
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

 Immersive Captioning: Developing a framework
for evaluating user needs

Chris J. Hughes
School of Computing,

Science and Engineering
Salford University

Salford, UK
c.j.hughes@salford.ac.uk

0000-0002-4468-6660

Pilar Orero
Department of Translation,

Interpreting & Eastern Asia Studies
Universitat Autònoma de Barcelona

Bellaterra, Spain
pilar.orero@uab.cat

0000-0003-0269-1936

Marta B. Zapata
Department of Translation,

Interpreting & Eastern Asia Studies
Universitat Autònoma de Barcelona

Bellaterra, Spain
marta.brescia@uab.cat
0000-0002-2465-0126

Matthew Johnston
Professional Services

ThoughtWorks
London, UK

mjohn@thoughtworks.com

Abstract— This article focuses on captioning for immersive
environments and the research aims to identify how to display
them for an optimal viewing experience. This work began four
years ago with some partial findings. This second stage of
research, built from the lessons learnt, focuses on the design
requirements cornerstone: prototyping. A tool has been
developed towards quick and realistic prototyping and testing.
The framework integrates methods used in existing solutions.
Given how easy it is to contrast and compare, the need to further
the first framework was obvious. A second improved solution
was developed, almost as a showcase on how ideas can quickly
be implemented for user testing. After an overview on captions
in immersive environments, the article describes its
implementation, based on web technologies opening for any
device with a web browser. This includes desktop computers,
mobile devices and head mounted displays. The article finishes
with a description of the new caption modes leading to improved
methods, hoping to be a useful tool towards testing and
standardisation.

Keywords—Accessibility, VR, Immersive video, Subtitle,
Captions

I. INTRODUCTION
Immersive media technologies, like Virtual Reality (VR)

and 360º video have rapidly grown in popularity due to the
availability of consumer level head mounted displays (HMD).
This influences not only in the entertainment sector, but also
in other key sectors of society, like education, arts and culture
[1] especially during the times of the COVID-19 pandemic [2]
when people are less able to travel. In this context, 360º videos
have become a simple and cheap, yet effective and hyper-
realistic, medium to provide VR experiences.

Due to this potential, the scientific community and
industry have devoted significant resources to developing new
solutions in terms of many relevant aspects, like authoring and
playback hardware and media players. This has led to
increased demand for the production and consumption of 360º
videos and major platforms, like YouTube, Facebook, and
news platforms such as The New York Times, currently
provide 360º videos in their service offerings [1].

This has also driven the development of 360º video players
for many different platforms such as desktop computers,
smartphones and Head Mounted Displays (HMD’s) [3,4]. As
for every service, 360º media consumption experiences need

to be accessible. Typically, accessibility has been considered
in the media sector as an afterthought, and mainly for
mainstreamed services.

Within traditional media (such as Television and Movies)
there are clear regulations as to how accessibility must be
delivered. However, it seems that accessibility for immersive
media services is still in its infancy and although some
projects, such as the EU funded Immersive Accessibility
(ImAc) project [5] have begun to address the need for general
accessibility in immersive environments. Their solutions have
mainly been to adapt existing accessibility methods, rather
than identifying the potential that the new environment can
offer. In the case of captioning (often referred to as subtitling)
early user trials have shown that the users want what they are
used to, rather than what they could have. This means
rendering the traditional caption (2 lines, ~30 characters wide)
into the users view.

This paper discusses a software framework, designed to
allow rapid prototyping of different captioning methods, in
order to allow new ideas to be tested quickly and easily across
different platforms (including desktop, mobile and HMD’s).
The tool allows for methods used in existing solutions to be
easily contrasted and compared, as well as new ideas quickly
implemented for user testing.

II. BACKGROUND
Currently, there exist no standard guidelines or

implementation for captions in immersive videos and
although many immersive video players now offer the ability
to play 360o media the support for any accessible services is
extremely limited. At best the players generally support the
implementation of traditional captions fixed within the users
view [6].

The British Broadcasting Corporation (BBC) was one of
the first research organisations to perform user testing with
immersive captions [7]. All of their work was based upon
projecting traditional captions into the immersive
environment and they evaluated how successful this could be
done in scenarios where the captions were:

1. Evenly Spaced - captions repeated at 120o intervals
2. Head-locked - captions fixed within the users view
3. Head-locked with lag - captions follow users view,

but only for larger head movements

4. Appear in front and then fixed - captions are placed
in the position that the user is looking and remain
there until they are removed

They found that although it was easy to locate the evenly
spaced captions the users much preferred the head-locked
options.

 A user study, conducted by the ImAc project also
identified head-locked captions as the strong preference also
identified the need to guide users to the sound source for the
caption. To facilitate this requirement location information
was added to each caption. This allowed for different guiding
modes to be developed, such as a directional arrow which
could guide the user to where the person speaking was located.
However, this did have the drawback that the location was
only specified once per caption, and if a person was moving
dynamically during this period, the guide could have been
wrong [8].

 Within VR captions are now becoming essential to
video games. The Last of Us: Part II was released in 2020 [9]
with a significant focus given to accessibility. Throughout the
game the user has the opportunity to enable and customise
captions (such as size, font, whether character name is
displayed). It also includes a guide arrow to direct the user to
the location of the character speaking.

 Rothe et al. [10] conducted tests with fixed captions
and compared this presentation mode to head-locked captions.
Their result didn’t find that one option was significantly
preferred over the other. However, in terms of comfort, fixed
captions led to a better result even though fixed captions in
general mean that the user may not always be able to see the
caption as it may be outside of their view.

 A W3C Community group [11] focused on
developing new standards for immersive captioning recently
conducted a community survey to gather opinions. A small
group of users with different hearing levels (Deaf, Hard of
Hearing, and Hearing) were asked to evaluate each of the
identified approaches for captions within immersive
environments.

 Head-locked was clearly identified as the preferred
choice, however it was noted that this was most likely as it
replicated the experience that users were familiar with. It was
also acknowledged that it was difficult for users to properly
evaluate new methods theoretically without the opportunity
and content to enable them to be experienced properly.
Although all agreed that head-locked should be set as default,
other choices should be made available. Other suggestions
were made which included changing the font size and colour
and number of lines (two lines being the default number).
Multiple captions should also be in different positions, each
being near to the speaker.

 Therefore, the focus of this research is to produce a
framework enabling delivery of the full experience of each
captioning mode, in an environment where an extensive user
study can be conducted.

III. METHODS
A. Implementation

Part of the ambition for a framework which is generic
enough to enable testing in different environments with a
variety of devices is portability. Our implementation is based
on web technologies allowing it to be used on any device with

a web browser. This includes desktop computers, mobile
devices and head mounted displays (HMD’s).

Three.js [12] is a cross-browser JavaScript library and
application programming interface (API) used to create
graphical processing unit (GPU) accelerated 3D animations
using the JavaScript language on the web without the need for
proprietary web browser plugins. In our implementation it
provides high level functionality to WebGL [13] allowing us
to define our scene as objects and manipulate them within the
space.

In addition, we use a WebVR Polyfill [14] - which
provides a JavaScript implementation of the WebVR
specification [15]. This enables three.js content to work on any
platform, regardless whether or not the browser or device has
native WebVR support, or where there are inconsistencies in
implementation. The polyfill's goal is to provide a library so
that developers can create content targeting the WebVR API
without worrying about what browsers and devices their users
are using. This gives our framework maximum compatibility
across a large range of devices. Also, as many devices have
limited interfaces we add an option to automatically play or
pause the video when the user enters or leaves VR modes to
avoid the need for a play button if controls are available.

Our framework allows for the user to switch between
several different views or enter VR mode. The default view is
a split screen as shown in figure 1. This clearly demonstrates
how the captions are being rendered and positioned by
showing both the user's viewpoint and a representation of the
caption and view window within the space.

In order to consume 360o video, the scene contains a
sphere centred around the origin and it is assumed that the
user’s viewpoint remains at the origin. When the framework
is not connected to a video, the sphere is rendered as a
wireframe, however once a video has been loaded the
equirectangular video is texture mapped onto the inside of the
sphere. As the sphere primitives are generally designed to
have a texture mapped to the outside, it is necessary to invert
the faces (also known as ‘flipping the normals’) in order to
make this work.

Three.js provides a videoTexture object, which can
connect to any HTML5 video object. Therefore, an HTML5
video is embedded in the webpage, with its display set to
‘none’. The video playback is then managed through
JavaScript manipulating the HTML5 video object.

Inside the main scene container we first add a world group.
This allows us to reposition the entire contents of the scene to
ensure that the user’s viewpoint is kept at the origin. For
example, when using an HMD the user is automatically given
a height which cannot be overridden. Translating the world

Fig. 1. The initial split view of the player allows the user to see both the
caption and view window relative to the 360o world and from the user's
perspective

back to the users eye position allows us to keep their view
centred. Within the world there are three main components: 1)
A video container, 2) a userView container and 3) a fixed
caption container. The video container is a three.js group
which contains the video texture mapped sphere. The
userView container is a group designed to replicate the
behaviour of a camera but which is updated each time the
scene is rendered to align with the users' viewpoint. This
allows us to always keep the components within the group
locked into the users view and it contains a caption container,
for placing captions which are fixed into the users view
window. Finally, within the world there is a fixed caption
container which is not updated when the user moves. This
allows us to place a caption object into either the userView
group or the fixed-caption group depending on whether the
caption is locked in the scene or the users view.

 A wireframe plane is displayed by default in each view
and attached to the userView to show the user’s viewpoint and
help provide a coordinated understanding of how the views fit
together. The userView and the fixed-caption container both
contain a pivot point ensuring that as they are rotated around
the origin the caption aligns with the video sphere. This allows
us to simply position the caption anywhere in the video using
a spherical coordinate system and by applying a radial
distance (r), polar angle (θ) and azimuthal angle (φ) values
which are stored in the caption file, as illustrated in figure 2.

B. Contrast and Compare

Fundamentally, from our review there are two primary
mechanisms for caption rendering. 1) Head-locked where the
caption is rendered relative to the user's viewpoint and 2)
Fixed, where the caption is rendered relative to a fixed
location in the world, generally at the position of the character
speaking.

Three.js allows for the textures to be generated from any
HTML5 canvas object. In addition to the hidden video our
HTML page contains a hidden canvas element which allows
us to render any caption using any HTML or CSS styles. This
canvas texture is then mapped to a plane and positioned into
the scene.

An update is triggered every time a video frame changes,
and the player checks to see if the caption has changed. If there
is a new caption then 1) The canvas is updated to the text and
style of the new caption, 2)The texture is updated and 3) the
position of the caption is updated. For a fixed caption this
position is attached to its relative position in the scene and
placed within the fixed-caption container, however head-

locked captions are userView object which gets repositioned
each time the users' viewpoint is changed.

For each generated caption it is assigned a target location.
In the first instance this is the position that is specified in the
caption file. This concept was first used in the ImAc project
where a single location was stored for each caption in an
extended Timed Text Markup Language (TTML) file [16] and
the location is defined in spherical coordinates. Within our
player the user can enable the target position to be displayed
in order to help with debugging, and understanding, however
the captions do not necessarily get rendered at this location as
the user may have chosen to offset the position, or it may be
overridden by the display mode, for example head-locked will
always render the caption into the users view.

On opening our framework uses a random caption
generator to show what is happening in the current display
mode. A text string is generated and given a polar position (θ)
between -π rad and π rad (-180o to 180o) and azimuthal
position (φ) between -0.4 rad and 0.4 rad (~-23o to ~23o) as
captions are rarely positioned towards the top or bottom
vertical pole.

The user has the opportunity to select from the following
default modes:

● Fixed in Scene, Locked Vertical - The caption is
positioned at the target, but the azimuthal position
(φ) is restricted to 0 so that it remains locked to the
horizon.

● Fixed in scene, repeated evenly spaced - The
caption is positioned at the target location then
duplicated at 2π/3 rad (120o) intervals around the
horizon.

● Appear in front, then fixed in scene - The caption is
rendered in the centre of the user’s current view and
remains there until the caption is updated.

● Fixed, position in scene - The caption is rendered at
the target location.

● Head-locked - The caption is rendered in the user's
view point and is moved in sync with the user to
ensure the caption remains statically attached to the
view point.

● Head-locked on horizontal axis only - The caption
is rendered as head-locked, however the azimuthal
angle (φ) is restricted to 0, ensuring that the caption
is always rendered on the horizon.

● Head-locked on vertical axis only - The caption is
rendered as head-locked, however the polar position
(θ) is locked to the target.

● Head-locked with lag, animate into view - The
caption is rendered in the head-locked position,
however as the users' viewpoint changes the caption
is pulled back towards the head-locked position. An
animation loop moves the caption incrementally
causing it to smoothly animate into view.

● Head-locked with lag, jump into view - This is the
same as above, except the animation time is reduced
to 0, forcing the caption to jump into the users view.

The framework also allows for the comparison of default
guiding modes (as shown in figure 3). These guide modes
always direct the user to the target location as this is the source
of the identified action. When the captions are fixed they
therefore direct the user to the caption, whereas when they are

Fig. 2. Spherical Coordinate system user to position the caption target

head-locked the user can read the caption in their view whilst
being directed to the target:

● ImAc Arrow - An arrow positioned left or right,
directs the user to the target.

● ImAc Radar - A radar is shown in the users view.
This identifies both the position of the caption, and
the relative viewing angle of the user.

● Big Arrow - a large arrow is displayed in the centre
of the users view.

The javascript implementation allows for additional display
modes and guide modes to be created quickly by simply
creating rules for the caption creation, update and removal.

C. New Methods

 Due to the large file size of immersive videos, the player
was updated to support both HTTP Live streaming (HLS) [17]
using hls.js [18] and Dynamic Adaptive Streaming over HTTP
(DASH) [19] streams using dash.js [20]. This massively
improves the performance of video playback, where network
bandwidth was limited and therefore improves the user
experience.

 Based on anecdotal feedback from the community
additional functionality was added to the player in order to
allow further customization. Firstly it was identified that it
was necessary to be able to display multiple captions
simultaneously. This is because 1) sometimes multiple people
are speaking simultaneously and 2) there is a need for captions
to remain longer in order to give users time to find and read
them.

Our framework was therefore extended to support multiple
captions based on a particle system [21] approach. This allows
within the framework for the captions to behave as
independently - they are created, their mode defined and rules
defined for their update and removal. This means that it is
possible to have captions of different modes concurrently
within a scene. A captionManager is used to keep track of
each of the captions in the scene and update them where
necessary. This allows the user to override their set mode, and
handle basic collision avoidance within the scene.

The user is given a choice of how the captionManager can
remove the captions from the scene. This can be set to either

the time defined in the caption file, a delay can be added, or it
can be specified the maximum number of captions to be
displayed. In this case the oldest caption is removed once the
maximum threshold is reached.

Basic collision detection is used to avoid captions
occluding each other. For example when one character is
speaking, but previous captions remain within the scene, if an
older caption is not moved then the new caption is likely to be
drawn over the top. Therefore, the captionManager
implements a stacking system as shown in figure 4 (top).
When a new caption is created it is added to a stack - where a
stack has been created for each character in the scene, plus an
additional stack for head-locked captions. When a caption is
added to a stack the captionManager iterates through each of
the captions in the stack, from newest to oldest increasing their
azimuthal position by the existing height of the stack. As only
the vertical position is updated, if the character speaking is
moving the horizontal position of captions indicate the path
the character has taken. However, there is also an option in the
interface to force each stack to realign when it is updated, as
shown in figure 4 (bottom).

Each of the stacks is grouped, allowing the user to apply
an offset on each axis, allowing the entire stack to be
repositioned. For example the captions can be moved upwards
to place the captions above the person speaking, rather than on
top of them.

To support the location of multiple captions the guides
were also extended. Each caption object contains its own
guide components, so when the ImAc arrow, or ImAc radar
mode are enabled in a head-locked mode, each caption can
display its own guide. As shown in figure 5, in the case of the
ImAc arrow, each caption can display its own arrow, however
in the case of the radar an additional overlay is added for each
caption target. The opacity of each caption in the radar is
reduced as the caption gets older.

Additional tools were also added such as a timecode
display in the view window. This can be fully customized for
style and position, in order to help the user understand where

Fig. 3. Guide modes (Top: ImAc Arrow, Middle: ImAc radar, Bottom: Large
Arrow)

Fig. 4. Captions stacked to avoid collisions (Top: In original position
Bottom: realigned to current position)

they are temporally whilst immersed, as shown in figure 6.
Also parameters such as animation speed, offset position are
all exposed to the user through the graphical user interface
(GUI). An additional option to lock the caption azimuthally
was also added to force the captions to remain on the horizon.
This may be helpful to those users who find it difficult to look
up and down.

D. Responsive Captions

 In previous work we developed a JavaScript library for
managing responsive captions [22], This library allows for
captions to be dynamically restructured into different lengths.
This is done by following the principles of text flow and line
length, informed by the semantic mark-up along with styles to
control the final rendering.

 Captions are re-blocked by adhering to the number of
characters that can fit into the display container at the chosen
font size. Firstly each paragraph is recombined, based on a
unique speaker. A best-fit algorithm then breaks each
paragraph up to individual captions in order to fit the
container. Due to the nature of the changing font size this may
provide more or less captions than the originally authored,
however as the number of words remains the same the reading
speed never changes. As words are evenly distributed it also
avoids leaving orphaned words, as shown in figure 7.

This approach is particularly effective when adapting content
from traditional television displays into an immersive
environment, such as rendering the caption in a speech bubble
attached to a character, or for instance if you wish to reduce
the width of the caption in order to make room for other
captions or graphics, as shown in figure 8.

E. Enhanced caption file

In order to facilitate future experiments, a custom caption file
format has been implemented using a JavaScript Object
Notation (JSON) structure. We have tools for importing and
exporting to IMSC TTML and importing from a text based
transcript. Our experimental file contains further information
such as tracking information for each character in the scene.
This provides a frame by frame position for the location of
each person and the target can then be tied to a person or object
as they move, rather than just the position they are at when the
caption is first created. This allows for both a fixed position
for responsive captions as we know a start position for each
caption we create, or alternatively for a caption to follow a
character through a scene. Where no track information is
available for a character, an option is provided to interpolate
between one caption target location and the next. This is
reasonably successful for when a single character is moving
and talking, but breaks when characters change. Therefore,
there is also an option to restrict the interpolation to a single
character and not include the next characters start location.

 Currently, the additional track information is created
manually, by defining keyframes and interpolating between
them. Our framework provides a basic editor for adding the
track information using a keyboard interface, shown in figure
9. In future work we will explore how computer vision
techniques can be used to automatically identify the position
of characters within the scene.

IV. RESULTS AND DISCUSSION
Testing technology for usability with end users is a

standard prerequisite in the development workflow. When the
technology designed is related to accessibility services is a

Fig. 5. Enhanced guides extend the ImAc approach to support multiple
captions (Top: Arrows, Middle: Radar and Bottom: Justified)

Fig. 7. The responsive caption library restructuring the length of the captions
to a maximum character length: (Left: 25 characters, Right: 12 characters)

Fig. 6. A customizable timecode can be added to the user’s viewpoint. Fig. 8. The responsive subtitles library rendering captions as speech bubbles

must. The reason is the context where any accessibility service
is developed: the UN Convention of Rights of Persons with
Disability (2006) with the motto “nothing about us without
us”. This leads to a user-centric approach where end users
express their needs and expectations. (If needed I can write
more here “towards personalisation” rather than one size fits
all). Experience gained from the 3-year research project
(ImAc) [1, 23] showed that: 1) end users need to have real
stimuli to comment, 2) testing cycles should be shorter, and to
these we add 3) the new COVID-19 reality and face to face
testing.

 The proposed framework meets previous three issues
1) with end users having the stimuli in a real VR simulation.
This is a step forward to paper prototyping which was used in
ImAc. The reason for paper prototyping in ImAc was the fact
that no 360º caption editor existed at the time. It was one of
ImAc's objectives to develop one. Hence, the very first user
requirements were generated in paper [24, 25], which might
have impacted the decisions taken towards testing and further
developments [8]. 2) Two reasons led to lengthy testing
cycles. The first was the process of generating stimuli with
different variables, since it was produced as independent 360º
movies, not web based. In ImAc stimuli definition and
production meant: a democratic choice of content, which then
was captioned with the editor, then translated to the languages,
and finally tested. The second was the number of end users
required for each test [24, 25] this issue is related to the new
world health context. COVID-19 has forced all
communication based industries to consider existing
communication technology as alternative to traditional media
content production and distribution. Testing end users for IT
system development is one of the many activities that needs to
be redefined under the new situation. The silver lining is that
with a framework as the one proposed here online testing is a
reality. From the comfort of their home, and following all
government health and safety regulations, end users can
access stimuli from any device.

V. CONCLUSION
The need to generate a user friendly open testbed for 360º

captioning is a much needed tool for both industry and
academia. Previous research showed the shortcoming of paper
prototyping for VR leading to a first framework development.
Results from the first framework allowed for fast simulation
of variables. This in turn showed the need to develop further,
to allow for some unforeseen conditions which had not been
considered during the previous 3 year research. The
development of this second framework will allow to start a set
of online tests, with many more advantages than those
predicted by intuition, based on paper prototype. The number

of end users and the geographical location will increase given
the easy online access. The cost of testing in terms of money
and time will be shed drastically. The visualisation will elicit
new ideas for displays, it will also discover different needs
hence higher personalisation. The framework is designed to
allow structured tests to be administered following a set path
which allows the test designer to integrate with questionnaires,
ethical permission, and a faster processing of results.

ACKNOWLEDGMENT
The content of this article has been enriched by the

comments from the W3C Immersive captions CG. This
framework will be tested in H2020 957252 MEDIAVERSE,
H2020 870610 TRACTION, and H2020 870939 SO-CLOSE.

REFERENCES
[1] Montagud M, Orero P, Matamala A (2020) “Culture 4 all: accessibility-

enabled cultural experiences through immersive VR360 content.”, Pers
Ubiquit Comput. https://doi.org/10.1007/s00779-019-01357-3

[2] Louis Netter (2020) “The importance of art in the time of coronavirus”,
retrieved from: https://theconversation.com/the-importance-of-art-in-
the-time-of-coronavirus-135225

[3] Papachristos NM, Vrellis I, Mikropoulos TA (2017) “A Comparison
between Oculus Rift and a Low-Cost Smartphone VR Headset:
Immersive User Experience and Learning.”, 2017 IEEE 17th
International Conference on Advanced Learning Technologies
(ICALT), Timisoara, 2017, pp. 477-481. doi: 10.1109/ICALT.2017.145

[4] Srivastava P, Rimzhim A, Vijay P, Singh S, Chandra S (2019) “Desktop
VR Is Better Than Nonambulatory HMD VR for Spatial Learning.”,
Front. Robot. AI 6:50. doi: 10.3389/frobt.2019.00050

[5] M. Montagud, I. Fraile, J. A. Núñez, S. Fernández (2018). “ImAc:
Enabling Immersive, Accessible and Personalized Media Experiences.”
ACM TVX 2018, Seoul (South Korea)

[6] Chris Hughes, & Mario Montagud. (2020) “Accessibility in 360-degree
video players.”, https://arxiv.org/abs/2005.03373

[7] Brown A, Turner J, Patterson J, Schmitz A, Armstrong M, Glancy M
(2017). “Subtitles in 360-degree Video.”, In Adjunct Publication of the
2017 ACM International Conference on Interactive Experiences for TV
and Online Video (TVX ’17 Adjunct). Association for Computing
Machinery, New York, NY, USA, 3–8.

[8] Hughes CJ, Montagud M, tho Pesch, P (2019) “Disruptive Approaches
for Subtitling in Immersive Environments.”, Proceedings of the 2019
ACM International Conference on Interactive Experiences for TV and
Online Video – TVX ’19. doi: 10.1145/3317697.3325123

[9] Myers, Maddy (June 12, 2020). "The Last of Us Part 2 review: We're
better than this". Polygon. Vox Media. Archived from the original on
June 12, 2020. Retrieved July 8, 2020.

[10] S. Rothe, K.Tran, H. Hussmann (2018), “Positioning of Subtitles in
Cinematic Virtual Reality”, ICATEGVE 2018 - International
Conference on Artificial Reality and Telexistence and Eurographics
Symposium on Virtual Environments, November 2018

[11] W3C Immersive Captions Community Group,
https://www.w3.org/community/immersive-captions

[12] Three.js (2020) GitHub, https://github.com/mrdoob/three.js
[13] WebGL 2.0 Specification (2020), retrieved from

https://www.khronos.org/registry/webgl/specs/latest/2.0/
[14] WebVR Polyfill (2020) GitHub, https://github.com/immersive-

web/webvr-polyfill
[15] WebVR 1.1 Specification (2017), retrieved from: https://immersive-

web.github.io/webvr/spec/1.1
[16] TTML Profiles for Internet Media Subtitles and Captions 1.0.1 (IMSC1),

W3C Recommendation 24 April 2018, retrieved from:
https://www.w3.org/TR/ttml-imsc1.0.1/

[17] Pantos, R., May, W. (2017) "Playlists", HTTP Live Streaming. IETF. p.
9. sec. 4. doi:10.17487/RFC8216. ISSN 2070-1721. RFC 8216.

[18] HLS.js (2020) GitHub, https://github.com/video-dev/hls.js/
[19] Spiteri, Sitaraman and Sparacio (2018), “From Theory to Practice:

Improving Bitrate Adaptation in the DASH Reference Player”,ACM
Multimedia Systems Conference, June 2018

[20] DASH.js (2020) GitHub: https://github.com/Dash-Industry-
Forum/dash.js

[21] Reeves, William (1983) “Particle Systems—A Technique for Modeling
a Class of Fuzzy Objects”, ACM Transactions on Graphics. 2 (2): 91–
108.

[22] Hughes, CJ , Armstrong, M, Jones, R and Crabb, M (2015), “Responsive
design for personalised subtitles”, in: The 12th Web for All Conference,
18-20 May 2015, Florence, Italy.

[23] Agulló B, Montagud M, Fraile I (2019), “Making interaction with virtual
reality accessible : rendering and guiding methods for subtitles.”, AI
EDAM (Artificial Intelligence for Engineering Design, Analysis and
Manufacturing) doi: 10.1017/S0890060419000362

[24] Agulló B, Matamala A, and Orero P (2018), “From Disabilities to
Capabilities: testing subtitles in immersive environments with end
users”, HIKMA 17: 195-220. doi: 10.21071/hikma.v17i0.11167

[25] Agulló B, Matamala A (2019), “The challenge of subtitling for the deaf
and hard-of-hearing in immersive environments: results from a focus
group”, The Journal of Specialised Translation 32, 217–235
http://www.jostrans.org/issue32/art_agullo.php

Fig. 9. The experimental caption files contain tracked location for each
character and the framework provides a basic editor for creating the caption
files

