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Abstract 

A non-intrusive reduced-order model for nonlinear parametric flow problems is developed. It 

is based on extracting a reduced-order basis from high-order snapshots via proper orthogonal 

decomposition and using multi-layered feedforward artificial neural networks to approximate 

the reduced-order coefficients. The model is a generic and efficient approach for the reduction 

of time-dependent parametric systems, including those described by partial differential 

equations. Since it is non-intrusive, it is independent of the high-order computational method 

and can be used together with black-box solvers. Numerical studies are presented for steady-

state isentropic nozzle flow with geometric parameterisation and unsteady parameterised 

viscous Burgers equation. An adaptive sampling strategy is proposed to increase the quality 

of the neural network approximation while minimising the required number of parameter 

samples and, as a direct consequence, the number of high-order snapshots and the size of 

the network training set. Results confirm the accuracy of the non-intrusive approach as well 

as the speed-up achieved compared with intrusive hyper reduced-order approaches. 
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1. Introduction 

Large-scale, high-fidelity numerical simulations are commonly used across a wide array of 

industrial applications. Increasingly, parametric studies and design optimisation studies are 

also being done using high-fidelity models, even if they are costly. For instance, aerodynamic 

shape optimisation based on the Reynolds-Averaged Navier-Stokes (RANS) equations is now 

common practice. However, some problems such as the accurate design of high-lift systems 

require the usage of more advanced turbulence modelling such as hybrid RANS-LES (Large 

Eddy Simulation) approaches. These models have an increased computational cost which 

makes them unfeasible for large-scale parametric studies. Surrogate models aimed at finding 

inexpensive to run approximations of a system’s input-output relation can partly overcome this 

challenge [1]. Among them, reduced order models (ROMs) occupy a central place by 

generating a low-order representation of the system defined on a basis which optimally spans 

the space of the system’s variables. ROMs have been successfully applied to a variety of 

problems requiring large-scale numerical simulations, including weather prediction, modelling 

of particle physics, data assimilation, flow through porous media, molecular dynamics or the 

study of advection-diffusion-reaction phenomena [5-10]. 

A popular technique for determining such a basis is Proper Orthogonal Decomposition (POD), 

originally introduced over a century ago [3]. POD uses a set of system outputs (commonly 

referred to as snapshots) to provide a set of orthonormal vectors which form the required 

basis. As for most systems the snapshots will be correlated, POD generally requires only a 

relatively small number of basis vectors to capture the significant information contained in the 

snapshots. The solution coordinates in the POD basis are usually known as the POD 

coefficients. Popular techniques to determine the coefficients are Petrov-Galerkin projection, 

least-squares residual (or another error) minimisation or data-fitting techniques [2]. 

In the Petrov-Galerkin projection approach, the original equations describing the system are 

projected onto the basis in order to determine the reduced-order system, which can be solved 

for the coefficients. However, this approach is code intrusive (requires extensive source code 
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modifications) and cannot be used with black-box solvers Intrusive ROM approaches can 

suffer from inefficiencies dealing with nonlinear problems and instability issues [11-13] 

remedies for these issues also being proposed in literature [14-17]. An alternative non-

intrusive approach is to project only the snapshots onto the basis and determine a finite set of 

POD coefficients corresponding to those snapshots, and then use other surrogate techniques 

such as Kriging, artificial neural networks (ANNs) or radial basis functions (RBFs) as closures 

to model the full POD coefficient space based on the available set [18,19]. Regardless of 

whether the ROM is intrusive or non-intrusive, most approaches use an offline-online strategy. 

The offline stage refers to collecting the high-order model snapshots and generating the basis 

(plus any other fixed quantities involved in that specific ROM approach), while the online stage 

refers to using the ROM to get approximations for the system solution for varying situations of 

interest. 

Non-intrusive ROMs using ANNs have been introduced only relatively recently [24,25], and 

the breadth of literature on the topic is increasing at a high rate. ANN-ROMs have been applied 

to modelling the steady incompressible Navier-Stokes equations [26] and the unsteady 

viscous Burgers equation [27,28] and show very good accuracy and considerable speed-up 

compared to intrusive ROMs in the online stage. A careful setup of the ANN such as in [26] 

can reduce the offline training time to values comparable to those required for the offline 

generation of some so-called hyper ROM approaches [14]. 

A recurrent neural network has been introduced and shown to be an efficient model order 

reduction technique for nonlinear dynamical systems [32]. Other neural network architectures, 

such as long short-term memory (LSTM) architectures have been utilised to complement an 

imperfect reduced-order model with live data streams [33]. Deep ANNs have also been used 

in conjunction with POD-based reduced order modelling for unsteady parametric fluid flow 

models but restricted to the Reynolds number as the only problem parameter, with a very 

limited number of samples [34]. This allowed for a single ANN to learn both the dynamic and 

the parameter space behaviour of the system. The accuracy achieved was shown to be 
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comparable with intrusive ROMs based on POD and a Galerkin projection. A very recent 

application of ANNs is presented in [35], where a parametric reduced-order model is 

generated for the steady-state inviscid transonic flow over a RAE 2822 aerofoil. The 

parametric space included eight independent parameters for modifying the aerofoil shape, the 

results showing that the neural network based model achieved accuracy comparable with 

intrusive ROM techniques. It was also highlighted that a reasonably good training of the ANN 

can be achieved even when the number of training samples is much lower compared to the 

typically-used training datasets numbering thousands of samples. A non-intrusive ROM 

strategy based on POD, physics-informed neural networks (PINNs) and physics-reinforced 

neural networks (PRNNs) was proposed in [39]. In training the networks, the residual error of 

the reduced-order equations is used alongside the error between the network output and the 

POD reduction. Results shown better ROM accuracy compared to other ANN-based 

approaches for parametric, time-dependent test problems, but the method was tested only for 

a low number of parameters as a single ANN is used to capture both the unsteady and the 

parameter space behaviour. Another ANN-ROM approach was developed in [43], formulated 

as a maximum-likelihood problem in which, out of a class on candidate architectures, the one 

which minimises the error on the available high-order solutions is selected. Very good 

accuracy and model reduction capabilities were achieved for two large-scale models, but 

without any parameterisation. 

It is seen that the focus in most of these works has been either to capture the nonlinear 

parameter space variation of a steady parameter-dependent system, or to accurately capture 

the unsteady behaviour of a nonlinear system. Indeed, the most common usage for ANNs in 

ROM frameworks are related to time evolution or data compression, examples of the latter 

being found in [45] and [46], fewer works (such as [35]) focusing on the parametric space 

approximation. Work on ANN-ROMs for time-dependent phenomena involving arbitrarily large 

parameter spaces, as are common for many engineering design problems, is rarely covered 

in literature. It must be noted that approaches other than ANN-ROMs have been proposed to 
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tackle this challenging problem, with various degrees of success and flexibility, including POD-

based models in which the ROM is complemented by an auxiliary linear PDE for enforcing the 

initial and boundary conditions [20,23], POD coupled with Taylor series expansions [21] and 

the widely-used POD-RBF models [19]. 

In recent years, researchers have shown increasing interest in using machine learning (ML) 

techniques not only to improve ROM prediction accuracy, but even to entirely bypass 

traditional numerical methods. A good review of the use of ML in model order reduction, 

together with representative examples from aerodynamics or structural mechanics can be 

found in [41]. In [36], a non-autoregressive time series approach is proposed and shown to 

have improved long-term forecasting capabilities for dynamical systems compared to LSTM 

network architectures. The evolution of time-dependent systems has also been captured using 

Gaussian Processes (GPs) to capture the reduced-space dynamics, together with 

convolutional encoders and decoders to map the high-order data into a low-order 

representation and back [37]. GPs have also been used in conjunction with POD for replacing 

a costly LES computation of airflow in an urban environment [40] and to model turbulent flow 

around transonic aerofoil section [44], while convolutional autoencoders have been proposed 

as alternatives for building suitable reduced subspaces for general dynamical problems [42]. 

An error-modelling technique for ROMs was developed in [38], aimed at correcting ROM 

outputs independent of the ROM generation strategy. Regression-based techniques are 

trained based on the error between the full and reduced-order models, with several 

approaches such as random-forest (RF) regression and least absolute shrinkage and 

selection operator (LASSO) regression being investigated. 

To the authors best knowledge, the work presented here represents the first utilization of an 

ANN as a closure model in the POD-ROM modelling of parametric and time-dependent 

nonlinear phenomena in which the size and complexity of the parametric space can be 

arbitrarily high. The novelty and flexibility of the proposed approach consists of an efficient 

decoupling of the time-domain dynamics approximation from the parameter space 
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approximation. The most adequate ANN architecture can thus be selected for each 

approximation, based on the available number of POD modes, parameter samples, 

computational time constraints, etc. The paper is structured as follows: Section 2 provides a 

brief overview of ANNs; section 3 investigates the performance of ANN-ROM for parametric 

time-independent problems and presents an adaptive sampling method for improving the 

approximation; section 4 investigates the application to time-dependent non-parametric 

nonlinear problems; finally, section 5 explores parametric and time-dependent nonlinear 

problems and presents a novel extension to the adaptive sampling strategy to efficiently tackle 

problems with a high-dimensional parametric space while minimising the required number of 

sample points. 

 

2. Brief overview of Artificial Neural Networks 

An artificial neural network, often referred to as a neural network, is a computational model 

able to learn from a provided data set (for a thorough overview of ANNs see for example [29]). 

The architecture of ANNs was inspired by their biological counterparts and is represented by 

a collection of neurons (as fundamental data processing elements) and weighted, directed 

connections between neurons (the equivalent of synapses). 

Assume an arbitrary neuron 𝑗 in the network receives 𝑀 input signals {𝑥1, 𝑥2, … , 𝑥𝑀} (either 

from 𝑀 sending neurons or as the network input data) and produces a scalar output signal 𝑦𝑗 

(which can in turn be sent to 𝑁 receiving neurons or represent the network output data). 

The propagation function of neuron 𝑗 converts the vector input into a scalar input, often referred 

to as the net input. The most common choice is a weighted sum taking the form: 

𝑢𝑗 = 𝑓𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑥1, 𝑥2, … , 𝑥𝑀) = ∑𝑤𝑘,𝑗𝑥𝐾

𝑀

𝑘=1

 (1) 

Here, 𝑢𝑗 is the net input of neuron 𝑗 and 𝑤𝑘,𝑗 are the set of 𝑀 weights for each of the neuron’s 

vector input components. The activation function quantifies to what extent a given neuron is 
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active (generating an output value). The activation function combines the net input with some 

threshold 𝑡𝑗 ∈ ℝ and is responsible for creating the activation state of the neuron: 

𝑎𝑗 = 𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑢𝑗, 𝑡𝑗) = 𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑𝑤𝑘,𝑗𝑥𝐾

𝑀

𝑘=1

, 𝑡𝑗) (2) 

It is common practice to introduce a so-called bias neuron 𝑏 into the network, a continuously 

active neuron having a constant output 𝑦𝑏 = 1 which is connected with the arbitrary neuron 𝑗 

and whose output weight towards neuron 𝑗 (called the bias weight 𝑤𝑏,𝑗) is used as the 

threshold value 𝑤𝑏,𝑗 = −𝑡𝑗. Using a bias neuron, the activation state becomes: 

𝑎𝑗 = 𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑𝑤𝑘,𝑗𝑥𝐾

𝑀

𝑘=1

− 𝑡𝑗) (3) 

Various choices of activation function exist in literature, among which the most common are 

so-called sigmoid functions [29], the hyperbolic tangent being a widely used example: 

𝑎𝑗 =
𝑒∑ 𝑤𝑘,𝑗𝑥𝐾

𝑀
𝑘=1 −𝑡𝑗 − 𝑒−∑ 𝑤𝑘,𝑗𝑥𝐾

𝑀
𝑘=1 −𝑡𝑗

𝑒∑ 𝑤𝑘,𝑗𝑥𝐾
𝑀
𝑘=1 −𝑡𝑗 + 𝑒−∑ 𝑤𝑘,𝑗𝑥𝐾

𝑀
𝑘=1 −𝑡𝑗

 (4) 

The output function determines the neuron’s scalar output 𝑦𝑗 based on the activation state but 

is often taken as the identity function so that the output is directly given by 𝑎𝑗. 

𝑦𝑗 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑎𝑗) (5) 

The connection of individual neurons defines the topology of the ANN. Different topologies 

have been proposed for different applications, however for function approximation and 

regression the feedforward topology is preferred, first proposed in [30]. Neurons are arranged 

in layers, with one input layer, 𝐾 hidden layers and one output layer. The neurons in the input 

layer to not perform any computation tasks, having an identity activation function, while the 

output layer neurons typically use simpler, linear activation functions. Neurons in any layer 

receive data only from the previous layer (towards the input) and output data only towards the 

next layer (towards the output). 
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The training of the neural network is the iterative process through which the neuron weights 

are determined. This is achieved by learning from a provided training set. Let 𝑓:ℝ𝐼 → ℝ𝑂 be a 

nonlinear function which the neural network must approximate. Let 𝒙1, 𝒙2, … , 𝒙𝑁𝑇𝑅, with 𝒙𝑖 ∈

ℝ𝐼 be a set of 𝑁𝑇𝑅 training points, and 𝒚1, 𝒚2, … , 𝒚𝑁𝑇𝑅, with 𝒚𝑖 = 𝑓(𝒙𝑖) ∈ ℝ
𝐼 be the function 

values corresponding to these points. The set {𝒙𝑖, 𝒚𝑖}, 𝑖 = 1,2, … ,𝑁𝑇𝑅 represents the training 

set which must be supplied to the neural network. The goal is to approximate 𝑓 up to a certain 

tolerance 𝜀. The performance of the network is determined based on a performance function, 

typically the mean squared error (MSE): 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = ∑(‖𝒚𝑖 − 𝐹(𝒙𝑖)‖)
2

𝑁𝑇𝑅

𝑖=1

≤ 𝜀 (6) 

Where 𝐹(𝒙𝑖) is the neural network prediction at training point 𝒙𝑖. The training iterations, usually 

called epochs, are aimed at calculating the optimal neuron weights such that (6) is satisfied 

and can be conducted using nonlinear regression algorithms such as the Levenberg-

Marquardt algorithm [31]. It must be noted that the Levenberg-Marquardt algorithm is the most 

efficient choice for relatively small networks, but not for larger ones due to its computational 

cost increasing nonlinearly with the number of hidden neurons. 

 

3. Non-intrusive POD-based ROM for Parametric Time-Independent Systems 

Let the high-order time-independent parametric model be represented by: 

𝑹(𝒖(𝒙, 𝝁), 𝒙, 𝝁) = 𝟎 (7) 

Here, 𝑹:ℝ𝑁 × ℝ𝑃 → ℝ𝑁 with 𝑁 typically being very large, 𝒖: Ω ⊂ ℝ𝑁 × ℝ𝑃 → ℝ𝑁 are the system 

variables defined on a subspace Ω of ℝ𝑁, 𝒙 ∈ ℝ𝑁 are spatial coordinates, and 𝝁: D ⊂ ℝ𝑃 → ℝ𝑃 

are the problem parameters defined on a subspace D of ℝ𝑃. If the model is given by partial 

differential equations, such as Computational Fluid Dynamics (CFD) applications, it is 

assumed the equations are fully discretized and any boundary conditions are included in the 

algebraic form (7). 
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The generation of the POD basis uses the method of snapshots introduced in [4]. To build the 

POD basis, it is assumed evaluations of the high-order model 𝑹 are available at a set of 𝑀 

points (or samples) in the parametric space {𝝁1, 𝝁2, … , 𝝁𝑀 , }, with 𝑀 typically being much 

smaller than 𝑁, since the evaluation of 𝑹 can be very expensive. These evaluations, 

representing the snapshots, are arranged in the 𝑁 ×𝑀 snapshots matrix: 

𝑺 = [𝒖(𝒙, 𝝁1), 𝒖(𝒙, 𝝁2), … , 𝒖(𝒙, 𝝁𝑀)] (8) 

The deviation matrix 𝑫 = [𝒖(𝒙, 𝝁1) − 𝒖̅, 𝒖(𝒙, 𝝁2) − 𝒖̅, … , 𝒖(𝒙, 𝝁𝑀) − 𝒖̅] is then built, where 𝒖̅ is 

the snapshots mean vector, whose components are evaluated as 𝑢̅𝑖 =
1

𝑀
∑ 𝑢𝑖(𝝁𝑗)
𝑀
𝑗=1 , 𝑖 =

1,2,… ,𝑁. A singular value decomposition (SVD) of 𝑫 is computed, 𝑫 = 𝑼𝚺𝑽𝑇, where 𝑼 ∈

ℝ𝑁×𝑁, 𝑽 ∈ ℝ𝑀×𝑀 and 𝚺 ∈ ℝ𝑁×𝑀 is a diagonal matrix containing the ordered singular values 

𝜎𝑖 ∈ ℝ, 𝜎1 > 𝜎2 > ⋯ > 𝜎𝑀. The POD basis vectors (or modes) 𝜑𝑖 ∈ ℝ
𝑁 are obtained by 

extracting the first 𝐾 column vectors of 𝑼. The problem solution can then be approximated as: 

𝒖 ≅ 𝒖̅ +∑𝛼𝑖𝜑𝑖

𝐾

𝑖=1

 (9) 

Here, 𝛼𝑖 are the POD coefficients. In a non-intrusive approach such as used in this paper, 

equation (9) is considered for each snapshot, 𝒖(𝝁𝑗) = 𝒖̅ + ∑ 𝛼𝑖(𝝁𝑗)𝜑𝑖
𝐾
𝑖=1 , and the POD 

coefficients are determined by a Petrov-Galerkin projection of the snapshots onto the POD 

basis vectors: 

𝛼𝑖(𝝁𝑗) = (𝒖(𝝁𝑗) − 𝒖̅)
𝑇
𝜑𝑖, 𝑖 = 1,2, … , 𝐾, 𝑗 = 1,2,…𝑀 (10) 

For many problems of interest, the most important part of the energy distribution is 

concentrated in the first few modes. The truncation of the basis to 𝐾 modes is done by 

selecting the smallest possible 𝐾 < 𝑀 such that a desired level of energy capture 𝜀 ∈ [0,1] is 

achieved: 

∑ 𝜎𝑖
2𝐾

𝑖=1

∑ 𝜎𝑖
2𝑀

𝑖=1

≥ 𝜀 
(11) 
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In order to obtain a POD approximation of the solution 𝒖(𝝁) at an arbitrary parameter value 

not included in the sampling {𝝁1, 𝝁2, … , 𝝁𝑀 , }, the variation of the POD coefficients over the 

entire parametric space is captured using ANNs. The ANN is trained using the available 

parameter values as the input set, and the POD coefficient values as the target output, thus 

building the correspondence {𝝁1, 𝝁2, … , 𝝁𝑀 , }
𝐴𝑁𝑁
→  {𝜶(𝝁1), 𝜶(𝝁2), … , 𝜶(𝝁𝑀)}. The POD-based 

ANN surrogate then provides a solution approximation expressed as: 

𝒖̃(𝝁) = 𝒖̅ +∑𝛼̃𝑖(𝝁)𝜑𝑖

𝐾

𝑖=1

 (12) 

Here, 𝛼̃𝑖(𝝁) are the coefficient values approximated by the ANN-POD surrogate at an arbitrary 

parameter value 𝝁. 

The approximate solution can be related to the exact solution as follows: 

𝒖(𝝁) = 𝒖̅ +∑𝛼𝑖(𝝁)𝜑𝑖

𝑀

𝑖=1

+ 𝐷(𝝁) = 𝒖̅ +∑𝛼𝑖(𝝁)𝜑𝑖

𝐾

𝑖=1

+ 𝑇(𝝁) + 𝐷(𝝁) = 

= 𝒖̅ +∑𝛼̃𝑖(𝝁)𝜑𝑖

𝐾

𝑖=1

+∑𝛼𝑖(𝝁)𝜑𝑖

𝐾

𝑖=1

−∑𝛼̃𝑖(𝝁)𝜑𝑖

𝐾

𝑖=1

+ 𝑇(𝝁) + 𝐷(𝝁) = 

= 𝒖̅ +∑𝛼̃𝑖(𝝁)𝜑𝑖

𝐾

𝑖=1

+𝑁(𝝁) + 𝑇(𝝁) + 𝐷(𝝁) = 𝒖̃(𝝁) + 𝑁(𝝁) + 𝑇(𝝁) + 𝐷(𝝁) 

(13) 

Here, 𝐷(𝝁) is the error arising when the sampling of the parameter space is not sufficiently 

refined, leading to a lack of enough richness of the POD basis to capture all relevant features 

appearing in the parameter space D. 𝑇(𝝁) is the error due to truncation of the POD basis to a 

rank 𝐾 < 𝑀, and 𝑁(𝝁) is the error due to the ANN approximation of the POD coefficients at 

parameter value 𝝁. 

One effective strategy of reducing 𝐷(𝝁) is to improve the POD basis quality via an adequate 

adaptive sampling procedure in which parameter samples are sequentially added to the set 

while balancing adequate exploration (spanning of the entire solution space) and exploitation 

(additional refinement in regions of strong, nonlinear solution dependence on parameter 
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variations). 𝑇(𝝁) is usually small, provided that an adequate energy threshold is chosen (𝜀 >

0.990-0.995). The ANN approximation error 𝑁(𝝁) can be measured by the error at a finite 

number of points different from the set of samples used to build the POD basis. Adaptive 

sampling techniques can be extended to generate additional snapshots in the neighbourhood 

of parameter sample points where ‖𝛼(𝝁) − 𝛼̃(𝝁)‖ is high, thus improving the quality of the 

ANN approximation. Another strategy is to use more complex ANN architectures, with an 

increased number of hidden layers and number of neurons per layer. Whatever strategy is 

used, building the surrogate ANN-POD model must remain computationally affordable, and 

number of snapshots (high-order solutions) added, or the complexity of the ANN (requiring an 

ever-increasing training effort) must be limited. 

The adaptive sampling technique aimed to improve the quality of the POD basis is that 

developed in [1]. The method starts with a given set of parameter samples {𝝁1, 𝝁2, … , 𝝁𝑀 , } 

(selected a priori by methods such as Latin Hypercube Sampling (LHS)) and their 

corresponding snapshots 𝑺 = [𝒖(𝒙, 𝝁1), 𝒖(𝒙, 𝝁2), … , 𝒖(𝒙, 𝝁𝑀)]. A POD basis is generated, and 

the relative influence of all snapshots on the basis is calculated as: 

𝐼𝑛𝑓𝑙𝐵𝑎𝑠𝑖𝑠
𝑅𝑒𝑙 (𝝁𝑗) =

∑ 𝜎𝑖 (
1

‖𝜑𝑖
𝑇𝜑𝑖

−𝑗
‖
− 1)𝐾

𝑖=1

∑ ∑ 𝜎𝑖 (
1

‖𝜑𝑖
𝑇𝜑𝑖

−𝑘‖
− 1)𝐾

𝑖=1
𝑀
𝑘=1

, 𝑗 = 1,2,… ,𝑀 (14) 

Here, 𝜑𝑖
−𝑗

 is the 𝑖-th basis vector of a POD basis constructed by leaving out the 𝑗-th snapshot 

from the 𝑺 matrix, or 𝑺−𝑗 = [𝒖(𝒙, 𝝁1), 𝒖(𝒙, 𝝁2),… , 𝒖(𝒙, 𝝁𝑗−1), 𝟎, 𝒖(𝒙, 𝝁𝑗+1),… , 𝒖(𝒙, 𝝁𝑀)]. The 

quantity 𝐼𝑛𝑓𝑙𝐵𝑎𝑠𝑖𝑠
𝑅𝑒𝑙 (𝝁𝑗) is a measure of the total sensitivity of all modes 𝜑𝑖, 𝑖 = 1,2,…𝐾 with 

respect to the 𝑗-th snapshot. After equation (14) is evaluated for all parameters in the initial 

set {𝝁1, 𝝁2, … , 𝝁𝑀 , }, the parametric space is heavily populated (using LHS, for example) with 

a set of candidate sample points {𝝊1, 𝝊2, … , 𝝊𝑄 , }, with 𝑄 ≫ 𝑀. The potential of enrichment of 

each candidate sample is then evaluated: 
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𝑃𝑜𝑡(𝝊𝑖) = 𝐼𝑛𝑓𝑙𝐵𝑎𝑠𝑖𝑠
𝑅𝑒𝑙 (𝝁𝑗) ∙ 𝑑(𝝊𝑖, 𝝁𝑗), 𝑖 = 1,2, … , 𝑄 

𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑑(𝝊𝑖, 𝝁𝑘) 

(15) 

Here, 𝑑(𝝊𝑖, 𝝁𝑗) is the Euclidean distance between two sample points. Through (15), a balance 

is achieved between improvement of the POD basis and parameter space exploration 

(introducing the distance effects to a decrease in the potential of enrichment if the candidate 

sample is too close to an already existing sample). The candidate sample having the highest 

potential 𝝁𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑃𝑜𝑡(𝝊𝑘) is added to the set, which becomes {𝝁1, 𝝁2, … , 𝝁𝑀 , 𝝁𝑀+1 =

𝝁𝑛𝑒𝑤}. The procedure continues as explained until the set of parameter sample points reaches 

a desired maximum size. 

The technique outlined earlier can be extended and applied to selecting candidate sampling 

points which improve the quality of the ANN approximation. Starting with the given set of 

parameter samples {𝝁1, 𝝁2, … , 𝝁𝑀 , }, the POD basis is generated, the ANN is trained and the 

influence of all snapshots on the ANN-determined coefficients is calculated as: 

𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) =

∑ 𝜎𝑖‖𝛼𝑖(𝝁𝑗) − 𝛼̃𝑖
−𝑗(𝝁𝑗)‖

𝐾
𝑖=1

∑ ∑ 𝜎𝑖‖𝛼𝑖(𝝁𝑗) − 𝛼̃𝑖
−𝑘(𝝁𝑗)‖

𝐾
𝑖=1

𝑀
𝑘=1

, 𝑗 = 1,2, … ,𝑀 (16) 

Where 𝛼̃𝑖
−𝑗(𝝁𝑗), 𝑖 = 1,2, … , 𝐾 is the set of coefficients obtained with the ANN for sampling point 

𝝁𝑗, but constructed starting from a snapshot matrix, a POD basis and a set of POD coefficients 

from which the 𝑗-th snapshot has been left out. Like the POD improvement strategy, the 

technique continues with generating a set of candidate sampling points {𝝊1, 𝝊2, … , 𝝊𝑄, }, 

determining the potential of improving the ANN approximation using 𝑃𝑜𝑡(𝝊𝑖) = 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) ∙

𝑑(𝝊𝑖, 𝝁𝑗), 𝑖 = 1,2, … , 𝑄 and finally adding the candidate sample having the highest potential 

𝝁𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑃𝑜𝑡(𝝊𝑘) to the set {𝝁1, 𝝁2, … , 𝝁𝑀 , 𝝁𝑀+1 = 𝝁𝑛𝑒𝑤}. 

It must be noted that the adaptive sampling technique based only on improving the quality of 

the ANN-approximated coefficients is time-consuming, due to the need of training, for each 

added parameter sample, a number of neural networks equal to the number of parameters 

minus one. One potential way of mitigating this is to use a combined, POD basis improvement 
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and ANN approximation improvement sampling strategy, in which the newly added sampling 

points are alternatively selected by the two strategies. 

In order to assess the ANN-POD method, an academic test case similar to the one used in 

[22] is chosen, namely the analysis of subsonic flow in a convergent-divergent nozzle of length 

𝐿. The mathematical model is given by a nonlinear ordinary differential equation: 

𝑑

𝑑𝑥
(𝜌𝑈𝐴) = 0, 𝑥 ∈ [0, 𝐿] (17) 

Which, after further manipulation, becomes: 

𝑑

𝑑𝑥
(𝜌0𝐴(𝑥)√𝛾𝑅𝑇0𝑀(𝑥) (1 +

𝛾 − 1

2
𝑀2(𝑥))

−
𝛾+1
2(𝛾−1)

) = 0, 𝑥 ∈ [0, 𝐿] (18) 

Here, 𝜌0 and 𝑇0 are the stagnation density and temperature (which can be held constant and 

equal to the values at the inlet, assuming isentropic flow), 𝛾 = 1.4 is the ratio of specific heats, 

𝑅 = 287 is the specific gas constant, 𝐴(𝑥) is the nozzle area distribution and 𝑀(𝑥) is the Mach 

number for which the equation is solved. The nozzle area is parameterized as 𝐴(𝑥) =

𝑝3(𝑥 − 𝑝2)
2 + 𝑝1, using a parameter vector 𝝁 = [𝑝1, 𝑝2, 𝑝3] ∈ ℝ

3. The parameter values are 

limited to 0.015 ≤ 𝑝1 ≤ 0.025, 0.8 ≤ 𝑝2 ≤ 1.2 and 0.004 ≤ 𝑝3 ≤ 0.007. 

Equation (18) is solved in a domain of length 𝐿 = 3 on a uniformly spaced grid with 𝑁 = 1000 

points using an upwind-biased finite-difference scheme. The ANN-ROM results are compared 

not only with the high-order solution, but also with the solution given by an intrusive ROM 

based on the GNAT model [14]. GNAT is one of the most accurate and efficient intrusive 

ROMs, being successfully applied to complex, turbulent flow problems and nonlinear structural 

dynamics [14]. It is applicable to implicitly formulated models solved via Gauss-Newton 

iterations and involves a two-level approximation. In the first level, snapshots of the high-order 

residual are taken and used to generate a POD basis. The implicit equations are then 

projected onto the POD basis using a Petrov-Galerkin projection. In the second level, 

snapshots of the first-level ROM residual and Jacobian are taken and used to build two 
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iteration-dependent bases. These bases, together with a gappy-type least-squares data 

reconstruction of the ROM residual and Jacobian, are used to construct the second level 

hyper-reduced-order model (HROM), which achieves a significant speed-up in comparison 

with the first-level ROM. 

Figure 1 shows the spectrum of singular values for the snapshots’ matrix. The POD basis is 

truncated to 𝐾 = 25 modes (which satisfies an error threshold of 99.99%), while the residual 

and Jacobian bases required for GNAT are truncated to 𝐾𝑅 = 𝐾𝐽 = 100 modes. In the first test, 

a number of 125 fixed, uniformly distributed sampling points are chosen in the parameter 

space. The ANN is configured as a feedforward network using a single hidden layer of neurons 

using the hyperbolic tangent sigmoid transfer function and a layer of output neurons using a 

linear transfer function and is trained using the Levenberg-Marquardt algorithm. 

Table 1 contains the time required to perform the various stages of building the ROMs (the 

offline stage). All times are normalised with respect to 𝑡𝑟𝑒𝑓 the time required to collect the 125 

high-order model (HOM) snapshots. It can be seen that for small basis size (small number of 

POD coefficients), increasing the number of hidden layer neurons only has a very small impact 

on the network training time. Overall, the HROM generation time is approximately 42% higher 

compared to the ANN-ROM due to the requirement of taking the second set of ROM 

snapshots, making the ANN-ROM more time efficient in the offline stage. 

In order to verify the accuracy of both HROM and ANN-ROM, a set of 64 points uniformly 

distributed in the parameter space is chosen, all of which are checked to be different to the 

initial set of 125 used to build the ROMs. The mass flow rate through the nozzle as calculated 

with the local Mach number at the throat is compared (serving as variable of engineering 

interest), as well as the root mean square (serving as an indication of the overall ROM 

accuracy considering all points in the [0, 𝐿] interval): 
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Figure 01. Singular values of the snapshots’ matrix for the problem of subsonic flow 

in a convergent-divergent nozzle 

 

Table 01. Comparison between time required to collect HOM snapshots, collect ROM 

snapshots required for building HROM and train ANN 

 
HOM 

Snapshots 
Collection 

ROM 
Snapshots 
Collection 

Train ANN 
with 40 
hidden 

neurons 

Train ANN 
with 60 
hidden 

neurons 

Train ANN 
with 80 
hidden 

neurons 

𝑡/𝑡𝑟𝑒𝑓 1 0.423 0.0353 0.0366 0.0892 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑀𝑖

𝑅𝑂𝑀 −𝑀𝑖
𝐻𝑂𝑀)

2
𝑁

𝑖=1

 (19) 

Table 2 shows the average runtime required for the HOM and two ROMs as calculated based 

on all 64 test runs, normalised with respect to 𝑡𝑟𝑒𝑓 the average runtime of the HOM. It can be 

observed the HROM achieves a runtime reduction of one order of magnitude, while for the 

non-intrusive ANN-ROM, the reduction is three orders of magnitude. This is expected to 

represent a significant advantage for more complex problems such as CFD or FEM analysis. 
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Table 02. Comparison between average runtimes over 64 test cases 

 HOM HROM ANN-ROM 

𝑡/𝑡𝑟𝑒𝑓 1 0.1363 0.0031 

 

 

Figure 02. RMSE of HROM and ANN-ROM for all 64 test parameter samples, with a 

network hidden layer having 40 neurons (top left), 60 neurons (top right) and 80 

neurons (bottom left) 

Figure 2 depicts a comparison between the RMSE of the HROM and ANN-ROM with 40, 60 

and 80 neurons in the hidden layer, for all 64 test parameter samples. Increasing the number 

of hidden layer neurons tends to level the RMSE values across all test points, but not to 

significantly increase the average accuracy. It must be kept in mind that training a neural 

network is not a deterministic process since the training samples are randomly chosen from 

the provided input set. In addition, overfitting in which weighting factors associated with 
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different neurons become correlated due to too high a number of neurons can decrease the 

predictive capabilities of ANNs. These factors can explain why the network with 80 neurons in 

the hidden layer does not provide any significant improvement compared to the network with 

60 neurons. The RMSE values achieved by the HROM are highly dependent on the point in 

the parameter space. Figure 3 shows the error in mass flow rate calculated with both HROM 

and ANN-ROM for all 64 test parameter samples. It can be seen that the ANN-ROM achieves 

an error of the order of 𝑂(10−2) across the entire parameter space, which is sufficient for many 

engineering design and optimisation problems, while the HROM achieves a much lower error 

of the order of 𝑂(10−5). It must be noted that parameter 𝑝1 directly controls the area at the 

throat section and has the highest effect on the mass flow rate, while parameters 𝑝2 and 𝑝3 

(controlling the position of throat along the nozzle length and the magnitude of area change 

𝑑𝐴/𝑑𝑥) have a much more limited influence. 

The adaptive sampling technique is considered next as a method of increasing the accuracy 

of the ANN-ROM approach. The total number of parameter samples (and thus HOM 

snapshots) remains 125. An initial number of 64 uniformly distributed points are taken, with 

the remaining 61 being sequentially added. The POD basis is truncated to 𝐾 = 25 modes, 

while the residual and Jacobian bases required for GNAT are truncated to 𝐾𝑅 = 𝐾𝐽 = 100 

modes. The ANN is generated using one hidden layer of 60 neurons. The set of candidate 

samples {𝝊1, 𝝊2, … , 𝝊𝑄 , } is generated using LHS and has 625 samples. In the adaptive 

sampling aimed at improving the ANN coefficients approximation, all samples are added 

according to equation (10) in order to quantify both the method effectiveness and the time 

penalties it incurs. Table 3 shows a comparison between the time required to collect the 125 

HOM snapshot with the three sampling techniques. All times are normalised with respect to 

𝑡𝑟𝑒𝑓 the time required to collect the snapshots in the fixed a-priori sampling technique. It is 

seen that the adaptive sampling strategy aimed at improving the quality of the POD basis only 

introduces a 13% increase in the total snapshots collection time. However, the second  
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Figure 03. Variation of mass flow rate across parametric space calculated with the 

HOM, and error in mass flow rate calculated with both HROM and ANN-ROM for all 64 

test parameter samples 
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Table 03. Comparison between HOM snapshots collection times for the three 

sampling techniques 

 Fixed 
Adaptive basis 
improvement 

Adaptive ANN 
approximation 
improvement 

𝑡/𝑡𝑟𝑒𝑓 1 1.13 7.21 

 

adaptive sampling technique requires a significant time increase due to continuous re-training 

of the neural network done as part of estimating the influence factors in equation (16). 

Verification of the accuracy of both HROM and ANN-ROM is again made using a set of 64 

points uniformly distributed in the parameter space, all of which are checked to be different to 

the initial set of 125 used to build the ROMs. Figure 4 depicts a comparison between the 

RMSE of the HROM and ANN-ROM constructed using the three sampling techniques, for all 

64 test parameter samples. Both adaptive sampling strategies manage to reduce the RMSE 

of the ANN-ROM, indicating a better modelling of the system variables throughout the domain. 

The second adaptive strategy reduces the RMSE by one order or magnitude compared with 

the fixed sampling strategy, however it does incur a seven-fold increase in the time required 

to collect the snapshots. The HROM still achieves lower RMSE for a high proportion of the 

considered test points. Figure 5 shows the error in mass flow rate calculated with both HROM 

and ANN-ROM, for all 64 test parameter samples. Compared to the fixed sampling results of 

Figure 3, the adaptive sampling allows for an average one order of magnitude reduction in 

flow rate prediction error be achieved. The POD basis improvement adaptive sampling 

represents an effective strategy incurring only a small increase in the time required for 

snapshots collection while increasing the accuracy of the ANN-ROM approximation. 

 

4. Non-intrusive POD-based ROM for Non-Parametric Time-Dependent Systems 

Let the high-order time-dependent non-parametric model be represented by: 
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Figure 04. RMSE of HROM and ANN-ROM for all 64 test parameter samples, using 

fixed sampling (top left), basis improvement adaptive sampling (top right) and ANN 

approximation improvement adaptive sampling (bottom left) 

𝑹(𝒖(𝒙, 𝑡), 𝒙, 𝑡) = 𝟎 (20) 

Here, 𝑹:ℝ𝑁 × [0,∞) → ℝ𝑁 with 𝑁 typically being very large, 𝒖: Ω ⊂ ℝ𝑁 × [0,∞) → ℝ𝑁 are the 

system variables defined on a subspace Ω of ℝ𝑁, 𝒙 ∈ ℝ𝑁 are spatial coordinates, and 𝑡 is the 

time, defined in the semi-infinite interval [0,∞). 

The generation of the ANN-POD surrogate follows the same steps as in the time-independent 

parametric case. The high-order model 𝑹 is solved (marched) in time and snapshots are 

collected at a set of 𝑀 points (or samples) in time {𝑡1, 𝑡2, … , 𝑡𝑀, }. Performing the SVD of the 

deviation matrix 𝑫 = [𝒖(𝒙, 𝑡1) − 𝒖̅, 𝒖(𝒙, 𝑡2) − 𝒖̅, … , 𝒖(𝒙, 𝑡𝑀) − 𝒖̅], with 𝑢̅𝑖 =
1

𝑀
∑ 𝑢𝑖(𝑡𝑗)
𝑀
𝑗=1 , 𝑖 = 
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Figure 05. Variation of mass flow rate across parametric space calculated with the 

HOM, and error in mass flow rate calculated with both HROM and ANN-ROM for all 64 

test parameter samples, ROMs build using adaptive sampling 
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1,2,… ,𝑁, and choosing the first 𝐾 columns vectors of 𝑼 provides the required POD basis. The 

POD coefficients at the set of discrete moments in time are determined by a Petrov-Galerkin 

projection of the snapshots onto the POD basis vectors, 𝛼𝑖(𝑡𝑗) = (𝒖(𝑡𝑗) − 𝒖̅)
𝑇
𝜑𝑖 , 𝑖 =

1,2,… , 𝐾, 𝑗 = 1,2, …𝑀. The ANN is then trained using the available set of POD coefficient 

values to build the correspondence {𝑡1, 𝑡2, … , 𝑡𝑀 , }
𝐴𝑁𝑁
→  {𝜶(𝑡1), 𝜶(𝑡2),… , 𝜶(𝑡𝑀)}, and the solution 

at any moment in time is calculated as: 

𝒖̃(𝑡) = 𝒖̅ +∑𝛼̃𝑖(𝑡)𝜑𝑖

𝐾

𝑖=1

 (21) 

Testing the ANN-POD for time-dependent problems is done using the inviscid Burgers 

equation. The mathematical problem is defined as: 

𝜕𝑈

𝜕𝑡
+
1

2

𝜕𝑈2

𝜕𝑥
= 0, 𝑥 ∈ [0, 𝐿] 

𝑈(𝑥, 𝑡 = 0) = 0 

𝑈(𝑥 = 0, 𝑡) = √5, 𝑡 ≥ 0 

𝜕𝑈

𝜕𝑥
(𝑥 = 𝐿, 𝑡) = 0, 𝑡 ≥ 0 

(22) 

The inviscid Burgers equations is used a simplified test problem for the compressible Euler 

equations since it allows discontinuous solutions similar to shock waves in a fluid flow. 

Equation (16) is solved in a domain of length 𝐿 = 100 on a uniformly spaced grid with 𝑁 =

1000 points using an implicit second-order TVD Lax-Friedrichs scheme with an added artificial 

viscosity term. This choice ensures the HOM solution will be free of numerically induced 

oscillations around the shock wave. The equation is solved in the time interval 𝑡 ∈ [0,50], with 

a step ∆𝑡 = 0.1. 

The ANN-ROM results are compared not only with the high-order solution, but also with the 

solution given by the GNAT ROM. Snapshots of the HOM solution are taken every 5 time 

steps, giving a total of 100 snapshots for the chosen interval and ∆𝑡. The POD basis is 

truncated to 𝐾 = 25 modes (which satisfies an error threshold of 99.90%), while the residual 
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and Jacobian bases required for GNAT are again truncated to 𝐾𝑅 = 𝐾𝐽 = 100 modes. The 

feedforward ANN is configured using a single hidden layer of neurons using the hyperbolic 

tangent sigmoid transfer function and a layer of output neurons using a linear transfer function 

and is trained using the Levenberg-Marquardt algorithm. Numerical tests indicate that 40 

neurons in the hidden layer are sufficient to provide good accuracy while avoiding overfitting. 

A comparison between the HOM, HROM and ANN-ROM at five selected moments in time is 

shown in Figure 6. It can be observed that both HROM and ANN-ROM approximations capture 

extremely well the HOM solution for all time instances within [0,50], with only some very small 

oscillations around the advancing shock. Since these oscillations are present in the ANN-ROM 

as well, they are attributed to local projection errors in calculating the POD coefficients. The 

solution at time 𝑡 = 58, being outside the initial sampling interval [0,50], is not captured by 

either of the ROMs. This is due to lack of information in the POD basis related to any HOM 

snapshot for 𝑡 > 50, and is an expected behaviour. ROMs can be very accurate at 

approximating the system variables in the subspace spanned by the POD basis vectors, but 

not at predicting values outside of range of HOM snapshots. 

Table 4 contains the time required to capture the HOM snapshots and build the POD basis 

and generate the two ROMs (the offline stage for both approaches). All times are normalised 

with respect to 𝑡𝑟𝑒𝑓 the time required to build the POD basis. Collecting the ROM snapshots 

required for the HROM requires a time comparable to collecting the HOM snapshots due to 

the inefficiency of the simple ROM for this highly non-linear problem. Using the ANN-ROM 

allows for reductions in the time required for the offline stage, while keeping excellent accuracy 

(as seen in Figure 6). 

Table 5 shows the runtime required for the HOM and two ROMs to numerically solve problem 

(16) in the time interval 𝑡 ∈ [0,50], normalised with respect to 𝑡𝑟𝑒𝑓 the runtime of the HOM. The 

HROM reduces the solution time to approximately one-third of the HOM solution time, while 

the ANN-ROM requires only 2% of the HOM solution time. 
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Figure 06. Solution of inviscid Burgers equation as obtained with HOM, HROM and 

ANN-ROM at five instances in time 

 

Table 04. Comparison between HOM snapshot collection plus POD basis and ROM 

generation times 

 
HOM Snapshots 
Collection plus 

POD Basis 

ROM Snapshots 
Collection plus 

HROM Generation 
ANN-ROM Training 

𝑡/𝑡𝑟𝑒𝑓 1 0.897 0.1490 

 

Table 05. Comparison between runtimes of HOM and the two ROMs 

 HOM HROM ANN-ROM 

𝑡/𝑡𝑟𝑒𝑓 1 0.31 0.021 
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5. Non-intrusive POD-based ROM for Parametric Time-Dependent Systems 

Let the high-order time-dependent parametric model be represented by: 

𝑹(𝒖(𝒙, 𝑡, 𝝁), 𝒙, 𝑡, 𝝁) = 𝟎 (23) 

Here, 𝑹:ℝ𝑁 × ℝ𝑃 × [0,∞) → ℝ𝑁 with 𝑁 typically being very large, 𝒖: Ω ⊂ ℝ𝑁 × ℝ𝑃 × [0,∞) →

ℝ𝑁 are the system variables defined on a subspace Ω of ℝ𝑁, 𝒙 ∈ ℝ𝑁 are spatial coordinates, 

𝑡 is the time, defined in the semi-infinite interval [0,∞) and 𝝁:D ⊂ ℝ𝑃 → ℝ𝑃 are the problem 

parameters defined on a subspace D of ℝ𝑃. 

A set of 𝑀 points (or samples) in the parametric space {𝝁1, 𝝁2, … , 𝝁𝑀 , }, with 𝑀 typically being 

much smaller than 𝑁, is initially chosen. The high-order model 𝑹 from equation (23) is then 

solved (marched) in time for each parameter sample 𝝁𝑝 and snapshots are collected at a set 

of 𝑀𝑇 points (or samples) in time {𝑡1, 𝑡2, … , 𝑡𝑀𝑇 , } in order to generate the snapshots matrix 

𝑺(𝝁𝑝) = [𝒖(𝒙, 𝑡1, 𝝁𝑝), 𝒖(𝒙, 𝑡2, 𝝁𝑝), … , 𝒖(𝒙, 𝑡𝑀𝑇 , 𝝁𝑝)]. The POD basis 𝜑𝑖(𝝁𝑝), 𝑖 = 1,2, … , 𝐾 and 

the set of POD coefficient 𝛼𝑖(𝑡𝑗 , 𝝁𝑝), 𝑖 = 1,2,… , 𝐾, 𝑗 = 1,2,…𝑀𝑇 are determined using the steps 

described earlier in the paper. 

Constructing the non-intrusive ROM requires a two-stage process. In the first stage, an ANN 

is trained for each parameter value, ANN which captures the unsteady behaviour of model 

(23) for that specific sample in the parametric space: 

{𝑡1, 𝑡2, … , 𝑡𝑀𝑇 , }
𝐴𝑁𝑁(𝝁𝑝)
→      {𝜶(𝑡1, 𝝁𝑝), 𝜶(𝑡2, 𝝁𝑝), … , 𝜶(𝑡𝑀𝑇 , 𝝁𝑝)}, 𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀 (24) 

With the ANNs of (18) generated and trained, the solution at any moment in time can be 

calculated as: 

𝒖̃(𝑡, 𝝁𝑝) = 𝒖̅(, 𝝁𝑝) +∑𝛼̃𝑖(𝑡, 𝝁𝑝)𝜑𝑖(, 𝝁𝑝)

𝐾

𝑖=1

, 𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀 (25) 

Where 𝛼̃𝑖(𝑡, 𝝁𝑝) are the POD coefficients approximated at time 𝑡 by each of the ANNs trained 

in (24) and are given by 𝜶̃(𝑡, 𝝁𝑝) = 𝐴𝑁𝑁(𝝁𝑝)(𝑡). The second stage of the process is centred 

around constructing the approximation in the parameter space. Let 𝑡𝐷 be the desired time for 



26 
 

which the solution of (23) must be determined. Using equation (25), the approximation at 𝑡𝐷 

of the high-order solution 𝒖̃(𝑡𝐷 , 𝝁𝑝), 𝑝 = 1,2,… ,𝑀 is calculated at all available parameter 

samples. Next, an ANN is trained using the available set of 𝒖̃ values to build the 

correspondence: 

{𝝁1, 𝝁2, … , 𝝁𝑀 , }
𝐴𝑁𝑁
→  {𝒖̃(𝑡𝐷 , 𝝁1), 𝒖̃(𝑡𝐷 , 𝝁2), … , 𝒖̃(𝑡𝐷 , 𝝁𝑀)} (26) 

The total number of parameter samples varies significantly between problems, and might be, 

for some problems, much lower compared to training set size required for generating a typical 

accurate feedforward ANN. In addition, even when the number of sampling points is sufficient, 

the training required for (26) is performed during the online stage of the algorithm. This calls 

for the training to be completed in a matter of seconds and makes typical hyperparameter 

tuning impossible to perform. To alleviate these problems, the ANNs in (26) are configured in 

two layers, one using Radial Basis Functions (RBFs) and the second using a linear activation 

function. These networks are essentially configured as RBF-based nonlinear regression 

networks which require no hyperparameter tuning and the training only involves a single small 

linear system solution (whose size is driven by the total number of training samples) and 

matrix-vector and vector-vector multiplications (whose sizes are driven by the dimension of 

the training output, in this case by the size 𝑁 of the discretised HOM) instead of iterative 

gradient-based backpropagation schemes. Thus, training is completed in mere seconds even 

when thousands of parameter sample points are provided. These features make such 

networks particularly suitable for usage during the online stage of the ROM deployment. 

Finally, the solution 𝒖̂ of (23) at the desired time 𝑡𝐷 and an arbitrary parameter value 𝝁𝐷 is 

given by the ANN trained in (26) and is obtained at all grid points: 

𝒖̂(𝑡𝐷 , 𝝁𝐷) = 𝐴𝑁𝑁(𝝁𝐷) (27) 

The first test is done using the viscous Burgers equation, a simplified test problem for the 

compressible Navier-Stokes equations. The mathematical problem is defined as: 
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𝜕𝑈

𝜕𝑡
+
1

2

𝜕𝑈2

𝜕𝑥
= 𝐷

𝜕2𝑈

𝜕𝑥2
, 𝑥 ∈ [0, 𝐿] 

𝑈(𝑥, 𝑡 = 0) = 0 

𝑈(𝑥 = 0, 𝑡) = √5, 𝑡 ≥ 0 

𝜕𝑈

𝜕𝑥
(𝑥 = 𝐿, 𝑡) = 0, 𝑡 ≥ 0 

(28) 

Here, 𝐷 represent the diffusion coefficient and represents the parameter for the problem, being 

defined the interval 0.0001 ≤ 𝐷 ≤ 10. Same as before, Equation (22) is solved in a domain of 

length 𝐿 = 100 on a uniformly spaced grid with 𝑁 = 1000 points using an implicit second-order 

TVD Lax-Friedrichs scheme. The equation is solved in the time interval 𝑡 ∈ [0,50], with a step 

∆𝑡 = 0.1. A number of 10 fixed, uniformly distributed sampling points are chosen in the 

parameter space. For each parameter sample, snapshots of the HOM solution are taken every 

5 time steps, giving a total of 100 snapshots for the chosen interval and ∆𝑡. The POD basis is 

truncated to 𝐾 = 25 modes, the spectrum of singular values for one of the snapshots’ matrices 

being shown in Figure 7. 

The feedforward ANN used for approximating the unsteady behaviour is configured using a 

single hidden layer of 40 neurons using the hyperbolic tangent sigmoid transfer function and 

a layer of output neurons using a linear transfer function. Since the number of parameter 

samples (and thus the size of the available training set) is relatively low, the ANN used for 

approximating the variation in the parametric space (20) is generated using radial basis 

functions (RBFs), being configured as an RBF network of 20 neurons. 

In order to verify the accuracy of the ANN-ROM, a set of 5 random points in the parameter 

space is chosen, and for each of these points the RMSE between the HOM and the ANN-

ROM at 5 instances in time is determined, the results being summarised in Table 6. Low RMSE 

values are obtained for all 25 instances investigated, of the order of 𝑂(10−2) to 𝑂(10−4) with 

lower values at high 𝐷 values. This behaviour is expected due to the smoothing of the 

discontinuity by increasing viscosity values, thus eliminating the small oscillations from the  
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Figure 07. Singular values of the snapshots’ matrix for the viscous Burgers equation 

 

Table 06. RMSE at each 5 selected time instances for all 5 parameter test samples 

 𝑡 = 10 𝑡 = 20 𝑡 = 30 𝑡 = 40 𝑡 = 50 

𝐷 = 0.00035 0.0106 0.0102 0.0098 0.0090 0.0087 

𝐷 = 0.018 0.0100 0.0097 0.0094 0.0086 0.0094 

𝐷 = 0.77 0.0102 0.0117 0.0124 0.0129 0.0146 

𝐷 = 1.5 0.0059 0.0068 0.0072 0.0075 0.0078 

𝐷 = 8.8 0.00018 0.00031 0.00041 0.00035 0.00027 

 

projection step required to determine the POD coefficients. In addition, Figure 8 shows a 

comparison between the HOM and ANN-ROM solution for 𝐷 = 1.5. 

A comparison between the CPU runtimes of HOM and the ROM (as shown earlier in the paper) 

is not presented in detail for either this test case or the next one. The justification for this 

omission lies in the relative simplicity of the HOM test cases, and the architecture and ultimate 

purpose of the ANN-ROM proposed, which is for HOMs involving a considerable number of 

degrees of freedom. It must be stressed that generating the ANN approximation in the 

parameter space (26) must be done during the online stage. Although RBF-based networks 

are used, which train in a matter of seconds for hundreds of sample points, for a test case in  
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Figure 08. Solution of viscous Burgers equation as obtained with HOM and ANN-ROM 

at five instances in time 

which the HOM has only 𝑁 = 1000 degrees of freedom, the HOM runtime is shorter than the 

ROM online runtime. To provide some indication of the expected performance, Table 7 

presents the runtime for the HOM and the ANN-ROM for problem (28) when 𝑁 is progressively 

increased, the ROM runtime 𝑡 being normalised with respect to 𝑡𝑟𝑒𝑓 the runtime of the HOM. 

No attempt has been made to optimise the HOM code for faster runtime and obtaining results 

for a grid containing 106 points was not possible. For the chosen test case having 𝑁 = 1000, 

running the unsteady ROM up to a desired time is much faster than training the ANN 

approximation in the parameter space and obtaining the ROM results at a single instance in 

time. As 𝑁 increases, the trend quickly reverses, even though the ROM runtime also increases 

due to working with arrays 𝒖̃ of increasing size while generating (25) and (26) online. Based 

on these observations, it is expected that for a CFD-based HOM containing millions of degrees 

of freedom, the ANN-ROM provides a significant speed-up. 
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Table 07. Comparison between runtimes of HOM and ROM 

 𝑁 = 103 𝑁 = 104 𝑁 = 105 𝑁 = 5 × 105 𝑁 = 106 

𝑡/𝑡𝑟𝑒𝑓 18.67 2.07 0.061 0.0083 
Unsuccessful 

for HOM 

 

A second, more complex but still one-dimensional test can be derived from the viscous 

Burgers equation by considering a parameterised boundary condition and source term. The 

equation is: 

𝜕𝑈

𝜕𝑡
+
1

2

𝜕𝑈2

𝜕𝑥
= 𝐷

𝜕2𝑈

𝜕𝑥2
+ 𝑆(𝑥), 𝑥 ∈ [0, 𝐿] 

𝑈(𝑥, 𝑡 = 0) = 0 

𝑈(𝑥 = 0, 𝑡) = 𝐵, 𝑡 ≥ 0 

𝑈(𝑥 = 𝐿, 𝑡) = 0, 𝑡 ≥ 0 

𝑆(𝑥) = 𝐶1𝑒
𝐶2𝑥 

(29) 

Compared to the previous case, equation is solved in the time interval 𝑡 ∈ [0,45], on the same 

domain of length 𝐿 = 100 on a uniformly spaced grid with 𝑁 = 1000. The time interval is 

reduced for the simple reason of accounting for the variations in the solution due to the 

introduction of the source term and the different intervals on which the parameters are defined. 

A small number of only 81 sampling points are chosen in the parameter space (3 uniformly 

distributed samples for each parameter). This small number of samples is justified by the 

requirement to keep the overall number of HOM solutions within reasonable limits. 

The parameters are defined in the intervals 𝐷 ∈ [0.001,0.1], 𝐵 ∈ [√4.5, √5.5], 𝐶1 ∈ [0.01,0.03] 

and 𝐶2 ∈ [0.015,0.04]. The POD basis is truncated to 𝐾 = 30 modes. The ANN used for 

approximating the variation in the parametric space is configured as an RBF network of 20 

neurons. Figure 9 presents a comparison between the HOM and ANN-ROM solutions at five 

instances in time, for 𝐷 = 0.05, 𝐵 = √4.8, 𝐶1 = 0.022 and 𝐶2 = 0.019. I can be clearly seen 

that the approximation is significantly affected by spurious oscillations, the largest amplitude  
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Figure 09. Solution of viscous Burgers equation with source term as obtained with 

HOM and ANN-ROM at five instances in time 

being registered before and after the shock. These oscillations appear to grow in magnitude 

with time, leading to unphysical results and persisting even after the shock has travelled 

outside of the domain of interest. The source of these oscillations lies in the lack of richness 

of the POD basis due to small number of parameter samples chosen, leading to an inaccurate 

ANN over the parameter space. 

An immediate approach to improve the quality of the approximation is to simply increase the 

number of parameter samples. However, this approach may prove feasible only for problems 

with a low-dimensional parametric space. 

Problems with a high-dimensional parametric space are significantly affected by what is known 

as the curse of dimensionality. To illustrate, assuming 𝝁 ∈ ℝ4 and 5 samples per dimension 

(two additional samples per parameter over the ones chosen), the total number of parameter 

combinations needing to be analysed increases to 81 from 625. For very intensive turbulent 

CFD or non-linear FEM simulations, analysing 625 unsteady cases in order to capture the 
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HOM snapshots required to build the ROMs may be a computational effort which is simply too 

expensive to undertake. 

An alternative would be to improve the quality of ANN-ROM approximation not simply by 

increasing the number of samples taken, but rather by a more judicious choice of parameter 

samples. This is especially true in instances where the system response depends nonlinearly 

on the values of some or all of the parameters. The adaptive sampling strategy presented 

earlier can be extended to this effect. 

Assume a small, initial set of parameter samples {𝝁1, 𝝁2, … , 𝝁𝑀 , } is chosen, the POD basis 

𝜑𝑖(𝝁𝑝), 𝑖 = 1,2, … , 𝐾 and coefficients are determined and the ANNs which capture the 

unsteady behaviour of the system at each of these parameter samples are built as described 

earlier {𝑡1, 𝑡2, … , 𝑡𝑀𝑇 , }
𝐴𝑁𝑁(𝝁𝑝)
→      {𝜶(𝑡1, 𝝁𝑝), 𝜶(𝑡2, 𝝁𝑝), … , 𝜶(𝑡𝑀𝑇 , 𝝁𝑝)}, 𝝁𝑝 = 𝝁1, 𝝁2, … , 𝝁𝑀. Next, a 

small number 𝑁𝑇 of representative instances in time is chosen, and the second set of ANNs 

is built based on (26): 

{𝝁1, 𝝁2, … , 𝝁𝑀 , }
𝐴𝑁𝑁𝑖
→   {𝒖̃(𝑡𝑖, 𝝁1), 𝒖̃(𝑡𝑖, 𝝁2), … , 𝒖̃(𝑡𝑖 , 𝝁𝑀)}, 𝑖 = 1,2,… ,𝑁𝑇 (30) 

In order to maintain the training time within reasonable limits, RBF networks should be used 

for this and all subsequent steps due to the training time being orders of magnitude lower 

compared to typical feedforward neural networks. The relative influence of each parameter 

sample on the overall approximation is determined as: 

𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) =

∑ ‖𝒖̃(𝑡𝑖, 𝝁𝑗) − 𝒖̃
−𝑗(𝑡𝑖, 𝝁𝑗)‖

𝑁𝑇
𝑖=1

∑ ∑ ‖𝒖̃(𝑡𝑖, 𝝁𝑗) − 𝒖̃
−𝑗(𝑡𝑖, 𝝁𝑗)‖

𝑁𝑇
𝑖=1

𝑀
𝑘=1

, 𝑗 = 1,2,… ,𝑀 (31) 

Here, 𝒖̃(𝑡𝑖, 𝝁𝑗) = 𝐴𝑁𝑁𝑖(𝝁𝑗) is the approximation of the solution at time instance 𝑡𝑖 and 

parameter sample 𝝁𝑗 using the ANNs constructed in (30), while 𝒖̃−𝑗(𝑡𝑖 , 𝝁𝑗) = 𝐴𝑁𝑁𝑖
−𝑗
(𝝁𝑗) 

represents the same approximation, but as obtained with ANNs constructed by leaving out the 

𝑗-th parameter sample from the training set: 
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{𝝁1, 𝝁2, … , 𝝁𝑗−1, 𝝁𝑗+1, … , 𝝁𝑀 , }

𝐴𝑁𝑁𝑖
−𝑗

→    {𝒖̃(𝑡𝑖, 𝝁1), 𝒖̃(𝑡𝑖 , 𝝁2),… , 𝒖̃(𝑡𝑖, 𝝁𝑗−1), 𝒖̃(𝑡𝑖, 𝝁𝑗+1),… , 𝒖̃(𝑡𝑖, 𝝁𝑀)}, 𝑖

= 1,2,… ,𝑁𝑇 

(32) 

The adaptive sampling procedure continues as was outline earlier in the paper. After equation 

(32) is evaluated for all parameters in the initial set {𝝁1, 𝝁2, … , 𝝁𝑀 , }, the parametric space is 

heavily populated with a set of candidate sample points {𝝊1, 𝝊2, … , 𝝊𝑄, }, with 𝑄 ≫ 𝑀. The 

potential of enrichment of each candidate sample is then evaluated to balance local 

exploitation and global exploration of the parameter space: 

𝑃𝑜𝑡(𝝊𝑖) = 𝐼𝑛𝑓𝑙𝐶𝑜𝑒𝑓𝑓
𝑅𝑒𝑙 (𝝁𝑗) ∙ 𝑑(𝝊𝑖, 𝝁𝑗), 𝑖 = 1,2, … , 𝑄 

𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑑(𝝊𝑖, 𝝁𝑘) 

(33) 

Finally, the candidate sample having the highest potential 𝝁𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑃𝑜𝑡(𝝊𝑘) is added 

to the set, which becomes {𝝁1, 𝝁2, … , 𝝁𝑀 , 𝝁𝑀+1 = 𝝁𝑛𝑒𝑤}, and the procedure continues until the 

desired number of samples have been added to the set. 

Problem (29) is attempted a second time, with an initial set of 16 parameter sample points 

defined on the boundaries of each parameter, and 65 points added using the adaptive 

sampling procedure, for the same total of 81 samples. The results for 𝐷 = 0.05, 𝐵 = √4.8, 𝐶1 =

0.022 and 𝐶2 = 0.019, at the same five instances as shown previously, are illustrated in Figure 

10. It is observed that the proposed adaptive sampling strategy ensures a choice of sampling 

points which eliminates the spurious oscillation present in the previous results, thus providing 

an overall better approximation to the solution. The RMSE values at the five selected instances 

in time for both fixed-sampling and adaptive sampling ANN-ROMs are provided in Table 8. 

The moving shock is not approximated very well at the later instances in time, becoming 

diffused over an increasing number of points in the domain. A potential improvement could be 

achieved by a better selection of the 𝑁𝑇 instances at which the ANNs in (30) and (31) are 

constructed, but presently no clear method of selection has emerged as being more efficient 

and successful than a simple random selection. 
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Figure 10. Solution of viscous Burgers equation with source term as obtained with 

HOM and ANN-ROM with adaptive sampling. 

 

Table 08. RMSE at each 5 selected time instances for fixed and adaptive sampling 

strategies 

 𝑡 = 4 𝑡 = 14 𝑡 = 24 𝑡 = 34 𝑡 = 44 

Fixed 
sampling 

0.0603 0.1056 0.5027 0.7210 0.5921 

Adaptive 
sampling 

0.0453 0.0454 0.0510 0.0671 0.0235 

 

As expected, improving the quality of the ANN-ROM approximation via adaptive sampling 

comes with the cost of a higher time required to build the model. Table 9 shows a comparison 

between the total time required to build the POD basis, generate the 𝐴𝑁𝑁(𝝁𝑝), 𝑝 = 1,2,… ,𝑀 

for predicting the unsteady behaviour at all parameter samples and generate the networks to 

capture the behaviour across the parameter space in the two sampling approaches. All times 

required for HOM snapshots collection were eliminated from the total. The times are  
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Table 09. Comparison between ANN-ROM generation times for the two sampling 

techniques 

 Fixed Adaptive sampling 

𝑡/𝑡𝑟𝑒𝑓 1 2.65 

 

normalised with respect to 𝑡𝑟𝑒𝑓 the time required in the fixed sampling approach. For 81 

sampling points, the adaptive sampling strategy requires 2.65 times more time to build the 

ANN-ROM, and this value will increase as the total number of parameter samples chosen by 

the strategy increases. However, the relatively good results obtained with only 81 samples for 

a problem having 𝝁 ∈ ℝ4 is indication that the method can perform well with a relatively low 

number of samples, and the increasing computational costs associated with evaluating (31) 

can thus be offset. 

Finally, a set of 256 points uniformly distributed in the parameter space is chosen, all of which 

are checked to be different to the initial set of 81 points used to build the ROM with the adaptive 

sampling technique. For each point, both HOM and ANN-ROM are marched in time and the 

RMSE is calculated at 20 uniformly distributed time instances and summed. Figure 11 shows 

the total (summed up) RMSE values across the entire parametric space. In is observed that 

the ANN-ROM achieves a relatively uniform accuracy across the entire space, indicating good 

potential to be used in trade studies and ROM-based optimisation. 

It is important to check the robustness of the method with respect to perturbations and noise 

in the ROM generation stage. For this purpose, the source term and parameterised boundary 

condition term in (29) are modified: 

𝑈(𝑥 = 0, 𝑡) = 𝐵 + 𝛿𝐵(𝑡), 𝑡 ≥ 0 

𝑆(𝑥) = 𝐶1𝑒
𝐶2𝑥 + 𝛿𝑆(𝑡) 

(34) 

The perturbation terms 𝛿𝐵(𝑡) and 𝛿𝑆(𝑡) are randomly generated at each time step of the HOM 

solution during the ROM generation stage. Two scenarios are considered, in the first the  
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Figure 11. Variation of total RMSE across parametric space calculated with the ANN-

ROM built using the adaptive sampling technique 
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maximum amplitude of the perturbation being limited to 10% of the unperturbed value, and in 

the second to 30%. 

The domains in which parameters are defined, the size of the POD basis and the configuration 

of the ANNs remain as defined for (29). The total number of parameter sample points is kept 

to 81, with 65 points added using the adaptive sampling procedure. The results obtained with 

the ANN-ROM are compared in Figure 12 against the unperturbed HOM (29) for 𝐷 = 0.05, 

𝐵 = √4.8, 𝐶1 = 0.022 and 𝐶2 = 0.019, at the same five instances as shown previously. 

Figure 12 (a) shows a comparison between the unperturbed HOM solution and the 

unperturbed ANN-ROM, while (b) and (c) show the comparison for the ANN-ROM generated 

with perturbations of the terms 𝛿𝐵(𝑡) and 𝛿𝑆(𝑡). The differences in the ANN-ROM 

approximation are unnoticeable for the 10% perturbation amplitude scenario. For the 30% 

perturbation amplitude scenario, there is a noticeable offset to the HOM solution, but it remains 

small for all time instances considered. This shows the ANN-ROM has a relatively robust 

behaviour with respect to perturbations to the parameter values in the ROM generation stage. 

Of course, a much more in-depth analysis can be made, including perturbations and 

uncertainties in the HOM solution or mathematical model itself, not only in the parameter 

values, but this lies outside the scope of this paper. 

 

6. Conclusions 

In this work, a non-intrusive reduced-order model is proposed, based on proper orthogonal 

decomposition and multi-layered feedforward artificial neural networks. The method is suitable 

for general, nonlinear, time-dependent and parametric problems, and works with black-box 

high-order solvers. Numerical studies are performed for several test problems. For the 

geometrically-parametrised steady-state flow through a nozzle, the ANN-ROM achieves 

speed-up of two order of magnitudes compared with intrusive HROM models, in addition to a  
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(a) ANN-ROM generated without perturbation 

 

(b) ANN-ROM generated with perturbations limited at an amplitude of 10% of the 

unperturbed values 
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(c) ANN-ROM generated with perturbations limited at an amplitude of 30% of the 

unperturbed values 

Figure 12. Solution of viscous Burgers equation with source term as obtained with 

HOM and ANN-ROM for various perturbation maximum amplitudes 

reduction in the time required for the offline stage. Overall accuracy is not as good as the 

intrusive HROM but can be improved using adaptive sampling techniques aimed at improving 

the quality of the POD basis and/or the ANN approximation. For non-parametric time-

dependent problems, the ANN-ROM achieves accuracy on-par with intrusive ROMs but with 

considerable speed-up and ease of implementation. The ANN-ROM is extended to parametric 

unsteady nonlinear problems, where limited work has been published in literature. 

The viscous Burgers equation is used a test problem. When the parameter space is low-

dimensional, the ANN-ROM achieves very good accuracy with a limited number of a priori 

samples. Problems with a high-dimensional parametric space require considerably more 

sampling points to achieve reasonable accuracy but suffer from the so-called curse of 

dimensionality. The adaptive sampling technique is extended and shown to significantly 
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improve the quality of the ANN approximation even when the number of sampling points is 

kept low. 

The non-intrusive ANN-ROM shows great potential for modelling complex parametric 

unsteady phenomena, achieving good accuracy with execution times low enough to allow for 

online analysis and design. Future work includes applications to both incompressible and 

compressible Navier-Stokes equations, as well as ROM-based optimisation scenarios. 
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