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v. Abstract 

Background: Running related injuries are influenced by a complex interaction between 

multiple factors. Running kinematic patterns represent one such factor which will 

influence the load applied to musculoskeletal structures during each foot contact of a 

run. When combined with an increase in external training load, a cumulative tissue load 

may result that exceeds tissue capacity, resulting in injury development.  

Aim: This thesis aimed to identify kinematic parameters associated with common 

running related injuries, explore whether such factors are influenced by training load 

exposure and investigate whether gait retraining, aimed at improving to running 

kinematics, may represent a clinically effective intervention.  

Methods: A narrative literature review was conducted to identify gaps within the 

literature and formulate specific research questions. An initial study was performed to 

investigate the between day repeatability and quantify the standard error of 

measurement for discrete kinematic parameters during running. A case control study of 

108 runners was then undertaken to investigate whether similar kinematic parameters 

are associated with multiple different common running related injuries. Following 

identification of kinematic parameters associated with running injuries, a cross sectional 

study investigated whether kinematic parameters associated with injury are associated 

with training load exposure. Finally, a case series study investigated whether gait 

retraining, in the form of a step rate intervention, improves running kinematics and 

clinical outcomes amongst a group of 12 injured runners with patellofemoral pain.        

Findings: The repeatability study demonstrated good to excellent repeatability with low 

measurement errors for several kinematic parameters during treadmill running. The 

second study found several kinematic parameters to be associated with multiple 

different running related injuries, including increased contralateral pelvic drop, hip 

adduction and forward trunk lean, as well as reduced knee flexion and increased ankle 

dorsiflexion at initial contact. Within this study, a logistic regression analysis found peak 

contralateral pelvic drop to be the kinematic parameter most strongly associated with 
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common running injuries. Data from this study was used to set a critical threshold for 

peak contralateral pelvic drop, above which runners were deemed more likely to be at 

risk of injury. Building on this idea, the third study, highlighted an association between 

training load exposure and running kinematics. Specifically, amongst injury-free high-

mileage runners, a significantly lower proportion of runners exhibited “high-risk” 

kinematics than in a group of injury-free low-mileage runners. Finally, the case series 

study found a single session of gait retraining, via a 10% increase in step rate, resulted 

in significant reductions in peak contralateral pelvic drop, hip adduction and knee 

flexion, as well as significant improvements in clinical and functional outcomes amongst 

runners with patellofemoral pain.   

Implications: Several kinematic parameters appear to be associated with multiple 

different running related injuries, suggesting similar kinematic patterns may increase 

tissue load on multiple different anatomical locations. Interestingly, there appears to be 

a complex interaction between kinematics and training load exposure highlighting that 

kinematics alone may be unlikely to explain injury development. In such instances where 

runners have become injured and possess kinematic parameters which increase tissue 

load, increasing step rate appears to be an effective gait intervention which can be easily 

integrated into clinical practise and a runner’s normal routine.  



 

1 | P a g e  
 

Chapter 1: Introduction 

1.1 Popularity and health benefits of running 

Over the last decade running has become an increasingly popular method of physical 

activity. According to Sport England, more than 2 million people across the United 

Kingdom (UK) participate in running each week making running the most popular 

method of exercise amongst the UK population (2). Recreational running events are also 

increasing in popularity with a reported 347, 876 UK based runners applying for the 

London Marathon in 2019, a rise of over 20, 000 applicants compared to the previous 

year (3). The increasing popularity of running may in part be explained by the health and 

social benefits offered from this relatively inexpensive form of physical activity, including 

reducing body fat, lowering maximal heart rate, encouraging social interaction and 

benefits to mental health (4-6).    

1.2 Injury Risk of Running 

Despite numerous health benefits, running poses considerable risk of musculoskeletal 

injury. The overall incidence of running related injuries has been reported to range 

between 19.4 and 79.3% (7-10) with approximately 50% of runners injured annually and 

25% being injured at any one time (11). In a recent retrospective study of 1145 UK based 

runners, 49.8% were reported to have a current injury, with 86% of injured runners 

continuing to run despite experiencing pain (8). 

Of all running related injuries the majority are said to occur to the knee and lower limb, 

accounting for 7 to 50% and 9 to 32% of all injuries respectively (7). The most common 

injuries are cited as patellofemoral pain (PFP), iliotibial band syndrome (ITBS), medial 

tibial stress syndrome (MTSS) and Achilles tendinopathy (AT) (10, 12, 13). Incidence and 

prevalence rates have been reported to be as high as 20.8% and 22.7% for PFP (14), 9.1% 

and 12% for ITBS (12, 15), 20% and 9.5% for MTSS (12, 16) and 10.9% and 18.5% for AT 

(12). Many of these injuries are known to have lengthy recovery times (10), high 

reoccurrence rates and lead to a reduction or cessation of training in approximately 30 

to 90% of cases (17). Furthermore, a running related injury has been reported to be the 
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leading reason for discontinuing running, reducing the positive health effects of regular 

running (5).  

1.3 Aetiology of Running Injuries 

The majority of running injuries are considered overuse injuries with a multifactorial 

aetiology; influenced by the complex interaction between biological, psychological, 

behavioural and sociocultural factors (18, 19). Historically, many injury causation models 

focus predominantly on biomedical contributions to injury development (20, 21). One 

example being the biomechanical model of injury, where injury aetiology is viewed as 

the result of an imbalance between either the biomechanical loads applied to a tissue 

structure or the ability of the tissue to withstand the applied loads (1, 21, 22). 

Consequently, many studies focus on establishing causal connections between singular 

variables which may be associated with injury such as training errors (23), lower limb 

structure (24) or biomechanics (25, 26). Although this method of investigating injury is 

useful in establishing risk factors for injury, for which specific interventions can be 

targeted towards, it should also be interpreted amongst a wider context acknowledging 

the potential interaction between additional factors (19, 27).  

Recently, Bertelsen et al (28) proposed a conceptual framework of running injury 

development, building upon the biomechanical model of injury to reflect the 

multifactorial and dynamic nature of running injury aetiology (Figure 1). Within this 

framework, the authors proposed that running related injuries occur due to the 

interaction between the structure specific load capacity of a musculoskeletal tissue, 

herein termed tissue capacity (Figure 1A), and the structure specific cumulative loads 

applied to a tissue during a run (Figure 1B), which will herein be referred to as the 

cumulative tissue load. If the cumulative tissue load exceeds tissue capacity (Figure 1D) 

then injury will occur. Importantly, the model highlights the multiple factors which 

influence both tissue capacity and cumulative tissue load, as well as the dynamic, 

adaptable and mal-adaptable, nature of tissue capacity. Understanding factors 

influencing both tissue capacity, cumulative tissue load and the interaction between 
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factors, may aid understanding of injury causation and assist in the implementation of 

appropriately targeted rehabilitation interventions.  

Figure 1 Conceptual framework for the aetiology of running related injuries reported by Bertelsen et al (28).  
Box A represents the structure specific tissue capacity at the beginning of a running session. Box B represents the 
factors influencing the structure specific cumulative load per running session. Box C represents the reduction in 

structure specific load capacity due to the interaction between box A and box B. Box D highlights how the interaction 
between structure specific load capacity and structure specific cumulative load may result in the structure specific 

load capacity being exceeded resulting in running related injury development. 

 

 Tissue Capacity 

Tissue capacity is defined as the total load that a tissue can withstand before reaching 

its ultimate failure point (28-31). Importantly, tissue capacity is a dynamic construct 

changing both within a single loading bout and between subsequent loading bouts 

(Figure, 1A & 1C) (28, 32). This is largely dependent upon the tissue specific and 

individual response to load application, both acutely and over time (28, 31). According 
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to Soligard et al (32) both physical and psychological response to load occurs along a 

continuum, progressing from tissue homeostasis to acute fatigue, functional and non-

functional overreaching, overtraining syndrome, subclinical tissue damage and 

eventually clinical symptoms leading to a time loss injury or illness. Acutely, within a 

single running bout, repeated load application will result in a gradual reduction in tissue 

capacity, which could occur due to structural and/or mechanical changes to the tissue 

or individual, such as an increase in physiological fatigue impairing muscle function. 

Providing this loading bout is ceased before the cumulative load exceeds tissue capacity, 

and adequate recovery occurs between subsequent loading bouts, then tissue 

homeostasis is maintained, and tissue capacity may increase (28, 32). Conversely, if 

there is insufficient recovery between loading bouts, or the cumulative load with a single 

loading bout exceeds tissue capacity, tissue homeostasis is not maintained, tissue 

damage may occur, and tissue capacity will be gradually reduced. Consequently, 

musculoskeletal structures may become less tolerant to load resulting in the gradual 

progression of subclinical tissue damage, and with repeated loading bouts, the onset of 

injury (Figure 1D) (28, 32, 33).  

Not only does tissue capacity vary between individuals, but it is also influenced by the 

interaction between a variety of biological, psychological and sociocultural factors (28-

31). Several biological factors have been proposed to influence tissue capacity via their 

influence upon the mechanical and structural tissue properties and the tissue response 

to loading (31). These include non-modifiable factors such as age, genetics and gender 

(9, 34), as well as modifiable factors such as muscle structure, function and strength (35-

37), fatigue and training history (9, 34) to name a few. Tissue capacity may also be 

influenced by the physiological response to psychological and sociocultural influences. 

For example, psychological factors such as stress and anxiety as well as personality traits 

such as obsessive passion, may lead to behavioural responses such as excessive training 

behaviours, disregarding recovery and ignoring minor injuries, which may in turn have a 

negative impact upon tissue capacity (38, 39). Psychological factors such as these, may 

also be influenced by sociocultural factors, such as exposure to stressful life events, 

coping mechanisms and presence of, or lack of, social support (18, 40). Therefore, 
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clinicians should acknowledge the complex interaction between multiple different 

factors when assessing tissue capacity.  

 Cumulative tissue load 

Historically, training errors have been cited as the main cause of running related injury 

amongst both runners (41) and researchers (1, 23). It is thought that greater training 

loads influence cumulative tissue loading by imposing a greater frequency of stress 

application to the musculoskeletal system. Once a cumulative tissue load has been 

reached that exceeds tissue capacity, injury occurs. Consequently, research has focused 

on identifying training parameters that may explain running injury development (23, 42). 

Despite the attempt to identify training errors associated with common running injuries, 

no conclusive evidence exists regarding the role of training errors within running related 

injuries. Some studies have reported higher weekly training volumes (43-45) or sudden 

increases in training volumes (46, 47) to be associated with an increased risk of 

sustaining a running related injury (43-45). However, several other studies have 

reported no differences in injury risk between runners completing high and low weekly 

running volumes (7), or following sudden increases to training volume (48). Interestingly 

a recent systematic review from Damsted et al (42) concluded that there is limited 

evidence to suggest sudden changes in training parameters are associated with an 

increased injury risk. This raises questions as to why some runners are able to attain high 

weekly training volumes without sustaining an injury, while others are not. 

One explanation may be due to the interaction effects between training load exposure 

and factors influencing tissue load. According to Bertelsen’s model of running injury 

aetiology (28), cumulative tissue load is considered the sum of the tissue specific loads 

experienced per stride and the frequency of load application (Figure 1B). While training 

load exposure may explain the frequency of load application, the load applied per stride 

depends upon a variety of biomechanical, anatomical and training factors influencing 

the magnitude of the biomechanical loads and the structures they are applied to. Such 

factors include, but are not limited to, body mass, joint congruence, running speed, 

training surface, running shoes, kinematics and kinetics; all of which influence the 
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specific tissue structures loaded and the magnitude of loads encountered (28). 

Therefore, factors influencing tissue load per stride should be considered alongside 

training load exposure, as the interaction between the two will have a direct impact 

upon cumulative tissue loading.  

 Running biomechanics: influencing tissue loading 

Running biomechanics are one factor influencing the load or stress placed upon 

musculoskeletal structures during each loading cycle of a run (1, 28, 49). Several 

biomechanical studies have reported kinetic and kinematic parameters to directly 

influence the load or stress encountered by muscles, bones and joints. For example, the 

kinematic parameters of hip internal rotation (50), hip adduction (50) and knee flexion 

(51) have all been shown to influence patellofemoral joint stress during running. 

Similarly, kinetic parameters such as vertical loading rate are thought to influence tibial 

bone loading (52, 53). By imposing greater loads upon the musculoskeletal structures 

per stride of a run, biomechanical parameters could cause an individual to function 

closer to their tissue capacity (Figure 2).   
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In the current literature several prospective and retrospective studies support the link 

between running mechanics and common running related injuries, including Achilles 

tendinopathy (54, 55), medial tibial stress syndrome (55, 56), patellofemoral pain (57, 

58) and iliotibial band syndrome (26, 59). Interestingly many of these studies report 

similar kinematic and kinetic parameters across multiple different running related 

injuries, for example, hip adduction has been associated with MTSS (56), ITBS (26) and 

PFP (58), while increased vertical loading rate (53) and peak horizontal breaking force 

(60) has been associated with global injury development amongst runners. This suggests 

that there may be kinematic and kinetic parameters which are associated with global 

running injury; increasing tissue load per foot contact of a run. Identification of such 

parameters would be invaluable to clinicians, as it could allow the development of 

Figure 2: Adapted stress frequency curve from Hreljac & Ferber (1).  
A = an individual with optimal kinematics & kinetics experiences a low tissue load per foot contact. B = an individual with sub-

optimal kinematics & kinetics experiences a higher tissue load per foot contact, however, may not exceed tissue capacity if frequency 
of load application is low. C = as the frequency of load application increases, the cumulative tissue load may cause individual B to 
exceed their tissue capacity while individual A remains within their tissue capacity. D = Gait retraining aims to change sub-optimal 

kinematics & kinetics to optimal, reducing the tissue load per contact allowing an individual to function within their tissue capacity. 
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rehabilitation and prehabilitation interventions specifically targeted at the underlying 

mechanics.   

Importantly, based on several injury causation models, biomechanics alone may not be 

enough to cause injury if there is limited exposure to external training load, as the 

cumulative tissue load may not be enough to exceed tissue capacity (28, 30, 33, 61). 

Running biomechanics are one factor that can increase the loads applied to the 

musculoskeletal system per foot contact of a run, whereas the frequency this load is 

applied can be influenced by the number of loading cycles imposed by external training 

load. The interaction between the two can subsequently influence the cumulative loads 

applied to the musculoskeletal system across a run or training week (Figure 1B) and thus 

whether this load exceeds the tissue capacity of an individual (Figure 1D).  

Using an adapted stress frequency curve as an illustrative example (Figure 2), if a runner 

has sub-optimal biomechanics and runs a relatively low frequency, the tissue load may 

be elevated, but they may not exceed their tissue capacity as the cumulative load 

remains relatively low (Figure 2B). However, if this same individual increases their 

training volume, the frequency of load application may result in a cumulative tissue load 

that exceeds tissue capacity and injury occurs (Figure 2C). Conversely, a runner with 

optimal biomechanics may be able to safely increase their training load as the tissue 

load per stride, and subsequently the cumulative tissue load, remains low and does not 

exceed tissue capacity (Figure 2C). This interaction may explain why some runners can 

attain high weekly training volumes while others become injured. If such an interaction 

exists, it would be important to consider the training load a runner is exposed to and 

whether their mechanics may limit their ability to increase these training loads without 

injury development.   

 Targeting Running Mechanics in the Rehabilitation Process 

If specific running mechanics are associated with common running related injuries, 

clinical interventions that target these mechanics may reduce tissue loads allowing 

runners to recover from injury and increase their training volumes. In the current 

literature, several studies have utilised strength interventions with the aim of improving 
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running kinematics (62-65). However, despite idenitifying significant imporvements in 

strength, no differences in kinematics have been observed. In two separate studies, the 

single leg squat exercise was used with the aim of imporving frontal plane hip and pelvis 

angles (64, 65). These studies reported significant imporvements in both hip adduction 

and contralateral pelvic drop during the single leg squat, however this was not 

transferred to running. This suggests that strength training alone is insufficient to 

improve running kinematics and that and that task specific movement retraining may be 

a more effective intervention.  

 Gait Retraining: Lowering Tissue Stress in Rehabilitation 

Gait retraining has been proposed as a movement specific intervention aimed at 

correcting sub-optimal running mechanics. Gait retraining is the process of altering 

running technique or specific movement patterns using internal and/or external cues 

(49, 66). Once the individual has learnt the desired running technique, the aim is to then 

to reinforce and maintain the learnt running mechanics. There are several different 

methods of gait retraining identified in the current literature, these include foot strike 

manipulation, visual feedback, step width modification and step rate modification (67-

71). Several studies have shown running retraining can result in significant changes to 

joint specific movement patterns (69-72). For example, transitioning to a forefoot 

running pattern has been shown to reduce stance phase knee flexion range of 

movement (73-75).  

It is thought that modifying running mechanics through gait retraining serves to reduce 

or redistribute load applied to the musculoskeletal system during each foot contact and 

subsequently the cumulative loads across a given run (Figure 2D). Evidence to support 

this idea comes from several studies investigating the effects of gait retraining on 

patellofemoral joint loads. Using healthy runners, Lenhart et al (51) reported that a 10% 

increase in running step rate resulted in a 14% reduction in peak patellofemoral force 

per loading cycle. Similarly, Willson et al (76) reported a 10% increase in step rate 

resulted in a 22.2% decrease in patellofemoral joint stress per step and a 7.5% decrease 

across a mile run. This supports the idea that modifying running mechanics through 

targeted interventions may reduce both the tissue load per stride and the cumulative 
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tissue load across an entire run or weekly training period. Therefore, gait retraining 

could be a clinically effective intervention that may reduce the tissue loads imposed by 

biomechanical parameters, reducing the cumulative tissue load encountered during 

running and facilitating return to run amongst injured runners by allowing them to 

function within their injury threshold (Figure 2D).  

 Psychosocial considerations: the wider context 

It is important to note that running biomechanics form just one aspect of the 

multifactorial construct of tissue load and clinically should be acknowledged as such. 

Additional factors may also influence tissue load, such as anatomical structure, running 

surface and running shoes, which can all influence how forces are distributed to tissues, 

as well as running speed, surface gradient and body mass which may influence the 

magnitude of the applied loads. Similarly, tissue loads can extend beyond those that are 

biomechanical to psychological loads as well (18, 32).  

The injury framework proposed by Bertelsen et al (28) allows for the conceptualisation 

of running injury aetiology. However, from a clinical perspective, the framework should 

be taken into consideration amongst a much wider biopsychosocial model reflecting the 

complexity of sport injury (18, 19, 27). In particular, not only is there a dynamic 

relationship between tissue capacity and tissue load, but these constructs may be 

mediated by the interaction between a variety of psychological, biological, sociocultural 

and behavioural factors (Figure 3) (18, 19, 28). For example, sociocultural factors such 

as negative life events may influence psychological stress and mood status, which may 

in turn impact upon biological processes influencing tissue recovery and function (40, 

77). Similarly, poor psychological coping mechanisms or obsessive personality traits may 

influence behavioural responses leading to elevated training loads and disregard for 

recovery (38-40, 77). Consequently, the interaction between such factors may mediate 

tissue capacity and tissue loading either directly or indirectly via other mediators (Figure 

3).  
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Figure 3: Conceptual model of the biopsychosocial influences for running related injury.  
Adapted from the biopsychosocial model of injury by Wiese-Bjornstal (18) and conceptual framework of running 

injury aetiology proposed by Bertelsen et al (28). The inner layers represent the balance between tissue capacity and 
tissue load and their influence on running related injury. The outer layers signify the interaction between biological, 

sociocultural, psychological and behaviour factors which may have a mediating effect upon the inner layers. The 
surrounding arrows between each layer represents the dynamic relationship between constructs and their mediating 

effect on one another. 

 

Not only could the interaction between biopsychosocial factors influence injury 

development but may also influence perceived injury severity and rehabilitation 

outcomes (18, 78, 79). Forsdyke et al (79) recently highlighted the influence of 

psychosocial factors on rehabilitation outcomes. According to their systematic review, 

feelings of anxiety, low self-confidence, low mood, fear of reinjury, poor coping and loss 

of social support were all associated with poor rehabilitation outcomes (79). Indeed, 

psychosocial factors such as these are also known to influence perceptions of injury 

severity (80). This could subsequently lead to maladaptive behaviours such as pain 

avoidance and fear of movement, which could in turn compound biological 

deconditioning of tissues negatively impacting return to sport outcomes (18, 78-80). 

Therefore, for optimal clinical outcomes, clinicians should acknowledge the complexity 

of injury causation and rehabilitation outcomes beyond the immediate set of risk 

factors. This is because running injury and rehabilitation outcomes are likely the result 

of a complex interaction between multiple determinants (18, 19, 27).  
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 Summary, Aims & Objectives 

The aim of the introduction was to highlight the role of running biomechanics as a 

singular risk factor for running injury aetiology amongst the much wider context of injury 

causation. From a clinical perspective, it is important to acknowledge the complex 

multifactual nature of running related injuries while still enhancing our understanding 

of the singular components that influence the larger picture. Bertlesen’s (28) running 

injury framework allows for the conceptualisation of running biomechanics as one factor 

influencing the load or stress encountered by musculoskeletal tissues during running, 

which combined with an exposure to external training load, may influence cumulative 

tissue load and injury. In such cases, gait retraining interventions which modify running 

biomechanics, could reduce tissue stress per foot contact and cumulative tissue loading, 

assisting in the rehabilitation of injured runners. For clinicians, understanding the 

biomechanical contributors to running related injuries, how they may interact with 

training load exposure and the effect of gait retraining interventions, may enhance 

clinical assessment and management strategies directed towards this specific injury risk 

factor. 

Therefore, the overarching aim of this thesis was to first identify biomechanical 

characteristics associated with common running injuries and explore whether training 

load exposure influences running kinematics, discussing the potential implications for 

injury development. Finally, this thesis aims to investigate whether gait retraining can 

be used to effectively improve biomechanics, clinical and functional outcomes amongst 

injured runners.  

In order to achieve this, a narrative literature review was first conducted in order to 

identify gaps within the current literature and form specific research aims, objectives 

and hypotheses. These are presented in Section 2.5.1. These aims and objectives are 

addressed within subsequent chapters of the thesis. For the narrative literature 

review, the following aims and objectives were established:  

1. Explore the literature to identify the kinematic and kinetic characteristics of 

common running related injuries, the reliability of kinematic assessment measures, 
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whether training load exposure influences injury risk and running kinematics and 

whether gait retraining interventions can effectively target running kinematics 

(Chapter 2). The specific objectives to achieve this aim were to:  

a. Review and critically appraise the current literature investigating 

kinematic and kinetic characteristics of common running injuries in order 

to identify kinematic and kinematic parameters associated with common 

running injuries. 

b. Review the current literature in order to establish the reliability and 

repeatability of kinematic measurements during running. 

c. Review the current literature to identify whether training errors are 

associated with running injury development and whether running 

kinematics are influenced by the training loads runners are exposed to. 

d. To review and critically appraise the literature reporting the effects of 

gait retraining interventions upon running kinematics and clinical 

outcomes amongst injured runners.  

Impact: the overall impact of this narrative literature review was to provide a 

broad overview of what is currently known regarding the association between 

running biomechanics and running related injuries, how kinematics and running 

related injuries are influenced by training load exposure and the effect of gait 

retraining interventions upon specific running kinematics. Through achieving 

this aim, gaps within the current literature were identified in order to inform 

specific research objectives outlined in Section 2.5.1 and addressed within 

subsequent chapters of the thesis. 
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 Chapter 2: Literature Review  

2.1 Biomechanical characteristics of running related injuries 

Despite the growing popularity of recreational running there is considerable risk of 

musculoskeletal injury, with approximately 50% of runners injured annually (11). Of all 

running related injuries, four of the most frequently cited include patellofemoral pain 

(PFP), iliotibial band syndrome (ITBS), medial tibial stress syndrome (MTSS) and Achilles 

tendinopathy (AT) (10, 12, 13), with incidence and prevalence rates reported to be as 

high as 20.8% and 22.7% for PFP (14), 9.1% and 12% for ITBS (12, 15), 20% and 9.5% for 

MTSS (12, 16) and 10.9% and 18.5% for AT (12). 

Although running related injuries have a complex multifactorial aetiology, running 

biomechanics are cited as one injury risk factor. As presented within the introduction 

Chapter, running biomechanics are thought to influence the tissue load encountered per 

foot contact of a run (28, 61). When combined with an exposure to external training 

load this may influence the cumulative tissue load encountered during a single run and 

across a training week (28). If this cumulative tissue load exceeds tissue capacity, tissue 

damage may occur leading to the development of running related injuries.  

Within current literature several studies have identified an association between running 

kinematics and Achilles tendinopathy (54, 55), medial tibial stress syndrome (55, 56), 

patellofemoral pain (57, 58) and iliotibial band syndrome (26, 59). Identifying the 

biomechanical characteristics associated with common running related injuries may 

provide clinicians with an understanding of the biomechanical contributors to running 

related injuries, for which subsequent rehabilitation interventions can be targeted 

towards.  

Therefore, the objective of this first part of the literature review is to review and 

critically appraise the current literature investigating kinematic and kinetic 

characteristics of common running injuries in order to identify kinematic and kinematic 

parameters associated with common running injuries. 
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In the sections below, the literature comparing kinematic and kinetic characteristics of 

four common running injuries, Achilles tendinopathy, medial tibial stress syndrome, 

patellofemoral pain and iliotibial band syndrome are discussed separately. A visual 

overview of the literature and reported findings are provided in tables within each injury 

section in order to aid interpretation of the current literature investigating 

biomechanical characteristics of common running injuries and identify potential gaps in 

the current evidence. The literature review concludes by highlighting the common 

biomechanical patterns associated with running related injuries, identifying gaps and 

limitations to the current literature and discussing the idea that there may be common 

kinematic patterns associated with multiple different running related injuries.  

 Literature Search 

In order to review the current literature electronic databases were searched in order to 

identify studies investigating kinematic and kinetic characteristics associated with 

common running related injuries. CINHAL, MEDLINE, SportDiscus and Web of Science 

were searched for all years up until March 2019.  For each of the four running injuries 

investigated, pathology specific search terms were used and are presented in (Table 1). 

Following identification of relevant titles, abstracts were screened for relevance and full 

texts were then assessed against the below inclusion and exclusion criteria. References 

and citations of all included studies were searched to identify any additional studies 

which meet the inclusion/ exclusion criteria. 

2.1.1.1 Inclusion 

• Retrospective or prospective study design 

• Include an injured population with a diagnosis of either AT, MTSS, ITBS or PFP  

• Include a healthy control comparison of male or female runners 

• Report kinetic, kinematic or spatiotemporal parameters 

2.1.1.2 Exclusion  

• Studies using military populations 

• Studies that do not assess running 

• Studies using fatigue protocols or test during prolonged running  
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• Conference abstracts  

Table 1: Literature search: key terms and boolean operators. 

Search Terms  

Iliotibial band syndrome OR Iliotibial band OR Iliotibial band friction 

syndrome OR ITBS 

MTSS OR Medial Tibial Stress Syndrome OR Exercise related lower leg 

pain OR ERLLP OR Lower leg pain OR Tibial stress fracture OR Shin 

Splints 

Patellofemoral pain OR Patellofemoral OR PFP OR PFPS OR 

Patellofemoral pain syndrome OR Chondromalacia patella 

Achilles tendon OR Achilles OR Achilles tendinitis OR Achilles pain 

The above pathology specific terms were combined with the below 

terms using the Boolean operator “AND” 

Biomechanics OR kinetics OR kinematics 

Running OR run OR jog OR runners 

 

 Key terms and definitions  

2.1.2.1 The Gait Cycle 

The gait cycle is the time period of events that occur during locomotion from when the 

foot first contacts the ground, to when that same foot contacts the ground again (81) 

(Figure 4). During running, the phases of the gait cycle can be broken down into the 

stance phase and the swing phase. The stance phase begins with initial contact, the point 

where the foot first contacts the ground, which is followed by a force absorption period. 

During the absorption period the body must decelerate the velocity of the centre of 

mass in both the vertical and horizontal direction(s) as it comes into contact with the 

ground (81), this is often referred to as the breaking phase peaking at mid stance. At mid 

stance the centre of mass reaches its lowest vertical point in the gait cycle and is 

positioned directly over the centre of pressure. Following mid stance is the propulsion 



 

17 | P a g e  
 

phase, where the body must accelerate the centre of mass upwards and forwards, 

terminating at toe off as swing phase begins.      

Figure 4: The running gait cycle cited from Dugan (82). Figure highlights the different phases of the gait cycle 
dividing the gait cycle into the stance phase and swing phase. 

 

During initial swing there is a period where both feet are no longer in contact with the 

ground, referred to as double float (Figure 4), where the trailing leg begins to swing 

forwards and the opposite leg reaches terminal swing in preparation for initial ground 

contact (81, 82). Once the trailing leg passes the midline of the body it then begins to 

reach terminal swing where the limbs begin to prepare for initial contact and the 

beginning of a second stance phase and second gait cycle.  

2.1.2.2 Kinetics 

Kinetics is the measurement of forces acting on the body during running (83). This can 

include internal forces, such as those created by muscles, tendons and ligaments, and 

external forces both acting on the body as a whole, or those acting on individual joints 

(84). 

The ground reaction force is the external force exerted by the ground acting on the body 

as a whole, as it contacts the ground. It can be separated into three main components, 

the horizontal component, vertical component and mediolateral component, each 

representing the direction in which the force is applied.  

Joint moments represent the rotational force acting across a joint and are calculated 

using both external forces and joint kinematics (81). As external joint moments 
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represent the forces acting on a joint, this information can provide an indication of 

internal forces required for to resist or counteract these forces, the internal joint 

moment (85). In relation to running injuries, greater joint moments could therefore 

represent greater loading of a joint or the surrounding muscles (85).  

2.1.2.3 Kinematics 

Kinematics is the description of joint movements and does not reflect the forces acting 

on the body (81). The focus of kinematics concerns the movement of specific joints of 

interest across three planes of movement, the sagittal, frontal and transverse planes. 

These movement patterns are most frequently measured as degrees of movement, 

either across the entire gait cycle, specific phases of the gait cycle such as mid stance, 

or at discrete points, such as peak joint angles during stance phase.     

The stance phase of running is the period of the gait cycle where external and internal 

forces are at their greatest and joint angles can reach their maximum. As such, the 

musculoskeletal system is considered to be placed under considerable external and 

internal loads. This time point of recreational endurance running is possibly when the 

body is most vulnerable to injury. This could explain why the stance phase has seen the 

most research attention with respect to running injuries. This thesis will discuss the 

biomechanical parameters associated with common running related injuries. As the 

current literature focuses on the stance phase of running, it is this period of the gait 

cycle that focus will be driven towards.  

 Achilles Tendinopathy 

2.1.3.1 Achilles Tendon Anatomy 

The Achilles tendon is comprised of fascicles originating from the medial and lateral 

head of the gastrocnemius and the soleus muscle (86). The medial head of the 

gastrocnemius arises from the popliteal surface of the femur and the lateral head arises 

from the posterolateral aspect of the femoral condyle (87). The soleus arises from the 

medial border of the tibia and the posterior surface of the fibula (87). As the fibres of 

the Achilles tendon descend distally, they begin to spiral forming a helical twist before 

attaching to the calcaneus. The fibres of the medial gastrocnemius rotate laterally and 
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posteriorly while the fibres of the lateral gastrocnemius rotate anteriorly (Figure 5) (88). 

The fibres of both the medial and lateral gastrocnemius appear to surround the soleus 

fibres, with the gastrocnemius fibres forming the superficial portion and Soleus forming 

the mid and deep portion of the Achilles tendon (Figure 5) (88). This complex anatomical 

arrangement, combined with independent function of the muscles comprising the 

Achilles tendon, is likely to influence the internal loading of the tendon; allowing for 

inter-fascicle sliding and non-homologous loading of the Achilles tendon which may 

have implications for pathology development.  

Figure 5: Transverse cross-section through the left Achilles tendon,1cm above tuber calcanei reprinted from Szaro et 
al (88). (1) The fibers from the medial part of the medial head of the gastrocnemius, (2) the fibers from the lateral 
part of the medial head of the gastrocnemius,(89) the fibers from the lateral head of the gastrocnemius and(4) the 

fibers from the soleus, A: anterior, P: posterior, M: medial, L: lateral. 

 

2.1.3.2 Pathomechanics of Achilles Tendiniopathy 

Although the exact pathomechanics of Achilles tendinopathy are poorly understood (90-

93), several biomechanical mechanisms have been suggested to contribute to pathology 

development. In 1984, Clement et al (94) proposed the “whiplash” theory, whereby 

excessive foot pronation and knee extension are thought to cause repeated “whipping” 

and “wringing” of the Achilles tendon, resulting in vascular impairment, micro-tearing 

and subsequent tendon degeneration. However more recently, theories have suggested 

that non-uniform displacements occurring between tendon fascicles (95-97), or 

elevated compressive and frictional forces between the adjacent plantaris tendon, may 

also play a role in tendinopathy development.  
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Several recent studies have reported the presence of non-uniform displacements 

occurring between tendon fascicles, suggesting this may form a mechanism triggering 

AT development (95-97). As the tendon is comprised of three distinct sub-tendons, each 

with a separate muscular origin, independent function of tendon portions may lead to a 

rise in interfascicle sliding and shear forces; causing damage to intermolecular cross links 

and leading to subsequent pathology development (92, 93, 95, 98). This non-uniform 

behaviour of tendon fascicles has been shown to be influenced by knee (99), ankle and 

foot kinematics (95, 96, 100-102) as well as muscle activation patterns within the triceps 

surae (97, 103). For example, in several separate studies, greater displacement of the 

mid and deep tendon relative to the superficial portion, has been observed as ankle 

dorsiflexion increases (95, 96, 100-102). Similarly, greater tendon displacements and 

strain has been observed within the soleus sub-tendon as knee flexion increases (99), as 

well as a strain increase of up to 15% observed within the medial aspect of the tendon 

with calcaneal eversion (104).   

Differences in muscle activation patterns between the soleus, medial and lateral 

gastrocnemius are also thought to influence non-uniform loading within the Achilles 

tendon (97, 103, 105). In an anatomical study by Finni et al (97), stimulation of the 

different muscles comprising the triceps surae were observed to cause an increase in 

interfascicle displacements and strains within the Achilles tendon. This is further 

supported by a biomechanical modelling study by Handsfield et al (103), reporting up to 

85% of the non-uniformity in tendon displacements to be explained by muscular forces 

exerted by the triceps surae. Considering muscle activation patterns of the triceps surae 

can vary with transverse plane foot rotation (106, 107), knee flexion (108) and rearfoot 

eversion (109), it is possible that running kinematics may contribute to altered muscular 

forces and tendon displacements. 

Recent studies have also suggested the plantaris tendon may play a role in mid portion 

Achilles tendinopathy (110-113). Although the exact anatomical position of the plantaris 

can demonstrate considerable inter-individual variation (113, 114), the tendon is 

reported to arise from the lateral aspect of the supracondylar line of the femur, passing 

distally between the medial gastrocnemius and soleus muscles to insert on the medial 
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aspect of the calcaneus (114). In some instances, the plantaris has been found to merge 

with the medial aspect of the Achilles tendon (113, 114). Biomechanical studies have 

reported the plantaris to be significantly stiffer and stronger than that of the Achilles 

tendon (111) and due to its anatomical position, has been shown to result in friction 

induced shear stress during repeated ankle plantarflexion (115), as well as elevated 

compressive forces with rearfoot eversion (116).  

Based on the current literature it appears that there may be several biomechanical 

mechanisms that could drive Achilles tendinopathy. These mechanisms could lead to 

excessive torsional, shearing and/or compressive stress’ placed upon the Achilles 

tendon. Subsequently contributing to repeat microdamage, triggering a pathological 

response and the onset of Achilles tendinopathy. Based on the proposed 

pathomechanical methods, runners with Achilles tendinopathy may be expected to 

demonstrate kinematic patterns at the knee and ankle such as increased knee and ankle 

dorsiflexion excursion, increased peak ankle dorsiflexion, increased peak knee flexion 

and increased rearfoot eversion. 

2.1.3.3 Biomechanics in Achilles Tendinopathy  

A visual summary of the number of studies and reported findings, investigating the 

difference in running kinematics and kinetics between runners with AT and injury free 

controls are presented in Table 2, Table 3, Table 4 & Table 5. 

2.1.3.3.1  Kinematics 

From a pathomechanical perspective, it is possible that increased ankle dorsiflexion and 

knee flexion during the stance phase of running could increase intra-tendinous shear 

stress and contribute to Achilles tendinopathy. However, based on current literature 

there is limited evidence to support such a link (Table 2). One study reported runners 

with AT to demonstrate increased peak ankle dorsiflexion and knee flexion angles during 

running (117), whereas further studies have failed to identify any significant difference 

in peak ankle dorsiflexion (118-121), dorsiflexion range of movement (118, 121) and 

peak knee flexion between runners with AT and controls (119, 120). One case control 

study reported reduced knee flexion range of movement amongst runners with AT (119) 
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and one prospective study observed runners with AT to demonstrate reduced peak 

ankle dorsiflexion and knee flexion (54). However, the prospective study by Hein et al 

(54) contained a small sample size of only 9 subjects. Therefore, based on the current 

findings there appears to be limited evidence to support the link between sagittal plane 

knee and ankle kinematics and Achilles tendinopathy.  

Table 2: Visual summary of the number of studies and reported findings, investigating the difference in distal 
running kinematics between runners with AT and injury free controls. Circle colour represents the study design and 
the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue 

= meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of Movement. 
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Similarly, there is currently a lack of evidence to support an association between 

rearfoot kinematics and AT (Table 2). Only one study in the literature has reported 

greater peak rearfoot eversion during running in subjects with AT (117), however this 

study selectively recruited subjects who demonstrated increased rearfoot eversion at 

baseline, thus confounding their results. Three studies have identified greater rearfoot 

eversion at initial contact (54, 120), one reported greater duration of eversion during 

the stance phase (55) and greater rearfoot eversion at toe off (55) and two studies 

reported greater eversion range of movement (120, 121) (Table 2). However, these 

studies should be interpreted in light of their limitations. Firstly, Ryan et al (121) had 

subjects run barefoot, which may not be a true representation of their normal runing 

gait, Hein et al, (54) were limited to a small sample size of only 9 subjects, and as 

mentioned earlier, Donoghue et al (120) selectively recruited subjects with increased 

rearfoot eversion at baseline. Combined with results from several further studies 

reporting no difference in peak eversion angles (55, 118, 120-122), maximal eversion 

velocity (55, 121) and eversion range of movement (55, 118, 121, 122), the evdience to 

support the pathomechanical model of intra-tendionous shear stress induced by 

rearfoot eversion, or Clement’s theory of repeated “whipping” and “wringing”, is 

currently lacking.  

The lack of evidence to support the role of lower limb kinematics is also supported by 

the results of three systematic reviews with two meta analyses (123-125) (Table 2). 

Based on the pooled findings across multiple cross-sectional studies, Sancho et al (123) 

and Mousavi et al (124), concluded that there is limited to strong evidence for no 

between-group difference in peak ankle dorsiflexion, ankle dorsiflexion range of 

movement, peak rearfoot eversion and eversion range of movement. However, Sancho 

et al (123) did acknowledge that current evidence regarding rearfoot kinematics is 

conflicting, due to the results of one study from Becker et al (55) suggesting there is 

some, albeit limited, evidence that rearfoot eversion at toe off and duration of rearfoot 

eversion is increased in runners with AT.  

Some very limited evidence suggests there could be a link between proximal kinematics 

and Achilles tendinopathy. In a study by Williams et al (126) they reported a group of 
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runners with AT to demonstrate reduced knee internal rotation during stance. On 

inspection of their data, this appeared to be the result of a greater femoral internal 

rotation on the tibia resulting in the appearance of reduced knee rotation. Results from 

Creaby et al (118) also point to potential proximal influences in AT, reporting hip internal 

rotation at peak vertical ground reaction force, to be 7.34⁰ greater amongst runners 

with AT compared to controls. Although this failed to reach statistical significance, there 

was a moderate effect size suggesting there may be potential proximal influences. 

Combined with some limited evidence reporting delayed onset and shorter activation 

periods of both gluteus medius and maximus amongst runners with AT (123), proximal 

influences for AT may warrant further research. Interestingly, there is a significant lack 

of evidence investigating hip, pelvis and trunk kinematics in AT with no current study 

reporting trunk or pelvis kinematics (Table 3).      
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Table 3: Visual summary of the number of studies and reported findings, investigating the difference in proximal 
running kinematics between runners with AT and injury free controls. Circle colour represents the study design and 
the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue 

= meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of Movement. 
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2.1.3.3.2 Kinetics  

Limited studies have investigated kinetic associations to Achilles tendinopathy (Table 4 

&Table 5). Of the available evidence, several studies have reported no difference 

between runners with AT and controls for peak vertical ground reaction force (55, 122, 

127), vertical impact peak (119, 122, 127), time to vertical impact peak (122) and vertical 

loading rate (119, 122) as well as both horizontal and frontal plane ground reaction force 

parameters (55, 119, 122, 127). These findings are further supported by the results from 
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two systematic reviews, reporting limited evidence for no significant difference in 

vertical and horizontal ground reaction force profiles between runners with AT and 

controls (123, 128).  

With regards to joint moments, only two separate studies have reported lower limb joint 

moments amongst runners with AT (118, 126) (Table 5). One study reported increased 

peak hip external rotator moment and hip adduction moment impulse (118) and 

another study reported reduced peak tibial external rotator moment (126), however the 

latter study was conducted in a small sample of only 8 runners who were asymptomatic 

at the time of testing. Therefore, based on these findings as well as the findings of a 

recent systematic review (123), there is currently limited evidence linking kinetic 

parameters to AT.   

Table 4: Visual summary of the number of studies and reported findings, investigating the difference in ground 
reaction force profiles during running between runners with AT and injury free controls. Circle colour represents the 
study design and the number of corresponding studies. Green = retrospective case-control study, red = prospective 

cohort study, blue = meta-analysis findings of a systematic review. Gaps indicate no reported findings. GRF = Ground 
Reaction Force. 
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Table 5: Visual summary of the number of studies and reported findings, investigating the difference in lower limb 
kinetics during running between runners with AT and injury free controls. Circle colour represents the study design 
and the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, 

blue = meta-analysis findings of a systematic review. Gaps indicate no reported findings.  
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2.1.3.4 Summary and limitations to the current literature 

Currently there is limited evidence supporting a link between altered running kinematics 

and AT. Although multiple biomechanical theories have been proposed to contribute to 

the development of AT, there is currently limited kinematic or kinetic evidence to 

support such a link. However, there are several limitations to the current literature 

which should be acknowledged. Firstly, the modelling techniques used to track rearfoot 

kinematics may not provide an accurate representation of true foot movement. Most 

studies calculate rearfoot kinematics using markers attached directly to the heel of the 

shoe, which may not be an accurate representation of the underlying movement of the 

foot (129-131). Sinclair et al (131) investigated the difference between foot mounted 

and shoe mounted markers on foot kinematics identifying shoe mounted markers to 

significantly underestimate frontal plane foot kinematics. Therefore, it is possible that 
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the lack of a clear link between rearfoot eversion and AT is due to the poor accuracy of 

kinematic measurements of the rearfoot. Second, a current gap within the literature is 

the distinct lack of studies investigating associations between proximal kinematics and 

AT (Table 3). Recent studies have shown the existence of a kinematic coupling between 

proximal and distal segments which may have an impact upon lower limb tissue stress. 

Specifically, studies have identified correlations between hip adduction, hip internal 

rotation and rearfoot eversion during running and walking (132-134). This suggests that 

aberrant proximal kinematics may influence foot and lower limb function. Frontal plane 

kinematics of the pelvis may also have an impact upon lower limb mechanics and tissue 

stress. As the pelvis drops away from the stance leg, there is medial shift in the centre 

of mass, which may contribute to altered foot pressure distribution and/or 

compensatory mechanics at the lower limb (135, 136). However, to date, no study has 

reported frontal plane pelvis kinematics amongst runners with AT. 

Currently, only one study has reported hip kinematics in runners with AT, suggesting a 

possible link between proximal kinematics and AT may exist (118). This is further 

supported by data from electromyographic studies identifying runners with AT to 

demonstrate delayed onset of gluteus maximus and gluteus medius muscle activity 

(137). Neuromuscular deficits at the hip have previously been linked to increased hip 

adduction excursion angles (138), suggesting that there may be associations between 

aberrant hip and pelvis kinematics and runners with AT that has not yet been 

investigated. Therefore, future should consider the role of proximal kinematics, 

particularly hip and pelvis kinematics, amongst runners with AT.  

 Medial Tibial Stress Syndrome  

2.1.4.1 Pathomechanics of Medial Tibial Stress Syndrome 

Medial tibial stress syndrome (MTSS) presents as an exercise induced pain syndrome 

along the posteromedial border of the tibia (139). The exact pathology is still debated 

with theories suggesting MTSS could be a fascial traction injury (140, 141) or a bone 

overload injury (142). It is possible that MTSS could represent a biomechanical overload 

syndrome, ranging along a clinical spectrum from fascial traction and tendinopathy, 
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periosteal oedema, periosteal remodelling, tibial bone stress reaction and tibial stress 

fracture (140, 141, 143-145). Therefore, these stages of pathology may all be considered 

as part of a MTSS continuum (144). It is thought that biomechanics increasing the load 

placed on the medial border of the tibia can contribute to gradual overload of the medial 

aspect of the tibia, resulting in pathology development. 

One mechanism of tibial overload is said to occur through increased traction of the 

crural fascia upon the medial tibial periosteum (140, 141, 145). It is possible that ankle 

invertor muscle activity may increase tension through the crural fascia, placing the 

medial border of the tibia under excessive traction stress, resulting in repeated 

microdamage to the periosteum (140, 141, 145). To investigate this idea Bouche & 

Johnson (145) increased the tension of the ankle invertors of cadavers while measuring 

periosteal strain at the medial tibia. As they increased tension of the tibialis posterior, 

flexor digitorum longus and soleus they found periosteal strain to increase linearly which 

they reported to be due to increased tension through the crural fascia. Given this 

finding, we may expect to observe kinematic patterns in people with MTSS which 

influence increased muscular work of the invertors. For example, it is possible that 

increased rearfoot eversion or internal rearfoot inversion moment, could create the 

need for an increase in biomechanical demand of the ankle invertors leading to overload 

of the medial tibia.  

Another mechanism of MTSS development is that of abnormal bending, torsion and 

shear forces placed on the tibia.  Long bones such as the tibia can withstand large 

amounts of compressive forces, however their ability to withstand torsional and shear 

stress is considerably lower (146). Subsequently abnormal forces are thought to cause 

excessive microdamage to the tibia and ultimately lead to tissue failure (147). George & 

Vashishth (146) investigated the effects of axial and torsional loading on the fatigue life 

of bovine tibias. They reported that combined torsional and axial loading resulted in a 

seven-fold decrease in the fatigue life of the tibia. Furthermore, in a histological study 

of tibia biopsies, Winters et al (148) identified the presence of microcracks, suggestive 

that abnormal biomechanical loading of the tibia results in overload and injury. Torsional 

loading to the tibia is likely to be influenced by frontal and transverse plane kinematics 
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at the foot, as well as proximal segments such as the hip, pelvis and trunk. It would 

therefore be hypothesised that runners with MTSS, may demonstrate abnormal forces 

in the medial to lateral direction and abnormal kinematics in the frontal and transverse 

planes at both distal and proximal segments. The kinematic and kinetic evidence 

supporting these ideas are discussed below.  

2.1.4.2 Biomechanics in medial tibial stress syndrome 

As MTSS can be considered a biomechanical overload syndrome to the medial boarder 

of the distal third of the tibia and the lack of clear diagnostic criteria for MTSS (139), this 

literature review included biomechanical studies of runners with a retrospective history 

of tibial stress fracture. This was deemed necessary due to the current lack of studies 

reporting the biomechanical characteristics of runners with a current diagnosis of MTSS 

(n = 4) (55, 149-151). Table 6, Table 7 and Table 8 provide a visual summary of the 

number of studies and reported findings, investigating the difference in running 

kinematics and kinetics between runners with MTSS and injury free controls. 

2.1.4.2.1 Kinematics 

Increased rearfoot eversion may contribute to both muscular traction at the medial tibia 

and abnormal torsional loading. This idea is supported by research from several case- 

control kinematic studies, including two prospective studies (149, 151) (Table 6), 

identifying runners with a history of MTSS to demonstrate increased peak rearfoot 

eversion (56, 149, 152), a more everted foot at toe off (55) and greater duration of 

rearfoot eversion during the stance phase (55, 151). As the ankle invertors are required 

to control eversion of the rearfoot, increased rearfoot eversion may lead to a greater 

biomechanical demand on the invertor muscles and a corresponding increase in 

muscular traction at the medial tibia. Repeated over several loading cycles, this may lead 

to overload of the periosteal boarder of the tibia and the development of MTSS.  
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Table 6: Visual summary of the number of studies and reported findings, investigating the difference in distal 
running kinematics between runners with MTSS and injury free controls. Circle colour represents the study design 

and the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, 
blue = meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of 

Movement. 
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Rearfoot eversion may also influence torsional loading of the tibia through dynamic 

coupling with the tibia. As the calcaneus everts during stance, the close articulations 

between the subtalar joint and tibia result in a concurrent increase in subtalar joint 

pronation and tibial internal rotation (153). As such, kinematic studies have shown 
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positive correlations between rearfoot eversion and tibial internal rotation during 

running (132, 153). As knee kinematics are the result of tibia motion relative to the 

femur, this may result in an increase in transverse plane knee motion, leading to 

elevated torsional forces at the tibia. However, in the current literature only one study 

has reported runners with a history of MTSS to demonstrate this coupling effect 

between increased rearfoot eversion and internal rotation of the tibia during running, 

resulting in increased peak knee internal rotation (56). A further three studies have 

failed to identify any difference in transverse plane knee kinematics between MTSS 

runners and controls (151, 152, 154). Therefore, current evidence does not appear to 

support an association between knee kinematics and MTSS (Table 6).      

Kinematics at proximal segments such as the hip, pelvis and trunk may also contribute 

to abnormal loading placed on the tibia and influence distal kinematics at the foot. Two 

studies have reported increased hip adduction angles in runners with MTSS (56, 152) 

with one additional study reporting increased hip internal rotation (150) (Table 7). It is 

thought that hip adduction and internal rotation will alter the load distribution through 

the lower limbs, increasing the torsional forces placed on the tibia (56, 152). Due to the 

tight articulations between the rearfoot and tibia, as well as the tibia and femur, it is 

also possible that hip kinematics could have a direct impact upon rearfoot kinematics 

(155). Luz et al (132) investigated this link between proximal and distal kinematics 

reporting positive correlations between hip adduction and rearfoot eversion during 

running (132). However, there is conflicting evidence from one prospective study and 

two case-control studies, who failed to identify any significant difference in peak hip 

adduction (149, 154) and peak hip internal rotation (149, 152, 154) (Table 7). Therefore, 

although there is a theoretical link between hip kinematics and lower limb tissue stress, 

there is only a limited number of studies reporting hip kinematics amongst runners with 

MTSS, with no systematic review formally investigating the role of kinematics in MTSS. 

Consequently, further evidence is needed to support the association between hip 

kinematics and MTSS.   
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Table 7: Visual summary of the number of studies and reported findings, investigating the difference in proximal 
running kinematics between runners with MTSS and injury free controls. Circle colour represents the study design 

and the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, 
blue = meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of 

Movement. 
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Movements of the pelvis are also likely to have an influence on lower limb mechanics, 

influencing MTSS development. Two studies have identified increased contralateral 

pelvic drop amongst runners with MTSS (149, 150) (Table 7). It is possible that 

contralateral pelvic drop my influence MTSS through compensatory lower limb 

kinematics or by altering the force distribution through the lower limbs. Lin et al (156) 

reported that contralateral pelvic drop is the kinematic parameter which most strongly 

influences medio-lateral displacement of the centre of mass. As the pelvis drops away 
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from the stance limb, there is a medial shift in the centre of mass (136). Consequently, 

lower limb pressure distribution is likely to be altered and compensatory kinematics, 

such as increased hip adduction or ipsilateral trunk lean may occur in order to maintain 

balance (135, 136, 157). Therefore, elevated contralateral pelvic drop could conceivably 

impact MTSS by increasing torsional and bending forces on the tibia, as the centre of 

mass shifts in the medio-lateral direction and/ or through the influence upon 

subsequent hip and foot kinematics.  

2.1.4.2.2 Kinetics 

Several studies have focused on ground reaction force parameters, suggesting a link 

between vertical loading rates and tibial stress fracture (Table 8). Vertical loading 

profiles are thought to provide a measure of the magnitude or “dose” of loading applied 

to the tibia, with elevated loading rates representing the speed in which impact loading 

forces are applied. It is thought that due to the viscoelastic properties of musculoskeletal 

structures, elevated loading rates may lead to earlier tissue fatigue and failure (52, 53). 

Several studies provide evidence to support a link between elevated vertical loading 

rates in runners with a history of tibial stress fracture (Table 8), including three 

retrospective case control studies (52, 56, 158) and the pooled results from two meta-

analysis (128, 159).  

Additionally, a number of studies have reported MTSS subjects to demonstrated 

elevated peak positive tibial accelerations (52, 56, 160) and elevated free moment (56, 

161). Free moment represents the rotational force required to resist adduction or 

abduction of the foot relative to the ground (162), with elevated free moment suggested 

to represent greater torsional loading applied to the lower limb during stance. The 

magnitude of free moment is directly influenced by the magnitude of foot pronation 

(162), further supporting the link between rearfoot eversion and torsional loading of the 

lower limb.     
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Table 8: Visual summary of the number of studies and reported findings, investigating the difference in ground 
reaction force profiles and lower limb kinetics during running between runners with MTSS and injury free controls. 

Circle colour represents the study design and the number of corresponding studies. Green = retrospective case-
control study, red = prospective cohort study, blue = meta-analysis findings of a systematic review. Gaps indicate no 

reported findings. GRF = Ground Reaction Force. 
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However, it should be noted that a number of studies have failed to identify any 

association between vertical ground reaction force profiles and MTSS (52, 55, 151, 163, 

164) (Table 8), with recent studies questioning whether ground reaction force metrics 

accurately represent tibial bone loading (165, 166). Matiijecich at al (165) investigated 

whether common vertical ground reaction force metrics such as the active vertical peak, 

vertical impact peak, average vertical loading rate and vertical impulse, correlated to 

tibial bone loads using inverse dynamics. The authors reported poor correlations 

between the two, concluding that ground reaction force metrics do not accurately 
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represent the internal stress placed upon the tibia. In a further study, Loundagin et al 

(166) examined the fatigue behaviour of cortical bone using vertical loading rates similar 

to that encountered during running. Their results concluded that impact loading rate 

appears to have little influence on the mechanical fatigue behaviour of the bone when 

compared to loading cycles at lower loading rates. These results suggest that vertical 

ground reaction force metrics may not be as important as first thought. Considering 

tibial bone has been shown to have a lower fatigue life when subject to torsional loads, 

it is possible that the total force applied to the tibia is less important than the direction 

in which force is applied to the tibia. Alternatively, it may be that elevated loading rates, 

combined with kinematic parameters influencing torsional and bending forces, result in 

excessive stress applied to the medial tibia.  

Creaby & Dixon (167) provide evidence to support the theory of abnormal bending 

forces contributing to MTSS. They reported 10 subjects with a history of MTSS to 

demonstrate a more medially directed ground reaction force at mid stance when 

compared to healthy controls. They suggested, that as the ground reaction force shifts 

medially, there will be an increase in the lever arm between the ground reaction force 

vector and the knee joint centre. As a result, there is likely to be an increase in the 

external bending forces at the distal tibia. Interestingly, the direction of the force vector 

could be influenced by frontal plane kinematics such as contralateral pelvic drop, hip 

adduction and rearfoot eversion (135, 136). However, Creaby & Dixon (167) failed to 

report kinematic data and therefore the reason for a more medially directed GRF 

remains unknown. 

2.1.4.3 Summary and Limitations to the current literature 

Medial tibial stress syndrome is a biomechanical overload syndrome of the medial 

boarder of the tibia, which appears to be influenced by excessive torsional, bending and 

shear stress. Current literature suggests the potential for several kinematic variables to 

influence muscular traction and torsional loading to the medial tibia, including:   

• increased rearfoot eversion 

• increased hip adduction 
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• increased contralateral pelvic drop 

The current literature review also highlights evidence of an association between kinetic 

parameters and tibial stress fractures. Such parameters include: 

• Increased vertical loading rates 

• Elevated peak positive tibial accelerations 

• Increased free moment 

• Medially or laterally directed ground reaction force vector 

It is possible that these parameters could lead to progressive overload to the bone 

resulting in subsequent tibial stress fracture. However, recent studies have suggested 

that ground reaction force variables may not accurately represent tibial bone loading. It 

is possible that external loads applied to the tibia only become problematic when 

combined with kinematic patterns that influence the direction of stress applied.  

Importantly, there appears to be a lack of studies investigating proximal kinematics of 

the trunk and pelvis within runners with MTSS (Table 7) as well as very limited evidence 

reporting the kinematic characteristics of runners with current MTSS (n = 4) (55, 149-

151). From a clinical perspective, understanding the kinematics associated with MTSS 

may allow for a greater insight into the underlying injury drivers and allow clinicians to 

direct appropriate treatment interventions.  

 Patellofemoral Pain Syndrome  

2.1.5.1 Pathomechanics of Patellofemoral Pain Syndrome 

Patellofemoral pain is thought to be the result of elevated patellofemoral joint stress, 

resulting in increased stress to the underlying tissues including the chondral surface, 

subchondral bone and infrapatellar fat pad (168, 169). When exposed to repeat loading 

cycles, elevated joint stress may lead to an increase in chondral shear stress, an increase 

in subchondral bone metabolic activity (170), elevated patella bone water content (171) 

and excitation of nociceptors (168, 169, 172). Mechanically, elevated patellofemoral 

joint stress may be influenced via two mechanisms, diminished contact area between 

the patella and trochlea groove resulting in elevated contact pressures between the 
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patella and femoral condyles (169), or via elevated patellofemoral joint reaction forces 

(168).  

2.1.5.1.1 Patellofemoral contact pressures 

Decreased contact area between the patella and trochlea groove may be influenced by 

frontal and transverse plane tibiofemoral kinematics of the femur and tibia and the 

resulting impact upon patellofemoral joint congruence (173). Specifically, femoral 

internal rotation and/ or adduction are thought to cause a medial translation of the 

femur underneath the patella, giving rise to elevated lateral patellofemoral contact 

pressures (173, 174) (Figure 6). Liao & Powers (50) investigated the effects femur and 

tibia kinematics upon patella cartilage stress during a 45⁰ squatting task. Systematically 

varying femur and tibia angles, they reported that a 6⁰ increase in femoral internal 

rotation resulted in a 41% increase in patella cartilage stress, while a 10⁰ increase in 

femoral adduction resulted in a 43% increase in patella cartilage stress (50). These 

results are supported by further modelling studies reporting significant increases in 

cartilage stress with femoral internal rotation (50, 175, 176), highlighting the influence 

of frontal and transverse plane kinematics of the femur on patella cartilage stress.  
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Figure 6: Diagrammatic illustration of tibiofemoral mechanics on patellofemoral joint positioning. Figure adapted 
from Lee et al (176). 

Left = Internal femoral rotation and/or external tibial rotation results in a medial translation of the femur relative to 
the patella, reducing contact between the patella and trochlea grove and increasing contact pressures between the 
patella and lateral femoral condyle. Right = neutral positioning of the tibia and femur results in increased contact 

between patella and trochlea grove. 

 

Several studies have also reported associations between tibial external rotation and 

increased patella cartilage stress (50, 175-177). It is thought that external tibial rotation 

shifts the tibial tuberosity lateral to the femur, creating a lateral pull on the patella 

leading to a subsequent increase in the contact pressures between the patella and 

lateral femoral condyle.   

Lateral patella contact pressures may also be influenced by kinematic patterns 

influencing patella movement relative to the femur. In an ultrasound study by 

Herrington & Law (178), they found increased hip adduction angles resulted in a 

significant increase in lateral patella translation. They suggested that as the hip adducts, 

iliotibial band tension increases, resulting in lateral tracking of the patella. Although this 

may result from movement of the femur relative to the patella as the hip adducts, 

further studies have reported isolated movement of the patella to occur in response to 

changes to iliotibial band tension. Specifically, experimentally induced iliotibial band 

tension has been shown to result in significantly increased lateral patella translation, 

lateral patella tilt and smaller distances between the patella and lateral femoral condyle 

(179-181). Kinematically increased iliotibial band tension has been shown to be 

influenced by hip adduction (181), contralateral pelvic drop and contralateral trunk lean 
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(182). Therefore, it is possible that runners with PFP may exhibit either increased 

contralateral pelvic drop, contralateral trunk lean or increased hip adduction during 

running. These kinematic patterns could lead to elevated iliotibial band tension resulting 

in lateral tracking of the patella and elevated contact pressures between the patella and 

lateral femoral condyle.   

2.1.5.1.2 Patellofemoral Joint Reaction Force 

Lower limb kinematics may influence both the magnitude and the direction of the 

patellofemoral joint reaction force (PFJRF). Frontal and transverse plane kinematics can 

influence the mediolateral direction of the force, whereas sagittal plane kinematic may 

influence the posterior component of the force and therefore the compressive force 

acting upon the joint (168, 183). Lenhart et al (51) investigated the effects of knee flexion 

angle on the peak patellofemoral force, reporting that peak stance phase knee flexion 

angle explained up to 68% of the peak patellofemoral force. It is often thought that 

elevated compressive forces placed upon the patellofemoral joint, may contribute to 

tissue overload and pathology development (168, 184). Therefore, it is possible that 

runners with PFP may demonstrate increases in knee flexion angles, driving elevated 

patellofemoral joint stress and injury.   

Based on current cadaveric and modelling studies, patellofemoral joint stress may be 

influenced by several kinematic patterns. Those that influence contact pressures 

between the lateral femoral condyle and the patella, such as increased hip adduction, 

hip internal rotation and tibial external rotation; and those that increase compressive 

forces acting on the patellofemoral joint such as increased knee flexion. The following 

sections will discuss the literature reporting the biomechanical characteristics of runners 

with PFP.  

2.1.5.2 Biomechanics in Patellofemoral Pain  

A visual summary of the number of studies and reported findings, investigating the 

difference in running kinematics and kinetics between runners with PFP and injury free 

controls are presented in Table 9, Table 10, Table 11 and Table 12 . 
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2.1.5.2.1  Kinematics  

Several studies have investigated differences in hip kinematics between runners with 

PFP and controls including one recent systematic review with meta-analysis (185) (Table 

9). Four studies reported no difference in peak hip adduction between runners with PFP 

and controls (186-189), while a further six case control studies (58, 190-194) and one 

prospective study (57) have reported runners with PFP to demonstrate significantly 

increased peak hip adduction when compared to controls. Combined with the pooled 

results from one meta-analysis (185), runners with PFP appear to demonstrate 

significantly increased peak hip adduction angles when compared to controls. 

Therefore, these findings support the pathomechanical theory that increased hip 

adduction could lead to greater contact pressures between the lateral femoral condyle 

and the patella leading to PFP (50, 169, 195).   
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Table 9: Visual summary of the number of studies and reported findings, investigating the difference in proximal 
running kinematics between runners with PFP and injury free controls. Circle colour represents the study design and 
the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue 

= meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of Movement. 
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Current literature investigating the association between hip internal rotation and PFP 

remains conflicting (Table 9). Despite six case control studies reporting increased hip 

internal rotation amongst runners with PFP (188, 191-193, 196, 197) and one meta-

analysis (185), a further seven case control studies (58, 132, 186, 187, 189, 194, 198) and 

one prospective study (57) have failed to identify any significant association. Although 

the pooled results from a recent meta-analysis suggest there is moderate evidence for 

a significant association between hip internal rotation and PFP (185), since publication 



 

43 | P a g e  
 

in 2016 a further two studies have failed to identify any difference in peak hip internal 

rotation between runners with PFP and controls (132, 194). Therefore, whether peak 

hip internal rotation is commonly associated with PFP remains uncertain and should be 

interpreted cautiously.  

The lack of conclusive evidence may possibly be explained by the poor reliability and 

large measurement errors associated with transverse plane kinematic measurements of 

the hip (199-201). During data collection of transverse plane hip kinematics, soft tissue 

artefact is frequently observed to cause excessive marker movement on the skin 

resulting in large measurement errors (202, 203). This would likely result in large 

between-subject movement variability as observed in many current studies and may not 

accurately represent true transverse plane kinematics of the femur (202, 203). For 

example, standard deviations as high as 7.6⁰ (194) have been reported amongst current 

kinematic studies, suggesting large between-subject kinematic variability. The large 

variability observed may subsequently limit the ability to detect small between-group 

differences as significant. Consequently, resulting in the failure to identify clear 

associations between hip internal rotation during running in PFP cohorts. Considering 

the strong links between hip internal rotation and patellofemoral joint stress amongst 

many modelling studies (50, 169, 204), the association between this parameter and PFP 

amongst runners may still warrant further consideration. However, there needs to be 

careful consideration of the reliability and validity of measurements of transverse plane 

hip kinematics before clinical conclusions can be made.    

Knee abduction and external rotation are also thought to influence lateral 

patellofemoral contact pressures causing a lateral translation of the patella relative to 

the femur. However, to date there appears to be a limited number of studies reporting 

knee kinematics in runners with PFP (Table 10). One study reported increased knee 

external rotation amongst runners with PFP (190), while one further study has reported 

no difference between runners with PFP and controls (193). Two studies have reported 

runners with PFP to demonstrate significantly greater knee abduction angles when 

compared to injury free runners (187, 191), while one additional study has reported no 
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difference (193). Therefore, it appears there is some, but limited evidence to support 

the association between increased knee abduction and PFP.    

Table 10: Visual summary of the number of studies and reported findings, investigating the difference in distal 
running kinematics between runners with PFP and injury free controls. Circle colour represents the study design and 
the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue 

= meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of Movement. 
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Contralateral pelvic drop is also kinematic feature that may influence patellofemoral 

joint stress via several mechanisms. Contralateral pelvic drop has been shown to 

increase tension of the ITB (182) which may result in a lateral displacement of the patella 
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(180). Conversely, contralateral pelvic drop may also influence a compensatory trunk 

lean towards the stance limb (157) and/ or compensatory hip adduction (156, 157). 

Currently, only one study has reported increased contralateral pelvic drop amongst 

runners with PFP (58) with three further studies reporting no significant difference 

between PFP runners and controls (186, 187, 192) (Table 9). However, when these 

results were pooled within a systematic review and meta-analysis, there was found to 

be an increase in contralateral pelvic drop amongst runners with PFP (185). 

Interestingly, there is very limited evidence reporting trunk kinematics amongst runners 

with PFP (Table 9).   

2.1.5.2.2 Kinematics influencing patellofemoral joint reaction force (PFJRF) 

Peak knee flexion angles have been associated with elevated patellofemoral joint 

reaction forces. In a study by Lenhart et al (51) peak knee flexion during stance was 

found to explain up to 68% of the variance in peak patellofemoral force. Currently only 

a limited number of studies have reported peak knee flexion angles amongst runners 

with PFP (Table 10). Fox et al (191) reported increased peak knee flexion amongst 

runners with PFP, Bazett-Jones et al (187) reported runners with PFP to demonstrate a 

non-significant 3.5⁰ increase in peak stance knee flexion, while four further studies have 

reported no difference in peak knee flexion between runners with PFP and controls (58, 

189, 194, 197). Therefore, there is currently a lack of evidence to support an association 

between peak knee flexion and PFP.   

2.1.5.2.3 Kinetics 

Elevated patellofemoral joint stress (PFJS) has been identified during walking (205) and 

squatting (206) amongst individuals with PFP. However, currently there is limited 

evidence to support an association between elevated PFJRF or peak patellofemoral joint 

stress amongst runners with PFP (Table 11). With respect to patellofemoral joint stress, 

Wirtz et al (197) reported no significant difference between runners with PFP and 

controls, while only one study has investigated peak PFJRF during running, reporting 

lower peak values amongst runners with PFP (184). However, the same study did report 

a more laterally directed PFJRF to be associated with PFP (184). Therefore it is possible 

that a more laterally directed force could contribute to elevated shear stress placed 
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upon the patellofemoral joint during running, which may be impart explained by altered 

frontal and transverse plane tibiofemoral kinematics (184).  

It is important to note the limitations to both modelling studies. Patellofemoral joint 

stress is influenced by the PFJRF and the patellofemoral contact areas to which the force 

is applied (PFJS = PFJRF/ contact area). With either a greater PFJRF or smaller contact 

area leading to increased PFJS (205). While both studies calculated the PFJRF, neither 

study accounted for subject specific anatomical variations which may influence contact 

areas (205) and therefore may not accurately represent subject specific patellofemoral 

joint stress. Furthermore, Wirtz et al (197) did not include transverse plane kinematics 

within their model. Considering transverse plane hip kinematics may influence 

patellofemoral contact areas, there may have been a considerable underestimation of 

patellofemoral joint stress within these studies.  
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Table 11: Visual summary of the number of studies and reported findings, investigating the difference in lower limb 
kinetics during running between runners with PFP and injury free controls.  

Circle colour represents the study design and the number of corresponding studies. Green = retrospective case-
control study, red = prospective cohort study, blue = meta-analysis findings of a systematic review. Gaps indicate no 

reported findings. 
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There is currently limited evidence regarding the association between joint moments 

amongst runners with PFP (Table 11). One study reported greater internal knee 

abductor moment impulse in runners with PFP (207), with a further study reporting 

increased knee abductor moments amongst male runners with PFP (58). Conversely, 

additional studies have reported no difference between runners with PFP and controls 

for peak knee extensor moment (187, 190, 197), knee abductor moment (187), knee 

external rotation moment (187) or hip abductor moment (187). Similarly, there is a lack 

of evidence to support an association between Ground Reaction Force parameters 
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amongst runners with PFP (Table 12). Therefore, it appears there is currently limited 

evidence for the role of kinetics in PFP.  

Table 12: Visual summary of the number of studies and reported findings, investigating the difference in Ground 
Reaction Force Parameters during running between runners with PFP and injury free controls.  

Circle colour represents the study design and the number of corresponding studies. Green = retrospective case-
control study, red = prospective cohort study, blue = meta-analysis findings of a systematic review. Gaps indicate no 

reported findings. GRF = Ground Reaction Force. 
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2.1.5.3 Summary and limitations of the current literature 

The current literature suggests PFP may be influenced by kinematic patterns influencing 

patellofemoral contact areas resulting in elevated patellofemoral shear stress. With 

regards kinetic parameters, there is currently a lack of evidence to suggest kinetic 

parameters are associated with PFP. Conversely, substantial evidence exists to support 

the association between kinematic parameters and PFP. Identified parameters include: 

• Increased peak contralateral pelvic drop 

• Increased peak hip adduction 

• Increased peak knee abduction 
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Several kinematic parameters including peak hip internal and knee external rotation 

demonstrate a plausible pathomechanical method of tissue stress, however there is 

conflicting evidence regarding their association with PFP. This may be due to large 

measurement errors and inter-subject variability associated with these parameters 

which therefore warrants further investigation.    

 Iliotibial Band Syndrome 

2.1.6.1 Anatomy of the iliotibial band 

Anatomically the iliotibial band (ITB) is comprised of dense regular collagen and a small 

degree of elastin fibres (208). The ITB can be separated into both a tendinous portion 

and a ligamentous portion (209) (Figure 7). The tendinous portion originates from the 

pelvis via the gluteus maximus and tensor fascia latta, descending along the lateral thigh, 

continuous with the surrounding fascia, the vastus lateralis and biceps femoris (210), 

inserting along the linea aspera, lateral femoral condyle and lateral femoral epicondyle 

(208, 209, 211). The ligamentous portion arises from the lateral femoral condyle 

inserting into the lateral retinaculum of the patella, Gerdy’s tubercle of the tiba and 

fibula head (209, 212). Underneath the attachment at the lateral femoral condyle lies a 

layer of highly vascular adipose tissue, referred to as a fat pad, containing several 

pressure sensitive Pacinian corpuscles (209).  

The complex anatomy of the ITB means it has multiple functional roles during gait, 

including transmission of force from proximal muscles to the lower limbs (213), storage 

and return of elastic energy during gait (213) and providing anterolateral stability at the 

knee (214, 215).  
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Figure 7: Iliotibial band anatomy reprinted from Fairclough et al (209).  
Figure a & b highlight the appearance of the ITB under progressively greater knee flexion angles. Ten = tendinous 

portion, lig = ligamentous portion, VL = vastus lateralis, B = biceps femoris tendon, E = femoral epicondyle, G = 
Gerdy’s tubercle. As knee flexion increases between figure a & b, ITB tension can be seen to shift from the anterior 

portion (A) to the posterior portion (B), highlighted by the point arrow.   

 

2.1.6.2 Pathomechanics of Iliotibial Band Syndrome 

Historically iliotibial band syndrome has been considered a friction syndrome at the 

lateral knee (216-218). The proposed pathomechanical model was that during repeated 

knee flexion and extension the ITB would mechanically slip across the lateral femoral 

condyle (216). This repeated friction was thought to result in inflammation of an 

underlying bursa between the iliotibial band and lateral femoral condyle subsequently 

leading to pain. However, recent anatomical studies have reported that there is no such 

bursa between the ITB and lateral femoral condyle, and that the distal fibres of the ITB 

are in fact firmly anchored to the lateral femoral condyle (209, 212, 219). These findings 

suggest that the historic pathomechanical model of friction and bursa inflammation is 

not anatomically plausible (219).  

More recently anatomical studies of the iliotibial band have led to suggestions that the 

pathomechanics are that of a compression syndrome, rather than a friction syndrome 

(209, 212, 219). Fairclough et al (209) conducted a series of examinations including both 
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cadaveric examination and magnetic resonance (220) imaging of the iliotibial tract, as 

well as reporting the MR findings of two runners with current iliotibial band pain. The 

results from this study have provided several important anatomical and mechanical 

findings which may explain the pathomechanics of ITB pain. Firstly, their anatomical 

investigation identified the presence of a richly innervated and vascularised fat pad that 

sits in between the ITB and the femur, proximal to the lateral femoral condyle. 

Histologically, the fat pad itself was found to contain several pressure sensitive Pacinian 

corpuscles as well as myelinated and unmyelinated nerve fibres. Second, they found that 

as the knee moves from extension to 30⁰ knee flexion, ITB tension increases and the 

vastus lateralis extends distally resulting in elevated compression of the fat pad. Finally, 

MR imaging of the runners with ITB pain found MR signal changes within the underlying 

fat pad. Collectively these findings suggest that mechanics influencing tension of the 

iliotibial band may increase compressive forces acting on the underlying pressure 

sensitive fat pad resulting in pain (209, 219). Considering the vast proximal and distal 

anatomical connections of the ITB, it is possible that ITB tension may be influenced by 

both proximal and distal mechanisms.  

A possible distal mechanism for increased ITB tension is increased knee adduction and 

transverse plane tibial rotation. Cadaveric studies have reported that firm connections 

exist between the lateral femoral condyle and the tibia (214, 215). These connections 

form the ligamentous portion of the ITB acting as a stabilising structure providing 

resistance to knee internal rotation and adduction (214, 215). Several studies have 

investigated the structures of the knee responsible for providing resistance to knee 

internal rotation and adduction. By systematically transecting the anterolateral 

structures of cadaver knees, authors have found the iliotibial band provides significant 

resistance to knee internal rotation (221-223) and adduction (223). This suggests that 

the distal, ligamentous portion of the ITB acts to provide rotational stability of the knee. 

Therefore, it is possible that excessive knee internal rotation and adduction will increase 

the tension placed on the ITB and may contribute to ITBS development. 

A second, possible proximal mechanism for increased ITB tension, is tissue lengthening 

which may be a consequence of the motion occurring at the hip and pelvis. Proximally 
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the ITB originates from the tensor fascia latta which attaches to the pelvis, before 

descending to attach on the lateral condyle of the femur. Combined contralateral pelvic 

drop and hip adduction will lengthen the distance between these proximal and distal 

attachments, thereby increasing ITB tension. In support of this idea Tateuchi et al (182) 

used ultrasonic imaging to investigate tissue changes to the distal ITB while pelvis and 

hip angles were changed. They reported that hip adduction and contralateral pelvic drop 

resulted in a significant increase in distal ITB tension. Furthermore, in a musculoskeletal 

modelling study, Hamill et al (224) found ITB strain and strain rate to be significantly 

greater amongst runners with ITBS and that both strain and strain rate appeared to be 

correlated with increased hip adduction during stance. This suggests that ITB tension 

may be increased through tissue lengthening induced by both contralateral pelvic drop 

and hip adduction angles, thereby supporting the lengthening mechanism for tissue 

stress.  

Based on the anatomy of the ITB and underlying pathology, it is possible that kinematic 

patterns may contribute to increased tension in the iliotibial band leading to pathology 

development. As such we may expect to find kinematic differences between runners 

with iliotibial band syndrome and healthy controls. Based on the pathomechanical 

model discussed, it would be likely that frontal plane pelvis and/or hip kinematics as well 

as frontal and transverse plane kinematics at the knee, would be expected amongst 

runners with ITBS.  

2.1.6.3 Biomechanics in Iliotibial Band Syndrome 

A visual summary of the number of studies and reported findings, investigating the 

difference in running kinematics and kinetics between runners with PFP and injury free 

controls are presented in Table 13, Table 14, Table 15 and Table 16. 

2.1.6.3.1 Kinematics 

Several biomechanical studies have investigated the differences in transverse plane 

knee kinematics between runners with ITBS and controls (Table 13). Runners with ITBS 

have been found to demonstrate increased peak knee internal rotation in one 

retrospective case control study (26, 59) and one prospective study (38) and increased 
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peak knee adduction in two case control studies (225, 226). Based on cadaver studies of 

the distal ITB, these kinematics will likely increase the tension of the distal fibres of the 

ITB in order to resist lateral and rotational movements of the knee (214, 215, 223). 

However, it is worth noting that additional studies have failed to identify any difference 

in peak knee internal rotation (227-229) or knee adduction angles (229, 230) between 

runners with current ITBS and controls. Despite this, pooled results from two systematic 

reviews with meta-analyses suggest that based on current evidence there appears to be 

a significant association between increased knee internal rotaiotn and ITBS (124, 231) 

(Table 13).  
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Table 13: Visual summary of the number of studies and reported findings, investigating the difference in distal 
running kinematics between runners with ITBS and injury free controls. Circle colour represents the study design and 
the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue 

= meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of Movement. 
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Data to support the role of foot and tibia kinematics currently remains limited (Table 

13). In one prospective study by Noehren et al (59), a small subgroup of 4 runners who 

developed ITBS, were found to demonstrate increased peak rearfoot eversion and tibial 
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internal rotation. However, on a group level, no significant difference was reported 

when compared to controls (59). A finding further reiterated by several retrospective 

case-control studies (26, 228, 229, 232, 233). Interestingly, a recent meta-analysis 

reported runners with ITBS to demonstrate reduced peak rearfoot eversion (124), 

however the mechanism in which this contributes to ITBS tissue stress and injury 

development is poorly understood.  

Currently, there is some evidence to support the theory of increased ITB tension being 

driven by proximal mechanics at the hip, however this evidence remains conflicting and 

inconclusive (Table 14). Three retrospective studies and one prospective study (59) have 

reported increased hip adduction in ITBS subjects (26), supporting the theory that hip 

adduction may increase ITB tension by increasing ITB strain associated with lengthening 

the proximal and distal attachment sites (224). However several further studies have 

either failed to identify any difference in hip adduction angles (25, 225, 227, 229, 230, 

234, 235) or reported ITBS subjects to demonstrate significantly reduced hip adduction 

when compared to controls (228, 232).  

The conflicting evidence is also compounded by the results of two systematic reviews 

with meta-analysis. Both Mousavi et al (124) and Aderem and Louw (231) reported that 

there is currently conflicting evidence suggesting no significant difference in peak hip 

adduction between runners with ITBS and controls. However, both meta analyses 

pooled the results from studies with several methodological limitations (124, 231). 

Furthermore, the review by Aderem et al (231) did not include the results of the 

prospective work by Noehren et al (59) which may have influenced their findings.  
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Table 14: Visual summary of the number of studies and reported findings, investigating the difference in proximal 
running kinematics between runners with ITBS and injury free controls. Circle colour represents the study design and 
the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue 

= meta-analysis findings of a systematic review. Gaps indicate no reported findings. RoM = Range of Movement. 
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There are several methodological limitations that may explain the conflicting results in 

the current literature. Firstly, Grau et al (228, 236) made subjects run barefoot across a 

13 meter runway. Barefoot running has been suggested to cause kinematic changes 

including reduced hip adduction (237) and is therefore not representative of subject’s 

normal running. Secondly, both Foch & Milner (235) and Grau et al (228) used ITBS 

subjects who were injury free at the time of data collection. In a later study by Foch et 

al (227), runners with a prior history of ITBS, asymptomatic at the time of testing, were 

found to demonstrate reduced hip adduction angles compared to those with current 
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ITBS. This suggests that kinematic patterns driving ITBS may have been resolved at the 

time of testing in the studies by Foch & Milner (235) and Grau et al, (228).  

Finally, sex specific differences in running kinematics may also explain the conflicting 

results. Currently, the studies identifying greater hip adduction angles in ITBS included 

only female subjects (26, 59), whereas those which failed to identify differences in hip 

adduction included male participants only (225) or mixed sex groups (228-230, 232). 

Previous research has suggested female runners (238) and female ITBS runners (239), 

demonstrate greater hip adduction angles when compared to males. Therefore, it is 

possible that large methodological limitations have influenced the results of several 

studies and as such the association between hip adduction and ITBS remains limited.  

An important kinematic consideration is the role of the pelvis and trunk, which may 

influence lower limb kinematics and tissue stress. Currently there is a limited number of 

studies investigating frontal plane pelvis and trunk kinematics in ITBS populations (Table 

14). One study has reported no difference between ITBS groups and controls for trunk 

and pelvis kinematics (240), while a further study reported increased ipsilateral trunk 

lean, but no difference for contralateral pelvic drop (227). Consequently, there remains 

conflicting literature regarding the role of trunk lean in ITBS and a lack of evidence to 

support the presence of differences in frontal plane pelvis kinematics (25, 124). Reasons 

for the insignificant frontal plane pelvis kinematics could again be explained by the 

inclusion of asymptomatic subjects in the study by Foch & Milner (241). Conversely, in 

the study by Foch et al (227), greater ipsilateral trunk lean may have been a 

compensatory pattern in order to prevent excessive contralateral pelvic drop. 

Therefore, further research is needed to investigate the role of frontal plane pelvis and 

trunk kinematics in ITBS.  

2.1.6.3.2 Kinetics 

Currently there is limited evidence to suggest kinetics are a risk factor for ITBS. Joint 

moments have been studied in a limited number of studies with conflicting results (Table 

15). One study reported increased internal rearfoot invertor moment to be associated 

with ITBS (26), whereas a prospective study reported no difference in rearfoot inversion 



 

58 | P a g e  
 

moment between runners who developed ITBS and those who did not (59). At the knee, 

two studies have reported no difference in knee external rotator moment between 

runners with ITBS and controls (26, 59), while Stickley et al (226) reported increased 

external knee adductor moments in runners with ITBS. It is possible that increased knee 

adductor moments may increase the demand on the ITB to resist knee varus forces, 

however an additional study by Foch & Milner (235) reported no difference in peak knee 

adductor moments between runners with ITBS and controls, therefore current evidence 

regarding frontal plane knee moments remains conflicting. At the hip, Stickley et al (226) 

reported increased external hip adductor moments amongst runners with ITBS, which is 

in contrast to the findings of three further studies reporting no difference in frontal 

plane hip moments between ITBS subjects and controls (26, 59, 227). Therefore, it would 

appear there is limited evidence to suggest an association between runners with ITBS 

and joint moments.  

Similarly, there appears to be limited evidence to support a link between vertical ground 

reaction force profiles and ITBS (Table 15). Three studies have compared ground 

reaction force parameters between runners with ITBS and controls (226, 229, 233). 

Luginick et al (229) reported greater peak vertical ground reaction force and a more 

medially directed ground reaction force vector amongst runners with ITBS, however two 

further studies reported no difference for either parameter when compared to controls 

(226, 233). Additionally, studies have failed to identify differences in peak horizontal 

breaking force (229), peak propulsive (233) and vertical loading rate (226, 233) when 

comparing runners with ITBS and controls. Therefore, it would appear there is limited 

evidence to suggest an association between ground reaction force parameters and ITBS.   
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Table 15: Visual summary of the number of studies and reported findings, investigating the difference in lower limb 
kinetics during running between runners with ITBS and injury free controls.  

Circle colour represents the study design and the number of corresponding studies. Green = retrospective case-
control study, red = prospective cohort study, blue = meta-analysis findings of a systematic review. Gaps indicate no 

reported findings. 
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Table 16: Visual summary of the number of studies and reported findings, investigating the difference in Ground 
Reaction Force parameters during running between runners with ITBS and injury free controls.  

Circle colour represents the study design and the number of corresponding studies. Green = retrospective case-
control study, red = prospective cohort study, blue = meta-analysis findings of a systematic review. Gaps indicate no 

reported findings. GRF = Ground Reaction Force. 
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2.1.6.4 Summary and Limitations of the current literature 

The current literature provides some limited evidence to support the associations 

between distal and proximal kinematics and ITBS, whereas there is a lack of evidence 

supporting associations with kinetic parameters. Distal mechanics may contribute to 

ITBS through a knee varus alignment, while proximal mechanics may influence ITB 

lengthening and strain. Both mechanisms could theoretically increase compression 

between the ITB, lateral epicondyle and underlying fat pad contributing to pathology. 

Kinematic patterns identified to be associated with ITBS include: 

• increased peak hip adduction  

• increased peak knee adduction 

• increased peak knee internal rotation 
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It is worth noting that there is currently a lack of evidence investigating the role of 

proximal kinematics of the trunk and pelvis. Prior studies provide evidence to suggest 

contralateral pelvic drop and trunk side flexion may influence ITB tension (182, 242), 

however only one study has reported pelvis and trunk kinematics amongst a 

symptomatic ITBS population during running (227). The only other study to report 

frontal plane pelvis kinematics recruited runners who were injury free at the time of 

testing (235) and as such, may not be representative of an injured population. Therefore, 

further research is needed to investigate the role of frontal plane trunk and pelvis 

mechanics within ITBS populations.  

 Summary and Gaps 

The objective of the literature review was to review and critically appraise the current 

literature investigating kinematic and kinetic characteristics of common running injuries 

in order to meet the overall aim of identifying kinematic and kinetic characteristics 

associated with common running related injuries (Section 1.3.7). Several databases 

were searched using key terms (Section 2.1.1) in order to identify research articles 

reporting kinematic and/or kinetic parameters associated with common running injures. 

These injuries included MTSS, PFP, AT and ITBS. The following sections summarise the 

key findings of the literature review. 

2.1.7.1 Kinetics 

Limited evidence was identified to support a link between kinetics and common running 

related injuries. Of the available evidence, only tibial stress fractures appear to 

demonstrate an association with kinetic parameters (52, 56, 160, 161) (Table 17). 

Specifically, several studies were identified reporting increased vertical loading rates 

(52, 56), elevated peak positive tibial accelerations (52), increased free moment (56) and 

a more medial directed ground reaction force vector (167) amongst runners with a prior 

history of tibial stress fracture. However, no consistent evidence was observed linking 

kinetic parameters to AT, PFP or ITBS (Table 17). This is in agreement with recent 

systematic reviews reporting limited evidence for an association between kinetic 

parameters and common running injuries (123, 128, 243, 244). Therefore, due to the 

lack of kinetic parameters consistently linked to common running injuries, the 
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remainder of this thesis will focus upon kinematic associations and characteristics of 

common running related injuries.    

2.1.7.2 Kinematics 

The literature review highlighted several kinematic parameters that appear to be 

associated with running related pathologies. These include: 

• Increased contralateral pelvic drop (MTSS & PFP) 

• Increased hip adduction (MTSS, PFP, ITBS) 

• Increased hip internal rotation (MTSS, PFP, AT) 

• Increased knee adduction (ITBS) 

• Increased knee abduction (PFP) 

• Increased knee internal rotation (ITBS) 

• Increased rearfoot eversion (MTSS) 

Interestingly, some of the identified kinematic parameters appear to be similar across 

several different running injuries (Table 18). For example, increased hip adduction has 

been associated with PFP (58, 192), ITBS (26, 59) and MTSS (56, 152), while increased 

hip internal rotation has been associated with MTSS (150), PFP (188) and AT (118). 

Research has also suggested that due to the kinematic coupling between the femur, tibia 

and foot; hip adduction and hip internal rotation may influence kinematics at the 

rearfoot (132-134). Specifically, studies have identified correlations between hip 

adduction, hip internal rotation and rearfoot eversion during running and walking (132-

134). Therefore, proximal hip kinematics could drive lower limb tissue stress via dynamic 

coupling with the foot and lower limb. This suggests that there may be several similar 

kinematic patterns that could underly multiple different running related injuries.  
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Table 17: Visual summary of the number of studies and reported findings, investigating the difference in Ground Reaction Force Parameters during running between injured runners and injury free controls.  
Circle colour represents the study design and the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue = meta-analysis findings of a systematic review. 

Gaps indicate no reported findings. GRF = Ground Reaction Force. 
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Table 18: Visual summary of the number of studies and reported findings, investigating the difference in running kinematics between runners injured populations and injury free controls. Circle colour represents 
the study design and the number of corresponding studies. Green = retrospective case-control study, red = prospective cohort study, blue = meta-analysis findings of a systematic review. Gaps indicate no reported 

findings. Parameters represent peak angles.  
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Frontal plane pelvis and trunk kinematics may also influence lower limb tissue stress and 

injury, however currently there is limited evidence investigating the association 

between the two (Table 18). In the current literature, increased contralateral pelvic drop 

was identified amongst runners with MTSS in only two studies (149, 150) and only one 

study of runners with PFP (58). No current study has investigated frontal plane pelvis 

kinematics in runners with AT. Interestingly, the one study reporting CPD angles 

amongst runners with current ITBS (227), failed to find any difference when compared 

to controls. However, this study did report increased ipsilateral trunk lean, which may 

represent a compensatory strategy to reduce peak CPD.  

Only four studies were identified investigating frontal plane trunk kinematics across all 

injuries (187, 192, 227, 235) (Table 18). One study reported increased ipsilateral trunk 

lean in runners with current ITBS (227) and two studies failed to find any difference in 

ipsilateral trunk lean between runners with PFP and controls (187, 192). One further 

study reported no difference between an ITBS and control group, however the ITBS 

group were symptom free at the time of testing (235) and therefore may not represent 

an injured population. To date, no study has been identified reporting ipsilateral trunk 

flexion amongst runners with either MTSS or AT.  

Frontal plane kinematics of the trunk and pelvis are thought to be highly coordinated 

and may influence lower limb tissue stress via several different mechanisms. For 

example, increased contralateral pelvic drop has been shown to result in a medial shift 

of the centre of mass, relative to the weightbearing foot (135, 136). Without 

compensatory trunk lean towards the standing limb, there would be an increase in the 

lever arm between the ground reaction force and the lower limb joint centres (Figure 

8B). Through this mechanism, the knee adductor moments can increase (135), with 

corresponding increases in iliotibial band tension (182) and potential  changes in 

bending forces acting on the tibia (245).  

Conversely, ipsilateral trunk flexion towards the standing limb may occur as a 

compensation to control for excessive contralateral pelvic drop (136, 157). In such an 

instance, there will be a shift the force vector so it moves lateral to the knee joint centre, 
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resulting in increased knee valgus moments. This would then drive an increase in hip 

adduction, knee abduction and rearfoot eversion (157, 246, 247) (Figure 8C). Through 

these mechanisms, it is possible that frontal plane movements of the trunk and pelvis 

may influence lower limb tissue stress. Consequently, further evidence is needed to 

investigate the association between frontal plane trunk and pelvis kinematics and 

common running injuries.   

Figure 8: Illustrative example of the coordinated movement of the trunk & pelvis and the influence on lower limb 
alignment. A: Neutral trunk & pelvis allignment. B: Contralateral pelvis drop without trunk compensation. C: 

contralateral pelvis drop with compensatory trunk lean.

 

Based on the current literature review, it appears that there may be similar kinematic 

patterns that could underly multiple different running related injuries, in particular, 

kinematics at the pelvis and hip. These kinematic patterns may increase the stress 

placed on multiple anatomical structures which could influence injury development. 

Identifying such kinematic parameters would be invaluable to clinicians and researchers, 
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as it could assist the development of both rehabilitation and injury prevention 

interventions.   

Based on the gaps identified within the current literature, the aim of Chapter 5 of this 

thesis is to investigate whether similar kinematic patterns are associated with multiple 

different common running related injuries. Such kinematic parameters may influence 

the tissue load applied to multiple different musculoskeletal structures contributing to 

the development and persistence of common running injuries. Identifying such 

parameters, may subsequently assist clinicians in the development of screening and 

rehabilitation interventions targeted towards specific kinematic parameters. The 

specific research aim and objectives to be addressed are presented in Section 2.5.1. 

2.2 Reliability of kinematic measurements 

 Introduction 

In the previous Section (2.1.7) several kinematic parameters were identified to be 

associated with common running related injuries. These parameters may increase the 

stress placed on the musculoskeletal system during running, contributing to injury 

development. Interestingly, many of the kinematic parameters identified were similar 

across multiple different injuries. If there are common kinematic parameters associated 

with different running injuries, interventions that improve kinematics may reduce tissue 

stress and improve clinical outcomes amongst injured runners. However, in order to 

identify kinematic parameters associated with common running related injuries, and the 

effect of clinical interventions upon running kinematics, the assessment of these 

parameters needs to be reliable, in order to produce repeatable results.    

Three-dimensional gait analysis systems are considered the gold standard for 

assessment of running kinematics. These systems capture the movement of markers 

attached to anatomical landmarks and segments which are thought to represent the 

motion of the underlying skeleton (248). The kinematic data gained from these 

measurements are often compared across populations to identify characteristics of 

pathological gait and/or compared within a population across a time period to monitor 

the response to interventions (249). However, inherent to any measurement system is 
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a degree of error which, if not accounted for, could lead to the misinterpretation of 

kinematic differences as true differences, when they are in fact due to error in the 

measurements (249). In order to make accurate interpretations regarding between 

population differences in running kinematics and the effects of interventions, the 

reliability of kinematic measurements and the precision of measurements needs to first 

be established.    

The objective of this section is to review the current literature in order to establish the 

reliability and repeatability of kinematic measurements during running. Specific 

reference will be made to several kinematic parameters identified in Section 2.1.7.2 to 

aid interpretation of the current literature and identify gaps for further research.   

 Reliability of running kinematics 

A total of 7 articles were identified reporting the within and between day reliability of 

running kinematics (199, 201, 250-254). These studies often report good to excellent 

within day reliability of kinematic measurements (199, 201, 251-253). However, poor 

between day reliability is frequently reported for several kinematic parameters (199, 

201, 251-253).  

Section 2.1.7.2 of the literature review identified several kinematic parameters to be 

associated with multiple different running related injuries. Peak joint angles during 

stance phase of running have been observed amongst injured running populations, 

including peak hip adduction, internal rotation, knee adduction, external rotation and 

rearfoot eversion. Three studies in the current literature reported reliability of peak joint 

angles during running (199, 252, 253). These studies have shown good to excellent 

within day reliability of peak frontal and transverse plane hip, knee and ankle kinematics 

(199), (252), however poor between day reliability is frequently reported for many of 

these parameters (199, 252, 253). Although the high within day reliability of kinematic 

measurements means interpretation of between-group kinematic comparisons may 

yield reliable results, the poor between day reliability has implications for the 

interpretation of between day changes in kinematics following interventions.  
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Clinical interventions have recently been directed towards improvement kinematic 

parameters such as peak contralateral pelvic drop, hip adduction and internal rotation 

(69, 70, 255). Due to their associations with running related injuries, it is thought that 

correcting these movement patterns may result in improved clinical outcomes amongst 

injured runners (49, 255). Unfortunately, the poor between day reliability of these 

measurements means it is difficult to ascertain whether reported changes in kinematics 

are the result of the intervention or between day measurement error. For example, Neal 

et al (255) reported a 5.1⁰ and a 2.4⁰ reduction in hip internal rotation and adduction 

following a gait retraining intervention. However, the standard error of measurement 

for hip internal rotation has been reported to range between 1.1⁰ (252) and 5.9⁰ (253), 

and between 0.97⁰ (252) and 2.7⁰ (199) for peak hip adduction angles. Therefore, it is 

difficult to discern whether the effects of gait interventions are true intervention effects 

or simply the result of between day measurement error (256). Consequently, this could 

result in the interpretation of results as being “meaningful” when they are instead the 

result of error in measurements (256).  

In order to aid the interpretation of intervention effects on kinematics, the reliability 

and degree of measurement error should be reported (249). This would provide an 

indication of the degree of change that could be expected to occur due to measurement 

errors and that which represents a meaningful change in kinematics. However 

substantial variation in kinematic measurement errors can be found between 

laboratories. For example, Noehren et al (252) and Stoneham et al (253), reported SEM 

values for peak hip internal rotation of 1.1⁰ and 5.9⁰ respectively. This is likely due to 

differences in testing procedures across laboratories. For example, Noehren et al (252) 

tested participants during treadmill running whereas Stoneham et al, (253) utilised over 

ground running test procedures. Therefore, for the interpretation of kinematic 

measurements to be meaningful, laboratories should aim to control sources of 

measurement error and report both the reliability and error associated with the 

individual testing procedures.   

Section 2.1.7.2 discussed the possibility of an association between frontal plane 

kinematics of the pelvis and trunk and common running injuries. Between day 
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differences in frontal plane pelvis kinematics have also been reported in several gait 

retraining studies (69, 252, 255). In the current literature, only two studies have 

reported the repeatability of frontal plane pelvis and trunk kinematics (201, 251). 

However, measures of repeatability and measurement errors were calculated as an 

average across the entire gait cycle. Therefore, the reported reliability and 

measurement error may not accurately represent the measurement error at specific 

points of the gait cycle such as peak angles or angle at initial contact. Consequently, 

further investigations are required in order to establish the repeatability and 

measurement error when assessing between day differences in discrete kinematic 

parameters of the trunk and pelvis.     

2.2.2.1 Marker placement error 

Marker placement error is considered the leading cause of between day measurement 

error in 3D kinematics (257-259). Three-dimensional kinematic reconstruction relies 

upon the modelling of joint axis using anatomical reference frames determined by the 

placement of markers on key anatomical landmarks. Errors in the application and 

reapplication of markers to anatomical landmarks is likely to result in errors in the 

reconstruction of joint positions and orientations (258). In a previous study by Szcerbik 

& Kalinowska (260), the authors reported that a 14mm marker reapplication error at the 

knee joint can result in kinematic errors of up to 20⁰ in frontal plane knee kinematics 

during walking. Therefore, accurate and reliable identification of anatomical landmarks 

is essential for reliable kinematic data.  

One source of marker reapplication error can be introduced through inter-tester marker 

placement error. Della Croce et al (261) investigated the intra and inter-tester reliability 

in marker placement using experienced physical therapists, reporting intra-tester 

reliability to be significantly greater than inter-tester reliability and 3D inter-tester 

marker application errors ranging from 11.5mm to 24.7mm. This finding is supported by 

further studies reporting between day kinematic measurement errors to be greatest 

when compared across different examiners (257, 262), with inexperienced examiners 

demonstrating the lowest between day reliability measures (257). Therefore, in order 
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to improve between day reliability of kinematics, it is important to use the same 

examiner with sufficient experience identifying anatomical landmarks.  

2.2.2.2 Accurate modelling of skeletal movement 

The poor reliability of the kinematic measurements of hip internal rotation and rearfoot 

eversion, may be influenced by the modelling techniques utilised. Three dimensional 

kinematic measurements rely on the tracking of marker clusters attached directly to the 

skin surface, or on top of clothing such as the shoe (203). This may introduce additional 

sources of error as the motion of these markers may not accurately reflect movement 

of the underlying skeletal segment or may be influenced by additional movement of soft 

tissues, termed soft tissue artefact.   

Skin mounted markers attached to the thigh have been reported to create the greatest 

source of error compared to any other segment (203). This has implications for the 

interpretation of both hip and knee kinematics. Reinschmidt et al (202) investigated 

differences in knee joint kinematics between skin mounted markers and intracortical 

bone pins, reporting average errors of 21%, 70.4% and 63.6% of the total range of 

motion for sagittal, coronal and transverse planes respectively. The authors reported 

the measurement error was predominantly influenced by motion of the thigh segment, 

whereas motion of the tibia appeared to be more reliable with an average measurement 

error of less than 3⁰ (202). Such modelling inaccuracies may explain the lack of 

conclusive evidence to support associations between hip internal rotation and running 

related injuries and remains a source of error within three-dimensional measurement 

systems. Therefore, caution should be taken when interpreting transverse plane hip and 

knee angles as these may not reflect true motion of the underlying segments and may 

be subject to large measurement errors.  

Inaccuracies in foot measurement techniques may also explain the lack of conclusive 

evidence supporting a link between rearfoot kinematics and running injuries. Rearfoot 

kinematics are often measured using marker clusters attached to the rear of the shoe 

(56, 149, 152). These measurement methods have been shown to demonstrate poor 

between day reliability (199, 253) with the validity of these measurements also 
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questionable (129, 131). Sinclair et al (131) investigated differences in tibiocalcaneal 

kinematics using skin mounted and shoe mounted markers, reporting shoe mounted 

markers to underestimate several kinematic parameters including peak eversion, 

eversion range of motion and eversion velocity. However, there are limited options 

available for accurate kinematic modelling of the rearfoot, as running barefoot or testing 

runners in unfamiliar running shoes may alter the normal kinematics of the runner (237, 

263).  

2.2.2.3 Measures of Reliability 

Accurate reporting of reliability and measurement errors is essential for interpretation 

of between day differences in running kinematics. Many reliability studies report 

statistics such as the interclass correlation coefficient (199, 252, 253) and coefficient of 

multiple correlation (201, 251, 254). These statistics provide a value ranging between 0, 

equalling no reliability, to 1, indicating perfect reliability between measurements (264, 

265). Although this provides a statistical measure for interpretation of the reliability of 

measurements, the statistical values are of limited clinical value. This is because the 

statistical values do not provide estimates of the measurement precision. Therefore, it 

is difficult to apply these results to the clinical interpretation of between day 

measurement changes (264, 266). 

The standard error of measurement (SEM) is one method of reporting the precision of 

measurements. SEM is considered an estimate of the expected variation in scores that 

may occur due to random error and therefore can be used to provide an estimate as to 

the precision of measurement (264, 266). In the repeatability literature, several studies 

report SEM values for kinematic data (199, 201, 253). However, the range of SEM values 

for the same kinematic parameters varies considerably across studies. For example, 

Noehren et al (252) reported the SEM of peak hip internal rotation to be 1.1⁰, whereas 

Stoneham et al (253) reported a SEM of 5.9⁰. This is possibly explained by differences in 

testing procedures and between day marker placement errors across laboratories, 

which would likely induce between laboratory differences in measurement errors. 

Consequently, the SEM provides a measure of precision for the individual laboratory, 
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however, may not accurately represent the measurement error expected across 

different laboratories.  

In such cases where the reliability of individual laboratory testing procedures is not 

available, use of the minimal detectable change (MDC) may aid interpretation of findings 

(266). The minimal detectable change provides the minimal threshold beyond the 

random measurement error with a 95% confidence interval. Therefore, minimal 

detectable change is considered to represent the degree of change representative of a 

true change, greater than that which could be explained by random error (266). In cases 

where the precision of testing measurements is not reported, the MDC may provide a 

measure of the minimal change required for results to be considered true intervention 

effects.  

 Summary and Gaps 

Current literature highlights good within day reliability of kinematic measurements 

across the gait cycle waveform, at discrete time points and of select parameters such as 

peak angles (199, 201, 251-253). This means that kinematic analysis of between-group 

differences may lead to reliable conclusions. This is particularly important when aiming 

to identify the associations between running kinematics and running related injuries. 

However, two important points need to be considered when interpreting such results. 

Firstly, some kinematic measurements may not accurately represent the underlying 

skeletal movement, such as measures of rearfoot eversion and hip internal rotation. 

Second, a degree of measurement error is expected to be present in any dataset 

influenced by laboratory testing procedures. Therefore, an accurate understanding of 

the measurement errors associated with testing procedures is necessary to aid 

interpretation of results.  

Reporting of between day measurement errors is essential to aid clinical interpretation 

of meaningful kinematic differences and intervention effects. Between day reliability of 

kinematic measurements is generally lower than that of the within day reliability with 

measurement error shown to vary between reliability studies (199, 201, 253). This is 

likely due to differences in testing procedures and measurement errors between 
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laboratories and testers. Based on this, we would suggest that the reliability of testing 

procedures as well as the SEM’s, are reported by individual laboratories in order to aid 

clinical interpretation of the accuracy of results. In the absence of individual reliability 

data and SEM’s, the MDC may aid interpretation of whether the reported results 

represent meaningful change (266).  

Currently no study has reported the repeatability of discrete kinematic parameters of 

the trunk and pelvis during treadmill running. Many gait retraining studies utilise 

treadmill testing procedures to investigate between day differences in discrete 

kinematic parameters of the trunk (267), pelvis and lower limbs (69, 70, 255). However, 

as there is no prior data reporting the measurement error associated with trunk and 

pelvis kinematics during treadmill running, it is difficult to identify whether post 

intervention differences represent true intervention effects or are the result of 

measurement error. In order to make accurate conclusions about the kinematic 

characteristics associated with running injuries and the effects of gait retraining 

interventions, there needs to be a greater understanding of the degree of change 

representative of true kinematic differences, rather than that which may be expected 

to occur due to measurement errors.   

Based on the findings of the literature review, the aim of Chapter 4 is to investigate the 

between day repeatability, standard error of measurement and minimal detectable 

change of discrete kinematic parameters of the trunk, pelvis and lower limbs during 

treadmill running. By achieving this objective, the results will aid the interpretation of 

between-group differences in kinematic parameters between healthy and injured 

populations and the effect of gait retraining interventions.    

2.3 Exposure to training load 

 Introduction 

In the previous Section (2.1.7) several kinematic parameters were identified to be 

associated with running related injuries. It is thought that kinematics patterns such as 

these may increase the load or stress placed on specific tissues during each foot contact 
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of a run (1, 28, 49). However, running kinematics alone may be insufficient to cause 

injury development.  

According to Bertelsens’s model of running injury causation (28), injury development is 

the result of cumulate tissue load encountered during running, exceeding tissue load 

capacity. The cumulative tissue load is considered the sum of the tissue specific loads 

experienced per stride and the frequency of load application (Figure 1B). While running 

kinematics may influence the tissue load experienced per stride, without an exposure to 

external training load the cumulative tissue load is likely to remain relatively low, and 

therefore unlikely to exceed tissue capacity (Figure 2B). Therefore, it is perhaps the 

combination of possessing kinematic patterns that increase tissue load and being 

exposed to external training load that influence whether tissue capacity is exceeded.   

The objective of this Section is to review the current literature to identify whether 

training errors are associated with running injury development and whether running 

kinematics are influenced by the training load runners are exposed to. 

 Training load 

Training load is measured in a variety of different ways, broadly categorised as internal 

or external workloads. Internal workloads reflect the psychophysiological stress 

experienced by the athlete in the context of the external exposure (268). Whereas 

external workloads represent the work performed by the athlete during a session or 

training week, commonly measured as total distance, duration or intensity. The 

estimation of internal workloads relies on the measurement of the internal stress 

experienced by the athlete, often using metrics such as heart rate variability or rating of 

perceived exertion, as well as a measure of the external load application, such as session 

duration or distance covered (268). Although high internal training loads have been 

linked to injury development in several team sports (269), from a running context, to 

date, no study has been identified that monitors the internal workloads amongst a 

running population (269, 270). Instead running injury research has focused upon 

establishing connections between external workload measurements and injury 

development (23, 42).  
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Within current running literature, several metrics have been used to quantify external 

training loads. Some of the most frequent metrics used include training intensity, 

frequency, duration and volume (23). However, there are several limitations to the use 

of these metrics. Firstly, training intensity represents the internal stress imposed upon 

a runner (268), yet it is frequently quantified using an external measure of self-reported 

running pace (23). Running pace will likely impose varied physiological demands upon 

each runner and therefore may not accurately reflect the intensity experienced by 

individual runners for a given pace. Second, frequency of running may not provide a true 

measure of external load application. For example, high frequency of running with low 

session duration will lead to a lower external workload compared to a lower frequency 

of running with longer duration. The limitations to these methods may in part explain 

the lack of evidence linking running intensity and frequency to injury development (23).  

Weekly training volume is perhaps the easiest method used to quantify training 

exposure (23, 271). Measuring the total weekly miles or kilometres provides an estimate 

of external training load exposure, representing the cumulative load encountered over 

a training week. Although it could be argued that training duration is a similar measure, 

runners and coaches often report their level of training exposure as distance per week 

(41, 272), likely due to the ease of measurement through the use of global positioning 

system (GPS) watches. Therefore, measurement of weekly training volume appears to 

be a simple and quantifiable measure of external training load commonly used by 

runners and coaches (41, 272). 

Currently, there is conflicting evidence as to whether weekly training volume influences 

the risk of running related injuries (23). In two prospective cohort studies, running 

greater than 40 miles (or 64 kilometres) per week was reported to significantly increase 

the risk of injury development (43, 44). A finding further supported by several cross 

sectional studies, reporting injured runners to be running greater miles per week when 

compared to uninjured runners (45, 273-276), with two of these studies reporting 

injured runners to have exceeded 40 miles per week (275, 276). Conversely, there is 

evidence to suggest greater weekly training volumes may not increase the risk of injury. 

Comparing the incidence of lower extremity leg pain amongst cross country runners, 
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Reinking et al (277) found no difference between those running more or less than 40 

miles per week (64km). Further studies have also reported runners with low weekly 

volumes to demonstrate higher injury rates than those running higher weekly training 

volumes (278, 279), with some suggesting higher weekly volumes may be protective 

against injury (280). Although there are several methodological differences between 

these studies, such as retrospective or prospective reporting of injuries, these results 

highlight that the link between training volume and injury development is not clear.  

Gabbett et al (281) proposed that high workloads alone are unlikely to be the cause of 

injury. Instead, the rate of workload increase is likely to be the contributing factor, with 

sudden acute increases overwhelming the musculoskeletal system resulting in injury 

development (32, 281, 282). Based on this, the acute to chronic workload ratio (ACWR) 

has been proposed as a model explaining the how training load may influence injury 

development, calculated as ratio between the most recent training period (acute load) 

relative to the average training load over a prior duration (chronic load) (281). Using this 

measure several studies have shown high ACWR’s are associated with injury 

development (269, 270), however currently the ACWR has not been applied to running 

related injuries. 

Despite no current study reporting ACWR amongst runners, several studies have 

attempted to investigate whether acute week to week increases in training load are 

associated with an increased risk of sustaining a running related injury. Three studies 

reported increased injury rates following a sudden increase in weekly training volume 

(46, 47, 283), while one study reported no difference in injury rates when increasing 

weekly training volume by either 10% or 24% (48). Interestingly, in the studies by Nielsen 

et al (46, 47), an increased injury risk was only found when training volume was 

increased by more than 30% per week, with no difference in injury rates observed 

between those increasing by less than 10% or 10% to 30%. This raises questions as to 

whether training volume alone is enough to explain the development of running related 

injuries and does not explain why some runners can increase their training volume and 

remain injury free, while others cannot.   
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 Interaction between training parameters and running mechanics   

One possibility is that current training load measurements do not accurately reflect the 

cumulative tissue load encountered for a given run (30). As proposed by Bertelsen et al 

(28), cumulative tissue load is the combined result of tissue specific loading per stride 

and the frequency of load application. Current training load measurements only 

consider the frequency of load application measured as duration or volume. Based on 

this assumption, providing run duration or volume is kept constant, the external load 

encountered will be similar between individuals. However, factors influencing tissue 

load per foot contact, will result in a cumulative tissue load that may be vastly different 

between individuals. For example, Lenhart et al (51) reported that a 1⁰ increase in knee 

flexion angle during running led to a 0.21 body weight increase in patellofemoral force 

per step. For a given run, this would lead to a significant increase in cumulative tissue 

stress when compared to a runner who had 1⁰ less knee flexion. This interaction 

between factors influencing tissue load per stride and the frequency of load application, 

may explain why some runners are able to attain relatively high training loads without 

developing an injury, while others become injured.  

 Effect of training volume on running kinematics   

It is generally thought that the gradual and progressive increase in training load, will 

either allow the body to tolerate higher loads, or facilitate the development of physical 

qualities necessary to attain high training loads while reducing the risk of injury (32, 268). 

Some evidence suggests this may be the case for running kinematics, with runners 

adapting their kinematics in response to elevated training loads. For example, Moore et 

al (284) found novice runners to demonstrate significantly reduced rearfoot eversion 

velocity following a 10 week progressive running program. Similarly, other authors have 

reported trained runners to demonstrate reduced hip internal rotation angles (285), less 

anterior pelvic tilt (286), a more flexed knee at initial contact (286), shorter stride lengths 

and greater stride rate (287) when compared to inexperienced runners. It has been 

suggested that these kinematic differences, may represent adaptations in order to 

reduce the risk of injury development associated with certain kinematic patterns (284). 
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Currently there is limited evidence investigating whether kinematic differences occur 

between injury free runners who regularly run different weekly training volumes. Of the 

available evidence, three studies reported kinematic patterns of runners separated by 

weekly running volume (288-290). Floria et al (290) investigated joint coordination 

variability between experienced and non-experienced runners, classifying runners 

based on their weekly running volume as being greater than 35 kilometres per week 

(kmpw) or less than 25kmpw. However, their results failed to identify any significant 

between-group differences in coordination variability.  

Two further studies have reported between-group kinematic differences when 

comparing high and low mileage runners using principal component analysis (288, 289). 

Boyer et al (288) separated runners into a high mileage (>20mpw) and a low mileage 

groups (<15mpw), reporting low mileage runners to demonstrate greater hip external 

rotation and transverse plane rotation of the pelvis away from the stance leg, greater 

foot external rotation, greater knee adduction and less hip adduction during stance. 

Clermont et al (289) classified runners as high mileage and low mileage if they ran 

greater than 32kmpw or less than 25kmpw, reporting high mileage male runners to run 

with a more flexed knee throughout the stance phase, less anterior pelvic tilt, increased 

pelvis rotation towards the stance leg, increased hip adduction during stance and a less 

abducted foot position throughout the gait cycle. High mileage females were found to 

demonstrate less knee internal rotation during stance, greater knee flexion during swing 

phase and greater ankle dorsiflexion during swing when compared to low mileage 

females (289).  

The authors of both studies suggested that the observed differences may represent 

kinematic adaptations to high volume training in order to reduce the risk of injury 

development associated with external training loads. However, there are several 

limitations to these studies which should be considered. Firstly, the observed 

differences in kinematic patterns between high and low mileage runners have not been 

linked to running related injuries (see Section 2.1). Therefore, conclusions suggesting 

the observed differences may influence injury risk should be interpreted with caution.  
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Secondly, in the study by Clermont et al (289), significant differences were observed in 

testing speeds between the high and low mileage groups. Running speed has previously 

been shown to influence swing phase knee flexion angles (291), anterior pelvic tilt (292) 

and transverse plane pelvis kinematics (292). Therefore, it is possible that differences in 

running speed, rather than weekly training volumes, could explain many of the observed 

kinematic differences.  

Finally, the training volumes used to define high and low mileage runners could be 

considered low, when compared to literature investigating the link between injury 

incidence and training volumes. Previous studies have reported higher mileage running 

to increase the risk of sustaining injury, particularly when exceeding 40 miles per week 

(64km) (43, 44, 275, 276). Whereas studies reporting kinematic characteristics of high 

mileage runners have included a maximum weekly training volume of 33 miles (54km) 

per week (289). Therefore, it is possible that the mileage groups in the current studies 

have not exceeded a training load exposure sufficient to trigger injury development or 

require kinematic adaptations to prevent injury development. Therefore, further studies 

are required to investigate whether differences in kinematics exist when comparing 

runners who regularly run weekly mileages above 40 miles per week.       

 Summary and Gaps  

Based on current injury causation theories, it is likely that running mechanics may only 

trigger injury development if there is sufficient exposure to external training loads. 

Similarly, increasing training load may only result in injury if an individual already 

possesses an intrinsic injury risk factor such as running kinematics. Considering that 

higher training volumes increases the frequency of load application and kinematics may 

increase the tissue load per foot contact, it seems plausible to expect that runners who 

are able to attain high weekly training volumes while remaining injury free, could either 

adapt aspects of their running gait, or inherently possess kinematic patterns that reduce 

the stress placed on the musculoskeletal system. Alternatively, due to the low training 

exposure and resulting low frequency of stress application, runners who only complete 

low weekly training volumes may demonstrate kinematic patterns similar to that 
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associated with running related injuries yet remain injury free as they have not been 

exposed to an external training load sufficient to trigger injury development.   

There is limited, current evidence to support the premise that runners may adapt their 

kinematics in response to increasing training volumes (284, 288, 289). However, there 

are several gaps within the current literature. Firstly, no study has specifically focused 

on the discrete kinematic parameters identified in the previous Section (2.1.7.2) as 

associated with common running related injuries, such as peak hip adduction and 

contralateral pelvic drop. Second, when contrasting the training volumes within 

kinematic studies and those associated with injury development, questions remain 

whether the included high mileage runners have been exposed to sufficient external 

training loads to trigger injury development, or require kinematic adaptations. For 

example, in the study by Clermont et al (289) the average weekly training volume of the 

high mileage runners was 54km (33 miles) per week, whereas current training exposure 

literature suggests that injury risk increases when exceeding 64km (40 miles) per week 

(43, 44, 275, 276). Therefore, it is possible that the mileage groups in the current studies 

have not exceeded a training exposure sufficient to trigger injury development or 

require kinematic adaptations to prevent injury development.      

Understanding whether kinematics differ between groups of healthy runners 

completing different weekly training volumes, may lend insight into kinematic 

adaptations necessary to attain regular high volume running while remaining injury free. 

This may also aid our understanding as to why some runners become injured as training 

loads increase, while others do not. From a clinical perspective, this information may 

subsequently be used to inform both preventative and rehabilitative programs targeting 

running kinematics.  

Based on the discussed literature, the aim of Chapter 6 is to explore whether kinematic 

parameters associated with common running injuries are associated with weekly 

training load exposure. By achieving this aim, this may provide a theoretical 

understanding as to why some runners become injured as training volume increases, 

while others do not. It may also enhance our understanding of whether kinematics 
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adaptations, if any, are required to attain regular high-volume training loads while 

remaining injury free.  This may have implications for load management amongst 

runners who demonstrate kinematic parameters associated with common injuries.   

2.4  Gait retraining: a clinical intervention targeting running 

kinematics.  

 Introduction 

In the previous Section, the literature review highlighted several kinematic parameters 

which appear to be associated with common running related injuries (2.1.7.2). It is 

thought that these kinematic parameters increase the load placed upon the 

musculoskeletal system during each foot contact of a run. When this elevated tissue 

load is combined with an exposure to external training load, the cumulative tissue load 

may cause a runner to exceed their load capacity developing injury. Based on this 

premise, targeting running kinematics within the rehabilitation process may reduce the 

load placed on the musculoskeletal system during each foot contact and subsequently 

the cumulative loading across an entire run. Consequently, targeting running mechanics 

may lead to positive clinical outcomes amongst injured runners by reducing the stress 

applied to injured structures and help facilitate an increase in external training load 

attainable.  

Gait retraining has been proposed as a movement specific intervention targeting 

running mechanics (49, 66, 293). The aim is to provide feedback to a runner in order to 

teach them how to adjust running mechanics or offload injured areas when running. 

Once the subject has learnt the desired running technique the aim is to then reinforce 

the desired running mechanics. If running mechanics increase the stress on the 

musculoskeletal system, it seems logical that interventions which reduce this stress may 

offload the injured tissue, improving both function and clinical outcomes amongst 

injured runners and facilitating a gradual increase in training load.  

There are several different methods of gait retraining identified in the current literature, 

including foot strike manipulation, visual feedback, step width modification and step 
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rate modification. The objective of this Section is to review and critically appraise the 

literature reporting the effects of gait retraining interventions upon running kinematics 

and clinical outcomes amongst injured runners. Specific focus will be placed upon the 

kinematic parameters commonly associated with running injuries and studies 

investigating the effects of gait retraining on injured populations.  

 Literature Search 

In order to review the current literature, electronic databases were searched in order to 

identify studies investigating the effects of gait retraining on running kinematics. 

CINHAL, MEDLINE, SportDiscus and Web of Science were searched for all years up until 

April 2019.  Specific search terms used and are presented in Table 19. Following 

identification of relevant titles, abstracts were screened for relevance and full texts were 

then assessed against the below inclusion and exclusion criteria. References and 

citations of all included studies were searched to identify any additional studies which 

meet the inclusion/ exclusion criteria. 

2.4.2.1 Inclusion 

• Studies reporting kinematic outcomes in either a healthy or injured population 

• Studies reporting clinical outcomes following retraining in an injured population 

• Injured population diagnosed with either AT, MTSS, ITBS or PFP   

• Studies using a within subjects or case control design 

2.4.2.2 Exclusion  

• Studies using military populations 

• Studies that do not assess running 

• Studies that do not report gait retraining and instead focus on other 

interventions such as strength training or orthotics.  

• Conference abstracts  
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Table 19: Gait retraining literature search: key terms and boolean operators 

Search Terms  

Gait retraining OR retraining OR step rate OR stride rate OR cadence 

OR stride frequency OR step frequency OR stride length OR step 

width OR foot strike OR visual feedback 

Biomechanics OR kinetics OR kinematics 

Running OR run OR jog OR runners 

 

 Forefoot, Barefoot & Minimalist Running 

Foot strike manipulation teaches runners to switch from a rearfoot to a forefoot contact 

in order to change kinetics and kinematics that are associated with injury. When 

changing foot strike pattern, runners are verbally cued to land on their forefoot using 

phrases such as “land on the ball of your foot” or “run with light footfalls”, while 

provided with feedback to ensure they are able to adopt a forefoot contact (73, 294). 

Barefoot running or running in minimalist footwear has also been proposed as a method 

to encourage a non-rearfoot strike pattern with studies often using cues to encourage a 

forefoot strike contact (295-299). Therefore, this Section will discuss the kinematic 

effects when transitioning to barefoot running, minimalist shoes and forefoot strike.    

2.4.3.1 Hip & Pelvis Kinematics 

Several studies have reported frontal and transverse plane kinematics of the hip and 

pelvis when transitioning to forefoot running. In healthy runners three studies have 

reported peak contralateral pelvic drop when transitioning from rearfoot to forefoot 

strike running, including one systematic review with meta analyses (300) with all studies 

reporting no significant change (72, 301). At the hip, one study reported a significant 

1.98⁰ reduction in peak hip adduction (72) and 4.25⁰ reduction in hip internal rotation 

(72), however several aditional studies have failed to idenitfy any difference in peak hip 

adduction (73, 267, 302) and hip internal rotation (73, 267, 302) following transition to 

forefoot strike running.  
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With regards to barefoot running or the use of minimalist running shoes, one study 

reported reduced hip adduction and contralateral pelvic drop at initial contact (237), 

however the same study did not identify any difference in peak frontal plane angles at 

the hip or pelvis. Further studies have also reported no difference in frontal and 

transverse plane hip and pelvis kinematics at initial contact, peak joint angle, joint 

excursion or angle at toe off when transitioning to either minimalist footwear or 

barefoot (296, 298, 299, 303). Therefore, it appears that transitioning to forefoot 

running, minimalist shoes or running barefoot may be of limited value if targeting peak 

frontal and transverse plane hip and pelvis kinematics.  

2.4.3.2 Knee & Ankle Kinematics 

The effects of forefoot or barefoot running on frontal and transverse plane kinematics 

of the knee and ankle has also been investigated by several studies. When transitioning 

to forefoot strike running one study reported reduced knee adduction at initial contact 

(294), however several further studies have reported no difference in frontal and 

transverse plane knee kinematics at initial contact, peak angle, excursion or angle at toe 

off with either forefoot strike, minimalist shoe or barefoot running (73, 267, 296, 298, 

299, 302, 303). Therefore, it appears there is a lack of evidence to support the use of 

foot strike manipulation when targeting frontal plane kinematics of the knee.  

Two studies have reported a significant reduction in peak rearfoot eversion when 

transitioning to forefoot strike running (304) and barefoot running (305). However 

additional studies have reported no difference in peak rearfoot eversion angle with 

forefoot running (73, 306) or barefoot running (296, 298), with two studies reporting 

increased ankle eversion range of movement during stance when transitioning to 

forefoot running (73, 304). Therefore, transitioning to forefoot running, minimalist 

shoes or running barefoot may be of limited value if targeting rearfoot kinematics.  

Interestingly, evidence from one study suggests that transitioning to barefoot running 

may effectively target rearfoot eversion angles amongst runners with high baseline 

values. Morley et al (305) separated a group of 30 healthy rearfoot strike runners into 

three groups based on baseline eversion values; high, middle and low eversion groups. 
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Following transition to barefoot running they reported reductions in peak eversion 

angles of 5.6⁰, 3.6⁰ and 0.4⁰ for the high, middle and low groups respectively. This 

suggests that kinematic improvements may be dependent upon baseline values, with 

those demonstrating greater baseline kinematics more adaptable to change. Therefore, 

future studies should consider investigating the effects of gait interventions specifically 

targeted to those demonstrating high frontal plane angles at baseline.  

The greatest biomechanical change following a transition in foot strike pattern appears 

to occur in the sagittal plane. Several case-series studies and systematic reviews have 

shown transitioning to a forefoot strike or running barefoot results in a more 

plantarflexed ankle (73, 89, 294-300, 306-312) and flexed knee at initial contact (75, 294, 

300, 310, 312), increased ankle dorsiflexion range of movement (73, 294, 309), reduced 

peak knee flexion (237, 296, 303) and knee flexion range of movement (73-75, 237, 296, 

297). These kinematic adaptations have been shown to contribute to significant 

reductions in knee joint loading and increases in ankle joint loading and may serve to 

offload the knee joint when running (73, 294, 313-315). However, it is important to note 

that Section 2.1 of the literature review failed to identify sufficient evidence to suggest 

sagittal plane kinematics or knee joint kinetics are associated with running related 

injuries.  

2.4.3.3 Effects in injured populations 

Six studies have investigated the clinical and biomechanical effects of transitioning to 

forefoot strike running amongst runners with patellofemoral pain (73, 267, 294, 316-

318). Two of these studies combined cues to land forefoot with an increase in stride 

rate, reporting significant improvements in pain measured on a visual analogue scale 

(318), anterior knee pain scale (317) and knee outcome survey of activities of daily living 

(318) following the retraining period. The remaining four studies reported the effects of 

an isolated transition to forefoot strike running reporting significant reductions in pain 

measured on the visual analogue and numerical rating scales (267, 294), as well as 

improvements in the Knee Injury and Osteoarthritis Outcome Score (73), Anterior Knee 

Pain Scale (267), Lower Extremity Functional Scale (267), Kujala Score (316) and 

Patellofemoral Pain Score (316). Importantly, these improvements were above the 
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minimally clinical important difference for the respective outcome measures (73, 267, 

294, 316-318) suggesting transitioning to forefoot strike is a clinically effective 

rehabilitation option for patellofemoral pain.   

However, despite the positive clinical outcomes, transitioning to forefoot running has 

several limitations. Firstly, transitioning to forefoot, barefoot or minimalist running does 

not address many of the kinematic patterns which may underly common running related 

injuries. Instead, foot strike transition appears to influence predominantly sagittal plane 

kinematics and kinetics at the knee and ankle, neither of which have been linked to the 

development of common running injuries (see Section 2.1.7). Common kinematic 

parameters associated with running related injuries include contralateral pelvic drop, 

hip adduction, internal rotation, knee abduction, adduction and rearfoot eversion, all of 

which have not been conclusively shown to be influenced by methods of foot strike 

transitioning (Table 20).  Instead transitioning to forefoot running appears to shift joint 

loads away from the knee and to the ankle, effectively unloading the painful knee rather 

than addressing potential injury causing mechanics.  

A second limitation is that shifting the load distribution from the knee to the ankle joint, 

may increase the risk of lower limb injury. Several studies have reported transitioning 

foot strike patterns to result in large increases in ankle plantar flexor moments, Achilles 

tendon loads (303, 315, 319-321) and gastrocnemius muscle activity (309). These 

sudden changes in load distribution may exceed the internal tissue capacity of the lower 

limb, resulting in injury development. In support of this idea, several studies have 

reported an increased incidence of lower limb pain and injuries following transition to 

forefoot, barefoot and minimalist running (73, 322, 323). Therefore, due to the 

associated injury consequences, transitioning to forefoot running may not present a safe 

option for the treatment of many running related injuries.   

Finally, transitioning to forefoot, barefoot and minimalist shoe running may not be 

applicable to many runners and other injuries. For example, the increased ankle joint 

loading and Achilles tendon forces associated with forefoot strike running may 

exacerbate conditions such as Achilles tendinopathy or medial tibial stress syndrome. 
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This gait intervention would also not be applicable to those who already run with a 

forefoot strike. Instead, it may be more beneficial for gait interventions that target the 

specific kinematic patterns associated with common running injuries. This would offer a 

practical rehabilitation method that may apply to multiple different running related 

injuries.   

2.4.3.4 Summary of Forefoot, Barefoot & Minimalist Running 

The current literature highlights that forefoot, barefoot and minimalist running appears 

to have the greatest impact upon sagittal plane kinematics at the knee and ankle. The 

observed kinematic changes decrease knee joint loading and increase ankle joint 

loading. Although current literature suggests this may prove beneficial to reduce pain in 

runners with patellofemoral pain, there are several limitations to the practical and 

clinical applicability of foot strike transition. These limitations include increased risk of 

lower limb injury and the lack of evidence suggesting foot strike transition has an 

influence on kinematic parameters associated with common running related injuries. 

Therefore, gait interventions that address kinematic patterns associated with common 

running injuries, with low injury risk are required.   

 Visual Feedback 

Visual feedback of running kinematics has been used as a method of gait retraining (69, 

70). Current studies have utilised real-time feedback of 3D kinematics (70, 324) or the 

use of a mirror placed in front of the runner (69) as a form of visual feedback. The 

feedback process involves highlighting the faulty movement pattern using visual 

feedback combined with the use of verbal cues to facilitate changing the movement 

pattern. Once the runner can successfully adopt the movement pattern, a faded 

feedback design is utilised, whereby run duration is gradually increased and feedback 

gradually reduced to facilitate retention of the desired movement pattern. The following 

sections discuss the literature reporting the effects of visual feedback on running 

kinematics associated with common injuries and the effects on injured populations.   
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2.4.4.1 Hip & Pelvis Kinematics 

Two studies have reported improvements in frontal plane pelvis and hip kinematics 

using visual feedback with injured runners (69, 70). Noehren et al (70) used real time 

visual feedback of hip adduction kinematics, while Willy et al (325) used a mirror to 

provide visual feedback of hip adduction. Both studies utilised a faded feedback design, 

where feedback is gradually reduced over 8 sessions across a two-week period. 

Following retraining, Noehren et al (70) reported a significant 2.3⁰ reduction in 

contralateral pelvic drop and 5.1⁰ reduction in hip adduction, while Willy et al (69) 

reported reductions of 1.9⁰ for peak contralateral pelvic drop and 5.9⁰ for hip adduction. 

These changes were maintained at both 1 month (70) and 3 month follow up (69), 

highlighting the successful use of visual feedback when targeting frontal plane hip and 

pelvis kinematics. Interestingly, both studies failed to identify any difference in peak hip 

internal rotation following the intervention.   

2.4.4.2 Knee & Ankle Kinematics 

Only one study has been identified reporting transverse plane knee and ankle kinematics 

following visual feedback (324). Hunter et al (324) provided real-time feedback of the 

pelvis in the transverse plane in attempt to reduce pelvis external rotation. Although 

pelvis rotation did not change in the direction targeted, they did report reductions in 

knee and ankle external rotation. However, visual feedback was combined cues to “keep 

the knee pointing forwards” and “keep the foot pointing forwards”. Therefore, it is 

possible that the verbal cues used, rather than the visual feedback of the pelvis, may 

have resulted in the changes to knee and ankle kinematics. However, this study only 

included one subject and therefore further investigations are required to investigate the 

effects amongst larger cohorts.     

2.4.4.3 Effects in injured populations 

Three studies have reported improved clinical outcomes amongst injured runners 

following visual feedback (69, 70, 324). Hunter et al (324) reported improved VAS and 

LEFS scores in one runner with ITBS, however LEFS scores did not exceed the MCID of 9 

points (326) and the small sample size means these results may not be generalisable to 

wider ITBS populations. Willy et al (69) and Noehren et al (70) both reported large 
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reductions in pain and improvements in function to be associated with improvements 

in frontal plane kinematics of the hip and pelvis. Following mirror retraining, Noehren et 

al (70) reported a reduction in NRS from 5, to 0 out of 10 at one month follow up and a 

19-point improvement in LEFS. These results are similar in magnitude to that reported 

by Willy et al (69), reporting a 12.1 point increase in LEFS and an NRS of less than 1 out 

of 10 post retraining. Importantly, the magnitude of clinical improvement exceeding the 

MCID in both studies, highlighting the effectiveness of visual feedback for improving 

both kinematic and clinical outcomes.      

2.4.4.4 Summary of Visual Feedback 

Current studies highlight that visual feedback of running kinematics can be used to 

successfully retrain frontal plane hip and pelvis kinematics (69, 70, 185) (Table 20). The 

observed improvements in kinematics are associated with improved clinical outcomes 

amongst runners with patellofemoral pain (69, 70). This highlights that interventions 

targeting kinematic patterns associated with running related injuries, can produce 

positive clinical outcomes amongst injured runners, a finding reiterated by a recent 

systematic review with meta-analysis (185). However, there are several practical 

limitations to the use of visual feedback which mean this method of retraining may be 

difficult to integrate into in the clinical setting. Firstly, real-time kinematic feedback 

requires access to 3D gait analysis technology. These systems are often expensive and 

are not widely available in clinical practise. Secondly, although mirror gait retraining is 

easy to integrate into the clinical setting, it restricts runners from continuing their 

normal routine and may not be a practical option for runners outside of the clinic. 

Finally, visual feedback studies use faded feedback designs, where feedback is gradually 

reduced over repeated sessions across a two-week period. This intensive retraining 

period may not be accessible for all runners and clinicians, which may subsequently limit 

the frequency of retraining sessions available. Therefore, there is a need for gait 

retraining methods that can be easily integrated outside of a laboratory setting while 

providing positive clinical and biomechanical outcomes. 
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 Step rate manipulation 

Step rate manipulation is the process of increasing running cadence, measured as steps 

per minute. In order to facilitate an increase in step rate, studies often use an audible 

metronome set to the desired step frequency and cue the runner to match their 

footsteps to the metronome. Similar to visual retraining studies, for long term retention 

of the new step rate, studies often use a faded feedback design where the movement 

pattern is initially practised with the metronome and then the metronome is gradually 

removed (255). The following sections will discuss the literature reporting the effects of 

increasing step rate on running kinematics associated with common injuries and the 

effects on injured populations.   

2.4.5.1 Hip & Pelvis Kinematics 

A limited number of studies have investigated the effects of increasing step rate on 

frontal plane pelvis kinematics during running (Table 20). Boyer & Derrick (301) 

investigated the effects of a 10% increase in step rate amongst habitual forefoot and 

rearfoot strikers, reporting a significant reduction in peak contralateral pelvic drop. 

However, the changes in joint angles were relatively small, with only a 0.9⁰ and a 0.5⁰ 

reduction in contralateral pelvic drop amongst habitual forefoot and rearfoot strike 

runners respectively. Neal et al, (255) are the only other study to report reductions in 

peak contralateral pelvic drop following a step rate intervention. In a group of 10 

runners with patellofemoral pain, Neal et al (255) reported a 1.5⁰ reduction in 

contralateral pelvic drop following a 7.5% increase in step rate. However, it is important 

to note that these changes occurred following a 6-week retraining period and the 

authors did not report the repeatability of their testing procedures. Although the 

authors referred to a previous study reporting the standard error of measurement of 

kinematic data collection, measurement errors have been shown to vary between 

laboratory’s (Section 2.2.2). Previous studies have reported the between day standard 

error of measurement for frontal plane pelvis kinematics of up to 1.7⁰ (201). Therefore, 

it is possible that the pre and post intervention differences could be the result of 

measurement error rather than true intervention effects.   
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Several studies support the use of step rate manipulation when targeting peak hip 

adduction angles (Table 20). Using healthy populations, studies have reported acute 

reductions in peak hip adduction of up to 1.8⁰ following a 10% increase in step rate (71, 

301, 302, 310, 327). One study reported a statistically significant 2.9⁰ reduction in peak 

hip adduction at 2 week follow up (328) and a further study reported a 2.4⁰ reduction 

at 6 weeks (255) following a 7.5% increase in step rate. Conversely, in a group of 6 

runners with patellofemoral pain, dos Santos et al (267) reported a 2.12⁰ non-significant 

reduction in peak hip adduction following a 10% increase in step rate. However, the 

small sample size of 6 subjects may have left this study underpowered to detect 

statistically significant differences.  

Interestingly, despite increasing step rate by only 7.5%, the studies by Neal et al (255) 

and Willy et al (328) show greater reductions in peak hip adduction compared to the 

studies using a 10% increase. This may be explained by several methodological 

differences between the studies. Firstly, both Neal et al (255) and Willy et al (328) used 

a test-retest study design without reporting the repeatability of their individual testing 

procedures. Therefore, it is possible that their results may be influenced by between day 

measurement error. Secondly, it is possible that targeting gait retraining to runners with 

abnormal kinematics at baseline, results in greater kinematic adaptations than when 

targeting healthy runners. In the studies by Neal et al (255) and Willy et al (328), runners 

were recruited if they were either currently injured (255), or demonstrated kinetic 

parameters reported to be associated with injury (328). Conversely, the studies 

reporting lower angle changes following a 10% increase in step rate, recruited healthy 

runners only (71, 302, 310, 327). Therefore, it may be that specifically targeting gait 

retraining to those demonstrating abnormal kinematics at baseline, results in greater 

kinematic changes.  

The effects of increasing step rate on peak hip internal rotation angles remain 

inconclusive. Using healthy populations studies have reported no difference in peak hip 

internal rotation following a 10% increase in step rate (71, 302). These findings are 

further supported by one study of runners with PFP reporting a non-significant 1.1⁰ 

reduction in peak hip internal rotation following a 10% increase in step rate (267). 
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Conversely, following a 7.5% increase in step rate, Neal et al (255) reported a 5.1⁰ 

reduction in peak hip internal rotation amongst runners with PFP. Reasons for the 

contrasting findings may be explained by kinematic differences between study 

populations. In the study by Neal et al (255) participants demonstrated baseline hip 

internal rotation angles of 9.1⁰, this is significantly greater than the baseline values of 

0.4⁰ reported in healthy subjects (71). It is possible that hip internal rotation angles of 

such magnitude are more responsive to interventions than the lower angles reported in 

healthy runners. Therefore, step rate retraining may effectively target hip internal 

rotation angles, providing these are large at baseline. Interestingly, in the study by 

Heiderscheit et al (71), despite no change in hip internal rotation following an increase 

in step rate, following a 10% decrease in step rate, there was a significant increase in hip 

internal rotation. Therefore, it is possible that changes in hip internal rotation may be 

greater in those who demonstrate either increased hip internal rotation at baseline, or 

a low step rate.     

2.4.5.2 Knee & Ankle Kinematics 

Several studies, including two systematic reviews (311, 329) have reported changes in 

sagittal plane knee and ankle kinematics following an increase in step rate. Studies 

reported increasing step rate to result in increased knee flexion at initial contact (51, 

71), reduced peak knee flexion (51, 71, 255, 302, 327), reduced knee flexion excursion 

(302, 327), reduced ankle dorsiflexion at initial contact (310, 327, 330), lower foot 

inclination angle at initial contact (71, 331) and reduced peak ankle dorsiflexion (51). 

Therefore, there appears to be sufficient evidence supporting the use of an increase in 

step rate when targeting sagittal plane knee and ankle kinematics. 

Limited evidence exists to support the use of step rate retraining when targeting frontal 

and transverse plane kinematics of the knee and ankle (Table 20). One study reported 

reduced peak knee abduction following a 10% increase in step rate (302), however one 

additional study has reported no change in frontal plane knee kinematics (267). Several 

further studies have reported no change in transverse plane knee kinematics following 

an increase in step rate (267, 301, 302, 327).  
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At the foot and ankle, one study reported a significant 1.6⁰ reduction in peak rearfoot 

eversion following a 10% increase in step rate (301). However, this was only observed 

amongst habitual forefoot strikers, rearfoot strikers demonstrated only a 0.2⁰ reduction 

in rearfoot eversion. One further study reported no significant change in peak rearfoot 

eversion (327). Therefore, it appears there is insufficient evidence to support the use of 

a step rate increase when targeting frontal and transverse plane kinematics of the knee 

and ankle (Table 20).  

2.4.5.3 Effects in injured populations 

Step rate retraining has been used as a rehabilitation intervention for patellofemoral 

pain in several studies. Bonacci et al (317) compared the effects of gait retraining to foot 

orthoses amongst 16 runners with PFP. They reported greater improvements in VAS 

score and Anterior Knee Pain Score amongst the gait retraining group, with 86% of the 

runners in the gait retraining group reporting feeling “moderately better” compared to 

only 29% in the orthosis group. This highlights gait retraining may be a more effective 

clinical intervention when compared to the use of foot orthosis. However, the gait 

retraining intervention consisted of an increase in step rate combined with verbal cues 

to land with a forefoot strike pattern. Therefore, it is not known if the clinical outcomes 

are the result of a step rate increase or transitioning to a forefoot contact. 

Escuilier et al (318) conducted the only randomised clinical trial using gait retraining as 

one of the intervention arms. A total of 69 runners with patellofemoral pain were 

randomised into one of three intervention groups; a group receiving education on 

graded load management, a group receiving gait retraining combined with education on 

load management and a group receiving strength training combined with education. At 

20 week follow up all three groups reported significant improvements in VAS scores and 

Knee Outcome Survey of Activities of Daily Living (KOS-ADL). However, no difference 

was observed when comparing between interventions. Therefore, the authors 

concluded that the use of gait retraining provides no additional clinical benefit when 

compared to education on load management. This raises questions as to the clinical 

effectiveness of increasing step rate when compared to alternative interventions. 

However, there are several limitations to this study. Firstly, gait retraining consisted of 
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both a step rate increase and cues to adopt a non-rearfoot strike pattern. Therefore, 

similar to Bonacci et al (317), it is unknown if the clinical outcomes are the result of 

increasing step rate or transitioning to a forefoot contact. Secondly, Escuilier et al (318) 

did not report kinematic data, consequently it is unknown if the retraining positively 

impacted kinematic patterns which may drive tissue stress associated with PFP.  

Only two studies have investigated the isolated effects of a step rate increase amongst 

runners with PFP (255, 267). Dos Santos et al (267) compared the effects of a 10% 

increase in step rate to foot strike transition and increasing forward trunk lean. Despite 

reporting improvements in LEFS, AKPS and VAS for pain, the authors reported greater 

improvements amongst the foot strike transition and forward trunk lean groups 

following the initial retraining period. Consequently, the authors questioned the 

effectiveness of increasing step rate when compared to alternative interventions. 

Questions regarding the clinical effectiveness of step rate retraining are further raised 

by the results of Neal et al (255). Despite reporting a 2.1- and 3.9-point reduction in 

average pain and worst pain measured on a numerical rating scale, at six week follow 

up only 3 of the 10 subjects were asymptomatic, with a further six participants reporting 

greater than 3/10 pain on the NRS. Pain equal to, or greater than 3 out of 10 means 

these subjects continue to meet the inclusion criteria for many gait retraining 

interventions (69, 70, 255, 317, 318). Therefore, this raises questions as to the clinical 

effectiveness of increasing step rate amongst runners with PFP.     

One reason for the questionable clinical outcomes following step rate retraining may be 

explained by the lack of specificity in participant inclusion criteria. In the mirror 

retraining study by Willy et al (69) and the real time retraining study by Noehren et al 

(70), participants were only included in the retraining providing they demonstrated 

aberrant hip and pelvis kinematics at baseline. As such, participants reported pain scores 

of less than 1 out of 10 at follow up. This contrasts with step rate retraining interventions 

where the magnitude of baseline kinematics was not considered and participants 

continued to report average pain scores greater than 3 out of 10 following retraining 

(255, 267, 318). Considering patellofemoral pain is known to have a multifactorial 

aetiology, it is possible that these studies included several subjects for whom abnormal 
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kinematics were not the underlying cause of injury. As such they would be unlikely to 

respond to a clinical intervention which aims to improve running kinematics. Therefore, 

future studies should consider targeting step rate interventions to injured populations 

who demonstrate abnormal kinematics at baseline. Ensuring the specificity of 

interventions provided may improve clinical outcomes amongst injured runners.   

2.4.5.4 Summary of Step Rate Manipulation 

Current studies highlight that increasing step rate can successfully reduce kinematic 

patterns associated with running related injuries. Specifically, increasing step rate has 

been shown to reduce peak hip adduction and peak contralateral pelvic drop (Table 20) 

which have commonly been associated with several running injuries (Table 18). 

Although the evidence for reducing hip internal rotation remains limited, it appears that 

increasing step rate may successfully reduce hip internal rotation angles in participants 

who demonstrate either low step rate at baseline or large hip internal rotation angles. 

Therefore, step rate retraining is an appropriate intervention when aiming to improve 

kinematic patterns commonly associated with running related injuries.  

Unfortunately, the clinical effectiveness of increasing step rate amongst injured 

populations remains inconclusive. Although reductions in pain have been observed, the 

magnitude of clinical improvement appears to be less than that observed following 

visual feedback (69, 70). One reason for this may be the lack of specificity in participants 

targeted with gait retraining. In contrast to visual gait retraining, no current study has 

specifically targeted an increase in step rate to injured runners who demonstrate 

abnormal hip and pelvis kinematics at baseline. By targeting interventions to the 

underlying mechanics there may be a greater improvement in clinical outcomes 

observed. Therefore, future research is needed to investigate whether a step rate 

increase targeted at injured runners who demonstrate abnormal kinematics at baseline 

can enhance clinical and functional outcomes.    
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 Step width manipulation 

Step width manipulation is the process of increasing or decreasing a runner’s step width 

in order to influence a mechanical change. Systematic variations in running step width 

can be facilitated by placing a taped line along the centre of a runway or treadmill and 

verbally cueing runners to land either side of the line (245, 332). The following sections 

will discuss the effect of increasing running step width upon kinematic parameters 

associated with common running related injuries.    

2.4.6.1 Hip & Pelvis Kinematics 

No study has reported kinematics of the pelvis when running with different step widths, 

whereas two studies have reported hip kinematics following cues instructing 

participants to run with a wide, narrow and preferred step width (68, 333) (Table 20). 

Only one study has reported peak hip internal rotation angles, however it did not 

observe any change across step width conditions (333). Two studies have reported 

reduced peak hip adduction angles when running with a wide step width compared to 

narrow and preferred step widths (68, 333). Therefore, cueing runners to run with a 

wider step width seems an effective retraining method to reduce peak hip adduction 

angles.  

2.4.6.2 Knee & Ankle Kinematics 

Two studies have reported the effects of step width on transverse plane knee kinematics 

(68, 333), however no study has reported the effects upon frontal plane kinematics. 

Peak knee internal rotation has shown to significantly reduce when running with a wide 

step width, but only when compared to narrow step width conditions (68, 333). 

Therefore, when targeting peak knee internal rotation angle, increasing step width is 

likely to be effective only if the individual demonstrates a narrow step width at baseline.  

Peak rearfoot eversion angles have also been reported in two studies. Brindle et al (333) 

reported a 1.1⁰ and 1.5⁰ reduction in peak rearfoot eversion when increasing step width 

from narrow to preferred and from preferred to wide. Therefore, suggesting step width 

manipulation could effectively reduce peak rearfoot eversion. However, Pohl et al (332) 

reported rearfoot eversion and rearfoot eversion excursion to only be reduced when 
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increasing step width from a narrow condition. Therefore, when targeting peak rearfoot 

eversion, or rearfoot eversion excursion, it is possible that increasing step width is only 

effective if the individual demonstrates a narrow step width at baseline.    

2.4.6.3 Effects in injured populations 

Currently no study has investigated the effects of increasing step width on injured 

populations. Therefore, despite some evidence to suggest increasing step width may 

target kinematic parameters associated with running injuries, it is unknown if the 

magnitude in change would be sufficient to provide positive clinical outcomes. 

2.4.6.4 Summary of Step Width Manipulation 

Currently there is limited evidence investigating the effects of step width retraining on 

running kinematics. Based on the available literature, there is some evidence to support 

the use of step width manipulation when targeting peak hip adduction, however knee 

internal rotation angle and rearfoot eversion may only be effectively targeted in runners 

with a narrow step width at baseline. Therefore, further investigations are needed to 

first support the effects of step width manipulation on kinematic parameters and 

whether this can successfully influence clinical outcomes amongst injured populations.   

 Summary and Gaps  

In Section 2.1.7.2 the literature review highlighted several kinematic parameters 

associated with running related injuries. These include parameters such as peak 

contralateral pelvic drop, hip adduction, hip internal rotation, knee adduction/ 

abduction, knee internal/ external rotation and rearfoot eversion. The purpose of this 

Section was to review the gait retraining literature to establish whether methods of gait 

retraining can effectively target these kinematics parameters and improve clinical 

outcomes amongst injured runners.  

Several methods of gait retraining were reviewed including foot strike transition and 

barefoot running, visual feedback of running kinematics, increasing step rate and 

increasing step width. Of these methods visual feedback and step rate increase appear 

to effectively reduce frontal plane pelvis and hip kinematics amongst both healthy and 

injured running populations. However, there is limited evidence to suggest there is 
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sufficient impact upon frontal and transverse plane knee and ankle kinematics. Evidence 

from two studies appears to suggest increasing step width may reduce hip adduction 

angles as well as rearfoot eversion and knee internal rotation (68, 333), but the latter 

are likely to only be influenced in those with a narrow step width at baseline. Foot strike 

transition and minimalist shoes do not appear to have a significant influence on 

kinematic parameters commonly associated with running related injuries. As such, foot 

strike transition may not be an intervention of choice if the aim is to improve kinematic 

parameters associated with running related injuries. Based on the current available 

literature, step rate retraining and visual feedback appear to be effective interventions 

when targeting frontal plane pelvis and hip kinematics, while step width retraining may 

influence rearfoot eversion and knee internal rotation in participants with a narrow step 

width.   

Visual feedback, step rate retraining and transitioning foot strike are the only gait 

retraining interventions to report clinical outcomes amongst injured populations. 

Transitioning to forefoot running has been shown to produce positive clinical outcomes 

in runners with patellofemoral pain, however as previously discussed (Section 2.4.3.3), 

there are several limitations to this method of gait retraining reducing its clinical value. 

Specifically, transitioning to forefoot running does not appear to impact the kinematic 

parameters commonly associated with running related injuries (Table 20) and has been 

shown to increase the risk of lower limb injury development. Visual feedback has been 

shown to successfully target hip and pelvis kinematics and improve clinical outcomes 

amongst injured runners. However retraining methods are predominantly laboratory 

based, requiring close clinical monitoring. Such methods may not be feasible in clinical 

practise and as such there is a need for gait retraining interventions that can be easily 

integrated outside of the laboratory and into a runner’s normal routine.  
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Table 20: Visual summary of the number of studies and reported findings, investigating the effects of gait retraining interventions kinematics parameters associated with common running injuries. Circle colour 
represents the study design and the number of corresponding studies. Green = case-series study of injury free runners, orange = case-series study of injured runners, blue = meta-analysis findings of a systematic 

review. Gaps indicate no reported findings. Foot strike manipulation includes studies reporting either transition to barefoot or minimalist shoes and those directly curing a fore foot contact. Visual feedback 
includes studies utilising mirror or 3D real time feedback. 

 

  
Step Rate Increase Foot Strike Manipulation Step Width Increase Visual Feedback 

 

    Si
gn

if
ic

an
tl

y 
R

e
d

u
ce

d
 

N
o

n
- 

si
gn

if
ic

an
t 

Si
gn

if
ic

an
tl

y 

R
e

d
u

ce
d

 

N
o

n
- 

si
gn

if
ic

an
t 

Si
gn

if
ic

an
tl

y 
R

e
d

u
ce

d
 

N
o

n
- 

si
gn

if
ic

an
t 

Si
gn

if
ic

an
tl

y 
R

e
d

u
ce

d
 

N
o

n
- 

si
gn

if
ic

an
t 

Tr
u

n
k 

Ipsilateral Trunk Lean Peak         

P
e

lv
is

 

Contralateral Pelvic 
Drop 

Peak ❶❶   ❸❶   ❷  

H
ip

 Hip Adduction Peak ❻❶ ❶ ❶ 
❻❷

❶ 
❷  ❷❶  

Hip Internal Rotation Peak ❶ ❶❷ ❶ ❹❷  ❶  ❷ 

K
n

ee
 

Adduction Peak  ❶  ❹❷     

Abduction Peak ❶  ❶ ❶❷     

Internal Rotation Peak  ❷  ❶❶ ❷    

External Rotation Peak  ❶❶  ❹❶ ❶  ❶  

R
e

ar
fo

o
t 

Eversion Peak ❶ ❶ ❷ ❸❶ ❶    



 

101 | P a g e  
 

Step rate retraining is one method of retraining that could be integrated outside of the 

laboratory (328). Through the use of Global Positioning System (GPS) “smart” watches 

and portable mobile metronome applications, runners may be able to self-retrain and 

monitor their step rate without the need for close clinical supervision (328, 334). 

However, despite reporting reductions in pain amongst injured populations, average 

pain scores have remained greater than 3 out of 10 following step rate retraining (255, 

267, 318). This contrasts with visual retraining methods reporting pain scores of less 

than 1 out of 10 following retraining (69, 70). Therefore, the clinical effectiveness of step 

rate retraining when compared to other interventions remains questionable (267, 318).  

In order to improve the efficiency of gait retraining it may be necessary to ensure 

interventions are specifically targeted to those who demonstrate abnormal running 

kinematics at baseline. Considering many running related injuries are known to have 

multifactorial aetiologies, it is possible that interventions must be targeted to the 

appropriate injury contributors in order to improve clinical outcomes. In the current 

literature Noehren et al (70) and Willy et al (69) are the only studies to specifically target 

gait retraining to runners with abnormal running kinematics at baseline. Consequently, 

the improvements in clinical outcomes were much greater than that of step rate 

retraining studies. Therefore, future research is required to investigate whether step 

rate retraining, targeted at those demonstrating abnormal hip and pelvis kinematics at 

baseline, improves clinical outcomes amongst injured runners. 

Based on the findings of the current literature review the aim of Chapter 7 is to 

investigate whether a simple method of gait retraining can be used to effectively 

improve biomechanics and improve clinical and functional outcomes amongst injured 

runners. The specific objectives were to investigate whether a 10% increase in running 

step rate influences frontal plane kinematics of the hip and pelvis, as well as clinical 

outcomes in runners with PFP. Secondary objectives were to investigate whether 

runners can self-administer a 10% increase in step rate using an audible metronome 

and a GPS smart watch and whether these changes can be maintained at short term 

and long term follow up.  
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The impact of achieving this aim is to provide preliminary evidence for the clinical 

effectiveness of a simple method of gait retraining amongst runners with PFP. The 

method employed can be easily integrated into clinical practise without the need for 

close clinical supervision and therefore offers a practical retraining method for 

clinicians.  Based on the premise that running kinematics increase tissue load per foot 

contact and training load exposure influences cumulative tissue load, interventions 

which target kinematic parameters associated with common running injuries may 

reduce pain and allow runners to increase their training load exposure.  

2.5 Literature Review: Summary, Aims, Objectives, Hypotheses & 

Impact 

The aim of this narrative literature review aim was to explore the literature to identify 

the kinematic and kinetic characteristics of common running related injuries, the 

reliability of kinematic assessment measures, whether training load exposure influences 

injury risk and running kinematics and whether gait retraining interventions can 

effectively target running kinematics. Through this review, gaps within the current 

literature have been identified informing specific research objectives which will be 

addressed within subsequent chapters of this thesis. The following section summarises 

the knowledge gaps identified in the preceding sections.   

Within the current literature review, several kinematic parameters were identified to be 

associated with common running injuries. Interestingly, many of these observed 

patterns were similar across multiple different running injuries, suggesting that similar 

kinematic patterns may be associated with multiple different running related injuries. In 

particular, peak contralateral pelvic drop, hip adduction and hip internal rotation. It is 

possible that these kinematic patterns may increase tissues stress at multiple different 

anatomical locations leading to injuries at different sites. However, no current study has 

investigated whether similar kinematic parameters are associated with multiple 

different running related injuries. Furthermore, there is limited evidence investigating 

whether frontal plane trunk and pelvis kinematics are associated with common running 

injuries. If this is the case, rehabilitation interventions that effectively target these 
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parameters may reduce stress placed on the musculoskeletal system contributing to 

improved clinical outcomes amongst injured runners.    

In order to identify kinematic parameters which are associated with running injuries and 

the effect of clinical interventions, assessment measures need to be repeatable. Several 

studies have reported low between day repeatability and large measurement errors 

associated with frontal and transverse plane kinematics of the hip and knee. Such 

measurement errors are likely to vary between laboratories and testing procedures. No 

previous study has reported the repeatability or measurement error associated with 

trunk and pelvis kinematics during treadmill running, yet investigations frequently utilise 

treadmill testing procedures to target interventions at these parameters. As such it is 

difficult to establish whether between day differences in running kinematics represent 

true intervention effects or are the result of measurement error. Therefore, as well as 

establishing the repeatability of individual testing procedures, there is a need to 

establish the repeatability of discrete kinematics of the trunk and pelvis during treadmill 

running.   

An interesting finding of this literature review is the limited literature investigating the 

interaction between training load exposure and running kinematics. It is thought that 

running kinematics may increase the stress placed on the musculoskeletal system during 

each foot contact of a run. When combined with an external training load exposure, the 

cumulative tissue stress placed on the musculoskeletal system may cause some runners 

to exceed their injury threshold at much lower training volumes than others. Therefore, 

understanding whether kinematics are influenced by exposure to training loads, may 

have implications for both research and clinical practise.  

Currently, no study has investigated whether kinematic parameters commonly 

associated with running injuries differ between those who run high and low weekly 

training volumes. From a clinical perspective, differences in running kinematics may aid 

our understanding of why some runners become injured as training volume increases 

while others do not. As such, clinical interventions which target running kinematics, may 

be utilised within the rehabilitation process in order to allow runners to increase their 
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training volume by reducing the stress placed on the musculoskeletal system per foot 

contact. Therefore, there is a need to further explore possible interactions between 

training load exposure and running kinematics.  

Several studies provide evidence to suggest gait retraining may improve running 

kinematics commonly associated with running injuries and clinical outcomes amongst 

injured runners. However, many of the interventions require close clinical supervision 

and restrict runners from continuing their normal routine. Therefore, there is a need for 

clinical interventions that can be easily integrated outside of the laboratory and clinical 

setting. Increasing step rate is one gait retraining method that could be integrated 

outside of the clinical setting. However current intervention studies have reported 

participants to have continued symptoms after the intervention period, raising 

questions as to its clinical effectiveness. Based on current literature, it is possible that 

clinical outcomes following gait retraining may be improved by targeting runners with 

aberrant running kinematics at baseline. However, no current study has investigated 

whether specifically targeting step rate retraining to injured runners with sub-optimal 

baseline kinematics, results in greater clinical outcomes and can be integrated outside 

of the clinical setting.   

 Aims, Objectives, Hypothesis & Impact 

Based on the identified gaps within the current literature, the following aims, objectives, 

hypotheses and impact were established: 

1. Establish the repeatability of discrete kinematic parameters during running in order 

to aid the interpretation of between-group and post intervention kinematic 

differences. The specific objective was: 

a. To investigate the between day repeatability, standard error of 

measurement and minimal detectable change of discrete kinematic 

parameters of the trunk, pelvis and lower limbs during treadmill running 

(Chapter 4).   

Impact: identifying the repeatability, standard error of measurement and 

minimal detectable change of discrete kinematic parameters will provide 
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a clinically meaningful threshold for which interpretation of true between 

day differences can be made. 

2. To investigate whether similar kinematic parameters are associated with multiple 

different common running related injuries (Chapter 5). The specific objectives 

were: 

a. To investigate whether there are differences in running kinematics 

between a group of runners with common running injuries (ITBS, PFP, 

MTSS and AT) compared to a healthy control group.  

H1: Injured runners will demonstrate greater contralateral pelvic drop, 

hip adduction and rearfoot eversion when compared to controls. 

b. To investigate whether kinematic differences observed between injured 

and healthy runners, differ between injury subgroups. 

H0: There will be no difference in kinematic parameters between injury 

subgroups.  

Impact: identifying kinematic parameters associated with common running related 

injuries may assist clinical understanding of key parameters which may increase tissue 

loading. Subsequently this information may aid the development of screening and 

rehabilitation interventions, specifically targeted towards these kinematic parameters.   

3. To explore whether kinematic parameters associated with common running 

injuries are associated with weekly training load exposure (Chapter, 6). The specific 

objective was: 

a. To investigate whether there is a difference, between groups of high and 

low-mileage runners, in the proportion of individuals who demonstrate 

kinematic patterns associated with injury.  

H1: when compared to low-mileage runners, injury-free high-mileage 

runners will demonstrate a lower frequency of kinematic patterns similar 

to those associated with common running injuries.    

Impact: this may provide a theoretical understanding as to why some runners become 

injured as training volume increases, while others do not. It may also enhance our 
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understanding of whether kinematics adaptations, if any, are required to attain regular 

high-volume training loads while remaining injury free. The possible implications for 

load management amongst runners who demonstrate kinematic parameters 

associated with common injuries are discussed.   

4. To investigate whether a simple method of gait retraining can be used to improve 

biomechanics, clinical and functional outcomes amongst injured runners. The 

specific objectives were: 

a. To investigate whether a 10% increase in running step rate influences 

frontal plane kinematics of the hip and pelvis, as well as clinical outcomes 

in runners with PFP.  

H1: a 10% increase in step rate will result in significant reductions in 

frontal plane hip and pelvis kinematics, improvements in clinical 

outcomes and function. 

b. To investigate whether runners can self-administer a 10% increase in step 

rate using an audible metronome and a GPS smart watch and whether 

these changes can be maintained at short term and long term follow up. 

H1: runners will increase their step rate by 10% at short term follow up 

which will be maintained at long term follow up.   

Impact: the impact of achieving this objective is to provide preliminary evidence for 

the clinical effectiveness of a simple method of gait retraining amongst runners with 

PFP. The method employed can be easily integrated into clinical practise without the 

need for close clinical supervision and therefore offers a practical retraining method 

for clinicians.   
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 Chapter 3: Methods  

3.1 Overview 

The following section outlines participant recruitment and kinematic data collection 

methods used to meet the thesis aims presented in Section 2.5.1. Statistical testing 

procedures are presented in the appropriate section of each Chapter.  

 Ethics 

Ethical approval for the research protocol was obtained via the University of Salford local 

ethics committee prior to the commencement of data collection (HSCR13-17a, HSCR13-

17b, HSCR16-49, Appendix A). Data collection commenced in June 2013 with the initial 

aim of forming a kinematic database of healthy control subjects. This application was 

later amended to include the investigation of injured runners in line with the aims 

generated for this thesis (HSCR13-17b, appendix A). As the literature review progressed 

and research aims were developed, a further ethical application was submitted in order 

to investigate the effects of gait retraining upon injured runners (HSCR16-49, Appendix 

A). This latter trial was registered as a clinical trial via ClinicalTrials.gov (registration No. 

NCT03067545).  

Prior to participation all participants were provided an information sheet detailing data 

collection protocols (Appendix B), this was discussed with the participant in detail and 

they were provided the opportunity to ask any necessary questions. All participants 

were then required to provide written informed consent prior to commencing data 

collection procedures (Appendix C). All data was collected in accordance with a 

standardised protocol developed for the purpose of meeting the aims of this thesis, as 

well as wider research aims within the department for use of data collected from 

running clinic services operated by the University of Salford. These included 

investigating the effects of running speed on kinematics, differences in kinematics 

between elite and recreational runners and the relationship between clinical 

assessment measures and kinematics.   
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3.2 Participant Recruitment  

In order to meet the research aims a convenience sample of participants was recruited 

through a University based running clinic as well as externally, via poster advertisements 

located at sports injury clinics, running clubs and running race events across the Greater 

Manchester area. Written and verbal consent to participate was gained from all subjects 

prior to being included within the corresponding studies (Appendix C). All participants 

were screened by a qualified physiotherapist [CB] to confirm injury status, diagnosis and 

their eligibility prior to inclusion within the specific study protocols. The inclusion and 

exclusion criteria for groups is outlined in the following sections and can also be found 

in Appendix D.  

 Healthy Control Subjects 

3.2.1.1 Inclusion Criteria 

Healthy controls were defined as endurance runners competing at distances greater 

than 1500m, running a minimum of twice per week and having reported no injury or 

time off from training in the last 18 months.  

3.2.1.2 Exclusion Criteria 

Subjects were excluded from the control group if they reported any current injury or 

injury within the last 18 months. Injury was defined in accordance with a consensus 

definition outlined by Yamato et al (335), specifically an injury was defined as any 

musculoskeletal ailment causing a stoppage or restriction to running volume, duration 

or speed for a minimum of 7 days or three consecutive scheduled training sessions, or 

that required the runner to consult a physician or health care professional.  Any prior 

history of a common running related injury, specifically including medial tibial stress 

syndrome, Achilles tendinopathy, patellofemoral pain or iliotibial band syndrome 

resulted in exclusion from the control group. Additional exclusion criteria included 

having only just started running in the last 2 years, any prior musculoskeletal surgery, 

neurological impairment, diagnosed knee or lower limb osteoarthritis or any other injury 

following either trauma or sporting activity.  
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 Injury Groups 

3.2.2.1 Inclusion Criteria 

Injured subjects were recruited if they were running a minimum of twice per week and 

reported a limitation to their running volume due to a running related injury. Pain 

experienced must have been of an insidious or gradual onset during running, rated a 

minimum of 3 out of 10 on a numerical rating scale (NRS) for worst pain experienced in 

the past week (0 = no pain, 10 = worst possible pain) and meet the consensus definition 

of a running related injury outlined by Yamato et al (335). Specifically, an injury was 

defined as any musculoskeletal ailment causing a stoppage or restriction to run volume, 

duration or speed for a minimum of 7 days or three consecutive scheduled training 

sessions, or that required the runner to consult a physician or health care professional. 

Injuries were assessed and diagnosis confirmed by the lead clinician and researcher [CB]. 

Specific injury diagnostic criteria are outlined below.   

3.2.2.2 Exclusion Criteria 

Subjects were excluded if the onset of injury was due to trauma or any other sporting 

activity. If they have had prior traumatic injury to the area, if there is any history of 

surgery or pre-existing medical conditions that may affect their gait or if there were any 

abnormal findings on a standardised physical assessment that may have influenced their 

gait or symptoms (Appendix D). To control for training errors as a potential underlying 

cause of injury, participants were also excluded if they reported the onset of symptoms 

to occur following an increase in their weekly training volume equal to, or greater than 

30% (47). Participants were also excluded if they reported having less than 2 years 

running experience.  

 Patellofemoral Pain Syndrome 

The diagnosis of patellofemoral pain syndrome was made in accordance with previously 

published diagnostic criteria (336) and previous biomechanical studies (58, 294). 

Specifically, for inclusion to the study participants must report a subjective history of 

retropatella or peripatellar knee pain, reproduced on squatting and any one or more of 

the following: stair ascent/ descent, kneeling, prolonged sitting, hopping or jumping. 
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Pain on squatting has been shown to have a sensitivity of 91% and a negative predictive 

value of 74% suggesting this test to be the best available test for PFP (337, 338). A 

combination of additional, but non-essential, clinical tests was used to further increase 

the diagnostic accuracy of PFP (339). Tests included patella compression, patella 

apprehension, pain on palpation of the lateral patella facet and pain on resisted 

quadricep contraction in 30⁰ knee flexion (338, 339).  

Participants were excluded if they presented with any signs of patella instability, 

ligamentous or meniscal injury (336) determined following a standardised physical 

examination procedure including McMurrys grind test, Apleys grind test, Lachmans, 

anterior draw, posterior draw, Nobles test, varus and valgus stress testing. 

 Iliotibial Band Syndrome 

The diagnosis of ITBS was made in accordance with the diagnostic criteria outlined in 

previous biomechanical studies (228) and also described by Fredericson (217). 

Specifically, pain must have been of insidious onset presenting as a sharp or burning 

pain localised to the lateral femoral condyle that is aggravated and may worsen during 

running, easing with cessation of running. Additional subjective symptoms include pain 

aggravated by downhill running and stair decent (217). On objective examination 

subjects must have presented with localised tenderness and pain reproduced on 

palpation of the distal ITB at the lateral femoral condyle approximately 3 cm above the 

lateral knee joint line and a positive Nobles compression test.  

Participants were excluded if they presented with any signs of patella instability, 

ligamentous or meniscal injury determined following a standardised physical 

examination procedure. This included McMurrys grind test, Apleys grind test, Lachmans, 

anterior draw, posterior draw, varus and valgus stress testing, patella compression, 

patella apprehension, pain on palpation of the lateral patella facet and pain on resisted 

quadricep contraction in 30⁰ knee flexion. 

 Medial tibial stress syndrome 

The diagnosis of MTSS was made  in accordance with the diagnostic criteria outlined by 

previous authors (139, 144, 340). On subjective assessment pain must be reported to be 
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localised to the distal third of the medial tibia exacerbated by activity and easing with 

rest. Participants were excluded if they presented with symptoms representative of 

alternative pathologies, including chronic exertional compartment syndrome or tibial 

stress fracture. Specifically, participants were asked if they experience pain at rest or at 

night, symptoms of cramping, burning, pins and needles, temperature changes in the 

feet or pressure/ swelling sensations exacerbated during activity (139). In the instance 

that these symptoms were present, participants were excluded from the study.  

On objective examination pain was reproduced on the shin palpation test; pain on 

palpation of the medial ridge of the tibia along a 5 centimetre length (139). Participants 

were excluded if they had a positive shin oedema test, pain on compression of the tibial 

body or pain in a localised region less than 5 centimetres along the tibial boarder. These 

participants were excluded as findings may be indicative of bone stress injury rather 

than a biomechanical overload to the soft tissue structures of the medial tibial border 

(340, 341). 

 Achilles tendinopathy 

The diagnosis of Achilles Tendinopathy was made in accordance with the diagnostic 

criteria outlined by Silbernagel & Crossley (342) and Hutchinson et al (343). Participants 

were included if pain was reported to be of gradual or insidious onset during or following 

running, morning stiffness that eases with movement and pain on loading activities of 

running or hopping that may or may not ease into activity.  

On objective examination pain was required to be localised to the mid portion of the 

Achilles tendon, reproduced on palpation of the mid portion of the Achilles tendon 

approximately 2 to 6cm proximal to the insertion at the calcaneus. A combination of 

self-reported pain localised to the mid portion of the tendon, symptoms of morning 

stiffness and pain on palpation of the tendon has been shown to have a sensitivity of 

83% and specificity of 89% for mid portion Achilles tendinopathy (343).  

 Total Data Collected 

Between June 2013 and September 2017, kinematic data was collected from a total of 

421 participants outlined in Figure 9. Seventy one datasets were excluded for reasons 
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including: incomplete data reporting (n = 58), such as missing participant characteristics 

of age, mass, height, injury diagnosis or training history, errors in the kinematic data (n 

= 4) such as missing markers, participants under the age of 18 (n = 2) and participants 

for whom their primary sport was not endurance running (n = 7), including 3 sprinters 

competing in distance less than 400 meters, 2 footballers, 1 military recruit and 1 

participant classified as a “non-runner”, who did not meet the inclusion criteria of a 

minimum running frequency of 2 times per week. Of the remaining 350 datasets, 125 

reported no current injury. Twenty of these participants were excluded due to a history 

of injury within the last 18 months, or having reported a history of one of the common 

overuse injuries of interest in this thesis (AT, MTSS, PFP or ITBS). This left a remaining 

105 participants meeting the inclusion criteria for healthy control runners. Data from 

these participants was subsequently used to address the research questions within 

Chapter 4, 5 and 6.  

A total of 225 participants reported a current running related injury. Following 

assessment by the lead clinician 153 were excluded for the following reasons: failed to 

meet the primary diagnosis of interest (n = 141), presented with coexisting injuries (n = 

4), did not meet the minimum injury duration of greater than 3 months (n = 4), injury 

onset occurred following an acute increase in training volume of greater than 30% per 

week (n = 1) and two further participants who were asymptomatic at the time of 

assessment. This left a remaining 72 subjects who met the inclusion criteria for running 

related injuries of interest and were subsequently included within Chapter 5.  

As data collection had commenced prior to the development of the specific research 

aims to be addressed in Chapter 7, several participants in the initial dataset who may 

have qualified for the gait retraining study were unable to be recruited. Once the 

research aims had been finalised for Chapter 7 a further ethics application was 

submitted and granted in July 2016 (HSCR16-49, Appendix A). Consequently, further 

participant recruitment took place up until 2018 in order obtain the required number of 

participants with PFP who met the inclusion criteria for the gait retraining study. The 

specific methods of this study are outlined in Chapter 7.   
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Figure 9: Flow chart of total numbers of kinematic datasets collected between June 2013 and September 2017. 
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3.3 Biomechanical procedures 

In order to develop the biomechanical testing protocol, several methodological gaps 

were identified deemed necessary to address in order meet the aims of this thesis. 

Firstly, in order to track the kinematics of the trunk segment it was necessary to develop 

a tracking marker set. Second, to separate kinematic waveforms into multiple gait cycles 

it is necessary to identify gait events of foot strike and toe off. The gold standard of 

measurement is considered to be through force plate measurements (344). However, 

this thesis aimed to utilise a motorised treadmill for kinematic data collection 

procedures and consequently force data was not available. Therefore, there was a need 

to establish a method for gait event detection utilising kinematic data.  Finally, during 

an initial search we found limited found limited evidence detailing the run duration 

required to achieve stable kinematic data during treadmill running. Consequently, we 

sought to identify an appropriate treadmill accommodation period to be utilised within 

the final study methodology.  

In order to address these methodological gaps, several preliminary studies were 

conducted. These investigations were collaborative studies with the results used to 

inform and develop the final methodology of this thesis, as well as broader aims within 

the institutional research group. The findings of these studies and how they informed 

the final methodology are discussed in more detail within the appropriate section of this 

Chapter. Three of these preliminary studies have subsequently been published, with one 

additional, unpublished pilot study. Background publications informing the 

development of this methodology include: 

Preece, S. J., Bramah, C., Mason, D. (2016) A marker set for measuring the kinematics of 

the lumbar spine and thoracic spine during running: a technical note. Journal of Human 

Sport & Exercise. 11 (3), pp. 390 – 396. 

Smith, L., Preece, S., Mason, D., Bramah, C. (2015) A comparison of kinematic algorithms 

to estimate gait events during overground running. Gait & Posture. 41, pp. 39 – 43. 



 

115 | P a g e  
 

Mason, D. L., Preece, S. J., Bramah, C., Herrington, L. C. (2016) Reproducibility of 

kinematic measures of the thoracic spine, lumbar spine and pelvis during fast running. 

Gait & Posture. 43, pp. 96 – 100.  

 Kinematic data collection 

Three-dimensional kinematic data was collected using a 12 camera Qualysis Oqus 

system sampling at 240Hz (Gothenburg, Sweden). All cameras were positioned around 

the laboratory in a manner that ensured each anatomical tracking maker could be 

visualised by a minimum of two cameras. At the beginning of each testing session a 

dynamic wand calibration was conducted in order to orientate the camera system within 

the global coordinate system and laboratory reference frame. Four reference markers 

attached to a ridged L- frame were positioned in the centre of the capture volume 

pointing in the direction of forward running progression. A 60 second calibration 

procedure was then conducted using a calibration wand with two retroreflective 

markers attached at a fixed distance apart (601.7mm). The calibration wand was 

systematically moved in multiple directions around the laboratory to ensure calibration 

of the entire capture volume of interest. Following the calibration, marker residuals of 

less than 0.4mm were considered acceptable, as lower residuals are associated with 

more accurate reconstruction of 3D marker coordinates from data collection (345).  

The orientation of the laboratory coordinate system was defined using a Cartesian 

coordinate system following the right-hand rule in accordance with methods outlined 

by Grood and Suntay (346). The Z axis points vertically upward, Y axis pointing in the line 

of forward progression and the X axis perpendicular to the Z and Y axis. The laboratory 

coordinate system was subsequently used to define the segment coordinate system.  

 Marker Placement 

Following calibration of the global coordinate system, a static anatomical calibration trial 

was conducted in accordance with the calibrated anatomical system technique (347) 

(248). In order to complete this trial, all static and dynamic marker were first attached 

to the participant and a static anatomical calibration trial was recorded with the subject 

stood in the centre of the laboratory facing in the direction of forward movement.  
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In order to track the motion of the trunk, pelvis and lower limbs retroreflective markers 

were attached to anatomical landmarks during static and dynamic trials. 15mm 

retroreflective markers were attached to the thorax, lumbar spine, pelvis, thigh, shank 

and foot (Figure 10, Figure 11 & Figure 12). 

During preliminary testing we encountered several difficulties when establishing a 

marker tracking design for the trunk segment. The initial marker design trialled, 

consisted of a cluster of four non-colinear markers attached to the sternum, as 

recommended by the International Society of Biomechanics (348). However, due to the 

proximity of markers on the cluster, marker trajectories were found to merge within the 

camera field as the trunk rotated during running. This resulted in inaccurate 

reconstruction of marker trajectories with repeated loss of markers within the data 

recording. Following repeated testing, two further options were considered, both of 

which were clearly tracked during preliminary trials. The first method consisted of 

utilising three tracking markers, with two attached on bilateral acromions and one on 

the thorax. The second method was an adaption of the initial four marker cluster design, 

consisting of three non-collinear markers attached to a cluster situated on the sternum 

(Figure 10). These markers were attached in a way that ensured they were clearly 

tracked without any merging of marker trajectories.  

To determine the tracking markers to be used in the final protocol, we compared the 

data collected using both methods which was later published as a technical note (349). 

The coefficient of multiple correlation was used to assess waveform similarity and the 

standard error of measurement averaged over the entire waveform to quantify the 

absolute difference between methods. The results of this investigation found poor 

agreement between the two marker sets in the sagittal plane with large standard error 

of measurements. The lack of agreement between methods was thought to be due to 

movement artefact of the acrominon markers, occurring due to arm movement during 

running (349, 350). Based on these findings, the final marker design consisted of a 

cluster of three non-collinear markers attached to the sternum (Figure 10). The full 

marker set used to track all segments followed the same protocol as outlined in Mason 

et al, (201) and Seay et al (330), detailed below.     
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The trunk segment was tracked using a rigid cluster containing 3 markers attached to 

the sternum (Figure 10). An anatomical reference frame for this segment was defined 

using markers attached to the suprasternal notch, xiphoid process, 7th cervical 

vertebrae and 6th thoracic vertebrae. The pelvis segment was defined using markers 

positioned on the iliac crest in vertical alignment with the greater trochanters. Tracking 

markers were placed directly over the anterior superior iliac spines and the posterior 

superior iliac spines and. Rigid thigh and shank clusters containing four markers were 

placed laterally over the thigh and shank segments and secured using double sided sticky 

tape and elasticated bandages. An anatomical reference frame for the thigh and shank 

segments was defined using calibration markers attached to bilateral greater 

trochanters, lateral and medial femoral condyles and lateral medial malleoli (Figure 11). 

To ensure clusters did not move during the testing procedures the outline of the markers 

were drawn onto the skin. The foot segment was defined in accordance with previous 

biomechanical studies modelling the foot and rearfoot (235). Tracking markers were 

placed directly over the shoe; 3 non-linear markers attached to the heel of the shoe to 

track rearfoot movement (Figure 12) and markers attached to the shoe over the base of 

the 5th metatarsal, 1st metatarsal and head of the 2nd metatarsal. Calibration markers 

for the foot and ankle segments were attached to the lateral and medial malleoli. In 

order to avoid the effects of intertester differences in marker application, the same 

examiner [CB] applied all markers (257). 
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Figure 10: Markers used to model the trunk segment. Static markers are labelled in yellow, tracking markers in blue. 

 

Figure 11: Markers used to model the pelvis and lower limb segments. Static markers are labelled in yellow, tracking 
markers in blue. PSIS = posterior superior iliac spine, ASIS = anterior superior iliac spine, GT = greater trochanter, LC = 

lateral condyle, MC = medial condyle. Met = metatarsal.  
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Figure 12: Markers used to track the rearfoot segment. Static markers are labelled in yellow, tracking markers in 
blue 

 

  

 Testing Procedures 

Following the static calibration trial, calibration markers were removed prior to dynamic 

trials. For dynamic running trials all participants ran on a treadmill (Sole Fitness, F63, 

USA) at 3.2m/s using their own running shoes. Participants completed a 5-minute warm 

up period before 30 seconds of kinematic data was recorded in order to obtain a 

minimum of 10 consecutive footfalls. Where appropriate, speed was then increased to 

3.8m/s, 4.5m/s and 5.2m/s for wider department research aims unrelated to this thesis. 

During the initial protocol development, we planned to capture running kinematics at 

3.2m/s and 3.8m/s for all studies. However, during pilot testing, the large number of 

trials associated with multiple testing speeds resulted in increased participant 

perspiration and the loss of markers. Consequently, kinematic data was repeatedly 

unusable due to marker movement and dropouts. Therefore, the decision was made to 

capture runners at a single speed of 3.2m/s and restrict the gait retraining protocol to a 

maximum 10-minute retraining period, as opposed to 15 minutes which was initially 

proposed (the full gait retraining protocol can be found in Chapter 7, Section 7.2.4 & 
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Figure 28). The speed of 3.2m/s was selected to allow comparison to previous kinematic 

studies testing participants at a similar speed (58, 192).    

A standardised speed was used to avoid variability in kinematic parameters that may 

occur due to variations in running speed (291, 351, 352). Treadmill running has been 

shown to reproduce highly similar kinematics throughout stance phase (353, 354) and 

throughout the entire gait cycle (355, 356) when compared to over ground running. 

Furthermore treadmill running allows subjects to achieve a constant gait pattern when 

running, reducing potential stride to stride variability that may occur when performing 

repeat running trials over an indoor running track (356). Therefore, kinematics can be 

considered representative of a typical over ground run. Participants wore their own 

running shoes in order to provide a representative measure of their normal running 

kinematics and avoid the effect of shoe differences on kinematics (263, 357).   

During initial development of the testing procedures, we found limited found limited 

evidence detailing the run duration required to achieve stable kinematic data. 

Consequently, we conducted a preliminary study in order to determine the warm-up run 

duration. A total of 13 injury free participants completed continuous treadmill running 

for a total of 10 minutes. Thirty seconds of kinematic data were collected at 3 minutes, 

5 minutes and 8 minutes during continuous running. All kinematic data was collected 

and processed in accordance with procedures outlined within this Section. One-way 

repeated measures ANOVA with a critical alpha of .05 was used to investigate 

differences between time points for discrete kinematic parameters at initial contact, 

peak angles and spatiotemporal parameters. When significant differences were 

observed, post hoc Bonferroni test was used to identify differences between time-

points.  

The results from this pilot study identified significant differences between time points 

for stride rate, stride length, peak ankle dorsiflexion and peak knee flexion. Pot hoc 

Bonferroni found differences occurred between the 3min/5min timepoint and the 

3min/ 8min timepoint. No significant differences were observed between the 
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5min/8min timepoints. Therefore a 5-minute accommodation period was chosen for use 

in the final study protocol. Full results from this pilot study are provided in Appendix E.  

 Kinematic Modelling 

The static calibration trial was used to define the joint coordinate system, with segments 

modelled as rigid bodies. The joint coordinate system for the thorax was defined similar 

to that outlined by the international society of biomechanics (348, 358). Specifically, this 

segment was defined using the z-axis (pointing upwards) as a line connecting the 

midpoint between markers located on the suprasternal notch and 7th cervical vertebrae, 

and the midpoint between the xiphoid process and 6th thoracic vertebrae. The x-axis 

was then defined as a perpendicular line to the plane formed between the suprasternal 

notch and 7th cervical vertebrae, and the midpoint between the xiphoid process and 6th 

thoracic vertebrae. The y-axis face anteriorly, oriented perpendicular to the x and z-axis 

(Figure 13). For the pelvis segment, the joint centre origin was defined using a virtual 

marker positioned midway between the two iliac crest markers (Figure 14A). The z-axis 

was aligned with the laboratory pointing upwards, the x-axis pointed from the origin to 

the right iliac crest marker and the y-axis pointed anteriorly, perpendicular to the z and 

x-axis (Figure 14A).  
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Figure 13: Joint coordinate system for the trunk segment. X-axis is pictured in red, y-axis in green, z-axis in blue. 
Static markers are highlighted in yellow, tracking markers in blue.   
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Figure 14: A: Pelvis joint coordinate system. B: Thigh joint coordinate system. X-axis is pictured in red, y-axis in green, 
z-axis in blue. Static markers are highlighted in yellow, tracking markers in blue. ASIS = anterior superior iliac spine, 

GT = greater trochanter, LC = lateral condyle, MC = medial condyle.  

 

The hip joint centre was defined using a prediction approach based on the distance 

between the right and left ASIS markers and the position of the greater trochanter 

marker as described by Bell et al (359, 360). Specifically, the hip joint centre was located 

along a line projected medial to the greater trochanter marker, bisecting a point located 

30% of the inter ASIS distance distal and 14% medial to the ASIS (359) (Figure 14B). The 

x-axis pointed towards the right, parallel to a line bisecting the ASIS markers, y-axis 

parallel to a line bisecting the midpoint of the PSIS and ASIS markers facing anteriorly 

and the z-axis pointing perpendicular to the two. The thigh was oriented with the z-axis 

pointing upwards aligned with the long axis of the bone, defined from the hip joint 

centre and the knee joint centre (Figure 14B). The x-axis pointed towards the right, 
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orientated perpendicular to the z-axis and the y-axis facing anteriorly, perpendicular to 

the x and z-axis.  

The shank coordinate frame was oriented with the z-axis pointing vertically, aligned with 

the long axis of the bone defined form the central point between the lateral and medial 

femoral condyles and malleoli. The x-axis of the shank was defined as the line connecting 

the femoral condyles, pointing towards the right and the y-axis oriented perpendicular 

to the z and x-axis (Figure 15). Rather than use an anatomically defined foot segment, a 

virtual foot segment was used in which the neutral joint ankle was defined as a flat foot 

with a vertical shank segment. This was to account for a slight plantarflexion offset due 

to the metatarsal markers being in a plantarflexed orientation relative to the malleolus 

markers. To define the foot segment the ankle joint origin was positioned at the 

midpoint of the lateral and medial malleolus markers (Figure 15B). The z-axis was 

oriented vertically from the ankle joint origin, the x-axis was defined as the line through 

the medial and lateral malleolus markers pointing towards the right and the y-axis 

defined as a line pointing anteriorly, through the central points between the 

medial/lateral malleolus and the 1st/5th metatarsal markers.  

Figure 15: A: joint coordinate system for the shank. B: Joint coordinate system for the ankle. X-axis is pictured in red, 
y-axis in green, z-axis in blue. Static markers are highlighted in yellow, tracking markers in blue. LC = lateral condyle, 

MC = medial condyle, MM = medial malleolus, LM = lateral malleolus. 
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 Kinematic Data Processing 

Marker trajectories were first labelled in Qualysis Track Manager (Gothenburg, Sweden), 

before being exported into Visual 3D where the raw kinematic data were low pass 

filtered at 10Hz. A 10Hz filtering frequency has been reported to effectively filter signal 

noise while still providing stable kinematic waveforms (361).  

During the initial development of the data processing methods we initially trialled a 

global optimisation modelling technique for reconstruction of segmental kinematics. 

However, during data processing attempts, the global optimisation model significantly 

increased the time required for data processing, beyond that which was considered 

acceptable. Global optimisation has previously been proposed as a modelling technique 

to minimise the effects of soft tissue artefact on segmental kinematics by imposing 

specific joint constraints, limiting translational movements between segments (362). 

Whereas alternative models, such as the 6 degrees of freedom (6DOF) model, do not 

impose joint constraints and are thought to be more susceptible to kinematic errors due 

to soft tissue artefact (362). However, in a previous study, we compared the 

reproducibility and standard error of measurement between global optimisation and 

6DOF models, finding similar levels of reproducibility between methods (201). 

Therefore, a 6DOF model was considered acceptable for calculation of segmental 

kinematics.  

Intersegmental kinematics, along with the motions of the pelvis and thorax with respect 

to the laboratory system, were subsequently calculated in visual 3D using a 6DOF model. 

A cardan angle sequence was used to define joint orientation using a right-hand rule and 

joint angle conversion of x-y-z. With x = flexion/extension, y = abduction/ adduction, z = 

internal/ external rotation. The zero position for all joint angles were derived from the 

static trial.  

 Gait event detection 

In order to separate kinematic waveforms into multiple gait cycles it is necessary to 

identify gait events of foot strike and toe off. The gold standard of measurement is 

considered to be through force plate measurements (344). However, this thesis aimed 
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to utilise a motorised treadmill for kinematic data collection procedures and 

consequently force data was not available. Therefore, there was a need to establish a 

method for gait event detection.   

In order to identify initial contact and toe off we conducted a prior investigation to 

develop a kinematic algorithm for gait event detection during running (344). The initial 

study compared gait events derived from kinematic data to those derived using ground 

reaction force data during over ground running. The proposed algorithm estimated 

initial contact as the first maxima between heel and PSIS markers, while toe off was 

estimated using the maximal displacement between 2nd metatarsal marker and PSIS. 

Results identified this algorithm to display a root mean square (RMS) error of 14.1ms 

and 9.2ms for initial contact and toe off respectively (344). However, a subsequent 

kinematic algorithm was later published by Handsaker et al (363) reporting lower root 

mean square error (RMS) values of 8.3ms and 5.6ms for initial contact and toe off 

respectively. This kinematic algorithm has subsequently been used by additional studies 

investigating treadmill running kinematics (364) and was therefore chosen for use within 

this thesis.  

The final algorithm utilised to determined gait events of initial contact and toe off was 

defined using the kinematic approach reported by Handsaker et al (363). Using this 

approach initial contact was defined as the first vertical acceleration peak of either the 

heel or metatarsal markers and toe off defined as the vertical jerk peak of the 2nd 

metatarsal marker (363).  

 Derivation of Kinematic Parameters 

Kinematic curves collected for a continuous period during running were segmented into 

separate gait cycles using the gait event detection algorithm detailed above. Gait events 

were subsequently used to segment each kinematic signal into a minimum of 10 

consecutive gait cycles. A minimum of 10 consecutive gait cycles were recorded as 

greater reliability of kinematic measurements has been reported when data are 

averaged over several running trials (254). An ensemble average for each signal was 
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created and selected kinematic parameters derived from the ensemble average curves. 

This latter processing was carried out using a custom Matlab script.  

A range of kinematic parameters were analysed including joint angles at initial contact, 

peak stance phase angles and joint excursions of the trunk, pelvis, hip, knee and ankle. 

Parameters were selected for analysis based on previous literature identifying kinematic 

characteristics associated with running related injuries as well as gaps identified within 

the current literature (Section 2.1.7.2). Peak angles at during stance were defined as the 

maximum joint angle between initial contact and toe off and joint excursions were 

defined as the total range of movement from initial contact to the peak angle.   
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 Chapter 4 – The between day repeatability, 

standard error of measurement and minimal 

detectable change for discrete kinematic 

parameters during running.  

 

The aim of this Chapter was to establish the repeatability of discrete kinematic 

parameters during running. Within Chapter 2 of this thesis, the literature review 

identified several discrete kinematic parameters to be associated with common running 

injuries, which are subsequently the focus of intervention studies utilising test-retest 

designs. By establishing the repeatability of discrete kinematic parameters, the results 

from this Chapter were deemed necessary to aid interpretation of between-group and 

between day differences in running kinematics. The presented results were 

subsequently used to evaluate the robustness of the kinematic data collected as part of 

subsequent chapters of the thesis (Chapter 5 & 7).    

4.1 Introduction 

Running kinematics have been proposed as an intrinsic risk factor for running related 

injuries. In Section 2.1.7.2 several kinematic parameters during the stance phase of 

running were found to be associated with common running related injuries. These 

parameters include frontal plane pelvis kinematics, as well as frontal and transverse 

plane kinematics of the hip, knee and ankle. It is thought that these kinematic 

parameters increase the stress placed on the musculoskeletal system during each foot 

contact of a run, leading to cumulative tissue overload and injury development. 

Consequently, several studies have sought to investigate whether clinical interventions 

can improve running kinematics and clinical outcomes amongst injured runners.  

Gait retraining has been proposed as a clinical intervention which aims to correct 

abnormal running kinematics (49, 66). Using test-retest designs, several studies have 
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investigated the effects of gait retraining on kinematics amongst injured runners. Many 

of these studies have reported post intervention reductions in frontal and transverse 

plane kinematics at the hip and pelvis (69, 70, 255). However, only one study has 

provided data regarding the test-retest reliability and the standard error of 

measurement associated with their testing procedures (70).  

Current literature suggests between day repeatability of running kinematics is generally 

poor, yielding potentially large measurement errors. This is particularly true for frontal 

and transverse plane kinematics of the pelvis, hip and lower limbs (199, 201, 253). Peak 

frontal plane pelvis kinematics have been reported to demonstrate measurement errors 

of up to 1.7⁰ (201), whereas peak hip adduction and internal rotation angles have been 

shown to demonstrate measurement errors ranging from 0.97⁰ (252) to 2.7⁰ (199) and 

1.1⁰ (252) to 5.9⁰ (253) respectively. This has implications for many intervention studies 

reporting changes in hip and pelvis kinematics. Specifically, without adequate reporting 

of the measurement error associated with testing procedures, it is difficult to ascertain 

whether kinematic changes are the result of intervention effects or between day 

measurement error. Consequently, this could result in the interpretation of results as 

being “meaningful” when they are instead the result of error in measurements (256).  

It is important to note, that the repeatability of testing procedures has also been shown 

to vary across laboratories. This is highlighted by results from Noehren et al (252) and 

Stoneham et al (253), reporting SEM values for peak hip internal rotation of 1.1⁰ and 

5.9⁰ respectively. Reasons for the differences in reported measurement errors could be 

explained by between laboratory differences in kinematic testing procedures. For 

example, Noehren et al (252) tested participants during treadmill running whereas 

Stoneham et al, (253) utilised over ground running test procedures. Furthermore, 

marker reapplication errors have been shown to produce large errors in kinematic data 

(261) which can vary between and within examiners (257). Therefore, reporting the 

repeatability for individual laboratory testing procedures is recommended to aid 

interpretation of findings and account for between laboratory differences in testing 

procedures.   
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Currently no study has reported the repeatability of trunk and pelvis kinematics during 

treadmill running. Many gait retraining studies utilise treadmill testing procedures to 

investigate between day differences in discrete kinematic parameters of the trunk (267), 

pelvis and lower limbs (255). However, as there is no prior data reporting the 

measurement error associated with trunk and pelvis kinematics during treadmill 

running, it is difficult to identify whether post intervention differences represent true 

intervention effects or are the result of measurement error.  

 Aim and Objective 

The overall aim of this Chapter was to establish the repeatability of discrete kinematic 

parameters during running in order to aid the interpretation of between-group and post 

intervention kinematic differences within subsequent chapters of this thesis. In order to 

achieve this aim, the specific objective of this study was to investigate the between day 

repeatability, standard error of measurement and minimal detectable change of 

discrete kinematic parameters of the trunk, pelvis and lower limbs during treadmill 

running.  

4.2 Methods 

 Participants 

A total of 16 injury free control participants were included within this study (Table 21). 

Participants were recruited via poster advertisements at local running clubs and sports 

injury clinics. Participants were included providing reported no injury within the last 18 

months. Participants were excluded if they reported any musculoskeletal ailment within 

the last 18 months that caused a restriction or cessation of running, or any need to seek 

advice from a health care professional. Exclusion criteria included any current or 

previous history of overuse running injury, injury caused by another sport, any previous 

spinal injury or lower limb surgery (Section 3.2.1.2). Additional exclusion criteria 

included any newly sustained injury or attempt to change their gait between tests 1 and 

2. All participants provided written informed consent prior to participation and ethical 

approval was obtained via the local ethics committee. 
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Table 21: Participant characteristics. Mean [SD]. 

Male/ 
Female 

Age 
(years) 

Mass (kg) Height 
(cm) 

BMI 
(kg/m2) 

Run 
Frequency 
(runs per 

week) 

Average 
Weekly 

Run 
Volume 
(Miles) 

6/ 10 34.4 

(10.2) 

59.7 

(10.8) 

169.1 

(9.4) 

20.7 

(2.2) 

6.5  

(2.9) 

44.5  

(26.6) 

 

 Kinematic data collection 

All participants were required to attend two data collection sessions two weeks apart. 

At each testing session kinematic data were collected from all participants whilst 

running on a treadmill at 3.2m/s in accordance with methods outlined in Section 3.3. 

Participants were instructed to continue their normal training routines between testing 

sessions. At each session a 5-minute warm up period was provided, after which, 30 

seconds of kinematic data were collected using a 12 camera Qualysis Oqus system 

(240Hz). Anatomical segments of the trunk, pelvis, bilateral thighs, shank and feet were 

tracked using retroreflective markers attached to anatomical landmarks. Full details of 

the markers used to track each segment and the precise definition of the anatomical 

coordinate systems is provided in Section 3.3.  

Raw kinematic data were low pass filtered at 10Hz. Intersegmental kinematics, along 

with the motions of the pelvis and thorax with respect to the laboratory system, were 

calculated using a 6DOF model in Visual 3D (C-Motion). Gait events were defined using 

a kinematic approach (363) and subsequently used to segment each kinematic signal 

into a minimum of 10 consecutive gait cycles. An ensemble average for each signal was 

created and selected kinematic parameters derived from the ensemble average curves. 

This latter processing was carried out using a custom Matlab script.  

 Data Analysis 

Several discrete kinematic parameters commonly reported in kinematic investigations 

were selected for analysis. These included sagittal, frontal and transverse plane 

kinematics of the trunk, pelvis, hips, knees and ankles at initial contact, peak angle and 
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stance phase joint excursions. Parameters at initial contact included sagittal plane angles 

of the trunk, pelvis, hip, knee and ankle as well as frontal plane angles of the trunk and 

rearfoot. Peak angles at mid stance included sagittal and frontal plane angles of the 

trunk, pelvis, knee and ankle and rearfoot as well as transverse plane angles of the hip 

and knee. Parameters were selected based on those identified within the literature 

review as being associated with common running injuries, along with parameters with 

limited prior research (Section 2.1.7.2, Table 18). Peak angles were defined as the 

maximum joint angle between initial contact and toe off.  

 Statistical Analysis 

In order to assess the between day repeatability of kinematic parameters, the interclass 

correlation coefficient (365) was first calculated. The ICC was chosen as the statistical 

method of use as this method reflects both the degree of correlation and consistency 

between results (366). This is in contrast to alternative methods such as Pearson’s 

correlation coefficient, which quantifies the degree of correlation between two 

measurements, or Bland-Altman plots which reflects only the level of agreement (265, 

366, 367). The use of ICC was selected to permit comparison of results between the 

present study and previous biomechanical studies (199, 252). However, ICC values alone 

are of limited clinical value, as they do not provide estimates of the measurement 

precision in units specific to the measurement system. Therefore, the interclass 

correlation coefficient (365) was calculated along with the standard error of 

measurement (SEM) and the minimal detectable change (MDC).   

4.2.4.1 Interclass Correlation Coefficient (365) 

ICC estimates and their 95% confidence intervals were calculated using SPSS (IBM 

Statistics v23) (SPSS Inc, Chicago, IL) using a two-way mixed effects model, mean of k 

measurements with absolute agreement (366). ICC with absolute agreement was 

selected over the ICC method with consistency, as ICC with consistency does not 

consider systematic differences between measurements and therefore may lead to an 

overestimation of the reliability of measurement (367).  
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Interclass correlation coefficient provides a value ranging between 0 (equalling no 

reliability) to 1 (equalling perfect reliability) indicating the level of agreement between 

two measurements (264, 265). Values of <0.5, 0.5 to 0.75, 0.75 to 0.9 and >0.9 were 

interpreted as poor, moderate, good and excellent respectively (366). 

4.2.4.2 Standard Error of Measurement (SEM) 

The SEM is considered an estimate of the expected variation in scores that may occur 

due to random error and therefore can be used to provide an estimate as to the 

precision of measurement reported in the unit of the measurement (264, 266). The SEM 

represents the 68% confidence interval for a set of scores. The standard error of 

measurement was calculated as: 

 

4.2.4.3 Minimal Detectable Change (MDC) 

The minimal detectable change provides the minimal threshold beyond the random 

measurement error with a 95% confidence interval. Therefore, minimal detectable 

change is considered to represent the degree of change representative of a true change, 

greater than that which could be explained by random error (266). MDC is calculated 

from the SEM and a degree of confidence using the multiplier of square root of 2. This 

is to account for any additional uncertainty introduced by using different scores from 

measurements of two time points (266, 368). Minimal detectable change values were 

calculated as: 

 

4.3 Results 

Kinematic data at initial contact, peak angles and excursions along with the ICC values, 

95% confidence intervals, SEM and MDC are presented in Table 22, Table 23 and Table 

24.  

 Initial contact 

At initial contact frontal and sagittal plane kinematic parameters of the trunk, pelvis, hip, 

knee and ankle were found to demonstrate ICC values ranging from 0.839 to 0.941 
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representing good to excellent repeatability (Table 22). SEM values were relatively low, 

ranging from 0.6⁰ for frontal plane pelvis angle and 2.6⁰ for frontal plane rearfoot angle 

at initial contact. ICC values ranged from 0.525 to 0.77 for transverse plane kinematics 

of the hip and knee representing moderate repeatability. 
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Table 22: Between day repeatability of kinematic parameters at initial contact. Interclass correlation coefficient [ICC] 
values of <0.5, 0.5 to 0.75, 0.75 to 0.9 and >0.9 were interpreted as poor, moderate, good and excellent respectively. 

SEM = Standard Error of Measurement, MDC = Minimal Detectable Change. Mean [SD] values represent degrees. 

Initial Contact 

Parameter 
Mean (SD) 

ICC 
95%CI 

SEM (⁰) MDC (⁰) 
Day 1 Day 2 lower upper 

Tr
u

n
k 

Forward 

Lean 

5.3 

(5.7) 

5.6 

(4.4) 
0.866 0.614 0.953 1.8 5.1 

Ipsilateral 

Flexion 

2.9 

(2.8) 

2.9 

(2.6) 
0.910 0.739 0.969 0.8 2.2 

P
e

lv
is

 

Anterior Tilt 
8.1 

(5.2) 

8.0 

(5.7) 
0.928 0.791 0.975 1.5 4.0 

Contralateral 

Pelvic Drop 

2.2 

(1.4) 

2.2 

(1.3) 
0.829 0.499 0.941 0.6 1.5 

H
ip

 

Flexion 
23.5 

(5.1) 

23.9 

(6.0) 
0.941 0.832 0.979 1.3 3.7 

Adduction 
5.6 

(2.9) 

5.9 

(3.1) 
0.883 0.668 0.959 1.0 2.8 

Internal 

Rotation 

0.3 

(4.3) 

2.0 

(6.0) 
0.633 0.003 0.870 3.2 8.8 

K
n

ee
 

Flexion 
5.5 

(5.8) 

7.2 

(6.6) 
0.839 0.555 0.943 2.5 6.9 

Adduction 
0.9 

(3.1) 

0.9 

(3.5) 
0.925 0.785 0.971 0.9 2.5 

Internal 

rotation 

5.3 

(6.0) 

4.7 

(6.4) 
0.770 0.331 0.920 2.9 8.1 

Fo
o

t/
 A

n
kl

e 

Ankle 

Dorsiflexion 

5.4 

(8.4) 

4.0 

(8.9) 
0.914 0.761 0.970 2.5 6.9 

Rearfoot 

Inversion 

7.0 

(6.3) 

8.0 

(8.2) 
0.868 0.628 0.954 2.6 7.2 
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 Peak Angles 

Several peak angles at mid stance demonstrated excellent between day repeatability 

with low SEM values (Table 23). Specifically, peak trunk ipsilateral flexion, anterior pelvic 

tilt, contralateral pelvic drop, hip adduction, and ankle dorsiflexion all demonstrated 

excellent repeatability with ICC values greater than 0.9 and SEMs ranging from 0.6⁰ to 

1.1⁰. Transverse plane kinematics of the hip and knee demonstrated moderate to good 

repeatability with ICC values of 0.739 for peak knee external rotation and 0.783 for peak 

hip internal rotation. Although peak hip internal rotation angle demonstrated good 

between day repeatability, the largest SEM and MDC were observed for this parameter 

with an SEM of 3.2⁰ and MDC of 8.7⁰.        
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Table 23: Between day repeatability of peak kinematic parameters. Interclass correlation coefficient [ICC] values of 
<0.5, 0.5 to 0.75, 0.75 to 0.9 and >0.9 were interpreted as poor, moderate, good and excellent respectively. SEM = 
Standard Error of Measurement, MDC = Minimal Detectable Change. Mean [SD] values represent degrees. 

Peak Angles 

Parameter 
Mean (SD) 

ICC 
95%CI 

SEM (⁰) MDC (⁰) 
Day 1 Day 2 lower upper 

Tr
u

n
k 

Forward 

Lean 

11.2 

(6.3) 

10.1 

(5.2) 
0.799 0.438 0.929 2.6 7.1 

Ipsilateral 

Flexion 

4.5 

(2.3) 

4.1 

(2.6) 
0.914 0.761 0.97 0.7 2.0 

P
e

lv
is

 

Anterior Tilt 
6.2 

(4.7) 

6.1 

(5.1) 
0.946 0.846 0.981 1.1 3.1 

Contralateral 

Pelvic Drop 

4.7 

(2.4) 

4.9 

(1.8) 
0.917 0.767 0.971 0.6 1.7 

H
ip

 

Adduction 
11.6 

(2.8) 

11.9 

(2.7) 
0.941 0.836 0.979 0.7 1.8 

Internal 

Rotation 

3.3 

(5.9) 

5.8 

(7.5) 
0.783 0.399 0.923 3.2 8.7 

K
n

ee
 

Flexion 
31.4 

(3.5) 

31.5 

(5.1) 
0.825 0.489 0.939 1.8 5.0 

Abduction 
1.3 

(2.9) 

1.9 

(3.4) 
0.826 0.516 0.938 1.3 3.6 

External 

rotation 

6.2 

(5.0) 

7.9 

(6.8) 
0.739 0.281 0.907 3.0 8.4 

Fo
o

t/
 A

n
kl

e 

Ankle 

Dorsiflexion 

21.1 

(3.0) 

21.3 

(3.0) 
0.938 0.825 0.978 0.7 2.0 

Rearfoot 

Eversion 

2.7 

(4.4) 

3.2 

(5.9) 
0.804 0.433 0.932 2.3 6.3 

 Joint Excursions 

ICC values for joint excursions demonstrate good to excellent repeatability for all 

parameters with a ICCs ranging from 0.774 for ankle dorsiflexion to 0.984 for trunk 

forward lean (Table 24). Frontal plane pelvis excursion demonstrated the lowest SEM 
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and MDC with knee flexion excursion demonstrating the highest. SEM’s and MDC’s 

ranged from 0.5⁰ to 2.2⁰ and 1.3⁰ to 6.0⁰. 

Table 24: Between day repeatability of joint excursion. Interclass correlation coefficient [ICC] values of <0.5, 0.5 to 
0.75, 0.75 to 0.9 and >0.9 were interpreted as poor, moderate, good and excellent respectively. SEM = Standard 

Error of Measurement, MDC = Minimal Detectable Change. Mean [SD] values represent degrees. 

Joint Excursion 

Parameter 
Mean (SD) 

ICC 
95%CI 

SEM (⁰) MDC (⁰) 
Day 1 Day 2 lower upper 

Tr
u

n
k 

Forward Lean 
9.8  

(5.7) 

10.3 

(5.5) 
0.984 0.954 0.994 0.7 1.9 

Ipsilateral 

Flexion 

2.1  

(1.5) 

2.3 

(1.8) 
0.827 0.513 0.939 0.7 1.9 

P
e

lv
is

 

Anterior Tilt 
4.5  

(2.3) 

4.4 

(2.5) 
0.883 0.66 0.959 0.8 2.3 

Contralateral 

Pelvic Drop 

3.0  

(2.0) 

3.2 

(2.2) 
0.951 0.864 0.983 0.5 1.3 

H
ip

 

Adduction 
6.2  

(2.2) 

6.3 

(2.3) 
0.826 0.49 0.939 0.9 2.6 

Internal 

Rotation 

3.7 

(3.4) 

4.4 

(3.7) 
0.852 0.59 0.948 1.4 3.8 

K
n

ee
 

Flexion 
26.0 

(5.1) 

24.4 

(6.1) 
0.850 0.582 0.947 2.2 6.0 

External 

Rotation 

11.8 

(4.4) 

12.9 

(3.3) 
0.782 0.403 0.923 1.8 5.0 

Fo
o

t/
 A

n
kl

e 

Ankle 

Dorsiflexion 

19.3 

(4.2) 

20.2 

(4.9) 
0.774 0.366 0.921 2.1 5.9 

Rearfoot 

Eversion 

9.8 

(3.1) 

11.2 

(3.4) 
0.885 0.529 0.964 1.1 3.1 
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4.4 Discussion 

The objective of this Chapter was to investigate the between day repeatability, standard 

error of measurement and minimal detectable change of discrete kinematic parameters 

of the trunk, pelvis and lower limbs during treadmill running. Good to excellent 

repeatability was observed for sagittal and frontal plane kinematics at initial contact, 

peak angles during stance and joint excursions, while transverse plane kinematics 

tended to demonstrate lower between day reliability with large SEM and MDC values.  

The findings of the present study are in agreement with those of several previous 

studies, in that sagittal and frontal plane kinematics tend to be more repeatable than 

those in the transverse plane (199, 201, 253). In particular, peak transverse plane hip 

and knee kinematics were observed to demonstrate the lowest ICCs and highest SEMs 

of all parameters (Table 23). Transverse plane kinematics are considered to be the most 

vulnerable to measurement errors, which perhaps explains the low repeatability when 

compared to sagittal and frontal planes. Therefore, the interpretation of transverse 

plane kinematics should be done so with caution, as large measurement errors suggest 

a high level of noise present within this data. The consequence of this is that it may lead 

to inaccurate conclusions regarding between day differences in running kinematics, as 

well as induce large variability within group level data. This may subsequently reduce 

statistical power to detect small, potentially meaningful between-group differences.   

One source of error may occur through between day errors in marker reapplication. 

Marker reapplication inaccuracies are considered to produce the largest source of error 

in kinematic measurements (249, 258). Subtle misplacements in static anatomical 

reference markers can offset joint centre locations, resulting in altered segment 

orientations upon 3D reconstruction (258). Consequently, angular joint rotations can be 

dramatically over or underestimated, with transverse plane kinematics reported to be 

more vulnerable than frontal or sagittal plane (370). Osis et al (370) reported that as 

little as a 10mm offset of the lateral knee joint marker in the anterior–posterior direction 

produced errors of up to 4.8⁰ and 5.1⁰ in peak transverse plane hip and knee angles, 
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whereas sagittal plane errors were considered relatively low, of only 1.6⁰ for peak knee 

flexion and 0.8⁰ for peak ankle dorsiflexion (370).  

In the current study we attempted to control for marker placement errors by ensuring 

the same experience examiner positioned all the static markers (257). Despite this, a 

degree of error is still clearly evident within the current testing procedures highlighted 

by the observed SEMs for transverse plane kinematics (Table 22, Table 23 & Table 24). 

That said, only one previous study has reported a lower SEM for transverse plane hip 

kinematics during running, reporting an SEM of 1.1⁰ (252). However, this was following 

the use of a marker reapplication devise, designed to measure and record the precise 

location of anatomical reference markers which was not available in the present study. 

Nonetheless, this highlights the need for methods of improving the accuracy of marker 

placement in order to produce greater between day repeatability of kinematic 

measurements.    

Despite lower repeatability of transverse plane kinematics compared to that of other 

planes, the observed repeatability values appear greater than several previous studies. 

Specifically, peak hip internal rotation and hip adduction were observed to demonstrate 

good and excellent repeatability, with ICCs of 0.78 and 0.94 respectively. Conversely, 

previous studies have reported ICCs of only 0.54 (199) and 0.6 (253) for peak hip internal 

rotation and 0.69 for peak hip adduction (199, 253). Similar observations were made for 

several other parameters including peak rearfoot eversion and knee abduction, 

demonstrating good repeatability compared to only moderate reliability values reported 

elsewhere (199, 253).    

One explanation for the greater repeatability observed in the present study could be 

due to the use of treadmill testing procedures. Many prior studies have investigated 

repeatability of kinematics during over ground running which could induce greater 

movement variability between trials (199, 201, 253). This may occur due to subtle 

variations in running speed, air resistance or targeting of force plates during over ground 

running (356). In a previous study following the same kinematic testing procedures, we 

reported the between day repeatability during over ground running, with SEMs of 1.7⁰ 
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and 2.3⁰ observed for frontal plane pelvis and hip kinematics (201). These values are 

greater than those reported in the present study of 0.6⁰ and 0.7⁰, suggesting that 

repeatability of running kinematics may be improved during treadmill running. However 

there were differences in the statistical methods between studies as measurement error 

was calculated as an average across the entire kinematic waveform in the prior study 

(201), compared to that of discrete parameters in the present study.  

Only one previous study has reported the repeatability of kinematic testing procedures 

during treadmill running (252). In a group of 10 healthy subjects Noehren et al (252) 

investigated the between day repeatability of kinematics during treadmill running. 

Although they did not report pelvis and trunk kinematics, they did report discrete lower 

limb kinematics with SEMs of 3.8⁰ and 0.9⁰ for peak hip internal rotation and adduction 

respectively. These values are similar to the SEMs of 3.2⁰ and 0.7⁰ reported in the 

current study and lower than that of several previous over-ground investigations (199, 

201, 253). Collectively, these results suggest that the between day repeatability of 

kinematics may be improved during treadmill running. However, future studies should 

consider directly comparing the two.  

In contrast to previous studies, we reported the minimal detectable change (MDC) for a 

range of kinematic parameters. In the data presented, large MDC values were observed 

for several of the studied parameters. These included transverse plane knee kinematics 

at initial contact, peak rearfoot eversion, trunk forward lean, knee external rotation and 

hip internal rotation. Interestingly, many of these parameters are frequently implicated 

in the aetiology of running related injuries and subsequently the focus of clinical 

interventions. However, observed intervention effects can often be relatively small, with 

reductions in peak hip adduction angles reported to range between 1.7⁰ and 2.4⁰ 

following step rate manipulation (71, 255), and reductions in peak hip internal rotation 

of up to 5.1⁰ (255). In many instances, the magnitude of kinematic differences observed 

would fail to exceed the MDC values of 8.7⁰ and 1.8⁰ for peak hip internal rotation and 

hip adduction reported in the present study.  
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The consequence of these errors is that it may lead to the misinterpretation of subtle 

between day differences in running kinematics as clinically meaningful when they are in 

fact due to measurement error. Inherent to any measurement system is a degree of 

error, which needs to be accounted for if appropriate interpretations of between day 

differences are to be made. These errors are likely to vary between laboratories based 

on the testing procedures utilised and populations studied and may not be accurately 

represented by commonly used repeatability measures such as ICCs (249). Furthermore, 

although the statistical use of the ICC allows interpretation of the repeatability of 

measurements, values presented do not provide estimates of the measurement 

precision and therefore have limited clinical utility (249). In contrast, the SEM provides 

an estimate of the expected variation in scores that may occur due to measurement 

error, while the MDC provides the minimal threshold beyond which measurement error 

is expected to occur. Therefore the MDC could be considered the degree of change 

required to represent a true difference (266). As such, the MDC’s presented in the 

present study are to be used as a reference point to assist the interpretation of between-

group and post intervention kinematic differences reported within subsequent chapters 

of this thesis.   

 Limitations 

There are several limitations to this study that should be acknowledged. Firstly, using a 

convenience sample it is possible that participants included may not be representative 

of wider running populations. In attempt to limit sampling bias induced through 

convenience sampling, we recruited participants from a range of locations frequented 

by recreational runners, including local running clubs, running race events and sports 

injury clinics (Section 3.2). This methodology was also employed throughout subsequent 

chapters of the thesis. Consequently, we are confident that the data on repeatability 

presented in this chapter are appropriate for the interpretation of data presented 

throughout this thesis.  

While we are confident that the repeatability data form an appropriate benchmark for 

this thesis, we do acknowledge that the specific sample studied may possess 

characteristics which subsequently limit generalisability to wider running populations. 
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One such example is the body mass of participants included within the present study. 

As the average participant body mass index of 20.7kg/m2 could be considered relatively 

low. Consequently, it is likely that these participants had significantly less body fat 

compared to other recreational running populations, such as novice runners. 

Considering soft tissue artefact is reported to produce large measurement errors for 

transverse plane kinematics, the level of error in the present study may be much lower 

than that in previous or future studies utilising participants with a greater body mass 

index.  

Second, all participants were considered experienced runners, having met the inclusion 

criteria of a minimum two years running experience. It is possible that experienced 

runners may demonstrate more stable running patterns, with less movement variability, 

acquired through regular endurance running (371). This is in contrast to novice or 

injured runners, who may be more variable in their movement patterns. Nevertheless, 

previous studies have either reported injured runners to demonstrate less movement 

variability when compared to injury free populations (372), or failed to identify any 

difference in kinematic variability between injured runners and controls (373). 

Therefore, we feel it is unlikely that differences in movement variability would influence 

the results of the present study. However, future studies should consider investigating 

the repeatability of discrete kinematic parameters amongst injured populations.   

Finally, due to the lack of assessor blinding there is the possibility for recall bias regarding 

maker placements. However, steps were taken to mitigate this effect by conducting 

tests a minimum of two weeks apart. This ensured that any residual traces of marker 

placement would be highly unlikely to be present at follow up testing.  

4.5 Summary and Implications 

The results from this study highlight the between day repeatability as well as the 

standard error of measurement and minimal detectable change of discrete kinematic 

parameters during the stance phase of running. This is the first study detailing the 

measurement error and MDC for discrete kinematic parameters of the trunk and pelvis 

during treadmill running. Considering stance phase kinematics are associated with 
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common running injuries and the target of clinical interventions, the reported values 

will be used throughout subsequent chapters in order to identify whether kinematic 

differences are representative of true between-group differences and intervention 

effects.  
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 Chapter 5 – Is there a pathological running 

gait associated with common running 

injuries? 

The aim of this Chapter was to conduct a case-control study to investigate whether 

similar kinematic parameters are associated with multiple different running related 

injuries. The rationale for this Chapter was based on the findings of the literature review 

presented in Chapter 2. Specifically, Chapter 2 identified a number of kinematic 

parameters which have been associated with multiple different running related injuries. 

Suggesting these parameters may increase tissue loading throughout the 

musculoskeletal system and could represent global kinematic characteristics associated 

with running injuries.   

The results of this Chapter were subsequently used to focus chapters 6 and 7, exploring 

whether the kinematic parameters are associated with weekly training load exposure 

(Chapter 6) and whether gait retraining interventions targeted to these kinematics, can 

improve kinematics, clinical and functional outcomes amongst injured runners. 

Following peer review, the results of this Chapter have been published within the 

American Journal of Sports Medicine (Appendix F). The following account includes an 

extended discussion of the published work:  

Bramah, C., Preece, S, J., Gill, N., Herrington, L. (2018) Is there a pathological running 

gait associated with common soft tissue running injuries? American journal of Sports 

Medicine, 46 (12), pp 3023 – 3031.  

5.1 Introduction 

Running is an increasingly popular method of physical activity, however it also poses a 

risk of injury to the musculoskeletal system. It has been reported that approximately 

50% of runners become injured annually with 25% injured at any one time (11). The 
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majority of running related injuries are considered to be overuse injuries, with the most 

frequently injured sites including the knee, foot and lower leg, with incidence rates 

reported of around 50%, 39% and 32% respectively (7). Less common injury sites include 

the ankle and lower back, as well as the hip and pelvis, with incidence rates ranging from 

4% to 16%, 5% to 19% and 3 to 11% respectively (374). Of all running related injuries, 

the most frequently cited injuries include patellofemoral pain, iliotibial band syndrome, 

medial tibial stress syndrome, Achilles tendinopathy, plantar fasciitis, stress fractures 

and muscle strains (12, 13). Many of these injuries are known to have high reoccurrence 

rates, leading to a reduction or cessation of training in approximately 30 to 90% of cases 

(17). The factors related to the development of running related injuries are 

multifactorial and diverse, however it is widely accepted that abnormal running 

kinematics play a role (53, 59, 67).  

There has been a large amount of research that has sought to identify the kinematic 

patterns associated with many common soft tissue running injuries, including medial 

tibial stress syndrome (MTSS) (150), patellofemoral pain (PFP) (58, 192), iliotibial band 

syndrome (ITBS) (26, 59) and Achilles tendinopathy (AT) (121). Interestingly, many of 

these studies have reported similar kinematic patterns to be associated with different 

running injuries. For example, increased hip adduction has been associated with PFP (58, 

192)  and ITBS (26, 59)  and increased hip internal rotation has been associated with PFP 

(188) and MTSS (150). Research has also suggested that due to the kinematic coupling 

between the femur, knee and foot, increased hip adduction or hip internal rotation may 

contribute to greater rearfoot eversion (132-134). Interestingly increased rearfoot 

eversion has been associated with injuries such as MTSS (55, 151) and Achilles 

tendinopathy (117, 121). This research suggests that there may be a number of similar 

kinematic patterns that could underlie multiple different soft tissue running injuries. It 

is possible that these patterns could lead to elevated stress on multiple anatomical 

structures leading to injury development at different areas. These kinematic patterns 

may represent global contributors to injury.  

Recent research supports the idea of biomechanical parameters that could be 

considered global contributors to running injury. In a prospective study of 249 runners, 
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Davis et al (53) reported that runners who went on to develop a range of different 

injuries, demonstrated significantly elevated vertical loading rates. While in a 

retrospective study which investigated runners with AT and MTSS, Becker et al (55) 

reported greater rearfoot eversion at late stance phase, to be a characteristic 

consistently associated with injury. Although these two studies provide preliminary 

evidence for the existence of global contributors to running injury, Davis et al (109) did 

not include kinematic data, while Becker et al (55) investigated only MTSS and AT. 

Therefore, further research is required to understand whether there are similar 

kinematic patterns that may underlie multiple different running injuries. This 

understanding would be invaluable to clinicians as it could be used as a basis for both 

screening techniques as well as preventative and rehabilitative programs.  

 Aim and Objectives 

The aim of this current study was to investigate whether similar kinematic parameters 

are associated with multiple different common running related injuries. To achieve this 

aim, the objective of this study was to investigate whether there are differences in 

running kinematics between a large group of runners with common running injuries 

(ITBS, PFP, MTSS and AT) compared to a healthy control group. We hypothesised that 

the pooled group of injured runners would demonstrate greater contralateral pelvic 

drop, hip adduction and rearfoot eversion angles when compared to injury free controls. 

In order to ensure that differences observed were not the result of large effects in one 

of the injury subgroups, a secondary objective was to investigate whether kinematic 

differences observed between injured and healthy runners, differ between injury 

subgroups. We hypothesised that there would be no difference in kinematic parameters 

between injury subgroups. 

5.2 Methods 

 Participants 

A total of 108 runners were enrolled in this current study, including 72 injured runners 

(28 males, 44 females) and 36 healthy controls (15 males, 21 females) matched for age, 

height and weight (Table 25). The injured group contained subgroups of 18 runners with 
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PFP, ITBS, MTSS and AT (Table 26). These injuries were selected as they are cited as the 

most prevalent soft tissue overuse running injuries (12). An a priori sample size 

calculation was conducted using data from a previous study reporting kinematic 

differences between healthy and injured runners (192). Using g*power software, we 

calculated that we would need at least 98 people (65 injured) in order to detect an effect 

size of 0.75 with a power of 0.85 and a critical α of .01. Participants were recruited via 

poster advertisements at local running clubs and sports injury clinics. All participants 

provided written informed consent prior to participation and ethical approval was 

obtained via the local ethics committee.  

Table 25:Mean [SD] participant characteristics. *indicates statistical significance at p <.01. 

 
Healthy 

(n = 36) 

Injured 

(n = 72) 

Sex 

(male/female) 
15/21 28/44 

Age (years) 
33.2  

(8.4) 

34.8  

(9.9) 

Mass (kg) 
60.8  

(8.4) 

63.4  

(10.5) 

Height (cm) 
171.6  

(7.3) 

170.7  

(8.6) 

BMI (kg.m-2) 
20.6  

(1.8) 

21.7  

(2.7) 

Miles run per 

week* 

60.5  

(23.2)* 

21.2  

(13.1)* 
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Table 26:Mean [SD] injury subgroup characteristics. *indicates statistical significance at p <.01. 

 
PFP  

(n = 18) 

ITBS  

(n = 18) 

MTSS  

(n = 18) 

AT  

(n = 18) 

Sex 

(male/female) 
9/9 7/11 3/15 9/9 

Age (years) 
34.5  

(9.4) 

34.3  

(7.9) 

31.9  

(9.7) 

38.5  

(11.7) 

Mass (kg) 
64.4  

(9.6) 

63.6  

(11.2) 

62.5  

(10.1) 

63.1  

(11.8) 

Height (cm) 
173.5  

(8.5) 

170.6  

(8.5) 

167.3  

(8.1) 

171.6  

(8.7) 

BMI (kg.m-2) 
21.3  

(1.9) 

21.8  

(3.3) 

22.2  

(2.3) 

21.3  

(2.0) 

Miles run per 

week* 

18.6  

(6.9) 

14.8  

(5.8) 

19.5  

(12.2) 

31.9  

(17.6)* 

 

5.2.1.1 Inclusion/ Exclusion Criteria 

Inclusion and exclusion criteria were in accordance with that outlined in the methods 

Chapter, Section 3.2 and is summarised in the following section. 

5.2.1.1.1 Injured Group 

The injured group included individuals with a current diagnosis of either PFP, ITBS, MTSS 

or Achilles tendinopathy. Injury diagnosis was confirmed following a physical 

examination by a qualified physiotherapist in accordance with previously published 

diagnostic criteria for PFP (337), ITBS (228), MTSS (139) and Achilles tendinopathy (343) 

(Section 3.2.2, Appendix D). All participants reported being able to run up to 10 minutes 

before the onset of pain and maximal pain during running greater than 3/10 on a 

numerical rating scale (0 = no pain, 10 = worst possible pain). Additionally, all 

participants reported they were not currently receiving medical treatment for their 

injury and that their pain had caused a restriction to their running volume and/or 
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frequency for a minimum of 3 months. Previous research has reported training factors 

such as increases in weekly training volume, to increase the risk of injury. This is likely 

due to a sudden excessive rise in acute tissue stress on the musculoskeletal system, 

resulting in insufficient time for adaptive changes (47). Therefore, in order to control for 

training errors as a cause of injury, participants were excluded if they reported an 

increase in weekly training volume of greater than 30% proceeding the onset of injury.  

5.2.1.1.2 Control Group 

Control participants were included if they reported running a minimum of 30 miles per 

week for the last 18 months with no reported injury. Participants were excluded if they 

reported any musculoskeletal ailment within the last 18 months that caused a restriction 

or cessation of running, or any need to seek advice from a health care professional. 

Additional exclusion criteria included previous history of overuse running injury, injury 

caused by another sport, previous spinal injury or lower limb surgery (Section 3.2.1.2). 

 Procedures 

Kinematic data were collected from all participants whilst running on a treadmill at 

3.2m/s wearing their own running shoes. After a 5 minute warm up period, 30 seconds 

of kinematic data were collected using a 12 camera Qualysis Oqus system (240Hz). A 

total of eight anatomical segments were tracked following a previously published 

protocol by the same authors, described in detail in Section 3.3, shown to have good to 

excellent repeatability (136, 201) (Chapter 4, Section 4.3). Segments included the thorax, 

pelvis and bilateral thigh, shank and foot segments. In addition, a further rearfoot 

segment was included using 3 non colinear markers attached to the heel of the 

participant’s shoes. The foot segment was used to calculate sagittal plane ankle 

kinematics while the rearfoot segment was used to calculate frontal plane foot 

kinematics. Further details of the markers used to track each segment and the precise 

definition of the anatomical coordinate systems is provided in Section 3.3 and described 

in previous publications (136, 201, 235).  

Raw kinematic data were low pass filtered at 10Hz. Intersegmental kinematics, along 

with the motions of the pelvis and thorax with respect to the laboratory system, were 
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calculated using a six degrees of freedom model using the commercial software Visual 

3D (C-Motion). Gait events were defined using a kinematic approach (363) and 

subsequently used to segment each kinematic signal into a minimum of 10 consecutive 

gait cycles. An ensemble average for each signal was created and selected kinematic 

parameters derived from the ensemble average curves. This latter processing was 

carried out using a custom Matlab script.  

 Data Analysis 

A range of kinematic parameters at both initial contact and during stance were selected 

for analysis. Parameters at initial contact included sagittal plane angles of the trunk, 

pelvis, hip, knee and ankle as well as frontal plane angles of the trunk and rearfoot. Peak 

angles during stance included sagittal and frontal plane angles of the trunk, pelvis, knee 

and ankle and rearfoot as well as transverse plane angles of the hip and knee. 

Parameters were selected based on those identified within the literature review as being 

associated with common running injuries, along with parameters with limited prior 

research (Section 2.1.7.2, Table 18). Peak angles during stance were defined as the 

maximum joint angle between initial contact and toe off. Foot strike patterns of each 

group were determined based on the kinematic waveforms of the ankle joint. Where 

the ankle demonstrated an immediate movement into plantarflexion, participants were 

classified as having a rearfoot strike, participants demonstrating immediate ankle 

dorsiflexion were classified as a forefoot strike. The injured leg was analysed from the 

injured runners, right or left leg was analysed at random from the healthy runners in 

order to match the total distribution of right and left legs in the injured group.   

 Statistical Analysis 

Participant characteristics were analysed using independent t-tests for the healthy 

versus injured group comparisons and a one-way univariate ANOVA for the subgroup 

analysis (Table 25 & Table 26). Chi-squared tests were used to assess for differences in 

distribution of foot strike patterns and sex between the groups. In order to identify 

possible global contributors to running injury we used a two-phased statistical approach 

outlined in Figure 16. Firstly, data from the injured group were pooled and kinematic 
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parameters compared with those of the control group. Before analysis, all kinematic 

parameters were assessed for homogeneity of variance and normal distribution using 

Levine’s test (p >.05) and Shapiro-Wilk (p >.05). Where assumptions were met, between-

group differences were assessed using an independent t-test. Where assumptions were 

not met, the Mann-Whitney U test for non-parametric test was used (375). Variables 

which failed to meet the assumption of normal distribution included peak angles of hip 

adduction, knee flexion and ankle dorsiflexion as well as angles at initial contact 

including trunk forward lean, trunk ipsilateral lean and ankle dorsiflexion. For control 

versus injured group comparisons a critical α of .01 was used. 

Secondly, following identification of variables found to be significant different following 

the injured versus healthy comparison, we assessed for subgroup differences between 

the four injury subgroups. In order to be considered a global contributor to running 

injury, we required a kinematic parameter to be consistent across the different injury 

groups. This ensured that differences observed in the pooled injury data, were not the 

result of large effects in one of the injury subgroups. For this process, a one-way 

univariate ANOVA and post hoc Least Significant Difference (LSD) was used with a critical 

α of .05. The alpha level was set to .05 due to the smaller subgroup sample sizes, the 

smaller number of comparisons and to reduce the likelihood of type 2 error. Post hoc 

LSD tests were chosen as in contrast to alternative post hoc tests, as the LSD does not 

adjust for multiple comparisons, therefore maintaining statistical power and reducing 

the risk of type 2 error (375). This was deemed necessary in order to meet the aim of 

the subgroup comparisons, ensuring any subtle differences between subgroups were 

identified.   

 

 



 

153 | P a g e  
 

Figure 16: Flow chart of the statistical process and tests utilised to achieve the research objectives. 
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In addition to calculating statistical significance for group comparisons, we also 

calculated effect sizes. For t-test comparisons, we used Cohen’s D and interpreted an 

effect size of 0.2, 0.5 and 0.8 as small, medium and large respectively (376). For the one-

way univariate ANOVA comparisons, we used the Eta squared statistic (η² = SS between 

groups/ SS total) and interpreted effect sizes of 0.01, 0.09 and 0.25 as small, medium 

and large respectively (376).    

Finally, a forward stepwise binary logistic regression analysis was conducted in order to 

determine which kinematic parameters could predict classification into either the 

injured or the healthy group. Parameters identified to be significantly different between 

control and injured groups were considered for the regression model. Variables were 

excluded from the regression model if they were found to demonstrate differences 

between injury subgroups (Figure 16). In order to control for potential confounding 

variables, sex and foot strike pattern were entered into the logistic regression model as 

covariates.  

5.3 Results 

 Injured versus Healthy 

The pooled data showed the injured runners to land with significantly more knee 

extension and ankle dorsiflexion (Table 27, Figure 19). At mid-stance, the injured 

runners were found to have significantly greater forward trunk lean, CPD (Figure 17A & 

Figure 18) and hip adduction (Table 28, Figure 17C & Figure 20). Large effect sizes of 

1.37, 0.89 and 0.87 were observed for CPD, hip adduction and knee flexion at initial 

contact respectively (Table 27 & Table 28). Trunk forward lean at mid-stance and ankle 

dorsiflexion at initial contact demonstrated moderate effect sizes of 0.65 and 0.71 

respectively (Table 27 & Table 28). Chi-squared tests found no significant difference in 

the distribution of foot strike patterns between the groups (P = .332) or sex (P = .781). 

In the healthy group there was a total of 17 forefoot and 19 rearfoot runners. In the 

Injured group there was a total of 27 forefoot and 45 rearfoot runners. 
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Table 27: Kinematic parameters at initial contact. Mean [SD]. Data represents angle at initial contact in 
degrees. * indicates statistical significance at p <.01. 

  
Control Injured P value 

Effect 

Size 

Tr
u

n
k 

Forward Lean 
3.9  

(2.9) 

5.7  

(3.9) 
.03 0.52 

Ipsilateral Lean 
2.5  

(1.8) 

3.1  

(2.2) 
.25 0.28 

P
el

vi
s 

Anterior Tilt 
5.9  

(3.3) 

7.0  

(3.8) 
.13 0.32 

K
n

ee
 

Flexion* 
10.2  

(4.8) 

6.0  

(4.9) 
<.01* 0.87 

Fo
o

t 
/ 

A
n

kl
e Ankle Dorsiflexion* 

2.4  

(6.5) 

7.2  

(6.9) 
<.01* 0.71 

Rearfoot Inversion 
8.7  

(6.1) 

6.2  

(4.5) 
.02 0.47 
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Figure 17: A: Contralateral pelvic drop for healthy and injured groups. B: Contralateral pelvic drop for 
healthy and injury subgroups. C: Hip adduction for healthy and injured groups. D: Hip adduction for 

healthy and injury subgroups. PFP = patellofemoral pain, ITBS = iliotibial band syndrome, MTSS = medial 
tibial stress syndrome, AT = Achilles tendinopathy. Whiskers represent +/- 1SD. * indicates statistically 

significant differences for T-Tests (A & C) and subgroup ANOVA (B & D). Healthy group is shown in B & D 
for comparison purposes only.   
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Figure 18: Ensemble group average curve for frontal plane pelvis kinematics across the stance phase. Solid line 
represent group mean, shaded area represents 1SD. X-axis = percentage of stance phase. Y-axis = frontal plane 

pelvis angle in degrees, +ve values indicate contralateral pelvis drop, -ve values indicate contralateral pelvis 
elevation. *indicates statistically significant between groups. 
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Table 28: Peak kinematic angles during stance phase. Mean [SD]. Data represents the maximum joint 
angle between initial contact and toe off in degrees. * indicates statistical significance at p <.01. 

 
 Control Injured P value 

Effect 

Size 

Tr
u

n
k 

Forward Lean* 
9.5  

(2.9) 

12.0  

(4.9) 
<.01* 0.65 

Ipsilateral Lean 
3.6  

(1.8) 

4.3  

(2.6) 
.09 0.33 

P
el

vi
s 

Anterior Tilt 
5.0  

(2.9) 

5.7  

(3.8) 
.55 0.19 

Contralateral pelvic 

drop* 

3.7  

(1.9) 

6.4  

(2.1) 
<.01* 1.37 

H
ip

 

Adduction* 
9.7  

(3.5) 

13.0  

(3.9) 
<.01* 0.89 

Internal rotation 
4.4  

(6.8) 

4.2  

(8.0) 
.87 0.03 

K
n

ee
 

Flexion 
32.7  

(4.9) 

32.3  

(5.0) 
.56 0.09 

Adduction 
-1.9  

(3.1) 

-2.0  

(3.5) 
.79 0.06 

External Rotation 
6.7  

(5.5) 

7.1  

(6.9) 
.62 0.06 

Fo
o

t 
/ 

A
n

kl
e Ankle Dorsiflexion 

22.3  

(2.9) 

21.9  

(4.3) 
.96 0.09 

Rearfoot Eversion 
2.6  

(3.2) 

4.0  

(3.5) 
.05 0.42 
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 Injury Subgroups 

The subgroup ANOVA analysis was conducted in order to identify if there were 

differences between injury subgroups for variables identified as being different between 

the pooled injured and healthy groups. This analysis found no differences for ankle 

dorsiflexion and knee flexion at initial contact (Table 29). Furthermore, there were no 

differences in peak trunk forward lean and CPD during mid-stance (Table 29), indicating 

these parameters were consistent across the injury subgroups. However, there was a 

significant difference between injury subgroups for peak hip adduction (Table 29). Post 

hoc LSD tests found the PFP (P <.01) and MTSS (P <.01) groups to have 3.1⁰ and 3.2⁰ 

more hip adduction than the ITBS group (Figure 17D). 

Table 29: Between injury subgroups ANOVA. Mean [SD] values are in degrees. * indicates statistical significance at p 
<.05. 

 

PFP ITBS MTSS AT ANOVA 

Effect Size 

Eta Squared 

(η²) 

Initial Contact 

Knee Flexion 
5.5 

(4.6) 

6.6 

(5.7) 

4.7  

(5.2) 

7.4 

(4.1) 
.37 0.05 

Ankle 

Dorsiflexion 

10.6 

(3.9) 

7.1 

(5.6) 

5.5  

(9.2) 

5.6 

(7.1) 
.09 0.09 

Mid Stance  

Trunk Forward 

Lean 

11.9 

(5.1) 

14.3 

(5.5) 

10.9 

(4.9) 

11.3 

(3.4) 
.16 0.07 

Contralateral 

Pelvic Drop 

6.4 

(2.8) 

6.5 

(2.4) 

6.6  

(1.4) 

6.3 

(1.9) 
.99 0.002 

Hip Adduction* 
14.4 

(4.5) 

11.3 

(4.3) 

14.4 

(1.6) 

12.2 

(4.1) 
.03* 0.12 
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 Logistic Regression 

The final variables identified as global kinematic contributors included knee flexion and 

ankle dorsiflexion at initial contact as well as trunk forward lean and CPD at mid-stance. 

All four variables were entered into the logistic regression model with the inclusion of 

sex and foot strike pattern as potential confounding variables. The forward stepwise 

logistic regression model identified that CPD at mid-stance (OR = 1.87; 95% CI: 1.41, 

2.49; p <.01) and knee flexion at initial contact (OR = 0.87; 95% CI: 0.78, 0.97; p <.01) 

were significant predictors of classification as either healthy or injured, explaining 47% 

of the variance in the data (R2 = .466). The most important predictor variable was CPD, 

with an 80% increase in the odds of being classified injured for every 1° increase in pelvic 

drop. For knee flexion there was a 23% reduction in the odds of being classified injured 

for every 1° increase in knee flexion at initial contact. Sex (P = .78) and foot strike pattern 

(P = .33) did not have a significant effect upon the final model.  

5.4 Discussion 

This study identified a number of kinematic differences between the injured and healthy 

runners that were consistent across injury subgroups. In particular the injured runners 

were found to demonstrate significantly greater peak contralateral pelvic drop (CPD) 

and forward trunk lean, as well as a more extended knee and dorsiflexed ankle at initial 

contact (Table 27, Table 28 & Table 29) (Figure 19 & Figure 20). We found CPD to be the 

most important predictor variable when classifying runners as healthy or injured. 

Collectively, the observed kinematic patterns may increase tissue loads per stride during 

running, potentially contributing to the development of multiple different running 

related injuries. 
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Figure 19: Two-dimensional representation of forward trunk lean, knee flexion and ankle dorsiflexion angles at initial 
contact. A = injured runner, B = healthy runner. 
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Figure 20: Two-dimensional representation of contralateral pelvic drop and hip adduction during mid-stance. A = 
injured runner, B = healthy runner. 

 

 Contralateral Pelvic Drop 

Within Chapter 2, the literature review identified limited studies reporting the 

association between CPD and common running related injuries (Table 18). Two studies 

reported increased CPD amongst runners with MTSS (149, 150) and one study amongst 

runners with PFP (58), two reported no difference in CPD between ITBS runners and 

controls (240) and no prior study had investigated CPD amongst runners with AT. 

Interestingly, the current study found peak contralateral pelvic drop to be the kinematic 

parameter most strongly associated with running injury, present amongst multiple 

different running related injuries, including ITBS and Achilles tendinopathy (Figure 17B).    

It is possible that CPD may increase the biomechanical loads placed on multiple different 

anatomical sites during each foot contact of a run. Contributing to the development of 

multiple different running related injuries via several different mechanisms. For 

example, Tateuchi et al (182) identified that increasing CPD resulted in an increase in 

iliotibial band tension at the lateral femoral condyle. This may influence ITBS 

development through increased strain rate (224) and increased compression between 

the ITB and lateral femoral condyle (219). At the same time, an increase in ITB tension 
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will result in a lateral displacement of the patella (180). Lateral displacement of the 

patella will lead to a rise in patellofemoral joint stress, leading to PFP development (168), 

while at the lower limb, increased CPD will result in a medial shift in the ground reaction 

force relative to the knee joint centre (135, 136). This may alter the force distribution 

through the lower limb, leading to increased bending forces on the medial tibia (167) 

and potentially alter pressure distribution through the foot. This may contribute to the 

development of either MTSS or AT (98, 151).   

One possible explanation for the increased CPD observed in the injured group could be 

due to reduced strength or neuromuscular function at the hip. Previous authors have 

reported delayed onset of gluteus medius and maximus in runners with PFP (138) and 

AT (137), while others have reported reduced hip abductor strength in runners with ITBS 

(377), PFP (188), AT (378) and MTSS (379). The hip abductors, in particular the gluteus 

medius, are thought to control frontal plane kinematics of the pelvis and hip (380). 

Therefore, it is conceivable that reduced strength or neuromuscular function of the 

gluteus medius would lead to an inability to stabilise the pelvis in the frontal plane, 

causing increased CPD. Further studies are now needed to investigate potential 

underlying mechanisms influencing CPD.  

The finding of increased CPD amongst runners with ITBS is in contrast to the results of 

two prior studies reporting no difference between ITBS groups and controls (240). 

However, this may be explained by subtle differences between investigations. In 

particular, all participants in the current study were experiencing ongoing injury 

symptoms, whereas Foch & Milner (241) recruited runners who had been symptom free 

for a minimum of one month prior to testing. Through the inclusion of an asymptomatic 

population, it is possible that kinematic patterns associated with ITBS may have been 

resolved at the time of testing. In contrast, runners in the present study were 

experiencing ongoing injury symptoms, therefore it is possible that potential 

contributors to injury may have remained unresolved.   

Results from a further study by Foch et al (227) support this possibility. When comparing 

runners with current ITBS to those with a prior history of ITBS, the group with a prior 
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history of ITBS were found to demonstrate 1.9⁰ less CPD. Although the authors did not 

report the difference as statistically significant, the observed difference demonstrated 

a moderate effect size of 0.6 and exceeds the MDC value of 1.7⁰ reported for peak CPD 

in Chapter 4. Therefore, it is likely that this difference could be considered 

biomechanically meaningful, with the lack of statistical significance perhaps explained 

by the low participant numbers in each group (n = 9), limiting the statistical power to 

detect differences in pelvis kinematics. Consequently, these results support the premise 

that kinematic patterns driving ITBS may have been resolved at the time of testing in the 

study by Foch & Milner (241).    

A further study by Foch et al (227) also reported no difference for peak CPD between 

runners with ITBS and controls. However, they did observe a significant 2.3⁰ difference 

in ipsilateral trunk lean, being greater amongst the current ITBS groups. As outlined 

within the literature review (Chapter 2, Section 2.1.7.2) ipsilateral trunk lean may serve 

as a compensatory pattern in order to minimise frontal plane pelvis displacement. In the 

present study, no difference was observed between groups for trunk ipsilateral flexion. 

This suggests participants in the present study did not appear to demonstrate 

compensatory kinematics to account for pelvis positioning and may explain the 

observed differences between studies.     

 Knee & Ankle Kinematics 

We also found the injured runners to land with greater knee extension and ankle 

dorsiflexion (Table 27, Figure 19), which may influence tissue loads in a number of ways. 

Firstly, in knee extension the patella becomes vulnerable to lateral tilt and displacement 

which may influence patellofemoral contact areas and joint stress during early stance 

(381). Secondly, an extended knee and dorsiflexed ankle at initial contact is typically 

associated with a greater distance between the centre of mass and the foot at contact. 

Greater distance between the centre of mass and foot, as well as larger ankle 

dorsiflexion angles, have been associated with increased knee joint loading and breaking 

impulse (382). An extended knee at initial contact has also been reported to reduce the 

ability to attenuate impact forces during early stance (383). Collectively it seems 
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plausible that the extended lower limb posture at initial contact may influence impact 

loading and knee joint loading during early stance.  

 Trunk Forward Lean 

Increased trunk forward lean was a further kinematic pattern identified amongst the 

global injured group. Sagittal plane trunk kinematics are known to influence centre of 

mass positioning during running, with greater forward lean resulting in more anterior 

displacement of the centre of mass (136). This forward displacement of the centre of 

mass needs to be appropriately balanced in relation to foot positioning at contact, in 

order to maintain balance during running. If the centre of mass positioning is displaced 

too far anteriorly, then compensatory foot positioning may be necessary in order to 

maintain upright balance (292). Consequently, it is possible that the increased trunk lean 

observed amongst injured runners, may influence foot and lower limb posture at 

contact, resulting in the observed findings of increased knee extension and ankle 

dorsiflexion at initial contact.  

One possible mechanism explaining the differences in forward trunk lean may be due to 

strength deficits around the gluteals and paraspinals. Previous studies have reported 

fatigue of the paraspinal and gluteal muscles to be associated with an increase in trunk 

forward lean during running (384) and drop landings (385). Therefore, reduced strength 

capacity of the gluteals and paraspinals may result in an inability to maintain an upright 

running posture amongst the injured runners. 

Interestingly, no prior study has identified trunk forward lean to be associated with 

running related injuries (Table 18). In fact, some studies have suggested that increasing 

forward lean may represent a potential gait retraining strategy for injured runners (386). 

Using injury free populations, Teng & Powers (386) reported that increasing trunk lean 

serves to reduce both the knee extensor moment and patellofemoral joint stress during 

running (386). Subsequently, it has been suggested as a potential intervention strategy 

in the management of patellofemoral pain. However, based on the findings of the 

present study, it may be unwise to cue runners to increase forward lean during running. 

As failure to maintain the balance between trunk lean and foot position at initial contact, 
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could lead to compensatory lower limb postures which may have negative 

consequences for further injury risk.  

 Magnitude of Difference 

For the majority of kinematic parameters, the observed between-group differences 

exceeded the standard error of measurement identified within Chapter 4 (Section 4.3), 

highlighted in Table 30. The SEM is considered to represent the degree of error expected 

to occur within a measurement system. Considering the between-group differences 

were equivalent to, or exceeded the SEM values, the observed differences are likely to 

reflect true between-group differences in running kinematics. However, only peak CPD 

and hip adduction demonstrated a mean difference greater than the minimal detectable 

change (Table 30). Although this might not influence the interpretation of between-

group differences, this could influence the future interpretation of intervention effects 

at an individual level. This is because averaging across a group is likely to reduce random 

(non-systematic) measurement variability. In contrast, at an individual level, changes in 

certain parameters, such as trunk lean and knee and ankle angles at initial contact, 

would need to result in large between day differences in order to be considered true 

intervention effects.   

The minimal detectable change is considered to represent the degree of change 

representative of a true change, greater than that which could be explained by random 

error. However, the MDC does not necessarily represent the degree of change necessary 

for positive patient outcomes. Consequently, for those parameters with large MDCs but 

small between-group differences, the magnitude of change required to be clinically 

important for the individual, may be significantly smaller than the magnitude required 

to represent a true between day change in running kinematics. Subsequently, in many 

instances it may be difficult to evaluate whether interventions targeted towards certain 

kinematics, are responsible for changes to clinical symptoms.    



 

167 | P a g e  
 

 

Table 30: Visual comparison of the mean between-group difference for the pooled injured and control groups, 
compared to the SEM and MDC for kinematic testing procedures. SEM and MDC values are those presented in 

Chapter 4. 

 
Mean 

Difference (⁰) 

SEM 

(⁰) 

MDC 

(⁰) 

Initial Contact 

Knee Flexion 4.2 2.5 6.9 

Ankle Dorsiflexion 4.8 2.5 6.9 

Mid Stance 

Trunk Forward Lean 2.5 2.6 7.1 

Contralateral Pelvic 

Drop 
2.7 0.6 1.7 

Hip Adduction 3.3 0.7 1.8 

 

 Kinematic Subgroups 

While hip adduction was found to be greater amongst the pooled injured group, the 

subgroup analysis revealed this parameter differed across the injury subgroups (Table 

29, Figure 17C & Figure 17D). Specifically, we found hip adduction to be greater amongst 

subgroups of runners with PFP and MTSS compared to the ITBS subgroup (Figure 17D). 

This finding is in contrast to previous studies by Noehren et al (59) and Ferber et al (26) 

who reported increased hip adduction amongst runners with ITBS. One potential reason 

for the contrasting findings may be due to sex differences between studies. In the 

current study we included a mixed sex population, while Noehren et al (59) and Ferber 

et al (26), they only included female participants. 

Hip adduction has been reported to be influenced by sex subgroups (58, 194, 238). 

Previous studies have reported that healthy female runners (238), as well as those with 

PFP (58, 194), tend to demonstrate greater peak hip adduction angles when compared 

to their male counterparts. Indeed, on inspection of the current data, hip adduction 
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angles do appear to be influenced by sex. Specifically, within the current study, a higher 

proportion of male runners can be seen to demonstrate peak hip adduction angles 

below the average value for the pooled injury group (Figure 21). This is particularly true 

for the ITBS group, with 71% of male runners (5 out of 7) demonstrating peak hip 

adduction values lower than the average value of 13⁰ for injured runners, compared to 

only 45% of the female runners (5 out of 11). A proportion of these male runners also 

appear to demonstrate values lower than the average of 9.7⁰ for the control group 

(Figure 21). This suggests that although peak hip adduction may be an important 

kinematic risk factor for certain injuries, it is more frequently observed in female runners 

rather than male runners.  

Figure 21: Individual hip adduction values for all subjects. Dashed line represents the mean hip adduction angle for 
the control group, dotted line the mean value for the pooled injured group. 

 

In contrast to peak hip adduction, CPD appears less likely to be influenced by sex. On 

visual inspection of the individual data, there appears to be a similar distribution of male 

and female runners with CPD angles above and below the mean CPD values for the 

pooled injury group (Figure 22). This is further supported by results of the logistic 

regression model, as sex did not have a significant influence upon the results of the final 
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model (Section 5.3.3). Therefore, while hip adduction may be more prevalent amongst 

female runners, CPD appears to be a kinematic pattern consistently observed across 

both sexes as well as injury subgroups.    

Figure 22: Individual contralateral pelvic drop values for all subjects. Dashed line represents the mean contralateral 
pelvic drop angle for the control group, dotted line the mean value for the pooled injured group. 

 

 Role of Kinematics in Injury 

Despite this study including multiple different running related injuries, similar kinematic 

patterns were observed across the injury subgroups. This raises an important question 

as to why certain musculoskeletal structures become injured rather than others. As 

presented in the introduction (Section 1.3.3), running kinematics are one factor 

influencing tissue loads per stride of a run. However, injury may only occur if the loads 

applied reach a cumulative load which exceeds the load capacity of specific tissues (28). 

This tissue specific load capacity is influenced by a variety of biological, psychological 

and sociocultural factors, influencing both the individual and tissue specific response to 

the biomechanical loads. The interaction between these factors, is likely to result in a 

tissue capacity which varies, both between individuals and tissues. This may explain why 
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similar kinematic features could potentially influence multiple different running related 

injuries.   

The results from the present study also highlight that some runners are able to remain 

injury free, despite demonstrating kinematic characteristics associated with injury. 

When inspecting individual data plots for the control group, a small proportion of 

runners demonstrated peak hip adduction and CPD values above the mean value for the 

injured group (Figure 21 & Figure 22). Five participants demonstrated peak hip 

adduction values (Figure 21) and three demonstrated CPD values greater than the 

average value for the pooled injured group (Figure 22). Considering these runners had 

reported no injury within the last 18 months and no prior history of common overuse 

injury, this highlights that kinematics alone are insufficient to explain injury 

development. This reflects the complex nature of running injury development that 

extends beyond singular risk factors, highlighting the need to consider the interaction 

between multiple risk factors if we are to fully understand injury aetiology and 

implement appropriate rehabilitation interventions. 

One important consideration is the interaction between kinematics and training load 

exposure. According to Bertelsen’s running injury framework (28), injury development 

is the result of the cumulate tissue load encountered during running, exceeding tissue 

load capacity. Although kinematics may increase tissue load per stride, without an 

exposure to external training load, the cumulative tissue load will remain relatively low 

and may be unlikely to exceed tissue capacity. Additionally, through the gradual 

progression of training load, it is possible that some runners may develop the tissue 

capacity required to tolerate the higher loads imposed by kinematic patterns (32, 268). 

This interaction between running kinematics and training load exposure has not 

previously been explored and therefore forms the motivation for Chapter 6, which aims 

to investigate whether kinematic parameters associated with common running injuries 

are associated with weekly training load exposure. Through achieving this aim, this may 

provide a theoretical understanding as to why some runners become injured as training 

volume increases, while others do not. It may also enhance our understanding of 
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whether kinematics adaptations, if any, are required to attain regular high-volume 

training loads while remaining injury free. 

 Limitations 

One limitation is the retrospective nature of the present study. Consequently, it is not 

possible to conclude if the observed kinematic patterns are the cause of injury, or the 

result of injury. Nevertheless, we ensured that all data were recorded before the onset 

of pain to minimise any possible effect of pain on the observed kinematic patterns. 

However, we cannot rule out the possibility that participants may have adapted their 

running kinematics in response to chronic injury or in apprehension of the acute onset 

of pain. Therefore, we acknowledge that future prospective studies are required to 

further investigate whether the kinematic patterns observed within the current study 

are the cause or effect of injury.  

Another study limitation is the higher weekly mileage of the control group (Table 25). 

This was due to the stringent inclusion criteria required for the control group which may 

have introduced a selection bias to the current findings. It is important to note, the 

selection of a control group who have been injury free for 18 months, with no prior 

history of common overuse injuries, may have resulted in the selection of a specific 

heterogeneous population of runners. These runners may inherently possess 

characteristics, biomechanical or not, which allow them to remain injury free. However, 

we feel that this could be considered a strength of the current study, as previous 

research suggests running greater than 40 miles per week is a risk factor for developing 

injury (7). On average, our healthy control group were exceeding this threshold for more 

than 18 months prior to testing yet remained injury free. Therefore, we feel the control 

group may be representative of a healthy running gait in order to remain injury free at 

training loads exceeding the previously reported injury threshold.  

There may also be behavioural differences between groups that has not been 

considered within the present study. For example, it is possible that some runners could 

have engaged in additional training activities, such as strength training, which was not 

accounted for. Subsequently, this may have influenced between-group differences in 
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injury status or even running kinematics. However, there is currently inconclusive 

evidence to suggest that activities such as strength training, influence running 

kinematics (64, 65) or reduce the risk of running related injuries (387, 388). Therefore, 

we feel that despite possible differences in training routines, these may be unlikely to 

explain the biomechanical differences observed between groups. However, we 

acknowledge that future biomechanical studies should consider recording additional 

details of athlete training history and investigate the potential effects this may have 

upon running kinematics.  

As all participants disclosed their injury status prior to kinematic data collection, it is 

possible that observer bias could have been introduced within the data collection and 

analysis procedures. However, in order to limit this possibility, all participants were 

screened against the clinical assessment and inclusion/ exclusion criteria prior to data 

collection and processing (Section 3.2). This ensured that the inclusion of participants 

was not influenced by prior knowledge of their kinematic patterns. Additionally, within 

the kinematic data collection protocol, pelvis kinematics were normalised to the 

standing trial, subsequently this would reduce any potential bias introduced through the 

positioning of retroreflective markers (Section 3.3.5). Therefore, we feel it is unlikely 

that observed bias would have influenced the present results.  

It is also important to note that this study was limited to a select number of common 

soft tissue running injuries. Therefore, these results may not apply to other injuries such 

as plantar heel pain, stress fractures and muscle strains. Further research would be 

required in order to establish a link between the identified kinematic patterns and other 

running related injuries.   

An additional limitation is the inclusion of a mixed sex population. As discussed earlier, 

hip adduction appeared to be influenced by gender subgroups within the data. This 

suggests that there may be sex specific kinematic patterns which could contribute to 

multiple different running injuries. Unfortunately, based on the power analysis 

conducted prior to this study (Section 5.2.1), the current study would have been 

underpowered to investigate the role of sex specific subgroups. However, the aim of the 
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present study was not to identify sex specific running kinematics, but to investigate 

whether similar kinematic parameters are associated with multiple different common 

running related injuries. Considering peak CPD was found to be most strongly associated 

with common running injuries and appears to be consistent across both injury 

subgroups and gender, this parameter may represent a global kinematic contributor to 

injury, which can subsequently be targeted within the rehabilitation process.  

 Clinical Relevance 

The findings from the present study may have a number of clinical implications. Firstly, 

all of the identified kinematic parameters can be easily visualised using two dimensional 

gait analysis methods (389-391) (Figure 19 & Figure 20). A number of recent publications 

have shown 2D assessments of CPD, hip adduction, trunk forward lean and sagittal plane 

knee and ankle angles to be highly correlated with 3D measurement systems and to 

demonstrate high intra and inter-tester reliability (389-391). Both the standard error of 

measurement and the minimal detectable difference for these parameters is also 

comparable to the results presented within the present thesis (Chapter 4) and smaller 

than the between-group differences observed within the present study. Specifically, 

Dingenen et al (392) reported a minimal detectable difference of 2.7⁰ for peak CPD and 

2.8⁰ for peak hip adduction using 2D data collection methods. Therefore, it should be 

possible to use 2D measurement techniques to assess the biomechanical parameters 

which were associated with injury in this study.  

Secondly, many of the identified global kinematic contributors to injury, can be modified 

through gait retraining. Within the literature review, several methods of gait retraining 

were found to effectively modify many of the observed kinematic patterns (Table 20). 

For example, CPD and hip adduction angles can be retrained using visual feedback (69) 

and increasing cadence (71), while knee and ankle angles are influenced by increasing 

cadence or modifying foot strike patterns (311). While the observed kinematic 

parameters may increase tissue loads per foot contact, gait retraining interventions, 

such as increasing running step rate, could modify kinematics and subsequently reduce 

tissue loads per foot contact. Building on this idea, Chapter 7 of this thesis aims to 

investigate whether a simple method of gait retraining can be used to improve 



 

174 | P a g e  
 

biomechanics, clinical and functional outcomes amongst injured runners.  This line of 

enquiry may provide preliminary evidence of the clinical effectiveness of a simple 

method of gait retraining targeted to the kinematic patterns observed in the present 

study.   

5.5 Summary and Implications 

This study identified several kinematic characteristics associated with common running 

injuries. In particular, we found injured runners to run with greater peak contralateral 

pelvic drop and trunk forward lean, as well as an extended knee and dorsiflexed ankle 

at initial contact. Contralateral pelvic drop appears to be the variable most strongly 

associated with common running related injuries. Based on theoretical models of 

running injury aetiology presented in the introduction (Section 1.3) and in order to 

achieve the overarching aims of this thesis (Section 1.3.7), Chapters 6 and 7 aim to 

expand on these findings and explore whether running kinematic are associated with 

training load exposure (Chapter 6) and whether gait retraining, targeted to the 

kinematic patterns observed in the present study, can be used to improve biomechanics, 

clinical and functional outcomes amongst injured runners (Chapter 7). 
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 Chapter 6: Are running kinematics influenced 

by exposure to training loads?   

In Chapter 5, several kinematic parameters were identified as being associated with 

common running injuries, with peak contralateral pelvic drop identified to be most 

strongly associated with common injuries. Based on injury causation models presented 

in the introduction, altered kinematic patterns were proposed to increase tissue load 

per stride of a run. When combined with an exposure to external training load, this may 

influence cumulative tissue loading and underlie injury development. Based on this 

premise, we may be less likely to see kinematic parameters associated with injury 

amongst runners who are able to attain high external training loads. However, currently 

there is limited evidence investigating whether kinematic parameters associated with 

common running injuries are associated with weekly training load exposure. Therefore, 

this Chapter presents a cross sectional study which aims to build upon the theoretical 

concepts presented in the introduction and explore whether the kinematic parameters, 

identified in the previous Chapter, are associated with external training loads.   

6.1 Introduction 

Training errors are frequently cited as the main cause of running related injuries (7, 23). 

Although several methods of monitoring training load exist (Section 2.3.2), from a 

running perspective, training loads are frequently measured using the external metric 

of weekly running volume. Perhaps influenced by the ease of measurement through the 

use of global positioning system (GPS) watches. However, currently there is conflicting 

evidence as to whether weekly training volume influences the risk of running related 

injuries (23, 42). Some studies have suggested running greater than 40 miles per week 

is a risk factor for running injury (43, 44), while others have suggested higher weekly 

training volumes are not associated with injury risk and may even be protective against 

injury (225, 228). This raises questions as to why some runners can attain high weekly 

training volumes and remain injury free, while others cannot. 

file:///E:/Running%20Literature/PhD%20Writing/Thesis/Revisions/Bramah,%20C%20-%20%20PhD%20Thesis%20Revision%20v1.1.docx%23_ENREF_225
file:///E:/Running%20Literature/PhD%20Writing/Thesis/Revisions/Bramah,%20C%20-%20%20PhD%20Thesis%20Revision%20v1.1.docx%23_ENREF_228
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Gabbett et al (281) proposed that high training loads alone are unlikely to be the cause 

of injury. Instead suggesting the rate of increase is likely to be the contributing factor; 

with sudden acute increases overwhelming the musculoskeletal system resulting in 

injury development (32, 281, 282). However, amongst running populations, there is 

conflicting evidence as to whether acute increases in training volume do increase the 

risk of injury development (42). When investigating week to week increases in training 

volume, several studies have reported no difference in injury rates amongst those 

increasing weekly training volume by less than 10%, compared to those increasing by 

10% to 30% (24, 25, 26). This again raises questions as to why some runners become 

injured despite relatively small increases in weekly training loads, while others do not.  

One possibility is that current training load measurements may not accurately reflect 

the cumulative tissue load encountered for a given run (30). According to Bertelsen’s 

running injury framework (28), injury development is the result of cumulative tissue load 

exceeding tissue capacity. With cumulative tissue load defined as the sum of tissue 

specific load per stride and the frequency of load application. Current training load 

measurements only consider the frequency of load application and therefore as a sole 

metric, may not accurately reflect the cumulative tissue stress encountered by each 

individual. To accurately reflect the cumulative tissue loads it may be necessary to 

consider additional factors influencing tissue specific load per stride.  

Within Chapter 5, several kinematic patterns were identified to be associated with 

common running related injuries. These parameters included increased peak 

contralateral pelvic drop, hip adduction, trunk flexion as well as reduced knee flexion 

and greater ankle dorsiflexion at initial contact. Interestingly peak contralateral pelvic 

drop was identified as the kinematic parameter most strongly associated with common 

running injuries. These kinematic parameters are thought to influence tissue load per 

stride, influencing the stress placed on musculoskeletal structures during each foot 

contact of a run. As kinematics may vary between individuals, when combined with an 

exposure to external training load, the cumulative tissue load encountered are also likely 

to demonstrate considerable between-subject variability. Consequently, this may cause 

some individuals to function closer to their tissue capacity, becoming injured at a much 

file:///E:/Running%20Literature/PhD%20Writing/Thesis/Revisions/Bramah,%20C%20-%20%20PhD%20Thesis%20Revision%20v1.1.docx%23_ENREF_24
file:///E:/Running%20Literature/PhD%20Writing/Thesis/Revisions/Bramah,%20C%20-%20%20PhD%20Thesis%20Revision%20v1.1.docx%23_ENREF_25
file:///E:/Running%20Literature/PhD%20Writing/Thesis/Revisions/Bramah,%20C%20-%20%20PhD%20Thesis%20Revision%20v1.1.docx%23_ENREF_26
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lower external training load or in response to relatively small increases in external load. 

Therefore, rather than injury risk being the result of the isolated variables of either 

training load or kinematics, it is perhaps the interaction between the two which is key 

to understanding the development of injury in a given individual. 

It has been proposed that gradual progressive exposure to training may facilitate the 

development of physical qualities necessary to attain high training loads while reducing 

the risk of injury (32, 268). Indeed, some limited evidence does exist to suggest that 

runners may adapt aspects of their gait following exposure to a progressive training 

program (284). However, no current study has focused upon kinematic parameters 

commonly associated with running injuries. Based on the proposed interaction between 

training load exposure and running kinematics, it seems plausible to expect that runners 

who are able to attain regular high mileage running, while remaining injury free, could 

either adapt aspects of their running gait, or inherently possess kinematic patterns that 

reduce the stress placed on the musculoskeletal system. If this is the case, then this may 

have implications for load monitoring and load management amongst runners, offering 

a potential explanation as to why some runners become injured as training volume 

increases, while others do not.   

 Aim and Objective 

The aim of this Chapter is to explore whether kinematic parameters associated with 

common running injuries are associated with weekly training load exposure. The specific 

objective was to investigate whether there is a difference, between groups of high and 

low-mileage runners, in the proportion of individuals who demonstrate kinematic 

patterns associated with injury.  It was hypothesised that when compared to low-

mileage runners, injury-free high-mileage runners would demonstrate a lower 

frequency of kinematic patterns shown (in the previous Chapter) to be associated with 

common running injuries.    
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6.2 Methods 

In order to achieve the objective of this Chapter, a two-step process was used to assess 

for a between-group difference in the frequency of runners observed to demonstrate 

kinematic patterns associated with running injuries. Firstly, using the kinematic data 

presented in Chapter 5, a receiver operator curve analysis was conducted to determine 

cut off values for classification of injured runners using the kinematic parameter of peak 

contralateral pelvic drop. Second, the identified cut off value was applied to a new 

kinematic data set of high and low mileage runners in order to determine the proportion 

of individuals who demonstrate kinematic patterns associated with injury. Detailed 

methods are outlined in the following sections.  

 Participants 

A total of 48 injury free runners were recruited for this study based on the inclusion 

criteria outlined in Section 3.2.1. Participants were separated into low (LM) (n = 24, 12 

male, 12 female) and high-mileage (HM) groups (n = 24, 12 male, 12 female) based on 

their self-reported average weekly training volume. Average weekly training volume was 

selected as a measure of training load exposure as it provides an estimate of external 

training load exposure, representing the cumulative load encountered over a training 

week. Although it could be argued that training duration is a similar measure, 

measurement of weekly training volume appears to be a simple and quantifiable 

measure of external training load commonly used by runners, coaches and researchers 

(41, 272), with a large body of previous research having sought to investigate the 

association between weekly training volume and running related injuries. (43, 44, 45, 

273 - 280). 

Participants were assigned to the high-mileage group if they reported a weekly training 

volume equal to, or greater than 40 miles per week (64km) and the low-mileage group 

if they reported a weekly volume of less than 40 miles per week. The cut-off value for 

groups was based on previous literature suggesting an increased injury risk associated 

with weekly training volumes greater than 40 miles per week (43, 44, 275, 276). As such, 

it was hypothesised that runners who are able to exceed this training load without 
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sustaining an injury, may be less likely to demonstrate kinematic patterns associated 

with common running injuries. Participant characteristics can be viewed in Table 31.    

Table 31: Mean [SD] participant characteristics. *indicates statistical significance at p <.01 

 Low Mileage High Mileage P Value 

Age (years)* 
40.5  

(9.3) 

30.7  

(9.2) 
<.01* 

Mass (kg) 
61.9  

(7.7) 

59.2  

(8.9) 
.24 

Height (cm) 
170.0  

(9.6) 

173.4  

(8.9) 
.21 

Run Frequency (runs 

per week)* 

3.6  

(1.0) 

7.8  

(2.9) 
<.01* 

Weekly Run Volume 

(miles per week)* 

22.8  

(7.4) 

59.8  

(22.4) 
<.01* 

 

 Kinematic data collection & processing 

All kinematic data collection was completed and processed in accordance with methods 

outlined in Section 3.3. 

 Receiver Operator Curve (ROC) Analysis 

Using the data presented in Chapter 5, Section 5.3.3, a ROC analysis was used to 

determine kinematic cut off values that would classify runners into injured groups and 

non-injured groups. A ROC analysis quantifies the accuracy of a test or measure, to 

discriminate between two outcome states (393). The ROC curve plots the test sensitivity 

and specificity across varying cut-off points with the area under the curve (394) 

providing a statistical interpretation as to the overall discriminative ability of the test 

(393). Chapter 5, Section 5.3.3 identified peak contralateral pelvic drop to be the 

kinematic parameter most strongly associated with common running injuries, therefore 

this parameter was selected for the ROC analysis and input as the test variable along 

with positive injury status as the state variable. The cut-off value for peak contralateral 
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pelvic drop was determined based on observation of the curve points and coordinates 

in order to identify the coordinate point yielding the highest combined sensitivity and 

specificity (Figure 23). A cut off point of 4.82⁰ was identified providing a sensitivity of 

80.6% and a specificity of 80.6% when classifying runners into injured and non-injured 

groups (AUC = 0.835, p <.01, CI: 0.75 – 0.92). 

Figure 23: Receiver operator cure (ROC) for peak contralateral pelvic drop using data collected in Chapter 5. 

 

 Statistical Analysis 

Following identification of a cut off value, runners were classified into “high risk” and 

“low risk” groups based upon their peak contralateral pelvic drop angle. “High risk” was 

defined as a peak contralateral pelvic drop value equal to, or greater than 4.82⁰ and 

“low risk” was defined as a value less than 4.82⁰. Pearson’s chi-squared test was used to 

assess for the difference in distribution of runners classified as demonstrating “high risk” 

or “low risk” CPD angles between the high-mileage and low-mileage runners. Descriptive 

statistics of minimum and maximum values were also calculated as well as the 

interquartile range to provide a measure of dispersion in the distribution of CPD angles 

within each group. The interquartile range was calculated as a measure of dispersion as 
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it is less likely to be influenced by outliers within the data which may be the case when 

calculating the range (11).  

6.3 Results 

Pearson Chi-Square test identified a significant association between mileage groups and 

high or low risk CPD angles χ2(1) = 0.6, p = .014 (Phi and Cramer's V = .35). When 

compared to the low mileage group, the high mileage group contained a significantly 

lower frequency of runners with CPD angles, characteristic of running injury (Chapter 5) 

(Figure 24). Specifically, amongst the high mileage group, only 16.7% (n = 4) were 

classified as having “high risk” CPD angles, with 83.3% (n = 20) classified as “low risk”. In 

contrast, amongst the low-mileage group a total of 50% (n = 12) were classified as having 

“high risk” CPD angles and 50% classified as “low risk”.   

Figure 24: Bar chart representing the number of runners classified as having "High Risk" and "Low Risk" peak 
contralateral pelvic drop (CPD) angles. X axis: high and low mileage groups, Y axis: number of runners. Blue bar 

represents "Low Risk" and red bar "High Risk" CPD angles. 

 
 

The low mileage runners appeared to demonstrate greater within-group variability in 

peak CPD angles compared to the high mileage runners (Figure 25). Specifically, amongst 

the low-mileage runners, the minimum peak CPD angle observed was 0.3⁰, with a 

maximum value of 9.3⁰ and an interquartile range of 3.6⁰. In contrast, the high-mileage 
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runners demonstrated a minimum value of 0.3⁰, a max of 6.9⁰ and an interquartile range 

of 2.1⁰.  

Figure 25: Scatter chart of individual plots for weekly running volume (x-axis) and peak contralateral pelvic drop (y-
axis). Dashed vertical line represents the 40 mile per week cut off threshold used to separate runners into high or low 

mileage groups. Dotted horizontal line represents the CPD threshold of 4.82⁰ used to classify runners as possessing 
“high risk” or “low risk” CPD angles. 

 

 
 

6.4 Discussion 

The objective of this study was to investigate whether there is a difference, between 

groups of high (HM) and low-mileage (LM) runners, in the proportion of individuals who 

demonstrate kinematic patterns associated with injury. In support of our hypothesis, 

high-mileage runners demonstrated a significantly lower frequency of individuals who 

exhibited CPD angles, characteristic of running injury (Chapter 5). The observed 

differences provide preliminary evidence for the existence of an interaction between 

kinematics and training load exposure. 
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 Kinematics influencing the maximum workload potential 

The observation of a lower frequency of HM runners with “high risk” CPD angles, may 

suggest that the loads induced through sub-optimal kinematics, are not sustainable at 

high volume training. Previous authors have suggested that each runner has a maximum 

workload potential, an external workload limit where structure specific capacity is 

exceeded (28, 30, 395). Within Chapter 5, peak CPD was identified to be associated with 

multiple different common running injuries and a rationale was presented to explain 

how this altered kinematic pattern could increase tissue loads throughout the 

musculoskeletal system during each stride of a run. When combined with a frequency 

of load application, such as during high external workloads, increased CPD could lead to 

cumulative loading which exceeds tissue capacity. Therefore, it is possible that runners 

who possess kinematic characteristics associated with common injuries (increased CPD), 

are more vulnerable to injury as training loads increase. This may explain the lower 

frequency of “high risk” CPD angles amongst the high-mileage group. Specifically, 

individuals who possess “high risk” kinematics may be unable to attain high external 

workloads without cumulative tissue loads exceeding tissue capacity. 

In contrast, without an exposure to external training loads, kinematics may not be 

sufficient to cause injury development. This is highlighted by the findings of 50% of low 

mileage runners with “high risk” CPD angles. These angles were above the 4.82⁰ 

threshold, identified in Chapter 5 to be associated with common running injuries. 

Despite possessing kinematics associated with injury, these runners were injury free and 

reported no history of common overuse injuries. It is possible that the low training 

volume of these individuals means they have not exceeded a training load application 

sufficient to cause injury development. Therefore, these results highlight that injury 

causation is not as simple as possessing a risk factor or being exposed to an external 

training load. Instead, it is more likely to result from a complex interaction between 

multiple factors influencing the cumulative tissue loads encountered during running.  

Based on the present results presented in this Section, it is possible that running 

kinematics could represent a potential effect-measure modifier, where the effect of 

training load upon injury incidence is modified by the kinematic features an individual 
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possesses (396). Emerging evidence is beginning to highlight the role of effect measure 

modifiers in running injury aetiology. In a 12-week prospective study of recreational 

runners, van der Worp et al (128) reported that total weekly running volume was not 

associated with an increased risk of running related injury. However, when combined 

with having a previous history of injury, running greater than 30km per week 

significantly increased the risk of sustaining a running related injury. Similarly, Malisoux 

et al (396) reported that for a given training exposure, the risk of sustaining a running 

related injury is significantly greater amongst runners with a previous history of injury.  

In the context of the present findings, baseline running kinematics could provide one 

explanation for the conflicting literature regarding the influence of training loads upon 

running injury development (23, 42). This is because the influence of training load may 

be modified by the baseline kinematics of an individual. With those who possess 

kinematic characteristics which increase tissue load per stride, more vulnerable to injury 

development as the frequency of external load application increases. Therefore, future 

studies should consider kinematics as a potential effect measure modifier. With this 

approach, stratifying groups of runners based on their baseline kinematics would allow 

for further understanding of whether kinematics do influence the training loads 

attainable by runners.   

 Kinematic adaptations to external training loads 

An alternative explanation for the current findings is that some runners may adapt 

aspects of their gait in response to elevated training loads. Several authors have 

proposed that progressive exposure to training loads may facilitate the development of 

physical qualities necessary to attain high training loads, while reducing the risk of injury 

(32, 268, 397). Although limited, some evidence does support this idea. Following a 10-

week beginner running program, Moore et al, (284) observed pre and post program 

changes in several kinematic parameters, including a reduction in peak rearfoot eversion 

velocity. The authors hypothesised that the observed changes, may be adaptions to 

improve running economy and reduce the risk of musculoskeletal injury associated with 

certain kinematic parameters. Therefore, it is possible that the observed between group 

differences may represent adaptations to high training loads, with these adaptations 
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occurring in order to reduce the risk of injury associated with kinematic patterns such 

as CPD.  

It has also been proposed that progressive exposure to training loads may facilitate 

tissue adaptation, improving capacity to withstand load application (32, 282, 398). In the 

context of kinematics, this would imply that gradual exposure to external training loads, 

may facilitate the development of tissue capacity to tolerate the loads imposed through 

sub-optimal kinematic parameters, such as increased peak CPD. The data presented in 

this current Chapter could be used to either support or refute this possibility. In support 

of this possibility, 4 out of the 24 high-mileage runners were observed to possess CPD 

angles which could be considered “high risk” (Figure 24). Additionally, within Chapter 5, 

three runners within the control group demonstrated CPD values greater than the 

average value for the pooled injured group (Figure 22). This suggests that some 

individuals may be able to withstand the tissue loads induced through sub-optimal 

running kinematics yet remain injury free at high external training loads. 

Nevertheless, at a group level, the idea that tissues adapt to tolerate the loads induced 

through kinematics is not supported by the current data. Although 4 high-mileage 

runners demonstrated “high risk” CPD angles, the frequency of “high risk” kinematics 

was significantly less than that of the low-mileage group. Furthermore, if the cut off 

threshold for external training volume was increased to 41 miles per week, then the 

number of high mileage runners with “high risk” kinematics would reduce to only 1 

participant (Figure 25). This suggests that, as the external training demands increase, 

less runners appear to possess kinematic characteristics similar to those associated with 

common running injuries. Therefore, we feel that the present results may support the 

idea of a possible biomechanical Darwinism amongst runners. Specifically, in order to 

attain regular high mileage running and remain injury free, runners must either adapt 

aspects of their gait, or inherently possess kinematic features that minimise the stress 

placed upon the musculoskeletal system.   
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 Implications for training load management 

The findings of the present study may have several implications for load management 

and load monitoring. Current methods of load monitoring tend to focus upon the 

physiological response to load through the use of internal metrics, or the quantification 

of external loads via metrics monitoring the training “dose”, such as volume or duration 

of running. Although these methods are useful in determining the external exposure and 

individual response to training, they do not consider factors influencing tissue specific 

loads per stride, such as running kinematics. Consequently, current metrics may not 

accurately reflect the cumulative tissue loads encountered during running.  

It is possible that, for a given external training load, the tissue loads imposed through 

sub-optimal kinematics may result in a cumulative load that is significantly greater than 

that of a runner who does not possess sub-optimal kinematics. As suggested above, this 

may provide one explanation as to why some runners can attain high training volumes 

and remain injury free, while others cannot. Therefore, for individuals who possess sub-

optimal running kinematics, a more cautious approach to training load progression may 

be necessary. For such people, regular monitoring of individual response to training 

demands and smaller week-to-week increases in training volume, may allow for the 

opportunity for kinematic adaptations and prevent overwhelming the musculoskeletal 

system. 

Finally, amongst individuals with sub-optimal kinematics, gait retraining interventions 

may help to reduce the risk of injury and facilitate higher attainable workloads. Some 

preliminary evidence suggests that baseline gait retraining may reduce the risk of future 

running related injuries (399). In a study of 320 novice runners randomised into a gait 

retraining and control group, at one year follow up the gait retraining group 

demonstrated a significantly lower injury incidence compared to the control group. 

Therefore, it is possible that gait retraining interventions which effectively target 

kinematics associated with common running injuries, may help to reduce tissue loads 

per stride, allowing for higher attainable workloads. Additionally, amongst runners who 

have exceeded their load capacity and possess sub-optimal kinematics, gait retraining 

may improve kinematics, reduce tissue loads and improve clinical outcomes amongst 



 

187 | P a g e  
 

injured runners. Building on this concept, Chapter 7 of this thesis aims to explore this 

further by investigating whether a simple method of gait retraining can be used to 

improve biomechanics, clinical and functional outcomes amongst injured runners who 

possess sub-optimal kinematics. 

 Limitations 

There are several limitations to the present study that should be acknowledged. Firstly, 

it should be noted that there was a between group difference in age, with the high 

mileage group on average 9.8 years younger than the low mileage group. However, no 

prior study has reported frontal plane pelvis kinematics to be influenced by age (400-

403). Additionally, a systematic review by van der Worp et al (374) concluded that there 

is limited evidence to suggest age is a significant risk factor for running related injuries. 

Therefore, the age difference is unlikely to be large enough to explain the observed 

findings within the present study. 

A second limitation is the cross-sectional nature of this study, which means the results 

cannot be used to predict future injury risk amongst the low-mileage runners, nor can it 

predict high-mileage runners will not develop injury. However, it does raise an 

interesting question as to why high-mileage runners appear to demonstrate a lower 

frequency of kinematic patterns shown (in the previous Chapter) to be associated with 

common running injuries, and whether the higher frequency of low-mileage runners 

with “high risk” kinematics could influence their future injury risk. Future studies should 

consider exploring the role of kinematics as a potential effect-measure modifier. 

Prospective cohort studies could consider investigating whether those who possess sub-

optimal kinematics at baseline, are more vulnerable to injury as training loads increase.   

Finally, it is important to note that although the current study highlights potential 

interaction effects between two single variables, interactions will likely extend beyond 

the parameters studied. Bittencourt et al (19) previously described injury aetiology to 

be influenced by the “web of determinants”. The complex interaction between multiple 

psychological, biological and sociocultural factors which adapt over time and can 

mediate the effect imposed by additional factors. Similar to injury causation, the 
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constructs of tissue load and the frequency of load application are also likely to be 

influenced by this complex web of determinants. With factors interacting to influence 

not only the outcome of cumulative tissue load, but the magnitude of effect of the 

singular components (see Figure 26 for an illustrative example). For example, running 

kinematics may be influenced by fatigue, with fatigue influenced by a variety of training 

and psychological factors (Figure 26). Similarly, social influences may influence training 

behaviours either directly, or indirectly through imposed psychological stressors. This in 

turn, may influence fatigue, running kinematics and the resulting frequency of load 

application and tissue loads per stride. Therefore, from both a clinical and research 

perspective, it is important to not only consider the individual components influencing 

tissue load, load exposure and tissue capacity, but to also acknowledge the wider 

interactions between multiple factors which may influence the singular components and 

the wider outcomes.   
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Figure 26: Conceptual diagram representing the interaction between multiple individual variables and their influence 
upon cumulative tissue load. Note: this is not an exhaustive list of all variables which may influence tissue load and 

load application.  
The interaction between individual variables is depicted as the web of determinants as described by Bettencourt et al 

(19), with the diagram highlighting their influence upon components of the framework for running injury aetiology 
described by Bertelsen et al (28). Blue circles = psychological factors, purple = sociocultural, green = biological, red = 

training parameters. Lines represent the strength of interaction between variables with thicker lines indicating a 
stronger interaction and dotted lines indicating weaker interaction. Thicker circles represent more interactions 

between variables. Highlighted circles are those included within the present study. 

 

6.5 Summary and Implications 

The results from this study highlight an association between training load exposure and 

running kinematics. In particular, when compared to low-mileage runners, injury-free 

high-mileage runners demonstrated a significantly lower frequency of kinematic 

patterns similar to those associated with common running injuries. It is possible that the 

tissue loads imposed through contralateral pelvic drop, could influence the maximal 

workloads attainable. With runners either adapting aspects of their kinematics or 

becoming injured as training loads increase. This may provide a theoretical explanation 

as to why some runners develop an injury as training loads increase while others do not. 
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In such instances, gait retraining interventions specifically designed to improve 

kinematic patterns may prove effective in reducing the cumulative tissue loads 

encountered and improve clinical outcomes amongst injured runners. Building on this 

idea, Chapter 7 aims to investigate whether a simple method of gait retraining can be 

used to improve biomechanics, clinical and functional outcomes amongst injured 

runners.  
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 Chapter 7: A 10% increase in step rate 

improves running kinematics and clinical 

outcomes in runners with patellofemoral 

pain at 4 weeks and 3 months follow up. 

This Chapter is a case-series study which aims to investigate whether a simple method 

of gait retraining can be used to improve kinematics, clinical and functional outcomes 

amongst injured runners. Chapter 5 identified kinematic parameters associated with 

common running injuries and Chapter 6 discussed how, when combined with an 

exposure to external training volumes, the cumulative tissue load encountered could 

result in injury development. This Chapter builds upon on these findings and the 

concepts presented within the introduction, targeting a clinical intervention to the 

kinematic parameters identified within Chapter 5. The results provide preliminary 

evidence for the clinical effectiveness of a simple method of gait retraining amongst 

injured runners. The method employed can be easily integrated into clinical practise 

without the need for close clinical supervision and therefore offers a practical retraining 

method for clinicians. The repeatability results reported in Chapter 4 are used to aid 

interpretation of the current findings.   

Following peer review, the results of this Chapter have been published within the 

American Journal of Sports Medicine (Appendix G). The following account includes an 

extended discussion of the published work:  

Bramah, C., Preece, S, J., Gill, N., Herrington, L. (2019) A 10% increase in step rate 

improves running kinematics and clinical outcomes in runners with patellofemoral pain 

at 4 weeks and 3 months. American journal of Sports Medicine. 47 (14), 3406 – 3413. 
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7.1 Introduction 

Recreational running is an increasingly popular method of physical activity with 

participation rates growing annually. Although running offers several health benefits, it 

also poses a considerable risk of injury to the musculoskeletal system. Overall injury 

incidence rates are reported to range between 19 and 78% amongst recreational 

runners (7) with reoccurrence rates in 20% to 70% of all cases (17). Of all running injuries, 

patellofemoral pain (PFP) is considered the most common running related knee injury 

(13) with incidence and prevalence rates as high as 20.8% and 22.7% respectively (14).  

Patellofemoral pain (PFP) is known to have a multifactorial aetiology with aberrant 

running mechanics identified as one risk factor (57, 185, 404). Runners with PFP have 

been reported to demonstrate increased hip adduction (57, 58, 192), hip internal 

rotation (192) and contralateral pelvic drop (58) when compared to injury free controls. 

Within Chapter 5 contralateral pelvic drop and hip adduction were both identified to be 

associated with the PFP subgroup of runners. It is thought that kinematic patterns such 

as these may increase tissue load per stride of a run by influencing lateral tracking of the 

patella, leading to a rise in patellofemoral joint stress (168). When exposed to repeat 

loading cycles during running, this may result in damage to the underlying chondral 

surface, stress within the subchondral bone and excitation of nociceptors leading to pain 

and injury (169).  

Gait retraining is a clinical intervention that targets running kinematics within the 

rehabilitation of PFP. Based on the literature review findings reported in Chapter 2 

(Section 2.4.7), current evidence has shown improvements in kinematics and clinical 

outcomes following mirror retraining (69), real time feedback (70) and transitioning to 

a forefoot contact (73, 294) (Table 20). However, there are several limitations to current 

gait retraining methods. Mirror and real time feedback are restricted to clinical and 

laboratory settings limiting their practical applicability, while transitioning to a forefoot 

strike has been shown to increase Achilles tendon and ankle joint loading, which may 

increase the risk of lower limb injury (320). Furthermore, these studies often utilise a 

faded feedback design consisting of 8 sessions over a 2-week period, requiring close 
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clinical supervision. Therefore, there is a need for gait retraining methods that can be 

easily integrated outside of a laboratory setting while providing positive clinical and 

biomechanical outcomes.    

Increasing step rate may be one method of gait retraining that could be integrated 

outside of a laboratory setting. Through the use of Global Positioning System (GPS) 

“smart” watches and portable mobile metronome applications, runners may be able to 

self-retrain and monitor their step rate without the need for close clinical supervision 

(328, 334, 405). Currently only three studies have investigated the effects of increasing 

step rate amongst runners with PFP (255, 267, 318). Neal et al (255) reported improved 

frontal plane hip and pelvis kinematics along with reductions in pain, but did not 

investigate whether improvements were maintained beyond the 6 week follow up 

period. Escuilier et al (318) reported gait retraining to be no more effective than 

education on load management, and dos Santos et al (267) reported minimal changes 

in pain following a two week retraining period. Furthermore, both Escuiler et al (318) 

and Dos Santos et al (267) did not report any change in frontal plane hip and pelvis 

kinematics following the retraining period. Therefore, questions remain regarding the 

clinical effectiveness of increasing step rate and whether step rate retraining results in 

long term kinematic adaptations amongst runners with PFP.  

 Aim and Objective 

The aim of this current study was to investigate whether a simple method of gait 

retraining can be used to improve biomechanics and improve clinical and functional 

outcomes amongst injured runners. In order to achieve this aim, the specific objective 

was to investigate whether a 10% increase in running step rate influences frontal plane 

kinematics of the hip and pelvis, as well as clinical outcomes in runners with PFP. It was 

hypothesised that a 10% increase in step rate will result in significant reductions in 

frontal plane hip and pelvis kinematics, improvements in clinical outcomes and function. 

A secondary objective was to investigate whether runners can self-administer a 10% 

increase in step rate using an audible metronome and a GPS smart watch and whether 

these changes can be maintained at short term and long term follow up. If runners can 
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self-administer retraining sessions this may prove to be a simple clinical intervention 

which can easily be integrated outside of the laboratory and clinical setting. It was 

hypothesised that runners will increase their step rate by 10% at short term follow up 

which will be maintained at long term follow up.   

7.2 Methods 

 Participants: 

Participants were recruited through advertisements at local sports injury clinics, running 

clubs and those attending a University based running clinic. Ethical approval for the 

study was obtained via the local ethics committee and all participants provided written 

informed consent prior to participation. This study was registered as a clinical trial 

(ClinicalTrials.gov, registration number NCT03067545) with enrolment for the trial 

between March 2017 and December 2018. An a priori sample size calculation was 

conducted using data from a previous gait retraining study identifying a 2.3⁰ reduction 

in contralateral pelvic drop post retraining with an effect size of 1.09 (70). Using G Power 

software, we calculated that 12 participants would be required to detect an effect size 

of 1.25 with a power of 0.8 and an adjusted critical alpha of .016.  This calculation was 

based on the use of paired tests to detect differences in peak contralateral pelvic drop 

which were similar to changes observed in previous studies following gait retraining 

(2.3⁰) (70) and also of similar magnitude to differences observed between injured and 

healthy runners in Chapter 5 (2.7⁰) (406).  

 Inclusion/ Exclusion criteria 

All participants were required to own a GPS smartwatch or running watch capable of 

monitoring step rate. Participants were included in the gait retraining intervention 

based on a three-stage assessment process. First, a subjective assessment and clinical 

examination were used to confirm the presence of PFP. Once the diagnosis of PFP was 

confirmed a 3D gait analysis was conducted to confirm the presence of hip and pelvis 

kinematics in a range identified to be associated with injury in Chapter 5. To ensure 

injury diagnosis met the consensus definition of a running related injury (335), 

participants had to report insidious onset of anterior knee pain during running lasting 
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for a minimum of 3 months causing a self-reported restriction to either their running 

volume or duration. Participants were required to be running a minimum of twice per 

week with their worst pain rated a minimum of 3 out of 10 on a numerical rating scale 

(NRS) for pain (0 = no pain, 10 = worst possible pain). Pain must also be reproduced by 

one or more of the additional activities of either squatting, kneeling, prolonged sitting, 

ascending or descending stairs. Participants were excluded if they reported having any 

known medical condition, prior musculoskeletal surgery, neurological impairment, 

diagnosed knee osteoarthritis, structural deformity of the knee, the onset knee pain to 

be caused by trauma or any other sporting activity, had ceased running or were receiving 

additional treatment outside of the study. To control for training errors as a potential 

underlying cause of injury, participants were also excluded if they reported the onset of 

symptoms to occur following an increase in their weekly training volume equal to, or 

greater than 30% (47).  

Following the subjective assessment, participants were invited to a clinical examination 

led by the lead clinician to confirm the diagnosis of PFP in accordance with previously 

published diagnostic criteria (Section 3.2.3) (336). Specifically, for inclusion to the study 

pain must be retropatella or peripatellar in nature and reproduced on squatting with the 

exclusion of any patella instability, ligamentous or meniscal injury (336). Pain on 

squatting has been shown to have a sensitivity of 91% and a negative predictive value 

of 74% suggesting this test to be the best available test for PFP (336, 338). A combination 

of additional, but non-essential, clinical tests was used to further increase the diagnostic 

accuracy of PFP (339). Tests included patella compression, patella apprehension, pain 

on palpation of the lateral patella facet and pain on resisted quadricep contraction in 

30⁰ knee flexion (338, 339). These tests are known to have low sensitivity and specificity 

when used in isolation and were not used as a sole diagnostic criterion for PFP (338, 

339).  

Once the diagnosis of PFP was confirmed, each participant underwent an initial 3D gait 

analysis as outlined below and completed clinical outcome measures to monitor pain 

and functional improvements. Clinical outcome measures included the Lower Extremity 

Functional Scale (LEFS) (Appendix H), previously validated for use in PFP (326), as well 
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as self-reported worst pain experienced in the past week using the NRS (0 = no pain, 10 

= worst possible pain). These outcome measures were selected to allow for comparison 

of the current findings, to those of previous gait retraining studies utilising LEFS (69, 70, 

267) and NRS for worst pain in the past week (255, 267, 318). Additional outcomes 

monitored were self-reported longest distance run pain free and total weekly running 

volume.    

 Kinematic data collection 

Kinematic data were collected from all participants with confirmed PFP while running 

on a treadmill (Sole Fitness, F63, USA) at 3.2m/s wearing their own running shoes in 

accordance with procedures outlined in Section 3.3. After a 5-minute warm up period, 

30 seconds of kinematic data were collected using a 12 camera Qualysis Oqus system 

(240Hz) (Gothenburg, Sweden). A total of nine anatomical segments were tracked 

following a previously published protocol (136, 201). Segments included the thorax, 

pelvis and bilateral thigh, shank and foot segments. Further details of the markers used 

to track each segment and the precise definition of the anatomical coordinate systems 

is provided in previous publications (136, 201, 235) and Chapter 3 Section 3.3.  

Raw kinematic data were low pass filtered at 10Hz. Intersegmental kinematics, along 

with the motions of the pelvis and thorax with respect to the laboratory system, were 

calculated using a six degrees of freedom model using the Visual 3D (C -Motion, USA) 

software. Gait events were defined using a kinematic approach where initial contact was 

defined as the first vertical acceleration peak of either the heel or metatarsal markers 

and toe off defined as the vertical jerk peak of the 2nd metatarsal marker (363). Gait 

events were subsequently used to segment each kinematic signal into a minimum of 10 

consecutive gait cycles. An ensemble average for each signal was created and selected 

kinematic parameters derived from the ensemble average curves. This latter processing 

was carried out using a custom Matlab script.  

Participants were invited to participate in the gait retraining study providing they 

demonstrated hip and/ or pelvis kinematics in a range similar to that identified within 

Chapter 5, as being associated with running injuries. Specifically, inclusion criteria for 
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hip and pelvis kinematics were defined as peak hip adduction (HADD) and/ or 

contralateral pelvic drop (CPD) angles equal to or greater than one standard deviation 

above the mean value of the control group reported in Chapter 5 (406) (qualifying 

criteria = CPD ≥5.6⁰, HADD ≥13.2⁰). This kinematic inclusion criteria was utilised based 

on findings of the literature review (Chapter 2, Section 2.4.7) suggesting clinical and 

biomechanical outcomes may be improved by specifically targeting interventions to 

those who demonstrate sub-optimal running kinematics at baseline. The kinematic 

parameters of CPD and HADD were selected based on their association with PFP 

reported in Chapter 5 (Section 5.3). Runners who did not meet the kinematic inclusion 

criteria were not included in the study and were referred to a health care professional 

for further management. Figure 27 provides an overview of participant inclusion and 

progression throughout the trial.   

Figure 27: CONSORT flow diagram outlining participant progression throughout the trial. 
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 Retraining Protocol 

All participants included within the retraining protocol completed a single 10-minute 

retraining session conducted immediately after the initial 3D gait analysis. A visual 

overview of gait retraining procedures is provided in Figure 28. During the retraining 

session participants were asked to run at the same speed with a 10% increase in their 

original step rate. Step rate was calculated as the number of foot contacts per minute. 

During the first 5 minutes of the retraining protocol, participants were instructed to 

match their footsteps to an audible metronome set to the new step rate. For the final 5 

minutes of the retraining session, the audible metronome was removed and participants 

were instructed to continue running at the increased step rate. Throughout this time, 

participants were monitored by the lead researcher to ensure they were able to 

maintain the higher step rate, and the metronome reintroduced if they failed to do so.  

Following the retraining session participants were provided with instructions for self-

administration and monitoring of the increased step rate (Figure 28). Specifically, during 

the first two weeks, participants were instructed to continue using a freely 

downloadable metronome app set to the new step rate. During the third- and fourth-

week participants were instructed to continue running without the use of the 

metronome but were instructed to self-monitor their cadence using their GPS watch. 

Participants were permitted to increase their running volume at any point in the 

retraining period providing any knee pain experienced was rated below 3/10 on an NRS 

scale.   

All participants were invited to follow up 3D gait analysis sessions at 4 weeks and 3 

months post initial assessment. This follow up period allowed us to investigate whether 

kinematic changes could be maintained across a time frame comparable to previous gait 

retraining studies (69). The follow up sessions were completed following the same 

kinematic testing procedures as visit one, recording the same clinical outcome 

measurements. Following the 4 week follow up assessment, participants were 

instructed to continue running without the use of the metronome. No restrictions to 

training parameters were provided, participants were instead instructed to increase 
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their training volume, paces and change surfaces as they saw fit, providing any pain 

experienced was rated lower than 3/10 NRS.
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Figure 28: Visual overview of gait retraining procedures and follow up timepoints. 
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 Data Analysis  

Several kinematic parameters were selected for data analysis. Kinematic parameters 

included peak contralateral pelvic drop, hip adduction, hip internal rotation and knee 

flexion angle. These parameters were selected based on their association to PFP 

reported in Chapter 5 and previous research highlighting associations with these 

parameters and PFP (58, 192, 404, 406). Peak angles at during stance were defined as 

the maximum joint angle between initial contact and toe off. Stride rate was also 

included within the analysis measured as steps per minute (spm), along with clinical 

outcome measures of worst pain experienced in the past week using the NRS, longest 

distance run pain free, total weekly running volume and LEFS score.  

7.2.5.1 Statistical Analysis    

One-way repeated measures ANOVA was used to assess for differences in kinematics 

parameters between initial assessment, 4 week follow up and 3 month follow up, with 

a critical alpha of <.05. When significant differences were observed, post hoc Bonferroni 

testing, adjusted critical alpha <.016, was used to identify differences between time-

points. Clinical outcomes of NRS and LEFS were analysed using Friedman test for non-

parametric data with post hoc Wilcoxon signed-rank test. Effect sizes were calculated 

for pairwise comparisons using Cohen’s D and interpreted as 0.2, 0.5 and 0.8 as small, 

medium, and large, respectively (376).  

Prior to the ANOVA, the assumption of sphericity was first assessed using Mauchly’s test. 

Only peak knee flexion violated the assumption of sphericity (χ2(2) = 9.2, p <.01). When 

the assumption of sphericity is not met the F-statistic is positively biased increasing the 

chance of type 1 error (375, 407). Therefore, to account for the loss of sphericity, peak 

knee flexion was analysed using the Greenhouse-Geisser correction. The Greenhouse-

Geisser correction was used instead of the Huynd-Feldt correction based on prior 

recommendations for its use when the estimate of sphericity produced is below .75 

(Greenhouse-Geisser = .62) (375). Bonferroni post hoc testing was used as prior studies 

have reported this to be the most robust statistical method for repeated measurements 

with small sample sizes and when the assumption of sphericity is violated (375, 408). 
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Alternative methods such as Tukey’s procedure have been reported to produce an 

inflated alpha level with multiple tests increasing the risk of type 2 error (375, 408).      

7.3 Results 

A total of 33 participants met the initial subjective inclusion criteria and were invited for 

a clinical examination (Figure 27). Following the clinical examination, a total of 18 were 

diagnosed as having PFP and invited to take part in the 3D gait analysis. Following the 

3D gait analysis, a total of 12 participants met the inclusion criteria and were enrolled 

onto the gait retraining study. Two participants dropped out of the study between the 

4 week and 3-month follow up points. The first subject failed to attend the 3-month 

follow up and did not respond to contact and the second developed a tibial stress 

fracture on the same limb and was unable to continue the study. Both participants were 

included in the final analysis using a last observation carried forward method (409) 

(Table 32).  

Table 32: Participant characteristics. Values are presented as mean & standard deviation 

Male/ 

Female 
Age (years) 

Body Mass 

(kg) 
Height (cm) 

Average weekly 

running volume (km) 

4/8 
39.9  

(6.5) 

61.0  

(6.5) 

170.3  

(7.0) 

29.0  

(8.1) 

 

 Kinematics 

One-way repeated measures ANOVA showed a significant effect of time for several 

kinematic parameters (Table 33). In particular, there were significant increases in step 

rate and reductions in peak CPD, HADD and knee flexion following the step rate 

intervention (Table 33, Figure 29 & Figure 30). Post hoc test revealed that step rate 

significantly increased by an average of 11.2% at 4 weeks (Mean Difference [MD], 

18.6spm; 95% Confidence Interval [CI], 11.9spm, 25.2spm) and 9.2% at 3-month (MD, 

15.1spm; 95% CI, 10.6spm, 19.6spm) when compared to baseline. There was a 

significant 3.1⁰ reduction in CPD (MD, 3.1⁰; 95% CI, 1.9⁰, 4.4⁰) (Figure 29) and 3.9⁰ 

reduction in HADD (MD, 3.9⁰; 95% CI, 2.0⁰, 6.0⁰) (Figure 30) at 4 week follow up, which 
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was also significant at 3-month when compared to baseline for both CPD (MD, 2.7⁰; 95% 

CI, 1.4⁰, 4.1⁰) and HADD (MD, 2.8⁰; 95% CI, 0.4⁰, 5.4⁰). Similarly, there was a significant 

4.1⁰ reduction in peak stance phase knee flexion at 4 weeks (MD, 4.1⁰; 95% CI, 0.1⁰, 8.2⁰) 

and 3-month (MD, 4.1⁰; 95% CI, 0.8⁰, 7.5⁰). No significant differences were observed 

between the 4 week and 3-month follow up time points for any of the kinematic 

parameters (Table 33).  
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Table 33: Mean [SD] kinematic parameters at initial assessment, 4 week and 3 month follow up. * indicates 

significant difference when compared to baseline at p <.016 following Bonferroni correction. HADD = peak hip 

adduction, HIR = peak hip internal rotation, CPD = peak contralateral pelvic drop, KFlx = peak knee flexion. Pairwise 

effect sizes are presented using Cohen’s D and interpreted as 0.2 = small, 0.5 = medium, 0.8 = large, IA = initial 

assessment. 

 IA 4 Week 3 Month P value 
Pairwise Effect sizes  

(Cohen’s D) 

Stride Rate 

(Steps per 

minute)  

(spm)* 

165.9 

(7.4) 

184.5 

(10.1)* 

181.0 

(7.8)* 
<.01* 

IA to 4 Week: 2.1 

IA to 3 month: 1.9 

4 week to 3 

month: 
0.4 

CPD (⁰)* 
7.5  

(1.8) 

4.3  

(2.5)* 

4.7  

(3.0)* 
<.01* 

IA to 4 Week: 1.4 

IA to 3 month: 1.1 

4 week to 3 

month: 
0.1 

HADD (⁰)* 
15.9  

(2.8) 

11.9 

(1.8)* 

13.1 

(3.2)* 
<.01* 

IA to 4 Week: 1.7 

IA to 3 month: 0.9 

4 week to 3 

month: 
0.4 

HIR (⁰) 
4.1  

(8.2) 
4.2 (9.4) 

4.4  

(7.9) 
.93 

IA to 4 Week: 0.0 

IA to 3 month: 0.0 

4 week to 3 

month: 
0.0 

KFlx (⁰)* 
33.7  

(5.3) 

29.6 

(3.2)* 

29.5 

(3.2)* 
<.01* 

IA to 4 Week: 0.9 

IA to 3 month: 0.9 

4 week to 3 

month: 
0.0 
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Figure 29: Ensemble group average curve for frontal plane pelvis kinematics across the stance phase. Solid line 
represents group mean, shaded area represents 1SD. X-axis = percentage of stance phase. Y-axis = frontal plane 

pelvis angle in degrees, +ve values indicate contralateral pelvis drop, -ve values indicate contralateral pelvis 
elevation. *indicates statistically significant between groups. 

 

 



 

206 | P a g e  
 

Figure 30: Ensemble group average curve for frontal plane hip kinematics across the stance phase. Solid line 
represents group mean, shaded area represents 1SD. X-axis = percentage of stance phase. Y-axis = frontal plane hip 

angle in degrees, +ve values indicate hip adduction, -ve values indicate hip abduction. *indicates statistically 
significant between groups. 

 

 Clinical and Functional Outcomes 

All clinical and functional outcomes demonstrated statistically significant 

improvements. Specifically, there was a significant reduction in pain scores on the NRS 

from an average of 6.2/10 at baseline to 1.0 and 0.3 at 4 weeks and 3-months 

respectively (χ2 = 21.38, p <.01) (Figure 31) which is above the minimal clinically 

important difference of 1.2 points (410). LEFS demonstrated a statistically significant 

improvement from 62.3 at baseline to 76.6 at 4 weeks and 79.7 at 3-months (χ2 = 22.29, 

p <.01) (Figure 31). When compared to baseline this was a 14.3 point and 17.4 point 

improvement at 4 weeks and 3-months respectively, which is above the minimal 

clinically important difference of 9 points (326). All participants demonstrated a 

significant increase in total weekly running volume (MD, 13.8km; 95% CI, 4.6km, 

22.9km) and longest distance run pain free (MD, 6.8km; 95% CI, 3.1km, 10.6km) from 

baseline values to 4 week and 3-month follow up (Table 34).  
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Table 34: Mean [SD] Functional outcome measures at initial assessment, 4 week and 3 month follow up. * indicated 
statistically significant difference when compared to baseline at p <.016. Pairwise effect sizes are presented using 

Cohen’s D and interpreted as 0.2 = small, 0.5 = medium, 0.8 = large, IA = initial assessment. 

 IA 4 Week 3 Month P value 
Pairwise Effect size 

(Cohen’s D) 

Total distance 

per week (km)* 

13.3 

(9.8) 

27.1* 

(11.3) 

28.3* 

(13.0) 
<.01 

IA to 4 Week: 

 
1.3 

IA to 3 month: 1.3 

4 week to 3 

month: 
0.1 

Longest Run 

Pain Free (km)* 

2.0 

(1.2) 

8.9* 

(4.4) 

11.3* 

(6.4) 
<.01 

IA to 4 Week: 2.1 

IA to 3 month: 2.0 

4 week to 3 

month: 
0.4 

 

      

Figure 31: Clinical outcome measures at initial assessment, 4 week and 3 month follow up. * indicated statistically 
significant difference when compared to baseline at p <.016. Error bars represent +/- 1 standard deviation. 
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7.4 Discussion 

The objective of this study was to investigate whether a 10% increase in running step 

rate influences frontal plane kinematics of the hip and pelvis, as well as clinical outcomes 

in runners with PFP. In support of our hypothesis, we observed significant reductions in 

frontal plane pelvis and hip kinematics, as well as significant reductions in pain, 

improvements in function and running at 4 weeks, which appeared to be maintained at 

3-month follow up.  

 Kinematic Response to Retraining 

Following the step rate increase, we observed a 3.1⁰ and 3.9⁰ reduction in CPD and hip 

adduction (Table 33, Figure 29 & Figure 30), which may offer a mechanical explanation 

for the improved clinical outcomes seen in this study. These changes are greater than 

that observed in previous step rate studies (255, 267), with this the first study to 

highlight kinematic adaptations are maintained at longer term follow up. In Chapter 5, 

we identified both of these parameters to be associated with PFP, with CPD identified 

as a kinematic parameter consistently observed across multiple different injuries. This 

is in agreement with prior studies citing contralateral pelvic drop and hip adduction as 

kinematic risk factors for PFP (57, 58, 185, 192, 406).  These kinematic patterns are 

thought to increase tissue loads per stride of a run, which when combined with an 

exposure to external training loads, may result in a cumulative tissue stress which 

exceeds tissue capacity leading to injury development.  

In relation to PFP, peak CPD and HADD may contribute to elevated tissue loads at the 

patellofemoral joint via several mechanisms. It is thought that contralateral pelvic drop 

will give rise to an increase in iliotibial band tension resulting in lateral displacement of 

the patella (178, 180), while hip adduction would cause the femur to shift medially under 

the patella (174). This would result in elevated contact pressure between the patella and 

the lateral facet leading to elevated joint stress and potential injury development (168). 

Therefore, it is possible that the observed reductions in CPD and HADD following an 

increase in step rate, could contribute to reduced lateral displacement of the patella and 

a corresponding reduction in patellofemoral joint stress.   



 

209 | P a g e  
 

Similarly, the reduction in peak stance phase knee flexion may also contribute to 

improvements in clinical outcomes. Peak stance phase knee flexion has been shown to 

influence patellofemoral joint reaction force, explaining up to 64% of the variance in 

peak patellofemoral joint load (51). Smaller knee flexion angles at mid stance will likely 

reduce the external joint forces as well as reduce the demand on the surrounding 

musculature (51). In the current study we observed a 4.1⁰ reduction in peak knee flexion 

(Table 33). Given the work of Lenhart et al (51) this magnitude of change is likely to 

contribute to reductions in peak patellofemoral joint force. These reductions, combined 

with the reductions in peak hip adduction and CPD, will likely lead to significant 

reductions in patellofemoral joint stress which may explain the observed improvements 

in clinical outcomes within the present study. However, it is important to note that not 

all participants demonstrated a reduction in peak knee flexion (Table 35, Figure 32). Out 

of 12 participants only 4 demonstrated a reduction in peak knee flexion angle greater 

than the minimal detectable change (MDC) of 5⁰ reported in Chapter 4 (Table 35). 

Conversely, 9 participants demonstrated reductions in CPD and 10 for peak HADD which 

exceeded the MDCs of 1.7⁰ and 1.8⁰ (Table 35). Therefore, it is possible that changes to 

peak knee flexion angle are unlikely to explain the clinical improvements observed 

across all participants.     

We suggest that the improved frontal plane hip and pelvis kinematics may be explained 

by alterations in neuromuscular activity of the hip. Willson et al (138) found that runners 

with PFP demonstrate significantly delayed onset of the gluteus medius, which had a 

moderate correlation with hip adduction excursion. It is hypothesised that delayed 

muscle activation of the gluteus medius during the stance phase of running would result 

in a loss of neuromuscular stiffness about the hip and pelvis leading to a loss of frontal 

plane stability (138). Increasing step rate by 10% has been shown to directly influence 

the preactivation of the gluteal muscles (411). Specifically, Chumanov et al (411) 

reported significantly increased gluteus medius and maximus muscle activity in late 

swing, just prior to initial foot contact following a 10% increase in step rate. Considering 

the role gluteus medius plays in frontal plane stability of the hip and pelvis, it is likely 

that the earlier onset of the gluteal muscles would result in increased neuromuscular 
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stability during the stance phase of gait. This would likely explain the mechanical 

improvements of reduced CPD and hip adduction observed in the present study.  

Reductions in peak knee flexion may also be explained by alterations in neuromuscular 

activity at the knee. Increasing step rate has been shown to result in greater 

preactivation of the hamstrings, vastus lateralis and rectus femoris during late swing 

(411). It is thought that these changes in neuromuscular coordination contribute to a 

more extended knee throughout the stance phase, reducing peak knee flexion angles 

(51, 411).      

In contrast to previous studies we did not identify differences in peak hip internal 

rotation following gait retraining. Neal et al (255) reported a 5.1⁰ reduction in peak hip 

internal rotation following a 10% increase in step rate, whereas in the present study we 

did not observe more than a 0.5⁰ change. This may be explained by our baseline 

inclusion criteria of increased hip adduction and/ or contralateral pelvic drop, rather 

than hip internal rotation. Participants within this study demonstrated 4.1⁰ of hip 

internal rotation at baseline, which is less than the 9.1⁰ reported in the study by Neal et 

al (255) and similar to the 4.4⁰ reported amongst the healthy runners in Chapter 5. 

Therefore, it is possible that participants in the present study did not demonstrate 

increased hip internal rotation angles at baseline and thus would be unlikely to 

demonstrate any change.   

 Magnitude of Change 

An interesting finding was the magnitude of clinical improvements made by participants. 

Specifically, participants reported their worst pain to be on average 1.0 out of 10 at 4 

week follow up and 0.3 out of 10 at 3 month follow up (Figure 31). This is greater than 

the minimum clinically important difference of 1.2 points (410) and greater than 

improvements seen in previous step rate studies, which have reported average NRS 

scores of 3.9 (267), 3.8 (318) and 2.9 out of 10 (255) post retraining. We also observed 

significant improvements in function with all runners reporting an increase in their 

weekly running volume and longest distance run pain free as early as 4 weeks (Table 34), 

as well as a 17.4 point LEFS improvement at 3 months, exceeding the minimum clinically 
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important difference of 9 points (326). This contrasts to previous step rate studies, with 

one study reporting participants to be running less than their pre-injury status at 20-

week follow up (318) and another study reporting less than a 9 point improvement on 

the LEFS (267).      

The reason for the magnitude of kinematic and clinical improvements in the present 

study compared to previous step rate studies may be due to the differences in inclusion 

criteria. In the present study we specifically targeted participants who demonstrated 

sub-optimal kinematics at baseline. We did this to account for the multifactorial 

aetiology of PFP and ensure the appropriate underlying injury driver was targeted 

through the gait intervention. Failure to consider alternative causes of injury would likely 

result in the inclusion of biomechanical non-responders within the retraining group. As 

such, these participants would be unlikely to demonstrate significant clinical 

improvements. Willy et al (69) and Noehren et al (70) are the only previous studies to 

use a similar inclusion criterion, with their results showing a similar magnitude of clinical 

improvement.  Therefore, we would suggest that future research should aim to establish 

the underlying pathological driver in order to appropriately target clinical interventions, 

and that this be mirrored in clinical practice.  

A secondary objective of this study was to investigate whether runners can self-

administer a 10% increase in step rate using an audible metronome and a GPS smart 

watch, and whether these changes can be maintained at short term and long term follow 

up. The results do support this hypothesis as on average, runners demonstrated an 

increase in step rate and improvement in hip and/or pelvis kinematics at 4 week follow 

up, which was maintained at 3 month follow up. At 4 week follow up there was a 3.1⁰ 

reduction in CPD and 3.9⁰ reduction in HADD which exceeded the minimal detectable 

change values of 1.7⁰ and 1.8⁰ reported in Chapter 4 (Table 23) and therefore, likely 

represents true intervention effects. Although there was a subtle change in peak CPD 

(0.4⁰) and HADD (1.2⁰) towards baseline values at 3 month follow up, the magnitude of 

the of the differences was typically small and did not exceed the MDC reported in 

Chapter 4 (Table 23). Therefore, we feel subtle differences between these time points 

are unlikely to be clinically important. However, we acknowledge that the small sample 
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size limited the statistical power to detect small differences between these time points. 

Future randomised control trials with larger participant numbers are now necessary to 

further validate our findings and confirm that kinematic changes are maintained over 

longer time periods. 

 Clinical Relevance 

In contrast to previous gait retraining studies we opted to allow runners to self-

administer and self-monitor their retraining using a metronome app and feedback from 

a GPS smart watch. This proved successful as all runners were able to maintain an 

increased cadence at 4 week and 3-month follow up. Furthermore, at 4 week follow up 

all participants reported they did not use the metronome beyond the first week and 

instead would self-monitor their cadence using their GPS watch. Previous studies have 

utilised a faded feedback design where feedback is gradually removed over 8 sessions 

across a 2 week period. Although faded feedback designs have proven clinically 

effective, they require close clinical supervision and are restricted to clinical and 

laboratory settings. The present study demonstrates that simple step rate retraining can 

be applied outside of the laboratory and with minimal clinical contact. Importantly, two 

dimensional measures of contralateral pelvic drop and hip adduction have been shown 

to be valid and reliable when compared to three dimensional measurements (389). 

Therefore, assessment of running kinematics and gait retraining could be integrated into 

clinical practice and a participant’s normal running routine.    

 Individual Step Rate Variability 

Interestingly, upon inspection of individual data there appears to be considerable 

variation between participants in their ability to attain the desired step rate (Table 35, 

Figure 32, Figure 33 & Figure 34). Although the group average increase was 11.2%, the 

variability between participants ranged between 5.1% and 18.1%, with only 2 

participants attaining the target 10% increase. This could be explained by the limited 

external feedback provided to participants through only a single retraining session. 

However, these findings are similar to that of Neal et al (255) who utilised a faded 

feedback design to increase step rate by 7.5% yet reported the attained step rate to 
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range between 2.3% and 11.1%. Therefore, the results from both studies highlight 

considerable variability in the ability of participants to attain the target step rate. It is 

possible that some runners may be more amenable to motor learning than others, 

consequently for some individuals it may be necessary to provide greater feedback 

during the retraining process in order to facilitate the acquisition of the desired step rate 

change.  

Despite the variability in the percentage increase in step rate, this did not appear to 

influence the magnitude of change in kinematics (Figure 32, Figure 33 & Figure 34). For 

example, despite only a 6.3% increasing in step rate, participant 5 (Table 35) 

demonstrated the greatest reduction in peak hip adduction of all participants with a 7.6⁰ 

reduction when compared to baseline (depicted in light green in Figure 34). Therefore, 

it is possible that achieving a 10% increase in step rate is not necessary for 

improvements in kinematic patterns. Instead the magnitude of kinematic change may 

be influenced by additional factors such as the baseline kinematic values or individual 

changes in muscle activation patterns (411). Future studies should therefore consider 

further investigating underpinning reasons for the magnitude of kinematic changes in 

response to step rate retraining.  
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Table 35: Individual participant response to step rate retraining at 4 week follow up assessment. CPD = contralateral 
pelvic drop, HADD = hip adduction, KFlx = knee flexion. 

Participant 
Baseline 

step rate 

Change in 

Stride 

Rate (%) 

Change in 

CPD (⁰) 

Change in 

HADD (⁰) 
KFlx (⁰) 

1 159 ↑ 5.7 ↓ 3.3 ↓ 4.7 ↓ 0.3 

2 161 ↑ 18.5 ↓ 1.0 ↓ 4.2 ↓ 5.4 

3 166 ↑ 10.9 ↓ 2.1 ↓ 2.7 ↑ 4.3 

4 172 ↑ 14.2 ↓ 3.8 ↓ 4.5 ↓ 3.0 

5 171 ↑ 6.3 ↓ 2.6 ↓ 7.6 ↓ 4.0 

6 158 ↑ 10.1 ↓ 1.4 ↓ 2.7 ↓ 1.5 

7 166 ↑ 15.1 ↓ 3.0 ↓ 3.2 ↓ 13.5 

8 161 ↑ 7.9 ↓ 3.9 ↓ 7.1 ↓ 11.6 

9 154 ↑ 18.1 ↓ 6.2 ↓ 6.5 ↓ 8.1 

10 173 ↑ 16.8 ↓ 4.6 ↓ 4.4 ↓ 3.0 

11 171 ↑ 5.4 ↓ 4.2 ↑ 0.7 ↓ 0.0 

12 178 ↑ 6.4 ↓ 1.3 ↓ 0.9 ↓ 3.0 
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Figure 32: Individual data plots for the observed change in peak Knee Flexion (⁰) and step rate at 4 week follow up. 
Small circles represent values at initial assessment, larger circles represent values at 4 week follow up. Greater the 

vertical slope of the line between circles represents the magnitude of change in knee flexion angle. Horizontal 
distance of the line represents magnitude of change in step rate. Colours represent the individual participant data 

and are consistent throughout Figures 32, 33 and 24.  

 

Figure 33: Individual data plots for the observed change in peak Contralateral Pelvic Drop (⁰) and step rate at 4 week 
follow up. Small circles represent values at initial assessment, larger circles represent values at 4 week follow up. 

Greater the vertical slope of the line between circles represents the magnitude of change in contralateral pelvic drop 
angle. Horizontal distance of the line represents magnitude of change in step rate. Colours represent the individual 

participant data and are consistent throughout Figures 32, 33 and 24. 
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Figure 34: Individual data plots for the observed change in peak Hip Adduction (⁰) and step rate at 4 week follow up. 
Small circles represent values at initial assessment, larger circles represent values at 4 week follow up. Greater the 

vertical slope of the line between circles represents the magnitude of change in hip adduction angle. Horizontal 
distance of the line represents magnitude of change in step rate. Colours represent the individual participant data 

and are consistent throughout Figures 32, 33 and 24. 

 

 Limitations 

One limitation of the present study is the lack of a control group making it difficult to 

ascertain whether the observed improvements in clinical symptoms are true 

intervention effects. Without a control group it is possible that symptoms may improve 

for reasons unrelated to the intervention such as regression to the mean or the natural 

recovery process of an injury (412). However, in order to account for this we recruited 

participants who had experienced symptoms for greater than 3 months in duration, 

which has been reported to be predictive of poor prognosis at long term follow up (413) 

(414). Therefore, we feel it is unlikely that participants would have experienced the 

magnitude of symptom improvement without clinical intervention. However, we 

acknowledge that without further randomised control trials we cannot rule out the 

possibility of confirmation bias within the interpretation of the present findings.    

A second limitation is the possibility that the step rate intervention may have influenced 

rehabilitation outcomes via mechanisms not accounted for within this study. In the 
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present study we focused upon biomechanical factors influencing recovery. However, 

rehabilitation outcomes are also known to be influenced by a variety of psychological, 

social and behavioural factors (Figure 35) (78, 79). Psychological factors such as an 

external locus of control, fear avoidance of pain associated with loading activities and 

negative perceptions towards ongoing pain have been linked to negative clinical 

outcomes and the persistence of pain (78, 79, 415, 416). It is possible that the step rate 

intervention provided, may have positively impacted a number of these factors (Figure 

35). For example, through instructing participants to self-administer retraining sessions 

and self-progress their training volume, this may have facilitated positive psychological 

outcomes, such as an internal locus of control, active coping and improved self-efficacy. 

This may have, in turn, led to positive behavioural responses such as adherence to 

exercise and graded progression of training loads and reintegration with social peer 

groups, which may subsequently lead to positive biological and cognitive processes 

influencing the clinical and functional outcomes observed. Therefore, although the step 

rate intervention appears clinically effective, the intervention effects may extend 

beyond those that are biomechanical which should be acknowledged in clinical practise.  
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Figure 35: Conceptual diagram of the potential biopsychosocial influences to rehabilitation outcomes adapted from 
Brewer (78).  

Orange boxes represent factors considered within the present study. Blue boxes represent additional biopsychosocial 
factors which may have influenced the rehabilitation outcomes observed. Arrows between boxes represent the 

interaction effects between multiple different factors. 

 

  

As the lead researcher collected all patient reported outcome measures, it is possible 

this may have indirectly influenced participant reporting on subjective questionnaires 

and pain scales (412). The direct interaction between participant and researcher may 

have inadvertently led to the subjective reporting, or inflation, of treatment success 

amongst participants. This could have been influenced by positive interactions and a 

subconscious “desire to please” or conform to the perceived expectations of the 

researcher (412). Therefore, future intervention studies should consider utilising online 

feedback methods conducted after all testing procedures in order to limit potential bias 

introduced through the interaction between participants and the researcher.   
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Finally, it is important to note that one participant dropped out of the intervention after 

suffering a tibial stress fracture. This participant reported that injury onset occurred 

following a sudden increase in training volume in preparation for a half marathon. As 

we did not control participant progression of training volume, it is possible that the 

injury could be the result of training behaviours rather than a response to the 

intervention. As such, we would recommend that future clinical interventions provide 

participants with specific advice on the safe progression of running volume in order to 

reduce the risk of further injury. 

7.5 Summary and Implications 

The results of this study highlight that a 10% increase in step rate improves running 

kinematics, clinical and functional outcomes at 4 weeks, which are maintained at 3 

months amongst runners with PFP. Targeting kinematic parameters associated with 

running related injuries may reduce tissue loads per stride, reducing the cumulative 

tissue loads applied to injured structures and appears to help improve clinical and 

functional outcomes amongst runners.  Therefore, amongst injured runners step rate 

retraining appears to be a clinically effective intervention in the rehabilitation of PFP and 

can easily be integrated into clinical practice. Considering similar kinematics were 

observed across multiple different running injuries (Chapter 5), future studies should 

consider investigating the effectiveness of gait retraining interventions targeted to 

additional running related injuries.    
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 Chapter 8: Discussion 

Running biomechanics are often cited as a risk factor for running related injuries. It is 

thought that certain biomechanical parameters may increase the load applied to the 

musculoskeletal system during each stride of a run. When combined with an exposure 

to external training load, this will ultimately influence the cumulative tissue load 

encountered across a run or training period. If the cumulative tissue load exceeds tissue 

capacity this may result in injury development. In such instances, interventions which 

modify running biomechanics, could reduce tissue load per foot contact and therefore 

the cumulative tissue load across a run, assisting in the rehabilitation of injured runners. 

This process was outlined within the introduction Section using Figure 2 as an illustrative 

example (reprinted here as Figure 36) which motivated the overarching aim of this 

thesis. This aim was to identify biomechanical characteristics associated with common 

running injuries, explore whether training load exposure influences running kinematics 

and, finally, investigate whether gait retraining can be used to improve biomechanics, 

clinical and functional outcomes amongst injured runners. In order to achieve this aim, 

this thesis first conducted a literature review to identify kinematic and kinematic 

parameters associated with common running injuries. 
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Figure 36: Adapted stress frequency curve from Hreljac & Ferber (1). The Figure is used as a conceptual diagram 
illustrating the influence of kinematics upon tissue load, how the interaction with external training loads may 

influence injury development and the role of gait retraining.  

 

8.1 Biomechanical characteristics associated with common 

running injuries 

Within Chapter 2, the literature review identified limited evidence to support an 

association between kinetic parameters and common running related injuries (Table 

17). Of the available evidence it appears that only tibial stress fractures demonstrate a 

consistent association with the kinetic parameter of vertical loading rate, with a lack of 

evidence identified for an association between kinetic patterns and the common 

running injuries of PFP, ITBS and AT (Table 17). Although two prospective studies have 

reported greater horizontal breaking forces and vertical loading rates to be linked to 

future injury development (53, 60), the number of pathology specific cases identified 

within these studies are relatively small, with limited additional studies supporting an 

association between kinetic patterns and running injuries of PFP, AT and ITBS. This is an 

interesting finding considering a large body of research has focused on gait interventions 

specifically targeted toward reducing of vertical loading rate through transitioning to a 

forefoot strike running pattern, or using real time feedback of impact forces (399, 417-
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419). While such interventions may be beneficial for runners at risk of, or with a history 

of tibial stress fractures, findings from the current literature review suggest such 

methods may not target mechanical patterns underlying other common running 

injuries, such AT, ITBS and PFP.  

In contrast to kinetic patterns, several similar kinematic parameters were found to be 

associated with multiple different running related injuries (Table 18). For example, peak 

hip adduction and internal rotation were found to be associated with MTSS, PFP and 

ITBS in several prospective and retrospective studies. Suggesting that there may be 

similar kinematic parameters that could increase the load applied to multiple different 

musculoskeletal structures during running and could represent global contributors to 

common running related injuries. Identification of such parameters could be of clinical 

value as they could ultimately be targeted through gait interventions. Subsequently such 

parameters could be targeted within rehabilitation and injury prevention programs, 

benefiting multiple different running injuries rather than being limited to single 

pathologies. 

These findings motivated the initial objectives set out in Chapters 4 and 5. First, in order 

to aid the interpretation of between-group and post intervention kinematic differences, 

it was deemed necessary to establish the repeatability of testing procedures. Therefore, 

the objective of Chapter 4 was to investigate the between day repeatability, standard 

error of measurement and minimal detectable change of discrete kinematic parameters 

of the trunk, pelvis and lower limbs during treadmill running. After investigating this 

repeatability, the objective of Chapter 5 was to investigate whether similar kinematic 

parameters are associated with multiple different common running related injuries. The 

impact of achieving these two objectives was to meet the first part of the overarching 

aim, specifically to identify biomechanical characteristics associated with common 

running injuries (Figure 37).  
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Figure 37: Using the adapted stress frequency curve from Hreljac & Ferber (1), the Figure provides an illustration of 
the knowledge gaps which relevant chapters of the thesis aimed to address. Orange boxes represent the aims of the 

specific chapters and the specific knowledge gap addressed through fulfilling these aims. 

 

 

8.2 The repeatability of kinematic measurements.  

In agreement with several previous studies (199, 253), the repeatability study found 

peak transverse plane joint angles of the hip and knee, as well as peak rearfoot eversion 

to demonstrate the greatest measurement error of all kinematic parameters. The large 

measurement errors are likely to have implications for the interpretation of between 

group differences and the effect of clinical interventions. Current theoretical concepts 

suggest that rearfoot eversion and hip internal rotation may play a role in common 

injuries such as AT, PFP, ITBS and MTSS (50, 94, 118, 145). However, the literature review 

identified limited and conflicting evidence to support this association (Table 18). One 

possibility is that the measurement errors associated with these parameters could 

explain the conflicting findings in the literature.  
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Previous authors have argued that, for biomechanical measurement systems to be 

useful in clinical practise, they must be able to produce stable, repeatable results and 

accurately represent the movement of interest (350, 420). The results from the present 

work and that of previous studies would suggest that measurements of hip internal 

rotation and rearfoot eversion do not meet these criteria. In Chapter 4, peak hip internal 

rotation and rearfoot eversion were found to demonstrate SEMs of 3.2⁰ and 2.3⁰ which 

represents approximately 54% and 71% of the total peak values. Measurement errors 

of such magnitude suggest a high level of noise is present within these data. 

Consequently, this may limit the ability to evaluate the effect of clinical interventions 

and reduce statistical power to detect small, potentially meaningful between-group 

differences. Further studies have also questioned the validity of transverse plane 

measurements of the hip using skin mounted markers and rearfoot kinematics using 

shoe mounted markers, suggesting these measurement techniques do not accurately 

represent the underlying skeletal movement (131, 202). Therefore, even if theoretical 

concepts and modelling studies appear to provide a plausible link between these 

parameters and mechanisms of tissue stress, the limited repeatability, large 

measurement errors and questionable validity associated with these measurements, 

may limit the ability to accurately identify associations between the two.     

In contrast to transverse plane kinematics, frontal and sagittal plane kinematics were 

found to demonstrate good to excellent repeatability with low SEMs and MDCs. 

Interestingly the SEMs and MDCs are similar to studies investigating the repeatability of 

discrete kinematic parameters utilising 2D measurements. Using 2D measurements, 

Dingenen et al (392) reported an SEM of 1⁰ and MDCs of 2.7⁰ and 2.8⁰ for peak CPD and 

HADD, whereas using 3D measurements in Chapter 4, the SEM for peak CPD and hip 

adduction was 0.6⁰ and 0.7⁰ with MDCs of 1.7⁰ and 1.8⁰ respectively. This offers 

potential clinical implications, as the comparable reliability of 2D and 3D systems means 

the 2D assessment of running kinematics could be integrated into clinical practice 

without the need for expensive 3D measurement systems.  

Although utilising 2D measures offers a practical method for assessment of running 

kinematics, there are several barriers limiting the wide-spread clinical application of 
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assessment methods. Firstly, limited evidence has investigated the validity and accuracy 

of 2D measurements when compared to 3D measurements. Second, whether 

comparable results can be obtained from multiple testing sites is also uncertain (259). 

In order to make clinical decisions regarding what constitutes sub-optimal or optimal 

kinematics, it is necessary to compare individual participant data to a reference 

“normative” dataset. Therefore, if 2D measurements demonstrate large between site 

variation in results and lack validity when compared to 3D measurements, then practical 

application of testing could lead to inaccurate and misleading conclusions. 

Consequently, further studies are now required to compare the validity of 2D 

measurements of kinematic measurements to those obtained from 3D systems and 

whether repeatable measures can be obtained across multiple testing locations. In 

doing so, this could allow for clinical integration of 2D assessment measures using 

“normative” reference datasets published from large scale studies.    

8.3 Kinematic characteristics associated with common running 

injuries 

Having established the repeatability of kinematic testing procedures, Chapter 5 sought 

to investigate whether similar kinematics are associated with multiple different running 

related injuries. Accepting the experimental hypothesis, Chapter 5 found peak 

contralateral pelvic drop (CPD) and forward trunk lean, as well as a more extended knee 

and dorsiflexed ankle at initial contact to be associated with multiple common running 

injuries. Whereas previous studies have focused upon kinematic patterns associated 

with specific injuries, the present study highlights that certain kinematic parameters 

may increase tissue loads placed upon multiple different musculoskeletal structures.  

Interestingly, peak CPD was identified to be the kinematic parameter most strongly 

associated with common running injuries. This parameter appeared to be consistent 

across all injury subgroups and did not appear to be influenced by gender. This is in 

contrast to other parameters such as peak hip adduction, which although associated 

with multiple different running injuries (Chapter 2, Table 18), has been suggested to be 

more strongly associated with the female sex (58, 194, 238). Considering the consistency 
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of peak CPD across both genders and across the injury subgroups, this parameter may 

represent a global kinematic contributor to running related injuries. The novel 

contribution of this finding is that this information could be used to inform injury 

prevention and rehabilitation programs targeted to a range of common running injuries 

across both genders, rather than being limited to specific subgroups.  

An interesting question raised by these findings is why certain tissues become injured 

rather than others. This perhaps reflects the multifactorial nature of running related 

injuries. Although kinematics may increase tissue loads throughout the musculoskeletal 

system, whether injury occurs, and the specific tissues which become injured, is likely to 

depend upon whether the tissue load encountered exceeds the capacity for each tissue 

to tolerate load. As outlined within the introduction, tissue-specific load capacity is 

influenced by a variety of biological, psychological and sociocultural factors, which 

influence both the individual and tissue-specific response to biomechanical loading. For 

example, anatomical factors such as bimalleolar width and calf muscle girth are thought 

to influence the capacity of the tibia to withstand bending loads (421), while factors such 

as trochlea dysplasia and patella alta are thought to increase the vulnerability of the 

patella to lateral displacement (422). Additionally, psychological stressors may impair 

tissue recovery between loading bouts or influence the fatigue status of an individual 

prior to subsequent loading bouts (32, 40). Factors such as these may all influence the 

load capacity of specific tissues, which when combined with sub-optimal kinematic 

patterns, may increase an individual’s vulnerability to a site-specific injury. Therefore, 

from both a clinical and a research perspective, it is important to acknowledge the 

potential interaction between multiple different factors and how this may influence an 

individual’s vulnerability to running related injuries.  

Although the results in this thesis have identified similar kinematic parameters to be 

associated with different running injuries, there is also likely to be subgroups of runners 

who demonstrate kinematic patterns beyond those identified in the present study. 

Kinematic subgroups have previously been reported within specific pathologies such as 

patellofemoral pain (192 2011) and ITBS (239). For example, amongst runners with 

patellofemoral pain, Dierks et al (189) reported three distinct kinematic subgroups; one 
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group with increased knee valgus, one with increased hip abduction and one with 

increased hip internal rotation and knee adduction. Therefore, while the present study 

identified kinematic characteristics amongst a heterogenous population of injured 

runners, homogenous subgroups with different kinematic characteristics are also likely 

to exist. Subsequently for these subgroups, it may be necessary for individually tailored 

interventions which target the specific kinematic patterns. However, knowledge gained 

through this thesis, in which kinematic parameters have been associated with multiple 

injuries irrespective of gender, provides a clear foundation to develop and rigorously 

test injury prevention interventions which have the potential to offer benefit across 

multiple subgroups of runners.    

A limitation of the present findings is the retrospective study design, which means causal 

relationships between the observed kinematics and injury cannot be established. 

Currently only a limited number of prospective studies have been conducted 

investigating kinematic contributors to future injury development (54, 57, 59, 149, 151). 

Without further prospective studies it is possible that the observed kinematic patterns 

could represent biomechanical adaptions to injury, rather than the cause of injury itself. 

However, inconsistent evidence currently exists to suggest kinematics adapt in response 

to injury. Although Fox et al (191) reported differences in kinematic patterns between 

runners with acute and chronic PFP, Noehren et al (193) found that runners with PFP did 

not alter their hip kinematics in response to pain. Additionally, findings from 

retrospective and prospective studies of runners with ITBS have reported similar 

kinematic patterns. In a retrospective study by Ferber et al, (26) female runners with 

ITBS were found to have increased hip adduction and knee internal rotation when 

compared to controls, which is a similar finding to Noehren’s (59) prospective study of 

female runners who developed ITBS. Considering the mechanistic link between 

kinematics and tissue stress (Chapter 2, Section 2.1; Chapter 5, Section 5.4), it is possible 

that kinematic patterns could have been present prior to injury development. However 

further prospective studies which include kinematic data collection following injury 

development are now required to investigate whether kinematic patterns, such as CPD, 

are indeed the cause of injury, or adaptations to injury.  
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Although the kinematic parameter of peak CPD was identified to be associated with 

multiple common running injuries, it is important to note that running injury 

development is more complex than simply possessing an injury risk factor. Instead, 

injury development is the result of a complex interaction between multiple risk factors, 

exposures and the psychological, biological and behavioural response of the individual. 

Although identifying singular factors associated with injury may facilitate the 

development of targeted interventions for effective injury prevention strategies, there 

needs to be a greater understanding of the interactions between risk factors and 

exposures which ultimately influence injury aetiology (19, 28, 32, 396).  

One such interaction may exist between running kinematics and external training load 

exposure. As proposed within the introduction, running kinematics are thought to 

increase tissue load per foot contact of a run. However, without an exposure to external 

training load, the cumulative tissue load encountered may be insufficient to influence 

injury development (28, 396). Despite the theoretical interaction between kinematics 

and training load exposure, Chapter 2 identified limited evidence exploring whether an 

interaction between training load exposure and kinematics exists. Subsequently, 

Chapter 6 aimed to explore this gap in the evidence, by investigating whether kinematic 

parameters associated with common running injuries are associated with weekly 

training load exposure. 

Figure 38 highlights the potential knowledge gap which Chapter 6 aimed to explore. 

Through understanding whether kinematic differences exist between injury-free high-

mileage and low-mileage runners this may provide insight into whether kinematics 

adaptations, if any, are required to attain regular high-volume training loads while 

remaining injury free. This may also provide an initial theoretical understanding as to 

why some runners become injured as training volume increases, while others do not.  
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Figure 38: Using the adapted stress frequency curve from Hreljac & Ferber (1), the Figure provides an illustration of 
the knowledge gaps which relevant chapters of the thesis aimed to address. Blue boxes represent the aims achieved 

and the contribution to knowledge provided. Orange boxes represent the aims of the specific chapters and the 
specific knowledge gap targeted through fulfilling these aims.

 

 

8.4 The influence of external training volume on running 

kinematics. 

The main finding of Chapter 6 was that the prevalence of “high risk” CPD angles differed 

amongst populations of injury-free high-mileage and low-mileage runners. Specifically, 

there was a significantly lower prevalence of “high risk” CPD angles amongst injury-free 
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high-mileage runners. Although the cross-sectional nature of this study means that 

causal relationships cannot be established, we suggest these findings provide 

preliminary evidence for the existence of a complex interaction between kinematics and 

training load exposure. This idea supports recent theoretical running injury frameworks 

which suggest injury causation extends beyond simply possessing a risk factor for injury 

(28, 33, 396).  

One possibility is that the external training loads attainable by runners, could be 

influenced by their baseline running kinematics. This may explain the lower prevalence 

of “high-risk” running kinematics amongst injury-free high-mileage runners. This is 

because the combined tissue loads imposed through sub-optimal kinematics and 

frequency of load exposure could result in a cumulative tissue load that exceeds tissue 

capacity. Subsequently in order to attain regular high mileage running, and remain injury 

free, it may be necessary for runners to either adapt aspects of their gait, or inherently 

possess kinematic features that minimise the load placed upon the musculoskeletal 

system.    

The present findings may have implications for load monitoring amongst runners. 

According to a recent IOC consensus statement, the accurate monitoring of load 

exposure is essential for the successful management and prevention of injury in sport 

(32). However, at present there is conflicting evidence as to whether training load errors 

contribute to running related injuries (23, 42), which subsequently limits practical 

recommendations for the safe progression of training volume. One explanation is that 

current training load measurements may not accurately reflect the cumulative tissue 

load encountered during running.  

Amongst the running literature, current methods of load monitoring predominantly 

utilise external metrics which quantify the training “dose”, such as volume or duration 

of running. Although these metrics provide a measure of the external load application, 

they do not consider factors influencing tissue specific load per stride, such as running 

kinematic patterns. Considering kinematics influence tissue load per stride and the 

external training “dose” influences the frequency of load application, the interaction 
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between the two may influence the cumulative tissue load encountered. Consequently, 

future studies should consider methods of training load monitoring which more 

accurately reflect the cumulative load encountered during running.  

One area for future research would be to consider kinematics as an effect measure-

modifier, where the effect of training load upon injury incidence is modified by the 

kinematic features an individual possesses. Stratifying groups of runners according to 

their baseline running kinematics would permit the investigation as to whether the 

maximal training loads attainable by runners, are influenced by their baseline 

kinematics. Alternatively, with the ongoing development of wearable technology, it may 

be possible for future studies to monitor in-field training loads which also consider the 

tissue loads imposed through running kinematics. By utilising such methods, this may 

help identify specific training-load thresholds in which kinematic patterns will begin to 

become an important influence on injury development. Through prospective study 

designs which incorporate graded load exposure, this could also allow for the 

investigation of whether runners do indeed adapt aspects of their gait. The benefit of 

such knowledge is that it would assist in the development of practical guidelines for 

training recommendations or emphasise the need for preventative gait retraining 

programs to aid the safe progression of running volume.     

It is important to note that simply monitoring external training volume and running 

kinematics does not capture the true training stress encountered by the individual. 

Kinematics and training volume represent just two singular factors influencing tissue 

loads, and therefore does not take into account additional biological, psychological and 

environmental factors which influence load application and the stress response of the 

individual. Amongst other sports, the use of internal training load metrics has been 

proposed as a method reflecting the physiological response to load, capturing both 

biological and psychological contributors to load application. Using session rating of 

perceived exertion, studies have reported strong associations with future injury 

development (270). However, at present, this has not been incorporated within running 

populations. Therefore, future studies should consider methods which attempt to 

capture the interactions between factors influencing external tissue load application 
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and the internal tissue stress, while still accounting for the effect of individual 

components. One approach could be to utilise internal training load metrics while 

stratifying runners according to their baseline kinematics, as this may provide a more 

accurate reflection of the training stress encountered by runners; representing the 

physiological stress for a given external load exposure, while acknowledging the 

biomechanical contributions to load application.  
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Figure 39: Using the adapted stress frequency curve from Hreljac & Ferber (1), the Figure provides an illustration of 
the knowledge gaps which relevant chapters of the thesis aimed to address. Blue boxes represent the aims achieved 

and the contribution to knowledge provided. Orange boxes represent the aims of the specific chapters and the 
specific knowledge gap targeted through fulfilling these aims 

 

 



 

234 | P a g e  
 

8.5 Gait retraining: targeting running kinematics in injured 

populations.  

Having identified kinematic parameters associated with multiple different running 

related injuries (Chapter 5), and investigating their association with training load 

exposure (Chapter 6), Chapter 7 sought to investigate whether gait retraining can be 

used to improve biomechanics, clinical and functional outcomes amongst injured 

runners with sub-optimal kinematics at baseline (Figure 39). The impact of achieving this 

aim, was to provide preliminary evidence for the clinical effectiveness of a simple 

method of gait retraining amongst runners with PFP which can be easily integrated into 

clinical practise. Subsequently, amongst runners who possess kinematic patterns which 

increase tissue loading and have reached a cumulative tissue load which exceeds tissue 

capacity, gait interventions which target these parameters may serve to reduce tissue 

load, allowing runners to function within their limits of tissue capacity (Figure 39).  

Using a population of runners with PFP, Chapter 7 found a 10% increase in step rate to 

result in significantly reduced peak contralateral pelvic drop and hip adduction. This 

coincided with significantly reduced worst pain experienced in the last week as well as 

improvements in weekly running volume and longest distance run pain free. These 

findings achieve the final overarching aim of this thesis, which was to investigate 

whether gait retraining can be used to effectively improve biomechanics, clinical and 

functional outcomes amongst injured runners. Considering that kinematic patterns may 

influence tissue load per foot contact of a run, gait retraining interventions which 

successfully target kinematic patterns associated with injury, could reduce tissue load, 

offering a potential mechanical explanation for the observed improvements in clinical 

outcomes.  

In contrast to previous step rate interventions, we targeted the gait retraining to injured 

runners who demonstrate sub-optimal kinematic patterns at baseline. Recent expert 

review articles have recommended tailoring interventions to the individual patients’ 

deficits in order to optimise clinical outcomes in PFP (423, 424). Despite this 

recommendation, previous step rate intervention studies have not utilised such an 
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inclusion criterion, instead more broadly including participants with patellofemoral pain 

(255, 267, 318). Consequently, in many previous studies participants continued to report 

their worst pain experience in the last week to be 3 out of 10 or greater using the NRS. 

In contrast, participants within the present study reported an average worst pain of 0.3 

out of 10. By recruiting only injured participants who demonstrated kinematics in a 

region similar to those associated with injury in Chapter 5, we feel this may have reduced 

the potential for the inclusion of biomechanical non-responders which may have 

occurred within other studies. This supports the recommendation, proposed by review 

articles, that interventions should be tailored to patient’s deficits (423, 424).  

The observed improvements in kinematics and clinical outcomes also coincided with an 

increase in weekly training exposure, with participants on average returning to their pre-

injury weekly training volume (pre-injury: 29.03km, post retraining: 28.33km). Previous 

studies have reported that targeting running kinematics through gait retraining may 

serve to reduce tissue load per stride and ultimately the cumulative load across a given 

run. For example, following a 10% reduction in stride length, Willson et al (425) reported 

a 17% reduction in peak patellofemoral joint reaction force per stride and a 20% 

reduction per kilometre. In the context of the present findings, the reductions in peak 

CPD and hip adduction, may have served to reduce patellofemoral load per stride and 

ultimately the cumulative patellofemoral load per run. Subsequently by reducing 

cumulative tissue load, this may allow runners to increase training volume while 

functioning within the limits of their tissue capacity (Figure 39).  

These findings, along with the findings of the thesis, may offer implications for 

rehabilitation and injury prevention strategies targeted to multiple different running 

injuries. Within Chapter 5, similar kinematic parameters were observed across multiple 

different running related injuries. These parameters included peak CPD, increased trunk 

forward lean and an extended knee and dorsiflexed ankle at initial contact. Apart from 

forward trunk lean, these parameters have all been reported to be successfully targeted 

through increasing step rate (Chapter 2, Table 20). The results from the present study 

highlight that targeting kinematic parameters through gait retraining, may serve to 

reduce tissue load per foot contact resulting in positive clinical outcomes. Although 
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these results are limited to runners with PFP, the similarities in mechanics associated 

with different injuries suggests that gait retraining could prove beneficial across multiple 

different running injuries. Therefore, future studies should consider investigating the 

clinical effectiveness of gait retraining interventions in additional running related 

injuries.  

The identification of kinematic parameters associated with multiple different running 

injuries (Chapter 5) and the successful clinical outcomes utilising gait retraining 

interventions (Chapter 7), could subsequently be used to inform injury prevention 

interventions targeted towards multiple different running related injuries. Emerging 

evidence is suggesting that gait retraining interventions, delivered as part of injury 

prevention programs, may successfully reduce future injury incidence (399). In a 

randomised control trial with a one year follow up, Chan et al (399) reported a 

significantly lower injury incidence amongst runners who received a baseline gait 

retraining intervention targeted at impact loading rates. However, this intervention 

encouraged runners to land with a forefoot strike pattern which is known to increase 

lower limb load at the ankle. Consequently, although a lower overall injury rate was 

observed in the retraining group, there was an increase in calf and Achilles injuries. In 

contrast, limited adverse effects have been reported when increasing running step rate 

(399), therefore it is possible that step rate retraining may prove a clinically beneficial 

intervention in future preventative studies.  

A novel finding of Chapter 7 was that runners could self-administer retraining sessions 

outside of a laboratory and clinical setting. Many current gait retraining interventions 

are restricted to clinical or laboratory settings, using faded feedback designs or real time 

feedback procedures (69, 70, 255, 399). Consequently, the time and equipment 

requirements may not be feasible in many clinical environments which may limit the 

clinical integration of gait retraining. The present findings provide preliminary evidence 

for a simple intervention that can be easily integrated into clinical settings and a runner’s 

routine. However, an ongoing limitation remains the ability to identify patients who may 

benefit from gait retraining interventions and identify biomechanical changes without 

the use of 3D kinematic measurement systems. Therefore, further work is now required 
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to develop kinematic assessment methods that can be easily integrated into clinical 

practice, which produce valid and reliable results when compared to 3D methods. In 

doing so, this would potentially facilitate the more widespread use of gait analysis 

assessments and gait retraining interventions in clinical environments. 

Although the step rate intervention is proposed to address mechanical deficits, without 

a control group we cannot rule out potential treatment effects extending beyond those 

that are purely biomechanical. Psychological factors such as increased anxiety, 

depression and fear of movement or reinjury are known to contribute to the persistence 

of PFP symptoms and have negative impact upon return to sport outcomes (79, 416, 

423, 426). It is possible that the nature of the intervention provided may have indirectly 

addressed possible psychological barriers to recovery. Through instructing participants 

to self-administer retraining sessions and self-progress their training volume, this may 

have facilitated an internal locus of control, promoted active coping strategies and 

improved self-efficacy. This may have subsequently led to behavioural responses such 

as the graded progression of training loads and reintegration with social peer groups, 

leading to positive biological and cognitive processes influencing the clinical and 

functional outcomes observed. These factors may have ultimately influenced clinical 

outcomes observed. To provide further insight into the factors, randomised control trials 

are necessary to establish underlying mechanisms facilitating clinical improvements. We 

would recommend that future studies also consider investigating the potential 

psychological impact of gait retraining interventions. Utilising psychological scales at 

baseline, such as fear avoidance beliefs questionnaire or the Tampa scale for 

kinesiophobia, it would be possible to quantify the psychological influence of gait 

retraining interventions upon patient outcomes (423, 427).  

8.6 Conclusion 

The overarching aim of this thesis was to identify biomechanical characteristics 

associated with common running injuries, explore whether training load exposure 

influences running kinematics and finally, investigate whether gait retraining can be 

used to improve biomechanics, clinical and functional outcomes amongst injured 
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runners. The findings suggest that similar kinematic parameters may underlying multiple 

different running related injuries, increasing the load placed upon the musculoskeletal 

system during each stride of a run. Interestingly, these kinematic patterns are less 

frequently observed amongst injury-free high mileage runners. This suggests an 

interaction between tissue load imposed through running kinematics and the frequency 

of load application associated with high mileage training, which may result in a 

cumulative tissue load that may not be sustainable at during high-volume training. 

Future prospective studies are now required to investigate whether the kinematics 

observed are the cause or result of injury and whether runners adapt their kinematics 

or become injured as training loads increase. 

The findings of the thesis also provide preliminary evidence to support the clinical 

effectiveness of a simple, clinically applicable gait retraining intervention, through a self-

administered 10% increase in running step rate. This intervention effectively targeted 

the kinematic parameters of contralateral pelvic drop and hip adduction which were 

observed to be associated with common running injuries. Although the present study 

targeted runners with PFP, the association between contralateral pelvic drop and 

multiple different running injuries suggests increasing step rate could be beneficial in 

the rehabilitation process of multiple different running injuries. By reducing tissue load 

per stride, this approach may facilitate a gradual increase in external training load. 

Future randomised control trials are now required to investigate the effect of increasing 

step rate across multiple different running related injuries.   
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 Appendix B: Participant Information Sheet 

11.1  Information sheet: Injured & control subjects 
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11.2  Information sheet: Gait retraining  
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 Appendix C: Consent forms 

12.1  Consent form: Injured and Control Participants 
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12.2  Consent form: Gait Retraining 
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 Appendix D: Inclusion/ Exclusion Criteria 

All Subjects: Exclusion Criteria 

Subjective 
Exclude if yes to any one of the following: 

History of musculoskeletal surgery 
 

History of traumatic knee dislocation 
 

Neurological symptoms affecting gait 

Yes 
No 

Objective 
Exclude if positive tests for any one of the following: 

Leg length discrepancy: 
ASIS to Medial Maleoli  

>0.5cm 
 

Hip: 
Impingement Signs: 

FABERS 
FAIR  

 
Knee Meniscus: 

McMurrys Grind test 
Apleys Grind Test 

 
Knee Ligaments: 

Varus stress test/ Valgus stress test 
Lachmans 

Anterior draw test 
Posterior Draw test 

 
Ankle: 

Posterior Impingement Signs 
 

Tibia: 
Shin Oedema 

 
Compression of Tibial Body 

Positive 
Negative 
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Patellofemoral Pain: Inclusion/ Exclusion 

Inclusion 
(must report yes to one or more item within each of the following sections) 

History 
Insidious or gradual onset during running 

Yes 
No 

Symptoms 
Peripatella or retropatella pain 

 
Pain on squatting 

 
Pain with any one of the following 

activities: 
Stairs/ Kneeling/ Prolonged sitting/ 

Jumping 

Yes 
No 

Symptom Severity 
 

Minimum Pain Running 3/10 NRS 

Yes 
No 

Symptom Duration 
 

Minimum 3 month history 

Yes 
No 

Objective 
Pain with any one of the following: 

 
Patella compression 

Patella apprehension (Clarkes test) 
Palpation lateral patella facet 

Isometric quadricep contraction (30 knee 
flexion) 

Yes 
No 

Exclusion 
Exclude if yes to any one of the following: 

Symptoms 
Onset following trauma 

 
Constant unremitting pain 

 
Onset due to participation in any other 

sporting activity 
 

(Also see all exclusion criteria) 

Yes 
No 

Objective 
(See All Exclusion Criteria) 
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Iliotibial Band Syndrome: Inclusion/Exclusion 

Inclusion 
(must report yes to one or more item within each of the following sections) 

History 
Insideous onset during running 

Yes 
No 

Symptoms 
Lateral Knee Pain 

 
Pain eases after cessation of running 

Yes 
No 

Symptom Severity 
 

Minimum Pain Running 3/10 NRS 

Yes 
No 

Symptom Duration 
 

Minimum 3 month history 

Yes 
No 

Objective 
Nobles Compression Test 

 
Pain on palpation of lateral femoral 

condyle  

Yes 
No 

Exclusion 
Exclude if yes to any one of the following: 

Symptoms 
Onset following trauma 

 
Constant unremitting pain 

 
Onset due to participation in any other 

sporting activity 
 

(Also see all exclusion criteria) 

Yes 
No 

Objective 
(See All Exclusion Criteria) 
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Medial Tibial Stress Syndrome: Inclusion/Exclusion  

Inclusion 
(must report yes to one or more item within each of the following sections) 

History 
Insideous onset during running 

Yes 
No 

Symptoms 
Distal medial shin pain 

 
Pain eases after cessation of running 

Yes 
No 

Symptom Severity 
 

Minimum Pain Running 3/10 NRS 

Yes 
No 

Symptom Duration 
 

Minimum 3 month history 

Yes 
No 

Objective 
Shin palpation test: 

Pain on palpation of the medial ridge of 
the tibia at the insertion of the tibialis 

posterior and medial fibres of the soleus 
  

Yes 
No 

Exclusion 
Exclude if yes to any one of the following: 

Symptoms 
Onset following trauma 

 
Constant unremitting pain 

 
Onset due to participation in any other 

sporting activity 
 

(Also see all exclusion criteria) 

Yes 
No 

Objective 
(See All Exclusion Criteria) 
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Achilles Tendinopathy: Inclusion/ Exclusion 

Inclusion 
(must report yes to one or more item within each of the following sections) 

History 
Insideous onset during running 

Yes 
No 

Symptoms 
Mid portion achilles pain 

 
Pain eases into running 

 
Morning stiffness easing with movement 

 

Yes 
No 

Symptom Severity 
 

Minimum Pain Running 3/10 NRS 

Yes 
No 

Symptom Duration 
 

Minimum 3 month history 

Yes 
No 

Objective 
Pain on palpation of mid portion of 

achilles (2cm to 6cm above calcaneus) 

Yes 
No 

Exclusion 
Exclude if yes to any one of the following: 

Symptoms 
Onset following trauma 

 
Constant unremitting pain 

 
Onset due to participation in any other 

sporting activity 
 

(Also see all exclusion criteria) 

Yes 
No 

Objective 
(See All Exclusion Criteria) 
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 Appendix E: Treadmill Accommodation 

Methods 

A total of 13 injury free participants completed continuous treadmill running for a total 

of 10 minutes. Thirty seconds of kinematic data were collected at 3 minutes, 5 minutes 

and 8 minutes during continuous running. All kinematic data was collected and 

processed in accordance with procedures outlined in section 3.3.   

One-way repeated measures ANOVA was used to investigate whether there are 

significant differences between time points for discrete kinematic parameters of 

interest with a critical alpha of .05. When significant differences were observed, post 

hoc Bonferroni testing was used to identify differences between time-points.  

Results 

Results are presented in the following tables: 
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 3 minutes 5 minutes 8 minutes 
ANOVA  
p value 

Bonferroni Pairwise 
comparison (P 

value) 

Stride Rate 
(Hz)* 

1.39 
(0.04) 

1.41 
(0.05) 

1.42 
(0.05) 

<.01* 

3min – 
5min 

.18 

3min – 
8min* 

<.01* 

5min – 
8min 

.47 

Stride Length 
(m)* 

2.19 
(0.06) 

2.17 
(0.08) 

2.16 
(0.08) 

<.01* 

3min – 
5min 

.23 

3min – 
8min* 

<.01* 

5min – 
8min 

.45 

Stance Time 
(sec) 

0.49 
(0.05) 

0.49 
(0.04) 

0.49 
(0.04) 

0.24 

3min – 
5min 

.30 

3min – 
8min 

1.0 

5min – 
8min 

.39 

36 Spatiotemporal parameters across separate timepoints. Values represent mean (standard deviation). *indicates 

statistically significant difference at p  <.05 
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 3 minutes 5 minutes 8 minutes 
ANOVA  
P value 

Trunk Forward 
Lean 

3.0 (2.2) 3.6 (2.3) 3.04 (2.19) .24 

Anterior Pelvic 
Tilt 

6.8 (1.9) 7.0 (2.1) 7.0 (2.2) .57 

Hip Flexion 23.3 (4.0) 24.1 (3.8) 23.4 (4.3) .29 

Knee Flexion 10.2 (4.5) 10.8 (5.5) 9.7 (5.0) .46 

Ankle 
Dorsiflexion 

2.7 (5.8) 3.1 (5.4) 2.8 (5.2) .68 

37: Kinematic parameters at initial contact. Values represent mean (standard deviation). *indicates statistically 

significant difference at p <.05 
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 3 minutes 5 minutes 8 minutes 
ANOVA  

(P value) 

Bonferroni Pairwise 

comparison (P value) 

Trunk 

Forward 

Lean 

8.1 (3.5) 8.4 (3.8) 8.5 (3.7) 0.42 

3min – 5min .65 

3min – 8min .98 

5min – 8min 1.0 

Contralatera

l Pelvic Drop 
5.3 (2.6) 4.9 (2.9) 4.9 (2.8) 0.28 

3min – 5min 1.0 

3min – 8min .57 

5min – 8min 1.0 

Hip 

Adduction 
12.2 (3.4) 11.9 (3.4) 12.0 (3.5) 0.59 

3min – 5min 1.0 

3min – 8min 1.0 

5min – 8min 1.0 

Knee 

Abduction 
2.1 (4.2) 2.1 (4.4) 1.8 (4.3) 0.39 

3min – 5min 1.0 

3min – 8min 1.0 

5min – 8min .19 

Knee Flexion 33.5 (3.9) 32.8 (4.2) 32.1 (3.8) <.01* 

3min – 5min* .04* 

3min – 8min* <.01* 

5min – 8min .14 

Ankle 

Dorsiflexion 
21.2 (2.8) 20.8 (2.9) 20.2 (2.4) <.01* 

3min – 5min* <.01* 

3min – 8min* <.01* 

5min – 8min .26 

Rearfoot 

Eversion 
2.9 (5.7) 2.9 (5.7) 5.0 (6.3) 0.32 

3min – 5min 1.0 

3min – 8min .99 

5min – 8min .92 

38: Peak joint angles during stance phase. Values represent mean (standard deviation). *indicates statistically 

significant difference at p <.05 
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 Appendix F: Peer reviewed publication – Is there a pathological 

running gait associated with common soft tissue running 

injuries? American Journal of Sports Medicine. 
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 Appendix G: Peer reviewed publication – A 10% Increase in 

Step rate Improves Running Kinematics and Clinical Outcomes 

in Runners with Patellofemoral Pain at 4 Weeks and 3 Months. 

American Journal of Sports Medicine.  

 



 

303 | P a g e  
 

 



 

304 | P a g e  
 

 



 

305 | P a g e  
 

 



 

306 | P a g e  
 

 



 

307 | P a g e  
 

 



 

308 | P a g e  
 

 



 

309 | P a g e  
 

 

  



 

310 | P a g e  
 

 Appendix H: Lower Extremity Functional Scale 
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