74.20 

Flowers & Sill PNG 768*512 1154 282 4.092 0.245 75.53 

Six-Shooter PNG 768*512 1152 270 4.267 0.235 76.53 

Motocross PNG 768*512 1150 376 3.059 0.327 67.34 

Zentime PNG 768*512 1155 307 3.762 0.266 73.42 

Image Set 5 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBs 
Compression 

Ratio (CR) 
Compression 

Rate  

Storage Saving 
 % 

Map 1 BMP 600*480 761 149 5.107 0.195 80.46 

Map 2 BMP 600*480 821 136 6.037 0.166 83.38 

Map 3 BMP 600*480 801 141 5.681 0.176 82.39 

Map 4 BMP 600*480 838 120 6.983 0.143 85.68 

Map 5 BMP 600*480 800 151 5.298 0.188 81.15 

Map 6 BMP 600*480 826 147 5.619 0.178 82.20 

Map 7 BMP 600*480 838 133 6.301 0.158 84.17 

Map 8 BMP 600*480 814 154 5.286 0.189 81.11 

Map 9 BMP 600*480 769 158 4.867 0.205 79.46 

Map 10 BMP 600*480 768 149 5.154 0.194 80.58 

 

One of the main purposes of any compression algorithm is to decrease the image size. As listed 

in Table 4.6, the CSC algorithm dramatically decreases the image size for the five image sets. 

In image sets 1 and 2, the image size is decreased by having an average compression ratio of 

2.35 for the first image set and 2.57 for the second image set, which indicates that the algorithm 

saved 56.9% from the original size of the first image set and 59.5% from the original size of 

the second image set. By observing the third image set results, the algorithm achieved the 
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lowest compression ratio of 2.22, since this image set is already compressed by the JPEG 

algorithm; however, the algorithm decreases the JPEG images from the third image set as well, 

by saving 54.1% from the original image’s size. The Cr resulted from the fourth image set is 

3.54 and saved 71.3% from the original image size. The best Cr came with compressing the 

fifth image set by having 5.63 Cr and saves 82.1 % from the original image set size. 

Table 4. 6 - The Lossless CSC Algorithm Average Compression Size 

Image Sets 
Average Compression 

Ratio CR 

Average Compression 

Rate  

Average Storage 

Saving % 

Image Set 1 2.346 0.431 56.86 

Image Set 2 2.571 0.405 59.51 

Image Set 3 2.224 0.460 54.05 

Image Set 4 
3.543 0.288 71.26 

Image Set 5 5.634 0.179 82.06 

Average 3.263 0.352 64.74 

 

Figure 4.6 describes the compression storage saving percentages for the proposed lossless 

algorithm CSC. By observing the results for each of the image set, we can say that the CSC 

algorithm decreases the image size by different percentages for different images types and 

different images resolution. 

 

 

Figure 4. 6 - The CSC Algorithm Storage saving 
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4.5.2 The CSC Algorithm Image Quality.  

For distortion assessment, we used the following two metrics: 

i. Mean Squared Error (MSE) 

ii. Peak Signal to Noise Ratio (PSNR) 

When the MSE is closer to zero we have better image quality, while in the PSNR, larger values 

suggest better image quality. Since the CSC algorithm is a lossless technique, this indicates 

that the image quality should not be compromised, and the original image is a 100% perfect 

match with the decompressed image. The proposed algorithm MSE results is zero and the 

PSNR is infinite for all the images in the five image sets, the PSNR is infinite, because we 

calculate its value by dividing the distortion value on the MSE; in this case, the MSE is zero 

so the PSNR should be infinite. After averaging the distortion value for the five image sets, we 

prove that the proposed image compression algorithm is a lossless algorithm. All the images 

from the five image sets have been restored exactly as they were before compression. The five 

image sets have been perfectly restored after decompression with zero distortion, since the 

MSE value is zero for all the test images. Table 4.7 display two image samples for each image 

set. 

Table 4. 7 - Sample Images from the Five Image Sets Before and After Compression 

Image Set 1 

Original Image Compressed Image Original Image De-Compressed Image 

Camera Man (GIF) Lena (PNG) 

    

Image Set 2 

Original Image Compressed Image Original Image De-Compressed Image 

Lena (PNG) Goldhill (BMP) 
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Image Set 3 

Original Image Compressed Image Original Image De-Compressed Image 

Medic (JPEG) Boat (JPEG) 

    

Image Set 4 

Original Image Compressed Image Original Image De-Compressed Image 

Parrots (PING) Motocross (PING) 

    

Image Set 5 

Original Image Compressed Image Original Image De-Compressed Image 

Map 1 (BMP) Map 2 (BMP) 

    

 

4.5.3 The CSC Algorithm Execution Time.  

Image compression algorithm performance can be calculated by measuring the compression 

speed and the decompression speed in seconds. Compression speed is the time needed for 

compressing the image while the decompression speed is the time needed for decompressing 

the image. Table 4.8 displays the needed execution time for each image from the five sets in 

seconds. 
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Table 4. 8 - The Lossless CSC Algorithm Compression Time in Seconds 

Image Set 1 

Image Compression Time Decompression Time Total Time 

Baboon 0.303 0.003 0.306 

Barbara 0.313 0.007 0.32 

Boats 0.254 0.11 0.364 

Boats 0.32 0.012 0.332 

Camera Man  0.28 0.003 0.283 

Camera Man  0.25 0.003 0.253 

House  0.225 0.002 0.227 

Lena  0.257 0.002 0.259 

Lena  0.519 0.007 0.526 

Image Set 2 

Image Compression Time Decompression Time Total Time 

Lena  0.22 0.01 0.23 

Lena  0.12 0.009 0.129 

Lena  0.15 0.009 0.159 

Airplane  0.46 0.02 0.48 

Baboon  0.5 0.02 0.52 

Barbara  0.64 0.03 0.67 

Boats  0.55 0.03 0.58 

Goldhill  0.54 0.03 0.57 

Pepper 0.56 0.02 0.58 

Image Set 3 

Image Compression Time Decompression Time Total Time 

Medic 0.06 0.0003 0.0603 

Medic1 0.08 0.0005 0.0805 

Butterfly 0.08 0.0005 0.0805 

Mountain 0.04 0.005 0.045 

swarm 0.07 0.0004 0.0704 

Lake_jpg 0.04 0.0004 0.0404 

Saturn_jpg 0.04 0.0006 0.0406 

Earth_jpg 0.04 0.002 0.042 

boat_jpg 0.04 0.0006 0.0406 

Waterfall 0.04 0.0006 0.0406 

Eagle 0.04 0.0007 0.0407 

Grand_Sone 0.04 0.0005 0.0405 

Car 0.04 0.006 0.046 

Shape 0.04 0.0004 0.0404 

Image Set 4 

Image Compression Time Decompression Time Total Time 

Knob & Bolt 0.35 0.01 0.36 

Houses 0.34 0.01 0.35 
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Landscape 0.38 0.01 0.39 

Light House 0.35 0.01 0.36 

Barn 0.41 0.01 0.42 

Parrots 0.34 0.01 0.35 

Flowers & Sill 0.3 0.01 0.31 

Six-Shooter 0.36 0.01 0.37 

Motocross 0.42 0.01 0.43 

Zentime 0.34 0.01 0.35 

Image Set 5 

Image Compression Time Decompression Time Total Time 

Map 1 0.12 0.01 0.13 

Map 2 0.2 0.02 0.22 

Map 3 0.13 0.018 0.148 

Map 4 0.1 0.018 0.118 

Map 5 0.14 0.01 0.15 

Map 6 0.09 0.01 0.1 

Map 7 0.1 0.01 0.11 

Map 8 0.15 0.01 0.16 

Map 9 0.12 0.01 0.13 

Map 10 0.14 0.01 0.15 

 

The CSC algorithm need 2.87 seconds to compress and decompress images for the first image 

set, while the second image set needs 3.91 seconds for both compression and decompression. 

The third image set has the best computation time with 0.7 seconds, because all of the images 

in the third image sets are JPEG images (JPEG format represent images with small intensities 

values). The fourth image set execution time is 3.69 seconds and the fifth image sets needed 

1.41 second. 

One of the main terms for measuring the compression algorithm performance is the 

computation time. Table 4.9 lists the average execution time resulted by calculating the average 

compression time and the average decompression time for the five image sets. 

Table 4. 9 - The Lossless CSC Algorithm Average Compression Time 

Image Sets 
Average 

 (Compression Time) 

Average 

  (De-Compression Time) 

Average 

(Total Time) 

Image Set 1 0.302 0.017 0.319 

Image Set 2 0.416 0.019 0.435 

Image Set 3 0.049 0.001 0.051 

Image Set 4 0.359 0.01 0.369 

Image Set 5 0.129 0.126 0.255 

Average 0.251 0.034 0.285 
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Figure 4.7 represents the execution time for each image set. For a better understanding of the 

results, we displayed the algorithm results in bar-charts, where each column represents the 

value for the average needed time for each image sets. 

 

Figure 4. 7 - Compression and Decompression Time for the CSC Algorithm 

4.6 Evaluations, Results and Observations  

To describe the algorithm contribution, we investigated the results regarding the compression 

size, image quality and execution time. To reach the best conclusion from the results 

investigation, we need to compare our proposed lossless CSC algorithm results with the most 

common state of the art lossless algorithms and describe the analytical results to reach the best 

conclusion. 

4.6.1 Comparison Between the CSC Results and Huffman Algorithm Results. 

To compare the proposed lossless algorithm results with Huffman algorithm results, we need 

to compare both algorithm results regarding the main three features (image size, image quality 

and execution time). 

4.6.1.1 Comparison Between the CSC Algorithm and Huffman Algorithm in Terms of 

Image Size 

By measuring the compression ratio for both algorithms, we can easily compare the results 

between both algorithms, to determine which one has the better compression ratio. Therefore, 

Table 4.10 lists the compression ratio for CSC algorithm and the Huffman algorithm. 
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Table 4. 10 - The Lossless CSC Compression Size and Huffman Compression Size 

The Proposed Lossless CSC Algorithm Results Huffman Results 

Image Set 1 Image Set 1 

Image 
Original 

Size in KBs 
New Size 

in KBS 
Compression Ratio Cr 

New Size 
in KBS 

Compression 
 Rate (Cr) 

Baboon 225 94 2.394 104 2.163 

Barbara 230 121 1.901 204 1.127 

Boats 239 113 2.115 174 1.374 

Boats 368 148 2.486 276 1.333 

Camera Man  60 26 2.308 40 1.500 

Camera Man  56 23 2.435 43 1.302 

House  59 21 2.810 36 1.639 

Lena  59 27 2.185 49 1.204 

Lena  226 91 2.484 194 1.165 

The Proposed Lossless CSC Algorithm Results Huffman Results 

Image Set 2 Image Set 2 

Image 
Original 

Size in KBs 
New Size 

in KBS 
Compression Ratio Cr 

New Size 
in KBS 

Compression 
 Rate (Cr) 

Lena  290 118 2.458 234 1.239 

Lena  129 46 2.804 104 1.240 

Lena  135 48 2.813 110 1.227 

Airplane  751 249 3.016 459 1.636 

Baboon  599 359 1.669 426 1.406 

Barbara  1064 397 2.680 955 1.114 

Boats  1148 373 3.078 898 1.278 

Goldhill  1031 378 2.728 933 1.105 

Pepper 651 346 1.882 526 1.238 

The Proposed Lossless CSC Algorithm Results Huffman Results 

Image Set 3 Image Set 3 

Image 
Original 

Size in KBs 
New Size 

in KBS 
Compression Ratio Cr 

New Size 
in KBS 

Compression 
 Rate (Cr) 

Medic 32 12 2.667 32 1.000 

Medic1 24 11 2.182 22 1.091 

Butterfly 20 13 1.538 19 1.053 

Mountain 28 11 2.545 26 1.077 

swarm 25 11 2.273 24 1.042 

Lake_jpg 25 12 2.083 24 1.042 

Saturn_jpg 19 9 2.111 17 1.118 

Earth_jpg 78 43 1.814 75 1.040 

boat_jpg 25 10 2.500 24 1.042 

Waterfall 26 13 2.000 25 1.040 

Eagle 17 8 2.125 14 1.214 

Grand_Sone 28 12 2.333 27 1.037 

Car 28 10 2.800 21 1.333 

Shape 31 15 2.067 25 1.240 

The Proposed Lossless CSC Algorithm Results Huffman Results 

Image Set 4 Image Set 4 
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Image 
Original 

Size in KBs 
New Size 

in KBS 
Compression Ratio Cr 

New Size 
in KBS 

Compression 
 Rate (Cr) 

Knob & Bolt 1155 320 3.609 544 2.123 

Houses 1149 395 2.909 878 1.309 

Landscape 1153 396 2.912 844 1.366 

Light House 1150 311 3.698 754 1.525 

Barn 1149 355 3.237 809 1.420 

Parrots 1153 297 3.882 829 1.391 

Flowers & Sill 1154 282 4.092 773 1.493 

Six-Shooter 1152 270 4.267 632 1.823 

Motocross 1150 376 3.059 851 1.351 

Zentime 1155 307 3.762 749 1.542 

The Proposed Lossless CSC Algorithm Results Huffman Results 

Image Set 5 Image Set 5 

Image 
Original 

Size in KBs 
New Size 

in KBS 
Compression Ratio Cr 

New Size 
in KBS 

Compression 
 Rate (Cr) 

Map 1 761 149 5.107 119 6.395 

Map 2 821 136 6.037 115 7.139 

Map 3 801 141 5.681 118 6.788 

Map 4 838 120 6.983 110 7.618 

Map 5 800 151 5.298 123 6.504 

Map 6 826 147 5.619 118 7.000 

Map 7 838 133 6.301 112 7.482 

Map 8 814 154 5.286 119 6.840 

Map 9 769 158 4.867 121 6.355 

Map 10 768 149 5.154 117 6.564 

 

As listed in Table 4.11, the proposed CSC algorithm decreases the image size more than the 

Huffman algorithm for all of the image sets except image set five. In the first, second, third and 

fourth image sets, the CSC algorithm results decrease the storage saving percentage more than 

the Huffman algorithm by saving 29.8%, 38.85%, 45.55% and 37.79% respectively. By 

observing the results for the fifth image sets, we conclude that the Huffman algorithm saved 

3.35% more than the proposed algorithm, since the raster map image has low resolution and 

less unique values to represent the image. 

By averaging the five-test image storage saving results for both algorithms, the CSC algorithm 

saved 29.72% more than the Huffman algorithm.   
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Table 4. 11 - The Average Lossless Approach Compression Size with Huffman Average Compression 

Size 

 

Figure 4.8 describes the average storage saving to the proposed CSC algorithm and Huffman 

algorithm for each of the five image sets. For better results understanding, we displayed the 

algorithm results in bar-charts, where each column represents the image set and the value for 

the bits-saving percentage. The proposed lossless algorithm has a better compression ratio. 

 

 

Figure 4. 8 - The Average Compression Size for the CSC and Huffman algorithm 
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4.6.1.2 Comparison Between the CSC Algorithm and Huffman in Terms of Image Quality 

Since both the proposed CSC algorithm and Huffman algorithm are lossless techniques, the 

two algorithm results should have zero distortion after decompressing the tested image.  

4.6.1.3 Comparison Between the CSC and Huffman in Terms of Execution Time 

Table 4.12 lists the execution time (compression and decompression time) for the proposed 

algorithm and the execution time for the Huffman algorithm, for all the five image sets. 

Table 4. 12 - The Lossless CSC Algorithm Execution Time with Huffman Execution Time 

CSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 1 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.303 0.003 0.306 0.4 

2 0.313 0.007 0.32 0.8 

3 0.254 0.11 0.364 0.06 

4 0.32 0.012 0.332 0.4 

5 0.28 0.003 0.283 0.4 

6 0.25 0.003 0.253 0.4 

7 0.225 0.002 0.227 0.4 

8 0.257 0.002 0.259 0.6 

9  0.519 0.007 0.526 0.6 

CSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 2 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.22 0.01 0.23 0.2 

2 0.12 0.009 0.129 0.3 

3 0.15 0.009 0.159 0.06 

4 0.46 0.02 0.48 0.8 

5 0.5 0.02 0.52 0.55 

6 0.64 0.03 0.67 1.6 

7 0.55 0.03 0.58 1.6 

8 0.54 0.03 0.57 1.8 

9 0.56 0.02 0.58 1.8 

CSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 3 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.06 0.0003 0.0603 0.12 

2 0.08 0.0005 0.0805 0.12 

3 0.08 0.0005 0.0805 0.1 

4 0.04 0.005 0.045 0.08 
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5 0.07 0.0004 0.0704 0.08 

6 0.04 0.0004 0.0404 0.06 

7 0.04 0.0006 0.0406 0.06 

8 0.04 0.002 0.042 0.34 

9 0.04 0.0006 0.0406 0.06 

10 0.04 0.0006 0.0406 0.06 

11 0.04 0.0007 0.0407 0.06 

12 0.04 0.0005 0.0405 0.02 

13 0.04 0.006 0.046 0.06 

14 0.04 0.0004 0.0404 0.15 

CSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 4 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.35 0.01 0.36 2.34 

2 0.34 0.01 0.35 2.3 

3 0.38 0.01 0.39 2.2 

4 0.35 0.01 0.36 2.2 

5 0.41 0.01 0.42 2.2 

6 0.34 0.01 0.35 2.2 

7 0.3 0.01 0.31 2.1 

8 0.36 0.01 0.37 2.1 

9 0.42 0.01 0.43 2.2 

10 0.34 0.01 0.35 2.1 

CSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 5 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.12 0.01 0.13 0.14 

2 0.2 0.02 0.22 0.16 

3 0.13 0.018 0.148 0.16 

4 0.1 0.018 0.118 0.15 

5 0.14 0.01 0.15 0.2 

6 0.09 0.01 0.1 0.15 

7 0.1 0.01 0.11 0.16 

8 0.15 0.01 0.16 0.16 

9 0.12 0.01 0.13 0.16 

10 0.14 0.01 0.15 0.15 

 

Table 4.13 lists the average total time for compression and decompression for both algorithms 

for each test image. 
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Table 4. 13 - The Average Execution Time for Both Algorithms in Seconds 

 

Figure 4.9 shows the total execution time needed for compression and decompression for each 

of the image sets for the two algorithms. The Figure shows that the CSC algorithm has better 

execution time for all image sets. Due to the CSC algorithm’s simplicity of implementation 

and execution speed. 

 

Figure 4. 9 - The Average Execution Time for Both Algorithms 
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comparison with the most recent state of the art algorithms is needed for a better evaluation for 

the proposed algorithm results.  

4.6.2.1 First Comparison for Natural Images Compression Size  

Table 4.14 shows the compression sizes in KBs and the compression ratios Cr, for the basic 

BWCA, KMTF based BWCA, JPEG 2000 LS, RCT-BWCA algorithm obtained from (Khan 

et al., 2017) and the proposed CSC algorithm results.  

Table 4. 14 - The Proposed Algorithm Results Compared with Other Four Algorithm Results 

Image 
BWCA KMTF - BWCA JPEG-2000 LS RCT - BWCA CSC 

Size Cr Size Cr Size Cr Size Cr Size Cr 

Knob & Bolt 765 1.510 750 1.540 487 2.370 381 3.020 320 3.609 

Houses 1008 1.140 981 1.170 578 1.990 463 2.490 395 2.909 

Landscape 1020 1.130 965 1.190 612 1.880 352 3.270 396 2.912 

Light House 827 1.390 783 1.470 509 2.260 480 2.400 311 3.698 

Barn 891 1.290 839 1.370 525 2.190 358 3.220 355 3.237 

Parrots 791 1.460 739 1.560 447 2.580 346 3.330 297 3.882 

Flowers & Sill 780 1.480 743 1.550 457 2.520 350 3.290 282 4.092 

Six-Shooter 591 1.950 560 2.060 433 2.660 332 3.470 270 4.267 

Motocross 991 1.160 947 1.220 574 2.010 244 4.720 376 3.059 

Zentime 837 1.380 800 1.440 494 2.330 297 3.880 307 3.762 

AVERAGE 850 1.39 811 1.46 512 2.28 360 3.31 331 3.54 

 

As described in Figure 4.10, the proposed CSC algorithm achieved the best compression ratio. 

The CSC has 0.23 better compression ratio than the RCT – BWCA and 1.26 more than the 

JPEG 2000 LS Cr and 2.08 more than the KMTF – BWCA and 2.15 more than the basic BWCA 

Cr. The CSC algorithm reach the best compression ratio due to the use of the Column 

Subtraction Compression function, this function provides better compression ratio with high 

resolution images more than the low-resolution images, since the intensity values in the high-

resolution image are very close and those images are represented with large number of colours.  
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Figure 4. 10 - Compression Ratio for the Five Algorithm 

4.6.2.2 Second Comparison for Natural Images Compression Size  

Table 4.15 lists the images compression size in KBs for the proposed CSC algorithm and the 

lossless benchmark compression schemes for Kodak colour images obtained from (Khan et al., 

2017). 

Table 4. 15 - Comparison Between the CSC and various benchmark systems in Term of Compressed 
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12 FILE OPTIMIZER 409  432 721 665 559 502 401 447 618 518 5272 

13 HEVC (x265) 403  493 343 487 397 538 326 418 462 353 4220 

14 LZ4X 370  420 412 373 402 537 465 456 444 429 4308 

15 MRP 497  760 550 511 513 791 534 474 628 409 5667 

16 NANOZIP 475  556 472 519 446 543 490 431 551 715 5198 

17 PAQ8PXD_V4 450  490 598 607 489 655 733 596 372 569 5559 

18 UPACK 0.25 661  710 379 675 503 529 371 572 587 568 5555 

19 WINRK 3.1.2 598  515 398 783 674 457 374 611 456 593 5459 

20 ZCM 0.92 495  631 772 542 408 714 565 597 416 450 5590 

 

As displayed in Figure 4.11, the best compression came with the proposed CSC algorithm with 

a total size of 3310 KBs and a Cr with 3.54. The second-best algorithm is the BBWCA followed 

by the HEVC. The CSC decrease the image size with 243 KBs more than the BBWCA and 910 

KBs more than the HEVC. 

 

Figure 4. 11 - Total Compression Size for the Kodak Image Set 
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The use of lossless image technique is important to achieve high quality image at 

decompression phase. The proposed CSC algorithm reaches the best compression ratio with 

the high-resolution images, and less compression ratio with low resolution image.  

The proposed CSC was tested, and the results were compared with another raster map 

benchmark scheme. The comparison is done with the JPEG-LS, PNG, GIF, Bi-level Burrows 

BBWCA and BLiSE algorithm. Table 4.16 lists the compression size in KBs and the 

compression ratio for the previous algorithms and the CSC algorithm for 10 raster map images 

obtained from https://sites.google.com/site/qinzoucn/documents/. 

Table 4. 16 - The CSC Results Compared with Other Four Algorithm Results 

Image 
JPEG-LS PNG GIF BLiSE BBWCA CSC 

Size Cr Size Cr Size Cr Size Cr Size Cr Size Cr 

Map 1 235.32 3.23 29.79 25.55 20.92 36.38 12.28 61.98 11.72 64.94 149 5.11 

Map 2 188.88 4.35 28.00 29.32 17.57 46.73 10.04 81.78 10.40 78.95 136 6.04 

Map 3 185.36 4.32 27.15 29.50 18.39 43.55 10.94 73.21 11.22 71.38 141 5.68 

Map 4 88.82 9.43 11.08 75.62 8.38 99.98 3.72 225.22 3.57 234.68 120 6.98 

Map 5 238.76 3.35 34.67 23.08 22.86 35.01 16.35 48.95 16.15 49.55 151 5.30 

Map 6 228.04 3.62 30.23 27.32 17.90 46.14 11.08 74.54 12.76 64.73 147 5.62 

Map 7 157.13 5.33 23.59 35.52 14.21 58.96 7.37 113.69 10.41 80.49 133 6.30 

Map 8 254.97 3.19 36.58 22.25 23.61 34.47 18.10 44.96 15.36 52.98 154 5.29 

Map 9 265.47 2.90 41.62 18.49 25.14 30.61 19.43 39.60 17.22 44.68 158 4.87 

Map 10 215.75 3.56 34.38 22.33 22.29 34.44 14.56 52.72 14.45 53.12 149 5.15 

Average 2058.5 4.32 297.09 30.89 191.3 46.62 123.9 81.66 123.3 79.55 143.8 5.63 

 

As displayed in Figure 4.12, BLiSE outperforms all other algorithms, since the BLiSE 

algorithm is designed for raster maps compression and the other algorithms are designed for 

general images type compression. The CSC algorithm results is better than the JPEG-LS and 

less than the other algorithms. 

 

https://sites.google.com/site/qinzoucn/documents/
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Figure 4. 12 - Average Compression Ratio for the Raster Map Image Set 

4.6.3 Comparison Between the CSC Execution Time and Other State of the Art 

Algorithms. 

For the best results evaluation, the CSC algorithm was tested on the same environments as 

(Khan et al., 2017) by using the software and hardware listed in Table 4.17 and compared with 

the BWCA, KMTF-BWCA and RCT_BWCA obtained from (Khan et al., 2017). 

Table 4. 17 - System Requirements 

Hardware Software 

Intel Core 2 Quad CPU @ 2.4 

GHz 

Windows XP OS 

2 GB RAM MATLAB 

1 GB Virtual Memory  

Table 4.18 presents the compression needed time (CT) and the de compression needed time 

(DCT) for the BWCA, KMTF – BWCA, and RCT – BWCA obtained from (Khan et al., 2017). 

Table 4. 18 - Execution Time in Seconds for the Kodak Image Set for Different Algorithms 

Image 
BWCA KMTF - BWCA RCT - BWCA CSC Win Xp CSC Win 10 

CT DCT CT DCT CT DCT CT DCT CT DCT 
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Houses 16.32 21.32 17.07 24.82 19.77 27.8 1.79 0.1 0.34 0.01 

Landscape 17.37 22.77 18.12 25.55 18.18 28.66 1.99 0.1 0.38 0.01 

Light House 19.17 21.46 19.92 22.63 19.48 28.95 1.85 0.1 0.35 0.01 
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Barn 16.91 21.97 17.66 22.19 19.6 22.87 2.21 0.1 0.41 0.01 

Parrots 16.78 22.9 17.53 25.98 19.95 29.23 1.69 0.1 0.34 0.01 

Flowers & Sill 17.58 22.46 18.33 25.95 18.41 30.6 1.48 0.1 0.3 0.01 

Six-Shooter 18.82 21.17 19.57 24.4 20.98 27.46 2.07 0.1 0.36 0.01 

Motocross 16.07 23.85 16.82 28.09 19.14 30.5 2.03 0.1 0.42 0.01 

Zentime 18.02 23.34 18.77 23.24 19.49 28.55 1.82 0.1 0.34 0.01 

Sum  173.5 225 181 248.24 192.7 282.68 18.36 1 3.59 .01 

Total 398.5 429.24 475.38 19.36 3.69 

The CSC algorithm achieved the best execution time by having 19.36s for compression and 

decompression together and save 379.14s more than the BWCA algorithm.  

By running the CSC algorithm using win 10 operating system 64-bit with Intel core i7-7500U 

CPU @2.70GHz with 8 GB RAM the execution time is dramatically decreased to 3.69s. Figure 

4.13 display the total execution time for the four algorithms in seconds. 

 

Figure 4. 13 - Total Execution Time for the Kodak Image Set 

 

4.7 Chapter Summary    

The aim of this chapter was to develop a lossless image compression algorithm, which 

enhances the current state of the art compression ratio, with zero distortion and acceptable 

execution time. 

Many different lossless compression algorithms where created by different researchers, and all 

of them restored the image exactly as it was before compression. Some of the lossless 

approaches have high compression rates with slow performance, such as LZW, while in other 
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approaches, a high-performance speed with a lower compression ratio is achieved, such as the 

Huffman algorithm. 

To reach the optimal solution between compression time and saving bits, the CSC algorithm 

where proposed. 

By taking the best features from the fastest algorithm and the best features from the highest 

compression rate algorithms, and at the same time, by avoiding using any slow function or 

irreversible function, we created a novel lossless algorithm that enhanced the compression ratio 

more than the state of the art algorithm from the literature review, with an acceptable executing 

time and zero percentage of distortion. 

• The proposed CSC algorithm is designed to work with any image format and resolution.  

• The algorithm achieved the best compression ratio for natural images. 

• The CSC algorithm achieved the best computational time due to its simplicity of 

implementation and speed of execution. 

The only disadvantage of the CSC algorithm is when applying the algorithm on raster map 

images, the compression ratio is not the best, since the CSC algorithm gives better results for 

the high-resolution images. 

To solve this issue, the researcher proposed a new algorithm that enhanced the compression 

ratio for the low-resolution images. The next chapter describe the solution in detail. 
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CHAPTER FIVE: THE PROPOSED LOSSLESS ALGORITHM FOR 

RASTER MAP IMAGES COMPRESSION 

5 Chapter Overview 

This chapter describes in detail the proposed lossless Low-Resolution Column Subtraction 

Compression algorithm (LRCSC). It starts with a detailed explanation of all the procedures 

used in the proposed algorithm, followed by the validation of the algorithm by testing its 

results, and a comparison of the newly developed algorithm with state-of-the-art algorithms.  

5.1 Introducing the LRCSC Compression Algorithm 

The lossless LRCSC algorithm is designed to work with any application and supports all image 

formats whether the input image is of a high resolution or low-resolution. The CSC algorithm 

provided the best compression ratio with the high-resolution images such as natural images and 

less compression ratio when compressing low resolution images such as raster map images, to 

solve this issue, the researcher designed an updated algorithm for the CSC algorithm, called 

the Low-Resolution Column Subtraction Compression algorithm (LRCSC).  

Once the raster map image is compressed by using the CSC algorithm, the resulted three 

matrices should be represented with a smaller number of unique values with large areas of 

contiguous colour; where the value is repeated often (Runs). 

By using the Huffman algorithm as a post-processing phase for the CSC algorithm we should 

represent the image unique values with a smaller weight for enhancing the current compression 

ratio. 

Then the RLE compression algorithm should take place for enhancing the compression ratio 

even more by encoding the runs using their probabilities and values (value; probability). 

By combining the CSC algorithm with the Huffman coding and RLE coding algorithms we 

enhanced the current compression ratio. 

The proposed LRCSC algorithm uses the following reversible procedures: 

Let RMI be a coloured image referred  to a Raster Map Image represented with three colour 

matrices (R, G and B).The three matrices have the same resolution of mxn where m and n 

represents the matrix dimensions (Row (m), Columns (n)) and (i,j) refers to the elements 

coordinates. Dg refers to the transformed green matrix, Db refers to the transformed blue matrix 

and TI referred to the Transformed Image.  

3. Procedure transformation is to map the input natural image NI(R,G,B) from the RGB colour 

space into RDgDb colour space. The transformation procedure output is an image with three 
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less coloration matrices, it maps the pixel values into new space that includes smaller values 

TI(R,Dg,Db). The transformed matrices have the same dimensions of the input matrices (m x 

n). Dg refers to the transformed green matrix, Db refers to the transformed blue matrix and TI 

referred to the Transformed Image. 

1. Procedure CCS Compression is to decrease the size of the transformed image TI(R,Dg,Db) 

by using the column subtraction compression. where CRR refers to the compressed red 

channel, CRG refers to the compressed green channel and CRB refers to the compressed blue 

channel. The compression procedure output is the compressed image CI(CRR, CRG, CRB). 

2. Procedure Negative Huffman: is to decrease the number of unique values that represent the 

image to enhance the compression ratio for the next phase (Huffman coding). It starts by 

creating a temporary dictionary file that saves the addresses for the negative values for the three 

matrices from the previous phase (CRR, CRG, CRB) and multiply all of the negative values 

by (-1). Followed by applying the Huffman algorithm for the positive three matrices 

(Image_R1, Image_G1, Image_B1). Finally, restoring the negative values by using the 

temporary dictionary file. The output of this procedure is three matrices (Image_R3, 

Image_G3, Image_B3). 

 

3. Procedure RLE: starts by applying the RLE algorithm on the three matrices from the previous 

phase (Image_R3, Image_G3, Image_B3). The output of this procedure is three matrices 

(Image_R4, Image_G4, Image_B4). 

Algorithm 3 illustrates the raster map image compression procedures. 

 

Algorithm3: LRCSC For Raster Map Images Compression 

1: Procedure Transformation 

2:  input RMI: Raster Map Image RMI(R,G,B) 

3: m  = total rows number;  n  = total columns number;  

4: // Dg, Db are (m X n) matrices of natural number;      

5: //  Dg matrix is resulted by subtracting the G matrix from the R matrix  using the following 

formula 
Dg(row, column)  = R(row, column)  – G(row, column)    

6: //  Db matrix is resulted by subtracting the G matrix from the B matrix using the following 

formula 
 Db(row, column)  = B(row, column)  - G(row, column)     

7: output: transformed image TI(R,Dg,Db) 

8: End Procedure Transformation 

1: Procedure Compression 

2:  input TI: transformed image TI(R,Dg,Db) 

3: //CRR, CRG, CRB; are matrices of natural number 

4: // CRR matrix is resulted by the following nested for loop 
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5: from the first column to the last column - 1   

6:     for all rows in the column do       

7:        CRR (row, column)   =  R(row, column) - R(row, column+1); 

8:   end 

9: end 

10: // CRG matrix is resulted by the following nested for loop 

11:  from the first column to the last column - 1 

12:  for all rows in the column do       

13:     CRG (row, column)   =  Dg(row, column) - Dg(row, column+1); 

14:     end 

15: end 

16: // CRB matrix is resulted by the following nested for loop 

17: from the first column to the last column - 1 

18:     for all rows in the column do       

19:       CRB (row, column)   =  Db(row, column) - Db(row, column +1); 

20:    end 

21: end 

22: output: compressed image CI(CRR, CRG, CRB) 

23: End Procedure Compression 

1: Procedure Negative Huffman 

2:     input CI: compressed image CI(CRR, CRG, CRB) 

3: //  convert the values of the CRR,CRG,CRB matrices to positive integer values  

4:  if (CRR (row, column) < 0)   

5:   Image_R1 (row, column)  = CRR(row, column) * -1 

6:  Dictionary_R (row, column) = 1 

7: else 

8:  Dictionary_R (row, column) = 0 

9: endif      

10: if (CRG (row, column) < 0)   

11:   Image _G1(row, column)      = CRG row, column) * -1   

12:   Dictionary_G (row, column) = 1 

13: else 

14:  Dictionary_G (row, column) = 0 

15: endif 

16:  if (CRB (row, column) < 0)   

17:  Image_B1 (row, column)      = CRB (row, column) * -1 

18:  Dictionary_B (row, column) = 1 

19: else 

20:  Dictionary_B (row, column) = 0 

21: endif 

22:// Huffman Coding 

23:   Image_R2 (row, column) = Huffman (Image_R1 (row, column)) 

24:   Image_G2 (row, column) = Huffman (Image_G1 (row, column)) 

25:   Image_B2 (row, column) = Huffman (Image_B1 (row, column)) 

26: //  Restore the negative values 

27:  if  (Dictionary_R(row, column) =1)   

28:  Image_R3 (row, column)  = Image_R2 (row, column) * -1 

29: endif 
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30: if  (Dictionary_G (row, column) = 1)  

31:   Image_G3 (row, column)  = Image_G2 (row, column) * -1 

32: endif 

33:  if (Dictionary_B (row, column) = 1)   

34:  Image_B3 (row, column)  = Image_B2 (row, column) * -1 

35: endif 

36:     output: compressed matrices Image_R3, Image_G3, Image_B3 

37:End Procedure Negative Huffman 

1: Procedure RLE 

2:  input Image_R3, Image_G3, Image_B3 

3:   Image_R4 = RLE(Image_R3) 

4:   Image_G4 = RLE(Image_G3) 

5  Image_B4 = RLE(Image_B3) 

6:  output: compressed matrices (Image_R4, Image_G4 and Image_B4) 

7: End Procedure RLE 

By implementing the LRCSC algorithm, we expect to decrease the image size and maintain 

the image quality as it was before compression in a very fast time. Figure 5.1 shows the LRCSC 

flowchart. The decompression algorithm used the following procedures for reconstructing the 

compressed image as follows. 

Algorithm4: LRCSC For Raster Map Images De-Compression 

1: Procedure RLE Decompression 

2: input compressed image matrices Image_R4, Image_G4, Image_B4 

3: Image_R3 = De_RLE(Image_R4) 

4: Image_G3 = De_RLE(Image_G4) 

5: Image_B3 = De_RLE(Image_B4) 

6: output: RLE De compressed matrices (Image_R3, Image_G3 and Image_B3) 

7: End Procedure RLE Decompression 

1: Procedure Negative Huffman  

2:input three matrices (Image_R3, Image_G3 and Image_B3)  

3: //  convert the values of the Image_R3, Image_G3 and Image_B3 matrices to positive  

integer values  

4:  if (Image_R3 (row, column) < 0)   

5:   Image_R2 (row, column)      = Image_R3 (row, column) * -1      

6:  Dictionary_R (row, column) = 1 

7: Else 

8:  Dictionary_R (row, column) = 0 

9: endif 

10:  if (Image_G3 (row, column) < 0)   

11:   Image_G2 (row, column)      = Image_G3 (row, column) * -1      

12:  Dictionary_G (row, column) = 1 

13: Else 

14:  Dictionary_G (row, column) = 0 

15: endif 

16:  if (Image_B3 (row, column) < 0)   
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17:   Image_B2 (row, column)      = Image_B3 (row, column) * -1      

18:  Dictionary_B (row, column) = 1 

19: Else 

20:  Dictionary_B (row, column) = 0 

21: endif 

22 // Huffman Decoding 

23:   Image_R1 (row, column) = Huffman_Decoding (Image_R2 (row, column)) 

24:   Image_G1 (row, column) = Huffman_Decoding (Image_G2 (row, column)) 

25:   Image_B1 (row, column) = Huffman_Decoding (Image_B2 (row, column)) 

26: //  Restore the negative values 

27:  if  (Dictionary_R (row, column) = 1)   

28:  CRR (row, column)  = Image_R2 (row, column) * -1  

29: endif 

30:  if  (Dictionary_G (row, column) = 1)   

31:  CRG (row, column)  = Image_G2 (row, column) * -1  

32: endif 

33:  if  (Dictionary_B (row, column) = 1)   

34:  CRB (row, column)  = Image_B2 (row, column) * -1  

35: endif 

36: output: CI(CRR, CRG, CRB) 

37: End Procedure Negative Huffman 

1: Procedure LRCSC Decompression 

2:    input compressed image CI(CRR, CRG, CRB) 

3: m  = total rows number;  n  = total columns number;  

4: // R,Dg,Db are (m X n) matrices of natural number;   

5: // R matrix is resulted by the following nested for loop  

6: from the last column to the first column + 1   

7:     for all rows in the column do       

8:        R (row, column-1)   =  CRR(row, column) + CRR(row, column-1); 

9:   end 

10: end 

11: // Dg matrix is resulted by the following nested for loop  

12: from the last column to the first column + 1   

13:     for all rows in the column do       

14:        Dg (row, column-1)   =  CRG(row, column) + CRG(row, column-1); 

15:   end 

16: end 

17: // Db matrix is resulted by the following nested for loop  

18: from the last column to the first column + 1  

19:     for all rows in the column do       

20:        Db (row, column-1)   =  CRB(row, column) + CRB(row, column-1); 

21:   end 

22: end 

23:   output: transformed image TI(R,Dg,Db) 

24: End Procedure LRCSC Decompression  

1: Procedure Revers Transformation 

2 input R,Dg,Db; matrices of natural number 

3: //  R,G,B are (m X n) matrices of natural number  

4: //    G matrix is resulted by subtracting the Dg matrix from the R matrix   
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5: G(row, column)  = R(row, column)  – DG(row, column)  

6: // B matrix is resulted by adding the G matrix values to the Db matrix values 

7: B(row, column)  = G(row, column)  + DB(row, column)  

8: output: reconstructed image RMI (R,G,B) 

9: End Procedure Revers Transformation 

5.2 The LRCSC Flowchart  
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Figure 5. 1 - LRCSC Lossless Algorithm Flowchart 
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5.3 Description of the LRCSC Algorithm  

The algorithm starts with loading the source image to identify the matrix dimension and the 

input image bit-depth, followed by a procedure to specify the suitable  compression steps that 

meet the input image; if the image bit-depth is equal to eight then the image cannot be 

transformed, and will be sent to the subtraction function phase directly, and if the image bit-

depth is 24 then the image will be loaded to the transformation phase as a pre-processing to the 

column subtraction function. 

5.3.1 CSC Algorithm: 

The first phase of the LRCSC is using the CSC algorithm for the input image as a pre-

processing phase. This phase is responsible for colour transformation and decreasing the image 

size by using the column subtraction compression algorithm from the previous chapter. To 

illustrate how the algorithm work, we used, and example as shown in Figure 5.2 which describe 

the transformation for the three colours space by using sample example for 8x8 block obtained 

from a raster map image.  

Sample 8x8 for the Red Matrix (R) 

 

= 

R = Red Matrix R 

255 255 255 128 255 255 128 255 255 255 255 128 255 255 128 255 
255 255 255 255 128 128 128 128 255 255 255 255 128 128 128 128 
255 255 255 128 128 128 255 255 255 255 255 128 128 128 255 255 
255 128 128 128 128 255 128 255 255 128 128 128 128 255 128 255 
255 255 128 128 128 255 255 128 255 255 128 128 128 255 255 128 
255 255 128 128 255 255 255 128 255 255 128 128 255 255 255 128 
255 128 128 128 128 128 128 128 255 128 128 128 128 128 128 128 
255 128 128 255 255 255 128 128 255 128 128 255 255 255 128 128 

 

 

Sample 8x8 for the Green Matrix (G) 

 

➔ 

Dg = R - G 

255 255 255 128 255 255 128 255 0 0 0 0 0 0 0 0 
255 255 255 255 128 128 128 128 0 0 0 0 0 0 0 0 
255 255 255 128 128 128 255 255 0 0 0 0 0 0 0 0 
255 128 128 128 128 255 128 255 0 0 0 0 0 0 0 0 
255 255 128 128 128 255 255 128 0 0 0 0 0 0 0 0 
255 255 128 128 255 255 255 128 0 0 0 0 0 0 0 0 
255 128 128 128 128 128 128 128 0 0 0 0 0 0 0 0 
255 128 128 255 255 255 128 128 0 0 0 0 0 0 0 0 
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Sample 8x8 for the Blue Matrix (B) 

 

➔ 

Db = B - G 

 
255 255 255 0 255 255 0 255 0 0 0 -128 0 0 -128 0 

255 255 255 255 0 0 0 0 0 0 0 0 -128 -128 -128 -128 

255 255 255 0 0 0 255 255 0 0 0 -128 -128 -128 0 0 

255 0 0 0 0 255 0 255 0 -128 -128 -128 -128 0 -128 0 

255 255 0 0 0 255 255 0 0 0 -128 -128 -128 0 0 -128 

255 255 0 0 255 255 255 0 0 0 -128 -128 0 0 0 -128 

255 0 0 0 0 0 0 0 0 -128 -128 -128 -128 -128 -128 -128 

255 0 0 255 255 255 0 0 0 -128 -128 0 0 0 -128 -128 

Figure 5. 2 - Transformation Example 

Figure 5.3 describe the invers transformation for the three colours space by using the  

TI(R,Dg,Db) matrix from the transformed example for the three matrices. 

 

 

 

 

R Matrix  

= 

R Matrix  
255 255 255 128 255 255 128 255 255 255 255 128 255 255 128 255 
255 255 255 255 128 128 128 128 255 255 255 255 128 128 128 128 
255 255 255 128 128 128 255 255 255 255 255 128 128 128 255 255 
255 128 128 128 128 255 128 255 255 128 128 128 128 255 128 255 
255 255 128 128 128 255 255 128 255 255 128 128 128 255 255 128 
255 255 128 128 255 255 255 128 255 255 128 128 255 255 255 128 
255 128 128 128 128 128 128 128 255 128 128 128 128 128 128 128 
255 128 128 255 255 255 128 128 255 128 128 255 255 255 128 128 

 

Dg Matrix  G =  R - Dg 
0 0 0 0 0 0 0 0 

➔ 

255 255 255 128 255 255 128 255 
0 0 0 0 0 0 0 0 255 255 255 255 128 128 128 128 
0 0 0 0 0 0 0 0 255 255 255 128 128 128 255 255 
0 0 0 0 0 0 0 0 255 128 128 128 128 255 128 255 
0 0 0 0 0 0 0 0 255 255 128 128 128 255 255 128 
0 0 0 0 0 0 0 0 255 255 128 128 255 255 255 128 
0 0 0 0 0 0 0 0 255 128 128 128 128 128 128 128 
0 0 0 0 0 0 0 0 255 128 128 255 255 255 128 128 

 

Db Matrix 

➔ 

B = G + Db 
0 0 0 -128 0 0 -128 0 255 255 255 0 255 255 0 255 
0 0 0 0 -128 -128 -128 -128 255 255 255 255 0 0 0 0 
0 0 0 -128 -128 -128 0 0 255 255 255 0 0 0 255 255 
0 -128 -128 -128 -128 0 -128 0 255 0 0 0 0 255 0 255 
0 0 -128 -128 -128 0 0 -128 255 255 0 0 0 255 255 0 
0 0 -128 -128 0 0 0 -128 255 255 0 0 255 255 255 0 
0 -128 -128 -128 -128 -128 -128 -128 255 0 0 0 0 0 0 0 
0 -128 -128 0 0 0 -128 -128 255 0 0 255 255 255 0 0 

Figure 5. 3 - Invers Transformation Example 
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Figure 5.4 describe the CSC results for the three transformed matrix TI(R,Dg,Db). 

 

Figure 5.5 describe the CSC decompression phase for the three compressed matrices 

CI(CRR,CRG,CRB) to restore the TI(R,Dg,Db).  

 

 

 

 

 

 

R Matrix 

= 

CRR Matrix  
255 255 255 128 255 255 128 255 0 0 127 -127 0 127 -127 255 

255 255 255 255 128 128 128 128 0 0 0 127 0 0 0 128 

255 255 255 128 128 128 255 255 0 0 127 0 0 -127 0 255 

255 128 128 128 128 255 128 255 127 0 0 0 -127 127 -127 255 

255 255 128 128 128 255 255 128 0 127 0 0 -127 0 127 128 

255 255 128 128 255 255 255 128 0 127 0 -127 0 0 127 128 

255 128 128 128 128 128 128 128 127 0 0 0 0 0 0 128 

255 128 128 255 255 255 128 128 127 0 -127 0 0 127 0 128 

 

Dg Matrix  CRG Matrix  
0 0 0 0 0 0 0 0 

➔ 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Db Matrix  CRB Matrix  
0 0 0 -128 0 0 -128 0 

➔ 

0 0 128 -128 0 128 -128 0 

0 0 0 0 -128 -128 -128 -128 0 0 0 128 0 0 0 -128 

0 0 0 -128 -128 -128 0 0 0 0 128 0 0 -128 0 0 

0 -128 -128 -128 -128 0 -128 0 128 0 0 0 -128 128 -128 0 

0 0 -128 -128 -128 0 0 -128 0 128 0 0 -128 0 128 -128 

0 0 -128 -128 0 0 0 -128 0 128 0 -128 0 0 128 -128 

0 -128 -128 -128 -128 -128 -128 -128 128 0 0 0 0 0 0 -128 

0 -128 -128 0 0 0 -128 -128 128 0 -128 0 0 128 0 -128 

Figure 5. 4 - CSC Example 
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5.3.2 Negative Value Removing 

This phase is responsible for converting the resulted matrix from the CSC algorithm phase 

CI(CRR,CRG,CRB) into positive integer values matrices by using a temporary dictionary file 

to avoid any distortion during the recovery phase. As displayed in Figure 5.6 the dictionary file 

is a matrix of the same sample example dimension 8x8 and represent the positive values with 

zero’s and the negative values with one’s.  

 

CRR Temporary Dictionary File 
0 0 0 1 0 0 1 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 0 
0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

 

CRR Matrix  

= 

R Matrix 
0 0 127 -127 0 127 -127 255 255 255 255 128 255 255 128 255 
0 0 0 127 0 0 0 128 255 255 255 255 128 128 128 128 
0 0 127 0 0 -127 0 255 255 255 255 128 128 128 255 255 

127 0 0 0 -127 127 -127 255 255 128 128 128 128 255 128 255 
0 127 0 0 -127 0 127 128 255 255 128 128 128 255 255 128 
0 127 0 -127 0 0 127 128 255 255 128 128 255 255 255 128 

127 0 0 0 0 0 0 128 255 128 128 128 128 128 128 128 
127 0 -

127 
0 0 127 0 128 255 128 128 255 255 255 128 128 

 

CRG Matrix   Dg Matrix 
0 0 0 0 0 0 0 0 

➔ 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

CRB Matrix   Db Matrix 
0 0 128 -128 0 128 -128 0 

➔ 

0 0 0 -128 0 0 -128 0 

0 0 0 128 0 0 0 -128 0 0 0 0 -128 -128 -128 -128 

0 0 128 0 0 -128 0 0 0 0 0 -128 -128 -128 0 0 

128 0 0 0 -128 128 -128 0 0 -128 -128 -128 -128 0 -128 0 

0 128 0 0 -128 0 128 -128 0 0 -128 -128 -128 0 0 -128 

0 128 0 -128 0 0 128 -128 0 0 -128 -128 0 0 0 -128 

128 0 0 0 0 0 0 -128 0 -128 -128 -128 -128 -128 -128 -128 

128 0 -128 0 0 128 0 -128 0 -128 -128 0 0 0 -128 -128 

Figure 5. 5 - CSC Decompression Example 
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CRG Temporary Dictionary File 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

 

CRB Temporary Dictionary File 
0 0 0 1 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 1 0 
0 0 0 0 1 0 0 1 
0 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 1 

Figure 5. 6 - Negative Values Temporary Dictionary File 

Each of the negative value in (CRR, CRG and CRB) should be multiplied by (-1) to produce 

three positive values matrices (Image R1, Image G1 and Image B1) as displayed in Figure 5.7.  

CRR 

➔ 

Image R1 
0 0 127 -127 0 127 -127 255 0 0 127 127 0 127 127 255 
0 0 0 127 0 0 0 128 0 0 0 127 0 0 0 128 
0 0 127 0 0 -127 0 255 0 0 127 0 0 127 0 255 

127 0 0 0 -127 127 -127 255 127 0 0 0 127 127 127 255 
0 127 0 0 -127 0 127 128 0 127 0 0 127 0 127 128 
0 127 0 -127 0 0 127 128 0 127 0 127 0 0 127 128 

127 0 0 0 0 0 0 128 127 0 0 0 0 0 0 128 
127 0 -127 0 0 127 0 128 127 0 127 0 0 127 0 128 

 

CRG 

➔ 

Image G1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

CRB 

➔ 

Image B1 
0 0 128 -128 0 128 -128 0 0 0 128 128 0 128 128 0 
0 0 0 128 0 0 0 -128 0 0 0 128 0 0 0 128 
0 0 128 0 0 -128 0 0 0 0 128 0 0 128 0 0 

128 0 0 0 -128 128 -128 0 128 0 0 0 128 128 128 0 
0 128 0 0 -128 0 128 -128 0 128 0 0 128 0 128 128 
0 128 0 -128 0 0 128 -128 0 128 0 128 0 0 128 128 

128 0 0 0 0 0 0 -128 128 0 0 0 0 0 0 128 
128 0 -128 0 0 128 0 -128 128 0 128 0 0 128 0 128 

Figure 5. 7 - Positive Values Matrices 

The new three matrices are represented with a smaller number of unique values after 

eliminating the negative values and they are ready to be compressed by the Huffman algorithm. 
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5.3.3 Huffman Algorithm 

This phase is responsible for decreasing the intensities values that represents the image by 

applying Huffman algorithm on the positive matrixes. Huffman algorithm starts by measuring 

the frequency of occurrence for each symbol (giving for each intensity its weight), and then 

gives prefix codes to those symbols according to their probabilities (creates a frequency Table 

of the symbols). Shorter codes will be assigned to the more frequently occurring symbols while 

larger codes will be assigned to the less frequently occurring symbol c. Figure 5.8 displays the 

Huffman dictionary files for the three matrices. 

 

Image R1 

➔ 

Image R1 Dictionary File 
0 0 127 127 0 127 127 255 Unique Values frequency weight 
0 0 0 127 0 0 0 128 0 35 0 
0 0 127 0 0 127 0 255 127 21 1 

127 0 0 0 127 127 127 255 128 5 2 
0 127 0 0 127 0 127 128 255 3 3 
0 127 0 127 0 0 127 128  

127 0 0 0 0 0 0 128 
127 0 127 0 0 127 0 128 

 

Image G1 

➔ 

Image G1 Dictionary File 
0 0 0 0 0 0 0 0 Unique Values frequency weight 
0 0 0 0 0 0 0 0 0 64 0 
0 0 0 0 0 0 0 0    
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

 

Image B1 

➔ 

Image B1 Dictionary File 
0 0 128 128 0 128 128 0 Unique Values frequency weight 
0 0 0 128 0 0 0 128 0 38 0 
0 0 128 0 0 128 0 0 128 26 1 

128 0 0 0 128 128 128 0  
0 128 0 0 128 0 128 128 
0 128 0 128 0 0 128 128 

128 0 0 0 0 0 0 128 
128 0 128 0 0 128 0 128 

Figure 5. 8 - Huffman Dictionary Files 

The Huffman dictionary files are used to replace each of the three matrices values with their 

related weight to produce a new smaller size matrix (Image R2, Image G2 and Image B2) as 

displayed in Figure 5.9. 
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Image R1 

➔ 

Image R2 
0 0 127 127 0 127 127 255 0 0 1 1 0 1 1 3 
0 0 0 127 0 0 0 128 0 0 0 1 0 0 0 2 
0 0 127 0 0 127 0 255 0 0 1 0 0 1 0 3 

127 0 0 0 127 127 127 255 1 0 0 0 1 1 1 3 
0 127 0 0 127 0 127 128 0 1 0 0 1 0 1 2 
0 127 0 127 0 0 127 128 0 1 0 1 0 0 1 2 

127 0 0 0 0 0 0 128 1 0 0 0 0 0 0 2 
127 0 127 0 0 127 0 128 1 0 1 0 0 1 0 2 

 

Image G1 

➔ 

Image G2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Image B1 

➔ 

Image B2 
0 0 128 128 0 128 128 0 0 0 1 1 0 1 1 0 
0 0 0 128 0 0 0 128 0 0 0 1 0 0 0 1 
0 0 128 0 0 128 0 0 0 0 1 0 0 1 0 0 

128 0 0 0 128 128 128 0 1 0 0 0 1 1 1 0 
0 128 0 0 128 0 128 128 0 1 0 0 1 0 1 1 
0 128 0 128 0 0 128 128 0 1 0 1 0 0 1 1 

128 0 0 0 0 0 0 128 1 0 0 0 0 0 0 1 
128 0 128 0 0 128 0 128 1 0 1 0 0 1 0 1 

Figure 5. 9 - Huffman Results 

5.3.4 Negative Value Restoration 

After decreasing the number of unique values by using Huffman algorithm from the previous 

phase, the algorithm should restore the negative values by using the temporary dictionary files, 

to avoid any distortion. Figure 5.10 displays the resulted matrices (Image R3, Image G3 and 

Image B3). 

 

Image R2 

➔ 

Image R3 
0 0 1 1 0 1 1 3 0 0 1 -1 0 1 -1 3 
0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 2 
0 0 1 0 0 1 0 3 0 0 1 0 0 -1 0 3 
1 0 0 0 1 1 1 3 1 0 0 0 -1 1 -1 3 
0 1 0 0 1 0 1 2 0 1 0 0 -1 0 1 2 
0 1 0 1 0 0 1 2 0 1 0 -1 0 0 1 2 
1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 2 
1 0 1 0 0 1 0 2 1 0 -1 0 0 1 0 2 
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Image G2 

➔ 

Image G3 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Image B2 

➔ 

Image B3 
0 0 1 1 0 1 1 0 0 0 1 -1 0 1 -1 0 
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 -1 
0 0 1 0 0 1 0 0 0 0 1 0 0 -1 0 0 
1 0 0 0 1 1 1 0 1 0 0 0 -1 1 -1 0 
0 1 0 0 1 0 1 1 0 1 0 0 -1 0 1 -1 
0 1 0 1 0 0 1 1 0 1 0 -1 0 0 1 -1 
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 -1 
1 0 1 0 0 1 0 1 1 0 -1 0 0 1 0 -1 

Figure 5. 10 - Restoring the Negative Values 

For Huffman decompression, we need to create a temporary dictionary file for the negative 

values for the three matrices (Image R3, Image GR3 and Image B3) to convert the three 

matrices values into positive values. Figure 5.11 display the temporary dictionary files for the 

three matrices. 

 
CRR Temporary Dictionary File 

0 0 0 1 0 0 1 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 0 
0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

 

CRG Temporary Dictionary File 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

 

CRB Temporary Dictionary File 
0 0 0 1 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 1 0 
0 0 0 0 1 0 0 1 
0 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 1 

Figure 5. 11 - Negative Values Temporary Dictionary File 
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After creating the dictionary files, we can convert each of the negative value in (Image R3, 

Image GR3 and Image B3) by multiplying by (-1) to produce three positive values matrices 

(Image R1_P, Image G1_P and Image B1_P) as displayed in Figure 5.12.  

 
Image R3 

➔ 

Image R3_P 

0 0 1 -1 0 1 -1 3 0 0 1 1 0 1 1 3 
0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 2 
0 0 1 0 0 -1 0 3 0 0 1 0 0 1 0 3 
1 0 0 0 -1 1 -1 3 1 0 0 0 1 1 1 3 
0 1 0 0 -1 0 1 2 0 1 0 0 1 0 1 2 
0 1 0 -1 0 0 1 2 0 1 0 1 0 0 1 2 
1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 2 
1 0 -1 0 0 1 0 2 1 0 1 0 0 1 0 2 

 
Image G3 

➔ 

Image G3_P 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Image B3 

➔ 

Image B3_P 
0 0 1 -1 0 1 -1 0 0 0 1 1 0 1 1 0 
0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 1 
0 0 1 0 0 -1 0 0 0 0 1 0 0 1 0 0 
1 0 0 0 -1 1 -1 0 1 0 0 0 1 1 1 0 
0 1 0 0 -1 0 1 -1 0 1 0 0 1 0 1 1 
0 1 0 -1 0 0 1 -1 0 1 0 1 0 0 1 1 
1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 1 
1 0 -1 0 0 1 0 -1 1 0 1 0 0 1 0 1 

Figure 5. 12 - Positive Values matrices 

The three matrices are ready to be decoded by Huffman decompression phase, by using the 

Huffman dictionary files we can replace each weight by its original value for the three matrices 

as displayed in Figure 5.13. 

 
Image R3_P 

➔ 

Image R3_PHD 
0 0 1 1 0 1 1 3 0 0 127 127 0 127 127 255 
0 0 0 1 0 0 0 2 0 0 0 127 0 0 0 128 
0 0 1 0 0 1 0 3 0 0 127 0 0 127 0 255 
1 0 0 0 1 1 1 3 127 0 0 0 127 127 127 255 
0 1 0 0 1 0 1 2 0 1 0 0 127 0 127 128 
0 1 0 1 0 0 1 2 0 1 0 127 0 0 127 128 
1 0 0 0 0 0 0 2 127 0 0 0 0 0 0 128 
1 0 1 0 0 1 0 2 127 0 127 0 0 127 0 128 
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Image G3_P  Image G3_PHD 
0 0 0 0 0 0 0 0 

➔ 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Image B3_P  Image B3_PHD 
0 0 1 1 0 1 1 0 

➔ 

0 0 128 128 0 128 128 0 
0 0 0 1 0 0 0 1 0 0 0 128 0 0 0 128 
0 0 1 0 0 1 0 0 0 0 128 0 0 128 0 0 
1 0 0 0 1 1 1 0 128 0 0 0 128 128 128 0 
0 1 0 0 1 0 1 1 0 128 0 0 128 0 128 128 
0 1 0 1 0 0 1 1 0 128 0 128 0 0 128 128 
1 0 0 0 0 0 0 1 128 0 0 0 0 0 0 128 
1 0 1 0 0 1 0 1 128 0 128 0 0 128 0 128 

Figure 5. 13 - Huffman Decompression Results 

The final steep of Huffman decompression phase is to restore the negative values by using the 

temporary dictionary file for each matrix as displayed in Figure 5.14. 

.  

Image R3_PHD  CRR Matrix 
0 0 127 127 0 127 127 255 

➔ 

0 0 127 -127 0 127 -127 255 
0 0 0 127 0 0 0 128 0 0 0 127 0 0 0 128 
0 0 127 0 0 127 0 255 0 0 127 0 0 -127 0 255 

127 0 0 0 127 127 127 255 127 0 0 0 -127 127 -127 255 
0 1 0 0 127 0 127 128 0 1 0 0 -127 0 127 128 
0 1 0 127 0 0 127 128 0 1 0 -127 0 0 127 128 

127 0 0 0 0 0 0 128 127 0 0 0 0 0 0 128 
127 0 127 0 0 127 0 128 127 0 -127 0 0 127 0 128 

 
Image G3_PHD  CRG Matrix 

0 0 0 0 0 0 0 0 

➔ 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
Image B3_PHD  CRB Matrix 

0 0 128 128 0 128 128 0 

➔ 

0 0 128 -128 0 128 -128 0 
0 0 0 128 0 0 0 128 0 0 0 128 0 0 0 -128 
0 0 128 0 0 128 0 0 0 0 128 0 0 -128 0 0 

128 0 0 0 128 128 128 0 128 0 0 0 -128 128 -128 0 
0 128 0 0 128 0 128 128 0 128 0 0 -128 0 128 -128 
0 128 0 128 0 0 128 128 0 128 0 -128 0 0 128 -128 

128 0 0 0 0 0 0 128 128 0 0 0 0 0 0 -128 
128 0 128 0 0 128 0 128 128 0 -128 0 0 128 0 -128 

Figure 5. 14 - Huffman Positive Values matrices 
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5.3.5 RLE 

Since the resulted matrices from the previous phase are represented by less unique values, the 

RLE compression algorithm is applied to decrease the image size dramatically by scanning the 

image to find the runs (pixels with the same value); the runs should be encoded by their 

probabilities and values (value; probability) this value with its probability is called a unit. The 

best RLE results come with the images that have large areas of contiguous colour (where the 

value is repeated often) (Husseen, Mahmud and Mohammed, 2017). Figure 5.15 display the 

RLE results for the three matrices (Image R4, Image G4 and Image B4).  

Image R3 
0 0 1 -1 0 1 -1 3 
0 0 0 1 0 0 0 2 
0 0 1 0 0 -1 0 3 
1 0 0 0 -1 1 -1 3 
0 1 0 0 -1 0 1 2 
0 1 0 -1 0 0 1 2 
1 0 0 0 0 0 0 2 
1 0 -1 0 0 1 0 2 

 

Image R4 

3 1 2 2 4 2 2 1 1 1 4 2 1 3 1 5 2 3 1 1 1 1 3 1 1 2 1 2 2 1 1 2 4 

0 1 0 1 0 1 0 1 0 1 0 -1 1 0 -1 0 -1 0 1 0 -1 1 0 1 -1 0 -1 1 0 3 2 3 2 

 

 

 

 

 

 

 

 

Image B4 

3 1 2 2 4 2 2 1 1 1 4 2 1 3 1 5 2 3 1 1 1 1 3 1 1 2 1 2 3 1 2 4 

0 1 0 1 0 1 0 1 0 1 0 -1 1 0 -1 0 -1 
0 1 0 -1 1 0 1 -1 0 -1 1 0 -

1 

0 -1 

Figure 5. 15 - RLE Results 

 

 

 

 

Image G3 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Image 

G4 

64 

0 



121 
 

5.4 LRCSC Time Complexity  
A simplified time-complexity analysis for the LRCSC algorithm is elaborated based on Big-O 

notation. 

5.4.1 LRCSC algorithm Time Complexity Analyses 

The LRCSC algorithm starts by loading the input (R,G,B) image to identifies the matrix size 

n. Then the transformation is used to map the (R,G,B) image into new colour space (R,Dg,Db) 

by using the transformation equations as a second phase. followed by the Huffman encoding 

as the third compression phase and the RLE compression algorithm as a final phase. 

Table 5.1 lists the time complexity for each of the LRCSC algorithm phases by using the O 

notation. 

Table 5.1 - LRCSC Algorithm Complexity 

Line Description O 

1 Procedure Transformation - 

2 input RMI: Raster Map Image RMI(R,G,B) O(n2) 

3 M  = total rows number;  N  = total columns number; O(1) 

5 Dg(row, column)  = R(row, column)  – G(row, column) O(n2) 

6 Db(row, column)  = B(row, column)  - G(row, column) O(n2) 

1 Procedure Compression - 

2 input TI: transformed image TI(R,Dg,Db) O(n2) 

7 CRR (row, column)    = R(row, column     - R(row, column+1); O(n2) 

13 CRG (row, column)   =  Dg(row, column) - Dg(row, column+1); O(n2) 

19 CRB (row, column)   =  Db(row, column) - Db(row, column +1); O(n2) 

1 Procedure Negative Huffman  - 

2 input CI: compressed image CI(CRR, CRG, CRB) O(n2) 

5 Image_R1 (row, column)  = CRR(row, column) * -1 O(n2) 

6 Create the Dictionary_R O(n2) 

11 Image _G1(row, column)      = CRG row, column) * -1 O(n2) 

12 Create the Dictionary_G O(n2) 

17 Image_B1 (row, column)      = CRB (row, column) * -1  O(n2) 

18 Create the Dictionary_B O(n2) 

23 Image_R2 (row, column) = Huffman (Image_R1 (row, column)) O(nlogn) 

24 Image_G2 (row, column) = Huffman (Image_G1 (row, column)) O(nlogn) 

25 Image_B2 (row, column) = Huffman (Image_B1 (row, column)) O(nlogn) 
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28 Image_R3 (row, column)  = Image_R2 (row, column) * -1 O(n2) 

31 Image_G3 (row, column)  = Image_G2 (row, column) * -1 O(n2) 

34 Image_B3 (row, column)  = Image_B2 (row, column) * -1 O(n2) 

1 Procedure RLE - 

2 input Image_R3, Image_G3, Image_B3 O(n2) 

3 Image_R4 = RLE(Image_R3) O(n) 

4 Image_G4 = RLE(Image_G3) O(n) 

5 Image_B4 = RLE(Image_B3) O(n) 

1 Procedure RLE Decompression - 

2 input compressed image matrices Image_R4, Image_G4, Image_B4 O(n2) 

3 Image_R3 = De_RLE(Image_R4) O(n) 

4 Image_G3 = De_RLE(Image_G4) O(n) 

5 Image_B3 = De_RLE(Image_B4) O(n) 

1 Procedure Negative Huffman Decoding - 

2 input three matrices (Image_R3, Image_G3 and Image_B3) O(n2) 

5 Image_R2 (row, column)      = Image_R3 (row, column) * -1 O(n2) 

6 Create the Dictionary_R O(n2) 

11 Image_G2 (row, column)      = Image_G3 (row, column) * -1 O(n2) 

12 Create the Dictionary_G O(n2) 

17 Image_B2 (row, column)      = Image_B3 (row, column) * -1 O(n2) 

18 Create the Dictionary_B O(n2) 

23 Image_R1 (row, column) = Huffman_Decoding (Image_R2 (row, column)) O(nlogn) 

24 Image_G1 (row, column) = Huffman_Decoding (Image_G2 (row, column)) O(nlogn) 

25 Image_B1 (row, column) = Huffman_Decoding (Image_B2 (row, column)) O(nlogn) 

28 CRR (row, column)  = Image_R2 (row, column) * -1 O(n2) 

31 CRG (row, column)  = Image_G2 (row, column) * -1 O(n2) 

34 CRB (row, column)  = Image_B2 (row, column) * -1 O(n2) 

1 Procedure LRCSC Decompression - 

2 input compressed image CI(CRR, CRG, CRB) O(n2) 

3 M  = total rows number;  N  = total columns number; O(1) 

8 R (row, column-1)   =  CRR(row, column) + CRR(row, column-1) O(n2) 

14 Dg (row, column-1)   =  CRG(row, column) + CRG(row, column-1) O(n2) 
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20 Db (row, column-1)   =  CRB(row, column) + CRB(row, column-1) O(n2) 

1 Procedure Revers Transformation - 

2 input R,Dg,Db; matrices of natural number O(n2) 

5 G(row, column)  = R(row, column)  – DG(row, column) O(n2) 

7 B(row, column)  = G(row, column)  + DB(row, column) O(n2) 

 

The growth rate function in terms of time for the  LRCSC components is analysed as: 

5- The growth rate function of the transformation component is  

f(n) = 3O( n2) + O(1) Therefore, the overall rate of growth for this component is 

f(n) = O(n2) after removing the constants. 

6- The growth rate function of the LRCSC component is  

The second phase of the algorithm is to compress the R,Dg,Db image by using the CSC 

function. This phase is to apply the CSC function for each of the three matrices 

individually. For each colour space we used nested two loops. The outer loop runs n 

times and the inner loop runs n times for each iteration of the outer loop; this indicate 

that, this function will be running for n2  total times, thus the function is running O(n2) 

time for each colure and the complexity of this phase is  

f(n) = 4 O(n2)  Therefore, the overall rate of growth for this component is 

f(n) = O(n2) after removing the constants. 

7- The growth rate function of the Negative Huffman component is  

f(n) = 10 O(n2) + 3 O(n log n) Therefore, the overall rate of growth for this component is  

f(n) = O(n2) + O(n log n) after removing the constants. 

8- The growth rate function of the RLE component is 

 f(n) = 3O(n) + O(n2) Therefore, the overall rate of growth for this component is  

f(n) = O(n)+ O(n2)  after removing the constants. 

The decompression phase is to reconstruct the image by using four reversable procedures.  

1- The growth rate function of the RLE decompression component is 

f(n) = 3O(n)  + O(n2) Therefore, the overall rate of growth for this component is  

f(n) = O(n) + O(n2)   after removing the constants. 

9- The growth rate function of the Negative Huffman decoding component is 

f(n) = 10 O(n2) + 3 O(n log n) Therefore, the overall rate of growth for this component 

is  f(n) = O(n2) + O(n log n)  after removing the constants. 

 



124 
 

10- The growth rate of the LRCSC decompression component is 

f(n) = 4On2 + O(1) Therefore, the overall rate of growth for this component is 

f(n) = O(n2)  after removing the constants. 

11- The growth rate of the invers transformation component is 

f(n) = 3 O(n2) Therefore, the overall rate of growth for this component is 

f(n) =  O(n2) after removing the constants. 

After approximating the computation complexity for the individual components of the system, 

the overall complexity is calculated by summing up the overhead for the individual parts.  

f(n) = [O(n2)] +[O(n2)]+ [O(n2) + O(n log n)] +  [O(n)+ O(n2)] +   

          [O(n)+ O(n2)] + [O(n2) + O(n log n)] + [O(n2))] + [O(n2))]. 

f(n) = 2 O(n) + 8 O(n2) + 2 O(n log n)) 

Therefore, the overall complexity of the algorithm is: 

f(n) = O(n) + O(n2) + O(n log n)) after removing the constants. 

5.4.2 Proof 

Assume that g(n) = n, the time complexity of f (n) is O(n). To proof that f (n) in Equation 3.1 

is O(g(n)), we will apply the limit to find a constant c > 0.  

We have f(n) = O(n) + O(n2) + O(n log n)) and g(n) = n. That is 

 

lim
𝑛→∞

𝑓(𝑛)

g(𝑛)
 

lim
𝑛→∞

  𝑛 + 𝑛2 + 𝑛 log 𝑛

𝑛
 

 
lim

𝑛→∞
( 𝑛 +  log 𝑛) 

 

As the proof shows, there is a constant c > 0 that satisfy the limit in the proof theorem. Since 

n0 must be positive integer, we can say the f (n) in Equation 3.1 is O(n + log n), for n >=n. 

5.5 Validation and Testing 

After implementing the algorithm, the compression performance needed to be evaluated and 

then compare the proposed algorithm results with other state-of-the-art results regarding using 

the main three parameters that may affect any compression algorithm, namely: compression 

size, image quality and execution time. Using our testbed, we are going to evaluate the CSC 

algorithm based on: 

1- The compressed image size by calculating the compression ratio. 
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2- The image quality by calculating the (MSE and PSNR). 

3- The algorithm execution time by using the Tic-Toc matlab function. 

5.5.1 The LRCSC Algorithm Compression Size  

Table 5.2 lists the compression ratio Cr, Compression rate and the algorithm storage saving 

percentage resulting from applying the LRCSC algorithm on the five image sets. The 

compression algorithm should provide a compressed image size smaller than the original 

image. 

Table 5.2 - The Lossless LRCSC Algorithm Compression Size 

Image Set 1 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBS 
Compression 

Ratio (CR) 
Compression 

Rate  
Storage 

Saving % 

Baboon GIF 512*512 225 94 2.394 0.418 58.22 

Barbara PNG 512*512 230 154 1.494 0.670 33.04 

Boats PNG 512*512 239 148 1.615 0.619 38.08 

Boats BMP 720*576 368 201 1.831 0.546 45.38 

Camera Man  BMP 256*256 60 35 1.714 0.583 41.67 

Camera Man  GIF 256*256 56 32 1.750 0.571 42.86 

House  PNG 256*256 59 30 1.967 0.508 49.15 

Lena  PNG 256*256 59 32 1.844 0.542 45.76 

Lena  JPG 512*512 226 112 2.018 0.496 50.44 

Image Set 2 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBS 
Compression 

Ratio (CR) 
Compression 

Rate  
Storage 

Saving % 

Lena  PNG 330*330 290 159 1.824 0.548 45.17 

Lena  BMP 220*220 129 49 2.633 0.380 62.02 

Lena  JPG 225*225 135 51 2.647 0.378 62.22 

Airplane  BMP 512*512 751 354 2.121 0.471 52.86 

Baboon  BMP 500*480 599 451 1.328 0.753 24.71 

Barbara  BMP 720*576 1064 474 2.245 0.445 55.45 

Boats  BMP 787*576 1148 543 2.114 0.473 52.70 

Goldhill  BMP 720*576 1031 452 2.281 0.438 56.16 

Pepper BMP 512*512 651 451 1.443 0.693 30.72 

Image Set 3 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBS 
Compression 

Ratio (CR) 
Compression 

Rate  
Storage 

Saving % 

Medic JPG 168*90 32 10 3.200 0.313 68.75 

Medic1 JPG 160*90 24 9 2.667 0.375 62.50 

Butterfly JPG 128*85 20 16 1.250 0.800 20.00 

Mountain JPG 128*96 28 14 2.000 0.500 50.00 

swarm JPG 128*85 25 14 1.786 0.560 44.00 

Lake_jpg JPG 128*85 25 15 1.667 0.600 40.00 

Saturn_jpg JPG 128*100 19 11 1.727 0.579 42.11 

Earth_jpg JPG 225*225 78 46 1.696 0.590 41.03 

boat_jpg JPG 128*85 25 13 1.923 0.520 48.00 
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Waterfall JPG 128*96 26 16 1.625 0.615 38.46 

Eagle JPG 128*96 17 8 2.125 0.471 52.94 

Grand_Sone JPG 128*96 28 15 1.867 0.536 46.43 

Car JPG 128*85 28 11 2.545 0.393 60.71 

Shape JPG 128*95 31 19 1.632 0.613 38.71 

Image Set 4 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBS 
Compression 

Ratio (CR) 
Compression 

Rate  
Storage 

Saving % 

Knob & Bolt PNG 768*512 1155 455 2.536 0.394 60.606 

Houses PNG 768*512 1149 535 2.149 0.466 53.438 

Landscape PNG 768*512 1153 548 2.106 0.475 52.472 

Light House PNG 768*512 1150 469 2.450 0.408 59.217 

Barn PNG 768*512 1149 502 2.290 0.437 56.310 

Parrots PNG 768*512 1153 438 2.632 0.380 62.012 

Flowers & Sill PNG 768*512 1154 418 2.763 0.362 63.778 

Six-Shooter PNG 768*512 1152 337 3.416 0.293 70.747 

Motocross PNG 768*512 1150 519 2.216 0.451 54.870 

Zentime PNG 768*512 1155 440 2.627 0.381 61.905 

Image Set 5 

Image Format Resolution 
Original 

Size in KBs 
New Size 

in KBS 
Compression 

Ratio (CR) 
Compression 

Rate  
Storage 

Saving % 

Map 1 BMP 600*480 761 35 21.47 0.05 95.40 

Map 2 BMP 600*480 821 30 27.53 0.04 96.35 

Map 3 BMP 600*480 801 28 28.37 0.03 96.50 

Map 4 BMP 600*480 838 11 78.39 0.01 98.69 

Map 5 BMP 600*480 800 40 19.91 0.05 95.00 

Map 6 BMP 600*480 826 43 19.07 0.05 94.79 

Map 7 BMP 600*480 838 28 29.85 0.03 96.66 

Map 8 BMP 600*480 814 40 20.59 0.05 95.09 

Map 9 BMP 600*480 769 49 15.77 0.06 93.63 

Map 10 BMP 600*480 768 36 21.46 0.05 95.31 

 

As listed in Table 5.3, the LRCSC algorithm dramatically decreases the image size for all the 

image sets. In image sets 1 and 2, the average compression ratios were 1.847 and 2.071 

respectively, which indicates that the algorithm saved in terms of storage 44.95% from the first 

image set and 49.1% from the original size of the second image set. By observing the third 

image set results, the algorithm achieved the lowest compression ratio of 1.979, since this 

image set is already compressed by the JPEG algorithm; however, the algorithm decreases the 

JPEG images from the third image set as well, by saving 46.68% from the original image’s 

size. The Cr resulted from the fourth image set is 2.52 and saved 59.54% from the original 

image size. The best Cr came with compressing the fifth image set by having 28.245 Cr and 

saves 95.74% from the original image set size, since this algorithm as designed for low 

resolution images such as raster map images. 
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Table 5.3 - The Lossless LRCSC Algorithm Average Compression Size 

Image Sets 
Average Compression 

Ratio CR 

Average Compression 

Rate  

Average Storage 

Saving % 

Image Set 1 
1.847 0.550 44.956 

Image Set 2 
2.071 0.509 49.113 

Image Set 3 
1.979 0.533 46.688 

Image Set 4 
2.52 0.40 59.54 

Image Set 5 
28.245 0.043 95.744 

Average 7.33 0. 4 59.28 

 

Figure 5.16 shows the compression storage saving for the proposed lossless algorithm LRCSC. 

By observing the results for each of the image set, we conclude that the LRCSC algorithm 

decreases the image size by different percentages for different images types and different 

images resolution. The best results came with the fifth image set, since the LRCSC algorithm 

is designed for low resolution images. 

 

 

Figure 5. 16 - The LRCSC Algorithm Storage Saving 
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5.5.2 The LRCSC Algorithm Image Quality.  

For distortion assessment, we used the following two metrics: 

i. Mean Squared Error (MSE). 

ii. Peak Signal to Noise Ratio (PSNR). 

Table 5.4 lists the average MSE and PSNR for the five image sets after applying the LRCSC 

algorithm. 

Table 5.4 - Image Quality Average Results for the Lossless LRCSC Algorithm 

Image Sets Average (MSE) Average (PSNR) 

Image Set 1 0 Inf 

Image Set 2 0 Inf 

Image Set 3 0 Inf 

Image Set 4 0 Inf 

Image Set 5 0 Inf 

Average 0 --- 

 

After averaging the distortion value for the five image sets, the results prove that the proposed 

image compression algorithm is a lossless algorithm. Figure 5.17 shows that the MSE value is 

zero for all the decompressed images for the five image sets.  

 

Figure 5. 17 - The Average MSE Results for the Lossless LRCSC Algorithm 

 

 

Average (MSE)
0

0.2

0.4

0.6

0.8

1

Image Set
1

Image Set
2

Image Set
3

Image Set
4

Image Set
5

0 0 0 0 0

M
SE

IMAGE SETS

LRCCS Average (MSE)



129 
 

All the images from the five image sets have been perfectly restored after decompression with 

zero distortion, since the MSE value is zero for all the test images. Table 5.5 displayed two 

image samples from the five image sets. 

Table 5.5 - Sample Images for the Five Image Sets Before and After Compression by LRCSC 

Image Set 1 

Original Image Compressed Image Original Image Compressed Image 

Baboon (GIF) Boats (PNG) 

    

Image Set 2 

Original Image Compressed Image Original Image Compressed Image 

Baboon (BMP) Barbara (BMP) 

    

Image Set 3 

Original Image Compressed Image Original Image Compressed Image 

Medic (JPEG) Lake (JPEG) 

    

Image Set 4 

Original Image Compressed Image Original Image Compressed Image 

Light House (PING) Houses (PING) 
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Image Set 5 

Original Image Compressed Image Original Image Compressed Image 

Map 9 (BMP) Map 10 (BMP0 

    

 

5.5.3 The LRCSC Algorithm Execution Time.  

Image compression algorithm execution time can be calculated by measuring the compression 

speed and the decompression speed in seconds. Compression speed is the time needed for 

compressing the image while the decompression speed is the time needed for decompressing 

the image. Table 5.6 displays the needed execution time for each image from the five sets in 

seconds. 

Table 5.6 - The LRCSC Algorithm Compression Time in Seconds 

Image Set 1 

Image 
Compression 

Time 
Decompression 

Time 
Total Time 

Baboon 0.56 0.22 0.78 

Barbara 1.1 0.34 1.44 

Boats 1 0.35 1.35 

Boats 1 0.34 1.34 

Camera Man  0.29 0.08 0.37 

Camera Man  0.29 0.08 0.37 

House  0.24 0.07 0.31 

Lena  0.28 0.09 0.37 

Lena  0.74 0.34 1.08 

Image Set 2 

Image 
Compression 

Time 
Decompression 

Time 
Total Time 

Lena  0.8 0.27 1.07 

Lena  0.93 0.14 1.07 
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Lena  0.37 0.14 0.51 

Airplane  2.2 0.09 2.29 

Baboon  2.3 0.8 3.1 

Barbara  3.6 1.2 4.8 

Boats  2.8 0.9 3.7 

Goldhill  2.7 1.1 3.8 

Pepper 2.8 0.9 3.7 

Image Set 3 

Image 
Compression 

Time 
Decompression 

Time 
Total Time 

Medic 0.27 0.06 0.33 

Medic1 0.20 0.05 0.25 

Butterfly 0.27 0.03 0.30 

Mountain 0.23 0.04 0.27 

swarm 0.15 0.05 0.20 

Lake_jpg 0.18 0.04 0.22 

Saturn_jpg 0.22 0.04 0.26 

Earth_jpg 0.40 0.12 0.52 

boat_jpg 0.19 0.03 0.22 

Waterfall 0.19 0.04 0.23 

Eagle 0.22 0.06 0.28 

Grand_Sone 0.20 0.04 0.24 

Car 0.17 0.04 0.21 

Shape 0.27 0.07 0.34 

Image Set 4 

Image 
Compression 

Time 
Decompression 

Time 
Total Time 

Knob & Bolt 2.1 0.8 2.9 

Houses 2.6 1.2 3.8 

Landscape 2.7 1 3.7 

Light House 2.4 1.1 3.5 

Barn 2.6 1.1 3.7 

Parrots 2.2 1 3.2 

Flowers & Sill 2 0.8 2.8 

Six-Shooter 2.3 0.9 3.2 

Motocross 2.4 1.1 3.5 

Zentime 2.4 0.9 3.3 

Image Set 5 

Image 
Compression 

Time 
Decompression 

Time 
Total Time 

Map 1 0.45 0.27 0.72 

Map 2 0.4 0.22 0.62 

Map 3 0.66 0.44 1.1 

Map 4 0.44 0.22 0.66 
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Map 5 0.45 0.22 0.67 

Map 6 0.37 0.19 0.56 

Map 7 0.35 0.18 0.53 

Map 8 0.57 0.29 0.86 

Map 9 0.48 0.29 0.77 

Map 10 0.45 0.25 0.7 

  

One of the main parameters for measuring the compression algorithm performance is the 

computation time. Table 5.7 lists the total average resulted by calculating the average 

compression time and the average decompression time for the five image sets. 

The LRCSC algorithm needs on average 0.82 seconds to compress and decompress images in 

the first image set, while the second image set needs 2.67 seconds for both compression and 

decompression. The third image set has the best computation time with 0.28 seconds, because 

all  the images in the third image set are JPEG images (JPEG format represent images with 

small intensities values). The fourth image set execution time is 3.36 seconds and the fifth 

image sets needed 0.71 second. 

Table 5.7 - The LRCSC Algorithm Average Compression Time 

Image Sets 
Average 

 (Compression Time) 

Average 

  (De-Compression Time) 

Average 

(Total Time) 

Image Set 1 0.61 0.21 0.82 

Image Set 2 2.06 0.62 2.67 

Image Set 3 0.23 0.05 0.28 

Image Set 4 2.37 0.99 3.36 

Image Set 5 0.462 0.257 0.71 

Average 1.15 0.43 1.57 

 

Figure 5.18 represents the execution time for each image set. For a better understanding of the 

results, we display the algorithm’s results in bar-charts, where each column represents the value 

for the needed time for the image sets. 
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Figure 5. 18 - Compression and Decompression Time for the LRCSC Algorithm 

5.6 Evaluations, Results and Observations   

To describe the algorithm contribution, we investigated the results regarding the compression 

size, image quality and execution time. To reach the best conclusion from the investigations’ 

results, we need to compare our proposed lossless LRCSC algorithm results with the most 

common state of the art lossless algorithms and describe the analytical results to reach the best 

conclusion. 

5.6.1 Comparison Between the LRCSC Results and Huffman Algorithm Results. 

To compare the proposed LRCSC lossless algorithm results with Huffman algorithm results, 

we need to compare both algorithm results using the three main metrics (image size, image 

quality and execution time). 

5.6.1.1 Comparison Between the LRCSC Algorithm and Huffman Algorithm in Terms of 

Image Size 

Table 5.8 lists the compression rate and space saving for LRCSC and the Huffman algorithms. 

Table 5.8 - The Lossless LRCSC Compression Size and Huffman Compression Size 

The Proposed Lossless LRCSC Algorithm Results Huffman Results 

Image Set 1 Image Set 1 

Image 
Original 
Size in 

KBs 

New 
Size 

in KBs 
Cr Rate  

Storage 
Saving % 

New Size 
in KBs 

Cr 
Space 

Saving %  

1 225 94 2.394 0.418 58.22 104 2.163 53.78 

2 230 154 1.494 0.670 33.04 204 1.127 11.30 

3 239 148 1.615 0.619 38.08 174 1.374 27.20 

4 368 201 1.831 0.546 45.38 276 1.333 25.00 

5 60 35 1.714 0.583 41.67 40 1.5 33.33 

6 56 32 1.750 0.571 42.86 43 1.302 23.21 
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7 59 30 1.967 0.508 49.15 36 1.639 38.98 

8 59 32 1.844 0.542 45.76 49 1.204 16.95 

9 226 112 2.018 0.496 50.44 194 1.165 14.16 

The Proposed Lossless LRCSC Algorithm Results Huffman Results 

Image Set 2 Image Set 2 

Image 
Original 
Size in 

KBs 

New 
Size 

in KBs 
Cr Rate  

Storage 
Saving % 

New Size 
in KBs 

Cr 
Storage 

Saving % 

1  290 159 1.824 0.548 45.17 234 1.239 19.31 

2  129 49 2.633 0.380 62.02 104 1.24 19.38 

3  135 51 2.647 0.378 62.22 110 1.227 18.52 

4  751 354 2.121 0.471 52.86 459 1.636 38.88 

5  599 451 1.328 0.753 24.71 426 1.406 28.88 

6  1064 474 2.245 0.445 55.45 955 1.114 10.24 

7  1148 543 2.114 0.473 52.70 898 1.278 21.78 

8  1031 452 2.281 0.438 56.16 933 1.105 9.51 

9 651 451 1.443 0.693 30.72 526 1.238 19.20 

The Proposed Lossless LRCSC Algorithm Results Huffman Results 

Image Set 3 Image Set 3 

Image 
Original 
Size in 

KBs 

New 
Size 

in KBs 
Cr Rate  

Storage 
Saving % 

New Size 
in KBs 

Cr 
Storage 

Saving % 

1 32 10 3.200 0.313 68.75 32 1 0.00 

2 24 9 2.667 0.375 62.50 22 1.091 8.33 

3 20 16 1.250 0.800 20.00 19 1.053 5.00 

4 28 14 2.000 0.500 50.00 26 1.077 7.14 

5 25 14 1.786 0.560 44.00 24 1.042 4.00 

6 25 15 1.667 0.600 40.00 24 1.042 4.00 

7 19 11 1.727 0.579 42.11 17 1.118 10.53 

8 78 46 1.696 0.590 41.03 75 1.04 3.85 

9 25 13 1.923 0.520 48.00 24 1.042 4.00 

10 26 16 1.625 0.615 38.46 25 1.04 3.85 

11 17 8 2.125 0.471 52.94 14 1.214 17.65 

12 28 15 1.867 0.536 46.43 27 1.037 3.57 

13 28 11 2.545 0.393 60.71 21 1.333 25.00 

14 31 19 1.632 0.613 38.71 25 1.24 19.35 

The Proposed Lossless LRCSC Algorithm Results Huffman Results 

Image Set 4 Image Set 4 

Image 
Original 
Size in 

KBs 

New 
Size 

in KBs 
Cr Rate  

Storage 
Saving % 

New Size 
in KBs 

Cr 
Space 

Saving %  

1 1155 455 2.536 0.394 60.606 544 2.123 52.90 

2 1149 535 2.149 0.466 53.438 878 1.309 23.59 

3 1153 548 2.106 0.475 52.472 844 1.366 26.80 

4 1150 469 2.450 0.408 59.217 754 1.525 34.43 

5 1149 502 2.290 0.437 56.310 809 1.42 29.59 

6 1153 438 2.632 0.380 62.012 829 1.391 28.10 

7 1154 418 2.763 0.362 63.778 773 1.493 33.02 
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8 1152 337 3.416 0.293 70.747 632 1.823 45.14 

9 1150 519 2.216 0.451 54.870 851 1.351 26.00 

10 1155 440 2.627 0.381 61.905 749 1.542 35.15 

The Proposed Lossless LRCSC Algorithm Results Huffman Results 

Image Set 5 Image Set 5 

Image 
Original 
Size in 

KBs 

New 
Size 

in KBs 
Cr Rate  

Storage 
Saving % 

New Size 
in KBs 

Cr 
Space 

Saving %  

1 761 35 21.47 0.05 95.40 119 6.395 84.36 

2 821 30 27.53 0.04 96.35 115 7.139 85.99 

3 801 28 28.37 0.03 96.50 118 6.788 85.27 

4 838 11 78.39 0.01 98.69 110 7.618 86.87 

5 800 40 19.91 0.05 95.00 123 6.504 84.63 

6 826 43 19.07 0.05 94.79 118 7 85.71 

7 838 28 29.85 0.03 96.66 112 7.482 86.63 

8 814 40 20.59 0.05 95.09 119 6.84 85.38 

9 769 49 15.77 0.06 93.63 121 6.355 84.27 

10 768 36 21.46 0.05 95.31 117 6.564 84.77 

As listed in Table 5.9, the proposed LRCSC algorithm decreases the image size more than the 

Huffman algorithm for all of the image sets. The LRCSC algorithm results decrease the image 

size more than the Huffman algorithm by saving 17.73%  for the first image set, 21.33% from 

the second image set, 38.48% from the third image set, 36.34% from the fourth image sets and 

10.34% from the fifth image set. By averaging the five test image results for both algorithms, 

the LRCSC algorithm saved 24.97% more than the Huffman algorithm.   

Table 5.9 - The Average LRCSC Approach Compression Size with Huffman Average Compression 

Size 

 

Figure 5.19 describes the compression storage saving of the proposed LRCSC algorithm and 

Huffman algorithm for each of the five image sets. For a better result understanding, we 

The LRCSC Algorithm Average Results Huffman Average Results 

Image Sets 
Average Compression 

Ratio CR 

Average Storage 

Saving % 

Average Compression 

Ratio CR 

Average  Storage 

Saving % 

Image Set 1 1.847 44.95 1.425 27.22 

Image Set 2 2.072 49.13 1.448 27.8 

Image Set 3 1.979 46.688 1.096 8.2 

Image Set 4 2.518 59.536 1.325 23.2 
Image Set 5 28.041 95.742 6.87 85.4 

Average 7.291 59.20 2.440 34.98 
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displayed the algorithm results in bar-charts, where each column represents the image set and 

the value for the bits-saving percentage. The proposed lossless algorithm has a better 

compression ratio. 

 

 

Figure 5. 19 - The Average Compression size for the LRCSC and Huffman algorithm 

5.6.1.2 Comparison Between the LRCSC Algorithm and Huffman in Terms of Image Quality 

Since both the proposed LRCSC algorithm and Huffman algorithm are lossless techniques, the 

two algorithm results should have zero distortion after decompressing the tested image. 

All the images MSE value are zero. 

5.6.1.3 Comparison Between the LRCSC and Huffman in Terms of Execution Time 

Table 5.10 lists the execution time (compression and decompression time) for the proposed 

algorithm and the execution time for the Huffman algorithm, for all the five image sets. 

Table 5.10 - The Lossless LRCSC Algorithm Execution Time with Huffman Execution Time 

LRCSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 1 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.56 0.22 0.78 0.4 

2 1.1 0.34 1.44 0.8 

3 1 0.35 1.35 0.06 

4 1 0.34 1.34 0.4 

5 0.29 0.08 0.37 0.4 

6 0.29 0.08 0.37 0.4 

7 0.24 0.07 0.31 0.4 

8 0.28 0.09 0.37 0.6 

9  0.74 0.34 1.08 0.6 
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LRCSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 2 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.8 0.27 1.07 0.2 

2 0.93 0.14 1.07 0.3 

3 0.37 0.14 0.51 0.06 

4 2.2 0.09 2.29 0.8 

5 2.3 0.8 3.1 0.55 

6 3.6 1.2 4.8 1.6 

7 2.8 0.9 3.7 1.6 

8 2.7 1.1 3.8 1.8 

9 2.8 0.9 3.7 1.8 

LRCSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 3 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.27 0.06 0.33 0.12 

2 0.20 0.05 0.25 0.12 

3 0.27 0.03 0.30 0.1 

4 0.23 0.04 0.27 0.08 

5 0.15 0.05 0.20 0.08 

6 0.18 0.04 0.22 0.06 

7 0.22 0.04 0.26 0.06 

8 0.40 0.12 0.52 0.34 

9 0.19 0.03 0.22 0.06 

10 0.19 0.04 0.23 0.06 

11 0.22 0.06 0.28 0.06 

12 0.20 0.04 0.24 0.02 

13 0.17 0.04 0.21 0.06 

14 0.27 0.07 0.34 0.15 

LRCSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 4 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 2.1 0.8 2.9 2.34 

2 2.6 1.2 3.8 2.3 

3 2.7 1 3.7 2.2 

4 2.4 1.1 3.5 2.2 

5 2.6 1.1 3.7 2.2 

6 2.2 1 3.2 2.2 

7 2 0.8 2.8 2.1 

8 2.3 0.9 3.2 2.1 

9 2.4 1.1 3.5 2.2 
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10 2.4 0.9 3.3 2.1 

LRCSC Algorithm Execution Time  
Huffman Algorithm 

Execution Time 

Image Set 5 

Image Compression Time Decompression Time Total Time Huffman Total Time 

1 0.45 0.27 0.72 0.14 

2 0.4 0.22 0.62 0.16 

3 0.66 0.44 1.1 0.16 

4 0.44 0.22 0.66 0.15 

5 0.45 0.22 0.67 0.2 

6 0.37 0.19 0.56 0.15 

7 0.35 0.18 0.53 0.16 

8 0.57 0.29 0.86 0.16 

9 0.48 0.29 0.77 0.16 

10 0.45 0.25 0.7 0.15 

 

Table 5.11 lists the average total time for compression and decompression both algorithms for 

each test image. 

Table 5.11 - The Average Execution Time for Both Algorithms in Seconds 

 

Figure 5.20 shows the total execution time needed for compression and decompression for each 

of the image sets for the two algorithms. The Figure shows that the Huffman algorithm has 

better execution time for all image sets.  

The Proposed Lossless LRCSC Algorithm Average Execution Time 
Huffman Average 

Time 

Image Sets 
Average  

Compression Time 

Average  

De-Compression 

Time 

Total  

Execution Time  

Total  

Execution Time  

Image Set 1 0.61 0.21 0.82 0.45 

Image Set 2 2.06 0.62 2.67 0.97 

Image Set 3 0.23 0.05 0.28 0.10 

Image Set 4 2.37 0.99 3.36 2.19 
Image Set 5 0.462 0.257 0.719 0.16 

Average 1.15 0.43 1.57 0.77 
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Figure 5. 20 - The Average Execution Time for Both Algorithms 

5.6.2 Comparison Between the LRCSC Compression Size and Other State of the Art 

Algorithm. 

The LRCSC algorithm was tested as lossless compression techniques and compared against 

other benchmark scheme for natural images compression obtained from (Khan et al., 2017), 

the comparison with the most recent state of the art algorithms is needed for a better evaluation 

for the proposed algorithm results.  

5.6.2.1 First Comparison for Natural Images Compression Size  

Table 5.12 shows the compression sizes in KBs and the compression ratios Cr, for the basic 

BWCA, KMTF based BWCA, JPEG 2000 LS, RCT-BWCA algorithm obtained from (Khan 

et al., 2017) and the proposed LRCSC algorithm results.  

Table 5.12 - The LRCSC Algorithm Results Compared with Other Four Algorithm Results 

Image 
BWCA 

KMTF - 

BWCA 
JPEG-2000 LS RCT - BWCA LRCSC 

Size Cr Size Cr Size Cr Size Cr Size Cr 

Knob & Bolt 765 1.510 750 1.540 487 2.370 381 3.020 455 2.536 

Houses 1008 1.140 981 1.170 578 1.990 463 2.490 535 2.149 

Landscape 1020 1.130 965 1.190 612 1.880 352 3.270 548 2.106 

Light House 827 1.390 783 1.470 509 2.260 480 2.400 469 2.450 

Barn 891 1.290 839 1.370 525 2.190 358 3.220 502 2.290 

Parrots 791 1.460 739 1.560 447 2.580 346 3.330 438 2.632 

Flowers & Sill 780 1.480 743 1.550 457 2.520 350 3.290 418 2.763 
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Six-Shooter 591 1.950 560 2.060 433 2.660 332 3.470 337 3.416 

Motocross 991 1.160 947 1.220 574 2.010 244 4.720 519 2.216 

Zentime 837 1.380 800 1.440 494 2.330 297 3.880 440 2.627 

AVERAGE 850 1.39 811 1.46 512 2.28 360 3.31 466 2.518 

 

As described in Figure 5.21, the LRCSC has 1.28 better compression ratio than the BWCA and 

1.05 more than the KMTF-BWCA Cr and 0.24 more than the JPEG-2000 LS. The compression 

ratio is less than RCT-BWCA algorithm with 0.79. 

 

Figure 5. 21 - Compression Ratio for the Five Algorithm 

5.6.2.2 Second Comparison for Natural Images Compression Size  

Table 5.13 lists the images compression size in KBs for the proposed LRCSC algorithm and 

the lossless benchmark compression schemes for Kodak colour images obtained from (Khan 

et al., 2017). 
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Table 5.13 - Comparison Between the LRCSC and various benchmark systems in Term of 

Compressed File Sizes of Kodak Colour Test Images (size in KBs) 

S.No 
 

SCHEME 

KODAK TEST IMAGE 
 

Total 

Size 
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1 ADVANCE COMP 608 422 495 493 477 666 460 468 614 451 5154 

2 ALLUME 386  576 487 503 699 407 788 370 410 372 4998 

3 BBWCA 381  463 352 480 308 346 350 332 244 297 3553 

4 BCM 457  785 628 490 532 737 375 381 507 390 5282 

5 BULK ZIP 450  710 372 441 753 613 469 751 482 603 5644 

6 CAESIUM 475  422 496 518 797 500 706 407 736 411 5468 

7 C-MIX 453  510 457 497 625 520 761 666 657 456 5602 

8 COMPRESSOR.IO 413  765 425 597 380 415 392 391 603 668 5049 

9 CRUSH 409  692 556 536 544 795 646 612 583 376 5749 

10 FILE MINIMIZER 560  758 471 521 740 681 691 596 573 495 6086 

11 FILE OPTIMIZER 409  432 721 665 559 502 401 447 618 518 5272 

12 HEVC (x265) 403  493 343 487 397 538 326 418 462 353 4220 

13 LZ4X 370  420 412 373 402 537 465 456 444 429 4308 

14 LRCSC 455 535 548 469 502 438 418 337 519 440 4660 

15 MRP 497  760 550 511 513 791 534 474 628 409 5667 

16 NANOZIP 475  556 472 519 446 543 490 431 551 715 5198 

17 PAQ8PXD_V4 450  490 598 607 489 655 733 596 372 569 5559 

18 UPACK 0.25 661  710 379 675 503 529 371 572 587 568 5555 

19 WINRK 3.1.2 598  515 398 783 674 457 374 611 456 593 5459 

20 ZCM 0.92 495  631 772 542 408 714 565 597 416 450 5590 

 

As displayed in Figure 5.22, the LRCSC algorithm provide good compression ratio. The best 

compression came with the BWCA with a total size of 3553 KBs. The second-best algorithm 

is the HEVC followed by the LZ4X by having 4220 and 4308 respectively. The LRCSC 

decrease the image size with 4660 KBs. 
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Figure 5. 22 - Total Compression Size for the Kodak Image Set 

5.6.2.3 Third Compression for Raster Map Images Size 

The proposed LRCSC was tested, and the results were compared with another raster map 

benchmark scheme. The comparison is done with the JPEG-LS, PNG, GIF, Bi-level Burrows 

BBWCA and BLiSE algorithms as obtained from (Khan et al., 2017). Table 5.14 lists the 

compression size in KBs and the compression ratio for the previous algorithms and the LRCSC 

algorithm for 10 raster map images obtained from 

https://sites.google.com/site/qinzoucn/documents/. 

Table 5.14 - The LRCSC Results Compared with Other Four Algorithm Results 

Image 

JPEG-LS PNG GIF BLiSE BBWCA LRCSC 

Size Cr Size Cr Size Cr Size Cr Size Cr Size Cr 

Map 1 235.32 3.23 29.79 25.55 20.92 36.38 12.28 61.98 11.72 64.94 35 21.47 

Map 2 188.88 4.35 28.00 29.32 17.57 46.73 10.04 81.78 10.40 78.95 30 27.53 

Map 3 185.36 4.32 27.15 29.50 18.39 43.55 10.94 73.21 11.22 71.38 28 28.37 

Map 4 88.82 9.43 11.08 75.62 8.38 99.98 3.72 225.22 3.57 234.68 11 78.39 

Map 5 238.76 3.35 34.67 23.08 22.86 35.01 16.35 48.95 16.15 49.55 40 19.91 
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Map 6 228.04 3.62 30.23 27.32 17.90 46.14 11.08 74.54 12.76 64.73 43 19.07 

Map 7 157.13 5.33 23.59 35.52 14.21 58.96 7.37 113.69 10.41 80.49 28 29.85 

Map 8 254.97 3.19 36.58 22.25 23.61 34.47 18.10 44.96 15.36 52.98 40 20.59 

Map 9 265.47 2.90 41.62 18.49 25.14 30.61 19.43 39.60 17.22 44.68 49 15.77 

Map 10 
215.75 3.56 34.38 22.33 22.29 34.44 14.56 52.72 14.45 53.12 

36 21.46 

Average 2058.5 4.32 297 30.89 191.27 46.62 123.87 81.66 123.26 79.55 34 28.243 

 

As displayed in Figure 5.23, BLiSE outperforms all other algorithm, since the BLiSE algorithm 

is designed for raster maps compression and the other techniques are designed for general 

images type compression. The LRCSC algorithm results are better than the JPEG-LS but is 

less than the other techniques; although, the LRCSC algorithm saved 95.7% from the total 

image sets size. 

 

 

Figure 5. 23 - LRCSC Average Compression Ratio for the Raster Map Image Set 
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5.6.3 Comparison Between the LRCSC Execution Time and Other State of the Art 

Algorithm. 

The LRCSC algorithm was tested in the same environments as described and used in (Khan et 

al., 2017) by using the same hardware and software and compared with the BWCA, KMTF-

BWCA and RCT_BWCA. Table 5.15 presents the compression needed time (CT) and the de 

compression needed time (DCT) for the LRCSC,  BWCA, KMTF – BWCA, and RCT – 

BWCA  obtained from (Khan et al., 2017). 

Table 5.15 - Execution Time in Seconds for the Kodak Image Set for Different Algorithms 

Image 
BWCA KMTF - BWCA RCT - BWCA 

LRCSC Win 

Xp 

LRCSC    

Win 10 

CT DCT CT DCT CT DCT CT DCT CT DCT 

Knob & Bolt 16.46 23.76 17.21 25.39 17.7 28.06 5.43 1.29 2.1 0.8 

Houses 16.32 21.32 17.07 24.82 19.77 27.8 6.24 1.53 2.6 1.2 

Landscape 17.37 22.77 18.12 25.55 18.18 28.66 5.61 1.34 2.7 1 

Light House 19.17 21.46 19.92 22.63 19.48 28.95 7.61 1.44 2.4 1.1 

Barn 16.91 21.97 17.66 22.19 19.6 22.87 6.91 1.85 2.6 1.1 

Parrots 16.78 22.9 17.53 25.98 19.95 29.23 5.74 1.23 2.2 1 

Flowers & Sill 17.58 22.46 18.33 25.95 18.41 30.6 5.01 1.84 2 0.8 

Six-Shooter 18.82 21.17 19.57 24.4 20.98 27.46 6.20 2 2.3 0.9 

Motocross 16.07 23.85 16.82 28.09 19.14 30.5 5.45 2.01 2.4 1.1 

Zentime 18.02 23.34 18.77 23.24 19.49 28.55 7.55 1.52 2.4 0.9 

Sum  173.5 225 181 248.24 192.7 282.68 61.75 16.05 23.7 9.9 

Total 398.5 429.24 475.38 77.8 3.69 

 

The LRCSC algorithm achieve the best execution time by having 77.8 s for compression and 

decompression together and save 320.7 s more than the BWCA algorithm. 

 By running the LRCSC algorithm in win 10 operating system (64-bit) with Intel core i7-7500U 

CPU @2.70GHz with 8 GB RAM the execution time is 3.69 s. Figure 5.24 display the total 

execution time for the four algorithms in seconds. 
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Figure 5. 24 - Total Execution Time for the Kodak Image Set 

5.7 Chapter Summary    

The aim of this chapter was to develop a lossless image compression algorithm, to enhance the 

CSC compression ratio for the low-resolution images, with zero distortion and acceptable 

execution time. 

To reach the optimal solution between compression time and saving bits, the LRCSC algorithm 

was proposed. 

• The proposed LRCSC algorithm is designed to work with low resolution images.  

• The LRCSC algorithm achieved high compression ratio for raster map images. 

• The LRCSC algorithm achieved the best computational time due to its simplicity of 

implementation and speed of execution. 

The only disadvantage of the LRCSC algorithm is when applying the algorithm on natural 

images, the compression rate is decreased, since the LRCSC algorithm is designed for low-

resolution images. 

To solve this issue, the researcher adapted an artificial intelligence system that is responsible 

for classifying the images before compression to enhance the compression ratio for the CSC 

and LRCSC algorithms. The next chapter describe the solution in detail. 
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CHAPTER SIX: AUTOMATED SYSTEM FOR IMAGE 

COMPRESSION 

6 Chapter Overview 

This chapter describes in detail the need for an automated compression system and the need 

for a classification system, followed by detailed description of a possible automated 

compression system.  

6.1 Introduction  

This research developed two image compression algorithms, the first algorithm is the CSC 

algorithm, which was designed to compress any image format with any resolution and achieved 

the best compression rate when compressing high resolution images (HRI) such as natural 

images. The only disadvantage of the CSC algorithm is when applying it on low resolution 

images such as synthetic images E.g. raster map images where the compression ratio  

decreased. The second algorithm is the LRCSC which was developed to enhance the 

compression ratio for the low-resolution images (LRI). The only disadvantage of the LRCSC 

algorithm is when compressing HRI such as natural images where the compression ratio  

decreases. Choosing the suitable compression algorithm (CSC or LRCSC) that gives the best  

compression results with the input image without requiring human intervention would be a 

better approach. This approach could be implemented by running both compression algorithms 

(CSC and LRCSC) for the same input image to find out the best compression performance in 

terms of compression ratio or by using an image classification system.  

Human beings can distinguish easily between natural and synthetic images in a very short time. 

Unfortunately, computer can’t distinguish between images without having an image 

classification system to perform this task. Many features can be derived from the input images, 

such as number of colours, edge map and energy level. In order to build a solid classifier, we 

need to combine those features classification values, since if we used them separately, they 

would lead to wrong classification results. An ideal image classification system will classify 

images into different classes with no hesitation such as the human intelligence do (Khalsa and 

Gudadhe 2014). Many Artificial Intelligence (AI) systems have been developed to mimic the 

human brain functionality of image classification. This chapter is to enhance the compression 

ratio of the proposed two algorithms by developing an automated compression system for 

choosing the suitable algorithm with the input image.  
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The proposed  automated compression system is developed to run both compression algorithms 

(CSC and LRCSC) for the same input image to find out the best compression performance in 

terms of compression ratio. The system will start by loading the input image to determine its 

details followed by compressing the image by the CSC algorithm to calculate the compression 

ratio, and then the system compress the input image for the second time using the LRCSC 

algorithm to calculate its compression ratio. Both algorithm compression ratios are then 

compared to identifies the best algorithm for the input image. The final phase is to restore the 

image according to the suitable compression algorithm that achieved the best compression 

ratio.  

6.2 The Fully Automated System Compression Size  
Table 6.1 lists the fully automated compression system results in term of compression ratio. 

The system should provide the best compression ratio when comparing with the CSC and the 

LRCSC. 

Table 6. 1 -Fully Automated System Compression Ratio 

Image Sets 
CSC Average 

Compression Ratio  

LRCSC Average 

Compression Ratio  

automated system Compression 

Ratio 

Image Set 1 2.35 1.85 2.35 

Image Set 2 2.57 2.07 2.57 

Image Set 3 2.22 1.98 2.22 

Image Set 4 
3.54 2.52 3.54 

Image Set 5 5.63 28.25 28.25 

Average 3.26 7.33 7.79 

 

As listed in Table 6.1, the fully automated compression system dramatically decreases the 

image size for the five image sets. In image sets (1,2,3,4) the system achieved the best 

compression ratio by using the CSC algorithm. By observing the fifth image set results, the  

fully automated compression system achieved the best compression ratio by using the LRCSC 

algorithm, since this image sets includes low resolution images.  

6.3 The Fully Automated System Execution Time 
The fully automated system execution time can be calculated by measuring the system 

compression speed in seconds for the CSC and the LRCSC, and the decompression speed for 
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the chosen compression algorithm. Table 6.2 displays the average execution time for each 

image sets in seconds. 

Table 6. 2 - The Fully Automated System Average Compression Time 

Image Sets 
CSC Average 

(Execution Time) 

LRCSC Average 

(Execution Time) 

Automated System Average 

(Execution Time) 

Image Set 1 0.32 0.82 0.93 

Image Set 2 0.44 2.67 2.5 

Image Set 3 0.05 0.28 0.28 

Image Set 4 0.37 3.36 2.74 

Image Set 5 0.14 0.71 0.84 

Average 0.264 1.568 1.449 

 

The fully automated system execution time is increased when comparing with the CSC or 

LRCSC. In the first, second, third and fourth image sets, the system needs 0.61, 2.06, 0.23, 

2.37 seconds respectively more than the CSC algorithm. Were in the fifth image sets the 

system needed 0.13 seconds more than the LRCSC algorithm.  

6.4 The Fully Automated System Image Quality 
The fully automated system uses the two lossless image compression algorithm and restore the 

original image as a 100% perfect match from the decompressed image. The fully automated 

system MSE value is zero for all the images in the five image sets. Table 6.3 display two image 

samples for each image set. 

Table 6. 3 - Sample Images from the Five Image Sets Before and After Compression 

Image Set 1 

Original Image Compressed Image Original Image De-Compressed Image 

Camera Man (GIF) Lena (PNG) 

    

Image Set 2 

Original Image Compressed Image Original Image De-Compressed Image 



149 
 

Lena (PNG) Goldhill (BMP) 

    

Image Set 3 

Original Image Compressed Image Original Image De-Compressed Image 

Medic (JPEG) Boat (JPEG) 

    

Image Set 4 

Original Image Compressed Image Original Image De-Compressed Image 

Parrots (PING) Motocross (PING) 

    

Image Set 5 

Original Image Compressed Image Original Image De-Compressed Image 

Map 1 (BMP) Map 2 (BMP) 

    

 

Although the fully automated system is running well, one of the system limitations is every 

time the user run the system to compress an image; the system run both algorithms. One way 

of improving the current system is to develop an intelligence system that will classify the input 
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image first into (low-resolution or high- resolution images) and then chose the appropriate 

algorithm to compress the image. Indeed, there are many AI modules that are developed to 

classify images.    

6.5 Chapter Summary   

This chapter described the fully automated compression system to enhance the image 

compression ratio by choosing the suitable image compression algorithm (CSC or LRCSC) for 

compressing the image regarding its type (low-resolution or high- resolution images) images.  

By adopting the previous fully automated compression system, the researcher solved the 

problem of  the low compression ratio when compressing low-resolution images such as 

synthetic images by the CSC algorithm, and also, solved the problem of the low compression 

ratio when compressing high- resolution images such  natural images by LRCSC algorithm. 
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CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 

7 Chapter Overview 
The entire research is summarized in this chapter. Starting with reviewing the research 

activities, followed by the research contribution to the knowledge and the limitation 

encountered by the researcher, and finally, some recommendation for future work in the 

domain is described.     

7.1 Research Summary  

This research aims to address the challenge of saving and transmitting large size images by 

developing two lossless image compression algorithms. The first chapter covered the research 

background and motivation; the research aim and objectives were described, followed by the 

research methodology and the expected contribution to  knowledge. After establishing the 

research foundation from the first chapter, the second chapter concentrated on reviewing the 

literature for the two image compression techniques (lossless and lossy) to provide a 

comprehensive state-of-the-art literature and analysed them by focusing on the research aim 

and objectives to provide the research gaps for the lossless and lossy image compression 

techniques. 

Based on the research gap identified  from chapter two, the third chapter describes the proposed 

solutions and the research requirements that are needed to develop the proposed solutions, such 

as the development tools, the used programming language and the tested image sets. 

Chapter four described the first solution of enhancing the lossless image compression rate and 

execution time by proposing the CSC algorithm for high resolution images such as natural 

images. It starts with a detailed explanation for all the procedures used in the proposed 

algorithm, followed by the validation of the algorithm and described some of its limitation. 

Finally, the algorithm was compared to the state-of-the-art algorithms.  

Chapter five described the solution for enhancing the lossless image compression rate and 

execution time by proposing the LRCSC algorithm for the low-resolution images such as 

synthetic images and raster map images, It starts with a detailed explanation for all the 

procedures used in the proposed technique, followed by the validation of the algorithm by 

testing its results, and a comparison of the newly developed algorithm with state-of-the-art 

algorithms. Furthermore, the limitation of the LRCSC algorithm is described as well. 
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Chapter six provided solutions for the limitations from chapter four and five. By a fully 

automated compression system for choosing the suitable compression algorithm.  

7.2 Research Contributions and Review of the  Research Objectives 

The following sub sections describes in detail the research contributions to the body of 

knowledge in the domain of lossless image compression, by achieving the research objectives. 

7.2.1 Lossless and Lossy Image Compression State-of-the-Art 

Conducting a comprehensive critical review of existing literature in the domain of lossless and 

lossy image compression techniques to provide a critical review for leveraging existing image 

compression techniques and summarising the research findings to provide a contribution to the 

body of knowledge. This part is to provide a rich knowledge for researchers in the domain with 

a guide for the gaps in the current research. 

7.2.2 Addressing the Challenges of Lossless Image Compression Techniques  

The research gaps from the literatures review is used to set a path for developing a new solution 

to enhance the compression performance. A novel solution is developed by avoiding the 

limitations from the current literatures and by adopting the advantages from some of the 

literatures.  

7.2.3 Developing a Lossless Image Compression Algorithm for Natural Images  

Natural images mostly defined as high resolution images. Such images suffer from the low 

compression rate and execution time regarding the reasons of having many colours to represent 

it. Natural images share the fact of having a high coloration between neighbouring pixels; this 

fact is the main feature that where considered in developing the CSC compression algorithm. 

The proposed algorithm was developed by using MATLAB programming language and the 

results was investigated regarding the compression size, image quality and execution time. To 

reach the best conclusion from the results investigation, the results where compared with the 

most common state of the art lossless algorithms.  

The CSC lossless image compression algorithm enhanced the current state of the art 

compression rate, with zero distortion and acceptable execution time. The CSC algorithm is 

designed to work with any application and support all image formats whether the input image 

is a high resolution or low-resolution image. The CSC algorithm is suitable for natural image 

compression and can be used as stand-alone algorithm or as a pre-processing phase for any 

lossless or lossy techniques. 
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The limitation of the CSC compression algorithm is when applying the algorithm on raster map 

images, the compression rate is decreased, since the CSC algorithm gives better results for the 

high-resolution images. To solve this issue, the researcher proposed a new algorithm that 

enhanced the compression rate for the low-resolution images. The next section describes the 

solution contribution. 

7.2.4 Developing a Lossless Image Compression Algorithm for Synthetic Images  

The LRCSC algorithm is designed to solve the low compression rate problem with low 

resolution images in the CSC algorithm. The LRCSC algorithm is capable to work with low 

resolution images and achieved higher compression rate than the CSC compression algorithm 

for synthetic images such as raster map images. 

The proposed algorithm was developed by using MATLAB programming language and the 

results was investigated regarding the compression size, image quality and execution time. To 

reach the best conclusion from the results investigation, the results where compared with the 

most common state of the art lossless algorithms.  

The LRCSC lossless image compression algorithm achieved high compression rate with zero 

distortion and acceptable execution time. The LRCSC algorithm is designed to work with any 

application and support all image formats whether the input image is a high resolution or low-

resolution image. The LRCSC achieved the best results when compressing low resolution 

images and its suitable for raster map image compression and can be used as stand-alone 

algorithm or as a pre-processing phase for any lossless or lossy techniques. 

The limitation of the LRCSC compression algorithm is when applying the algorithm on natural 

images, the compression rate is decreased, since the LRCSC algorithm gives better results for 

the low-resolution images.  

7.2.5 Develop a Fully Automated System for Choosing the Suitable Algorithm for 

Compressing the Images Regarding its Type.  

The CSC algorithm provide the best compression rate with natural images and resulted less 

compression efficiency when compressing synthetic images, while, the LRCSC algorithm give 

better results when applying it on synthetic images and less compression rate when dealing 

with natural images. 

The researcher designed a fully automated system to run both compression algorithms (CSC 

and LRCSC) for the same input image to find out the best compression performance in terms 

of compression ratio, and regarding the image type the system will choose to compress the 
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input image with the CSC or LRCSC algorithm. The fully automated system enhanced the 

compression ratio by combining the two proposed algorithms in one system. 

7.3 Research Limitations  

After achieving the research aim and objectives, the researcher recognised the following 

limitation which can be solved in the future work. 

• The CSC and LRCSC algorithms dramatically decrease the execution time when 

comparing with other algorithm from the literature review, while the enhancement in 

compression rate is very small. 

• Using the fully automated system enhanced the compression rate and increase the 

execution time; the classification execution time should be added to the compression and 

decompression time for measuring the system performance.  

• Nowadays, images have larger size than before, finding a compression algorithm results 

that uses new images in their research is to hard; hence, a comparison using new image 

data sets is not applicable. 

7.4 Recommendations for Future Work  
 

Enhancing the compression rate and execution time while preserving the image quality as 

100% perfect match with the original image is the main three parameters for evaluating any 

lossless image compression algorithm. Further research in these regards are described as 

follows:  

• Adopting pre-processing phase before the CSC algorithm may enhance the 

compression rate, the pre-processing phase should result in matrices with smaller values 

and maintain the high correlation between intensities.  

• The CSC algorithm can be used as a pre-processing phase for any other lossless or lossy 

image compression techniques to enhance the compression rate. 

• Creating a dynamic application that includes the most popular and effective image 

compression algorithms by programming each of the algorithms to compare the 

algorithms results for any input image. This application should be controlled and tested 

correctly. Having such application, may help the researchers in making comparison 

easily for any images (old or new) without the need for benchmark system that confines 

the researcher to specific images. 
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• Implementing the GF-FSAE algorithm to provide details of the classification algorithm, 

complexity and added execution time to calculate the classification system 

performance. 

7.4.1 The Proposed AI Algorithm (GF-FSAE) for Image Classification  

Before compressing the image, an artificial intelligence system is used to classifies the input 

image into (low-resolution or high- resolution images) by using an efficient deep learning 

algorithm. The research problem is to choose the suitable compression algorithm (CSC or 

LRCSC) that gives better compression results with the input image.  

To reach the best results from the two proposed algorithms, the researcher adopted a fully 

automated system by using a deep learning technique for classifying the input image to 

determine its type (low-resolution or high- resolution images), and based on the image type, 

the system will choose to compress the input image with the CSC or LRCSC algorithm. Figure 

7.1 shows the fully automated system flowchart. 

Read Source 
Image(C3)

to determine its 
Information

Start

Load Source Image

Start

End

AI-Image Classification System

Compressed Image

Image Type
High Resolution Image

(Natural Image)
Low Resolution Image

(Raster Map Image)

CSC Algorithm 
LRCSC Algorithm 

Compressed Image

 

Figure 7. 1 - The Fully Automated AI system Flowchart 
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7.4.2 Artificial Intelligence   

Artificial intelligence (AI) is a computer science and engineering domain interested in 

developing systems that mimic the intelligence from human behaviours, such as learning and 

adaptation, image observation and classification,  natural language processing, problem solving 

and planning (Tecuci, 2012). AI is a way of making a computer or a software think 

intelligently, like intelligent humans do. The main goal of AI is to simulate the intelligent 

environment and principles in the human and animal behaviour (Chassagnon, Vakalopoulou 

and Paragios, 2020). 

Machine learning (ML): is part of AI which gives machines the ability of automatically learn 

and improve from experience without being explicitly programmed to do so, it allows the 

machine to solve problems by giving it the ability of thinking (Han, Liu. Mihaela, 2017).  

Samuel was one of the first who identified ML in 1959, where the ML affected the development 

of technological progress significantly since that day (Samuel., 1959). Since the ML revolution 

starts to the current day, a massive amount of data is created. It is reported that the 

estimated amount of the created data in the year 2020 will be approximately 1.7 MB per second 

for every person (Anon, 2019). ML provides a path to create predictive models to analyse this 

huge data to provide better and accurate results (Lu et al., 2014); (Stoyanov, Taylor and 

Hutchison, 2018). 

Drawbacks of the Machine Learning: (Edureka, 2019) demonstrate the relationship between 

ML and Deep learning (DL) as shown in Figure 7.2. 

 

Figure 7. 2 - Relationship Between ML and Deep Learning (DL) (Edureka, 2019) 

• ML cannot process high dimensional data, since it contains a large set of variables. 

• Not ideal for performing object detection and image processing: 

The traditional ML algorithm is not effective in predicting when dealing with high 

dimensional data, since it has too many inputs and outputs. E.g. in case of image 

recognition, to reach the best prediction, the algorithm input should cover most of the 

images features by having a huge input image sets with different image type. 

• ML is not effective with feature extraction. 
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feature extraction is to give the computer the search parameters that distinguish the images 

from each other’s and helps the algorithm to classifies images. The main objective of 

feature extraction is to help the algorithm in predicting the outcome to have a better 

accuracy. The limitation of feature extraction comes when loading raw data to the 

algorithm where the feeding rarely worked, and that is  why  ML is struggling with feature 

extraction. Therefore, the programmer faces a new challenge without using feature 

extraction, since the algorithm efficiency will depend on the programmer skills of narrow 

down only the significant predictors from the input predictor by manually studding the 

relationship between the input data. Hence, complex problems are difficult to solve with 

ML algorithms. Deep Learning by using Neural Networks is part of ML that focus on 

solving complex problem with a huge data set (He et al., 2015).  

Deep Learning (DL): is a sub-field of ML, created to solve the problem with analysing huge 

data that needs a lot of computational resources, by using the Neural Networks (NN) concepts 

to automates the feature extraction process and minimize the human interference as possible 

(Pan, Shi and Xu, 2018) (Traore, Kamsu-foguem and Tangara, 2018). 

7.4.3 The Chosen Artificial Intelligence Technique for Image Classification 

Before compressing the image, an artificial intelligence system should be used to classifies the 

input image into (synthetic images or natural images) by using an efficient deep learning 

algorithm. One of the leading image classification algorithms is the Guided Filtering for Fine-

Tuning Stacked Autoencoder (GF-FSAE) algorithm. The (GF-FSAE) achieved high image 

classification accuracy rate by having  a 99% accuracy ( Wang et al., 2017). The GF-FSAE 

algorithm is proposed to be implemented as an image classification system, since it has a very 

high accuracy. 

The proposed classification system should load the input image and classifies it into (low-

resolution or high- resolution images) and send the original input image to the related 

compression algorithm  (CSC or LRCSC) to compress it according to its type.  

The proposed AI technique for image classification (GF-FSAE) is not implemented in this 

research and could be implemented in the future as future work. this section is to propose a 

solution for classifying the image before compressing it to enhance the compression ratio and 

to decrease the human interference as possible.  
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Appendix A LRCSC Compression 
%-------------------------------------------------------------------------- 

%-------------------- Read The Image and determine its Details ------------

%-------------------------------------------------------------------------- 

Img_Orignal = imread('Image_1.bmp' 

imshow(Img_Orignal) 

  

Img_Orignal_1 = Img_Orignal(:,:,1); 

Img_Orignal_2 = Img_Orignal(:,:,2); 

Img_Orignal_3 = Img_Orignal(:,:,3); 

  

Img_Red   = double(Img_Orignal_1); 

Img_Green = double(Img_Orignal_2); 

Img_Blue  = double(Img_Orignal_3); 

  

Row_Num  = size(Img_Red,1); 

Col_Num = size(Img_Red,2);  

%-------------------------------------------------------------------------- 

%-------------------- Transformation Phase RGB-YUV ------------------------ 

%-------------------------------------------------------------------------- 

U = Img_Red  - Img_Green; 

V = Img_Blue - Img_Green; 

  

Image_R1 = Img_Red; 

Image_G1 = U ; 

Image_B1 = V; 

%-------------------------------------------------------------------------- 

%-------------------- Column Subtraction Phase ---------------------------- 

%------------------------- Red -------------------------------------------- 

Image_R2 = Image_R1; 

for j=1:Col_Num - 1 

   for i=1:Row_Num      

       Image_R2(i,j)   =  Image_R1(i,j) - Image_R1(i,j+1); 

   end 

end 

%------------------------- Green ------------------------------------------ 

Image_G2 = Image_G1; 

for j=1:Col_Num - 1 

   for i=1:Row_Num     

       Image_G2(i,j)   =  Image_G1(i,j) - Image_G1(i,j+1); 

   end 

end 

%------------------------- Blue ------------------------------------------- 

Image_B2 = Image_B1  ; 

for j=1:Col_Num - 1 

   for i=1:Row_Num     

       Image_B2(i,j)   = Image_B1(i,j) - Image_B1(i,j+1); 

   end 

end 

 

Image_R3 = Image_R2; 

Image_G3 = Image_G2; 

Image_B3 = Image_B2; 
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%-------------------------------------------------------------------------- 

%-------------------- Positive Compression -------------------------------- 

%--------------------- Positive Image Red ---------------------------------

---- 

Bin_R    = Image_R3; 

Image_R4 = Image_R3; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Image_R3(i,j)<=0  

           Bin_R(i,j) = 0; 

           Image_R4(i,j)= Image_R3(i,j)*(-1); 

        else  

           Bin_R(i,j) = 1;  

           Image_R4(i,j)= Image_R3(i,j); 

        end 

    end 

end 

%--------------------- Positive Image Green ------------------------------ 

Bin_G    = Image_G3; 

Image_G4 = Image_G3; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Image_G3(i,j)<=0  

           Bin_G(i,j) = 0; 

           Image_G4(i,j)= Image_G3(i,j)*(-1); 

        else  

           Bin_G(i,j) = 1; 

           Image_G4(i,j)= Image_G3(i,j); 

        end 

    end 

end 

%--------------------- Positive Image Blue ------------------------------ 

Bin_B    = Image_B3; 

Image_B4 = Image_B3; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Image_B3(i,j)<=0  

           Bin_B(i,j) = 0; 

           Image_B4(i,j)= Image_B3(i,j)*(-1); 

        else  

           Bin_B(i,j) = 1; 

           Image_B4(i,j)= Image_B3(i,j); 

        end 

    end 

end 

%-------------------------------------------------------------------------- 

%--------------------   Huffman Coding ------------------------------------ 

%-------------------------- Red ------------------------------------------- 

[Image_R5, Image_R5_dic] = Func_My_Huff_1(Image_R4); 

Image_R5_dic  = Image_R5_dic(:,3); 

  

BtC_Image_R5     = Fun_Bit_Count_PM(Image_R5); 

BtC_Image_R5_dic = Fun_Bit_Count_PM(Image_R5_dic); 

%-------------------------- Green ----------------------------------------- 

[Image_G5, Image_G5_dic] = Func_My_Huff_1(Image_G4); 

Image_G5_dic  = Image_G5_dic(:,3); 

  

BtC_Image_G5     = Fun_Bit_Count_PM(Image_G5); 

BtC_Image_G5_dic = Fun_Bit_Count_PM(Image_G5_dic); 
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%-------------------------- Blue ------------------------------------------ 

[Image_B5, Image_B5_dic] = Func_My_Huff_1(Image_B4); 

Image_B5_dic  = Image_B5_dic(:,3); 

  

BtC_Image_B5     = Fun_Bit_Count_PM(Image_B5); 

BtC_Image_B5_dic = Fun_Bit_Count_PM(Image_B5_dic); 

  

  

%-------------------------------------------------------------------------- 

%-------------------- Restore the Negative Value -------------------------- 

%-------------------------- Red ------------------------------------------- 

Image_R6 = Image_R5; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Bin_R(i,j)==0  

           Image_R6(i,j)= Image_R5(i,j) * (-1); 

        else  

           Image_R6(i,j)= Image_R5(i,j); 

        end 

    end 

end 

%-------------------------- Green ----------------------------------------- 

Image_G6 = Image_G5; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Bin_G(i,j)==0  

           Image_G6(i,j)= Image_G5(i,j) * (-1); 

        else  

           Image_G6(i,j)= Image_G5(i,j); 

        end 

    end 

end 

%-------------------------- Blue ------------------------------------------ 

Image_B6 = Image_B5; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Bin_B(i,j)==0  

           Image_B6(i,j)= Image_B5(i,j) * (-1); 

        else  

           Image_B6(i,j)= Image_B5(i,j); 

        end 

    end 

end 

Dic_1 = BtC_Image_R5_dic + BtC_Image_G5_dic + BtC_Image_B5_dic; 

 

BtC_Image_R6     = Fun_Bit_Count_PM(Image_R6); 

BtC_Image_G6     = Fun_Bit_Count_PM(Image_G6); 

BtC_Image_B6     = Fun_Bit_Count_PM(Image_B6); 

A3 = Dic_1 + BtC_Image_R6 + BtC_Image_G6 + BtC_Image_B6 ; 

%-------------------------------------------------------------------------- 

%-------------------- RLE Compression Phase ------------------------------- 

%-------------------------------------------------------------------------- 

[RLE_Image_R6]=My_Func_RLE(Image_R6); 

[RLE_Image_G6]=My_Func_RLE(Image_G6); 

[RLE_Image_B6]=My_Func_RLE(Image_B6); 

  

[Btc_RLE_Image_R6] = Fun_Bit_Count_PM(RLE_Image_R6); 

[Btc_RLE_Image_G6] = Fun_Bit_Count_PM(RLE_Image_G6); 

[Btc_RLE_Image_B6] = Fun_Bit_Count_PM(RLE_Image_B6); 

A3 = Dic_1 + Btc_RLE_Image_R6 + Btc_RLE_Image_G6 + Btc_RLE_Image_B6; 

toc; 
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Appendix B LRCSC De-Compression 
%-------------------------------------------------------------------------- 

%-------------------- Decompression --------------------------------------- 

%------------------------- De_RLE ----------------------------------------- 

tic; 

 

[De_RLE_Image_R5]=Fun_De_RLE(RLE_Image_R6); 

De_Image_R5 = reshape(De_RLE_Image_R5,[Row_Num,Col_Num]); 

  

[De_RLE_Image_G5]=Fun_De_RLE(RLE_Image_G6); 

De_Image_G5 = reshape(De_RLE_Image_G5,[Row_Num,Col_Num]); 

  

[De_RLE_Image_B5]=Fun_De_RLE(RLE_Image_B6); 

De_Image_B5 = reshape(De_RLE_Image_B5,[Row_Num,Col_Num]); 

  

%-------------------------------------------------------------------------- 

%-------------------- Positive Value De_Compression ---------------------- 

%------------------------------ Red --------------------------------------- 

Bin_R1     = De_Image_R5; 

De_Image_R = De_Image_R5; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if De_Image_R5(i,j)<=0  

           Bin_R1(i,j) = 0; 

           De_Image_R(i,j)= De_Image_R5(i,j)*(-1); 

        else 

           Bin_R1(i,j) = 1; 

           De_Image_R(i,j)= De_Image_R5(i,j); 

  

        end 

    end 

end 

%------------------------------ Green ------------------------------------- 

Bin_G1     = De_Image_G5; 

De_Image_G = De_Image_G5; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if De_Image_G5(i,j)<=0  

           Bin_G1(i,j) = 0; 

           De_Image_G(i,j)= De_Image_G5(i,j)*(-1); 

        else  

           Bin_G1(i,j) = 1; 

           De_Image_G(i,j)= De_Image_G5(i,j); 

        end 

    end 

end 

%------------------------------ Blue -------------------------------------- 

Bin_B1     = De_Image_B5; 

De_Image_B = De_Image_B5; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if De_Image_B5(i,j)<=0  

           Bin_B1(i,j) = 0; 

           De_Image_B(i,j)= De_Image_B5(i,j)*(-1); 

        else  

           Bin_B1(i,j) = 1; 

           De_Image_B(i,j)= De_Image_B5(i,j); 

        end 

    end 

end 
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%-------------------------------------------------------------------------- 

%--------------------  De_Huffman Code ------------------------------------ 

%-------------------------- Red ------------------------------------------- 

[ DE_Huff_Image_R4  ] = Func_My_Huf_De_1( De_Image_R,Image_R5_dic ); 

[ DE_Huff_Image_G4  ] = Func_My_Huf_De_1( De_Image_G,Image_G5_dic ); 

[ DE_Huff_Image_B4  ] = Func_My_Huf_De_1( De_Image_B,Image_B5_dic ); 

  

%-------------------------------------------------------------------------- 

%-------------------- Restore the Negative Value -------------------------- 

%------------------------------ Red --------------------------------------- 

De_Image_R3 = DE_Huff_Image_R4; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Bin_R1(i,j)==0  

           De_Image_R3(i,j)= DE_Huff_Image_R4(i,j)  * (-1); 

        else  

           De_Image_R3(i,j)= DE_Huff_Image_R4(i,j) ; 

        end 

    end 

end 

%------------------------------ Green ------------------------------------- 

De_Image_G3 = DE_Huff_Image_G4; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Bin_G1(i,j)==0  

           De_Image_G3(i,j)= DE_Huff_Image_G4(i,j)* (-1) ; 

        else  

           De_Image_G3(i,j)= DE_Huff_Image_G4(i,j); 

        end 

    end 

end 

%------------------------------ Blue -------------------------------------- 

De_Image_B3 = DE_Huff_Image_B4; 

for i=1:Row_Num 

    for j=1:Col_Num 

        if Bin_B1(i,j)==0  

           De_Image_B3(i,j)= DE_Huff_Image_B4(i,j)* (-1) ; 

        else  

           De_Image_B3(i,j)= DE_Huff_Image_B4(i,j); 

        end 

    end 

end 

%-------------------------------------------------------------------------- 

%-------------------- CSC Decompression Column --------------------------- 

%------------------------- Red -------------------------------------------- 

D_R2 = De_Image_R3; 

for j=Col_Num:-1:2 

   for i=1:Row_Num      

       D_R2(i,j-1)   =  D_R2(i,j) + D_R2(i,j-1); 

   end 

end 

%------------------------- Green ------------------------------------------ 

D_G2 = De_Image_G3; 

for j=Col_Num:-1:2 

   for i=1:Row_Num      

       D_G2(i,j-1)   =  D_G2(i,j) + D_G2(i,j-1); 

   end 

end 
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%------------------------- Blue ------------------------------------------- 

D_B2 = De_Image_B3; 

for j=Col_Num:-1:2 

   for i=1:Row_Num      

       D_B2(i,j-1)   =  D_B2(i,j) + D_B2(i,j-1); 

   end 

end 

%-------------------------------------------------------------------------- 

%-------------------- Reverse Transformation ------------------------------ 

%-------------------------------------------------------------------------- 

U1 = D_R2 - D_G2; 

V1 =  U1 + D_B2 ; 

  

toc; 

%-------------------------------------------------------------------------- 

%-------------------- Reconstruct the Image ------------------------------- 

%-------------------------------------------------------------------------- 

De_Compressed_IMG_R = D_R2; 

De_Compressed_IMG_G = U1; 

De_Compressed_IMG_B = V1; 

De_Comp(:,:,1) = De_Compressed_IMG_R; 

De_Comp(:,:,2) = De_Compressed_IMG_G; 

De_Comp(:,:,3) = De_Compressed_IMG_B; 

%-------------------------------------------------------------------------- 

%-------------------- End Decompression ----------------------------------- 

%-------------------------------------------------------------------------- 

 

Appendix C Huffman Coding Function 
%-------------------------------------------------------------------------- 

%--------- Huffman Coding  Function --------------------------------------- 

%-------------------------------------------------------------------------- 

function [ Mat_My_Huff,Dic ] = My_Huff_1( Mat_1 ) 

Size_Row=size(Mat_1,1); 

Size_Clm=size(Mat_1,2); 

  

Mat_1= double(Mat_1); 

Compressed_IMG_x = Mat_1; 

  

symbols_1 = unique(Compressed_IMG_x); 

s1=size(symbols_1,1); 

  

for i=1 : s1 

       UQ_Count_1 = sum(sum(Compressed_IMG_x==symbols_1(i)));  

        UQ_Count_11(i,1) = UQ_Count_1; 

end 

%------------------------------------------------------------------------- 

% Sort the Matrix in descending order with respect to the first two column 

%------------------------------------------------------------------------- 

 A1 = [UQ_Count_11,symbols_1]; 

  

 Dict_11= sortrows(A1,[1 2]); 

 Dict_12=sortrows(Dict_11,[-1 2]);  

  

 for i=1:s1  

 Dict_13(i,:)= i; 

 end 

  

 Dict_1=[Dict_13,Dict_12]; 

  

 for i=1:s1 

 Mat_My_Huff(Mat_1 == Dict_1(i,3))= Dict_1(i,1); 
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 end 

  

  Mat_My_Huff1 = reshape(Mat_My_Huff,[Size_Row,Size_Clm]); 

  Mat_My_Huff = Mat_My_Huff1; 

 Dic=Dict_1; 

  

   

end 

 
%-------------------------------------------------------------------------- 

%--------- Huffman De-Coding Function ------------------------------------- 

%-------------------------------------------------------------------------- 

function [ Img_2 ] = Func_My_Huf_De_1( Huff_1,Huff_1_Dic ,Row_Num,Cols_Num) 

  

Huff_55 = Huff_1; 

L4=length(Huff_1_Dic); 

  

New_Row_Num = size(Huff_1,1); 

New_Col_Num = size(Huff_1,2); 

  

 

for i=1:L4 

 Huff_1_Dic(i,2)=i; 

end 

  

 

for i=1:New_Row_Num 

    for j=1:New_Col_Num 

        for x=1:L4 

    

          if(Huff_1(i,j) == Huff_1_Dic(x,2)) 

             Huff_55(i,j)=Huff_1_Dic(x,1); 

          end 

        end 

    end 

end 

Img_2=double(Huff_55); 

  

  

end 

  

Appendix D RLE Coding Function 
%-------------------------------------------------------------------------- 

%--------- RLE Coding  Function ------------------------------------------- 

%-------------------------------------------------------------------------- 

function [ output_args ] = My_Func_RLE( Mat_x ) 

  

ImageArray = Mat_x(:).';  

j=1; 

a=length(ImageArray); 

count=0; 

for n=1:a 

 b=ImageArray(n); 

 if n==a 

 count=count+1; 

 c(j)=count; 

 s(j)=ImageArray(n); 

 elseif ImageArray(n)==ImageArray(n+1) 

 count=count+1; 

 elseif ImageArray(n)==b 

 count=count+1; 
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 c(j)=count; 

 s(j)=ImageArray(n); 

 j=j+1; 

 count=0; 

 end 

end 

output_args=[c;s]; 

  

end 

 

%-------------------------------------------------------------------------- 

%--------- RLE De-Coding  Function ---------------------------------------- 

%-------------------------------------------------------------------------- 

function [ v ] = Fun_De_RLE( input_args ) 

c=input_args(1,:); 

s=input_args(2,:); 

g=length(s); 

  

j=1; 

l=1; 

for i=1:g 

 v(l)=s(j); 

    if c(j)~=0 

      w=l+c(j)-1; 

    for p=l:w 

      v(l)=s(j); 

      l=l+1; 

    end 

   end 

 j=j+1; 

end 

ReconstructedImageArray=v; 

v=v.'; 

  

end 


