
Graphical Abstract

A Comparative Review on Mobile Robot Path Planning: Classical
or Meta-heuristic Methods?

Mohd Nadhir Ab Wahab, Samia Nefti-Meziani, Adham Atyabi

Highlights

A Comparative Review on Mobile Robot Path Planning: Classical
or Meta-heuristic Methods?

Mohd Nadhir Ab Wahab, Samia Nefti-Meziani, Adham Atyabi

• Classical and heuristic robot motion planning are assessed

• Complex, obstacle rich and realistic environments are used

• Multiple criterions are considered for performance assessment

• Constrained particle swarm optimization showed superior results in
most criterions

A Comparative Review on Mobile Robot Path

Planning: Classical or Meta-heuristic Methods?

Mohd Nadhir Ab Wahaba,∗, Samia Nefti-Mezianib, Adham Atyabic

aSchool of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia
bSchool of Science, Engineering and Environment, University of Salford, Greater

Manchester, United Kingdom
cDepartment of Computer Science, University of Colorado Colorado Springs, United

States

Abstract

The involvement of Meta-heuristic algorithms in robot motion planning has
attracted the attention of researchers in the robotics community due to the
simplicity of the approaches and their effectiveness in the coordination of the
agents. This study explores the implementation of many meta-heuristic algo-
rithms, e.g. Genetic Algorithm (GA), Differential Evolution (DE), Particle
Swarm Optimization (PSO) and Cuckoo Search Algorithm (CSA) in multiple
motion planning scenarios. The study provides comparison between multiple
meta-heuristic approaches against a set of well-known conventional motion
planning and navigation techniques such as Dijkstra’s Algorithm (DA), Prob-
abilistic Road Map (PRM), Rapidly Random Tree (RRT) and Potential Field
(PF). Two experimental environments with difficult to manipulate layouts
are used to examine the feasibility of the methods listed. several performance
measures such as total travel time, number of collisions, travel distances, en-
ergy consumption and displacement errors are considered for assessing feasi-
bility of the motion planning algorithms considered in the study. The results
show the competitiveness of meta-heuristic approaches against conventional
methods. Dijkstra ’s Algorithm (DA) is considered a benchmark solution
and Constricted Particle Swarm Optimization (CPSO) is found performing
better than other meta-heuristic approaches in unknown environments.

∗Corresponding author
Email addresses: mohdnadhir@usm.my (Mohd Nadhir Ab Wahab),

s.nefti-meziani@salford.ac.uk (Samia Nefti-Meziani), aatyabi@uccs.edu (Adham
Atyabi)

Preprint submitted to Annual Reviews in Control October 19, 2020

Keywords: Path Planning, Classical, Meta-heuristic, Mobile Robot,
Navigation

1. Introduction

Navigation, an important factor in mobile robotics, is defined as the pro-
cess of identifying the robot’s position accurately, planning the path, and
following the path planned (Pennock, 2005). Localization is the ability of
the robot to determine its exact location in the real-world with respect to
its position inside a map; path planning is considered as the computation of
a path through a map which represents the environment. This given path
is chosen based on the problem objectives so that the expected destination
can be achieved. As such, a reliable map is essential for navigation without
which robots are not capable of accomplishing their goals. In navigational
approaches, the reliability of the map is challenged due to the dynamic and
unpredictable nature of the real-world applications (Atyabi et al., 2010; Fre-
und and Kaever, 2017).

This study explores the feasibility of meta-heuristic based approaches for
motion planning and navigation of a mobile robot in static environments
with numerous obstacles resulting in a hard to manoeuvre path. The main
hypothesis is that a mobile robot controlled by a meta-heuristic approach
(e.g. Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm
Optimization (PSO), and Cuckoo Search Algorithm (CSA)) is expected to
perform as well as, or better than, conventional motion planning and navi-
gation techniques (e.g., Dijkstra’s Algorithm (DA), Probabilistic Road Map
(PRM), Rapidly Random Tree (RRT) and Potential Field (PF)). In order
to evaluate the feasibility of the utilised meta-heuristic based methods, two
sets of experiments with different layouts are considered. In the first layout,
a mobile robot needs to manoeuvre in maze layout setting. In the second
experiment, a symmetrical layout with an irregular shape obstacle placed
in the middle of the environment is considered. Multiple start and destina-
tion locations are considered in this layout resembling paths with varying
complexities raised from hard to manoeuvre corridors to obstacle dense en-
vironments. The experimental layouts considered in this study are designed
to comprehensively attest the feasibility of meta-heuristic based and conven-
tional motion planning methods. The following section presents the problem
statement of the study.

2

Problem Statement. The problem statement for all experiments involved is
defined around the navigation of a mobile robot in an unknown environment
using a classical or meta-heuristic navigation method. The problem is defined
in the following terms:

• Let Ai(x, v) be a robot at location x with velocity v in environment
E. i is the agent’s solution dimension in the search space. That is, A
represent a swarm and each member of the swarm represent a possible
solution (robot’s next visiting location) in the search space represented
by a dimension.

• Robot moves in Euclidean space, E called environment represented as
RN , with N = 3 (see Fig. 1 and 3).

• Let O1, ..., On be fixed placed obstacles distributed in E with n = 11.

• Let S and G be the starting and goal locations in E.

Problem: Given the initial location of A being S and obstacle Oi (i =
1, ..., n) being placed on fixed locations in E, find a path from location S to
G while avoiding collision with obstacles with the assumption that the robot
has no prior knowledge about the location of the obstacles in the environment.

The outline of this study is as follows: the background of the approaches
used in this study and their pseudo-codes are discussed in Section 2. Section
3 elaborates on the experimental design. Results and discussion are presented
in Section 4. Conclusion and future works are discussed in Section 5.

2. Robot Motion Planning: Classical vs. Meta-Heuristic based
methods

Heuristic-based and classical methods are two of the common categories
of navigation and motion planning approaches. In classical category, meth-
ods such as Cell Decomposition (CD), Potential Field (PF), Road Map and
Sub-goal Network are commonly used in motion planning problems (Atyabi
and Powers, 2013). These methods are found to be less capable in handling
unknown, partially known, or dynamic environments in their basic formu-
lation and are known to be computationally intensive. In addition, they

3

are mostly found to be dependent on complete prior knowledge of the en-
vironment in order to create a feasible path between the starting and the
destination points.

Meta-heuristic approaches can overcome these issues due to their profi-
ciency in handling unknown or partially known environments. These meth-
ods create a set of temporary paths within each of their iterations, bring-
ing them closer to the destination location one step of the algorithm at a
time. The Meta-heuristic methods use different approaches compared to the
classical methods where rather than creating a global path based on the
prior knowledge (e.g. environment map) and execute it, they create a sub-
population of possible maneuvers in each iteration. Later, the best path
created will be chosen based on their fitness and the path will be executed.
Atyabi and Powers (Atyabi and Powers, 2013) considered approaches such as
Genetic Algorithm (GA), Neural Networks (NN), Particle Swarm Optimiza-
tion (PSO), and Ant Colony Optimization (ACO) as meta-heuristic based
methods for motion planning. Duguleana and Mogan (Duguleana and Mo-
gan, 2016) presented the combination of Neural Networks and Reinforcement
Learning to enhance the capabilities of mobile robots to deal with static and
dynamic obstacles.

The classical algorithms for motion planning considered in this study are
Potential Field (PF), Dijkstra’s Algorithm (DA), Rapidly-explore Random
Tree (RRT) and Probabilistic Road Map (PRM). These four approaches
are chosen because of their well known reputation in the community and
being widely and successfully applied in path planning problems (Zafar and
Mohanta, 2018; Elbanhawi and Simic, 2014; Zammit and Van Kampen, 2018;
Mohanan and Salgoankar, 2018). The overall performances of these methods
are known to be modest in global motion planning problems. PF, RRT
and PRM are also utilised in local path planning problems (Chen, 2014;
Contreras-Cruz et al., 2015; Mohanta and Keshari, 2019). In this study, GA,
DE, variants of PSOs and CSA are chosen as candidates in meta-heuristic
category due to their popularity and their high potential in addressing local
motion planning problems (Atyabi et al., 2010; Zafar and Mohanta, 2018;
Patle et al., 2019; Sathiya and Chinnadurai, 2019; Lamini et al., 2018).

One of recent enhanced classical methods for path planning is introduced
by Bayat et al. (Bayat et al., 2018), where Electrostatic potential field ap-
proach is utilised for mobile robots’ path planning. This approach requires
complete layout/map of the environment in order to generate a feasible path
between the initial location and the final location which is the main draw-

4

back for classical methods. Nazarahari et al. proposed a hybrid method
containing classical (PF) and meta-heuristic (Enhanced-GA) methods. In
their approach, PF initially will generate feasible paths, and later EGA will
select the best optimal path between starting point and the destination point
before the motion planner is executed (Nazarahari et al., 2019). Kamil et
al. suggested to equip the robot with proper sensor such as range-finder
to deal with not only static obstacles but also dynamic obstacles (Kamil
et al., 2017). Mac et al. also discussed about several classical algorithms
and heuristic-based algorithms related to path planning, however, all the al-
gorithms discussed focusing on the global path planning (Mac et al., 2016).
The details of methods considered in this study are presented in following
sections.

Potential Field (PF)

Potential Field (PF) considers the differences between two opposite forces,
known as attraction and repulsion, to help a robot maneuvering within the
environment (Khatib, 1985). In this approach, the next maneuvering location
is determined based on how close the final destination is (attraction) and
how strong the repulsive force of nearby obstacles are (Orozco-Rosas et al.,
2019; Li et al., 2017; Mohammad et al., 2019). Since its first introduction
by Khatib (1985), several modifications and variations of the PF algorithm
been introduced to address it weaknesses such as getting trapped in local
minima or being computationally intensive (MahmoudZadeh et al., 2018;
Chen, 2017).

Song and Kumar introduced a decentralized PF-based control unit for di-
recting and maneuvering multiple agents in scenarios where they are tasked
to find goals collaboratively and trap and lead them towards a final desti-
nation (Peng Song and Kumar, 2003). One of the main concerns of PF is
getting trapped in local minima. This issue has been addressed by Cheng
and Zelinsky using temporary high magnitude attraction forces at a random
position to take the robot out of local optima (Cheng and Zelinsky, 1995).
Sfeir et al. (Sfeir et al., 2011) proposed using repelling force in order to re-
duce oscillations and reduce a chance of collision whenever the target is too
close to obstacles. Sabatta and Siegwart proposed a hybrid PF that utilizes a
vision-based component that computes PF cost function, assisting in deter-
mining the feasibility of various possible maneuvers (Sabatta and Siegwart,
2014).

5

Dijkstra’s Algorithm (DA)

Edsger Dijkstra introduced Dijkstra’s Algorithm (DA) in 1959, a classical
algorithm that has proven its efficiency in finding the shortest possible path
within a web of inter-connected nodes that represent spaces between obstacles
(Dijkstra, 1959). DA method is known to be computationally intensive and
being less effective if the distance between the starting location and the
destination is far from each other (Noto and Sato, 2002). Noto and Soto
(Noto and Sato, 2002) proposed an extended version of DA to solve this
particular problem. DA main applications are in routing problems (Dijkstra,
1959; Risald et al., 2018; Broumi et al., 2017; Parungao et al., 2018).

Rapidly-Exploring Random Tree (RRT)

The Rapidly-Exploring Random Tree (RRT), introduced by LaValle and
Kuffner Jr., is an algorithm based on stochastic search strategies (Kuffner
and LaValle, 2002). The RRT is commonly applied in single query prob-
lems. Application of RRT in path planning is achieved by constructing a
tree branching solution which revolves around random points selected within
the searching space. In this approach, the starting point is considered as the
root node for the RRT. Moving forward, a random point, selected based on
the closest node construct will be identified. This step is repeated until the
final destination is found and the outcome will form a feasible path which
looks like a tree and covers almost all the empty space in the search space
(Kuffner and LaValle, 2002; Connell and Manh La, 2018; Pimentel et al.,
2018). This study utilised the variation of RRT, named RRT-based local
path planning, as one of the base methods for its performance comparison.
This variant uses the same concept and approach of global RRT with the
main difference being lack of constructing a path first and execute it. In this
variation, a random point or target point is chosen whilst the robot is moving
depending on some probability calculated (Wong et al., 2018).

Probabilistic Road Map (PRM)

The main difference between Probabilistic Road Map (PRM) and RRT is
in PRM’s ability in multi-query planning. PRM was first introduced in 1996
by Kavraki et al. with their main goal being to provide a path for a robot in
a static work-space (Kavraki et al., 1996). PRM generates a path between
the initial and the destination positions by linking random nodes in the ob-
stacle free area within the environment. The algorithm starts with selecting
random points within the search area. The random points that fall on the

6

obstacle are neglected and only the random points in the obstacle free area
are considered as viable nodes. All these nodes are connected from one to an-
other to determine their feasibility path. Once all these nodes are connected,
the path links that travel through an obstacle are categorized as infeasible
and are abandoned. In the final stage, the shortest path between the initial
location and the destination is identified from the remaining feasible paths
(Kavraki et al., 1996; Sudhakara et al., 2018; Kumar et al., 2017).

Genetic Algorithm (GA)

Genetic Algorithm (GA), introduced by John Holland in 1975, is a search
optimization algorithm based on the mechanics of the natural process (Hol-
land et al., 1992). The fundamental principle of this approach is based on the
survival of the strongest members of a population while the weaker members
are abandoned. Each member of a population is define as a chromosome
where each chromosome represents a possible solution for an optimization
problem. The feasibility of the chromosomes are evaluated by measuring
their fitness function. GA updates its population, strengthening its found
solutions (chromosomes), by generating off-springs based on their best chro-
mosomes through several processes or operators such as crossover and mu-
tation. GA also has an elitism process that protects the best performing
chromosome, fittest solution found (Holland et al., 1992; Corne and Lones,
2018; Kora and Yadlapalli, 2017).

Particle Swarm Optimization (PSO)

Kennedy and Eberhart introduced Particle Swarm Optimization (PSO)
in 1995. PSO is a meta-heuristic algorithm inspired by swarm intelligence
behaviors (e.g. bird flocking and fish schooling). This method defines mem-
bers of a population as particles, possible solutions for a given problem, and
it undergoes processes such as generation, evaluation, and update to help
these particles to converge towards an optimal solution (Kennedy and Eber-
hart, 1995). In this algorithm, every particle’s location in the search-space is
represented by a position, X. PSO guides its solutions towards better regions
in the search-spaces that have higher potential using a velocity equation,V
(see equation 4). The best solution found by each particle is known as per-
sonal best (PBest) and the best solution found among the whole swarm is
known as global best (GBest). PSO updates its particles’ velocity through

7

following equations:

Vi,j(t) = wVi,j(t− 1) + Ci,j + Si,j
Ci,j = c1r1,j × (PBesti,j(t− 1)− xi,j(t− 1))
Si,j = c2r2,j × (GBesti,j(t− 1)− xi,j(t− 1))

(1)

In equation 1, Vi,j(t) represents the velocity in iteration t. i and j repre-
sent the particle’s index and the dimension in the search space respectively.
c1 and c2 represent the acceleration coefficients of cognitive (Ci,j) and social
(Si,j) components respectively. r1,j and r2,j are random values in the range
of [0,1] while w is the inertia weight that controls the influence of the last
velocity in the updated version.

The efficiency of PSO’s performance depends on how to adjust, control,
and update its parameters. There are several parameter adjustment and
controlling mechanisms suggested since PSO’s introduction in 1995 aiming
to enhance its overall performance. The conventional parameter adjustment
and controlling mechanisms utilised to tune PSO optimization includes Fix
Inertia Weight (FIW) (Aydilek et al., 2017; Raska and Ulrych, 2017), Lin-
early Decreasing Inertia Weight (LDIW) (Shi and Eberhart, 1998; Aydilek
et al., 2017; Dai et al., 2018; Raska and Ulrych, 2017), Time Varying Ac-
celeration Coefficient (TVAC) (Ratnaweera et al., 2004; Raska and Ulrych,
2017), Random Inertia Weight (RANDIW) (Ratnaweera et al., 2004; Aydilek
et al., 2017; Dai et al., 2018; Raska and Ulrych, 2017), Random Accelera-
tion Coefficients (RANDAC) (Suryanto et al., 2017), and Fix Acceleration
Coefficients (FAC) (Ratnaweera et al., 2004; Aydilek et al., 2017; Dai et al.,
2018; Raska and Ulrych, 2017). These parameter adjustment methods are
all considered in this study. Equations 2 and 3 represent the LDIW and the
TVAC formulations respectively.

w = (w1 − w2)× (maxiter − t)
maxiter

+ w2 (2)

where, w1 and w2 are the initial and final inertia weights, t is the current
iteration, and maxiter is the final iteration.

c1 = (c1f − c1i)× t
maxiter

+ c1i

c2 = (c2f − c2i)× t
maxiter

+ c2i
(3)

where, c1f , c1i, c2f and c2i are the initial and final cognitive and social com-
ponents, t is the current iteration, and maxiter is the termination iteration.

8

The equation for updating the particles is as follows:

xi,j(t) = xi,j(t− 1) + Vi,j(t) (4)

PBesti,j and GBesti,j represent the best solution found by the particle and
the best overall solution found by the swarm and can be updated using
equations 5 and 6. In these equations, f represents the fitness function
utilised to assess the feasibility of the particle (xi).

PBesti(t) =
{

PBesti(t− 1), if f(xi(t)) ≤ f(PBesti(t− 1))
xi(t), otherwise

(5)

GBest(t) = argmin {f(PBest1(t)), ..., f(PBestn(t))} (6)

Differential Evolution (DE)

Differential Evolution (DE) algorithm, introduced by Storn and Price in
1997, is another population-based approach with considerable similarities to
GA due to its use of crossover, mutation, and selection operators (Storn
and Price, 1997). The main difference between these two algorithms is that
GA relies more on crossover operation while DE relies more on mutation
operation. The mutation operator is the main search mechanism for DE as
it takes advantage of the selection operation to direct the search towards high
potential areas in the search space. In DE, target vectors, known as solution
vectors, are generated and initialized in the first iteration and are improved by
applying operators such as mutation, crossover and selection. The algorithm
starts with random initialization of a population of solutions and ranks these
solutions based on their fitness value acquired using an evaluation process.
During the mutation process, the weighted difference of the two population
vectors are added to the third vector resulting in generation of new parameter
vectors (Piotrowski, 2017; Jain et al., 2018b). Mutation operation expands
the search space and a mutant vector using following equation:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (7)

where F is the scaling factor with value in the range of [0, 1] with so-
lution vectors xr1, xr2, and xr3 being chosen randomly satisfying following
conditions:

xr1, xr2, xr3|r1 6= r2 6= r3 6= i, (8)

9

where i is the index of current solution.
Crossover operation is used to increase the diversity of the disconcerted

parameter vectors. The target vectors are mixed with mutated vectors and
trial vectors are produced by:

uji,G+1 =

{
vji,G+1, if Rj ≤ CR
xji,G, if Rj > CR

(9)

where CR is a crossover constant and Rj is a random real number be-
tween [0, 1] with j denoting the jth components of the resultant array. Subse-
quently, the resulting new vectors (trail vectors) compete with target vectors
to determine the winner, which is brought forward to the next generation
(Piotrowski, 2017; Jain et al., 2018b). The exploitation behaviour and the
exploration behaviour depends on the scaling factor in equation 7. Explo-
ration behavior occurs when the scaling factor is close to 1 and exploitation
behaviour occurs with scaling factors close to 0.

Cuckoo Search Algorithm (CSA)

The Cuckoo Search Algorithm (CSA) is another meta-heuristic approach,
introduced by Yang and Deb in 2009 (Yang and Deb, 2009). CSA is inspired
from swarm intelligence and the behavior of the cuckoo species. CSA has
three fundamental steps: i) each cuckoo is only allowed to lay one egg in each
iteration and this egg is to be laid in a random nest based on Levy flights;
ii) high quality eggs and nests are to be preserved for the next generation
(elitism); and iii) the number of available host nests are fixed. In this method,
the probability of egg discovery by the host bird of each nest that cuckoo
laid egg in is pa ∈ [0, 1]. This probability will determine the circumstances
of either the host choosing to throw the egg away or abandon the nest and
build a new one(Yang and Deb, 2009, 2014; Joshi et al., 2017). An extended
version of the CSA algorithm introduced the case of each nest containing
more than one egg (Yang and Deb, 2013). Equation 10 represents the levy
flight necessary to generate a new solution x(t+ 1) for cuckoo indexed m.

xm(t+ 1) = xm(t) + ∂ ⊕ Levy (10)

where ∂ is the step size. It is common to use ∂=1 (Yang and Deb, 2009).
Equation 11 represents Levy Distribution formula used by equation 10

for large steps.
Levy ∼ u = t−1−β(0 < β < 2) (11)

10

Initializing the step size (∂) with a large value and iteratively decreasing
it results in convergence of the population towards a solution in the final
generation. Yang (Yang and Deb, 2013) introduced an additional component
to the equation 10 resulting in the following equation:

xm(t+ 1) = xm(t) + ∂ ⊕ Levy ∼ 0.01
u

| v | 1
β

(xn(t)− xm(t)) (12)

where u and v are drawn from normal distribution which is

u ∼ N(0, σ2
u), v ∼ N(0, σ2

u) (13)

where

σu = {
(γ(1 + β) sin(πβ

2
))

(γ[(1 + β)/2]β2
β−1
2))
}

1
β , σv = 1 (14)

γ is the standard gamma function (Joshi et al., 2017).
In equation 12 of CSA method, exploration occurs if a large difference

between xn and xm is observed whilst a small difference between these two pa-
rameters promote exploitation. The advantages of CSA includes having fewer
number of parameters to fine-tune and its feasibility to deal with multi-modal
objective functions. CSA is reported to have insensitive convergence rate to
pa and there are cases where fine tuning of the parameters is not necessary at
all (Yang and Deb, 2009, 2013, 2014). CSA is applied in various fields ranging
from vehicle routing problem(Xiao et al., 2017), neural networks(Chatterjee
et al., 2017), medical(Shehab et al., 2017), scheduling(Bibiks et al., 2018).

3. Experiments Setup

As stated earlier, this study aims to investigate feasibility of meta-heuristic
based methods in robot motion planning problems. To do so, a collec-
tion of classical motion planning and navigation algorithms are selected to
provide a performance base-line. These methods include Dijkstra’s Algo-
rithm (DA), Potential Field (PF), Rapid-exploring Random Tree (RRT) and
Probabilistic Roadmap (PRM). In meta-heuristic category, a collection of
well-known methods such as Genetic Algorithm (GA), Differential Evolution
(DE), Cuckoo Search Algorithm (CSA) and five variations of Particle Swarm
Optimization (PSO) algorithm are considered. The abbreviation and details
of these PSO-based methods are as follows:

11

• Fix-PSO: Fix Inertia Weight (FIW) and Fix Acceleration Coefficients
(FAC).

• Rand-PSO: Random Inertia Weight (RANDIW) and Random Acceler-
ation Coefficients (RANDAC).

• TVAC-PSO: Linearly Decreasing Inertia Weight (LDIW) and Time
Varying Acceleration Coefficient (TVAC).

• LDIWPSO: Linearly Decreasing Inertia Weight (LDIW) and Fix Ac-
celeration Coefficients (FAC).

• CPSO: Constricted Particle Swarm Optimization.

It is noteworthy that the choice of meta-heuristic methods in this study,
beside their successful ongoing implementations in robotics problems, is also
based on the findings in (Ab Wahab et al., 2015) where these methods showed
potential in benchmark problems. Two sets of experiments are considered
in this study. Sub-Experiments that impose additional complexities and
possible trajectories are introduced for further assessment of feasibility of
motion planning methods utilised in this study. The scenarios are set to
navigate a robot from a starting position towards a final destination within
an obstacle-dense and hard to maneuver maze-like environment. Two sets
of environment layouts are considered in these experiments mimicking maze
and indoor navigation scenarios. Except for the DA method, neither classical
nor meta-heuristic-based approaches are provided with any prior information
about the location of obstacles or the environmental layouts. The pseudo
code for Classical Path Planning Algorithms; Potential Field (Algorithm 1),
Dijkstra’s Algorithm (Algorithm 2), Rapidly exploring Random Tree (Algo-
rithm 3), Probabilistic Road Map (Algorithm 4)) and Meta-heuristic Algo-
rithms; Genetic Algorithm (Algorithm 5), Differential Evolution Algorithm
(Algorithm 6), Particle Swarm Optimization Algorithm (Algorithm 7), and
Cuckoo Search Algorithm (Algorithm 8) for local path planning are available
in the Supplement Section.

Experiment I: Maze Layout

The Maze layout is illustrated in Fig.1. This layout is organized in a maze
manner where the obstacles are scattered in such order that the path towards
the destination is constantly encircled with obstacles for the robot. In this

12

Figure 1: Maze Environment Layout. Rectangles in black colour represent
obstacles. The distance between two obstacles is set to less than twice the
diameter of the robot navigating in the environment. Start and destination
locations are marked as S and D and painted in blue and red colours respec-
tively.

layout, the starting location is marked with S (represented in Blue Oval
Shape), the destination area is marked with D (represented in Red Hexagon
Shape), and the obstacles are marked with A and B (represented in Black
Rectangle Shapes). All obstacles have the same measurements (except for
two obstacles that are marked as B). The dimensions of the maze layout is
set to 8m × 5m. The dimensions of the obstacles marked as A are 79cm ×
60cm and the other two obstacles, marked as B, are 92cm × 60cm. The gaps
between obstacles are also consistent in most of the layout and are set in a
manner to be less than twice of the size of the robot used (55cm). The gaps
between the obstacles and the walls are set to 84cm on the right and 63cm
on left. Fig.2 shows four overview of the maze layout from different angles
from which the density of the obstacles can be observed.

13

Figure 2: The view of Experiment I (Maze Layout) from four difference angles

Experiment II: Symmetric Layout

Fig.3 illustrates the symmetric layout. Unlike the previous experiment
(maze layout), this layout is designed to be symmetrical for both sides. It is
also consists of irregular obstacles which have been placed in the middle of the
environment setup. The environment is 6 meters long and 5 meters wide.
This layout has a combination of one irregular-shaped obstacle with four
sets of obstacles (mixed dimensions). The details of obstacles’ measurements
(length (l) × width (w)) is provided in Table 1. This layout utilizes two
starting locations (represented as S1 and S2) and two destination locations
(represented as D1 and D2). As a result, three sub-experiments are executed
where the routes are i) S1 to D1, ii) S2 to D1 and iii) S2 to D2. The route
between S2 to D1 is neglected due to its redundancy caused by the existing
symmetry in this layout. Fig. 4 depicts four shots of the symmetric layout
from different angles.

Platform

The Turtlebot with a dimension of 30 cm width is used in combination
with Robotic Operating System (ROS) to carry out the experiments. Turtle-
bot is equipped with six infra-red sensors (acting as the main sensors) and

14

Figure 3: Symmetric Environment Layout. Black rectangles represent obstacles
with dimension of A is 62cm×71.5cm, B is 80cm×34cm, C is 93cm×21.5cm and
D is 68.5cm×20cm while IR indicates Irregular shape of the obstacle. S1 and
S2 represent the starting areas whilst D1 and D2 represent the destination
areas.

two bumpers. The robot is protected from having a high speed collision that
may cause a large amount of error in the odometry sensor data by instructing
the robot to reduce its speed immediately after infra-reds detects any object
presents within its sensing range. Any collision that happens is considered as
a controlled collision since the robot is programmed to stop immediately and
perform a reverse mode to prevent the distortion of the odometry sensory
data and accumulate unnecessary error in its odometry data. The recovery
steps implemented in this robot once it encounters possible obstacle collision
are i) select a temporary go-to location away from the obstacle location, ii)
rotate towards the identified temporary go-to location, iii) move towards the
direction of the temporary go-to location for 2 seconds, iv) return to mo-
tion planner algorithm to construct a new path towards destination location.
Given that with exception of Dijkstra’s algorithm, no information regard-

15

Figure 4: The view of Experiment II (Symmetric Layout) from four difference
angles

ing the environmental layout and obstacle locations is provided to motion
planning algorithms, the implemented obstacle collision mitigation method
is necessary to protect the robot and its safe navigation.

Parameter Settings

Table 2 provides information regarding the parameter settings used in
the study. Experiments I and II (consists of 3 Sub-Experiments) are re-
peated with 10 runs and the results acquired are averaged. A mobile robot
(a Turtlebot) is assigned to maneuver through the obstacles scattered within

Table 1: The measurements of the obstacles considered in the symmetric envi-
ronment layout of experiment II

Obstacle Dimensions
A 71.5cm× 62.0cm
B 34.0cm× 80.0cm
C 21.5cm× 93.0cm
D 68.5cm× 20.0cm
IR 552.5cm (parameter)

16

Table 2: The settings for all algorithms involved in all Experiment
Algorithm Settings

PF Laser Scan Minimum range set to 0.8 meter.
DA Several unoccupied points between starting point and end point are defined

before running the algorithm and full layout of the environment is presented
to the algorithm.

RRT Randomness point is set to 0.5.
PRM 100 random points are created for next moving point.
GA Population size is set to 100 with 10% of population considered as best chro-

mosomes in selection stage. Mutation rate is set 0.05% where mutation op-
eration is to be selected if fitness is not improved in 5 consecutive iterations.

DE Population size is set to 100 with crossover constant being set to 0.5
CSA pa is set to 0.25 and maximum number of nests are set to 100.

Fix-PSO Inertia weight is set to 0.7 (FIW). Cognitive and social coefficients are set to
0.5 and 2.5 respectively (FIC).

Rand-PSO Random values between 1.0 and 0.5 is used for inertia weight (RANDIW).
Cognitive and social coefficients are set to random values number between 2.5
and 0.5 (RANDAC).

TVAC-PSO Linear decreasing value is used for all inertia weight (LDIW) and Time Vary-
ing for Acceleration Coefficients (TVAC). Inertia weight is set to 0.9 as start-
ing and 0.4 as end value. For social component, the acceleration coefficient is
set to 2.5 as starting value and decreased to 0.5 with the respect of iteration
while for cognitive component, the acceleration coefficient value is set to 0.5
initially and increased to 2.5 towards the end of iterations.

Linear-PSO Linear decreasing approach varying from 0.9 to 0.4 is utilised for linear de-
creasing inertia weight (LDIW). Cognitive and social coefficient are set to fix
values of 0.5 and 2.5 respectively (FAC).

CPSO Cognitive and social coefficient are set to fix values of 0.5 and 2.5 respectively
(FAC) with constricted value, K of 0.7299.

the environments from a fixed starting point towards a fixed destination loca-
tion. From the classical motion planning methods discussed, Potential Field
(PF), Dijkstra’s algorithm (DA), Rapidly-exploring Random Tree (RRT) and
Probabilistic Road Map (PRM) are considered, with the detailed informa-
tion (full map) of the environment only being provided to DA while other
methods are solely depending on their real-time sensory perception. Each
node in the DA represents a centre point between two nearby obstacles and
the distance between these nodes are considered as weights. As discussed
earlier, from existing meta-heuristic methods, GA, DE, CSA and variations
of PSO are considered. The parameter settings applied to the meta-heuristic
methods are based on findings in (Ab Wahab et al., 2015).

4. Results and Discussion

To evaluate the performance of the selected algorithms in experiments I
and II, seven performance factors are considered with Dijkstra’s Algorithm
(DA) is set as the benchmark of the best possible results that other algorithms

17

can achieved because it has full knowledge about the environment. These
factors are:

1. Ability to Arrive at Destination: The ability of the algorithm to
successfully direct the robot to the assigned destination based on odom-
etry and stop the robot within 0.5m from the destination point. 0.5m
is used due to the consideration of the size of the mobile robot and the
location of the odometry which is in the middle of the robot.

2. Number of Collisions: The number of collisions happened during
the executions.

3. Displacement Problem: If the robot’s final position is out of the
tolerance of the destination location, then it is considered as a dis-
placement problem. The tolerance range is define as the radius around
the goal location which is set to be one and a half size of the robot’s
radius. If the robot’s final position is within the defined range, the trial
is considered acceptable and the goal is considered reached.

4. Execution Time: The overall time taken by the robot to travel from
the starting location to the destination position.

5. Battery Consumption (%): The overall percentage of battery con-
sumed by the robot to fully execute the task.

6. Travelled Distance: The overall distance travelled by the robot from
the starting location to the destination position.

7. Convergence Iteration: This factor is considered to measure the
numbers of iterations needed by meta-heuristic methods to find the
destination location irrespective to the robot’s ability to reach to that
destination (in case of failed runs).

8. Robot’s Trajectory: The trajectory is constructed based on the data
produce by odometry sensor on the turtlebot. This factor shows the
algorithm’s consistency across multiple runs in terms of finding the
path towards the destination defined.

Experiment I (Maze Layout)

The average results acquired from ten executions of motion planning al-
gorithms in Experiment I are reported in Table 3. The results are discussed
based on the factors introduced in previous section.

Considering the discussed performance factors, following observations are
made:

18

1. Ability to Arrive at Destination, Number of Collisions, &
Displacement Problem: All algorithms managed to drive the robot
to its destination safely without any obstacle collision or displacement
problems and within 0.5 meter radius of destination point.

2. Execution Time (s): CPSO managed to outperform other algorithms
including DA with 252.66 seconds on average across 10 executions. DA
average execution time was 255.65 seconds, making it the second best
performing algorithm. DE was the third performing algorithm with
257.44 seconds average execution time.

3. Battery Consumption (%): CPSO outperformed other algorithms
once again while only using 1.53% battery on average to complete the
navigation task. DA, as the gold standard, had 1.55% battery consump-
tion on average. The third best performing algorithm in this category
is DE, utilizing 1.59% average battery consumption to travel the path
it generated from start location to destination.

4. Travelled Distance (m): DA achieved the best performance, an av-
erage travelled distance of 11.8966 meters. This performance is closely
followed by CPSO with an average travelled distance of 12.0188 meters
and Linear-PSO with average travelled distance of 12.1073 meters.

5. Convergence Iteration: This performance factor is only considered
with meta-heuristic methods. CPSO out-performed other meta-heuristic
methods with an average 484.5 iterations over 10 runs. DE and Linear-
PSO were the 2nd and 3rd best performing methods with 502.0 and
531.90 average iterations respectively.

Fig. 5 illustrates the average performance differences from DA (e.g., the
optimal global path planner method considered in this study) achieved by
algorithms considered in this study. Given that DA had a prior knowledge of
the Maze layout, its performance is considered as the benchmark performance
that can be achieved by any method.

The results indicate that PF, DE, Fix-PSO, Rand-PSO and CPSO are the
only methods with less than 5% difference compared to DA in execution time
factor (Blue line in Fig. 5). Other methods shown more than 5% performance
differences from DA with RRT and PRM showing more than 25% differences.
This is due to RRT and PRM requiring initialization in their process once
they are diverted from their initial path.

In energy consumption performance factor (Orange line in Fig. 5), PF,
RRT, PRM and Fix-PSO achieved more than 10% performance differences

19

Figure 5: Average performance difference from DA (optimal global path plan-
ner) achieved by various methods in Maze Layout.

against DA (the best performing method). Other methods such as GA, DE,
CSA, Rand-PSO, TVAC-PSO, Linear-PSO, and CPSO shown less than 5%
differences compared to DA in this category.

Clear differences between classical and meta-heuristic methods are ob-
served in travelled distance performance factor (Gray line in Fig. 5). PF,
RRT and PRM shown major differences with DA, having more than 10%
performance differences, while all meta-heuristic algorithms achieved bet-
ter performances, less than 5% performance differences compared to the
benchmark algorithm, DA. GA is an exception in meta-heuristic methods
by achieving over 10% performance difference in travelled distance perfor-
mance factor. The results in Fig. 5 indicate that TVAC-PSO is the best
performing method between meta-heuristic approaches with GA performing
worst than others (e.g., around 28% performance difference).

8. Trajectory Traces: Fig. 6 illustrated the trajectory traces for four
selected methods (Benchmark - DA, Best - CPSO, Average - Rand-
PSO, and Worst - PRM) in experiment I. Each sub-figure in Fig. 6

20

Figure 6: Trajectory traces of four selected approaches (Benchmark - Top Left,
Best - Top Right, Average - Bottom Left, and Worst - Bottom Right) in
Experiment I. Colour variation between trajectories is indicative of different
executions (trials) with maximum 10 trials. See complete results in Fig S1 in
Supplement Material section.

represents 10 paths travelled by the turtlebot robot (i.e. 10 executions
of the algorithm) using an specific motion planning and navigation
technique. These 10 routes in each sub-figure are illustrated using
different colours. From the figure, DA is set as a benchmark and CPSO
is considered as the best performing algorithm where the trajectory is
more or less similar to DA with high consistency and precision. Rand-
PSO represents the trajectory for an average performing algorithm and
PRM represents the algorithm with the least favourable trajectory due
to lack of consistency across executions/paths and low precision since
almost none of the travelled paths are similar.

To better understand the causes of performance variations observed across
approaches utilised, a unique representation of the robot’s motion is used.
In this representation, the Maze environment layout is divided into nine
equal-sized rectangles (e.g., see Fig. 7), each called a region, and the average
number of times (across 10 executions) that the robot is located in each
region is counted. The results are presented using pie chart illustrations in
Fig. 8. In this experiment, regions 2 and 9 contains starting and end points

21

Figure 7: Region classification on where the robot has been during the Experi-
ment I

Figure 8: Pie Chart of which region the robot has been during the Experiment
I

22

respectively.
It is noteworthy that DA, as the benchmark performing approach, only

considered regions 4, 5, 6 and 8 in its trajectories with regions 5 and 8 having
the highest and the least contributions in robot’s chosen trajectory respec-
tively. Given that regions 2, 5, and 8 are the regions containing three parallel
rows of obstacles, these regions are likely to be the most difficult to manoeu-
vre in. This issue is reflected in the pie charts illustrated in Fig. 8 where the
highest percentage is recorded in region 5. This is with exception of RRT
algorithm in which region 8 received the highest percentage of occupation. It
is also noticeable that in case of PRM algorithm the occupation percentage
observed in region 6 of other methods is shared between regions 5 and 6. Un-
like other approaches, PRM also included region 7 and 9 in its trajectories.
The inclusion of these extra regions (7 and 9) are likely the reason behind
the poor performances achieved by PRM algorithm in this experiment. RRT,
unlike PRM, did not include any extra regions in its trajectory towards the
destination. However, from the results depicted in the pie chart, it is no-
ticeable that this approach spent an unusual amount of time in region 8.
This is evident from allocating 38% of travelled path to region 8 by RRT in
comparison with DE and GA in which the robot occupied this region in only
13% of its trajectory toward the destination. The best performing algorithm,
CPSO, reported a smaller percentage (20%) for occupying region 6 compared
with DA (26%). Furthermore, in comparison to DA, CPSO also reported a
smaller percentage of travelled path in region 4 (destination region) while
it performed poorly in region 5. Similar performance is observed by PF,
recording 56% in average travelled path in region 5 while out-manoeuvring
DA and CPSO in region 4 with 11% average occupation. The differences
observed between CPSO and DA in their manoeuvrability in region 5 can be
due to DA’s advantage in terms of having full knowledge of the environment
layout.

Experiment II (Symmetric Layout)

The results achieved from Experiment II are reported in Table 4. In
order to have better understanding of how various approaches performed
in this symmetric layout, the results are reported within four folds of Sub-
Experiments and overall achievements. The results are discussed based on
performance factors such as 1) Ability to Arrive at Destination:, 2) Number
of Collisions:, 3) Displacement Problem:, 4) Execution Time (s), 5) Battery
Consumption (%), 6) Travelled Distance, and 7) Convergence Iteration (s).

23

Sub-Experiment 1: Path from S1 to D1 in Fig. 3. The average results
acquired from 10 executions of motion planning algorithms in Experiment II
are reported in Table 4. The results are discussed based on the performance
factors discussed earlier.

1. Ability to Arrive at Destination, Number of Collisions &
Displacement Problem: Similar to previous experiments, Experi-
ment I, neither collision nor displacement problems are observed in
any of the executions with neither of the approaches utilised where
all of them stop within 0.5 m radius from the destination point. A
route between the starting and the destination locations is found by all
algorithms.

2. Execution Time (s): DA set the benchmark with an average execu-
tion time where it clocked only 87.55 seconds to complete the navigation
task. CPSO and PF followed DA’s performance in this category with
116.67 seconds and 126.76 seconds respectively.

3. Battery Consumption (%): DA set the bar for other methods in
battery consumption performance factor by only consuming 0.35% en-
ergy on average. CPSO’s performance was the closest to the benchmark
with 0.46% and followed by PF with 0.50% average energy consump-
tion.

4. Travelled Distance (m): CPSO and DE outperform DA with an
average travelled distance of 7.1822 meters and 7.4456 meters respec-
tively. DA only come as third best performing approach with 7.4706
meters. This is likely due to the fact that unlike DA that places its
nodes in the middle point of two nearby obstacles (safe distance from
either obstacle), CPSO and PF are allowed to risk colliding with obsta-
cle by coming very close to the edges of the obstacles. Such advantage
allows these methods to shorten their travelled distance while risking
collision with obstacles.

5. Convergence Iteration: CPSO also outperformed others in the av-
erage convergence iteration category with 432.8 iterations. This per-
formance is closely followed by DE with 449.1 iterations.

8. Trajectory Traces: Fig. 9 illustrates the trajectory traces for em-
ployed approaches in Sub-Experiment 1 in experiment II. Four sub-
figures in Fig. 9 represent 10 paths travelled by the turtlebot robot
using an specific motion planning and navigation technique. These 10

24

Figure 9: Trajectory traces of four selected approaches (Benchmark - Top Left,
Best - Top Right, Average - Bottom Left, and Worst - Bottom Right) in
Experiment II (Sub-Experiment 1). Colour variation between trajectories is
indicative of different executions (trials) with maximum 10 trials. See complete
results in Fig S2 in Supplement Material section.

25

Figure 10: Region classification on where the robot has been during the Exper-
iment II

routes in each sub-figure are illustrated using different colours. From
the figure, DA is considered as the benchmark performance. CPSO,
DE, and RRT have recorded same or similar travelled paths. CPSO
is the best performing algorithm compared to DE and RRT. RRT is
emerged as the least performing algorithm due to non-smooth trajec-
tories travelled despite travelling similar paths to CPSO and DE.

Similar to experiment I, the layout of experiment II is divided into nine
equal-sized rectangles named as regions (See Fig. 10). In Sub-Experiment 1,
the starting and end points are located in regions 1 and 9 respectively with
the irregular shape obstacle being placed in region 5 with partial coverage of
region 8.

The average number of times (across ten executions) that the robot is
located in each region is reported in the format of pie chart in Fig. 11. DA,
as the benchmark performing method, spent (on average) 36% of its time
within region 1, 26% within region 2 and 23% within region 5. DA also
spent 11% of its time in destination region (region 9) and 4% in region 6.
Unlike PRM and RRT who included region 4 in their trajectories, CPSO
recorded similar regions as DA with major difference being in the sense of

26

Figure 11: Pie Chart of which region the robot has been during the Sub-
Experiment 1 (Experiment II)

the portion of the pie chart being allocated to region 5. It is noteworthy that
CPSO manoeuvred slightly more efficiently compared to DA in regions 1, 2,
6 and 9. The marginal differences between DA and CPSO as observed in the
pie charts is also supported by our findings reported in Table 4. The results
indicate that the average travelled distance differences of these two techniques
(in Sub-Experiment 1) are 0.29 meter. It is also noticeable that between all
approaches, Linear-PSO reported the lest favourable performance in region
9 in this Sub-Experiment. This might be due to the robot’s inability to find
the exact location of the final destination resulting in several passage of the
same route between already visited points in this region. This is reflected in
the pie chart results with Linear-PSO spending maximum percentage of its
travelled time in region 9 where the destination was located. Linear-PSO’s
36% of travelled time spent in region 9 is considerably higher than DE’s 14%.
DE is ranked second in spending highest percentage of time in region 9.

Sub-Experiment 2: Path from S2 to D1 in Fig. 3 . The average results
acquired from ten executions of motion planning algorithms in Experiment
II are reported in Table 4. In this Sub-Experiment, DA outperformed all
other motion planning methods in all performance factors. The results are
discussed based on the factors introduced earlier.

27

1. Ability to Arrive at Destination, Number of Collisions &
Displacement Problem: Similar to previous experiments, neither
collision nor displacement problems are observed in any of the execu-
tions with neither of the approaches utilised where all of them stop
within 0.5 m radius from the destination point.

2. Execution Time (s): DA set the benchmark by clocking an average
execution time of 77.03 seconds. This performance is followed by PF
and CPSO with 106.66 and 115.98 seconds respectively.

3. Battery Consumption (%): DA set the benchmark for other meth-
ods in average battery consumption performance factor with 0.31%.
This performance is matched by CPSO who also achieve 0.31% aver-
age battery consumption. PF is the second best performing method in
this performance factor by achieving 0.42% average battery consump-
tion.

4. Travelled Distance (m): CPSO and PF followed DA’s 5.9697 meters
average travelled distance with 6.1953 and 6.2051 meters respectively.

5. Convergence Iteration: CPSO outperformed other meta-heuristic
methods in average convergence iterations performance factor with
370.0 iterations. This performance is closely followed by DE with 388.8
and Linear-PSO with 396.8 iterations.

6. Trajectory Traces: Fig. 12 depicts the trajectory traces of approaches
employed in Sub-Experiment 2 of experiment II. In here, each sub-figure
depicts ten paths, each presented using a unique colour, travelled by
the turtlebot robot from the start to destination location. From the
observations, DA is the benchmark for other algorithms by repeating
its routes through 10 runs. Other algorithms such as PF - Best per-
former, TVAC-PSO - Average performer, and RRT - least favourable
performer constructed almost similar routes. In this performance fac-
tor, after DA that had prior knowledge of environment layout, PF and
RRT recorded the most and the least consistent paths across 10 execu-
tions respectively.

Fig. 13 provides pie chart representation of robot’s manoeuvres in dif-
ferent regions in the experiment layout. In this Sub-Experiment, the initial
and final positions of the robot are placed in regions 1 and 7 respectively.
Irregular shape obstacle is located in region 5 with partial coverage of region
4.

28

Figure 12: Trajectory traces of four selected approaches (Benchmark - Top
Left, Best - Top Right, Average - Bottom Left, and Worst - Bottom Right) in
Experiment II (Sub-Experiment 2). Colour variation between trajectories is
indicative of different executions (trials) with maximum 10 trials. See complete
results in Fig S3 in Supplement Material section.

29

Figure 13: Pie Chart of which region the robot has been during the Sub-
Experiment 2 (Experiment II)

Results presented in Fig. 13 indicate that all methods are consistent in
their chosen trajectories by only visiting regions 7, 8, and 9 (see Fig. 10).
This indicates that all methods are more or less using the same route. The
main difference in the results is emerged as how various methods overcome
the obstacle in region 8. From the results, CPSO and PF reported almost
identical distributions across these three regions compared to the benchmark
algorithm DA. The noticeable difference between the performances of these
three algorithms is that DA has 4% higher average occupation of destination
region while having around 4% less average occupation of region 1 compared
to CPSO and PF. RRT and PRM demonstrated identical pie chart perfor-
mances with 40%, 39% and 21% average time spent in regions 8, 7 and 9
respectively. This similarity is also reflected in their trajectory traces pre-
sented in Fig. 12 and similarities observed on various factors and categories
reported in Table 4. GA and DE also reported similar average percentage of
coverage distribution across the three regions. The most unique results are
reported by CSA pie chart in which the highest average region occupation
percentage is reported for the destination region (region 7). This issue better
explains the poor performance of CSA reported in Table 4 in which in almost
all categories it is identified as the worst performing approach.

30

Sub-Experiment 3: Path from S2 to D2 in Fig. 3. The travelled path
in this sub-experiment is similar to of Sub-Experiment 1 (from S1 to D1 in
Fig. 3). This sub-experiment is designed to investigate a different approach-
ing angle of the irregular shape obstacle that is positioned in the center of the
Experiment II environment layout. In here, the close-by sharp edges of the
IR obstacle results in generating pseudo Cul-De-Sac type obstacles that in
some degree increases the difficulty of path generation specially if the robot
get trapped in such tight and hard to manoeuvre corners. The results are
assessed based on the performance factors introduced earlier.

1. Ability to Arrive at Destination, Number of Collisions &
Displacement Problem: Similar to previous findings in this environ-
ment, in this sub experiment, all algorithms managed to drive the robot
to its destination safely without any obstacle collision or displacement
problems and within 0.5 meter radius of destination point.

2. Execution Time (s): DA benchmark this factor by clocking an av-
erage of 90.64 seconds execution time. This is considerably lower that
CPSO and PF performances as second and third best performing meth-
ods in this performance factor. CPSO clocked an average execution
time of 169.81 seconds and PF achieved an average execution time of
184.33s.

3. Battery Consumption (%): DA benchmark this category with only
0.37% average battery consumption, followed by the CPSO and PF
performances with 0.7031% and 0.7270% respectively.

4. Travelled Distance (m): DA travelled the shortest path on average
with 7.1247 meters followed by CPSO and PRM with 7.6538 and 7.6842
meters respectively.

5. Convergence Iteration: Rand-PSO emerged as the best performing
algorithm with an average of 444.2 iterations. CPSO closely followed
with an average performance of 453.9 iterations and GA as the third
best performing algorithm for this category with an average of 462.0
iterations.

6. Trajectory Traces: The trajectory traces of the methods utilised in
this experiment are illustrated in Fig. 14. Similar to the previous exper-
iments, DA is consistent within its chosen path and considered as the
benchmark results. CPSO also demonstrated consistency in its chosen
path although it is not identical to DA. Rand-PSO is chosen in this

31

Figure 14: Trajectory traces of four selected approaches (Benchmark - Top
Left, Best - Top Right, Average - Bottom Left, and Worst - Bottom Right) in
Experiment II (Sub-Experiment 3). Colour variation between trajectories is
indicative of different executions (trials) with maximum 10 trials. See complete
results in Fig S4 in Supplement Material section.

32

Figure 15: Pie Chart of which region the robot has been during the Sub-
Experiment 3 (Experiment II)

illustration since it represents the average trajectory traces produced
by other algorithms. RRT demonstrated a wandering behaviour near
the destination point indicating their inability to identify the optimal
path towards the destination. RRT trajectory traces indicated incon-
sistent behaviours with respect to the chosen manoeuvring strategies
when they faced the irregular shape obstacle.

Fig. 15 depicts pie chart representation of robot’s manoeuvres in different
regions in this sub-experiment layout. In this sub-experiment, regions 7 and
3 contain the initial (S2) and the destination (D1) positions respectively with
irregular shape obstacle being located in region 5. The results indicate that
majority of the methods inhabited region 2 as part of their paths towards
the destination. Considering DA as the benchmark performing approach, it
is noteworthy that region 2 is ignored while the highest average occupation
percentage for region 7 is observed. DA occupied region 7 by 33% on average
while only RRT and Linear-PSO have reported higher average occupation
percentage for this region. PRM and RRT demonstrated different region
coverage, where RRT occupied region 7 longer compared to PRM and PRM
occupied region 5 longer than all other methods. Unlike DA, RRT and PRM
who excluded region 2 in their trajectories, CPSO recorded the second largest
average occupation percentage for this region. Robot controlled by CPSO

33

performed exceptionally well in all regions apart from region 2. This is likely
due to the robot experiencing Cul-De-Sac problem by being surrounded by
several obstacles and not being able to find a clear way out resulting in
achieving poor performances in this region. It is noticeable that the average
travelled distance differences of CPSO is close to DA and superior to other
conventional motion planing methods such as PRM. This is indicative that
although CPSO performed poorly in region 2, but its exceptionally efficient
performance in other regions (especially region 5 that contained the irregular
shaped obstacle) resulted in the method becoming the second best performing
approach in this sub-experiment.

Overall results across all sub-experiments in Experiment II:
Considering the overall performances of all motion planning techniques across
the three sub-experiments in this symmetric layout, CPSO is considered as
the best performing approach. It should be noted that DA is considered the
benchmark or the best result that other approaches can achieve since it has
access to layout of the environment prior to conducting motion planning. PF
and DE are the second and third best performing methods in this experiment
due to their consistent high performances in most categories across all three
sub-experiments in this layout.

Figs. 16, 17, 18 and 19 shows comparison of all methods in four cat-
egories of Execution Time, Battery Consumption, Travelled Distance, and
Convergence Iteration respectively. These figures capture average perfor-
mance information of all methods across all three Sub-Experiments. From the
findings in Fig. 16, the Execution Time performance factor, DA is emerged as
the best performing method and is considered the performance benchmark.

The results in Fig. 16 indicate that the shape of the graph for each sub-
experiment is almost identical from one to another. Only PF and CPSO
have approximately 5% performance different compared with DA in this per-
formance measure factor with DE closely following DA’s performance with
approximately 5% difference in every sub-experiment. The worst performing
method in this performance measure factor is RRT where all sub-experiments
have at least 15% performance difference compared to DA.

In Energy Consumption category (see Fig. 17), PF and CPSO are per-
forming similarly to the best performing method, e.g. DA, in all sub-experiments
by consuming less than 5% energy compared to DA. The least favourable per-
forming approach in this category is Fix-PSO where its overall performance
is more than 20% different from DA.

Fig.18 demonstrate the differences between the performance of DA and

34

Figure 16: Average performance difference from DA (optimal global path plan-
ner) in Sub-Experiments of Experiment II (Execution Time Factor)

all other methods in Travelled Distance category. Since Travelled Distance
influences the Execution Time and Battery Consumption performance fac-
tors, it is considered as the the main factor in this study. Given that DA’s
performance is considered the optimal performance (e.g. benchmark perfor-
mance) in this study, deviation from it is considered as a measure of efficiency
in motion planning methods utilised in the study. CPSO is considered as the
best method given that the difference between CPSO and DA is less than
5% for each sub-experiment. RRT and PRM can be considered as the worst
performing algorithms in this category as their differences are more than 5%
across all Sub-Experiment. Within variants of PSO considered in this study,
TVAC is found to be the worst performing variant since it has never achieved
less than 5% performance difference from DA.

Since Convergence Iteration factor is considered for meta-heuristic algo-
rithms only, the classical methods are marked with 0% in the Fig.19. The
best performing approach in this performance factor is Rand PSO with other
methods demonstrating approximate average convergence iteration differ-
ences of 10% compared to Rand PSO. CSA is the least successful approach in

35

Figure 17: Average performance difference from DA (optimal global path plan-
ner) in Sub-Experiment of Experiment II (Energy Consumption Factor)

this category with over 30% average convergence iteration in sub-experiments
1 and 2. CSA recorded the highest convergence iteration in sub-experiment
3.

Comparing classical and heuristic-based methods, heuristic-based mo-
tion planning methods performed decently especially in experiment II where
all heuristic-based approaches (with the exception of Fix-PSO) managed to
outperform all classical algorithms (with the exception of DA) in all cate-
gories considered. However, in experiment II, PF managed to outperform
all meta-heuristic algorithms in most of the categories considered. It is also
worth mentioning that RRT and PRM performed poorly in terms of execu-
tion time and travelled distance. Although, these methods, e.g. RRT and
PRM, are popular navigation and motion planning approaches among clas-
sical methods, they only perform well if they are implemented under global
path planning condition (Blanco et al., 2015; Pan and Manocha, 2016; Wang
et al., 2018; Contreras-Cruz et al., 2015; Masehian and Sedighizadeh, 2010;
Mohanta and Keshari, 2019; Masehian and Sedighizadeh, 2013). In classical
motion planning methods, PF outperformed RRT and PRM in all categories.

36

Figure 18: Average performance difference from DA (optimal global path plan-
ner) in Sub-Experiments of Experiment II (Travelled Distance Factor)

This is because PF is more direct and do not get influenced from random
factors as in the case of RRT and PRM.

Although DA managed to outperform other methods in all relevant cat-
egories, it is noteworthy that DA has an advantage compared to others.
Unlike other methods that have no knowledge about the environment layout
which force them to perform local motion planning on the basis of their real-
time sensory readings, DA had access to the complete environmental layout
and been constantly performing global path planning. Therefore, the results
achieved by DA is considered as the absolute optimal performance. From
the overall results, it can be concluded that CPSO is the best performing ap-
proach given that it became the second best to DA in almost every category
considered in the study.

Constriction factor, K, in CPSO has given an influence in reducing the
velocity of the particles in search environment which as a result limited the
range of fluctuations of particles in search space, resulting in faster conver-
gence towards optimal solutions (Wang et al., 2018; Jain et al., 2018a; Clerc,
2011). This crucial step has helped CPSO to construct better local paths

37

Figure 19: Average performance difference from the best performing algorithm
in Sub-Experiments of Experiment II (Convergence Iteration Factor)

which are shorter and less congested with obstacles compared to the other
meta-heuristic methods. Our study concludes that CPSO is the most suf-
ficient motion planning approach for local path planning problems. This
further supports Eberhart and Shi statement in (Eberhart and Y.shi, 2000)
where they explained the important role of the constriction factor in the par-
ticle swarm performance by stating “the best approach to use with particle
swarm optimization as a ”rule of thumb” is to utilize the constriction factor
approach”.

5. Conclusion

This study is focused on providing a comparison between conventional
motion planning approaches such as Potential Field (PF), Dijkstra’s Algo-
rithm (DA), Rapidly-explore Random Tree (RRT), Probabilistic Road Map
(PRM) and a collection of meta-heuristic based methods such as Genetic Al-
gorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution
(DE), and Cuckoo Search (CSA). The performance of meta-heuristic based
methods are first evaluated under a collection of benchmark functions. These

38

methods are chosen based on the findings and recommendations of (Ab Wa-
hab et al., 2015) where using a collection of benchmark functions, variations
of PSO (Linear-PSO, Rand-PSO and CPSO) and DE outperformed other
meta-heuristic methods. Two sets of experiments featuring a maze and a
symmetric layout are designed to further evaluate the feasibility of these
meta-heuristic methods under motion planning problems. The layouts are
designed to be hard-to-manoeuvre and obstacle-rich.

The results indicated DA as the benchmark performing method with un-
derstanding that this approach had access to prior knowledge of the environ-
ment and a pre-planned path whilst other techniques only had information
about their starting location (S) and their target destination (D). Therefore,
DA’s performance is considered as the control or benchmark result and its
performance is considered as the best possible outcome that can be achieved
in these experimental layouts. The summary of the first, second, and third
best performing algorithms for all experiments are presented in Table 6. The
results points to CPSO as the best performing algorithm by outperforming
all other meta-heuristic based and conventional motion planning approaches
investigated in this study. CPSO is found to be among the top 3 performing
algorithms across all experiments and performance measure factors consid-
ered in this study. CPSO outperformed all other methods in 2 experiments
under execution time, Battery Consumption and consistency of trajectory
trace performance factors. CPSO outperformed other methods in 3 experi-
ments in Travelled Distance performance factor. The main drawback of this
method is observed under Convergence Iteration performance factor where
it only been in top 3 performing algorithms for one of the experiments and
been outperformed by other meta-heuristic methods under this performance
measure factor.

It is noteworthy that no statistical significance is found between CPSO
and DA under travelled distance category in any of the motion planning
experiments. Such lack of significant difference between CPSO and DA is
also observed in the execution times and battery consumption categories.
The consistent competitive performance of CPSO under benchmark func-
tions problems are also reported in (Ab Wahab et al., 2015). CPSO’s supe-
rior performance observed under the assessed experimental motion planning
problems investigated in this study testifies on its efficiency and suitability
for local path planning and navigation problems. This is an emerging field
that its solutions can be embedded in any autonomous system and problem
domain such as driver-less cars and autonomous robotic systems.

39

Acknowledgment

This project is a collaboration between Robot, Computer Vision, and Im-
age Processing (RCVIP) research group from School of Computer Sciences,
Universiti Sains Malaysia, Autonomous System and Advanced Robotics (ASAR)
Research Lab, the University of Salford, and NeuroCognition Laboratory
(NCL) at University of Colorado Colorado Spring. This project was sup-
ported by Universiti Sains Malaysia Short Term Grant (PKOMP/6315262).

40

T
ab

le
3:

A
v
e
ra

g
e
d

re
su

lt
s

a
ch

ie
v
e
d

b
y

v
a
ri

o
u

s
a
p

p
ro

a
ch

e
s

in
E

x
p

e
ri

m
e
n
t

I
(M

a
z
e

L
a
y
o
u

t)
.

B
O

L
D

fo
n
ts

re
p

re
se

n
t

th
e

b
e
st

p
e
rf

o
rm

in
g

m
e
th

o
d

in
e
a
ch

p
e
rf

o
rm

a
n

c
e

fa
c
to

r.
F
a
c
to

r
P
F

D
A

R
R
T

P
R
M

G
A

D
E

C
S
A

F
ix

P
S
O

R
a
n
d

P
S
O

T
V
A
C

P
S
O

L
in

e
a
r

P
S
O

C
P
S
O

A
rr

iv
ed

a
t

D
es

-
ti

n
a
-

ti
o
n

(T
im

es
)

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

N
u

m
b

er
o
f

C
o
l-

li
si

o
n

s
(T

im
es

)

0
0

0
0

0
0

0
0

0
0

0
0

D
is

p
la

ce
m

en
t

P
ro

b
le

m
(T

im
es

)

0
0

0
0

0
0

0
0

0
0

0
0

E
x
ec

u
ti

o
n

T
im

e
(s

ec
-

o
n

d
s)

2
8
7
.5

7
2
5
5
.6
5

4
6
6
.7

0
5
7
4
.9

4
3
2
3
.4

2
2
5
7
.4

4
3
0
6
.6

9
2
7
3
.3

0
2
9
6
.9

5
2
9
9
.8

3
3
0
7
.3

3
2
6
2
.6

6

B
a
tt

er
y

C
o
n

-
su

m
p

-
ti

o
n

(%
)

2
.7

7
1
.5
5

2
.8

6
4
.6

8
1
.9

8
1
.5

9
1
.8

9
4
.5

1
1
.8

0
1
.8

0
1
.8

4
1
.7

3

T
ra

v
el

le
d

D
is

ta
n

ce
(m

)

1
2
.8

9
3
6

1
1
.8
9
6
6

1
3
.7

7
1
9

1
4
.4

1
6
5

1
2
.7

9
2
2

1
2
.1

9
5
4

1
2
.1

0
7
5

1
2
.2

3
7
8

1
2
.2

9
9
4

1
2
.1

0
7
3

1
2
.3

4
4
1

1
2
.0

1
8
8

C
o
n
v
er

g
en

ce
It

er
a
ti

o
n

—
—

—
—

5
6
5
.3

5
4
2
.0

5
5
0
.7

5
5
1
.0

5
4
8
.1

5
3
1
.9

5
4
4
.1

5
4
4
.5

B
es

t
P

er
-

fo
rm

in
g

A
lg

o
-

ri
th

m

3
6

3
3

3
3

3
3

3
4

3
3

41

T
ab

le
4:

A
v
e
ra

g
e
d

re
su

lt
s

a
ch

ie
v
e
d

b
y

v
a
ri

o
u

s
a
p

p
ro

a
ch

e
s

u
ti

li
se

d
in

E
x
p

e
ri

m
e
n
t

II
.

T
h

e
b

e
st

re
su

lt
a
ch

ie
v
e
d

in
e
a
ch

c
a
te

g
o
ry

w
it

h
in

e
a
ch

S
u

b
-E

x
p

e
ri

m
e
n
t

is
re

fl
e
c
te

d
u

si
n

g
B

O
L

D
fo

n
t.

F
a
c
to

r
P
F

D
A

R
R
T

P
R
M

G
A

D
E

C
S
A

F
ix

P
S
O

R
a
n
d
-

P
S
O

T
V
A
C
-

P
S
O

L
in

e
a
r
-

P
S
O

C
P
S
O

E
x
p

er
im

en
t

II
S

u
b

-E
x
p

er
im

en
t

1
:

P
a
th

fr
o
m

S
1

to
D

1
in

F
ig

.
3

A
rr

iv
ed

a
t

D
es

ti
n

a
-

ti
o
n

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

N
u

m
b

er
o
f

C
o
ll
is

io
n

s
0

0
0

0
0

0
0

0
0

0
0

0

D
is

p
la

ce
m

en
t

P
ro

b
le

m
0

0
0

0
0

0
0

0
0

0
0

0

E
x
ec

u
ti

o
n

T
im

e
(s

)
1
2
6
.7

5
8
8

8
7
.5
4
9
3

3
8
5
.1

7
9
6

2
4
3
.1

5
2
4

1
4
3
.1

2
9
6

1
2
9
.8

8
8
7

1
7
8
.1

0
9
3

1
5
0
.0

5
9
4

1
4
5
.7

4
9
1

2
0
8
.9

4
0
3

1
4
4
.3

8
4
3

1
2
6
.6

7
4
6

B
a
tt

er
y

C
o
n

su
m

p
-

ti
o
n

(%
)

0
.4

9
7
0

0
.3
5
2
4

2
.5

6
3
1

0
.9

4
2
1

0
.8

5
3
1

0
.7

8
6
4

0
.6

5
6
5

0
.8

9
3
9

0
.8

6
0
5

1
.2

3
8
9

0
.8

5
6
8

0
.4

6
3
7

T
ra

v
el

le
d

D
is

ta
n

ce
(m

)

7
.5

6
0
4

7
.4

7
0
6

9
.2

1
8
1

9
.2

6
1
3

7
.5

9
5
0

7
.4
4
5
6

7
.5

3
2
7

7
.7

1
4
5

7
.6

5
3
6

8
.4

1
1
1

7
.6

1
1
7

7
.4

8
2
2

C
o
n
v
er

g
en

ce
It

er
a
ti

o
n

—
—

—
—

4
7
0
.6

5
1
9
.6

4
7
2
.0

4
3
2
.8

4
2
2
.9

4
2
2
.7

4
4
9
.1

4
7
6
.5

B
es

t
P

er
-

fo
rm

in
g

A
lg

o
ri

th
m

3
5

3
3

3
4

3
3

3
4

3
3

E
x
p

er
im

en
t

II
S

u
b

-E
x
p

er
im

en
t

2
:

P
a
th

fr
o
m

S
2

to
D

1
in

F
ig

.
3

A
rr

iv
ed

a
t

D
es

ti
n

a
-

ti
o
n

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

N
u

m
b

er
o
f

C
o
ll
is

io
n

s
0

0
0

0
0

0
0

0
0

0
0

0

D
is

p
la

ce
m

en
t

P
ro

b
le

m
0

0
0

0
0

0
0

0
0

0
0

0

E
x
ec

u
ti

o
n

T
im

e
(s

)
1
0
6
.6

5
9
1

7
7
.0
3
1
2

3
3
4
.8

0
0
4

3
3
4
.5

4
0
4

1
5
4
.5

1
9
0

1
1
8
.0

5
9
9

2
1
0
.0

4
7
1

1
2
4
.4

0
4
6

1
2
6
.8

0
4
7

1
3
0
.4

5
4
7

1
2
3
.4

6
5
2

1
1
5
.9

7
8
4

B
a
tt

er
y

C
o
n

su
m

p
-

ti
o
n

(%
)

0
.4

1
5
4

0
.3
1
1
5

1
.2

5
3
7

1
.2

5
3
7

0
.5

7
8
6

2
.0

3
6
3

0
.7

8
2
6

3
.8

1
3
1

0
.4

9
7
0

0
.5

1
1
9

0
.4

7
4
8

0
.3

1
3
1

T
ra

v
el

le
d

D
is

ta
n

ce
(m

)

6
.2

0
5
1

5
.9
6
9
7

6
.9

4
4
9

6
.9

4
3
3

6
.9

0
2
6

6
.5

9
8
2

7
.0

9
7
3

6
.4

5
6
7

6
.5

0
4
5

6
.5

6
9
2

6
.5

1
9
0

6
.1

9
5
3

C
o
n
v
er

g
en

ce
It

er
a
ti

o
n

—
—

—
—

5
4
3
.2

4
8
8
.8

6
5
2
.2

4
9
7
.8

4
0
1
.5

4
9
6
.8

4
1
1
.5

4
7
0
.0

B
es

t
P

er
-

fo
rm

in
g

A
lg

o
ri

th
m

3
6

3
3

3
3

3
3

4
3

3
3

42

T
ab

le
5:

A
v
e
ra

g
e
d

re
su

lt
s

a
ch

ie
v
e
d

b
y

v
a
ri

o
u

s
a
p

p
ro

a
ch

e
s

u
ti

li
se

d
in

E
x
p

e
ri

m
e
n
t

II
.

T
h

e
b

e
st

re
su

lt
a
ch

ie
v
e
d

in
e
a
ch

c
a
te

g
o
ry

w
it

h
in

e
a
ch

S
u

b
-E

x
p

e
ri

m
e
n
t

is
re

fl
e
c
te

d
u

si
n

g
B

O
L

D
fo

n
t.

T
a
b

le
4

c
o
n
ti

n
u

e
d

..
.

F
a
c
to

r
P
F

D
A

R
R
T

P
R
M

G
A

D
E

C
S
A

F
ix
-

P
S
O

R
a
n
d
-

P
S
O

T
V
A
C
-

P
S
O

L
in

e
a
r
-

P
S
O

C
P
S
O

E
x
p

er
im

en
t

II
S

u
b

-E
x
p

er
im

en
t

3
:

P
a
th

fr
o
m

S
2

to
D

2
in

F
ig

.
3

A
rr

iv
ed

a
t

D
es

ti
n

a
-

ti
o
n

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

N
u

m
b

er
o
f

C
o
ll
is

io
n

s
0

0
0

0
0

0
0

0
0

0
0

0

D
is

p
la

ce
m

en
t

P
ro

b
le

m
0

0
0

0
0

0
0

0
0

0
0

0

E
x
ec

u
ti

o
n

T
im

e
(s

)
1
8
4
.3

3
1
3

9
0
.6
3
9
1

3
7
4
.3

7
8
6

2
0
9
.6

1
9
3

2
5
2
.7

2
0
1

1
9
2
.5

2
9
2

3
3
5
.1

7
2
2

2
8
6
.9

7
9
1

1
9
0
.9

1
5
2

2
1
5
.9

6
9
5

2
9
9
.9

5
6
0

1
7
9
.8

0
8
5

B
a
tt

er
y

C
o
n

su
m

p
-

ti
o
n

(%
)

0
.7

2
7
0

0
.3
7
0
9

1
.3

9
1
0

0
.7

9
3
7

0
.9

8
3
0

1
.4

9
4
8

1
.3

1
6
8

1
.1

0
5
3

0
.7

4
1
9

0
.8

3
0
9

1
.1

5
7
3

0
.7

0
3
1

tr
a
v
el

ed
D

is
ta

n
ce

(m
)

8
.4

6
8
0

7
.1
2
4
7

8
.6

1
8
3

8
.0

8
4
2

9
.6

0
8
9

8
.7

9
6
2

9
.4

2
1
4

8
.5

2
2
1

8
.3

1
2
7

8
.9

1
8
3

8
.7

5
4
6

7
.6

5
3
8

C
o
n
v
er

g
en

ce
It

er
a
ti

o
n

—
—

—
—

4
6
2
.0

4
6
8
.9

7
2
3
.5

5
0
2
.9

4
4
4
.2

4
6
6
.3

5
1
7
.9

4
5
3
.9

B
es

t
P

er
-

fo
rm

in
g

A
lg

o
ri

th
m

3
6

3
3

3
3

3
3

4
3

3
3

E
x
p

er
im

en
t

II
O

v
er

a
ll

A
rr

iv
ed

a
t

D
es

ti
n

a
-

ti
o
n

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

N
u

m
b

er
o
f

C
o
ll
is

io
n

s
0

0
0

0
0

0
0

0
0

0
0

0

D
is

p
la

ce
m

en
t

P
ro

b
le

m
0

0
0

0
0

0
0

0
0

0
0

0

E
x
ec

u
ti

o
n

T
im

e
(s

)
1
3
9
.2

4
9
7

8
5
.0
7
3
2

3
6
4
.7

8
6
2

2
6
2
.4

3
7
4

1
8
3
.4

5
6
2

1
4
6
.8

2
5
9

2
4
1
.1

0
9
5

1
8
7
.1

4
7
7

1
5
4
.4

8
9
7

1
8
5
.1

2
1
5

1
8
9
.2

6
8
5

1
4
0
.8

2
0
5

B
a
tt

er
y

C
o
n

su
m

p
-

ti
o
n

(%
)

0
.5

4
6
5

0
.3
4
4
9

1
.7

3
5
9

0
.9

9
6
5

1
.4

3
9
2

0
.8

0
4
9

0
.9

1
8
6

1
.9

3
7
4

0
.6

9
9
8

0
.8

6
0
5

0
.8

2
9
6

0
.4

9
3
3

T
ra

v
el

le
d

D
is

ta
n

ce
(m

)

7
.4

1
1
1

6
.8
5
5
0

8
.2

6
0
4

8
.0

9
6
3

8
.0

3
5
5

7
.6

1
3
3

8
.0

1
7
1

7
.5

6
4
4

7
.4

9
0
3

7
.9

6
6
2

7
.6

2
8
4

7
.2

1
0
4

C
o
n
v
er

g
en

ce
It

er
a
ti

o
n

—
—

—
—

4
7
3
.8

5
1
0
.6

6
1
5
.9

4
7
7
.8

4
2
2
.9

4
6
1
.9

4
5
9
.5

4
6
6
.8

B
es

t
P

er
-

fo
rm

in
g

A
lg

o
ri

th
m

9
1
7

9
9

9
1
1

9
9

1
0

1
0

9
9

43

Table 6: Summary of the First, Second, and Third Best Performing Algorithm in Each
Experiments

Factor Exp. I Exp. II(Sub-1) Exp. II(Sub-2) Exp. II (Sub-
3)

Ability to Arrive at
Destination
Number of Collisions All algorithms perform adequately in these performance measures.
Displacement Problem
Execution Time 1 - DE,

2 - CPSO,
3 - PF

1 - CPSO,
2 - PF,
3 - DE

1 - PF,
2 - CPSO,
3 - DE

1 - CPSO,
2 - PF,
3 - Rand-PSO

Battery Consumption 1 - DE,
2 - CPSO,
3 - Rand &
TVAC-PSO

1 - CPSO,
2 - PF,
3 - CSA

1 - PF,
2 - CPSO,
3 - Rand-PSO

1 - CPSO,
2 - PF,
3 - Rand-PSO

Travelled Distance 1 - CPSO,
2 - TVAC-
PSO,
3 - Fix-PSO

1 - DE,
2 - CPSO,
3 - CSA

1 - CPSO,
2 - PF,
3 - Linear-PSO

1 - CPSO,
2 - PF,
3 - PRM

Convergence Iteration 1 - TVAC-
PSO,
2 - DE,
3 - Linear-PSO

1 - Rand-PSO
2 - Fix-PSO,
3 - Fix-PSO

1 - Rand-PSO
2 - Linear-PSO,
3 - DE

1 - Rand-PSO
2 - CPSO,
3 - GA

Trajectory Traces 1 - Linear-PSO
2 - CPSO,
3 - Fix-PSO

1 - CPSO
2 - PF,
3 - DE

1 - PF
2 - CPSO,
3 - Fix-PSO

1 - CPSO
2 - PF,
3 - DE

44

References

References

Ab Wahab, M.N., Nefti-Meziani, S., Atyabi, A., 2015. A comprehen-
sive review of swarm optimization algorithms. PLoS ONE doi:10.1371/
journal.pone.0122827.

Atyabi, A., Phon-Amnuaisuk, S., Ho, C.K., 2010. Navigating a robotic
swarm in an uncharted 2D landscape. Applied Soft Computing Journal
doi:10.1016/j.asoc.2009.06.017.

Atyabi, A., Powers, D.M.W., 2013. Review of classical and heuristic-based
navigation and path planning approaches. International Journal of Ad-
vancements in Computing Technologies .

Aydilek, I.B., Nacar, M.A., GüMüŞÇü, A., Salur, M.U., 2017. Comparing
inertia weights of particle swarm optimization in multimodal functions,
in: IDAP 2017 - International Artificial Intelligence and Data Processing
Symposium. doi:10.1109/IDAP.2017.8090225.

Bayat, F., Najafinia, S., Aliyari, M., 2018. Mobile robots path planning:
Electrostatic potential field approach. Expert Systems with Applications
doi:10.1016/j.eswa.2018.01.050.

Bibiks, K., Hu, Y.F., Li, J.P., Pillai, P., Smith, A., 2018. Improved discrete
cuckoo search for the resource-constrained project scheduling problem.
Applied Soft Computing Journal doi:10.1016/j.asoc.2018.04.047.

Blanco, J.L., Bellone, M., Gimenez-Fernandez, A., 2015. TP-space RRT -
Kinematic path planning of non-holonomic any-shape vehicles. Interna-
tional Journal of Advanced Robotic Systems doi:10.5772/60463.

Broumi, S., Talea, M., Bakali, A., Smarandache, F., 2017. Application
of Dijkstra algorithm for solving interval valued neutrosophic shortest
path problem, in: 2016 IEEE Symposium Series on Computational In-
telligence, SSCI 2016. doi:10.1109/SSCI.2016.7850151.

Chatterjee, S., Dey, N., Sen, S., Ashour, A.S., Fong, S.J., Shi, F.,
2017. Modified cuckoo search ased neural networks for forest types
classification, in: Frontiers in Artificial Intelligence and Applications.
doi:10.3233/978-1-61499-785-6-490.

45

http://dx.doi.org/10.1371/journal.pone.0122827
http://dx.doi.org/10.1371/journal.pone.0122827
http://dx.doi.org/10.1016/j.asoc.2009.06.017
http://dx.doi.org/10.1109/IDAP.2017.8090225
http://dx.doi.org/10.1016/j.eswa.2018.01.050
http://dx.doi.org/10.1016/j.asoc.2018.04.047
http://dx.doi.org/10.5772/60463
http://dx.doi.org/10.1109/SSCI.2016.7850151
http://dx.doi.org/10.3233/978-1-61499-785-6-490

Chen, J., 2017. Optimal path planning of robot based on ant colony algo-
rithm. Acta Technica CSAV (Ceskoslovensk Akademie Ved) .

Chen, L., 2014. UUV path planning algorithm based on virtual obstacle, in:
2014 IEEE International Conference on Mechatronics and Automation,
IEEE ICMA 2014. doi:10.1109/ICMA.2014.6885960.

Cheng, G., Zelinsky, A., 1995. A Physically Grounded Search in a Be-
haviour Based Robot, in: Proceedings of the Eighth Australian Joint
Conference on Artificial Intelligence.

Clerc, M., 2011. Beyond Standard Particle Swarm Optimisation. In-
ternational Journal of Swarm Intelligence Research doi:10.4018/jsir.
2010100103.

Connell, D., Manh La, H., 2018. Extended rapidly exploring ran-
dom tree–based dynamic path planning and replanning for mobile
robots. International Journal of Advanced Robotic Systems doi:10.
1177/1729881418773874.

Contreras-Cruz, M.A., Ayala-Ramirez, V., Hernandez-Belmonte, U.H.,
2015. Mobile robot path planning using artificial bee colony and evo-
lutionary programming. Applied Soft Computing Journal doi:10.1016/
j.asoc.2015.01.067.

Corne, D., Lones, M.A., 2018. Evolutionary algorithms, in: Handbook of
Heuristics. doi:10.1007/978-3-319-07124-4_27.

Dai, H.P., Chen, D.D., Zheng, Z.S., 2018. Effects of Random Values
for Particle Swarm Optimization Algorithm. Algorithms doi:10.3390/
a11020023.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs.
Numerische Mathematik doi:10.1007/BF01386390.

Duguleana, M., Mogan, G., 2016. Neural networks based reinforcement
learning for mobile robots obstacle avoidance. Expert Systems with
Applications doi:10.1016/j.eswa.2016.06.021.

Eberhart, R.C., Y.shi, 2000. Comparing Inertia Weight and Constriction
Factor in PSO. Pardue School of Engineering and Technology doi:10.
3233/KES-2010-0211.

46

http://dx.doi.org/10.1109/ICMA.2014.6885960
http://dx.doi.org/10.4018/jsir.2010100103
http://dx.doi.org/10.4018/jsir.2010100103
http://dx.doi.org/10.1177/1729881418773874
http://dx.doi.org/10.1177/1729881418773874
http://dx.doi.org/10.1016/j.asoc.2015.01.067
http://dx.doi.org/10.1016/j.asoc.2015.01.067
http://dx.doi.org/10.1007/978-3-319-07124-4_27
http://dx.doi.org/10.3390/a11020023
http://dx.doi.org/10.3390/a11020023
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1016/j.eswa.2016.06.021
http://dx.doi.org/10.3233/KES-2010-0211
http://dx.doi.org/10.3233/KES-2010-0211

Elbanhawi, M., Simic, M., 2014. Sampling-based robot motion planning:
A review. doi:10.1109/ACCESS.2014.2302442.

Freund, E., Kaever, P., 2017. Autonomous Mobile Robots. IFAC Proceed-
ings Volumes doi:10.1016/s1474-6670(17)54619-4.

Holland, J.H., Chu, E.C., Beasley, J.E., 1992. Genetic Algorithms - Com-
puter programs that ”evolve” in ways that resemble natural selection
can solve complex problems even their creators do not fully understand.
Scientific American .

Jain, N.K., Nangia, U., Jain, J., 2018a. A Review of Particle Swarm
Optimization. doi:10.1007/s40031-018-0323-y.

Jain, S., Kumar, S., Sharma, V.K., Sharma, H., 2018b. Improved differen-
tial evolution algorithm, in: 2017 International Conference on Infocom
Technologies and Unmanned Systems: Trends and Future Directions,
ICTUS 2017. doi:10.1109/ICTUS.2017.8286085.

Joshi, A.S., Kulkarni, O., Kakandikar, G.M., Nandedkar, V.M., 2017.
Cuckoo Search Optimization- A Review, in: Materials Today: Proceed-
ings. doi:10.1016/j.matpr.2017.07.055.

Kamil, F., Hong, T.S., Khaksar, W., Moghrabiah, M.Y., Zulkifli, N., Ah-
mad, S.A., 2017. New robot navigation algorithm for arbitrary unknown
dynamic environments based on future prediction and priority behavior.
Expert Systems with Applications doi:10.1016/j.eswa.2017.05.059.

Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H., 1996. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation doi:10.1109/
70.508439.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimiza-
tion. Natural Computing Series doi:10.1007/978-3-319-93073-2_6,
arXiv:9780201398298.

Khatib, O., 1985. Real-time obstacle avoidance for manipulators and mo-
bile robots, in: Proceedings - IEEE International Conference on Robotics
and Automation. doi:10.1109/ROBOT.1985.1087247.

47

http://dx.doi.org/10.1109/ACCESS.2014.2302442
http://dx.doi.org/10.1016/s1474-6670(17)54619-4
http://dx.doi.org/10.1007/s40031-018-0323-y
http://dx.doi.org/10.1109/ICTUS.2017.8286085
http://dx.doi.org/10.1016/j.matpr.2017.07.055
http://dx.doi.org/10.1016/j.eswa.2017.05.059
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1007/978-3-319-93073-2_6
http://arxiv.org/abs/9780201398298
http://dx.doi.org/10.1109/ROBOT.1985.1087247

Kora, P., Yadlapalli, P., 2017. Crossover Operators in Genetic Algo-
rithms: A Review. International Journal of Computer Applications
doi:10.5120/ijca2017913370.

Kuffner, J., LaValle, S., 2002. RRT-connect: An efficient approach to
single-query path planning. doi:10.1109/robot.2000.844730.

Kumar, N., Vamossy, Z., Szabo-Resch, Z.M., 2017. Robot path pursuit
using probabilistic roadmap, in: CINTI 2016 - 17th IEEE International
Symposium on Computational Intelligence and Informatics: Proceed-
ings. doi:10.1109/CINTI.2016.7846393.

Lamini, C., Benhlima, S., Elbekri, A., 2018. Genetic algorithm based ap-
proach for autonomous mobile robot path planning, in: Procedia Com-
puter Science. doi:10.1016/j.procs.2018.01.113.

Li, W., Yang, C., Jiang, Y., Liu, X., Su, C.Y., 2017. Motion Planning
for Omnidirectional Wheeled Mobile Robot by Potential Field Method.
Journal of Advanced Transportation doi:10.1155/2017/4961383.

Mac, T.T., Copot, C., Tran, D.T., Keyser], R.D., 2016. Heuristic ap-
proaches in robot path planning: A survey. Robotics and Autonomous
Systems 86, 13 – 28. URL: http://www.sciencedirect.com/science/
article/pii/S0921889015300671, doi:https://doi.org/10.1016/j.
robot.2016.08.001.

MahmoudZadeh, S., M.W Powers, D., Sammut, K., Atyabi, A., Yazdani,
A., 2018. A hierarchal planning framework for AUV mission manage-
ment in a spatiotemporal varying ocean. Computers and Electrical En-
gineering doi:10.1016/j.compeleceng.2017.12.035.

Masehian, E., Sedighizadeh, D., 2010. Multi-objective robot motion plan-
ning using a particle swarm optimization model. Journal of Zhejiang
University SCIENCE C doi:10.1631/jzus.c0910525.

Masehian, E., Sedighizadeh, D., 2013. An Improved Parti-
cle Swarm Optimization Method for Motion Planning of Multi-
ple Robots. Springer Berlin Heidelberg, Berlin, Heidelberg. pp.
175–188. URL: https://doi.org/10.1007/978-3-642-32723-0_13,
doi:10.1007/978-3-642-32723-0_13.

48

http://dx.doi.org/10.5120/ijca2017913370
http://dx.doi.org/10.1109/robot.2000.844730
http://dx.doi.org/10.1109/CINTI.2016.7846393
http://dx.doi.org/10.1016/j.procs.2018.01.113
http://dx.doi.org/10.1155/2017/4961383
http://www.sciencedirect.com/science/article/pii/S0921889015300671
http://www.sciencedirect.com/science/article/pii/S0921889015300671
http://dx.doi.org/https://doi.org/10.1016/j.robot.2016.08.001
http://dx.doi.org/https://doi.org/10.1016/j.robot.2016.08.001
http://dx.doi.org/10.1016/j.compeleceng.2017.12.035
http://dx.doi.org/10.1631/jzus.c0910525
https://doi.org/10.1007/978-3-642-32723-0_13
http://dx.doi.org/10.1007/978-3-642-32723-0_13

Mohammad, S., Rostami, H., Sangaiah, A.K., Wang, J., 2019. Obsta-
cle avoidance of mobile robots using modified potential field algorithm.
Eurasip Journal on Wireless Communications and Networking .

Mohanan, M.G., Salgoankar, A., 2018. A survey of robotic motion planning
in dynamic environments. doi:10.1016/j.robot.2017.10.011.

Mohanta, J.C., Keshari, A., 2019. A knowledge based fuzzy-probabilistic
roadmap method for mobile robot navigation. Applied Soft Computing
Journal doi:10.1016/j.asoc.2019.03.055.

Nazarahari, M., Khanmirza, E., Doostie, S., 2019. Multi-objective multi-
robot path planning in continuous environment using an enhanced ge-
netic algorithm. Expert Systems with Applications doi:10.1016/j.
eswa.2018.08.008.

Noto, M., Sato, H., 2002. A method for the shortest path search by ex-
tended Dijkstra algorithm. doi:10.1109/icsmc.2000.886462.

Orozco-Rosas, U., Montiel, O., Sepúlveda, R., 2019. Mobile robot path
planning using membrane evolutionary artificial potential field. Applied
Soft Computing Journal doi:10.1016/j.asoc.2019.01.036.

Pan, J., Manocha, D., 2016. Fast probabilistic collision checking for
sampling-based motion planning using locality-sensitive hashing. Inter-
national Journal of Robotics Research doi:10.1177/0278364916640908.

Parungao, L., Hein, F., Lim, W., 2018. Dijkstra algorithm based intelligent
path planning with topological map and wireless communication. ARPN
Journal of Engineering and Applied Sciences .

Patle, B.K., Babu L, G., Pandey, A., Parhi, D.R., Jagadeesh, A., 2019.
A review: On path planning strategies for navigation of mobile robot.
doi:10.1016/j.dt.2019.04.011.

Peng Song, Kumar, V., 2003. A potential field based approach to multi-
robot manipulation. doi:10.1109/robot.2002.1014709.

Pennock, G.R., 2005. Robot motion: Planning and control. Mechanism
and Machine Theory doi:10.1016/0094-114x(86)90035-2.

49

http://dx.doi.org/10.1016/j.robot.2017.10.011
http://dx.doi.org/10.1016/j.asoc.2019.03.055
http://dx.doi.org/10.1016/j.eswa.2018.08.008
http://dx.doi.org/10.1016/j.eswa.2018.08.008
http://dx.doi.org/10.1109/icsmc.2000.886462
http://dx.doi.org/10.1016/j.asoc.2019.01.036
http://dx.doi.org/10.1177/0278364916640908
http://dx.doi.org/10.1016/j.dt.2019.04.011
http://dx.doi.org/10.1109/robot.2002.1014709
http://dx.doi.org/10.1016/0094-114x(86)90035-2

Pimentel, J.M., Alvim, M.S., Campos, M.F., Macharet, D.G., 2018.
Information-Driven Rapidly-Exploring Random Tree for Efficient En-
vironment Exploration. Journal of Intelligent and Robotic Systems:
Theory and Applications doi:10.1007/s10846-017-0709-0.

Piotrowski, A.P., 2017. Review of Differential Evolution population size.
Swarm and Evolutionary Computation doi:10.1016/j.swevo.2016.05.
003.

Raska, P., Ulrych, Z., 2017. Testing different particle swarm optimiza-
tion strategies, in: Proceedings of the 30th International Business In-
formation Management Association Conference, IBIMA 2017 - Vision
2020: Sustainable Economic development, Innovation Management, and
Global Growth.

Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hi-
erarchical particle swarm optimizer with time-varying acceleration coef-
ficients. IEEE Transactions on Evolutionary Computation doi:10.1109/
TEVC.2004.826071.

Risald, Mirino, A.E., Suyoto, 2018. Best routes selection using Dijkstra
and Floyd-Warshall algorithm, in: Proceedings of the 11th International
Conference on Information and Communication Technology and System,
ICTS 2017. doi:10.1109/ICTS.2017.8265662.

Sabatta, D., Siegwart, R., 2014. Bearings-only path following with a vision-
based potential field, in: IEEE International Conference on Intelligent
Robots and Systems. doi:10.1109/IROS.2014.6942939.

Sathiya, V., Chinnadurai, M., 2019. Evolutionary Algorithms-Based
Multi-Objective Optimal Mobile Robot Trajectory Planning. Robotica
doi:10.1017/S026357471800156X.

Sfeir, J., Saad, M., Saliah-Hassane, H., 2011. An improved Artifi-
cial Potential Field approach to real-time mobile robot path plan-
ning in an unknown environment, in: ROSE 2011 - IEEE Interna-
tional Symposium on Robotic and Sensors Environments, Proceedings.
doi:10.1109/ROSE.2011.6058518.

50

http://dx.doi.org/10.1007/s10846-017-0709-0
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1109/ICTS.2017.8265662
http://dx.doi.org/10.1109/IROS.2014.6942939
http://dx.doi.org/10.1017/S026357471800156X
http://dx.doi.org/10.1109/ROSE.2011.6058518

Shehab, M., Khader, A.T., Al-Betar, M.A., 2017. A survey on applications
and variants of the cuckoo search algorithm. doi:10.1016/j.asoc.2017.
02.034.

Shi, Y., Eberhart, R.C., 1998. Parameter selection in particle
swarm optimization. In Evolutionary Programming. doi:10.1007/
978-3-319-46173-1.

Storn, R., Price, K., 1997. Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of
Global Optimization doi:10.1023/A:1008202821328.

Sudhakara, P., Ganapathy, V., Sundaran, K., 2018. Probabilistic
roadmaps-spline based trajectory planning for wheeled mobile robot, in:
2017 International Conference on Energy, Communication, Data Ana-
lytics and Soft Computing, ICECDS 2017. doi:10.1109/ICECDS.2017.
8390129.

Suryanto, N., Ikuta, C., Pramadihanto, D., 2017. Multi-group particle
swarm optimization with random redistribution, in: Proceedings - Inter-
national Electronics Symposium on Knowledge Creation and Intelligent
Computing, IES-KCIC 2017. doi:10.1109/KCIC.2017.8228445.

Wang, D., Tan, D., Liu, L., 2018. Particle swarm optimization algorithm:
an overview. Soft Computing doi:10.1007/s00500-016-2474-6.

Wong, C., Yang, E., Yan, X.T., Gu, D., 2018. Optimal Path Planning
Based on a Multi-Tree T-RRT Approach for Robotic Task Planning in
Continuous Cost Spaces, in: Proceedings - 2018 12th France-Japan and
10th Europe-Asia Congress on Mechatronics, Mecatronics 2018. doi:10.
1109/MECATRONICS.2018.8495886.

Xiao, L., Hajjam-El-Hassani, A., Dridi, M., 2017. An application of ex-
tended cuckoo search to vehicle routing problem, in: 2017 International
Colloquium on Logistics and Supply Chain Management: Competitive-
ness and Innovation in Automobile and Aeronautics Industries, LOGIS-
TIQUA 2017. doi:10.1109/LOGISTIQUA.2017.7962869.

Yang, X.S., Deb, S., 2009. Cuckoo search via Levy flights, in: 2009 World
Congress on Nature and Biologically Inspired Computing, NABIC 2009
- Proceedings. doi:10.1109/NABIC.2009.5393690.

51

http://dx.doi.org/10.1016/j.asoc.2017.02.034
http://dx.doi.org/10.1016/j.asoc.2017.02.034
http://dx.doi.org/10.1007/978-3-319-46173-1
http://dx.doi.org/10.1007/978-3-319-46173-1
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/ICECDS.2017.8390129
http://dx.doi.org/10.1109/ICECDS.2017.8390129
http://dx.doi.org/10.1109/KCIC.2017.8228445
http://dx.doi.org/10.1007/s00500-016-2474-6
http://dx.doi.org/10.1109/MECATRONICS.2018.8495886
http://dx.doi.org/10.1109/MECATRONICS.2018.8495886
http://dx.doi.org/10.1109/LOGISTIQUA.2017.7962869
http://dx.doi.org/10.1109/NABIC.2009.5393690

Yang, X.S., Deb, S., 2013. Multiobjective cuckoo search for design op-
timization. Computers and Operations Research doi:10.1016/j.cor.
2011.09.026.

Yang, X.S., Deb, S., 2014. Cuckoo search: Recent advances and applica-
tions. doi:10.1007/s00521-013-1367-1.

Zafar, M.N., Mohanta, J.C., 2018. Methodology for Path Planning and
Optimization of Mobile Robots: A Review, in: Procedia Computer Sci-
ence. doi:10.1016/j.procs.2018.07.018.

Zammit, C., Van Kampen, E.J., 2018. Comparison between A* and RRT
Algorithms for UAV Path Planning. doi:10.2514/6.2018-1846.

52

http://dx.doi.org/10.1016/j.cor.2011.09.026
http://dx.doi.org/10.1016/j.cor.2011.09.026
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1016/j.procs.2018.07.018
http://dx.doi.org/10.2514/6.2018-1846

Supplemental Materials: A Comparative Review on
Mobile Robot Path Planning: Classical or

Meta-heuristic Methods?

Here are the Pseudo-code for all approaches involved in the experiments
set.

Algorithm 1: Potential Field (PF)

Input : Laser scan range divided into 5 direction
(far left, left,middle, right, far right)

Output: Fittest direction
1 for all possible direction, calculate fitness do
2 if path is clear then
3 move towards fittest direction
4 else
5 move to a random point
6 end if

7 end for
8 return travel path

Algorithm 2: Dijkstra’s Algorithm (DA)

Input : A list coordinate points xi, yi, i = 1, 2, · · · , n, where each
element is a point free from any obstacle.

Output: Shortest distance between connected points.
1 for all points selected do
2 if path is clear then
3 execute the movement
4 else
5 move to a random point → move towards original path

created
6 end if

7 end for
8 return travel path

1

Algorithm 3: Rapidly-exploring Random Tree (RRT)

Input : A list of possible coordinate points xi, yi, i = 1, 2, · · · , n.
Output: The closest point towards the destination.

1 while Distance (qnew, qgoal > dthreshold) do
2 qtarget = Random Node()
3 qnearest = T.Nearest Neighbor(qtarget)
4 qnew = Extend(qnearest, qtarget, expansion time)
5 if(qnew! = NULL) qnew.setParent(qnearest) T.add(qnew)

ResultingPoint← T.TraceBack(qnew)
6 end while
7 for the ResultingPoint created do
8 selected the point as the destination
9 if path is clear then

10 execute the movement
11 else
12 move to a random point
13 end if

14 end for
15 return travel path

2

Algorithm 4: Probabilistic Road Map (PRM)

Input : A list of possible coordinate points xi, yi, i = 1, 2, · · · , n.
Output: The closest point towards the destination.

1 G(V,E) = NULL //Initialize a graph as empty
iteration limit = n //number of nodes to make graph out of
Rad = r //radius of neighborhoods
for iteration < iteration limit) do

2 Xnew = RandomPosition()
3 Xnearest = Near(G(V,E), Xnew,Rad) //find all nodes within a

Rad
4 Xnearest = sort(Xnearest) //sort by increasing distance
5 for node in Xnearest do
6 if not ConnectedComp(Xnew,node) & not

Obstacle(Xnew,node) then
7 G(V,E) += {Xnew,node} //add edge and node to graph

Xnew.comp += node.comp//add Xnew to connected
component

8 end if

9 end for

10 end for
11 Return G(V,E)

for the G(V,E) selected do
12 set the point as the destination
13 if path is clear then
14 execute the movement
15 else
16 move to a random point
17 end if

18 end for
19 return travel path

3

Algorithm 5: Genetic Algorithm (GA)

Input : The parameter setting for the Genetic Algorithm
Output: The fittest point towards the destination.

1 Use GA algorithm bellow to generate possible points
Initiate population with random points in solution space
Evaluate all chromosomes in the population
while Maximum Iteration is not reached or fitness solution
≤ target fitness do

2 Replace the fittest solution with the fittest chromosome if it is
fitter than fittest solution

3 Perform Selection Process eliminating 50% of chromosomes that
have lower fitness

4 Perform Crossover Process to repopulate the population

5 Evaluate all chromosomes in the Population

6 Increase the current iteration by 1

7 end while
8 for all points created do
9 select the fittest point

10 if path is clear then
11 execute the movement
12 else
13 move to a random point
14 end if

15 end for
16 return travel path

4

Algorithm 6: Differential Evolution Algorithm (DE)

Input: The parameter setting for the Differential Evolution
Algorithm

Output: The fittest point towards the destination.
1 Use DE algorithm bellow to generate possible points

Initiate population with random points in solution space
Evaluate all agents in the population
while Maximum Iteration is not reached or fitness solution
≤ target fitness do

2 For each agent,j in the population do:
Choose three agents a, b, and c that is, 1 ≤ a, b, c,≤ N with
a 6= b 6= c 6= j.
Generate a random integer irand ∈ (1, N).
For each parameter i
yi,g = xa,g + F (xb,g − xc,g)

zi,gj =

{
yi,gj ifrand() ≤ CRorj = jrand)

xi,gj otherwise

}
End For
Replace xi,g with the child zi,g if zi,g is better
End For
Increase the current iteration by 1

3 end while
4 for all points created do
5 select the fittest point
6 if path is clear then
7 execute the movement
8 else
9 move to a random point

10 end if

11 end for
12 return travel path

5

Algorithm 7: Particle Swarm Optimization Algorithm (PSO)

Input : The parameter setting for the Particle Swarm
Optimization Algorithm

Output: The fittest point towards the destination.
1 Use PSO algorithm bellow to generate possible points

Initiate population with random points in solution space
Initiate personal best (pbest) and global best (gbest) solutions with
random points in solution space
Evaluate all particles in the population, all their pbests and the
swarm gbest
while Maximum Iteration is not reached or gbest fitness
≤ target fitness do

2 Update the pbest for each particle in the swarm if the current
particle is fitter

3 Update the gbest with the fittest pbest if it is fitter than gbest

4 Update the Velocity for each particle in the swarm using following
equation
Vnew = W×Vold + r1×c1(pbest− xold) + r2×c2(gbest− xold)

5 Update each particle in the population with its new velocity using
following equation xnew = Vnew + xold

6 Evaluate all particles in the Population, all their pbests and the
swarm gbest

7 Increase the current iteration by 1

8 end while
9 for all points created do

10 select the fittest point (gbest)
11 if path is clear then
12 execute the movement
13 else
14 move to a random point
15 end if

16 end for
17 return travel path

6

Algorithm 8: Cuckoo Search Algorithm (CSA)

Input : The parameter setting for the Cuckoo Search Algorithm
Output: The fittest point towards the destination.

1 Use CSA algorithm bellow to generate possible points
Creates objective function f(x) to evaluate fitness of possible points
Generate initial population of n host nest
Evaluate fitness and rank eggs
while Maximum Iteration is not reached or Stop criterion do

2 t = t+ 1
Get a cuckoo randomly/generate new solution by Levy flights
Evaluate quality/fitness, Fi
Choose a random nest j
if Fi > Fj then

3 Replace j by the new solution
4 end if
5 Worst nest is abandoned with probability Pa and new nest is

built
6 end while
7 for all points created do
8 select the fittest point
9 if path is clear then

10 execute the movement
11 else
12 move to a random point
13 end if

14 end for
15 return travel path

7

Figure S1: Trajectory traces of all approaches in Experiment I. Colour variation
between trajectories is indicative of different executions (trials) with maximum
10 trials.

Figs S1, S2, S3, S4 provides complimentary results to Figs 6, 9, 12, 14 in
the main article respectively.

Fig S1 represents the trajectory traces of methods utilized in experiment
I (Maze). Each sub-figure in Fig. S1 and subsequent figures of S2, S3, and S4
represents 10 executions of an specific motion planning and navigation tech-
nique (i.e., 10 paths travelled by the turtlebot robot). 10 Different colours are
used to distinguish these 10 executions. In all these figures, DA performance
is considered as the Benchmark.

From sub-figures in Fig S1, RPM, RRT, and PF are shown to have the
highest diversity in the path utilized. Higher level of consistency is observed
across meta-heuristic methods and their paths.

8

Fig S2 illustrates the trajectory traces for employed approaches in Sub-
Experiment 1 in experiment II. From sub-figures in Fig S2, CPSO is shown
to have the minimum deviations in the path across the 10 executions of the
algorithm.

9

Figure S2: Trajectory traces of all approaches in Experiment II (Sub-
Experiment 1). Colour variation between trajectories is indicative of different
executions (trials) with maximum 10 trials.

10

Figure S3: Trajectory traces of all approaches in Experiment II (Sub-
Experiment 2). Colour variation between trajectories is indicative of different
executions (trials) with maximum 10 trials.

Fig S3 illustrates the trajectory traces for employed approaches in Sub-
Experiment 2 in experiment II. From sub-figures in Fig S3, RRT, PRM, and
in some degree CSA are shown to have the highest level of deviations in the
path across the 10 executions of their algorithm. It is noticeable that DE
could be considered as the best performing algorithm but due to wandering
effect observed in one execution, PF is considered as the most consistent
method after the benchmark method DA.

11

Fig S4 illustrates the trajectory traces for employed approaches in Sub-
Experiment 3 in experiment II. In this sub-experiment, CSA demonstrates
wandering behavior in late periods of its paths, indicating disability of this
method to converge towards the destination.

12

Figure S4: Trajectory traces of all approaches in Experiment II (Sub-
Experiment 3). Colour variation between trajectories is indicative of different
executions (trials) with maximum 10 trials.

13

	Introduction
	Robot Motion Planning: Classical vs. Meta-Heuristic based methods
	Experiments Setup
	Results and Discussion
	Conclusion

