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ABSTRACT

In this study, we demonstrate a novel approach to the detection and identification of the 

products of spin-trapped free radicals. Hydroxyl free radicals were generated by Fenton-based 

chemistry in the presence of ethanal and the spin-trapping agent N-tert-butyl--phenylnitrone 

(PBN). The resulting volatile compounds present in the reaction vial headspace were collected 

using thermal desorption (TD) and analysed by gas chromatography-mass spectrometry (GC-

MS). Eleven compounds were detected in the headspace, and their identification was aided by 

using either a fluorinated or deuterated analogue of PBN as an alternative spin trap and/or 

deuterated ethanal (CD3CHO) as the secondary source of free radicals. The electron-ionisation 

(EI) mass spectra clearly demonstrate the “capture” of methyl radicals; two of the compounds 

detected were identified as containing one methyl group derived from ethanal, and four were 

shown to contain two methyl groups. This study demonstrates that sampling the reaction 

headspace using TD-GC-MS is a viable method for analysing products of free radical trapping, 

and potentially may be applied to a wide range of free radical systems.
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INTRODUCTION

Many free radicals are highly reactive and require the technique of spin-trapping for their 

detection, which typically uses a nitrone or nitroso compound as the trapping agent and often 

results in the formation of a nitroxide (Marchand et al. 2017). The main technique for observing 

these nitroxides is Electron Paramagnetic Resonance (EPR) spectroscopy, however, the use of 

mass spectrometry-based techniques, coupled to a suitable form of chromatography, provides 

an alternative way of identifying the products of spin-trapped radicals and thus the radical itself 

(for examples, see: Qian et al. 2005; Janzen et al. 1990; Parker, Iwahashi & Tomer 1991; 

Zhang, Wang & Guo 2006; Mistry et al. 2008).

Thermal desorption (TD) is a well-known technique for the sampling of volatile organic 

compounds (VOCs) (Forbes, Staymates & Sisco 2017; Huilian et al. 2017). The TD unit 

includes a trap (sorbent tube) used to collect the VOCs, which is then heated for the release of 

adsorbed compounds followed by analysis typically using GC-MS. Sampling in the vial 

headspace with this solvent free approach can be done in minutes or even in seconds and 

provides separation of the volatile species from the non-volatile solvent and its ionic/polar 

components (Callan, Walsh & Dowding 1993). TD offers therefore, an excellent opportunity 

to detect and identify the volatile products of spin-trapped free radicals. 

Hydroxyl free radicals (.OH) may be generated chemically by the well-known Fenton reaction. 

They have been shown to react rapidly with the aldehyde ethanal to produce acetyl radicals, 

with a rate constant (k) for the reaction of 3.6×109 M-1 s-1, and methyl radicals, the latter by 

decarbonylation of the acetyl radical (scheme 1) (Nakao et al. 2000). In this reaction, however, 

methyl radicals may also be generated by a non-Fenton pathway, with direct nucleophilic 
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addition of a peroxy anion (-OOH) to ethanal and subsequent reduction by Fe2+ (scheme 2; 

Nakao, Ouchi & Augusto 1999). Previous EPR studies have demonstrated that all three radicals 

(methyl, acetyl, and hydroxyl) may be detected when using different spin traps (Nakao, Ouchi 

& Augusto 1999; Nakao et al. 2000). In addition, a study by Jenkins et al. (1997) using UV-

irradiation of ethanal solutions also identified the presence of acetoxyl (CH3CO2
•) radicals, 

along with those of acetyl radicals.

In the current study, a Fenton-based system in the presence of ethanal has been used to generate 

free radicals, which have then been trapped by either N-tert-butyl--phenylnitrone (PBN) or a 

derivative (figure 1). The resulting products have been collected from the headspace of the 

reaction vial by thermal desorption and analysed by gas chromatography-mass spectrometry 

(TD-GC-MS). The main purpose of the study is to develop a quick and simple method of 

identifying free radicals by detecting the volatile products of free radical spin-trapping.

MATERIALS AND METHODS

Ethylene diaminetetraacetic acid (EDTA), L-ascorbic acid, di-potassium hydrogen phosphate 

(K2HPO4), and N-tert-butyl--phenylnitrone (PBN) were all purchased from Sigma-Aldrich 

(Suffolk, UK). Ethanal-d3 was obtained from CDN Isotopes (Dunmow, UK). Ammonium 

ferrous sulfate hexahydrate {Fe(NH4)2(SO4)2.6H2O} was purchased from Fluka  Biochemika 

(Loughborough, UK). Ethanal and hydrogen peroxide (30% w/v) were obtained from Alfa 

Aesar (Lancashire, UK). Derivatives of PBN were synthesised in our laboratory using the 

method of Hinton & Janzen (1992) and further purified by sublimation.

Generation and trapping of ethanal derived radicals
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A standard method reported previously (Mistry et al. 2008; Podmore, Cunliffe & Heshmati  

2013) was used for the generation and trapping of free radicals. PBN was utilised as the main 

spin trapping agent and replaced by one of its derivatives (figure 1) for confirmation of the 

identity of the products. The Fenton-based reaction (total volume approximately 10 cm3, 

containing: 1 cm3 hydrogen peroxide {3% w/v}, 1 cm3 ascorbic acid {0.1 moles L-1}, 1 cm3 

EDTA {0.01 moles L-1}, 5 cm3 potassium phosphate buffer {0.1 moles L-1} 1 cm3 PBN or 

derivative {0.1 moles L-1}, 1 cm3 Fe2+ salt {0.01 moles L-1} and 0.132 cm3 ethanal  (or d3-

ethanal) {0.24 moles L-1}) was carried out at pH 7.4 in a 25 cm3 beaker. The reaction was 

initiated by adding the Fe2+ salt as the final component and the mixture left for 5 minutes. The 

total reaction mixture was then transferred to a 40 cm3 vial which was set aside for 3 minutes 

to allow headspace saturation. 

Headspace analysis

An Easy-VOC pump (Markes International, Pontyclun-UK) was used to extract the volatile 

organic compounds (VOCs), including the volatile products of spin-trapping, from the 

headspace. SVITM sorbent tubes (Perkin Elmer, Llantrisant, UK) were used for sampling and 

were conditioned at 350 oC before the analysis. The collected headspace volume was set at 50 

cm3 and the pump released after 30 seconds. A Turbomatrix 300 thermal desorber (Perkin 

Elmer, UK) was used to extract the adsorbed VOCs from the sorbent tube. The sorbent tube 

was purged for 5 minutes using oxygen-free nitrogen gas (BOC, UK). Primary desorption was 

conducted at 330 oC for 5 minutes using helium as a carrier gas. Separation of the extracted 

VOCs was carried out using a Clarus 5800 gas chromatograph (Perkin Elmer, UK) equipped 

with a Restek capillary column with mainly polydimethylsiloxane as the stationary phase (Rtx-

5; non-polar). The capillary column was 30 meters in length with a diameter of 0.25 mm and 
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the film coating thickness of the stationary phase was 0.25 µm.  The initial column temperature 

was set at 100 oC for 5 minutes and was programmed to increase at 5 oC/minute to 150 oC, and 

finally to increase to 300 oC at 40 oC/minute where it was held for 2 minutes. The mass 

spectrometer used to detect the eluted compounds consisted of an electron-ionisation (EI) 

source and single quadrupole mass analyser (Clarus 800MS from Perkin Elmer, UK). Total ion 

chromatograms (TICs) were obtained by recording EI mass spectra from a scan range of 45-

500 m/z.

RESULTS 

Figure 2 shows the TIC obtained from TD-GC-MS headspace analysis of the Fenton-based 

reaction mixture containing ethanal as a secondary source of free radicals and PBN as the spin-

trapping agent. The following compounds have been assigned to the peaks in the 

chromatogram, as follows: peak 1 - either N-tert-butyl-N-methyl-hydroxylamine (1a) or a 

methyl adduct of tert-butylhydroaminoxyl (1b); peak 2 - paraldehyde (2 ); peak 3 - either di-

tert-butyl hydroxylamine (3a) or a tert-butyl radical adduct of tert-butylhydroaminoxyl (3b); 

peak 4 - phenyl methanimine (4); peak 5 - benzaldehyde (5); peak 6 - N-methoxy-1-

phenylethanimine (6); peak 7 - methoxy-(1-phenylethylidene)-amine (7); peak 8 - the 

hydroxylamine of a PBN-methyl-adduct (HO-PBN-CH3) (8); peak 9 - a dimethyl adduct of 

PBN (PBN-Me2) (9); peak 10 - 2,3-diphenylbutane isomers (10). For each compound structure 

see figure 3. The compounds have been assigned by interpretation of the electron-ionisation 

(EI) mass spectra when using either PBN or one of its derivatives as the trapping agent and 

using ethanal or d3-ethanal (CD3CHO) as the secondary source of free radicals (e.g. figure 4 

shows the EI-mass spectrum of peak 6 from the chromatogram in figure 2). The peak observed 

at 1.53 minutes is detected in the vial headspace of a control sample (data not shown), which 
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contains no Fenton reactants. It may be attributed to dimethylsiloxane, of which the source may 

either be the GC column stationary phase or the thermal desorption ‘trapping’ material .

Table 1 shows the m/z values of key ions, including the molecular ion (M+.), found in the EI-

mass spectrum of each compound observed in the chromatogram (figure 2). The peak labelled 

1 in figure 2 corresponds to either N-tert-butyl-N-methyl-hydroxylamine (tBu-NMeOH) (1a) 

or a methyl radical adduct of tert-butylhydroaminoxyl (MeONHtBu) (1b). The peak at m/z 57 

confirms the presence of a tert-butyl group. The base peak (m/z 88) is generated in the ion 

source of the mass spectrometer by loss of a methyl radical from the tert-butyl group of the 

molecular ion (m/z 103), which is confirmed by experiments when replacing ethanal with d3-

ethanal (CD3CHO)  as a secondary free radical source. It is possible that both 1a and 1b are 

derived from a breakdown product of PBN. Previous studies have suggested that the hydrolysis 

of PBN gives rise to the formation of 2-methyl-2-nitrosopropane (MNP) and benzaldehyde 

(Atamna, Paler-Martinez & Ames 2000; Turnbull et al. 2001). Also, hydroxyl radical addition 

to the carbon of the C=N bond of PBN is known to form an unstable nitroxide, which may then 

dissociate to benzaldehyde and the tert-butyl-hydroaminoxyl (TBHA) radical (scheme 3; 

Kotake & Janzen, 1991; Jerzykiewics et al. 2011). Since MNP is a known spin trap for methyl 

radicals (Rosenthal, Mossoba & Riesz, 1981) it may ultimately lead to the formation of 1a. As 

a nitroxide, TBHA has the potential to trap carbon-centred radicals such as .CH3 (Wright & 

English 2003) and thus lead to the formation of 1b. It is not clear from the EI mass spectrum 

which compound, 1a or 1b, is responsible for peak 1, and neither MNP nor TBHA are observed 

in the chromatogram, however, when ethanal is replaced in the reaction mixture by the 

deuterated analogue (CD3CHO), the m/z value of the molecular ion increases by 3 units to 106, 

thus confirming the presence of an ethanal-derived methyl group in the structure (table 1). It is 

possible, therefore, that a methyl radical (formed in the Fenton-based mixture from the reaction 
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between .OH and ethanal; scheme 1) adds to either MNP or TBHA (scheme 4); if to the former, 

then the resulting nitroxide may be reduced in the presence of ascorbate to form 1a (scheme 

4a).

Peak 2 in figure 2 (retention time 1.8 minutes) corresponds to paraldehyde (compound 2). The 

EI mass spectrum shows a molecular ion at m/z 132, which changes to m/z 141 when ethanal 

is replaced in the reaction mixture by CD3CHO (table 1). This compound is oberved in the 

absence from the reaction mixture of either Fe2+, hydrogen peroxide or the spin trap (data not 

shown) and is, therefore, not derived from Fenton-based chemistry. It is formed by self-aldol 

condensation of ethanal molecules (Georgieff, 1966; Hill, Miessner & Öhlmann,1989).

Peak 3 in the chromatogram mostly likely corresponds to either di-tert-butylhydroxylamine 

(3a) or a tert-butyl adduct of TBHA (tBuONHtBu; 3b). The peak in the EI-mass spectrum at 

m/z 57 confirms the presence of a tert-butyl group. The molecular ion and base peak have m/z 

values of 145 and 74, respectively. 3a may possibly be formed by the trapping of a tert-butyl 

radical by MNP (as mentioned earlier, a potential breakdown product of PBN) to produce the 

di-tert-butylnitroxide radical (not observed in the chromatogram shown in figure 2) which 

subsequently reduces in the presence of ascorbate to di-tert butylhydroxylamine. Formation of 

the di-tert-butylnitroxide radical has been observed in previous studies, where the source of the 

tert-butyl radical has been attributed to MNP itself (Turnbull et al. 2001; Jerzykiewics et al. 

2011). However, in this study, replacing ethanal in the reaction mixture with CD3CHO causes 

a shift in the m/z value of the molecular ion to 154, indicating the incorporation of 9 ethanal-

derived deuterium atoms (possibly as a deuteron-tert-butyl radical) into compound 3 (table 1). 

It is also possible that peak 3 may instead correspond to 3b, which could be generated by the 
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trapping of a tert-butyl (or d9-tert-butyl radical) radical by TBHA. From the EI-mass spectra, 

it is not possible to determine which of the compounds, 3a or 3b, is responsible for peak 3.

Peaks 4 and 5 in figure 2 at 2.33 and 2.61 minutes, respectively, correspond to phenyl 

methanimine (4) and benzaldehyde (5). The EI mass spectrum of 4 gives a moleular ion at m/z 

105, which changes to m/z 111 and m/z 123, respectively, when PBN is replaced by either d6-

PBN and F-PBN in the reaction mixture (table 1). These changes may be accounted for by the 

differences in the masses of the spin traps and thus demonstrate that 4 does not contain any 

ethanal-derived methyl hydrogen atoms. Benzaldehyde is most likely formed from the addition 

of a hydroxyl radical to the carbon of the C=N bond in PBN and subsequent breaking of the 

single bond between the carbon and nitrogen (scheme 3). This is supported by the 

corresponding EI-mass spectra when PBN is replaced by either F-PBN or d6-PBN in the 

reaction mixture (see table 1). 

The EI mass spectrum of peak 6 shown in figure 4 corresponds to N-methoxy-1-

phenylethanamine (6). No peak is observed at m/z 57 confirming the absence of a tert-butyl 

group. The molecular ion (M+.) has an m/z value of 151. The fragment at m/z 136 is formed in 

the ion source of the mass spectrometer by the loss of a methyl radical from the molecular ion. 

Dissociation of the bond between the carbon and nitrogen in M+. gives the base peak at m/z 

105. Further evidence confirming the identity of 6 is obtained when either using a different 

PBN derivative as the spin-trap or replacing ethanal with d3-ethanal in the reaction mixture. 

When PBN is replaced by F-PBN or by d6-PBN, the molecular ion m/z values increase by 18 

and 6 units, respectively. When ethanal is replaced by CD3CHO, then all molecular ions 
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increase by 6 m/z units (table 1) indicating the incorporation of two deuteron-methyl groups 

into the structure.

Peak 7 in figure 2 corresponds to methoxy-(1-phenylethylidene)amine (7). The absence of the 

peak at m/z 57 suggests that there is no tert-butyl group in the structure, and the base peak at 

m/z 77 (shifting to m/z 82 when d6-PBN, rather than PBN, is used as the spin trap) demonstrates 

the presence of a phenyl group derived from PBN. The molecular ion has an m/z value of 149. 

Loss of the methoxy group from molecular ion in the ion source of the mass spectrometer gives 

a peak at m/z 118. Once again, further evidence confirming the identity of the compound is 

obtained when either using a different PBN derivative as the spin-trap or replacing ethanal with 

d3-ethanal in the reaction mixture. When PBN is replaced by F-PBN or by d6-PBN, the 

molecular ion m/z values increase by 18 and 5 units, respectively; the latter increase 

demonstrates that the deuterium atom on the carbon of C=N has been lost on forming 7. When 

ethanal is replaced by CD3CHO, then all molecular ions increase by 6 m/z units (table 1) 

indicating the incorporation of two deuteron-methyl groups into the structure. Compound 7 is  

most likely generated from compound 6 by loss of the two hydrogen atoms, one attached to the 

carbon and the other to the nitrogen of C=N; this process may either occur in the Fenton-based 

reaction mixture or possibly during the desorption process.

Peak 8 (figure 2) is most likely a hydroxylamine formed from the mono-methyl radical adduct 

to PBN (8; HO-PBN-CH3). The peak at m/z 57 demonstrates the presence of a tert-butyl group. 

The molecular ion for the compound can be seen at m/z 193. The fragment at m/z 178 is formed 

in the ion source of the mass spectrometer by the loss of a methyl radical from the tert-butyl 

group of the molecular ion, whilst the loss of 2-methyl-1-propene (from M+.) gives a peak at 
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m/z 137. The base peak at m/z 91 is a tropylium ion formed by the rearrangement of a benzyl 

cation. Replacing PBN with either d6-PBN or F-PBN in the reaction mixture results in an 

increase in the m/z values of both the molecular ion and base peak by 6 and 18 units, 

respectively (table 1). Using d3-ethanal as the secondary source of free radicals in the reaction 

mixture increases the m/z values of all the molecular ions by 3 units, clearly demonstrating the 

incorporation of a single deuteron-methyl group into the structure. It is assumed that compound 

8 is formed following addition of a methyl radical to the carbon of the C=N site in PBN to form 

the nitroxide, with subsequent reduction by ascorbate to the hydroxylamine (scheme 5). 

However, nitroxides may also be generated by so-called inverted spin-trapping, which involves 

oxidation of the spin-trap followed by nucleophilic attack, or the “Forrester-Hepburn 

mechanism” involving nucleophilic attack of the spin trap to generate the hydroxylamine 

followed by reduction (Leinisch et al. 2011). There is no evidence, either in this study or from 

previous studies, to support a route other than genuine spin-trapping, but the possibility cannot 

be discounted. The nitroxide (mono-methyl spin adduct) itself is not observed in the 

chromatogram in figure 2 but has been seen in many previous studies by EPR spectroscopy 

(for example: Jerzykiewicz et al. 2011; Jenkins et al. 1997).

The most intense peak in the chromatogram shown in figure 2 corresponds to a di-methyl-

adduct of PBN (PBN-Me2) (9). In a previous study, this compound was synthesised using a 

Grignard reagent and analysed using GC with EI mass spectrometry (Janzen et al. 1985). The 

EI-mass spectrum observed for compound 9 in the present study contains exactly the same 

spectral pattern as that shown by Janzen et al. (1985): the molecular ion peak is at m/z 207; the 

fragment at m/z 192 is formed in the ion source of the mass spectrometer by the loss of a methyl 

radical from the tert-butyl group of the molecular ion; the loss of 2-methyl-1-propene from the 

molecular ion gives the peak at m/z 151; and, in addition, the breaking of the bond between the 
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carbon and nitrogen in the molecular ion generates the base peak at m/z 105. Further evidence 

confirming the identity of 9 is obtained in this study by either using a different PBN derivative 

as the spin-trap or by replacing ethanal with d3-ethanal in the reaction mixture. When PBN is 

replaced by F-PBN or by d6-PBN, the molecular ion m/z values increase by 18 and 6 units, 

respectively (table 1). When ethanal is replaced by CD3CHO, all the molecular ion m/z values 

increase by a further 6 units (table 1) indicating the incorporation of two deuteron-methyl 

groups into the structure.

The two peaks observed at 15.96 & 16.25 minutes in the chromatogram in figure 2 correspond 

to isomers of 2,3-diphenylbutane (10). There is a weak molecular ion at m/z 210. Breaking of 

a C-C bond in the molecular ion, which occurs in the ion source of the mass spectrometer, gives 

the base peak at m/z 105. When PBN is replaced by either F-PBN or d6-PBN, the molecular 

ion m/z values increase, respectively, by 36 and 12 units and the base peak values increase by 

18 and 6 units (table 1). This confirms the presence of two phenyl-CH groups in the structure 

of compound 10. Furthermore, replacing ethanal with the deuterium analogue, gives rise to an 

increase in the m/z values of all the molecular ions of 6 units (table 1). This clearly indicates 

the incorporation of 6 deuterium atoms and thus two deuteron-methyl groups into the structure. 

The mechanism for the formation of 10 is not clear. The structure suggests the co-addition of 

two phenyl-C.(H)CH3 radicals, which are possibly derived from the nitroxide intermediate 

(shown in scheme 5) or the hydroxylamine (8). It is also not clear whether this takes place in 

the reaction mixture or during the thermal desorption process.

DISCUSSION
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As expected, the results demonstrate that hydroxyl and methyl radicals are formed during the 

Fenton reaction in the presence of ethanal. Products of the reaction of .OH with PBN include 

benzaldehyde (5) which has been identified directly in the headspace. Although not observed 

directly, MNP (and/or TBHA) may also be formed by this reaction (scheme 3), as suggested 

by the presence of compounds 1a/1b and 3a/3b. Previous studies using EPR spectroscopy 

that have followed the fate of the nitroxide radical formed when .OH has attached to the 

carbon of the C=N in PBN, have suggested that benzaldehyde, MNP and di-tert-butyl 

nitroxide are formed as products (Kotake & Janzen, 1991; Atamna et al. 2000; Turnbull et al. 

2001). Reinke et al. (2000) also demonstrated that the hydroxyl radical may add at different 

positions to the phenyl ring of PBN to give hydroxylated PBN isomers. In the current study 

however, these isomers were not observed and it is likely that, as with PBN itself, they are 

present in the reaction mixture but insufficiently volatile to enter the vial headspace, and thus 

not detected by TD-GC-MS.

The current study demonstrates the trapping of methyl radicals, either directly by PBN or 

indirectly by the dissociation products of PBN. Products of the direct addition of .CH3 to PBN 

include compounds 8 and 9. Also, 6 and 7 are likely to be products of methyl radical addition 

to PBN, although it is not clear at what stage in the process PBN dissociates (prior to or post 

trapping of the radical). Interestingly, the nitroxide resulting from a single methyl radical 

adding to the carbon of the C=N of PBN (scheme 5), which is detected by EPR spectroscopy, 

is not observed here. This is in accord with our previous observations using POBN as the spin 

trap and DMSO as the source of methyl radicals (Mistry et al. 2008; Podmore et al. 2013). 

There are several possible explanations for this, including: lack of volatility of the nitroxide; 

the nitroxide being reduced in the presence of ascorbate to form 8; or, addition of a second 

methyl radical to the nitroxide oxygen to form the dimethyl adduct (9). Boyd & Boyd (1994) 
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carried out a computational study which demonstrated that the formation of di-adducts of PBN 

was energetically favoured over simply the formation of monoadducts. Their calculations 

showed that initial radical addition to the carbon site of the C=N bond is most favoured, 

followed by secondary addition to the nitroxide oxygen. Compounds 6, 7 and 9 are all dimethyl 

adducts but as mentioned previously, it is not clear whether 6 and 7 are formed from the 

decomposition of 9. It is also not clear whether such formation has occurred in the reaction 

mixture or subsequent sampling and analysis by TD-GC-MS. Compounds 1a/1b, 8 and 10 also 

provide further evidence for the trapping of methyl radicals.

The compound responsible for peak 3 (figure 2) cannot be unequivocally identified from its 

EI-mass spectrum, nonetheless, the presence of a tert-butyl group in the structure is evident. 

Experiments using both CD3CHO and/or d6-PBN (or F-PBN) as alternatives to CH3CHO and 

PBN, respectively, in the reaction mixture confirm the incorporation of a tert-butyl group and 

identify ethanal as its source; in all cases where CD3CHO was used, an increase of 9 m/z units 

was observed in the mass spectrum (table 1). The mechanism for this process is not yet known 

and is the subject of further investigation.

In this work, Fenton-based chemistry has been used to generate ethanal-derived free radicals 

which may be trapped by PBN and their volatile products extracted from the headspace using 

the solvent-free extraction approach of thermal desorption (TD).  GC-MS, along with the use 

of PBN derivatives as alternative spin traps and a stable isotope-labelled compound as a 

secondary source of free radicals, has allowed identification of the extracted compounds. This 

novel approach to free radical detection potentially offers the opportunity to develop 

biomarkers or “fingerprints” of free radical production in many chemical or biological systems.
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Table 1: Molecular ion (M+.) m/z values for compounds detected by headspace TD-GC-MS analysis of the 
Fenton-based mixture containing spin-trap and aldehyde (see materials and methods for experimental 
details).

a Base peak values are shown underlined.

Compound 
number

Spin-trap and aldehyde 
included with the Fenton 

system

Compound name or 
formula

Molecular ion 
(M+.) m/z value

Significant ions m/z 
valuesa

PBN + CH3CHO tBu-NMeOH or MeONHtBu 103 88, 57
PBN + CD3CHO t-Bu-NCD3OH or D3CONHtBu 106 91, 57

d6-PBN + CH3CHO tBu-NMeOH or MeONHtBu 103 88, 57
d6-PBN + CD3CHO t-Bu-NCD3OH or D3CONHtBu 106 91, 57

1a or 1b

F-PBN + CH3CHO tBu-NMeOH or MeONHtBu 103 88, 57
PBN + CH3CHO Paraldehyde 132 131, 117, 452
PBN + CD3CHO d9-Paraldehyde 141 140, 123, 48
PBN + CH3CHO di-tert-butylhydroxylamine 

or tBuONHtBu
145 130, 74, 57

PBN + CD3CHO di-tert-butyl (d9) 
hydroxylamine or 

(CD3)3ONHtBu

154 139, 80, 57

d6-PBN + CH3CHO di-tert-butylhydroxylamine 
or tBuONHtBu)

145 130, 74, 57

d6-PBN + CD3CHO di-tert-butyl (d9) 
hydroxylamine  or 

(CD3)3ONHtBu

154 139, 80, 57

3a or 3b

F-PBN + CH3CHO di-tert-butylhydroxylamine 
or tBuONHtBu

145 130, 74, 57

PBN + CH3CHO Phenyl methanimine 105 104, 78
PBN + CD3CHO Phenyl methanimine 105 104, 78

d6-PBN + CH3CHO d6- Phenyl methanimine 111 110, 84
4

F-PBN + CH3CHO F-Phenyl methanimine 123 122, 96
PBN+ CH3CHO Benzaldehyde 106 105, 77

d6-PBN+ CH3CHO d6-Benzaldehyde 112 111, 835
F-PBN+ CH3CHO F-Benzaldehyde 124 123, 95
PBN + CH3CHO (PBN-56)-Me2 151 136, 119, 105
PBN + CD3CHO (PBN-56)-(CD3)2 157 139, 122, 108

d6PBN + CH3CHO (d6PBN-56)-Me2 157 142, 125, 111
d6PBN + CD3CHO (d6PBN-56)-(CD3)2 163 145, 128, 114

6

FPBN + CH3CHO (F-PBN-56)-Me2 169 154, 137, 123
PBN + CH3CHO (PBN-58)-Me2 149 134, 118, 77
PBN + CD3CHO (PBN-58)-(CD3)2 155 137, 122, 77

d6PBN + CH3CHO (d6PBN-59)-Me2 154 139, 123, 82
d6PBN + CD3CHO (d6PBN-59)-(CD3)2 160 142, 126, 82

7

F-PBN + CH3CHO (F-PBN-58)-Me2 167 152, 136, 95
PBN + CH3CHO CH3-PBN-OH 193 178, 137,91, 57
PBN + CD3CHO CD3-PBN-OH 196 181, 140, 91, 57

d6PBN + CH3CHO CH3-d6PBN-OH 199 184, 143, 97, 57
d6PBN + CD3CHO CD3-d6PBN-OH 202 187, 152, 97, 57

8

FPBN + CH3CHO CH3-FPBN-OH 211 196, 164, 109
PBN + CH3CHO PBN-Me2 207 192, 151, 136, 105, 57
PBN + CD3CHO PBN-(CD3)2 213 198, 157, 139, 108, 57

d6PBN + CH3CHO d6PBN-Me2 213 198, 157, 142, 111, 57
d6PBN + CD3CHO d6PBN-(CD3)2 219 204, 163, 145, 114, 57

9

FPBN + CH3CHO F-PBN-Me2 225 210, 169, 154, 123, 57
PBN + CH3CHO MeCHPh-CHPhMe 210 105,77
PBN + CD3CHO CD3CHPh-CHPhCD3 216 108, 77

d6PBN + CH3CHO MeCDd5Ph-CDd5PhMe 222 111, 82
d6PBN + CD3CHO CD3CD(d5Ph)-CD(d5Ph)CD3 228 114, 82

10

FPBN + CH3CHO MeCH(FPh)-CH(FPh)Me 246 123, 95
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Figure 1: The structures of PBN derivatives used as free radical spin-traps in this study.
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Figure 2: Total ion chromatogram (TIC) obtained from the headspace TD-GC-MS analysis of 

the Fenton-based reaction mixture containing ethanal and PBN (see materials and methods for 

further details).
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Figure 3: The structures of compounds identified in the vial headspace by TD-GC-MS 

analysis of a Fenton-based reaction mixture containing PBN and ethanal. The methyl groups 

in red are derived from ethanal. For compounds 1 and 3, there are two possible structures 

(labelled a or b).
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Figure 4: EI mass spectrum of peak 6 (retention time 5.22 minutes) corresponding to N-

methoxy-1-phenylethanamine {(PBN-56)-Me2}. The molecular ion (M+•) for the compound 

can be seen at m/z 151 (structure shown in top right-hand corner) and the base peak at m/z 105. 
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.CH3CO +

acetyl radical methyl radicalhydroxyl radical

Scheme 1: Hydroxyl radical reaction with ethanal (Nakao et al. 2000).
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Scheme 2: Nucleophilic addition of the hydroperoxyl anion to ethanal (Nakao, Ouchi & 

Augusto 1999).
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Scheme 3: Possible mechanisms for the formation of benzaldehyde, 2-methyl-2-

nitrosopropane (MNP), and tert-butylhydroaminoxyl (TBHA) (Kotake & Janzen, 1991; 

Jerzykiewics et al. 2011).
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Scheme 4: Addition of a methyl radical to a) MNP (and subsequent reduction to the 

hydroxylamine) or b) tert-butylhydroaminoxyl (TBHA).
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Scheme 5: Suggested mechanism for the formation of compounds 8 and 9.
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