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Abstract 32 

NOx emissions from diesel engines are a concern from both environmental and health perspectives. 33 

Recently this attention has targeted cold-start emissions highlighting that emission after-treatment 34 

systems are not effective in this period. Using a 6-cylinder, turbocharged, common-rail diesel engine, 35 

the current research investigates NOx emissions during cold-start using different engine performance 36 

parameters. In addition, it studies the influence of waste lubricating oil on NOx emissions introducing 37 

it as a fuel additive (1 and 5% by volume). To interpret the NOx formation, this study evaluates different 38 

parameters: exhaust gas temperature, engine oil temperature, engine coolant temperature, start of 39 

injection/combustion, in-cylinder pressure, heat release rate, maximum in-cylinder pressure and 40 

maximum rate of pressure rise. This study clarified how cold-start NOx increases as the engine is 41 

warming up while in general cold-start NOx is higher than hot-start. Results showed that in comparison 42 

with warmed up condition, during cold-start NOx, maximum in-cylinder pressure and maximum rate 43 

of pressure rise were higher; while start of injection, start of combustion and ignition delay were lower. 44 

During cold-start increased engine temperature was associated with decreasing maximum rate of 45 

pressure rise and peak apparent heat release rate. During cold-start NOx increased with temperature and 46 

it dropped sharply due to the delayed start of injection. This study also showed that using waste 47 

lubricating oil decreased NOx and maximum rate of pressure rise; and increased maximum in-cylinder 48 

pressure. NOx had a direct correlation with the maximum rate of pressure rise; and an inverse 49 

correlation with the maximum in-cylinder pressure. 50 

 51 

Keywords: Waste lubricating oil; cold-start; NOx emissions; diesel engine warm-up.  52 

 53 

 54 
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1. Introduction 56 

Cold-start operation is a part of driving for majority of the vehicles [1]. In cities, many trips 57 

start and finish while the engine is still cold, such as driving from home to work in the morning 58 

and back to home in the afternoon [2]. A study on the driving patterns of 55 vehicles, including 59 

1000 trips (71,000 km and 1260 hours of driving), reported that one third of the trips started 60 

and finished during cold-start [1]. A modelling study on cold-start excess emissions based on 61 

a survey of 39 European laboratories used the data from 35941 measurements from 1766 62 

passenger cars and estimated that during cold-start the average distance in which NOx 63 

emissions were stabilised was 5.2 km [3].  64 

The engine temperature during cold-start is not optimal due to the low temperature of the 65 

engine block and also sub-optimal temperatures of the engine coolant and lubricating oil. 66 

Engine operation when its temperature is sub-optimal impacts the exhaust emissions and 67 

engine performance parameters [4-6]. For example, higher emissions and fuel consumption 68 

were reported to be the result of low cylinder wall temperature [7]. Cao [8] reported that 69 

exhaust emissions were significantly influenced by incomplete combustion attributed to a cold 70 

engine block. Also, the low engine and fuel temperatures adversely influence the atomisation 71 

and evaporation of the injected fuel during combustion which consequently impact the engine 72 

emissions [9]. Exposure to the exhaust emissions adversely impacts people’s health [10-16]. 73 

Mendoz et al. [17] performed a real driving test on a Euro VI heavy-duty vehicle and reported 74 

that a large fraction (63.4%) of NOx emissions from whole trip—which was 154.8 km drive 75 

during 10712 s—was related to the cold-start section—which was less than 300 s—owing to 76 

the thermal efficiency of the engine and also low efficiency of catalytic converters. Roy et al. 77 

[18] used a diesel engine and studied NOx emissions and reported higher NOx in cold-start in 78 

comparison with hot-start. The average NOx reduction after cold-start was 48.9% at 800 rpm, 79 

42.7% at 1000 rpm, and 36.3% at 1200 rpm. They reported that lean fuel mixture and higher 80 
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fuel consumption during cold-start could be the reasons. Samhaber et al. [19] reported that the 81 

fuel consumption during cold-start was 13.5% higher than hot-start. Higher cold-start fuel 82 

consumption could be because of the higher friction cause by the increased viscosity of the 83 

lubricating oil due to its low temperature, therefore more fuel needs to be burned to compensate 84 

the brake power [7, 20]. Also, decreased in-cylinder temperature within cold-start would lead 85 

to less complete combustion and therefore influence the total fuel consumption and emissions.  86 

Defined in the regulation—EU Directive 2012/46/EU—cold-start begins from the engine start 87 

for the first 5 minutes or until the coolant temperature gets to 70 degC, after a proper engine 88 

soak (12 hours engine-off or 6 hours with forced cooling). A previous study from our research 89 

group [21] has shown that even after the defined cold-start period in which the coolant 90 

temperature was above 70 degC, engine performance and emissions are influenced by sub-91 

optimal temperatures. This is because of sub-optimal temperature of the engine oil. 92 

This study proposes a way that different engine temperature conditions can be investigated. 93 

The duration of the designed test in this study is until the engine is fully warmed up and 94 

stabilised. Hence, there will be different conditions during the test. Aside from analysing and 95 

comparing the data during the cold-start period (defined in the regulation) and also during fully 96 

warmed-up/steady state condition, this study also evaluates emissions during the time in which 97 

the coolant temperature is above 70 degC (which cannot be not considered as cold-start period 98 

anymore) but it is also not optimal (which indicates that the engine is not stable). It also studies 99 

the emissions during the time where the coolant temperature was optimal but oil temperature 100 

was still increasing due to the time lag between their optimal points, as reported in the literature 101 

[21, 22].  102 

At present, there is a need in the literature to show how and why NOx emissions in relation 103 

with other parameters change during engine warm-up under constant engine speed and load. 104 
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Most studies investigating cold-start in the literature used a driving cycle composed of varying 105 

speed and load. This limits the fundamental study on the engine temperature effects on NOx 106 

emissions as changing speed and load within the drive cycle adds more variables and influences 107 

the in-cylinder parameters, which consequently hide the effect of engine, coolant and oil 108 

temperatures on emissions. Potentially misleading results can occur with a transient only 109 

investigation owing to various parameters reinforcing/cancelling the influence of one another 110 

under various conditions and the impact of hysteresis. 111 

In addition to the cold-start investigation, a further aim of this study is to investigate the effect 112 

of waste lubricating oil as a fuel additive on NOx emissions and related performance 113 

parameters, such as heat release rate, maximum in-cylinder pressure, and maximum rate of 114 

pressure rise. It is reported that during combustion, as well as the injected fuel, lubricating oil 115 

inside the cylinder can combust and consequently impact engine performance and exhaust 116 

emissions [23]. However, by artificially adding the lubricating oil to the combustion chamber 117 

via blending with diesel, the mechanisms can be different compared to when lubricating oil 118 

originates from the cylinder walls. Despite the potential for differences between directly 119 

introducing the lubricating oil with the fuel and that burned from the cylinder walls, this 120 

exasperated view of the impact of burning lubricating oil will improve our understanding of 121 

combustion when diesel is diluted with lubricating oil.  122 

Utilising alternative fuels from waste materials to offset diesel usage [24-30] has been always 123 

of interest primarily owing to environmental issues, the price of fossil fuels and the depletion 124 

of fossil fuels [31, 32]. Residual oil waste products are in the order of 24 million tones/year 125 

worldwide and waste lubricating oil represent 60% of it [33]. However, the existence of waste 126 

lubricating oil in the combustion chamber has some disadvantages [34]. For example, a high 127 

fraction of particulate matter emissions (PM and PN) derived from heavy hydrocarbons and 128 

carbonaceous solids from the lubricating oil [34]. Also, the interference between the after-129 
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treatment systems and waste lubricating oil might lead to the premature failure of these systems 130 

[34, 35]. Hannu [34] studied the impact of lubricating oil on after-treatment systems and 131 

reported that ash accumulation in a diesel particulate filter (DPF) can increase exhaust 132 

backpressure therefore more maintenance will be required and fuel economy will be degraded. 133 

This study also reported that the sulfur, zinc, or phosphorus contents of lubricating oil can 134 

poison catalysts. Another issue is sulfate formation downstream of the oxidation catalysts [34] 135 

and the negative impact of lubricant sulfur and phosphorous on lean NOx trap (LNT) efficiency 136 

[35]. However, a reduction of sulfur, phosphorus and sulfated ash in the development of 137 

lubricating oil formulations can be used to mitigate the disadvantages of lubricating oil on after-138 

treatment systems [34]. Also, there are some measures to overcome the mentioned 139 

disadvantages and convert the waste lubricating oil to a diesel like fuel, such as through a 140 

pyrolysis process, and thermal and catalytic treatment [36, 37].  141 

Therefore, there is potential to use it as a fuel, however, using this alternative fuels should not 142 

compromise the engine emissions and performance. There are studies in the literature 143 

evaluating the use of lubricating oil as a fuel [23, 36-40]. However, in the literature, there is no 144 

such fundamental study which evaluates the influence of waste lubricating oil on NOx 145 

emissions under transient engine temperature during stages of cold-start, given that it is a 146 

significantly important period where after-treatment systems are not effective [7].  147 

 148 

2. Methodology 149 

2.1 Engine specifications and test set-up 150 

In order to meet the requirements of emissions regulations, most new diesel vehicles (from 151 

Euro IV) are equipped with after-treatment systems such as exhaust gas recirculation (EGR), 152 
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diesel oxidative catalyst (DOC), LNT, selective catalytic reduction (SCR) and/or DPF. For 153 

example, using EGR can significantly decrease NOx emissions [41]. Studying the impact of 154 

EGR on exhaust emissions of a direct injection diesel engine showed that by using a 30% EGR 155 

rate, NO emission decreased up to 64.78% (cold EGR) and 57.09% (hot EGR) [41]. The NO 156 

decrease with 10% EGR rate was 20.69% (Cold EGR) and 14.761% (Hot EGR). This study 157 

showed a negative linear correlation between EGR rate and NO emission.  158 

Therefore, emissions from such engines depend on the type and performance of the emission-159 

control devices [42, 43], which limits the fundamental study to investigate the pure influence 160 

of alternative fuels and cold-start operation which are the main focus of this research. In order 161 

to avoid such limitations, while gaining a better understanding of the actual engine-dependent 162 

NOx emissions, a Euro III engine (without any after-treatment system) was used in this study. 163 

Table 1 shows the specification of the engine, which was a common-rail Cummins diesel 164 

engine coupled to an electronically-controlled hydraulic dynamometer which can control the 165 

engine speed/load. 166 

 167 

Table 1 Specifications of the tested engine 168 

 169 

Model Cummins ISBe220 31 

Fuel injection High pressure common rail  

Aspiration Turbocharged aftercooled 

Emission standard Euro III 

Cylinders 6 in-line 

Capacity (L) 5.9 

Maximum torque (Nm @ rpm) 820 @ 1500 

Maximum power (kW @ rpm) 162 @ 2500 

Compression ratio 17.3:1 

Bore × stroke (mm) 102 × 120 

Dynamometer type Electronically-controlled water brake dynamometer 
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Figure 1 shows a schematic diagram of the test setup. In this experiment, in-cylinder pressure 170 

data was collected with a Kistler 6053CC60 piezoelectric transducer with a manufactured 171 

stated sensitivity of ≈ -20 pC/bar. Crank angle data was collected with a Kistler type 2614 with 172 

the manufacture stated resolution of 0.5 crank angle degrees. Fuel injection timing was 173 

determining by recording the injector signal and applying an excitation offset [44]. The injector 174 

nozzle had 8 holes with a nozzle diameter of 4 mm. More specific information about the used 175 

facility can be found in Refs. [45, 46]. 176 

After the exhaust manifold, a fraction of the exhaust gas was directed to a CAI-600 NDIR CO2 177 

analyser (linearity > 0.5% of full scale and repeatability > 1% of full scale and) and a CAI-600 178 

CLD NO/NOx analyser (linearity > 0.5% of full scale, repeatability > 0.5% of full scale, and 179 

convertor efficiency of 98%) [47].  180 

 181 

 182 

Figure 1 Schematic diagram of test set-up 183 

 184 
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2.2 Fuel selection 185 

This study used D100 (100% diesel), D99W1 (1% waste lubricating oil added to diesel) and 186 

D95W5 (5% waste lubricating oil added to diesel). The blending ratio in the fuels is based on 187 

volume. Table 2 shows the fuel properties of waste lubricating oil and diesel. Fuel chemical 188 

composition was done with a GC/MS instrument (Trace 1310 Gas chromatograph, model ISQ, 189 

single quadrupole MS).  D100 contains aromatic compounds (benzene and its derivates, xylene, 190 

mesitylene, phthalan, naphthalene) and aliphatic compounds (mainly alkanes with 7-13 191 

carbons, low concentrations of limonene). D99W1 and D95W5 also contain cycloalkanes, 192 

mainly cyclohexane and cyclooctane. Aromatic content was higher in diesel than in the other 193 

two blends. Waste lubricating oil has a high calorific value (43.07 kJ/kg) which is similar to 194 

diesel, therefore blending waste lubricating oil with diesel does not change the heating value 195 

of the fuel significantly [37]. However, the higher viscosity of the lubricating oil will influence 196 

the fuel atomisation and also performance within cold-start period owing to the fact that 197 

viscosity increases at lower temperature. This will be discussed in detail in Result and 198 

discussion Section.  199 

 200 

Table 2 Fuel properties [21, 37] 201 

 202 

 Diesel Waste lubricating oil 

Lower heating value (MJ/kg) 41.77 43.07 

Density (g/cc) 0.84 0.89 

Viscosity (mm2/s) 2.64 30.3 

Sulfur (ppm) 5.9 7500 

Ash (ppm) 1 7400 

Flash point (degC) 71 98 
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2.3 Experimental design 203 

There are various ways of conducting a cold-start experiments. Typically, in the literature, 204 

cold-start emissions are relevant to a part of a standard cycle such as NEDC (modal cycle) or 205 

WLTC (transient cycle). Given that the aim of this study is to look at the effect of engine 206 

temperature, cold-start and waste lubricating oil on NOx emissions, using driving cycle, which 207 

is mostly characterised by frequent speed/load change limits the fundamental study. The reason 208 

is that with a driving cycle, cold-start emissions will be influenced by various factors 209 

cancelling/reinforcing the influence of one another at different engine operation modes. Hence, 210 

the current study used a fixed engine load of 25% at the speed of 1500 rpm to run the cold-start 211 

test. This method decreases the number of variables leading to great understanding of the 212 

influence of engine temperature and also fuel properties on NOx emissions. At this engine load 213 

and speed, the injection pressure was 50 MPa, and the brake mean effective pressure (BMEP) 214 

with diesel was ~0.52 MPa.  215 

The rationale for selecting a 25% engine load between the typical testing loads of 25, 50, 75 216 

and 100%, was that during cold start engine load is usually lower than during fully warmed-up 217 

operation [48]. This can be seen in standard driving cycles as well. For example, in WLTC 218 

which is designed based on real driving data, within the first part of the cycle (called the low 219 

phase), which can be considered as cold start, the average vehicle speed is less than the other 220 

parts of the cycle [48]. The average speed within the four phases of the WLTP Class 3 cycle, 221 

in km/h, is 25.7 (low), 44.5 (medium), 60.8 (high) and 94 (extra High). Therefore, it was opted 222 

to use quarter load to have a reasonable replication of the real world, while keeping the 223 

experiment simple enough to study the fundamental influence of diesel engine warm-up.  224 

2.4 Experimental procedure 225 

Cold-start tests were run each day after more than 12 hours overnight engine soak at ambient 226 

temperature. At the beginning of each cold-start test, the oil and coolant temperatures of the 227 
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engine were 23 ± 3 degC. Each test was conducted by running the engine at 1500 rpm under 228 

25% engine load for at least 30 min within which the engine fully warmed up and stabilised. 229 

After each fuel change, the fuel lines were flushed cleaning the previous fuels. This was done 230 

by disconnecting the fuel tank to stop more entering and then running the engine at high load 231 

for at least 15 min to use the left over fuels from the fuel lines/pump. After that, a different fuel 232 

tank with the new fuel was connected and the engine ran for 30-60 min at high engine load to 233 

ensure that only the new fuel remained. The procedure was done prior to the overnight soak.    234 

The repeatability tests were conducted two times with D100 and the statistical analysis for 235 

these tests was done using average, standard deviation (SD) and coefficient of variation (CV) 236 

for different parameters. Table 4 shows the engine speed, torque and CO2 difference between 237 

the two repeats during cold-start and during fully warmed-up operation. As can be seen the 238 

difference between these parameters is very small which can indicate the repeatability of the 239 

test. For example, between the two repeats of cold-start the difference between engine speed, 240 

toque and CO2 was less than 0.9%. Apart from the repeatability test, it should be mentioned 241 

that comparing the test results from D100 and D99W1, which are similar fuels, can also 242 

confirm the repeatability of the tests.  243 

Table 4 Statistical analysis of the test repeatability 244 

 

Speed (rpm) Torque (Nm) CO2 (%) 

Average σ 
CV 

(%) 
Average σ 

CV 

(%) 
Average σ 

CV 

(%) 

Cold-start Test 1 1498.87 2.22 0.15 225.28 8.43 3.74 6.36 0.06 0.97 

 Test 2 1499.19 1.95 0.13 227.20 12.32 5.42 6.51 0.15 2.27 

 Difference 0.02% 0.82% 0.12% 

Fully 

warmed-

up 

Test 1 1498.94 2.20 0.15 238.28 3.2 1.34 6.47 0.03 0.51 

 Test 2 1499.49 2.16 0.14 242.02 2.42 1.00 6.64 0.02 0.36 

 Difference 0.04% 1.5% 0.17% 

 245 
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3. Result and discussion 246 

This section investigates NOx emissions with respect to engine performance parameters: 247 

engine oil temperature, engine coolant temperature, exhaust gas temperature, start of injection 248 

(SOI), start of combustion (SOC), heat release rate, maximum in-cylinder pressure and 249 

maximum rate of pressure rise. This section first studies the engine temperature and cold-start 250 

effects, then evaluates the influence of fuel properties. 251 

3.1 Nitrogen oxides 252 

In diesel engines, NOx emissions are primarily formed through the oxidation of nitrogen at 253 

high-temperature during combustion. Exposure to these toxic emissions can lead to health 254 

issues. These emissions are also important from an environmental aspect as they are ozone 255 

precursors. NOx emissions are affected by various factors that can cancel/reinforce the effect 256 

of one another [49, 50]. 257 

3.1.1 Cold-start effect 258 

Figure 2 illustrates NOx emissions during the test. As can be seen, for all the tested fuels, NOx 259 

increases gradually to its maximum value, drops sharply after that and start increasing 260 

moderately again until stabilising. For example, in Figure 2 (a), NOx for D100 was 358 ppm 261 

at the start of the test, gradually increased to its maximum value at 442 ppm, steeply dropped 262 

to 258 ppm, increased to 290 ppm and then stayed stable near 290 ppm afterward. A similar 263 

trend is seen in Figure 2 (b), which shows the normalised NOx emissions. For example, NOx 264 

emissions for D95W5 was 2.9 mg/gCO2 (milligrams per grams of CO2 which represents the 265 

amount of burned fuel) at the start of the test, gradually increased to its maximum point at 4 266 

mg/gCO2, steeply dropped to 2.3 mg/gCO2, increased to 2.6 mg/gCO2 and then stabilised near 267 

that value afterward.  268 
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 269 

 270 

Figure 2 NOx (a) and normalised NOx (b) emissions during engine warm up 271 

 272 

To analyse the observed trends in Figures 2 (a) and (b), the data will be split into four sections; 273 

from the start to the maximum value (~0-300 s), NOx drop (~300-370 s), the increment from 274 

minimum point to the steady-state value (370-630 s), and finally the stabilised points afterward. 275 

 NOx increase in the first 300s: As shown in Figures 2, during the first ~300 seconds of cold-276 

start test, NOx is increasing to its maximum value, which means as the engine is warming up, 277 
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NOx emissions increases. These figures also show that NOx emissions during cold-start (the 278 

first ~300 s) is higher than hot-operation (after 630 s), which can give an impression that NOx 279 

emissions decreases as the engine warms up. However, this should be investigated in more 280 

detail. As mentioned before, NOx emissions are influenced by various parameters 281 

canceling/reinforcing the effect of one another. Injection parameters and engine operation 282 

conditions are one of these influential factors [4, 51, 52]. 283 

Fuel injection has a significant effect on NOx formation. In common-rail diesel engines, the 284 

fuel injection is time domain based; while, combustion occurs in the crank angle domain. 285 

Therefore, the engine speed/load is strongly influenced by injector design and tuning 286 

parameters such as injection timing [53, 54]. Start of injection (SOI), which is one of the 287 

injection timing parameters, is the point when the fuel pressure in the injection line reaches to 288 

the nozzle-opening-pressure of the injector. Figure 3 (a) shows the SOI for all the fuels during 289 

the custom test. As can be seen, SOI stays stable for ~4000 engine cycles, which corresponds 290 

to the first ~300 s, then it increases sharply (retarded injection) and stays constant after that. 291 

Therefore, SOI cannot be the reason for NOx increment during the first 300 s.  292 

Given that the NOx formation is highly influenced by premixed phase and residence time under 293 

high temperature [9, 55], the start of combustion (SOC) parameter needs to be analysed to 294 

investigate the main influential factor for NOx increment. Figure 3 (b) illustrates the SOC 295 

during the custom test. As can be seen, SOC slightly advanced during the first ~4000 engine 296 

cycles, which corresponds to ~300 s. Given that during this period the SOI is constant, the 297 

reason for the observed slight decreasing trend of SOC is the increasing trend of the in-cylinder 298 

temperature, which could be the reason for the increasing trend of NOx formation during this 299 

period.  300 

 301 
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 302 

 303 

 304 

Figure 3 Start of injection (a) and start of combustion (b) during engine warm up 305 

 306 
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gas temperature increases gradually indicating that the in-cylinder temperature during 313 

combustion is increasing gradually. For example, with D95W5 during this period the exhaust 314 

gas temperature increased from 300 to 326 degC and NOx—shown in Figure 2 (b)—increased 315 

from 3.6 to 4.6 mg/gCO2. Other representatives of the in-cylinder temperature are engine oil 316 

and coolant temperatures shown in Figure 4 (b). As can be seen, these temperatures increase 317 

gradually during the custom test.   318 

 319 

 320 

 321 

Figure 4 Exhaust gas (a), engine coolant and oil (b) temperatures during engine warm up 322 
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NOx drop between 300 to 370 s: As seen in Figures 2, after the gradual increment at ~300s 324 

NOx drops from its maximum value to the minimum. The reason for this drop is due to injection 325 

parameters. It can be seen in Figure 3 that at ~300s both SOI and SOC increased (retarded), 326 

which means that the injection strategy commanded by the engine ECU changed at this point 327 

due to the engine calibration which defines the cold-start phase from the start to the point at 328 

which the coolant temperature reaches to ~65 degC. As can be seen, at 300 s, the engine coolant 329 

temperature reaches to 65 degC sending feedback to ECU consequently changing the SOI. 330 

Therefore, the delayed start of injection was the reason for the NOx drop.  331 

NOx increment from minimum toward the stabilised points: As seen in Figures 2, after 332 

NOx drops to its minimum value at ~370 s, it increases moderately to its steady-state value 333 

(370-630 s). The steady value of NOx emissions after 630 s could be due to the constant SOI 334 

and less fluctuations in SOC (Figure 3), and optimal temperature of the engine (Figure 4). 335 

However, the NOx trend between 370-630 s is similar to the NOx increment during the first 336 

300 s in which SOI is constant (Figure 3 (a)) and the driving force is the engine temperature 337 

represented by exhaust gas, engine oil and coolant temperatures owing to their increasing trend, 338 

shown in Figure 4. This can also be seen in Figure 3 where during this period the SOC has a 339 

decreasing trend (advanced combustion). In general, at a constant SOI, the NOx trend (Figures 340 

2) within the custom test has an inverse correlation with the SOC trend, as one increases the 341 

other one decreases.  342 

Using in-cylinder pressure and heat release data to study NOx emissions during cold-start: 343 

NOx formation depends on in-cylinder parameters [9, 56]. Figure 5 shows the in-cylinder 344 

pressure diagram for D100 during the custom test at 7 consecutive phases from engine start, 345 

each corresponding to an average of 2 min. It can be seen that there are two peaks on the in-346 

cylinder pressure diagram. The first one is a motored peak, occurring prior to combustion and 347 
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the second peak is from the rise in pressure due to combustion. Figure 5 shows that from Phase 348 

#1 to 2, in which the SOI is constant (Figure 3), the first peak value on the diagram slightly 349 

increases as the engine warms. The increase in the motored peak indicates that the in-cylinder 350 

environment is becoming warmer as the engine temperature increases. This trend is associated 351 

with an increasing trend of NOx emissions, shown in Figure 2. Similar to Phase #1 to 2, 352 

comparing Phase #4 to 6, in which the SOI is also constant (Figure3), shows that as the engine 353 

warms up, the motored peak increases. This is also associated with a corresponding NOx 354 

increase.  355 

This systematic increase in motored peak can be seen in Phase #3 as well; however, within this 356 

phase, the coolant temperature reached to 65 degC (Figure 4) and a subsequent injection 357 

strategy change caused the SOI and SOC to increase (Figure 3). Therefore, the similar trend 358 

might be due to the fact that this diagram is the average of two minutes. The shape of the 359 

diagram for Phases #4-7 is different to Phases #1 and 2. The reason for that is related to the 360 

retarded injection strategy leading combustion to occur significantly after TDC. As seen in 361 

Figure 2, the NOx emissions dropped significantly after this injection strategy change.  362 

 363 

Figure 5 In-cylinder pressure during engine warm up with D100 364 
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Heat release rate diagram could be another indicator for NOx emissions. Figure 6 shows the 366 

apparent heat release rate (AHRR) for D100 during the custom test at 7 consecutive phases 367 

from the engine start each corresponding to the average of 2 min. In AHRR diagram, before 368 

the SOI, the rate of heat release is around zero as there is no fuel injection but only the air 369 

compression. After SOI, the rate of heat release has a negative value as the fuel is injected and 370 

heat is transferring from the hot air to evaporate the liquid fuel [57]. On AHRR diagram, the 371 

peak occurs within premixed combustion phase as a result of the rapid combustion of the 372 

premixed portion of the fuel. During ignition delay period, the injected fuel vaporizes and 373 

mixes with the air. And the main heat release driving force is the combustion of premixed 374 

air/fuel. Therefore, the longer mixing period can lead to a higher peak value on AHRR diagram. 375 

This can be seen by comparing Phase #1 to 3 in which the decreasing (advancing) trend of SOC 376 

at a constant SOI (Figure 3)—which leads to a decreasing trend of ignition delay and a shorter 377 

mixing period—is associated with the decreasing trend of the peak value on heat release rate 378 

diagram moving the occurrence of peak value toward lower crank angles (Figure 6), and with 379 

the increasing trend of NOx formation (Figure 2). For example, Phase #1 with the highest SOC 380 

(Figure 3) has the highest peak value of 110 (J/crank angle degree) on heat release diagram 381 

(Figure 6) and the lowest NOx (Figure 2) and Phase #3 with the lowest SOC has the lowest 382 

peak value of 76 (J/crank angle degree) and the highest NOx. 383 

This is similar when comparing Phase #4 to 7. As can be seen, through these phases, the engine 384 

temperature increasing trend (Figure 4) is associated with the decreasing trend of SOC 385 

(therefore ignition delay) (Figure 3), decreasing trend of the peak value on AHRR diagram 386 

moving the occurrence of peak value toward lower crank angles (Figure 6), and increasing 387 

trend of NOx (Figure 2). As can be seen in Figure 6, the peak value is the highest within Phase 388 

#4 and it decreases through the rest of phases. However, Phase #5 and #6 have a similar peak 389 

value. These two phases are related to the steady state condition and have a very similar AHRR 390 
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diagram and similar NOx emissions. Comparing these two phases with Phase #4 and 5 shows 391 

that as the engine temperature increases toward its optimum value, the peak value decreases 392 

and moves toward left (which can confirm the decreasing trend of SOC).  393 

 394 

 395 

Figure 6 Heat release rate during engine warm up with D100 396 

 397 

3.1.2 Fuel effect 398 
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15% [38].  405 
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adding waste lubricating oil to the blend increases the peak values on the diagram. This increase 409 

is associated with NOx decrease shown in Figure 2. This shows an inverse correlation between 410 

the peak value and NOx emissions. For example, during Phase #6 and 7, D100 with the lowest 411 

peak values on in-cylinder pressure diagram has the highest NOx emissions. This trend can be 412 

better observed by calculating the peak pressure in every cycle. 413 

 414 
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 417 

 418 

Figure 7 In-cylinder pressure vs. crank angle during engine warm up with all of the tested fuels 419 

 420 

Figure 8 shows the maximum in-cylinder pressure within the test. As can be seen, D100 had 421 

the lowest value through the test which is contrary to the NOx with D100. From the effect on 422 

fuel point of view, the figure shows an inverse correlation with NOx; any fuel with highest 423 

value in Figure 8 has the lowest NOx in Figure 2. This inverse correlation has been reported 424 

by Jafari et al. [58] as well. 425 
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 427 

Figure 8 Maximum in-cylinder pressure during engine warm up with all of the tested fuels 428 

 429 
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difference to other fuels. Similar to NOx, D99W1 and D95W5 values for maximum rate of 444 

pressure rise were close compared to D100.  445 

 446 

 447 

Figure 9 Maximum rate of pressure rise during engine warm up with all of the tested fuels 448 

 449 
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 464 

Figure 10 Heat release rate vs. crank angle during engine warm up with all of the tested fuels 465 

 466 

4. Conclusion 467 

This research fundamentally studied NOx emissions at different stages of cold-start and engine 468 

warm up. This study also investigated the influence of waste lubricating oil on combustion and 469 

also introducing it as a fuel additive. A custom cold-start test was designed and run on a 6-470 

cylinder, turbocharged common-rail diesel engine fueled with diesel and blends of waste 471 
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• During cold-start, NOx increased while the engine was warming up. The maximum 477 
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• At the end of cold-start, NOx dropped steeply due to the injection strategy change. 480 

Injection parameters significantly influenced NOx emissions.  481 

• Blending waste lubricating oil with diesel decreased NOx emissions during both cold-482 

start and fully warmed-up operations. 483 

• Compared to fully warmed-up period, during cold-start, SOI and SOC advanced and 484 

occurred at lower crank angles, and maximum in-cylinder pressure and maximum rate 485 

of pressure rise were higher. 486 

• During cold-start, maximum rate of pressure rise decreased with increasing the engine 487 

temperature. Adding waste lubricating oil increased maximum in-cylinder pressure and 488 

decreased the maximum rate of pressure rise.   489 

• With different fuels, NOx emissions had a direct correlation with maximum rate of 490 

pressure rise and an inverse correlation with maximum in-cylinder pressure.  491 

 492 
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