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Abstract. It is essential to account the variability in thermophysical properties
such as thermal conductivity to obtain the characteristics of transport properties in
industrial thermal systems more accurately. This phenomenon is especially significant
in coating protection for rocket chambers, heat exchangers and power generation,
wherein cooling techniques are required for sustaining temperature regulation and
structural material integrity. At high operating temperatures, the working fluid and
hot walls generally emit appreciable radiation. Mathematical models are therefore
required which simultaneously analyse all three modes of heat transfer in addition to
viscous flow and a variety of other effects including reactions (corrosion, combustion),
mass diffusion and rheological behaviour. The modern thrust in nanoscale materials
is a major consideration. Motivated by these applications, in this paper, a theoretical
examination is implemented to analyse the impact of thermal conductivity variation
and thermal radiation on chemically reacting, free convective Powell-Eyring nanofluid
How over a eylinder. The nanoseale effects are accounted by employing the Buongiorno
model. The transformed governing equations are numerically solved by using Keller
box method under suitable boundary conditions. The comparison results reveal that
the obtained results find an excellent match with the results in the literature. The
graphs and tables elucidate the impacts of various pertinent parameters on thermo-
solutal transport characteristics. It is to be noted that amplifying thermal conduetivity
variation rises fluid velocity and temperature. Velocity of the fluid decelerates for
elevating Darcy number. Magnifying the radiation corresponds to weak radiative flux
and stronger thermal conduction which decrease the heat transfer whereas the mass
transfer is increased. Furthermore, nanoparticle concentration decreases with greater
first order chemical reaction and Brownian motion parameter values.

Keywords: Powell-Eyring nanofluid, variable thermal conductivity, chemical reaction,
thermal radiation, Keller box method.



Nomenclature

a  cylinder radius
u,v  velocity components along the = and y directions
B, strength of constant magnetic field
g.  gravitational acceleration
k¢ variable thermal conductivity of the fiuid
ko  ambient thermal conductivity of the fluid
fluid temperature
temperature of the cylindrical surface
ambient temperature

T

L

Iy

(' fluid concentration
C, concentration of the cylindrical surface
(., ambient concentration

k,  mean absorption coefficient

Gr  Grashof number

f,  blowing/suction parameter

Ha magnetic parameter

Da  Darcy parameter

P, Prandt] number

N, thermophoresis parameter

N,  Brownian motion parameter

R thermal radiation parameter

Sc Schmidt number

Kr  chemical reaction parameter

N buoyancy ratio parameter



Greeek symbols

51, b constant non-Newtonian fluid material properties
g,e1 Huid parameters

~4* thermal conductivity variation parameter

A inertial drag coefficient

vy kinematic viscosity of the fluid

[if dynamic viscosity of the fluid,

pf density of the fluid

Pp density of the particle

r Forchheimer inertial drag constant
B coefficient of thermal expansion
T heat capacity ratio between nanoparticles and the base rheological fluid

OB Stefan Boltzmann constant
£ dimensionless tangential coordinate
il azimuthal coordinate

1. Introduction

The transport properties of Non-Newtonian fluids continue to attract the attention
of many researchers due to numerous applications in hypergolic rocket fuels (gel pro-
pellants), food preservation techniques, chemical processing, energy production, etc.
Shampoo, paper pulp, oils, paints, coating melts and liquid polymers exemplify the rhe-
ological behaviours of non-Newtonian liquids. In 1944, Powell and Eyring [1] introduced
a pioneering non-Newtonian fluid model known as Powell-Eyring fluid. This model is a
sub-class of viscoelastic fluid models and the kinetic theory based constitutive equation
are formulated for this fluid. Expressing the rheology of non-Newtonian fluids at lesser
shear rate and greater shear rate is quite accurately achieved in Powell- Eyring fluid
model. A number of industrial smart polymers feature electrically conducting properties
and these require viscous magnetohydrodynamic (MHD) models. Several investigations
regarding both electro conductive and non-conductive flows of Powell-Eyring fluids have
therefore appeared in the past few decades. In high temperature coating applications,
radiative heat transfer plays a significant role. Motivated by this, Hayat et al. [2]
deliberated the impact of variable temperature and radiative heat flux on magneto-
hydrodynamic Powell-Eyring nanofluid flow over a stretching eylinder and noted that
an increment in radiative heat flux augments fluid temperature. Rehman et al. [3]
scrutinized the transport properties of mixed convective, magnetohydrodynamic flow
of Powell-Eyring fluid over an inclined cylinder and perceived that angle of inclination
and magnetic field parameters notably decelerate velocity of the fluid. The impact of
radiative heat flux and ohmic heating on transport properties of magnetohydrodynamic
squeezing flow of Eyring-Powell fluid between two parallel plates is analyzed by Ghadiko-
laei et al. [4] and reported that amplifying the magnetic field parameter strengthening



the Lorentz force which induces a decline in the fluid velocity at the bottom of the
channel whereas opposite nature is seen at the top of the channel. Balazadeh et al. [5]
adopted differential transformation method to analyse the characteristics of magneto-
hydrodynamic Eyring-Powell fluid squeezing flow in a channel and detected that fluid
temperature enhances for augmenting the magnetic field parameter. Hayat et al. [6]
numerically obtained a solution to characterise the Powell-Eyring nanofiuid peristaltic
transport with endoscopic effect, chemical reaction, heat source/sink, and viscous dis-
sipation and observed that fluid temperature is boosted with higher heat source/sink
parameter values. Salawu et al. [7] theoretically scrutinized the impact of variable
thermal conduetivity on chemically reactive flow of MHD Powell-Evring fluid between
parallel plates and detected that fluid temperature declines for amplifying thermal con-
ductivity variation.

The fluid thermal conductivity is one of the significant thermo physical fluid prop-
erties which may be influenced by heat generation due to internal friction. The fluid
temperature features with variable thermal conductivity enable better predictions of
thermo fluid behaviour in several applications. In general, accounting the thermal con-
ductivity variations is essential when heat transfer variation is notable. Seddeek et al.
[8] utilized the Chebyshev finite difference method to investigate the impact of thermal
conductivity variation on fluid transport properties over a moving surface and noticed
that heat and mass transfer profiles rise for larger thermal conductivity variations. Khan
and Malik [9] serutinized the Sisko nanofluid flow over a stretching cylinder by consid-
ering the effect of thermal conductivity variations and nanoparticle flux conditions and
inferred that accounting the thermal conductivity variation increases the fluid temper-
ature. In addition, it is mentioned that the temperature variation of the liquid metals
almost linearly varies with thermal conduetivity variation. Sivaraj et al. [10] adopted
a numerical method to analyse varying properties of the fluid on chemically reacting,
free convective flow and detected that magnifying variable thermal conductivity param-
eter uplifts the fluid heat transfer. The absorbing-emitting fluids temperature highly
depends on thermal radiation and heat transfer in such fluids due to free convection can
be dominated by the heat transfer due to thermal radiation. The human body temper-
ature is regulated on par with the surrounding temperature due to the blood flow. In
several medical treatments (myalgia, muscle spasm, permanent shortening of muscle and
chronic widespread pain), controlling the temperature of the blood flow is essential which
may be attained with the aid of radiative heat flux. Further, role of thermal radiation
is essential in many thermal therapeutic procedures [11-14]. Further, thermal radiation
in viscous flow from an extending/contracting surface has a critical role in fuel cells,
coating systems, shrink fit processes in packaging, liquid metal fabrication, ete. Abbas
et al. [15] studied chemically reacting non-Newtonian fluid stagnation point flow with
the impact of thermal radiation and observed that heat transfer reduces for magnifying
the radiative heat flux. Rahman et al. [16] numerically examined the significance of
radiative heat flux in the problem of non-Newtonian fluid mixed convective low over an



extending sheet and noticed that amplifying the radiative heat flux diminishes profiles
of heat transfer rate. Sheikholeslami et al. [17] applied the homotopy analysis method
to study the hydromagnetic flow in a channel with radiative heat flux and inferred that
higher radiation parameter values motivate the heat transfer in the channel. Khan et
al. [18] scrutinized the radiative heat flux impression on flow of non-Newtonian fiuid
over an extending surface by employing Runge-Kutta Fehlberg quadrature and detected
that heat distribution enhances for magnifying radiative heat fiux.

Thermophoretic motion i.e. the translocation of suspended particles in a fluid un-
der applied thermal gradients, has been applied in many different industrial technologies
including commercial electrostatic precipitators, optical fibers, fouling, etc. This phe-
nomenon has been identified as a key mechanism for thermal enhancement in the new
generation of nanoscale-engineering liquids known as nanofluids. Thermophoresis fea-
tures in isolating different polymer particles in the stream field of fractionation. In
nanofluids, the Buongiorno model provided a good framework for boundary layer anal-
ysis and inferred that both thermophoresis and Brownian motion are important slip
mechanisms to analyse the transport properties of nanofiuids. A number of recent stud-
ies have therefore considered this formulation. Sandeep et al. [19] scrutinized magneto-
hydrodynamic, non-Newtonian fluid convective flow over a porous surface by accounting
suction/injection and concluded that magnification in thermophoresis accentuates rate
of heat and rate mass transfer profiles. Makinde and Animasaun [20] investigated the
magnetohydrodynamic boundary layer flow from a paraboloid of revolution by account-
ing chemical reaction and Brownian motion using a numerical scheme and found that
heat transfer is enhanced for increasing the thermophoresis parameter. Hamid et al.
[21] numerically computed the unsteady magnetohydrodynamic Williamson nanofluid
chemically reacting flow over a cylinder by considering activation energy. Mittal and Pa-
tel [22] obtained homotopy solutions for magnetohydrodynamic Casson nanofluid mixed
convective flow with heat source and noted that fluid temperature improves for magnify-
ing thermophoresis parameter. Boundary layer flows from an extending surface arise in
the extrusion of elastic sheets, plastic films, fiber spinning, thinning of copper wires, hot
rolling, ete. Hussain and Ullah [23] studied magnetic boundary layer convection with
variable fluid viscosity (using the Reynolds and Vogel exponential models) for a short
memory viscoelastic liquid from a stretching cylinder. Tamoor [24] explored the influ-
ence of suction/blowing on magnetohydrodynamic viscous fluid flow over a eylindrical
surface by employing shooting techniques and reported that augmentations in suction
parameter decrease fluid flow and heat transfer.

An inspection of the literature has revealed that many computational studies of ex-
ternal boundary layer flows of rheological nanofluids have featured ordinary differential
equation boundary value problems i.e. only a single space variable has been considered.
Furthermore, most of the studies have ignored thermal conductivity variation. The ob-
jective of the current work is therefore to present a more generalized two-dimensional ap-



proach to axisymmetric magnetohydrodynamic chemically reactive rheological nanofiuid
boundary layer flow over a porous cylindrical body with radiative heat flux. The regime
is immersed in a high permeability porous medium and both linear and quadratic drag
forces are considered via the robust Darcy-Forchheimer model. Suction and injection
are simulated at the cylindrical surface. Thermal radiation is approximated based on
Rosselands diffusion flux model. The Powell-Eyring non-Newtonian and Buongiorno
nanoscale models are deployed. The considered homogenous destructive type chemical
reaction is of first order. The steady-state conservation equations are transformed, ren-
dered non-dimensional and then solved with appropriate wall and free stream boundary
conditions by utilising the unconditionally stable, Keller box method. The present study
may be useful in applications pertaining to intelligent coatings for cylindrical engineer-
ing components (e.g. photovoltaic cylindrical solar collectors and pipelines), surficial
protection of autonomous robotic limbs with magnetic polymers, etc. Several pertinent
parameters impact on fluid transport properties are demonstrated through tables and
graphs. Verification of the accurateness of present solution with earlier published works
is included. The present work constitutes a significant extension to the literature on the
numerical simulation of enrobing flows of curved bodies with magnetic nanomaterials.

2. Mathematical Formulation

A two-dimensional, steady, laminar, non-Darcy flow of an incompressible, electrically
conducting Powell-Eyring nanofluid external to a horizontal cylinder embedded in a
permeable regime is considered. The flow geometry of the problem is elucidated in
Fig.1. A uniform magnetic field with constant strength is enforced in transverse to the
enrobing boundary layer flow. The radiative heat flux and first order chemical reaction
are accounted. The temperature and concentration of the cylindrical surface are in order
higher than the ambient temperature (T,, > T.) and ambient concentration (C,, > C.).
Radiative flux g, acts in the radial direction. A dilute rheological nanofluid is considered
where the nanoparticles are in local thermal equilibrium.
The eylinder surface is electrically insulated and polarization voltage is neglected.
The non-Newtonian Powell-Eyring constitutive equation is expressed as follows [25,26]:
T = ésinh_1 (%%) + ,u.fg—z. (1)
The stress tensor in Eqn. (1) can be simplified by assuming:

i 1du Elau 1{10u\® 10u 1 )
SR \30r) " bor 6 \boxr)

baxr
The governing equations for steady thermo solutal MHD Powell-Eyring nanofiuid with
variable thermal conductivity and Darcy-Forchheimer porous media drag forces are
expressed by generalizing the models in [27, 28, 59-61] to give:

dJu  Ov
— +— =0, 3
Jr - dy ' (3)
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Figure 1. Flow geometry of the problem
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The boundary conditions for the problem are as follows
=0 :u=00 =V, T =T 0= Gy
y—oo:u—0T—=T,C—C.. (7)
The stream function ¢ is considered as u = 9¢/dy and v = —dv/0x to satisfy the
continuity equation. The following dimensionless variables are invoked:
_I . Yar .
& a,ﬂ % T7f('f»77) fo\“ya
T-T, ™
0(&,m) = m,@(& n) = - (8)

Based on Rosseland model [29], the radiative heat flux (g,) is modelled as:
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Thermal conductivity is considered to linearly vary with temperature [30] as follows:
T-T.
B(T) = kol 7 ()
#(T) 1+~ Tw—Too]
kep(T) = koL + 6] (10)
By implementing the above variables, Eqns. (4)-(6) are transformed to the following
non-similar form in a (¢, n) coordinate system:

1
2 pr2 " "2 ! "
12 (1= =) f7 = 1+ A8 (1) = (g + Ha) S+ f 1
sin ¢ ar , of }
+—0@—No)=¢|—=—f — = , 11
o-No e[ -2
]' 4 I * I T 1o T u !
= (47014 55) 07+ 0] + Nt + N + 16
a9 ., of ,
=¢|=F - =20, 12
foer-%) o
1 L Art " - L 8‘:5 ' af 1!
— —0" — Krq =&l —=f — = 13
50 +th9 (ro + fo 5{3{5}‘ agrr)] (13)
with the transformed conditions
n=0:f=0,f=f,0=1¢6=1
n—oo:f—=0,60—=006—0 (14)
Where, the primes represent the differentiation with respect ton, A =T'a, P, = %,
_ K\/a 7 _ Dp(Ty—T) N — Dp(Cuw—Cx) _ _koks _ ¥ _ 1
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u

It is to befnoted that f, > 0 with V,, > 0 represents blowing and f,, < 0 with
V. < 0 represents suction.
The skin-friction coefficient (C'f, ), Nusselt number (Nu,) and Sherwood number (Sh,)
at cylindrical surface is given, respectively, by:

CF.Gr ¥ = (1+ ) £f"(6,0) - 221 (¢£7(€,0))° (15)
NuGr i/t =~ (1450) (14 52) 4 (0) (16)
Sh,Gr='* = —¢' (0) (17)

3. Computational Methodology

The dimensionless Eqns. (11)-(13) with the appropriate boundary conditions as
considered in Eqn. (14) formulate a coupled, nonlinear, partial differential boundary
value problem which is numerically solved by utilizing the unconditionally stable Keller
box method (KBM). This numerical scheme is second-order accurate and particularly



versatile for parabolic type partial differential equations. The procedure to obtain
solutions by using the KBM scheme is given below:

e The n'" order dimensionless equations are transformed into n first order
dimensionless equations..

e The transformed n first order equations are discretized by utilizing a central
differences scheme.

e Newton’s method is employed to linearize the algebraic equations.

e The results are acquired by solving the block matrix system using block tri-diagonal
elimination technique.
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Figure 2. Numerical methodology - flow chart, boundary layer mesh and Keller box
element

Step 1: First order system

We consider a new set of variables u (§,7), v (&, 1), s (§&,7), t (&,7n), g(&,7n), and p (&, 7n) to
transform the n* order dimensionless equations into a group of first order dimensionaless
equations. Let f,u,v,s,t, g and p be the new dependent variables as given below:

f=f,f'=u,u'=v,0=s,s'=t,¢=g,g'=p. (18)
By implementing the above substitutions, Eqns. (11)-(13) are transformed to:
(1+¢(1-e1€%?)) v — (1+A&)u? + fo+ B(s — Ng)
1 ou  Of
_(E-FH‘Z)U_E[HE_UB_{] (19)
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y*t
20

! [(1+ *s) + 4]t’+
Bl T TR
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P+

E i.\rbt’} +fp—Krg=¢§ {Ua_g - Pa_g (21)

with boundary conditions:
n=0:f=0,f=fn0=10=1
n—o00:f —=0,60—=0¢—0. (22)
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Step: 2: Difference formulation
The net point of (£, n) plane is expressed in the following relations:

=08 =6 4k i=1,2.3,..1,

m=0,m=n-1+h;.7=123,.,J (23)

where k; is A¢ spacing in the " node and h; is An spacing in j node. The
following diseretizations are applied:

o0\ F  0i-a=0523 (o0VF_ 0im1 =052 ”

At the midpoint (gf;nj_%) between the segments (£*,7;-1) (£, n;) the following

10
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central difference approximations are deployed:

wru_ (-5

r__ . 7 _ c
ff=u= w1 = 5 = I , (25)
. v+ vt ub —ul_
W=v=0l =4 Il ( SR 1), (26)
J7z 2 hj
) il st — sb_
S=t=¢ =431 ( S 1), (27)
173 2 hj
, Co+, (d-a) .
= =3 . = = s 28
g=r="r1 5 P (28)

The first order partial differential equations (19) to (21) are approximated by centering
at (gi-%, -1 ) of the rectangle points (P1, P2, P3, and P4) which give the following
equations;

i

(V) +2(v') — e (v?v’)i +(1+a) (fo)' = (1 +a+EA) (u?) (29)

1 i i1 i i1 i i oard) i1
— (Ha-l—m)u +av” ff—afT v +B(5 —Ng) —[El]j_%

11
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where, o = % and B = mﬁ(f_t—l_:)
At £ = £, the boundary conditions becomes
fo=up=0,s=1,gy=1u;=0,5;=0,g;=0 (32)
Step: 3: Newton's method
The unknowns (f}, ul, v%, g; p}, si, t;) are calculated with the help of knowns

. - - . J -
it w g g s £ where, 0 < < .
(f_;! 'H;: 'U;—, g;, p;, 3;': t}) = (fg- u’j! U_j-: gJ' pJ' Sj: t_y) (33)

The set of central difference equations can be expressed as

ity = fia

2 h

J

(34)
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Here (B3]} 1/ (o]t i—1/2> and [Eg] 1o are the known quantities. Newton's method is
emploved to linearize the system of nonlinear equations with the following iterates:
copm) _ plntl)  pln) o (m) _(n+l) (m) o (n) _(n+l) (n)
wfj = f; fj,- _,u..-ﬂ-j =u u v 1 v,

n+1 (n ( 71+1 n)

15
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Implementing the above expressions in Eqns. (34)-(40) and neglecting higher-order
terms of w, leads to:

wf; —wf;_1 = % (wuj + w-uj_l) = (e1)j-1/2, (45)
Wi — wu; g — % (wvj + u;trj_l) = (eg);-1/2; (46)
wg; — Wg;_y — % (ij + ij_l) = (e3)j-1/2; (47)
ws; —ws; 1 — % (wtj —I—wtj_l) = (e4)-1/2, (48)

(a1);jwo; + (ag)jwv;_q + (a3);wf; + (a4)jwf;_y
+ (aE)jwuj + (ag)jwu.j-_l + (a;)jwsj + (ag)jwsj_l
+ (ag);wg; + (ar0)jwg;_1 = (€5)-1/2, (49)
(b1)jwt; + (ba)jwt, q + (ba)jwf; + (ba)jwf; 4
- (bsjjwuj -~ (bﬁ)jwu'j_]_ + (57)3@’5; + (‘58):(‘*"5;;—1
+ (bo)jwp; + (bio)jwp;_1 = (€6);-1/2, (50)

16



Here:

17

(e1)jwp; + (e2)jwp;_y + (ea)jwf; + (1) jwf;—y
+ (e5)jwu; + (cg)jwu;_y + (er);wg; + (c8)jwg;_;
+ (co)jwt; + (c10)jwt;_y = (es7)j-1/2, (51)
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2
(al)j =14e— 68152 (@j—lﬁ) + h- fj. 1/2 — 2 12|

(l—|—o)

2
(ag)j =—1—=c+ 88152 (UJ-_UQ) +

— fip- f_llxz}
(aq); = (as);,

(as); = h; [— (1+a+EN)u - % (ch + %)] \(as); = (as),
(ar); = Sy (as); = (an);

(ag); = —E‘%Ns (a10); = (a9);,
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The boundary conditions (32) emerge as:
wfy=0,wuy =0,wsy =0,wgy =0,wu; =0,ws; =0,wg; =0.
fo=uy=0,50=1,g0=1u5;=0,5,=0,g5=0. (52)

Step 4: The block tridiagonal structure
The linearized difference Eqns. (45)-(51) are computed by employing the block-
climination technique as outlined by Cebeci and Bradshaw [31] using the matrix-vector
form,

[A]lw] = [¢] (53)

[ [Ai] [C]
[Ba] [Aa] [Co

[Bja] [Asa] [Cr]
(Bl [C4] |
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The elements of the matrices are as follows:
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0
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n
T
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£ =
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les]
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Equation (53) is solved by using the LU (lower-upper) decomposition method. From this
decomposition matrix method, the solution is obtained and the procedure is remained
till the convergence criterion is satisfied and the process is stopped when wvj < 0.001.
In this problem, the extreme £ and 7 values are in order considered as 1 and 25. Table
1 shows the caleulations with various grid sizes (An). It noticed that the step size
(An = 0.005) gives accurate results compared with other step sizes for this problem.

Therefore the step size is fastened as (Ap=0.005) to obtain the solution of this problem
and (20 x 500) meshes are consider in the domain. Table 2 exhibits the order of accuracy
of the numerical scheme. To raise the accurateness of the solution, the convergence
criterion has been fixed as 10~° at all grid points. Fig. 2 illustrates the solution
procedure of Keller box method, boundary layer mesh and Keller box element.
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Table 1. A grid independence study

An Nu, Sh
0.25 | 0.789819 | 0.679725
0.05 | 0.783485 | 0.678332
0.025 | 0.783443 | 0.678327
0.01 | 0.783429 | 0.678315
0.05 | 0.783421 | 0.678311

Table 2. The order of accuracy for the numerical scheme
Nu, Sh,

1071 [ 0.79335 | 0.67701
1072 | 0.77292 | 0.66805
1073 | 0.77196 | 0.67889
10~% | 0.77145 | 0.67862
107> | 0.77188 | 0.67879
107% | 0.77187 | 0.67872
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Figure 15. f' variations for enhancing ~*.

4, Validation of Numerical Scheme

The accurateness of the results computed using KBM is compared with previously
published results available in literature. Table 3 shows the KBM solutions for local heat
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transfer rate for several £ values which are compared with the computations of Merkin
[32] and Prasad et al. [58] in the absence of Powell Eyring fluid, nanofluid, variable
temperature parameter, chemical reaction, Schmidt number and thermal radiation.
Scerutiny of the table confirms that generally worthy agreement is attained. This
correlation testifies to the validity of the KBM code and confidence in the accuracy is
justifiably high. It further confirms that for Newtonian fluid hydromagnetic boundary
layer flow external to a cylinder under dual buoyancy, the Nusselt number is depleted
with increasing distance beside the curvy surface i.e. lower value of the stagnation point
(€ = 0) implying higher heat transfer rate.

5. Results and discussion

A comprehensive mathematical examination is conducted to scrutinize the key emerging
parameters on transport characteristics of the fluid. Figures 3-20 elucidate the varia-
tions in momentum, heat and nanoparticle concentration characteristics and consistently
smooth profiles are achieved in the free stream. The KBM simulations are worked out
by considering adequate value to the infinite boundary condition. The characteristics of
local skin friction factor, heat transfer rate and mass transfer rate are displayed in Figs.
21-30 and Table 4. The default values of pertinent parameters in present computation
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Table 3. Validation of current results with Merkin [32] and Prasad et al. [58]
for local rate of heat transfer against varies £ values when Do — oo, B — oo,

N=Ni=Ny=7"=e=21=0, Sc=06, Ha = 0.5, P, = 0.71. (note infinite Da
and R imply vanishing porous medium fibres and absence of radiative heat transfer).
Parameter Nu,

13 Merkin [32] | Prasad et. al[58] | Present

0.0 0.4212 0.4211 0.4213

0.2 0.4204 0.4206 0.4208

0.4 0.4182 0.4185 0.4187

0.6 0.4145 0.4146 0.4147

0.8 0.4093 0.4095 0.4096

1.0 0.4025 0.4027 0.4028

are considered as Ha = 05, N =05, A =05,7"=02,5 =03, =02, R =02,
Da=05 N, =02 N, =03F, =071, Kr =0.5, and Se = 0.3. This data is based
on physically viable material properties for magnetic coatings, and has been extracted
from multiple sources including Guiseppi-Elie [33] (rheological parameters), Prakash et
al. [34] (nanoscale and species diffusion parameters), Mansour and Viskanta [35] (ra-
diative and convective parameters) and Hughes and Young [36] (magnetic parameters)
and Umavathi and Beg [37] (porous Darcy and Forchheimer parameters).
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Figures 3-5 exemplify the characteristics of fluid flow, heat transfer and nanoparti-
cle concentration distributions for the variations in magnetic field parameter (Ha). In
the electrically conducting fluid (e.g. magnetic nano-polymer), the radial direction ex-
periences the imposed magnetic field (Bp) and this generates a transverse (orthogonal)
hydromagnetic retarding force (Lorentz force) which acts along the cylinder longitudinal
axis and resists the boundary layer motion. The magnitude of Lorentz force increases
while the magnetic field strength (By) is magnified, and this inhibits momentum devel-
opment and significantly reduces the nanofluid velocity (Fig. 3). Hence, Momentum
(hydrodynamic) boundary layer thickness diminishes for amplifying the magnetic field.
The implication is that the deposition of the coating magnetic nano-polymer can be
more effectively controlled via a boost in radial magnetic field which permits more ho-
mogenous distribution of the nano-polymer over the eylinder periphery and more even
thickness of the coating, as noted by Khan et al. [38], Yu et al. [39], Ganesan et al. [40]
and Wang et al. [41]. The classical velocity overshoot arising near the wall (cylinder
surface) is also clearly computed and is systematically suppressed with greater values
of Ha. Maximum acceleration and largest hydrodynamic boundary layer thickness cor-
responds to the electrically non-conducting case (Ha = 0). Although there is a weak
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transition in this behaviour closer to the free stream, the principal magnetic field impact
on velocity distribution is flow inhibition, although reversal in the flow is not observed
even at highest magnetic field (Ha = 1.5). The evolutions in temperature and nano-
particle concentration with magnetic field are displayed in Figs. 4 and 5, respectively.
Strengthening the magnetic field results in enhancing the Lorentz force which neces-
sitates greater work expenditure by nanofluid in dragging against the magnetic field
action. Thermal energy is generated due to this excess work which strongly heats the
coating regime and raises the fluid heat transfer. A consistent monotonous decline in
temperatures from the cylindrical surface to the free stream is computed (Fig. 4). Si-
multaneously the nanoparticle diffusion is aided in the boundary layer i.e. nanoparticle
concentration (Fig. 5) and the related nanoparticle concentration boundary layer thick-
ness are boosted. Magnetic field therefore has the double advantage of flow regulation
and enforcement of a more homogenous migration of nanoparticles; however, it leads to
temperature elevation. The response in concentration is also consistent at all values of
transverse coordinate.

Figures 6-7 illustrate the impact of the first Powell-Eyring rheological parameter,

£ (: Mlslb), on velocity and temperature distributions, respectively. The fluid flow and

heat transfer distributions and the related boundary layers thicknesses are generally

27



< Kr=0.0,0.5,1.0, 1.5
0.4 .
0.2 1
U 1
0 5 10 15 20 25

Ui

Figure 20. ¢ Variations for enhancing Kr.

enhanced for increasing . Generally, higher fluid parameter £ values results in reducing
the fluid dynamic viscosity (). The first Powell-Eyring rheological parameter features
in the augmented shear term, [1 + £ (1 — &;£2f")] f”, in the momentum boundary layer
Eqn. (11). Although absent in temperature distribution Eqn. (12), the velocity and
heat transfer fields coupling terms i.e. f#" and £ {g—g fr— g—éﬂ’ } , will inevitably result
in a slight modification in temperature. Though primarily there is a weak reduction
in fluid flow (Fig. 6) with greater = values, this is superseded with a clear boost in
velocity magnitudes further from the wall which is sustained into the free stream. It
is observed that the temperature elevation is sustained at all locations, transverse to
the cylinder surface (Fig. 7). Newtonian nanofluid (¢ = 0) clearly produces the lowest
temperature magnitudes. Therefore, a Newtonian model under-predicts temperatures
in the magnetic nanocoating. A more realistic estimate is therefore only possible with
a non-Newtonian rheological model.

Figures 8 and 9 show the influence of the second Powell-Eyring rheological parameter,

b
2t

£1 (: T{ﬂ) on fluid low and heat transfer profiles, respectively. This parameter

occurs both in the shear term in Eqn. (11) (as noted earlier) and in the amplified
thermal diffusion term, ,(¢)?, in the thermal boundary layer Eqn. (12). Distinet from
the first rheological term, this term is proportional to the square of dynamic viscosity
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Figure 21. C'f, Variations for enhancing Ha.

(and consequently the constant density of magnetic coating fluid, as considered here,
is proportional to the square of dynamic viscosity). The other parameters, b and a
are fixed (constant material parameter and cylinder radius). A significant increment in
£; induces a very weak decrease in both velocity and temperature distributions. The
impact of this effect is lower than the first Powell-Eyring rheological parameter which
is probably attributable to the coupling of the higher order derivative, f*, to the first
theological parameter and the absence in the second parameter. The upshot is that a
trivial deceleration in the fluid flow and a slight reduction in heat transfer are produced
with greater ;. Ishaq et al. [42] has obtained the similar trend.

Figure 10 indicates that elevating Darey parameter reduces the velocity, f/, significantly.
The Darcian force, %{{, which is a drag force occurs in momentum Eqn. (11). It is well
known that the flow will be decelerated with increasing Darcy number, Da = (ﬁa—‘/za)
With increasing Darcy number, there is a notable solid material fibers decrease in
porous media. This reduces the available surface area for conduction heat transfer
and effectively cools the regime. In other words a low permeability (low Darcy number)
regime achieves greater conduction heat transfer due to larger surface area of fibers for
heat transmission and a high permeability (high Darcy number) induces the opposite
response. Higher Darcy number values notably deplete the heat transfer and these
results concur closely with the findings of Vafai and Tien [43].

Figure 11 presents the velocity profiles for increasing buoyaney ratio parameter (V)

29



0351 -

0.3 ‘% LY

T
%\
e

0.25

T
N

0.2

Cf

‘e R=0.1,0.5,1.0, 15

0.15 o

0.1 R

005+ ¢

§

Figure 22. C'f, Variations for enhancing K.

values. Buovaney ratio parameter exemplifies the ratio of solutal buoyancy to the
thermal buovancy force. The Buoyancy ratio parameter can also be viewed as
the coupling parameter between the momentum Eqn. (11) and the nanoparticle
coneentration Eqn. (13), i.e. %‘i (8 — N¢), as noted by Jaluria and Gebhart [44]. Tt is
observed that the flow is retarded markedly i.e. velocity suppressed with increasing N
values (note for the case N = 0, the species buoyancy is negated as well as the fluid flow
and nanoparticle concentration boundary layer equations are de-coupled; furthermore
for N < 1 the species buoyaney is dominated by the thermal buoyancy effect). Therefore,
amplifying buoyancy ratio parameter decelerates the fluid flow.

Figure 12 elucidates heat transfer variations owing to changes in radiative heat flux.
With the thermal conductivity variation parameter, the Rossleand conduction-radiation

parameter (R = %) is also an additional feature in the thermal diffusion term,

(%) Although the parameter is in the denominator, the contribution is still that
of conduction heat transfer relative to radiation heat transfer. As R is increased
thermal conduction becomes progressively larger (for R < 1 it always dominates thermal
radiation) and this leads to suppression in heat transfer profiles. For lower R values, the
loss of thermal radiative heat transfer is less and this energizes the nanofiuid which helps
to maintain high temperatures. It is noteworthy that the Rosseland model assumes that

radiative evenness is sustained in the simulations and the nanofiuid is gray. Furthermore,
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the intensity is the black-body infensity at the nanofluid temperature. In this flux
approximation, the requirement is that the optical thickness needs to exceed 3 for
reasonable accuracy as noted by Modest [45] and later Beg et al. [46]. The considered
nanofluid medium decelerates the passage of radiative heat flux due to the impact of the
dimensionless quantifications such as optical thickness and absorption coefficient. While
optical thickness is unity thermal radiation intensity drops by an exponential factor. It
is to be noted that propagation distance, medium density, and absorption coefficient are
the important components to control the optical thickness. Though the flux model is
much simpler than other algebraic approximations (e.g. Hamaker six-flux model), it does
predict the influence of radiative flux reasonably well. The results concur with Lu et al.
[47]. Figure 13 elucidates the thermal radiation parameter consequences on mass transfer
distribution. It is perceived that mass transfer (¢) upsurges for higher thermal radiation
parameter values. A reduction in radiative heat flux (higher R values) encourages
the diffusion of nanoparticles and enhances nanoparticle concentration boundary layer
thickness. Similar patterns have been reported in other studies for radiative nanofluid
flow from curved geometries including Makinde and Animasaun [20].

Figure 14 visualizes the temperature distribution characteristics for enhancing
thermophoresis parameter (N;) values. In thermophoresis, the heated nanoparticles are
pushed from a hot surface to a cold area under a temperature gradient. Thermophoretic
body force therefore mobilizes nanoparticle migration from the eylinder surface, and also
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encourages heat diffusion into the boundary layer away from the wall. This causes an
elevation in nanofluid temperature and an accompanying increment in the heat transfer
profiles.

Figures 15 and 16 in order depict the fluid momentum and energy transfer distributions
features for amplifying thermal conductivity variation parameter (7*) values. It is seen
that both characteristics exhibit a slight elevation with larger ~* values. Thermal
conductivity variation parameter features in amplified thermal diffusion term, j%fn,
in heat transfer Eqn. (12) and accentuates heat transfer inside the nanofiuid. A
greater nanofluid thermal conductivity intensifies conduction heat transfer which assists
also in thermal diffusion and momentum diffusion. This results in a distinet fluid
momentum and energy transfer escalation. Evidently inclusion of thermal conductivity
variation produces results which more accurately predict the velocity and temperature
magnitudes. Absence of this parameter v* =0 leads to an under-prediction in both
quantities and lower momentum and lower thermal boundary layer thickness estimates,
which are undesirable in manufacturing operations and can incur expenses, as noted by
Jaluria [48].

Figure 17 displays the mass transfer characteristics for magnifying thermophoresis
parameter (N;). It is confirmed that thermophoretic body force promotes the transport
of nanoparticles away from the heated albeit isothermal eylinder wall into the nanofluid
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boundary layer regime, and therefore enhances nanoparticle concentration magnitudes.
The amplification in magnitudes is considerably greater than temperatures since
thermophoresis is essentially a species diffusion phenomenon which affects thermal field,
as simulated in the quadratic temperature derivative term, (N,(€')?) in heat transfer
Eqn. (12). A notable mass transfer augmentation is induced due to the presence of the
term, (Nyf"), in mass transfer Eqn. (13).

Figure 18 displays mass transfer profiles for amplifying Brownian motion parameter (1V;)
values. It is known that higher Nj, values (in which the Buongiorno model [49] correspond
to smaller nanoparticle sizes and a reduction in nanoparticle ballistic collisions) diminish
the nanoparticle concentration i.e. thereis a depletion in the volume fraction (percentage
doping of the base fluid with nanoparticles). In the Buongiorno model, N, arises in a
coupled thermal-species diffusion term, in heat transfer Eqn. (12), through N,8'¢’.
When this term is magnified, the species diffusion is reduced. A limitation of this model
is that actual nanoparticle types e.g. metallic oxides, carbon nanotubes (CNTs) or
carbon silicates cannot be simulated since a framework for their properties can not be
accommodated. This is achievable in the Tiwari-Das model, as noted by Prakash et al.
[34]. However, the Tiwari-Das model does not feature a mechanism for species diffusion
since it omits a concentration balance equation. A possible remedy to this dilemma is
the fusion of both models and this is currently under investigation.

Figure 19 presents the mass transfer features for magnifying Schmidt number. This
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Figure 26. Nu, Variations for enhancing ~*.

reveals that mass transfer distribution decreases for enhancing Schmidt number
values. In general, higher Schmidt number values decline the molecular diffusivity of
nanoparticles in the base fluid; consequently the concentration profiles falls down. Figure
20 elucidates the mass transfer features for enhancing chemical reaction parameter
(Kr). The present analysis experiences the destructive chemical reaction because higher
chemical reaction parameter values diminish nanoparticle concentration boundary layer
thickness. This elucidates that chemical reaction variation can control the mass diffusion
rates. A homogenous first order chemical reaction has been considered and modelled
with the term, —Kr¢, in the nanoparticle species diffusion Eqn. (13). The negative
nature of this term indicates destructive chemical reaction and clearly its augmentation
will dampen the nanoparticle concentration values as greater conversion of original
species to a new product via chemical reaction will be induced with greater (Kr)
values. Similar trends in magnetohydrodynamic boundary layer thermo solutal Hows
are presented by Sivaraj and Kumar [50, 51], Kumar and Sivaraj [52], Sheri et al. [53]
and Beg et al. [54]. Of course, extra complex chemical reactions may take place e.g.
heterogenous reactions, and these may be addressed in future studies.

Figures 21 and 22 show the skin friction coefficient (C'f,) variations for amplifying
magnetic field parameter (Ha) and thermal radiation parameter (R), respectively. This
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Figure 27. Nu, Variations for enhancing N,.

clarifies that higher magnetic field parameter values and radiative heat flux values decline
the skin friction factor. The skin friction factor is strongly augmented with increasing
stream wise coordinate (£) up to a critical point at which it peaks £ ~ 2 there after
descending steadily with further stream wise distance, as characterized by the parabolic-
type topology. In addition, it is perceived that influence of Ha on C'f, is more dominant
than the influence of R. Figure 23 indicates that the skin friction factor (C'f,) minutely
increases for amplifving thermal conduetivity variation parameter. In other words, a
weak acceleration is seen in the skin friction profiles with higher thermal conductivity of
the nanofiuid. Momentum diffusion must therefore be augmented with increasing ability
of the nanofluid to transport heat. This trend has been reported earlier by Takhar and
Beg [55] albeit for non-magnetic boundary layer flows.

Figures 24 and 25 present the evolution in Nusselt number (Nu,) for variation in
magnetic field parameter (Ha) and thermal radiation parameter (R), respectively.
Magnification in magnetic field parameter and thermal radiation parameter values
decrease the heat transfer rate profiles. It is noticed that impact of radiative heat
flux is more dominant on the Nusselt number distribution at the cylinder surface
(wall) compared with the impact of magnetic field parameter. Both magnetic field
and radiative flux may therefore be implemented potently to manipulate the heat
transmission from the coating to the substrate (cylinder) in materials processing
operations. Figure 26 shows that the Nusselt number (Nu,) upsurges for intensifying
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Figure 28, Nu, variations for enhancing Kr

thermal conductivity variation parameter values. Nusselt number is higher near surface
of the cylinder (¢ = 0) while it uniformly declines for higher stream wise coordinate
values (away from the surface). The results reveal that heat transfer to the cylindrical
surface can be computed with greater physical accuracy in the presence of variable
thermal conductivity. Figure 27 shows that Nusselt number (Nu,) is suppressed with
higher nanoscale thermophoresis parameter (IV;) values i.e. Nusselt number at the wall is
a declining function of thermophoresis. This corroborates the earlier computations which
have shown that temperature is elevated with stronger thermophoretic body foree. Since
the Powell-Eyring nanofluid is heated with this effect, there is an associated decrement
in fluid temperature to the cylindrical surface (boundary) i.e. lower Nusselt numbers.
Figure 28 implies that magnitudes of Nusselt number ( Nu, ) intensify for larger chemical
reaction parameter (Kr) values. Hence the temperature near the wall is assisted with
stronger homogenous destructive chemical reaction of the nanoparticles.

As seen in Fig. 29, Sherwood number (Sh,) profiles diminish for magnifying the
thermophoresis parameter. It is apparent from Fig. 30 that Sherwood number (Sh,)
profiles are enhanced with higher chemical reaction parameter (Kr) values which
promotes migration of nanoparticles to the eylinder surface and diminishes mass transfer
profiles.

Table 4 shows the numerical values of local skin friction factor (C'f,), local Nusselt
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Figure 29. Sh, variations for enhancing N,

number (Nu,) and local Sherwood number (Sh,.) for Newtonian (¢ = £y = 0) and non-
Newtonian (sande; > 0) cases. It is observed that the skin friction coefficient enhances
for intensified Darcy number values, thermal conductivity parameter, Brownian
parameter, chemical reaction and Schmidt number for both Newtonian and non-
Newtonian cases. The skin friction factor declines with amplifying radiative heat
flux values. It is apparent that skin friction values slightly increase for increasing
thermophoresis parameter in the case of Newtonian fluid whereas skin friction value
remains constant for the given values of thermophoresis parameter in case of non-
Newtonian fluid. Nusselt number and Sherwood number are clearly boosted with
higher thermal conductivity parameter values, Schmidt number and chemical reaction
parameter whereas they are depressed for magnifying thermal radiation parameter
and thermophoresis parameter. Higher Brownian motionparameter values declines the
Nusselt number while the reverse trend is perceived in Sherwood number distribution.

6. Conclusions

Motivated by simulating the transport phenomena characteristics of magnetic nanofiuid
coatings on engineering component substrates, a detailed mathematical study has been
presented to investigate the thermo solutal (combined natural convection heat and
mass transfer) characteristics in magnetohydrodynamic, radiative, reactive nanofluid
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Figure 30. Sh, variations for enhancing Kv

boundary layer flow external to a eircular cylinder in a non-Darcy porous medium with
variable thermal conductivity. The nanoscale transport is modelled by employing the
Buongiorno two-component model and the rheological behaviour is accommodated with
the Powell-Eyring model. The resulting nonlinear coupled boundary value problem is
solved with the implicit finite difference KBM scheme under appropriate wall and free
stream boundary conditions. Extensive validation of present results with published
research articles is included. The heat, mass and momentum characteristics are studied
for various thermophysical parameters, visualized through graphs and summarized in
tables. The main findings are as follows:

e Fluid velocity decreases with larger values of the second Powell-Eyring rheological
parameter and magnetic field parameter.

e Nanoparticle concentration declines with larger value of first order homogenous
destruetive chemical reaction parameter, Brownian motion parameter and Schmidt
number.

¢ The influence of the Schmidt number and chemical reaction parameter on Nusselt
number and Sherwood number are opposite to those induced by the thermophoresis
parameter and thermal radiation for both Newtonian and non-Newtonian cases.

e Heat transfer rate (Nusselt number) at transverse coordinate increases with
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Table 4. Variations in Cf,, Nu, and Sh, at £ = 1 for Newtonian and non-Newtonian

flnids.
Newtonian fluid £ = £y = 0 | non- Newtonian fluid e =1 = 0.2
Parameter | Values | C'f, Nu, Sh., Cf. Nu, Sh.,

0.1 | 0.2566 | 0.9997 | 0.5171 | 0.0769 | 0.4840 0.5097

A 0.3 0.2557 | 0.9989 0.5170 0.0767 | 0.4836 0.5096
0.5 | 0.2549 | 0.9982 | 0.5169 | 0.0765 | 0.4832 0.5093

0.1 |0.1310 | 0.9115 | 0.5062 | 0.0254 | 0.4237 0.5048

Da 0.3 | 0212309623 | 0.5126 | 0.0568 | 0.4668 0.5066
0.5 | 0.2549 | 0.9982 | 0.5169 | 0.0765 | 0.4832 0.5097

0.1 | 02562 | 1.7935 | 0.5174 | 0.2478 | 1.7858 0.4004

R 0.3 0.2537 | 0.7329 0.5165 0.2455 | 0.7255 0.3989
0.5 | 02519 | 0.5190 | 0.5158 | 0.2438 | 0.5120 0.3978

0.1 | 0.2547 | 0.9210 | 0.5167 | 0.2464 | 0.9140 0.3993

7 0.2 | 0.2549 | 0.9982 | 0.5169 | 0.2466 | 0.9906 0.3996
0.3 | 0.2550 | 1.0745 | 0.5171 | 0.2468 | 1.0664 0.3998

0.1 | 0.2548 | 1.0026 | 0.5173 | 0.2466 | 0.9949 0.4002

N; 0.2 | 0.2549 | 0.9982 | 0.5169 | 0.2466 | 0.9906 0.3996
0.3 | 0.2552 | 0.9938 | 0.5167 | 0.2466 | 0.9863 0.3991

0.1 0.2541 | 1.0119 0.5132 0.2456 | 1.0032 0.3946

Ny 0.2 | 0.2546 | 1.0052 | 0.5160 | 0.2463 | 0.9971 0.3983
0.3 | 0.2549 | 0.9982 | 0.5169 | 0.2466 | 0.9906 0.3996

0.5 | 0.2549 | 0.9982 | 0.5169 | 0.2438 | 0.5120 0.3978

Kr 1.0 | 0.2685 | 1.0064 | 0.7183 | 0.2557 | 0.5203 0.5557
1.5 | 0.2777 | 1.0107 | 0.8748 | 0.2640 | 0.5248 0.6777

0.1 | 0230209775 | 0.2327 | 0.2288 | 0.4987 0.2208

Se 0.3 | 02454 | 0.9912 | 0.3997 | 0.2438 | 0.5120 0.3978
0.5 | 02540 | 0.9982 | 0.5169 | 0.2532 | 0.5186 0.5156

boosting thermal conductivity parameter values and porous

parameter (Darcy number).

e Velocity magnitude is elevated with higher values

of the

media permeability

first Powell-Eyring

rheological parameter whereas velocity magnitude is decreased for higher Darcy
number values (i.e. progressively extra permeable regimes).

e Fluid temperature enhances for higher thermal conductivity variation parameter
and magnetic field parameter values; however the contrary pattern is computed
with greater thermal radiation parameter.

The present study has considered steady state magnetohydrodynamic nanofluid coating
flow with homogenous chemical reaction. Future investigations may address unsteady
hydromagnetic flows (Beg et al. [56]) and also consider heterogenous chemical reactions
(Mishra et al. [57]), which are also of interest in smart coating transport phenomena.
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