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Optimal supply chain design with product family: A cloud-based 

framework with real-time data consideration 

 

ABSTRACT  

When the product family (PF) and the supply chain designs (SCD) are aligned and integrated, original 

equipment manufacturers (OEM) are more likely to improve their operational performance. In this 

paper, we propose a novel approach, which demonstrates how both the product and the supply chain 

can simultaneously be designed based on real-time data. At the heart of the proposed model is the 

utilisation of a cloud-based management system comprising of three steps. In the first step, a generic 

bill of materials is modelled to design a set of product families using “AND” and “OR” nodes. In the 

second step, a cloud-based framework is designed to manage real-time costs viz. echelons. In the third 

step, a mixed integer linear programming model is then applied, which optimizes the SCD based on 

real-time costs. We use a metaheuristic method based on Genetic Algorithm (GA) to solve the 

optimization problem. We further illustrate the model using power transformer numerical example. 

Then the critical parameters of GA are examined to determine the best settings. We believe that the 

proposed SCD is an intelligent and expert management system, which can facilitate effective 

decision-making support by taking into account real-time cost data. This is particularly important 

when there are uncertain and volatile market conditions. 

Keywords: Supply chain design, Product family design, Cloud computing technology (CCT), Mixed 

Integer Linear Programming and Genetic Algorithm (GA).  

1. Introduction  

To respond to the growing needs of customers from various market segments, many manufacturers 

have adopted a product family (PF) design concept. This refers to a set of similar products that are 

derived from compound modules and a product variant configuration enabled by the effective 

implementation of modularization strategies. Such strategies essentially outsource common platform 

modules to supply chain partners to simplify the production / distribution processes and improving 

operational performance. Thus, the success of a particular product does not only depend on the 

optimal supply chain design or technical performance, but also on the performance of the OEM 

supply chain in fulfilling uncertain customer demand. In this context, the SCD primarily determines 

the structure or links amongst the partners to make structural and (optimal) coordinated decisions. The 

key question, therefore, is: how do we optimally integrate the PF and the SCD in such as a way that 

factors such as globalisation, increased market competition, varying costs and modular product 

demand can be taken into account in a timely manner? 



 
 

2 

 

Traditionally, the PF design has been limited to the product design level, with less consideration given 

to the downstream and globally distributed supply chain. In this context, the PF design essentially 

involves an ‘assembly-to-order’ production system in which globally distributed operators and 

manufacturers collaborate (Wang et al. 2016; Jiao et al. 2009). Such a supply chain considers issues 

such as facility locations, sourcing, distribution and selection of nodes in a supply chain network 

(Hong et al. 2018). Therefore, there is a need to constitute a SCD that addresses the configuration of 

the supply chain for a particular PF. This involves the joint configuration decisions for the optimal PF 

planning and the selection of supply options on each supply chain echelon (Wang et al. 2016; Ma et 

al. 2016; Shahzad and Hadj-Hamou, 2013).  

Numerous studies have been conducted on the joint optimization of the PF and supply chain to 

maximise the performance of the end product (Ulrich, 1995; Fine et al. 2005; Graves and Willems, 

2005; Huang et al. 2005; ElMaraghy and Mahmoudi, 2009; Nepal et al. 2012).  More recently, 

Mohammed & Duffuaa (2020), Liu et al. (2020), Du et al. (2019), Baud-Lavigne et al. (2016), Wang 

et al. (2016) and Yang et al. (2015) have all considered the simultaneous configuration of PF and 

SCD. A bill of materials (BOM) is a very important concept for PF design since it helps to generate 

various product variants. However, there are very few SCD studies which consider BOM for PF 

design in multiple periods (Paquet et al. 2004). Appelqvist et al. (2004) present a literature survey on 

the modelling of the PF and the SCD. In their study, they present a generic BOM for PF design, which 

matches the SCD in order to satisfy market requirements. ElMaraghy and Mahmoudi (2009) consider 

BOM for optimal SCD. Zhang et al. (2016) propose an integrated model for strategic SCD on BOM-

related constraints. 

In all these decision models, the PF design determines which components, modules and finished end 

products should flow through the supply chain on the basis of overall costs. However, given the 

nature of the contemporary globalized supply chain, variations in costs (setup costs, opening costs, 

production costs, holding costs, ordering cost, transportation costs) should be carefully considered. 

Hence, real time data should be incorporated when designing the supply chain.  

In this paper, we contribute to the existing literature on product and SCD by proposing a new method, 

which simultaneously links the two by personalizing the operational decisions based on real-time 

data. Our proposed method is based on cloud computing technology (CCT), which has transformed 

the evolution of the Internet to pay-as-you-go business model using web-based technologies (Xu, 

2012). CCT is not a new technology but a combination of existing IT technologies such as utility 

computing, parallel computing, grid computing, virtualization, Internet technology and open source 

software (Wu et al. 2015). Some of the main benefits of cloud computing are elasticity, scalability, 

on-demand computing and agility (Putnik et al. 2013). More importantly, CCT can help 

manufacturing companies achieve better linkages with their supply chain partners through integration 
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and alignment of internal and external business processes, real time information sharing and 

coordination of information flow to optimise the supply chain (Zafar et al. 2017). We argue that, 

given the complexity of coordinating the product and SCD decisions, comprehensive optimization of 

both the PF and SCD is one of the most efficient ways to reduce costs and achieve “distinctive 

competence”. To the best of our knowledge, the optimal integration of SCD and PF design based on 

real-time costs has not yet been studied. 

To integrate the PF design decisions with the SCD based on real-time data, we extend the model 

proposed by Graves and Willems (2003). Our proposed cloud-based management system follows 

three steps to simultaneously consider the PF and optimal SCD. In the first step, a generic bill of 

materials is modelled to design a set of product families using “AND” and “OR” nodes. In the second 

step, a cloud-based framework is designed to manage real-time costs viz. echelons. In the third step, a 

mixed integer linear programming model is then applied, which optimizes the SCD based on real-time 

costs. We use a metaheuristic method based on Genetic Algorithm (GA) to solve the optimization 

problem. Finally, we evaluate the performance of our decision support model using a power 

transformer numerical example. 

The rest of the paper is organized as follows. In the next section, we review the related literature on 

PF, SCD and GBOM. Section 3 contains a description of proposed cloud-based framework while 

Sections 4 and 5 elucidate the mathematical model. Section 6 identifies the solution approach based 

on Genetic algorithm. In Section 7, we provide a transformer numerical example and analyse the 

computational results. Finally, we conclude the paper in Section 8 and identify directions for future 

research. 

2. Related Literature 

2.1 Product Family Design 

A PF design refers to a set of similar products that are derived from compound modules and a product 

variant configuration based on a common product platform (Wang et al. 2016). The range of product 

variants offered to customers by companies has drastically increased due to the effective 

implementation of modularization strategies (Park and Kremer, 2015). For example, Volkswagen has 

saved $1.7 billion annually on production and development costs by adopting a modularization 

strategy that outsources common platform modules to supply chain partners (Dahmus et al. 2001). 

Modularization strategies can generally simplify the processes and improve operational performance 

(Miltenburg, 2003). Products usually exhibit a certain form of architecture, which impacts on their 

performance, variety, component standardization, and development (Xiao et al. 2018; Wu et al. 2016; 

Zhu et al. 2010).  
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Over the last decade, research has analysed the merits of modular PF architecture. Shahzad and Hadj-

Hamou (2013) adopt a GBOP (Generic Bill of Products) as a platform to meet the customer demand 

of specific product variants. Fujita et al. (2013) propose a mathematical model for the simultaneous 

design of product architecture and supply chain configuration through the selection of manufacturing 

sites for module production, assembly and distribution. Tseng and Hu (2014) review the logical 

mapping of PF architecture, which mainly includes functionality, modularity, commonality and 

structural aspects of the product. Ma et al. (2016) propose a hierarchical joint optimization game for 

the modular design of the PF, focussing on technical system modularity. Mohammed & Duffuaa 

(2020) analyse an optimal design of a supply chain based on multi-objective, multi-product supply 

chain networks. Liu et al. (2020) formulate an optimal design of low-cost supply chain for new 

products. 

2.2 Product and supply chain design coordination   

The success of a product does not just depend on the optimal design or technical performance, but 

also on the performance of the OEM supply chain in fulfilling uncertain customer demand. In this 

regard, Graves and Willems (2000) develop the first stationary demand multi-stage optimization 

model to determine the optimal stock level at each tier of the supply chain. The main goal is to 

improve the SCD and eventually performance. In this context, SCD primarily determines the structure 

or links amongst the partners to make (optimal) structural and coordinated decisions (Truong and 

Azadivar, 2005). These decisions are at the strategic and tactical level. The strategic decisions for the 

company are long term: e.g. the choice of production facility location, facility selection and 

production capacities. The tactical decisions are mid-term decisions, such as the selection of potential 

suppliers, allocation of production to suppliers and the flow of modules or products amongst sub-

assemblies within the supply chain network (Cordeau et al. 2006). The parameters considered in the 

SCD are related to costs (setup costs, opening costs, production costs, holding costs, ordering cost, 

transportation costs).  

There has been considerable research on SCD models and cost optimization to improve supply chain 

performance. Bachlaus et al. (2008) optimize multi-echelons of supply chain, formulating a multi-

objective optimization model. They apply a hybrid taguchi-particle swarm optimization (HTPSO) to 

minimise the supply chain costs and maximise plant and volume flexibility. Akanle and Zhang (2008) 

present an agent-based model, which optimises the overall supply chain configuration. Hua and 

Willems (2016) propose a mathematical model to configure a two-stage serial supply chain under 

guaranteed service. All of the above-mentioned research studies highlight the importance of supply 

chain configuration and decisions for optimal supply chain.  

A number of studies have focussed on supply chain configuration based on the linking of the product 

design and the supply chain. Truong and Azadivar (2005) develop a configuration for the optimal 
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structure of the supply chain, linking components and the supply chain. However, the term ‘supply 

chain configuration’ was first introduced by Graves and Willems (2005) for the design of the supply 

chain for a new product. They configure the supply chain through a coordinated decision-making 

process of inventory and selection of partners. They assume that the product is designed well before 

the supply chain configuration.  

Nonetheless, properly integrated approaches for PF and SCD involve complex models, which are 

poorly investigated in the literature. In order to make the product development simpler and 

comprehensive, a pre-defined BOM approach is usually adopted for the product architecture. Two 

approaches are listed in the literature for BOM. The first approach defines a PF architecture, which 

satisfies the specific market needs. The design of the PF is done through various solutions for the set 

of product parts called generic BOM (GBOM). For example, Huang et al. (2005) and Lamothe et al. 

(2006) design a supply chain, which incorporates GBOM constraints. They develop a mathematical 

model that integrates PF and supply chain decisions to product variants to meet specific market needs. 

The second approach is assembly-to-order. In this approach, the final product is fixed with less 

flexibility in BOM. Along these lines, ElMaraghy and Mahmoudi (2009) propose an integrated supply 

chain management decision support tool. This tool simultaneously takes decisions related to the 

selection of modules for modular product design and corresponding globally distributed supply chain. 

They use an automobile wipe system as a case study and they use the final assembly time as a 

constraint. 

Several researchers have extended the above work. Fixson (2005) provides a comprehensive overview 

of product architecture and its influences on manufacturing, product development and supply chain 

decisions. Fine et al. (2005) suggest that the PF architecture and SCD should be aligned along the 

integrality-modularity spectrum. They show that, in modular supply chain, the partners are dispersed 

geographically with close organisational ties but with limited electronic connectivity; whereas, in 

integral supply chain, the suppliers are in close proximity measured under the four dimensions of 

geography, culture, organization and electronic connectivity. Huang et al. (2007) adopt a game 

theoretic approach, which integrates platform products with the supply chain to achieve mass 

customisation. Lee et al. (2009) propose oncology architecture to integrate the product and supply 

chain information.  

Khalaf et al. (2011) simultaneously design the supply chain with PF using bill of materials. These 

authors apply the Tabu search algorithm to assemble the finished products based on logistical costs. 

Cheng (2011) emphasizes the importance of modular design model for product customisation and for 

managing the supply chain. Nepal et al. (2012) match the PF design with the supply chain using 

multi-objective optimization framework. Shahzad and Hadj-Hamou (2013) propose an integrated 

model for supply chain and PF architecture. They build a product customisation model on the concept 
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of GBOP. Yang et al. (2015) formulate a bi-level optimization model to configure the PF and supply 

chain.  Zhang et al. (2016) develop a mixed integer linear programming model (MINLP). They 

coordinate the SCD with PF using BOMs. They then use an artificial bee colony approach to solve the 

MINLP model. Wang et al. (2016) apply Stackelberg game for the joint optimization of PF 

architecture planning and supply chain configuration with consideration of leader-follower 

relationship. Some of the other relevant studies in this area include Pham & Yenradee, (2017), Wu et 

al. (2017), Du et al. (2019), Mohammed & Duffuaa (2020) and Liu et al. (2020). Table 1 in the 

appendix summarises the most important research contributions on integrated product and SCD 

issues. 

We argue that, given the complexity of coordinating the product and SCD decisions, comprehensive 

optimization of both the PF and SCD is one of the most efficient ways to reduce costs and achieve 

“distinctive competence”. The need to integrate the PF and SCD can be framed in the context of the 

resource-based theory of the firm and the dynamic capabilities approach (Barney, 1991; Eisenhardt 

and Martin, 2000). In particular, both theoretical traditions emphasise the importance of adjusting the 

firm’s processes and routines in response to uncertainty and volatility in, for example, their dynamic 

supply chains. Thus, the firm can improve its competitive edge by taping into valuable and real-time 

data (e.g. via cloud-based technologies, IoT, blockchain etc.). 

2.3 Solution approaches  

The integrated PF and SCD problems have been mostly solved using mathematical programming 

approaches and metaheuristics (Wu et al. 2017; Bottani et al. 2019). Recent work suggests that the use 

of metaheuristics is increasing when solving complex PF and SCD problems (Liu et al. 2020). Among 

the metaheuristic algorithms, the most popular technique utilized to solve SCD problems is genetic 

algorithm approach (Mohammed & Duffuaa, 2020). He et al. (2007) develop a MILP model to 

integrate forward and reverse SCD by minimising the total cost and maximizing customer 

satisfaction. The model is solved using genetic algorithm. Farahani & Elahipanah, (2008) develop a 

multi-period, multi-product and multi-channel network. A bi-objective model is then setup to 

optimize the costs, backorders and surplus of products in all periods. Other studies that have utilized 

metaheuristics for solving products and SCD problems include Prasanna Venkatesan & Kumanan 

(2012), Validi et al. (2014), Arabzad et al. (2015), Pasandideh et al. (2015), Sarrafha et al. (2015), 

Wang et al. (2016), Pham & Yenradee, (2017), Du et al. (2019), Liu et al. (2020), Mohammed & 

Duffuaa (2020). 

Based on the above review, it is evident that genetic algorithm is used by the majority of researchers 

to solve PF and complex SCD problems. Table 1 in the appendix summarises the most important 

research contributions on integrated product and SCD issues. However, to the best of our knowledge, 

there is a gap in the literature when it comes to the design of an integrated optimal SCD and PF design 
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based on real-time costs. Thus, we aim to fill this gap by designing a cloud-based framework to 

manage real-time costs viz. echelons. We propose a metaheuristic-based method for linear model 

formulation and optimisation, as will be explained later.  

2.4 How to integrate the PF design to SCD  

Product customization (commonality and modularity) strategy by the manufacturing company has 

become a widely researched topic (Huang et al. 2003). In order to achieve customisation, the concept 

of GBOM has commonly been adopted (Jiao et al. 1998; Huang et al. 2003; 2005). GBOM is a tree-

like structure, consisting of AND/OR nodes. AND nodes represent commonality, while OR nodes 

represent modularity. For example, assume a product X, which comprises of compound modules with 

fixed number of slots and base modules. Each product variant is configured by selecting the 

compound modules with respective base modules.  

Figure 1 shows an example of GBOM for product X. The PF comprises of 4 compound modules and 

8 base modules. Compound module 1.1 and 1.2 are specified with an ‘AND’ node, which reflects 

product commonality that a PF must possess. So, compound module 1.1 comprises base module 1 

AND 2 and similarly compound module 1.2 comprises of base module 3 AND 4. On the other hand, 

compound modules 1.3 and 1.4 are specified with an ‘OR’ node, which reflects product modularity. 

The product variant can either have base module 5 OR 6 for compound module 1.3 and base module 7 

OR 8 for compound module 1.4. The combination of the compound modules and base modules with 

AND/OR constitutes a product variant. In Figure 1, product X comprises a total of 6 base modules, 

which formulates the product platform. They can be distinguished by their unique base modules such 

as base module 5 OR 6, 7 OR 8, which makes a product variant. 

  

Figure 1: GBOM for Product  
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A specific strategy for PF design needs to be established in the early stage of the product 

development. Therefore, it is important to integrate decisions of the PF design and the SCD in the 

early stage of the product development.  

Figure 2 illustrates the two-level model matching of a PF with a SCD. The upper layer represents the 

PF, constituting compound modules and base modules to make the products for target market 

segments. The lower layer represents the supply chain partners comprising of suppliers, 

manufacturing plants, assembling plants and distribution centres. The partners are geographically 

distributed. The connectivity of partners is strategically decided on the basis of possibilities, 

availabilities and policies. The SCD addresses the PF design in terms of the selection of suppliers for 

specific base modules, the selection of manufacturing plants for compound modules, the assembly 

plants for assembling products and the distribution centres for delivery of the product variants to 

specific market segments.      

3. Description of the Cloud-based Framework 

Cloud computing technology (CCT) has emerged as a new innovative technology. It has transformed 

the evolution of Internet to pay-as-you-go business model using web-based technologies (Xu, 2012). 

CCT is not a new technology but a combination of existing IT technologies such as utility computing, 

parallel computing, grid computing, virtualization, Internet technology and open source software (Wu 

et al. 2015). Key features of cloud computing are elasticity, scalability, on-demand computing and 

agility (Putnik et al. 2013). In CCT, the IT resources are virtualized, distributed, and demand-driven. 

These are particularly important given the globalized nature of the world economy. 

 

Figure 2: Product family design matching supply chain design  
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We hypothesise that manufacturing companies would be in need of new frameworks to fulfil their IT 

requirements in order to achieve reliant, scalable, globalised, distributed and agile business (Helo and 

Hao, 2017). The key features of CCT are that they can help facilitate better linkages of supply chain 

partners through the integration and alignment of internal and external business processes, real time 

information sharing and coordination of information flow to optimise the overall supply chain (Zafar 

et al. 2017).  

In this paper, we consider a globally distributed multi-stage, SCD, where there are multiple partners 

on each stage and each partner can supply or provide items for two or more market segments. An 

example of such a supply chain is shown in Figure 3. The first stage is the supplier, where base 

modules are  

 

Figure 3: Supply Chain Design (SCD) 

produced and transported to manufacturing plants. The second stage is the manufacturing plant, where 

compound modules are produced and transported to assembly plants. The third stage is the assembly-

plant, where the compound modules are assembled into final product variants as per market segment 

requirements and then transported to appropriate distribution centres. The fourth stage is the 

distribution centre, where the final product variants are transported to market segments. The fifth 

stage is the market segment, where the final product variants are sold to the customer. 

We propose a cloud-based management system as shown in Figure 4 that follows a three-step 

approach, which simultaneously considers the PF along with SCD. These steps include:  

1) Selection of product family design - product designers access the cloud-based framework 

through interface. The selection of potential PF design involves modular PF design strategies 

such as GBOM. A knowledge base is used to represent module relationship and compatibility 

for the creation of product variants. Once the product GBOM is developed, the next step is to 

identify and collect the partner’s information. 
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2) Real-time data integration of partners through cloud interface – the partners’ information is 

identified and collected through interface. The partners in turn use the interface to access the 

cloud and update costs and operational status in the appropriate pool of cloud databases.  

  

3) Optimal supply chain design - once the product GBOM details are acquired by the decision 

model in 1, the next step is to extract the real-time data from the pool of cloud databases. A 

mixed integer linear programming model is then applied, which optimizes the SCD based on 

real-time costs. We use a metaheuristic method based on Genetic Algorithm (GA) to solve the 

optimization problem 

The proposed three-step approach forms an intelligent and expert management system providing 

an effective decision-making support in optimal SCD by managing real-time costs. Therefore, the 

proposed management system distinguishes itself from existing approaches in the literature such 

as Zhang et al. (2016), Baud-Lavigne et al. (2016), Pham & Yenradee, (2017), Du et al. (2019), 

and  Liu et al. (2020). 

 

Figure 4: A comprehensive cloud-based management system 

4. Problem description and formulation 

In this section, a mathematical model is developed to determine the optimal SCD in order to match 

the PF. To deliver the final product variant to the market segment, the decision model selects the 
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optimal choice from each stage (distribution centre, assembling plants, manufacturing plants and 

suppliers) to constitute a SCD. Thus, the decision model for the SCD involves decision making 

concerning: distribution centres for distributing the final product variants to the various market 

segments; assembling plants for assembling the final product variants; manufacturing plants for 

producing compound modules and suppliers for producing base modules. The SCD model is 

formulated by an integer multiplier coordination mechanism, where partners on each stage use the 

same cycle time and the cycle time of each stage is an integer multiplier of adjacent downstream stage 

(Khouja, 2003; Seliaman and Ahmad, 2009). 

In the following, we explain the practical assumptions, notations and decision variables. Afterwards, 

we formulate the decision models for the optimization with parameters and constraints for all stages 

(distribution centre, assembling plants, manufacturing plants and suppliers). 

4.1 Assumptions   

We make the following assumptions: 

1. Orders are processed immediately.  

2. Queuing systems are used to process the orders (Mohtashami et al., 2020). Multi-server 

queuing system helps in the effective management of orders under uncertainty with capacity 

and control constraints (Adan and Resing, 2015; Vahdani et al., 2012).  

3. Facilities have large capacities, cost of production, production rate, holding cost, 

setup/ordering cost for suppliers, manufacturing plants, assembly plants, distribution centres 

are known in advance and can be updated by the partners on real-time basis. 

4. The cost of transportation from suppliers to manufacturing plants, from manufacturing plants 

to assembly plants and from assembly plants to distribution centres are known and can be 

updated by the partners in the pool of cloud databases on real-time basis. Customs and money 

exchange rates are not considered in our model (but these could be added if needed). 

5. Potential global location sites for suppliers, manufacturing plants, assembly plants, 

distribution centres are known in advance and can be updated by the partners on real-time 

basis. 

6. Any supplier that has capability can provide the base module. Equally, the compound module 

can be produced in all manufacturing plants. However, only one assembly plant can be 

selected to assemble any final product variant. 

7. Only one distribution centre can be selected for the distribution of the final product variant to 

one specific market segment. 

Note: If the first assumption is relaxed then the cloud-based management system, which provides 

real-time visibility, can initiate immediate capacity increase using existing equipment more 
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effectively i.e. overtime or outsourcing. The resulting effective decision-making process can 

overcome the capacity problem in which the equipment is not used anywhere near its true 

capacity (Sabet et al., 2020).   

4.2 Notations   

The notations used in the formulation of the model for the optimization are shown in Table 2. 

Table 2 

 

 

4.3 Decision variables 

The decision variables used in the formulation of the model are shown in Table 3. 

Table 3 

Sets  

𝑆( 𝑠 ∈ 𝑆)   Set of suppliers indexed by s 

𝑅( 𝑟 ∈ 𝑅)  Set of raw material indexed by r 

𝐽(  𝑗 ∈ 𝐽)    Set of base module type J indexed by j 

𝑀( 𝑚 ∈ 𝑀)   Set of manufacturing plants indexed by m 

𝐾( 𝑘 ∈ 𝐾)    Set of compound module type K indexed by k 

𝐴( 𝑎 ∈ 𝐴)   Set of assembling plants indexed by a 

𝐿( 𝑙 ∈ 𝐿)    Set of final product variant type L indexed by l 

𝐷( 𝑑 ∈ 𝐷)   Set of distribution centres indexed by d 

𝐺( 𝑔 ∈ 𝐺)    Set of global market segments indexed by g 

Decision Variables 

𝜂𝑗 {
1            if base module type 𝑗 is provided by supplier 
0                                                                                  othewise

} 

𝜃𝑘 {
1            if compound module type 𝑘 is provided by manufacturing plant 
0                                                                                                                      othewise

} 

𝜆𝑙 {
1            if final product variant type 𝑙  is provided by assembling plant
0                                                                                                                  othewise

} 

𝜀𝑙 {
1          if final product variant 𝑙 demand is fullfilled by corresponding market segment
0                                                                                                                                                 othewise

} 

𝑋𝑠,𝑚 {
1          if there is link between supplier 𝑠 and manufacturing plant  𝑚
0                                                                                                                othewise

} 

𝑤𝑠 {
1          if  supplier 𝑠 is selected
0                                      othewise

} 

𝛼𝑗𝑠 {
1          if  base module type 𝑗 is provided by supplier 𝑠 
0                                                                                    othewise

} 

𝑌𝑚,𝑎 {
1          if there is link between manufacturing plant 𝑚 and assembling plant 𝑎
0                                                                                                                                othewise

} 

𝑥𝑚 {
1          if  manufacturing plant 𝑚 is selected
0                                                              othewise

} 
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5. Decision Model for Optimization 

The decision model for the optimization with parameters and constraints for all stages i.e. suppliers, 

manufacturing plants, assembling plants and distribution centres are as follows: 

Table 4 

𝛽𝑘𝑚 {
1          if  compound module type 𝑘 is provided by manufacturing plant 𝑚 
0                                                                                                                         othewise

} 

𝑍𝑎,𝑑 {
1          if there is link between assembling plant 𝑎 and distribution centre 𝑑
0                                                                                                                            othewise

} 

𝑦𝑎 {
1          if  assembling plant 𝑎 is selected
0                                                      othewise

} 

𝛾𝑙𝑎 {
1          if   final product variant type 𝑙 is provided by assembling plant 𝑎 
0                                                                                                                    othewise

} 

𝑧𝑑 {
1          if  distribution centre 𝑑 is selected
0                                                          othewise

} 

𝛿𝑙𝑑  

𝑑𝑗𝑠 

𝑑𝑘𝑚  

𝑑𝑙𝑎  

𝑑𝑙𝑑 

{
1          if   final product variant type 𝑙 is provided by distribution centre 𝑑 
0                                                                                                                        othewise

} 

Integer variable denoting the total demand of base module type j at supplier s 

Integer variable denoting the total demand of compound module type k at manufacturing plant m 

Integer variable denoting the total demand of final product variant type 𝑙 at assembling plant a 

Integer variable denoting the total demand of final product variant type 𝑙 at distribution centre d 

Parameters 

𝐶𝑠 Fixed setup cost of supplier s 

𝐶𝑚 Fixed cost of opening a manufacturing plant m 

𝐶𝑎 Fixed cost of opening an assembling plant a 

𝐶𝑑 Fixed cost of opening a distribution centre d 

𝑃𝐶𝑗𝑠 Unit product cost of base module type j at supplier s 

𝑃𝐶𝑘𝑚 Unit manufacturing cost of compound module type k at manufacturing plant m 

𝑃𝐶𝑙𝑎 Unit assembling cost of final product variant type l at assembling plant a 

𝑇𝐶𝑗𝑠𝑚 Unit transportation cost of base module type j from supplier s to manufacturing plant m 

𝑇𝐶𝑘𝑚𝑎 Unit transportation cost of compound module type k from manufacturing plant m to assembling 

plant a 

𝑇𝐶𝑙𝑎𝑑 Unit transportation cost of final product variant type l from assembling plant a to distribution centre 

d 

𝑇𝐶𝑙𝑑𝑔 Unit transportation cost of final product variant type l from distribution centre d to global market 

segment g 

𝐻𝑗𝑠 Annual Holding cost of base module type j at supplier s 

𝐻𝑘𝑚 Annual Holding cost of compound module type k at manufacturing plant m 

𝐻𝑙𝑎  Annual Holding cost of final product variant type l at assembling plant a 

𝐻𝑟𝑠 Annual Holding cost of raw material r at supplier s 
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5.1 Decision Model for Supplier 

The suppliers produce the base modules and provide these to manufacturing plants. The total costs of 

suppliers consist of fixed setup cost, the production cost of base module, transportation cost of base 

module to manufacturing plants, and inventory cost. Therefore, the decision model of the supplier can 

be formulated as: 

𝐼𝐶𝑠 = ∑ ∑ ∑ ∑ ∑ [
∅𝑠 ∅𝑚 ∅𝑎 𝑇 𝑑𝑗𝑠

2

2𝑃𝑠 
𝐻𝑗𝑠 +

 ∅𝑚 ∅𝑎 𝑇 𝑑𝑗𝑠 

2
(  ∅𝑠 (1 +

𝑑𝑗𝑠

𝑃𝑠
) − 1 ) 𝐻𝑟𝑠

𝑎𝐴𝑚𝑀𝑠𝑠𝑟𝑅𝑗𝐽

+
𝑂𝑠

∅𝑠 ∅𝑚 ∅𝑎 𝑇
] 

 

𝐻𝑗𝑚 Annual Holding cost of base module type j at manufacturing plant m 

𝐻𝑘𝑎 Annual Holding cost of compound module type k at assembling plant a 

𝐻𝑙𝑑  Annual Holding cost of final product variant type l at distribution centre d 

𝑂𝑠 Fixed ordering cost of supplier s 

𝑂𝑚 Fixed ordering cost at manufacturing plant m 

𝑂𝑎 Fixed ordering cost at assembling plant a 

𝑂𝑑 Fixed ordering cost at distribution centre d 

𝑃𝑠 Production rate of supplier s 

𝑃𝑚 Production rate of manufacturing plant m 

𝑃𝑎 Production rate of assembling plant a 

T Common cycle time 

𝑇𝐶𝐴𝑃𝑠𝑗 Total capacity of supplier s for base module type j 

𝑇𝐶𝐴𝑃𝑚𝑘  Total capacity of manufacturing plant m for compound module type k 

𝑇𝐶𝐴𝑃𝑎𝑙  Total capacity of assembling plant a for final product variant type l 

𝑇𝐶𝐴𝑃𝑑𝑙  Total capacity of distribution centre d for final product variant type l 

𝑆𝐶𝐴𝑃𝑗𝑠𝑚 Total shipping capacity of base module type j from supplier s to manufacturing plant m 

𝑆𝐶𝐴𝑃𝑘𝑚𝑎 Total shipping capacity of compound module type k from manufacturing plant m to assembling 

plant a 

𝑆𝐶𝐴𝑃𝑙𝑎𝑑  Total shipping capacity of final product variant type l from assembling plant a to distribution centre 

d 

𝑆𝐶𝐴𝑃𝑙𝑑𝑔 Total shipping capacity of final product variant type l from distribution centre d to global market 

segment g 

𝑁𝑠𝑗 Number of suppliers selected for base module type j 

𝑁𝑚𝑘 Number of manufacturing plants selected for compound module type k 

𝑁𝑎𝑙  Number of assembling plants selected for final product variant type l 

∅𝑠 Integer multiplier of the cycle time for all suppliers 

∅𝑚 Integer multiplier of the cycle time for all manufacturing plants 

∅𝑎 Integer multiplier of the cycle time for all assembling plants 
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(1.0) 

The inventory cost at each stage, except for the final stage (distribution centre), comprises of two 

parts: a production portion and a non-production portion of the cycle as shown in Figure 5 by Khouja, 

(2003). The production portion comprises of holding cost of raw material as it is being converted into 

a final product (base module). The non-production portion is the holding cost of the final product. 

During the production portion, the annual holding cost of the final product is equal to  
∅𝑠 ∅𝑚 ∅𝑎 𝑇 𝑑𝑗𝑠

2

2𝑃𝑠 
. 

During the non-production portion, inventory drops every 𝑇 years by 𝑇 𝑑𝑗𝑠 starting from (∅𝑠 −

1) 𝑑𝑗𝑠 (Khouja, 2003). The third term of Eq. (1.0).  i.e.  
1

∅𝑠 ∅𝑚 ∅𝑎 𝑇
  indicates the cycles per year. The 

total annual inventory cost at supplier stage is shown in Eq. (1.0). 

 

Figure 5: Raw material and finished goods levels at a firm with cycle time 3T (Adopted from Khouja, 2003) 

𝑇𝐶𝑠 = ∑ 𝐶𝑠

𝑠𝑆

𝑤𝑠 +  ∑ ∑ 𝑃𝐶𝑗𝑠

𝑠𝑆𝑗𝐽

𝛼𝑗𝑠𝑑𝑗𝑠 + ∑ ∑ ∑ 𝑇𝐶𝑗𝑠𝑚

𝑗𝐽𝑠𝑆𝑗𝐽

𝛼𝑗𝑠𝑑𝑗𝑠 + 𝐼𝐶𝑠   
(1.1) 

The total cost of the supplier is shown in Eq. (1.1), where the first term is the fixed setup cost, second 

term is the production cost of base modules, the third term is the transportation cost of the base 

modules to manufacturing plants and the last term is the annual inventory cost of supplier. 

𝑠. 𝑡. ∑ 𝛼𝑗𝑠

𝑠𝑆

=   𝜂
𝑗
   𝑗𝐽 (1.2) 

𝛼𝑗𝑠 ≤ 𝑤𝑠  𝑗𝐽,  𝑠𝑆 (1.3) 
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∑ 𝑑𝑗𝑠

𝑗𝐽

 ≤  𝑆𝐶𝐴𝑃𝑗𝑠𝑚  𝑠𝑆, 𝑚𝑀 (1.4) 

∑ 𝑑𝑗𝑠

𝑗𝐽

 ≤  𝑇𝐶𝐴𝑃𝑠𝑗  𝑠𝑆 (1.5) 

𝑋𝑠,𝑚  ≤  𝑥𝑚      𝑠𝑆, 𝑚𝑀 (1.6) 

Constraint Eq. (1.2) indicates that only one type of base module can be supplied by each selected 

supplier.  Eq. (1.3) is the logic linking constraint between the base module and the supplier. Eq. (1.4) 

is the shipping capacity restriction of base module from suppliers to manufacturing plants. Eq. (1.5) is 

the capacity restriction of the supplier for making the base module and Eq. (1.6) is the logical linking 

constraint between the supplier and manufacturing plants.  

5.2 Decision Model for Manufacturing Plants 

A manufacturing plant produces compound modules with the base modules provided as raw material 

by suppliers. Therefore, the decision model for manufacturing plants can be formulated as: 

𝐼𝐶𝑚 = ∑ ∑ ∑ ∑ [
 ∅𝑚 ∅𝑎 𝑇 𝑑𝑘𝑚

2

2 𝑃𝑚 
𝐻𝑘𝑚 +

 ∅𝑎 𝑇 𝑑𝑘𝑚 

2
(  ∅𝑚 (1 +

𝑑𝑘𝑚

𝑃𝑚
) − 1 ) 𝐻𝑗𝑚

𝑎𝐴m𝑀𝑘𝐾𝑗𝐽

+
𝑂𝑚

 ∅𝑚 ∅𝑎 𝑇
] 

 

(2.0) 

Eq. (2.0) indicates the total inventory cost at the manufacturing plant, which includes the inventory of 

the final product (compound module) and that of raw material (base module) on the basis of integer 

multiplier coordination mechanism. 

𝑇𝐶𝑚 = ∑ 𝐶𝑚

𝑚𝑀

𝑥𝑚 +  ∑ ∑ 𝑃𝐶𝑘𝑚

𝑚𝑀𝑘𝐾

𝛽𝑘𝑚𝑑𝑘𝑚 + ∑ ∑ ∑ 𝑇𝐶𝑘𝑚𝑎

𝑎𝐴𝑚𝑀𝑘𝐾

𝛽𝑘𝑚𝑑𝑘𝑚 + 𝐼𝐶𝑚   (2.1) 

The total cost of manufacturing plant is shown in Eq. (2.1). The first term is the fixed setup cost of 

opening the manufacturing plants, the second term is the production cost of compound modules, the 

third term is the transportation cost of compound modules to assembling plants and the last term is the 

annual inventory cost of manufacturing plants. 

𝑠. 𝑡. ∑ 𝛽𝑘𝑚

𝑚𝑀

=   𝜃𝑘  𝑘𝐾  (2.2) 

𝛽𝑘𝑚 ≤ 𝑥𝑚  𝑘𝐾 (2.3) 
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∑ 𝑑𝑘𝑚

𝑘𝐾

 ≤  𝑆𝐶𝐴𝑃𝑘𝑚𝑎  𝑚𝑀, 𝑎𝐴 (2.4) 

∑ 𝑑𝑘𝑚

𝑘𝐾

 ≤  𝑇𝐶𝐴𝑃𝑚𝑘  𝑚𝑀 (2.5) 

𝑌𝑚,𝑎  ≤  𝑦𝑎       𝑚𝑀, 𝑎𝐴 (2.6) 

Constraint Eq. (2.2) expresses that only one type of compound module can be supplied by a selected 

manufacturing plant. Eq. (2.3) is the logic linking constraint between the compound module and 

manufacturing plant. Eq. (2.4) is the shipping capacity restriction of the compound module from 

manufacturing plant to assembling plants. Eq. (2.5) is the capacity restriction of manufacturing plant 

for making the compound module and Eq. (2.6) is the logical linking between the manufacturing 

plants and assembling plants.   

  

5.3 Decision Model for Assembling Plants 

The assembling plant is the place where the compound modules are assembled to make various 

product variants to meet market segment requirements. The total cost at assembling plant comprises 

of fixed cost of opening an assembling plant, assembling cost of final product variant, transportation 

cost of final product variant to distribution centres and inventory cost. Therefore, the decision model 

for assembling plants can be formulated as: 

𝐼𝐶𝑎 = ∑ ∑ ∑ ∑ [
 ∅𝑎 𝑇 𝑑𝑙𝑎

2

2 𝑃𝑎  
𝐻𝑙𝑎 +

 𝑇 𝑑𝑙𝑎 

2
(  ∅𝑎 (1 +

𝑑𝑙𝑎

𝑃𝑎
) − 1 ) 𝐻𝑘𝑎 +

𝑂𝑎

 ∅𝑎 𝑇
]

𝑎𝐴𝑚𝑀𝑘𝐾𝑗𝐽

 (3.0) 

Eq. (3.0) indicates that the total inventory cost at assembling plants on the basis of integer multiplier 

coordination mechanism. It includes the inventory of final product (product variant) and that of raw 

material (compound module).  

𝑇𝐶𝑎 = ∑ 𝐶𝑎

𝑎𝐴

𝑦𝑎 +  ∑ ∑ 𝑃𝐶𝑙𝑎

𝑎𝐴𝑙𝐿

𝛾𝑙𝑎𝑑𝑙𝑎 + ∑ ∑ ∑ 𝑇𝐶𝑙𝑎𝑑

𝑑𝐷𝑎𝐴𝑙𝐿

𝛾𝑙𝑎𝑑𝑙𝑎 + 𝐼𝐶𝑎 (3.1) 

The total cost of assembling plant, as shown in Eq. (3.1), contains the fixed cost of opening the 

assembling plants, the assembling cost, the transportation cost and the inventory cost, respectively. 

𝑠. 𝑡. ∑ 𝜆𝑎

𝑎𝑎

= 1    𝑎A (3.2) 

𝛾𝑙𝑎 ≤  𝑦𝑎   𝑙𝐿 (3.3) 
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∑ 𝑑𝑙𝑎

𝑙𝐿

 ≤  𝑆𝐶𝐴𝑃𝑙𝑎𝑑  𝑎𝐴, 𝑑𝐷 
(3.4) 

∑ 𝑑𝑙𝑎

𝑙𝐿

 ≤  𝑇𝐶𝐴𝑃𝑎𝑙   𝑎𝐴 
(3.5) 

𝑍𝑎,𝑑  ≤  𝑧𝑑     𝑎𝐴, 𝑑𝐷 (3.6) 

Constraint Eq. (3.2) enforces that only one assembling plant is selected for assembling the final 

product variant. Eq. (3.3) is the logic linking constraint between the final product variant and 

assembling plant. Eq. (3.4) is the shipping capacity restriction of the final product variant from 

assembling plant to distribution centres. Eq. (3.5) is the capacity restriction of assembling plant for 

making the final product variant and Eq. (2.6) is the logical linking between the assembling plant and 

distribution centres.    

 

 

5.4 Decision Model for distribution centre 

Final product variants are distributed from distribution centres to market segments. The total costs of 

distribution centres include the fixed cost of opening a distribution centre, the transportation cost of 

final product variant from distribution centre to market segment and inventory cost. It is assumed that 

all distribution centres can deliver any final product variant to the market segment. Therefore, the 

decision model for distribution centre can be formulated as: 

𝐼𝐶𝑑 = ∑ ∑ [
 𝑇 𝑑𝑙𝐷

2 
𝐻𝑙𝑑 +

𝑂𝑑

 𝑇
]

𝑑𝐷𝑙𝐷

 
(4.0) 

Eq. (4.0) indicates the total inventory cost at distribution centres that includes only the inventory of 

final product (product variant).  

𝑇𝐶𝑑 = ∑ 𝐶𝑑

𝑑𝐷

𝑧𝑑 + ∑ ∑ ∑ 𝑇𝐶𝑙𝑑𝑔

𝑔𝐺𝑑𝐷𝑙𝐿

𝛿𝑙𝑑𝑑𝑙𝑑 + 𝐼𝐶𝑑   (4.1) 

The total cost of distribution centre contains the fixed cost of opening the distribution centre, the 

transportation cost and the inventory cost. 

𝛿𝑙𝑑  ≤  𝑧𝑑       𝑑𝐷 (4.2) 

∑ 𝑑𝑙𝑑

𝑔𝐺

 ≤  𝑆𝐶𝐴𝑃𝑙𝑑𝑔   𝑑𝐷, 𝑔𝐺  (4.3) 
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∑ 𝑑𝑙𝑑

𝑙𝐿

 ≤  𝑇𝐶𝐴𝑃𝑑𝑙  𝑑𝐷 (4.4) 

Constraint Eq. (4.2) indicates the logic linking constraint between the final product variant and 

distribution centre. Eq. (4.3) is the shipping capacity restriction of final product variant from 

distribution centres to market segments and Eq. (4.4) is the capacity restriction of distribution centres 

for making the final product variant. 

5.5 Optimization Model of Supply Chain Design 

The model is defined in Eq. (1.0) to Eq. (4.4). The objective function is then formulated as the 

following mixed integer model: 

Minimum Total Supply chain cost = min { 𝑇𝐶𝑠  +  𝑇𝐶𝑚  +  𝑇𝐶𝑎  +  𝑇𝐶𝑑 }  (5.0) 

Subject to, 

Constraints (1.2) – (1.6) 

Constraints (2.2) – (2.6) 

Constraints (3.2) – (3.6) 

Constraints (4.2) – (4.4) 

6. Genetic algorithm for the optimization 

The problem mentioned in this paper is a combinatorial optimization problem with a finite number of 

feasible solutions. For these types of problems, metaheuristic methods perform well as a portion of the 

solution space is searched heuristically with near optimal solution. Population-based evolutionary 

algorithms are now widely used for solving engineering, business and supply chain optimization 

problems (Kumar and Chatterjee, 2013; Ahmadizar et al. 2015; He at al., 2015; Musavi & Bozorgi-

Amiri, 2017; Pariazar & Sir, 2018; Azizi & Hu, 2020). To validate the results and evaluate the 

performance of the model, meta-heuristics GA is utilized to solve the test problem. 

6.1 Genetic Algorithm and Solution representation 

The Genetic Algorithm (GA) was first introduced by Holland (1975). GAs initially start with random 

population of solutions – referred to as chromosomes. The genes can be further categorized by locus – 

the position of the gene within the chromosome structure and allele – the value it takes (Afrouzy et al. 

2016). To illustrate the GA strategy, encoding is the first essential step to select the right encoding 

scheme, otherwise the GA will run endless without finding a solution. GA uses different types of 

genotype representations like a string of binary, integer or real numbers. For our purpose, we employ 

the genotype as a string of integer numbers to address the supply chain problem. Every integer 
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represents a decision made which selects an individual node (e.g. supplier, manufacturing plant, 

assembling plant and distribution centre) from a number of available nodes (partners) on a particular 

stage. We apply modulus (%) operator on the integer value by the number of nodes in that stage 

which results in mapping that integer to an individual node on a specific stage (i.e., mapping that gene 

to the individual node based on its position in the genotype). With this simple scheme, we maintain 

the properties of the encoding mentioned earlier, while the mapping takes place from genotype to 

phenotype, see Figure 6.  

The fitness function is the same as our objection function (Eq. 5.0), which determines the 

performance of the solutions. Hence, a selection procedure is applied on the population, such that the 

best-fitted individuals will be selected as parents to produce offspring for the next generation. 

Different GAs use different selection strategies. Within the context of a supply chain problem, GA 

requires a set of limited search space to address such problem. With this consideration in mind, our 

study uses two selection strategies – namely, Roulette-wheel and Tournament base selections. Both 

methods perform effectively with no significant performance differences observed. The highest 

fitness value chromosomes are then selected using roulette wheel method, which takes the fitness 

value of chromosomes as probability value for selecting the next generation fairly (Chang, 2010).   

 

Figure 6: GA Evolutionary process 

After that, parent selection crossover and mutation operators are applied. The crossover is done to 

explore new solution space by exchanging the genes of the chromosome between the selected parents. 

Uniform crossover with a single locus is employed in this study by randomly choosing two parent 

chromosomes and exchanging a fragment of their genes with low probability (i.e., 0.3). The main goal 

of the crossover is to increase the search space and speed to acquire an optimal solution.  

Mutation is done to prevent premature convergence and to increase the genetic variability of the 

chromosome population. During the GA cycle, all integer-valued vector components are constrained 

to remain within the range [0, 255]. Mutation entails that a uniform random distribution offset is 
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applied to each integer-valued vector component encoded in the genotype, with a low probability (i.e., 

0.1). This allows a maximum of 256 nodes in every supply chain stage. This number is chosen to 

minimize the computation overhead by reducing the search space.  

In summary, the population contains 300 genotypes. Initially, a random population of vectors is 

generated by initialising each fragment of the genotype to the values chosen from uniform random 

distribution within the range [0, 255]. Generations following the first one are produced by a 

combination of selection with elitism, crossover, and mutation. For each new generation, the 20 

highest scoring individuals (the elite) from the previous generation are retained unchanged. The 

remainder of the new population is generated by fitness proportional selection (Roulette-wheel or 

Tournament) from the 200 best individuals of the old population. Each genotype is a vector 

comprising of integer numbers as a coding for the decision (selection of nodes in supply chain at 

every stage). Each new genotype has a low probability of being created by combining the genetic 

material of two parents. During crossover, one crossover point is selected. Genes from the beginning 

of the genotype to the crossover point are copied from one parent to the second parent. Mutation is 

applied by uniform random distribution. The offset is applied from the range [1, N-1] where N 

corresponds to the maximum number of nodes in that stage. This refers to the position of the gene in 

the genotype, while maintaining the constraints of the gene values to remain within the range [0, 255].  

This strategy ensures that the mutation will always result in the selection of different nodes when 

applied to the gene.  The process is iterated until the population converges or a specific number of 

generations are reached. 

7. Computational results 

In this section, a power transformer numerical example is presented and analysed to evaluate the 

model. Then, the performance and efficiency of the model is tested using two experiments. The 

problem is benchmarked with changes in a supply chain partner costs. The experiments conducted 

are: 

Experiment 1 (E1): The cost optimization is based on uniformly distributed costs. The 

parameters and costs of the supply chain partners are summarised in Tables 5 and 6.  

Experiment 2 (E2): The cost optimization is based on real-time costs, which are extracted from 

the pool of cloud databases. The parameters and costs are summarised in Tables 7 to 13. 

The computations are run on CyberServe Xeon SP2-R2312 Intel R2312WF0NP ® 2U, Dual Intel 

Xeon Scalable processor to get good results in a reasonable time. The reason for doing two 

experiments are: first, to test the universality of the SCD; second, to quantify the influence of real-

time partner costs on the SCD when the PF design is integrated, and third, to analyse the implications 
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of fixed/deterministic and real-time partner costs for the performance of the supply chain (Tables 6 – 

13).  In Table 6, the objective function parameter values are summarised. The values are generated 

from a uniform distribution. The fixed production costs for the supplier, manufacturing plant and 

assembling plants are shown in Table 7. The additional real-time costs (product, ordering, 

setup/opening), associated capacities and transportation costs are extracted from pool of cloud 

databases, as depicted in Tables 8 – 13. The approach of the calculations is that, first the model is 

solved with uniform costing. Then we subsequently consider real-time costs. 

Table 5 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Supply chain stages and production cost 

Item no. Stage Module Type ID Option Production Cost 

S1 Supplier EGL-02  1 250.00 

    2 234.00 

    3 260.00 

    4 265.00 

S2 Supplier UBB  1 263.00 

GA Parameters used to solve medium-scale problem 

Parameters Values 

Population size {100, 400, 800} 

Crossover probability 0.3 

Mutation probability 0.1 

Max number of iterations 100 

Parameters and values 

Parameters Values 

𝐶𝑚, 𝐶𝑎 , 𝐶𝑑 U(4000,7000) 

𝑃𝑠 , 𝑃𝑚, 𝑃𝑎   U(8000,11000) 

𝑇𝐶𝑗𝑠𝑚  , 𝑇𝐶𝑘𝑚𝑎, 𝑇𝐶𝑙𝑎𝑑 , 𝑇𝐶𝑙𝑑𝑔 U(3,8) 

𝐻𝑗𝑠 U(0.08,0.13) 

𝐻𝑟𝑠 U(0.02,0.07) 

𝐻𝑘𝑚 U(0.18,0.22) 

𝐻𝑗𝑚 U(0.13,0.18) 

𝐻𝑙𝑎  U(0.28,0.34) 

𝐻𝑘𝑎 U(0.22,0.28) 

𝐻𝑙𝑑  U(0.34,0.40) 

𝑂𝑠, 𝑂𝑚, 𝑂𝑎, 𝑂𝑑 U(110,150) 

T 0.0073529 

∅𝑠 8 

∅𝑚 4 

∅𝑎 2 
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    2 275.00 

    3 290.00 

    4 295.00 

… … … … … … 

M17 Manufacturing plant Tank Body C2 1 245.00 

    2 287.00 

    3 210.00 

    4 260.00 

… … … … … … 

A27 Assembling plant Power Transformer B0 1 425.00 

    2 432.00 

… … … … … … 

 

 

 

Table 8 

Product Variant Module Type  

V1 {𝐵11 , 𝐵51} 

V2 {𝐵12 , 𝐵53, 𝐵62} 

V3 {𝐵13, 𝐵53, 𝐵61, 𝐵72} 

V4 {𝐵14, 𝐵54, 𝐵63, 𝐵74} 

… … 

 

Table 9 

Potential suppliers producing base modules 

Item 

no. 

Stage Module 

Type  

ID Option Capacity Production 

Cost 

Ordering 

Cost 

Fixed Setup 

Cost 

S1 Supplier EGL-02  1 15,000 240.00 115.00 181.00 

    2 22,000 260.00 147.00 193.00 

    3 25,000 285.00 125.00 211.00 

    4 12,000 245.00 131.00 227.00 

S2 Supplier DW-N6  1 15,000 335.00 115.00 181.00 

    2 22,000 380.00 147.00 193.00 

    3 25,000 355.00 125.00 211.00 

    4 12,000 340.00 131.00 227.00 

… … … … … … … … … 

 

Table 10 

Potential manufacturing plants producing compound modules 

Item 

no. 

Stage Module 

Type 

ID Option Capacity Production 

Cost 

Ordering 

Cost 

Fixed 

Opening  

Cost 

M1 Manufacturing 

plant 

Bushing C1 1 22,000 331.00 

 

149.00 

 

4011.00 

 

    2 27,000 362.00 111.00 6025.00 

    3 32,000 342.00 125.00 5225.00 

    4 19,000 350.00 145.00 6750.00 

M2 Manufacturing 

plant 

Tap 

Changer 

C5 1 22,000 281.00 

 

149.00 

 

4011.00 

 

    2 27,000 265.00 111.00 6025.00 

    3 32,000 272.00 125.00 5225.00 
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    4 19,000 292.00 145.00 6750.00 

… … … … … … … …  

 

Table 11 

Potential assembling plants with assembling product variants 

Item 

no. 

Stage Module 

Type 

ID Option Capacity Production 

Cost 

Ordering 

Cost 

Fixed 

Opening  

Cost 

A1 Assembling 

plant 

Power 

Transformer 

B0 1 25,000 422.00 

 

115.00 

 

4500.00 

 

    2 38,000 435.00 147.02 6000.00 

… … … … … … … …  

 

Table 12 

Potential distribution centres for delivering final product variant 

Item 

no. 

Stage Module 

Type 

ID Option Capacity Ordering 

Cost 

Fixed 

Opening  

Cost 

D1 Distribution 

centre 

Power 

Transformer 

B0 1 100,000 125.00 

 

4500.00 

 

    2 85,000 112.00 6500.00 

… … … … … … …  

 

 

 

Table 13 

Transportation costs 

𝑇𝐶𝑗𝑠𝑚 Manufacturing plants  𝑇𝐶𝑘𝑚𝑎 Assembling plants  

Supplier M1 M2 M3 M4  Manufacturing plants A1 A2  

S1 3.01 3.10 3.15 3.30  M1 3.01 5.0  

S2 7.46 7.38 4.02 4.25  M2 7.38 5.74  

S3 6.69 4.87 7.60 3.71  M3 4.87 7.14  

S4 5.72 6.73 5.40 1.72  M4 6.73 3.06  

          

𝑇𝐶𝑙𝑎𝑑 Distribution Centres   𝑇𝐶𝑙𝑑𝑔 Market segments 

Assembling plants 1 2 3   Distribution Centres MS1 MS2 MS3 

A1 3.01 5.00 6.50   D1 4.00 5.50 8.00 

A2 5.74 7.60 5.40   D2 5.67 7.25 8.00 

 

 

     D3 8.00 5.25 11.00 

7.1 Numerical example 

To consider the performance of the proposed model, we present a power transformer numerical 

example which we adopt from Yang et el. (2015). The production of the power transformers is 

achieved through modular and globally distributed multi-stage supply chain. The GBOM for the 

power transformers is shown in Figure 7, which comprises of a set of base modules (like 𝐵11: EGL-

02, 𝐵14: DW-N6, 𝐵61: Porcelain) provided by suppliers, compound modules (like C1: Bushing, C5: 

Tap Changer, C6: Insulation) provided by manufacturing plants and final product variants to be 

provided by assembling plants. To fulfil the market segment requirements, various transformer 
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variants and alternatives are selected from the base modules and compound modules to form a 

product. 

The objective is to minimize the total supply chain cost by selecting the product variants. It is 

assumed that there are 4 suppliers, 4 manufacturing plants, 2 assembling plants and 3 distribution 

centres with specific setup costs, opening costs, production costs, holding costs, ordering cost and 

transportation costs.  

Commercially available software and tools find it hard to solve optimally the medium and large         

multi-stage supply chain design problems with facilities such as manufacturing plants, assembling 

plant and distribution centres that are opened as constraints. Such problems are referred to as 

multiple-choice Knapsack problem, which are known as NP-hard (Gen & Cheng, 1997). With these 

constraints, the real-world applicability becomes significantly difficult. Hence, numerical examples 

are used as a case study to test the model (see for example, Zhang et al. 2016; Tang & Gong, 2019; 

Mohammed & Duffuaa, 2020; Azizi & Hu, 2020; Mohtashami et al. 2020; Samuel et al. 2020; 

Rahmani et al. 2020). 
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Figure 7: Power Transformer GBOM for multi-stage supply chain 

7.2 Experiments with medium-scale problem 

A medium-scale problem is used to study the effectiveness of our proposed model. Based on the 

literature, different population sizes and iterations are considered to evaluate the performance of the 

proposed solution, as shown in Table 5. In order to demonstrate the efficacy of the model while 
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designing a supply chain network, we analyse different configurations and values (Tables 6 - 13).   

Figure 8 shows that after 90 iterations, the optimized result is achieved for the optimal SCD. 

Analysis of the configuration shows that, regardless of the GA parameter combination, the changes do 

not significantly affect the total supply chain cost. Thus, this shows that our SCD is not sensitive to 

variations in input values.  

   

Figure 8: Evolutionary process of GA 

7.3  Sensitivity analysis 

In order to study the effects of parameter changes based on real-world conditions, the behaviour of the 

objective function is assessed. Various GA parameters such as population sizes, crossover probability 

and mutation probability are tested, as listed in Table 14. These parameters play an important role in 

the SCD with optimal cost. By performing sensitivity analysis on two approaches (costs with uniform 

distribution and real-time) with various parameter adjustments, our results suggest that the objective 

function shows only 0.05% cost difference. A larger population size leads to no further improvement.  

Thus, the size of the population is set to 100. Furthermore, the crossover and mutation probability are 

set to 30 and 10%, respectively for best combination. We also iterate the GA process up to 800 

iterations and notice that after 100 iterations the results remain unchanged. Therefore, 100 iterations 

are used as a stopping criterion.  

The results in Table 14 also show that there is a weak relationship between the number of generations 

produced and the total supply chain cost. The total supply chain cost remains unchanged with varying 

generation sizes, combinations of crossover and mutation. It should be emphasised that the mutation 
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enables a small number of random searches, and thus, ensures that the GA search does not quickly 

converge at a local optimum. But this should not occur very often in any case; otherwise the GA 

becomes a pure random search method. Thus, it is recommended that the mutation rate be set to be a 

small number to get better results. 

Table 14 

Sensitivity analysis of GA parameters 

Size of SC    

 (Supplier x 

Manufacturing plants x 

Assembling plants x 

Distribution centres) 

Generations 

Produced 

Crossover 

Probability 

(%) 

Mutation 

Probability 

(%) 

Total Supply 

Chain Cost with 

uniform 

distribution 

Total Supply 

Chain Cost 

with real-time 

4 X 4 X 2 X 3 400 40 20 319,780.00 319,625.00 

4 X 4 X 2 X 3 800 40 20 319,780.00 319,625.00 

4 X 4 X 2 X 3 400 30 15 319,780.00 319,625.00 

4 X 4 X 2 X 3 800 30 15 319,780.00 319,625.00 

4 X 4 X 2 X 3 400 20 10 319,780.00 319,625.00 

4 X 4 X 2 X 3 800 20 10 319,780.00 319,625.00 

4 X 4 X 2 X 3 400 10 5 319,780.00 319,625.00 

4 X 4 X 2 X 3 800 10 5 319,780.00 319,625.00 

 

In order to explore further, we analyse the relationship between varying mutation probability and the 

total supply chain cost, as shown in Figure 9. The results indicate that, for uniform distribution, the 

total supply chain cost was lowest with mutation probability of 10 or 20%. However, as the mutation 

probability increases, the total supply chain cost also increases. The pattern is identical with real-time 

cost. This indicates that a low mutation probability (i.e. 10%) gives better results (i.e. lower supply 

chain cost for both uniform distribution and real-time costs).   
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Figure 9: Total supply chain cost with varying mutation probability 

 

The holding cost rate is an important strategy parameter in the design of a supply chain. To 

investigate the effects of the holding cost rate, we define the rates from 0 to 100. It can be observed in 

Figure 11 that the total supply chain cost increases slightly linearly as the holding cost increases. The 

results show that varying the holding costs makes a small variation in the total supply chain cost. Our 

results are consistent with the findings of Graves and Willems (2005) and Huang et al. (2005). Both of 

these studies found that the holding cost rate does not have a significant effect on the model selected.  

 

Figure 11: Total supply chain cost with varying holding costs 

In other words, by changing the problem parameters, the value of the objective function in both 

approaches (uniform distribution and real-time cost) changes slightly but with direct relationship. For 

example, Figure 8 compares these two approaches. The real-time costs in the beginning of the 

generations are approximately 2-2.5% lower than uniform costs. The ability of GA algorithm is to 

generate multiple solutions that are increasingly more efficient, which can be seen at later generations 

with reduction of cost difference between the two approaches i.e. 0.05%. Hence, the ability of the 

proposed algorithm is confirmed when it comes to generating cost efficient solutions with good 

performance. This can help decision makers to find an appropriate trade-off between costs (i.e. real or 

uniform) and the optimal design of the supply chain.   

7.4  Summary 

In testing the proposed SCD model, our primary objectives were to show: (1) the universality of the 

proposed SCD, (2) the versatility of the model in dealing with both fixed/deterministic and real-time 
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data, and (3) the importance of incorporating real-time partner costs when selecting product variants. 

Based on different population sizes, iterations, configurations and values, our results show that the 

proposed SCD is effective in achieving cost-efficient solutions. In particular, we find that variations in 

the GA parameter combinations do not significantly affect the total supply chain cost.  

To probe our results further, we subject them to a sequence of sensitivity analyses based on real-world 

conditions. For instance, we choose various GA parameters such as population sizes, different 

combinations of crossover and mutation probabilities but also we introduce variations in holding 

costs. All of these variables play a pivotal role in cost-efficient SCD. Our sensitivity analyses show 

that the total supply chain costs remain efficient based on both uniform distributions and real-time 

costs. 

We postulate that managers routinely adjust their decisions based on the prevailing environment in 

which they operate. Accordingly, it is reasonable to assume that they would act differently in 

turbulent/unstable real-world conditions. Thus, by analysing the sensitivity analysis results, managers 

can determine their optimal decision based on an evaluation of the total cost by changing the 

parameter values. In order words, our framework can be easily used as an effective managerial tool to 

design an optimal supply chain at relatively lower cost, which in turn has the potential to increase firm 

performance, particularly under turbulent market conditions.  

8. Conclusion 

Many companies are now able to offer a vast range of product variants enabled by the effective 

implementation of modularization strategies. Such strategies essentially outsource common platform 

modules to supply chain partners to simplify the production and distribution processes and improve 

operational performance. Thus, the success of a particular product does not only depend on the 

optimal supply chain design or technical performance, but also on the performance of the OEM 

supply chain in fulfilling uncertain customer demand. In this context, the SCD primarily determines 

the structure or links amongst the partners to make structural and (optimal) coordinated decisions. The 

key question, therefore, is: how do we optimally integrate the PF and the SCD in such as a way that 

factors such as globalisation, increased market competition, varying costs and modular product 

demand can be taken into account in a timely manner? 

In this paper, we propose a novel approach, which details how both the product and the supply chain 

can simultaneously be designed based on real-time data, which then can improve operational 

decisions. To address the joint PF and SCD problem, we utilise a cloud-based management system 

comprising of three steps. In the first step, a generic bill of materials is modelled to design a set of PFs 

using “AND” and “OR” nodes. In the second step, a cloud-based framework is designed to manage 

real-time costs viz. echelons. In the third step, a mixed integer linear programming model is then 
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applied, which optimizes the SCD based on real-time costs. Once the costs are optimized by genetic 

algorithm, an optimal supply chain is then achieved. The overriding objective is to minimize the total 

supply chain costs, including the selection of suppliers, manufacturing plants, assembling plants and 

distribution centres. To solve the overall supply chain problem, we apply a metaheuristic algorithm 

based on genetic algorithm. 

Given that commercially available software find it hard to optimally solve medium to large multi-

stage SCD problems, such as the one we tackle in this study, we use a power transformer numerical 

example as a case study. The main conclusions emanating from our study are that: i) the proposed 

SCD is robust to variations in real-world conditions (e.g. changes in holding costs), ii) the model 

design is versatile enough to deal with both fixed/deterministic and real-time data, iii) the real-time 

partner costs can be incorporated at the selection of product variant stage, and iv) a cost-efficient 

supply chain is achieved. 

We believe that the proposed SCD is an intelligent and expert management system, which can 

facilitate effective decision-making support by taking into account real-time cost data. This is 

particularly important when there are uncertain and volatile market conditions. Thus, it can aid 

managers to achieve higher efficiency, as they would have a managerial tool, which yields an optimal 

SCD. Higher efficiency in turn can give firms competitive edge in our increasingly globalized world. 

Developing effective frameworks to solve optimal supply chain problems have real world 

implications, as we have argued throughout this study. Therefore, future research could consider real 

case studies to characterize the solution behaviour of our proposed model. Nonetheless, our work is 

versatile enough that it could be adopted in multi-objective optimisation contexts in which risks and 

environmental benefits can be explicitly addressed. Also, our proposed model does not consider 

uncertainty in more detail. Therefore, other efficient stochastic and robust solution techniques can also 

be considered (e.g. Tirkolaee et al. 2020; Babaee Tirkolaee et al. 2020;Mardani et al. 2020; Tang & 

Gong, 2019; Liu et al. 2019; Sangaiah et al. 2019; Tirkolaee et al. 2019). Taken together, our study 

goes some way in demonstrating how optimal SCD can be achieved using cloud-computing 

technology in which real-time data is a reality. 
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Appendix    

Table A1 

Reference Features Objectives Solution 

Method 

Case 

study 

Application 

industry 

Problem characteristics 

Multi-

echelon 

Multi-

product 

BOM      

(ElMaraghy & 

Mahmoudi, 2009) 

* * * Single MILP * Automotive Single integer decision support model using Lingo by concurrent design of 

product module structure and supply chain configuration 

(Nepal et al., 2012) * * * Multiple ILP * Automotive Multi-objective weighted goal programming optimisation using genetic 

algorithm by integrating product architecture decisions with manufacturing 

supply chain decisions 

(Yang et al., 2015) * * * Single MINLP * Power 

Transformer 

Single objective MINLP optimisation using nested genetic algorithm by 

joint configuration of product family and supply chain as leader-follower 

Stackelberg game 

Afrouzy et al., 2016) * * * Single ILP   Single objective ILP priority-based genetic algorithm optimisation using 

LINGO by joint new product development and design of supply chain 

network to maximise total profit. 

(Wang et al., 2016) * * * Single MINLP * Power 

Transformer 

Single objective MINLP optimisation using nested genetic algorithm by 

joint decision making of product family and supply chain as leader-

follower Stackelberg game 

(Zhang et al., 2016) * * * Single MINLP * Bicycle Single objective MINLP optimisation using artificial bee colony by joint 

configuration of product family and supply chain 

(Pham & Yenradee, 

2017) 

* * * Single MIP * Toothbrush Single objective MIP optimisation using CPLEX by optimal supply chain 

design with process network under uncertainties 

(Du et al., 2019) * * * * MINLP * Gear Reducer Single objective MINLP optimisation using nested genetic algorithm by 

joint decision making of product family and supply chain as quartet grid 

(Liu et al., 2020) *   Multiple MILP * Consumer goods Multiple objective MILP using AIMMS by optimal design of low-cost 

supply chain network for new products  

(Mohammed & 

Duffuaa, 2020) 

* *  Multiple MILP   Multiple objective MILP using tabu search based algorithm by the optimal 

design of multi-product supply chain network 

Current study * * * Single MILP  Power 

Transformer 

Single integer decision support model using genetic algorithm by the 

optimal supply chain design with product family on real-time costs viz. 

echelons 
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