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ABSTRACT 

A theoretical model is developed to study entropy generation in non-Newtonian 

magnetohydrodynamic thermal convection from an inclined plate as a simulation of electro-

conductive polymer materials processing of relevance to automotive coating applications. High 

temperature invokes radiative effects which are analysed with the Rosseland diffusion flux 

approximation. The Jeffery’s viscoelastic model is deployed to describe the non-Newtonian 

characteristics of the fluid and provides a good approximation for magnetic polymers, which 

constitutes a novelty of the present work. The normalized nonlinear boundary value problem 

is solved computationally with the Keller-Box implicit finite-difference technique. Extensive 

solutions for velocity, surface temperature, skin friction and heat transfer rate are visualized 

graphically for various thermophysical parameters. Validation is conducted with earlier 

published work for the case of a vertical plate in the absence of magnetic field, radiative flux 

and non-Newtonian effects. The dimensionless entropy generation is obtained via the reduced 

momentum and energy equations. Bejan number is generally decreased with greater values of 

Deborah number. Increasing magnetic field reduces entropy generation number whereas it 

enhances the Bejan number. Increasing Brinkman number (dissipation parameter) is found to 

enhance the entropy generation number whereas it suppresses the Bejan number. 

 

KEYWORDS: Viscoelastic fluid; Inclined plate; magnetohydrodynamics; thermal 

convection; thermal radiation; retardation time; Bejan number; Entropy generation number; 

Hartmann number; numerical solutions. 

 

NOMENCLATURE 

B0 Constant imposed magnetic field V Velocity vector 

Be Dimensionless Bejan number u, v 
Dimensionless velocity components in X 

and Y direction respectively 

Br Brinkmann number x Stream wise coordinate 

Cf Skin Friction Coefficient y Transverse coordinate 
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cp specific heat  Greek Symbols 

De Deborah Number α Thermal diffusivity 

f Dimensionless stream function β Coefficient of thermal expansion 

F Thermal radiation  ratio of relaxation to retardation times 

g Gravitational acceleration 1 retardation time 

Gr Thermal Grashof number  Non-dimensional transverse coordinate 

Ha Hartmann number  Electric conductivity of the fluid 

k Thermal conductivity of the fluid  Dimensionless temperature 

k* Mean absorption coefficient  Fluid density 

M Magnetic parameter  dimensionless tangential coordinate 

NG Entropy generation number  Non-dimensional stream function 

Nu 
Heat transfer coefficient (Local 

Nusselt number) 
* Stefan-Boltzmann constant 

Pr Prandtl number  Dynamic viscosity 

qr Radiative heat flux  Non-dimensional tangential coordinate 

R Mixed convection parameter  Kinematic viscosity 

Re Reynolds number  Subscripts 

S Cauchy stress tensor w Conditions on the wall 

T Fluid temperature ∞ Free stream condition 

 

1. INTRODUCTION 

Transport phenomena from inclined surfaces arise in many applications in industry. 

These include fuel combustion [1], condensation systems [2], magnetic thin film deposition 

[3], geophysical debris flows [4], thermal coating [5] and geothermal heat transfer from oblique 

faults [6]. In materials processing systems, the use of an inclined plane allows thermal 

buoyancy force to be easily modified since it is proportional to the inclination angle. Materials 

manufacturing operations (e.g. plastic coating dynamics [7], gel and thin film systems [8]) also 

frequently feature non-Newtonian fluids. Rheology of the involved fluids significantly 

modifies momentum and heat transfer characteristics in such flows. In the context of 

thermoplastic sheet processing, Johnson [9] considered polymer flows on rigid inclines, 

viscoelastic film flows may become unstable due to fluid elasticity which is controlled by the 

Weissenberg number. Many rheological models have subsequently been deployed in recent 

years to study thermal and momentum boundary-layer flows from inclined surfaces. These 

studies have also utilized many advanced numerical methods which are required to 

accommodate the nonlinearity of such flows. Sui et al. [10] used the Ostwald-DeWaele power-

law model and homotopy analysis method (HAM) to investigate thermal convection from a 

non-isothermal inclined surface with wall transpiration (lateral mass flux). They observed that 

thermal convection is suppressed with a reduction in inclination angle.  Shamshuddin et al. 

[11] investigated time-dependent chemically-reacting micropolar double diffusive convection 
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from an inclined sheet with Ohmic dissipation using a perturbation method. They observed that 

the flow is strongly decelerated with greater inclination of the plate from the vertical case. Helal 

and Saif [12] employed a shooting numerical method to compute solutions for natural 

convection thermo-solutal boundary layer flow of pseudoplastic and dilatant fluids from a tilted 

plane in the presence of thermophoresis. Chinyoka et al. [13] analysed the unsteady non-

isothermal gravity driven flow of a variable viscosity viscoelastic Oldroyd-B liquid along an 

inclined plane with convective cooling at the free surface. Among the many viscoelastic fluids 

available, the Jeffrey model [14] has emerged as a good approximation for polymer dynamics. 

This model features three constants, namely the zero shear-rate viscosity, ratio of relaxation 

and retardation time and the retardation time. It is appropriate for nonlinear viscoelastic effects 

for which the simpler inelastic models cannot be used. Jeffrey’s model is obtained by adding a 

time derivative of the shear rate to the conventional Maxwell linear model. The convected 

Jeffrey model (Oldroyd model) also allows several other special cases to be obtained. When 

retardation time is neglected the original Maxwell model is retrieved. When the relaxation time 

is neglected then the case of a second order differential fluid is obtained for which the normal 

stress coefficient is zero. Finally, when both relaxation and retardation times are equivalent 

then the Newtonian fluid case is obtained. Jeffrey’s model was used by Prasad et al. [15] to 

study steady-state thermal polymer coating flow of a plate in porous media. Gaffar et al. [16] 

investigated the non-isothermal and non-isolutal transport phenomena from a porous conical 

body using the Jeffrey model. These studies all showed how significant modifications are 

computed in heat, flow and species diffusion fields due to viscoelastic material behaviour. 

In recent years thermal process engineers have embraced a new approach to optimize 

heat efficiency in the design of thermal systems, entropy generation minimization (EGM). This 

approach assists the engineer in identifying for example which manufacturing process is most 

efficient. It utilizes the second law of thermodynamics to build more sophisticated models of 

heat transfer which allow a deeper understanding of thermo-physics and reduction of losses. 

EGM has been utilized in many other areas of mechanical engineering including, solar energy 

systems, heat exchangers, combustion, refrigeration and propulsion ducts. In the context of 

non-Newtonian materials processing, many studies of entropy generation have been 

communicated in recent years. Kumar et al. [18] studied the unsteady hydromagnetic flow of 

a Jeffrey fluid from a vertical surface using a Crank-Nicholson difference method. They 

showed that increasing Jeffrey fluid parameters (relaxation and retardation parameters) 

enhance the entropy generation number whereas the contrary effect is induced with stronger 

magnetic field. Srinivas and Bég [19] applied the homotopy analysis method to compute the 
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entropy generation in magnetized micropolar natural convection flow in a solar duct, noting 

that greater non-Newtonian and magnetic field effects both reduce entropy generation rates 

whereas the opposite behaviour is observed with increasing thermal buoyancy and dissipation 

effects. Opanuga et al. [20] used the Adomian decomposition method (ADM) to simulate 

entropy generation of a third-grade viscoelastic differential fluid in a channel with convective 

cooling in the presence of suction or injection at the walls. They found that entropy generation 

is enhanced by suction/injection parameter at the lower wall but reduces it at the upper wall. 

Reddy et al. [21] analysed numerically the entropy generation in time-dependent second order 

viscoelastic fluid convection from a vertical plate. Qayyum and Ijaz [22] conducted a second 

law analysis of magnetized non-Newtonian flow and heat transfer in the gap between two 

spinning disks using the Williamson viscoelastic model. They observed that entropy number is 

boosted with increasing magnetic parameter and Brinkman number whereas the Bejan number 

is reduced with greater magnetic parameter, Brinkman number and Weissenberg number.  

The presence of high temperatures in materials operations invokes thermal radiative 

heat transfer. Since computational solutions of the general equation of radiative heat transfer 

remain challenging, most studies feature simplified radiative algebraic flux models such as the 

Rosseland model (diffusion approximation), P1 flux model and the Hamaker six flux model. 

Within the framework of boundary-layer flows, the Rosseland model remains the most popular 

although it is limited to fluids of high optical thickness. However, it is still appropriate for 

certain polymers. Shukla et al. [23] studied the influence of radiative flux on entropy generation 

in transient magnetized nano-polymer stagnation flow with chemical reaction effects. Sithole 

et al. [24] considered the impact of radiation and dissipation on entropy generation in second 

order electrically-conducting viscoelastic nanofluid convection from an extending sheet under 

a transverse magnetic field. Khan et al. [25] investigated the effects of Rosseland radiative 

parameter on mixed convection boundary layer flow of a tangent hyperbolic nanofluid with 

binary chemical reaction. Khan et al. [26] showed that radiative flux enhances temperatures 

and reduces entropy generation in magnetic nanofluid flow with binary chemical reaction. 

Murthy et al. [27] observed that entropy production decreases with thermal radiation in channel 

flow of two immiscible couple stress rheological fluids. 

In recent years new sophisticated magnetic polymers have emerged which provide 

enhanced performance in many industrial sectors including aerospace, automotive, 

manufacturing, energy and medical engineering. These include magnetoelectric 

nanocomposites [28] and soft magnetic polymer gels [29]. These materials are frequently 

synthesized at high temperature. The current study therefore aims to simulate the entropy 
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generation minimization of transport phenomena of such materials along an inclined surface 

in the presence of radiative heat transfer and also dissipation effects. The objective is therefore 

thermodynamic optimization which is of great relevance to enhancing efficiencies of thermal 

coating technologies in the automotive and power industries. The Jeffrey rheological model is 

deployed for non-Newtonian behaviour. The emerging non-dimensional nonlinear boundary 

value problem is solved with the Keller box implicit finite difference method [30]. Verification 

of the computations is included via comparison with earlier non-magnetic studies. Extensive 

visualization via graphs of the influence of key parameters (Deborah viscoelastic parameter, 

magnetic parameter, radiative parameter, Brinkman dissipation parameter etc) on velocity, 

temperature, entropy generation number and Bejan number profiles is included. The present 

problem to the authors’ knowledge has thus far not been considered in the scientific literature 

and constitutes a novel effort in thermodynamic analysis of magnetic non-Newtonian materials 

processing (coating) operations. 

 

2. MATHEMATICAL MODEL 

Natural convection in laminar, two-dimensional, time-independent incompressible 

Jeffrey viscoelastic magnetic polymer flow from an inclined rigid sheet is considered, as 

illustrated in Fig. 1. The sheet is inclined at an angle, , to the horizontal. A static, constant-

strength magnetic field is imposed externally transverse to the sheet. Uni-directional thermal 

radiative flux is present. The polymer is assumed to be an optically dense, absorbing but non-

scattering fluent medium.   

  

Fig 1: Physical model for radiative magnetic polymer inclined plane flow 
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In this model, with the exception of the density variation in the buoyancy terms (Boussinesq 

approximation) all other properties are assumed to be constant. To simulate non-Newtonian 

characteristics of the Jeffery elastic-viscous fluid model, the Cauchy stress tensor is required 

which is defined as [14-16, 31]:  
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1,
1

T pI S S

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 
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Here, ,p I, S, 1, ,    and   denote pressure, identity tensor, Cauchy stress tensor for Jeffery 

fluid, viscosity, ratio of relaxation to retardation time, retardation time and shear rate. The 

Jeffery model therefore features three constants i.e. viscosity at zero shear rate, and two time-

related material parameter constants. Incorporating the appropriate terms under the boundary-

layer approximation, the following conservation equations emerge for mass, momentum and 

energy (heat): 
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The relevant boundary conditions imposed at the plate surface and in the free stream: 

at 0, 0, 0, ,

when , , 0, .

wy u v T T

y u u v T T 

= = = =

→ → → →
       (7) 

The last term in the energy conservation Eq. (6) is the radiative flux term based on the 

Rosseland approximation. Radiative equilibrium is assumed in the simulations and the gas is 

also assumed to be gray. The Rosseland radiation model makes the assumption that the 

intensity is the black-body intensity at the fluid temperature [32]. The Rosseland model 

neglects the incident radiation from the extra transport equation, which saves on the 

computational time and uses less memory than other flux models [33]. Using this model, the 

flux may be written as follows: 
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Implementing the Taylor series approximation for 4T  to express as a linear function of 

temperature we have following Gebhart [X]: 

4 3 44 3 ,T T T T  −
          

(9) 

by using Eqs. (8)-(9) into Eq. (6), one can get: 
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The nonlinearity of the conservation equations in primitive variables makes even a numerical 

solution difficult. It is judicious therefore to reduce the number of independent variables and 

to this end the following group of variables is invoked: 
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Incorporating Eq. (11) into Eqs. (4), (5) and (11), the continuity equation (4) is automatically 

satisfied and the emerging non-dimensional momentum and thermal boundary layer equations 

emerge as: 
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The transformed dimensionless wall and free stream boundary conditions assume the form: 

at 0, 0, ' 0, 1,

when , ' 1, '' 0, 0,
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Additionally, the dimensionless expressions for the physical quantities at the plate surface can 

be written as:  
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Here the expressions Re and
Re

x f

x

Nu
C  denote the skin friction coefficient (wall shear stress 

function) and the local Nusselt number (wall heat transfer rate) respectively. 

 

3. NUMERICAL FINITE DIFFERENCE SOLUTIONS 

The boundary value problem to be solved comprises Eqs. (12) and (13) under boundary 

conditions (14). The Keller box method is selected to obtain numerical solutions. This method 

is well-documented in many studies [35-37] and details are therefore omitted here. To validate 

the Keller box numerical code employed, comparison with earlier non-magnetic, Newtonian 

solutions presented by Lloyd and Sparrow [38] is conducted and shown in Table 1. Very close 

correlation is achieved for the Nusselt number (Nu) for different values of the mixed convection 

parameter (R) and three different values of Prandtl number (Pr) i.e. 0.72 (air), 10, 100 

(polymers). Confidence in the present solutions is therefore very high. 

 

Table 1: Comparison of Nu for different values of R and Pr 

R 

Pr = 0.72 Pr = 10 Pr = 100 

Lloyd and 

Sparrow [38] 
Present 

Lloyd and 

Sparrow [38] 
Present 

Lloyd and 

Sparrow [38] 
Present 

0.0 0.2956 0.2955 0.7281 0.7279 1.5720 1.5719 

0.01 0.2979 0.2976 0.7313 0.7310 1.5750 1.5747 

0.04 0.3044 0.3042 0.7404 0.7402 1.5850 1.5848 

0.1 0.3158 0.3155 0.7574 0.7571 1.6050 1.6049 

0.4 0.3561 0.3557 0.8259 0.8255 1.6910 1.6905 

1.0 0.4058 0.4054 0.9212 0.9209 1.8260 1.8258 

 

4. ENTROPY GENERATION ANALYSIS 

The entropy generation analysis for the present flow regime is now described, following Bejan 

[38]. The volumetric rate of entropy generation due to magnetic field with heat transfer is given 

as: 

2 2 2 2
''' 0
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B uk T u
S

T y T y T
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  

    
= + +   
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      (17)  

The first term in eq. (17) signifies the entropy generation produced by heat flow, the second 

term denotes the entropy generation due to viscous dissipation and the final term is the entropy 
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generation due to the magnetic Lorentz force. The dimensionless entropy heat generation (NG) 

is the ratio of the volumetric rate of entropy generation to the characteristic entropy heat 

generation rate. 
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1 2GN N N= + . Furthermore, 

2
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Br Br
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 

 are the 

irreversibility owing to heat transfer and viscous dissipation respectively. The irreversibility 

distribution is defined via the Bejan number (Be) which is defined as the ratio of entropy heat 

generation due to heat transfer to the overall entropy heat generation i.e.: 

1

G

N
Be

N
=                      (20) 

Bejan number, Be lies between 0 and 1 i.e, 0 1Be  . Therefore, if 0Be = , N2 dominates N1 

and vice versa if 1Be = . Furthermore, when 0.5Be = , the fluid friction contribution in 

entropy generation and the irreversibility due to heat transfer are equal i.e., 
1 2N N= . 

 

5. RESULTS AND DISCUSSION 

Figs 2–25 illustrate graphical solutions for the influence of selected parameters on the velocity, 

temperature and entropy characteristics. In all graphs plate inclination is set at  =/6. 

Asymptotically smooth distributions are generally achieved in the freestream for all graphs 

indicating that a sufficiently large infinity boundary condition is specified in the Keller box 

numerical code.  

Rheological effects  

Figs. 2 – 5 depict the influence of Deborah number (viscoelastic parameter) on velocity, 

temperature, entropy generation number and Bejan number ( ', , andf Ng Be ). Fig. 2 shows 

the influence of De on 'f  and clearly increasing De (which corresponds to greater elastic 

effects to viscous effects) results in flow acceleration. De embodies the ratio of the relaxation 
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time characterizing the time it takes for the fluid to adjust to applied stresses or deformations, 

and the characteristic time scale. Momentum boundary layer thickness is therefore reduced 

with increasing Deborah number. The fluid (polymer) behaves more like a viscous fluid at 

lower Deborah number whereas at higher Deborah numbers, the behaviour is more influenced 

by elasticity. Fig. 3 demonstrates that increasing De values also result in a decrease in 

temperature i.e. reduction in thermal boundary layer thickness. The effect of De on the entropy 

generation number is shown in Fig. 4 and it is apparent that an increase in entropy generation 

occurs initially. However further from the plate surface there is a depression in entropy 

generation with increasing De. Fig. 5 shows that an increase in De generally reduces the Bejan 

number (Be). 

Figs. 6 – 9 show the response in fluid velocity ( ')f , temperature ( ) , entropy 

generation number ( )Ng  and Bejan number ( )Be  with ratio of relaxation to retardation times 

( ). A significant elevation in velocity accompanies an increase in  as observed in Fig. 6. 

Conversely, there is a strong reduction in temperature with increasing  values (Fig. 7).  

Entropy generation number ( )Ng is strongly reduced with increasing  values close to the 

plate surface (Fig. 8). However, further from the plate towards the free stream of the boundary 

layer this trend is reversed and evidently Ng values are found to be enhanced with increasing 

 values. Fig. 9 shows that Bejan number is substantially reduced with increasing values of 

the ratio of relaxation to retardation times ( ). Effectively therefore the rheology of the Jeffery 

fluid has a marked influence on thermal and hydrodynamic characteristics. For the case of a 

Newtonian fluid ( = 1), the results are noticeably different from the Jeffery case (  1). When 

λ1 <1 the retardation time exceeds the relaxation time. This implies that the polymeric Jeffrey 

fluid responds faster with the removal of stress and returns quicker to its unperturbed state. The 

opposite behaviour is the case when λ1 >1. 

Mixed convection effects  

Figs. 10 – 13 visualize the response in fluid velocity ( ')f , Jeffery fluid temperature 

( ) , entropy generation number ( )Ng  and Bejan number ( )Be  to a variation in mixed 

convection parameter (R). Larger values of R correspond to stronger natural (free) convection 

i.e. greater Grashof numbers. A significant elevation in velocity is induced throughout the 

boundary layer transverse to the plate surface with increasing mixed convection parameter, R, 

as seen in Fig. 10. Momentum boundary layer thickness is therefore decreased. Temperatures 

are considerably depleted (Fig. 11) with greater R values i.e. thermal boundary layer thickness 

is reduced. In both Figs. 10 and 11 the trends are sustained throughout the boundary layer. Fig. 
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12 shows that in close proximity to the plate surface there is an enhancement in the entropy 

generation number with a rise in mixed convection parameter, whereas further from the plate 

there is a decrease. Furthermore, for 4.1   the entropy generation number asymptotically 

converges to zero.  Bejan number (Fig. 13) is dramatically reduced both close to and far from 

the plate with increasing mixed convection parameter. However, at intermediate distance from 

the plate surface all Bejan number profiles converge indicating that in this region there is no 

tangible influence of the mixed convection.  

Radiative heat transfer effects  

Figs. 14 – 17 show the distributions for velocity ( ')f , fluid temperature ( ) , entropy 

generation number ( )Ng , and Bejan number ( )Be  with different values of thermal radiation 

parameter (F). Fig. 14 indicates that a weak acceleration in the boundary layer flow is 

associated with a large rise in radiation parameter, F (values are increased from 0.01 to 1.5). 

Increasing thermal radiation parameter (F) is observed in Fig. 15 to strongly elevate the fluid 

temperature ( ) . Radiative flux energizes the boundary layer flow and augments the thermal 

diffusivity. This enhances temperatures and increases thermal boundary layer thickness. Fig. 

16 shows that entropy generation number (Ng) declines significantly for the range of 

0 1.6   (near the plate surface) with increasing radiation parameter values. However 

further from the plate surface the contrary behaviour is computed and there is a reduction in 

entropy generation number. Minimum entropy production is therefore obtained further from 

the plate surface. Fig. 17 reveals that close to the plate surface there is a strong decrease in 

Bejan number with increasing radiative parameter whereas the reverse behaviour is observed 

further from the plate surface. At the plate surface Bejan number is minimized. This represents 

the dominance of fluid friction at the plate. The entropy generation will be increased when the 

temperature and velocity gradients are high. Therefore, the increase in these gradients leads to 

an increase in the irreversibility in the flow.  

Magnetohydrodynamic effects  

Figs.  18 – 21 depict the evolution in velocity ( ')f , Jeffery fluid temperature ( ) , 

entropy generation number ( )Ng  and Bejan number ( )Be  with a modification in magnetic field 

parameter (M). Fig 18 shows that increasing magnetic effect depletes the velocity magnitudes. 

Increasing the values of magnetic parameter result in an increase in the Lorentzian 

magnetohydrodynamic drag force. This decreases the friction (shearing effect) at the plate 

surface and this effectively reduces the flow velocity. Stronger applied magnetic field opposes 

the momentum transport i.e. induces flow deceleration and therefore increases momentum 
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boundary layer thickness. Conversely temperature (Fig. 19) is strongly elevated with increasing 

magnetic field effect. The supplementary work expended by dragging the Jeffery fluid against 

the action of the magnetic field is dissipated as thermal energy i.e. heat. This elevates 

temperatures in the boundary layer regime and increases thermal boundary layer thickness. Fig. 

20 shows that a substantial plummet in entropy generation number is generated with a rise in 

magnetic parameter. The converse response is induced in Bejan number (Fig. 21) which is 

markedly elevated with increasing magnetic field and this is consistent throughout the 

boundary layer regime.  

Reynolds number effects  

Figs. 22 – 23 illustrate the distributions in entropy generation number ( )Ng and Bejan 

number ( )Be  with a range of Reynolds numbers (Re).Both the entropy generation number and 

Bejan number are increasing function of Re although the former is modified more dramatically 

closer to the plate than the latter and vice versa further from the plate over the same increment 

in Reynolds numbers. Evidently with greater inertial and lesser viscous effect entropy 

generation is encouraged in the boundary layer flow.  

 

Viscous dissipation effects  

Figs 24 – 25 depict the impact of Brinkmann (Br) on both the entropy generation 

number ( )Ng and Bejan number ( )Be . It is evident from Fig. 24 that with increasing Br (= 1, 

1.5, 2, 2.5, 3, 3.5) the entropy generation number is greatly boosted in magnitude and the effect 

is most prominent near the plate surface. Brinkman number is related to the heat conduction 

from the wall to the viscous fluid and characterizes the viscous dissipation term in the fluid 

flow. With increasing Brinkman number, the thermal conductivity of the fluid decreases so a 

greater quantity of heat can be transferred through the fluid. This manifests in an elevation in 

entropy generation. Conversely the Bejan number (Fig. 25) is observed to be decreased with 

increasing Brinkman number particularly near the plate and for some distance into the 

boundary layer, thereafter converging quickly towards zero.  

 

6. CONCLUSIONS 

A mathematical model has been developed to simulate the entropy generation in steady-

state natural convection boundary layer flow of an electrically-conducting dissipative 

viscoelastic fluid (magnetic polymer) from an inclined plate in the presence of thermal 

radiation. The governing conservation equations for mass, momentum and energy and 
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associated wall and free stream boundary conditions have been transformed to a nonlinear 

dimensionless boundary value problem. The Jeffery elastic-viscous model has been used. The 

model has been developed to simulate magnetic non-Newtonian materials processing. An 

implicit finite difference scheme (Keller box method) has been implemented to solve the partial 

differential boundary value problem computationally. Bejan’s entropy generation 

minimization approach has been adopted to conduct a second law thermodynamic analysis of 

the flow. The main conclusions from the present study may be summarized as follows:  

➢ Velocity is enhanced with increasing Deborah number, relaxation to retardation 

ratio, mixed convection parameter and Reynolds number whereas it is decreased 

with increasing magnetic field parameter. 

➢ Temperature is reduced with increasing Deborah number, relaxation to retardation 

ratio, mixed convection parameter whereas it is strongly elevated with increasing 

radiation parameter and magnetic parameter. 

➢ Entropy generation number is generally boosted with increasing Deborah number, 

relaxation to retardation ratio, mixed convection parameter, Reynolds number and 

Brinkman (dissipation) number whereas it is decreased with increasing radiative 

and magnetic parameters.  

➢ Bejan number is an increasing function of magnetic field parameter and Reynolds 

number whereas it is a decreasing function of Deborah number, relaxation to 

retardation ratio, mixed convection parameter, radiation parameter and Brinkman 

number.  

The present study has ignored transient effects. These will be considered in the future in 

addition to alternative rheological models e.g. Oldroyd-B fluid model [39], which is also 

relevant to thermal polymer processing.  
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Fig. 2 Influence of De on Velocity Profiles
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Fig. 3 Influence of De on Temperature Profiles
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Fig. 4 Influence of De on Entropy Generation number
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Fig. 5 Influence of De on Bejan number
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Fig.6 Influence of  on Velocity Profiles
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Fig. 7 Influence of  on Temperature Profiles
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Fig. 8 Influence of  on Entropy Generation number
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Fig. 9 Influence of  on Bejan number
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Fig. 10 Influence of R on Velocity Profiles
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Fig. 11 Influence of R on Temperature Profiles

De = 0.1, Pr = 7.0, M = 0.2,  = 0.5, F = 0.5

 =/6, Br = 5.0, Re = 0.5, Ha = 1.0,  = 1.0

R = 0.1, 0.25, 0.5, 0.75, 1, 1.5

0

2

4

6

8

0 2 4 6 8

N
g



Fig. 12 Influence of R on Entropy Generation number
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Fig. 13 Influence of R on Bejan number
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Fig. 14 Influence of F on Velocity Profiles
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Fig. 15 Influence of F on Temperature Profiles
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Fig. 16 Influence of F on Entropy Generation number
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Fig. 17 Influence of F on Bejan number
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Fig. 18 Influence of M on Velocity Profiles

De = 0.1, Pr = 7.0, F = 0.2,  = 0.5, R = 0.5

 =/6, Br = 5.0, Re = 0.5, Ha = 1.0,  = 1.0
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Fig. 19 Influence of M on Temperature Profiles
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Fig. 20 Influence of M on Entropy Generation number
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Fig. 21 Influence of M on Bejan number

De = 0.1, Pr = 7.0, F = 0.2,  = 0.5, R = 0.5

 =/6, Br = 5.0, Re = 0.5, Ha = 1.0,  = 1.0

M = 0, 0.1, 0.15, 0.2, 0.25, 0.3
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Fig. 22 Influence of Re on Entropy Generation number
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Fig. 23 Influence of Re on Bejan number
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Fig. 24 Influence of Br on Entropy Generation number

De = 0.1, Pr = 7.0, F = 0.2,  = 0.5, R = 0.5
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Fig. 25 Influence of Br on Bejan number

De = 0.1, Pr = 7.0, F = 0.2,  = 0.5, R = 0.5
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