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ABSTRACT 

With emerging applications for smart and intelligent coating systems in energy, there has been increasing activity 

in researching magnetic nano nanomaterial coating flows. Surface tension features significantly in such regimes, 

and in presence of heat transfer, Marangoni (thermocapillary) convection arises. Motivated by elaborating deeper 

the intrinsic transport phenomena in such systems, in this paper, a mathematical model is developed for steady 

radiative heat transfer and Marangoni magnetohydrodynamic (MHD) flow of Cu-water nanofluid under strong 

magnetic field from a disk adjacent to a porous medium. The semi-analytical Adomain Decomposition Method 

(ADM) is employed to solve the governing equations which are reduced into ordinary differential equation form 

via the Von Karman similarity transformation. Validation with a GDQ (Generalized Differential Quadrature) 

algorithm is included. The response in dimensionless velocity, temperature, wall heat transfer rate and shear stress 

is investigated for various values of the control parameters. Temperature is reduced with increasing Marangoni 

parameter whereas the flow is accelerated. With increasing permeability parameter temperatures are elevated. 

Increasing radiative flux boosts temperatures further from the disk surface. Increasing magnetic parameter 

strongly damps the boundary layer flow and elevates the temperatures, also eliminating temperature oscillations 

at lower magnetic field strengths.     

 

KEYWORDS: Magnetohydrodynamics; Thermal radiation, Marangoni flow, Nanofluid, ADM, Nano-coating 

flows; Boundary layers; Volume fraction; Porous Media; GDQ computation. 

 

1. INTRODUCTION  

Marangoni flows in electrically conducting liquids produce many intriguing applications. In such flows the 

transport (carrier) liquid responds to external magnetic fields and invokes magnetohydrodynamic effects. In this 

sense the system is “smart” and can respond to external stimuli. Ma et al. [1] observed that electromagnetic 

damping of the forced convection exceeds that due to buoyant convection and an intricate interplay exists between 

magnetic body force, thermal buoyancy and Marangoni surface tension. Further studies in this area were 

communicated by Langlois et al. [2] for finite electrical conductivity and weak magnetic field and Lin et al. [3] 

for power-law non-Newtonian magnetic liquids. Rudraiah et al. [4] employed an Alternating Direction Implicit 

(ADI) method for non-linear convective terms (with upwind differencing) and Successive Line Over Relaxation 

(SLOR) algorithm for low Prandtl number (Pr = 0.54) (in a rectangular open cavity). Outcomes of this 

investigation identified that at large, two counter rotating cells are formed at upper and lower half of the enclosure 

for (Grashof number range-2 × 104 to 2 × 106, Marangoni number range-0 to 105 and Hartmann number range- 0 
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to 100). They further showed that with increasing magnetic field (Hartmann number), the temperature field 

streamlines are extended in the horizontal direction and the temperature field assumes that of thermal conduction. 

They also reported that average Nusselt number is elevated with Marangoni number but depressed with Hartmann 

number. Jana et al. [5] used a finite element method to simulate Silicon crystal–melt interface and oxygen transport 

in magnetohydrodynamic Marangoni convection, by modelling the crystal–melt interface according to Stefan’s 

balance via grid displacement. They observed that increasing axial magnetic field suppresses interface topology, 

reduces oxygen concentration levels and furthermore induces non-uniformity in oxygen distribution at the crystal–

melt interface. Zueco and Anwar Bég [6] employed PSPICE electrothermal software to study the free and forced 

convection in Magnetohydrodynamic Marangoni flow with a thermocapillary coupling condition n included in 

the interfacial boundary conditions at the interface. They showed that greater Hartmann hydromagnetic number 

retards the boundary layer flow whereas it increases thermal boundary layer thickness. The converse effect is 

found to be induced for the case of assistive Marangoni flow. Witkowski and Walker [7] investigated 

axisymmetric flow driven by Marangoni convection and a rotating magnetic field (RMF) in a crystal growth 

floating-zone regime, at low Prandtl number, observing that the flow field evolves from a Marangoni dominated 

flow to a RMF dominated flow with stronger magnetic field and examining the transition region (at which sources 

of motion eliminate  each other) in detail. Hajabdollahi and Premnath [8] studied the Marangoni convection in 

heated liquid pools formed during melting under strong magnetic field. They derived novel similarity solutions 

for an imposed interfacial nonlinear heat flux variation, noting that with increasing power-law exponent there are 

more distinct variations in the surface heat flux profiles and more intense Marangoni convection whereas the 

contrary response is induced with stronger magnetic field (deceleration and damping). 

Radiative heat transfer in above studies are neglected which is also of interest in high-temperature materials 

processing, coating synthesis etc. [9]. Radiation is the most complex of heat transfer modes and most simulations 

deploy algebraic flux models to avoid an explicit solution of the general nonlinear integro-differential radiative 

equation. Milne-Eddington approximation, Schuster-Schwartzchild two-flux model, Rosseland flux model and 

Hamaker 6-flux model are examples of flux models. Anwar Bég et al. [10] used a network electrothermal code 

and non-linear Rosseland diffusion approximation Rosseland’s diffusion flux model to simulate the radiative Von 

Karman slip flow from a rotating disk under strong transverse magnetic field. Ganesh et al.  [11] used a shooting 

method and nonlinear Rosseland flux model to study radiative Marangoni boundary layer convection of γ Al2O3 

nanofluids along a linear stretching sheet with Ethylene glycol (C2H6O2) and Water (H2O) as base fluids. They 

noted that greater nanoparticle volume fraction parameter suppresses flow acceleration whereas greater radiative 
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flux and nanoparticle volume fraction parameter elevates the local Nusselt number. Lin et al. [12] computed the 

radiative Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with Cu, 

Al2O3, CuO and TiO2 nanoparticles and sodium carboxymethyl cellulose (CMC)–water used as base fluid. 

Mahanthesh et al. [13] presented numerical solutions for Marangoni transport of dissipating SWCNT and 

MWCNT nanofluids under the influence of magnetic force and radiation with an exponential space dependent 

heat source, observing that Nusselt number is elevated with Marangoni convection whereas it is suppressed with 

magnetic field. Bayazitoglu and Lam [14] investigated the impact of radiative transfer on hydrodynamic stability 

of Marangoni convection in a Newtonian fluid layer of infinite horizontal extent confined between a free upper 

surface and a rigid isothermal lower surface. They employed radiative boundaries of black–black, mirror–mirror, 

and black–mirror type and a perturbation method based on calculus of variations. They noted that in reduced 

gravity conditions (e.g. spacecraft environments) stronger radiation flux suppresses Marangoni convection. 

In the present work, we extend the earlier model of Lin and Zheng [15] to consider magnetohydrodynamic body 

force and radiative flux effects. The conservation equations are rendered into dimensionless form via the Von 

Karman transformations. An interfacial boundary condition is implemented to simulate Marangoni (surface 

tension) convection effects and we employed Adomain Decomposition Method (ADM) [16] for the proposed 

model. Extensive visualization of the impact of nano-particle solid volume fraction, Marangoni number, magnetic 

body force number, Prandtl number, permeability parameter and radiative parameter on flow rate and energy is 

done. Also, we have presented fluid wall friction, temperature gradient and Sherwood number for diverse 

quantities. The results are validated by benchmark results of GDQ (Generalized Differential Quadrature) method 

[17] which are tabulated and achieved excellent correlation. The model presented herein therefore applies to high-

temperature smart electroconductive coatings [18-20]. Two-dimensional, laminar steady viscous radiative 

magnetohydrodynamic flow of copper -hydrogen oxide (water) nanofluid coating flow over an infinite circular 

disk inserted in a porous medium is studied. The Darcy model is employed to analyze the bulk matrix drag effect. 

This model has been utilized successfully in previous computational materials coating simulations [21-23] and is 

valid for viscous-dominated flows in homogenous, isotropic permeable media. The Tiwari-Das nanoscale model 

[24] is employed which allows variation of nano-particle volume fraction to be studied for specific nanoparticles 

and in this regard the Tiwari-Das formulation is superior to the Buongiorno two-component nanoscale model [25]. 

The Tiwari-Das model is highly amenable to numerical simulations and has also been applied very recently in 

solar nanofluid collector systems [26]. The simulations are relevant to nanofluid magnetic fuel cells and smart 

electroconductive coating systems. 
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2. THERMO-CAPILLARY MAGNETIC RADIATIVE COATING FLOW MODEL  

We consider two-dimensional, axisymmetric, laminar steady viscous radiative convection flow of magnetic 

coating Cu-Water nanoliquid over an infinite solid impervious disk embedded in a saturated porous medium. Flow 

is mobilized by a temperature gradient induced via surface tension (thermocapillary effect). A transverse static 

magnetic field is imposed. Unidirectional radiative flux is present and the coating nanoliquid is assumed to be 

optically dense [10]. Figure. 1 visualizes the flow regime in a cylindrical coordinate system. Marangoni surface 

tension effects act as a boundary condition on the governing equations of the flow field. The relevant mass, 

momentum and energy conservation equations are obtained by adding magnetic body force and radiative flux 

terms to the Lin-Zheng model [15]: 

 

 

Figure 1: Physical model diagram for Marangoni hydromagnetic radiative nanofluid flow from a disk in a 

porous medium 
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The boundary conditions at the disk surface and in the free stream are: 
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Here ( ),u v  are velocities along with ( ),r z directions. n f denotes dynamic viscosity of nanofluid, n f

denotes density of nanofluid, n f denotes electrical conductivity of nanofluid, n fk denotes thermal conductivity 
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of nanofluid, ( )p n fc  heat capacity of nanofluid,   denotes Stefan-Boltzmann constant, denotes the surface 

tension , k  denotes mean absorption coefficient, T denotes temperature of nanofluid, T denotes ambient 

temperature and 0T denotes temperature of nanofluid on the disk, A
 is temperature constant. ( )/n f u z =    

is shear stress. Further, it is assumed that the surface tension varies linearly with the temperature such that 

( )0 T T T   = − −  where ( )/T T T
T 

=


= −   . Here 0 , T   are positive constants which respectively 

represent the surface tension when T T= and temperature coefficient of surface tension. rq signifies 

approximated Rosseland heat radiative flux and is assumed from [27(new add)] and which is denoted as 
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Where   is solid volume fraction of the nanofluid, s  is the density of nanofluid, f  is the density of the base 

fluid, ( )p sc  the heat capacity of the nanoparticle, fk  is thermal conductivity of the base fluid, sk  is thermal 

conductivity of the nanoparticle. Invoking the Von Karman similarity transformations: 
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Inserting (5)-(6) into equations (1)-(4), we get the following two-point boundary value problem  
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Here prime denotes derivatives with respect to 𝜉 𝑎𝑛𝑑  ,F H are dimensionless velocities, 𝛺 is a frequency (1/s). 
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Dimensionless Nusselt number can be written as follows which provides a quantification of the heat transfer rate 

at the disk surface.  
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3. ADM SOLUTION AND VALIDATION WITH GDQ 

For the system of coupled ordinary differential equations (7)-(9) with respect to boundary conditions (10) 

constitute a nonlinear, multi-degree fifth order differential boundary value problem. Numerous methods are 

available to solve such systems including shooting methods, finite element methods etc. Here a semi-

analytical/numerical method called the Adomain Decomposition Method (ADM) [29] is employed. In ADM, the 

analytic approximate solutions to a nonlinear equation are obtained without linearization and discretization 

yielding more accurate results. ADM has been deployed recently in a variety of complex multi-physical fluid 

dynamic problems including squeeze film magnetic bio-lubrication [30], stagnation flow of nanofluids on rotating 

bodies [31], magnetically actuated ciliated propulsion [32] and swirling bioconvection nanofluid from a rotating 

radially stretching disk [33]. Aski et al., [29] utilized recursive relations and also produced an alternative approach. 

The following standard procedure  

( ) ( ) ( ) ( )L u y R u y N u y Q y+ + =                        (13) 

which is derived from the form { )} ( )D u Q y= . Here D  signifies differential operator of linear term { }L R+

with L being the highest ordered derivative which is easily invertible and R is the remaining linear part.  The 

nonlinear part is ( )N u y . It follows that the standard form can be written as follows:  
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Novel correlation is reported with specific standardized numerical method called general differential quadrature 

method as no existing solutions available to validate. The detail procedure of GDQ available in the literature [34] 

which has been deployed recently in variety of complex multi-physical fluid dynamic problems including [35-

36]. It has also been used recently in nanofluids dynamics [34]. Benchmark present solutions which are presented 

in Table 1. Table 1 displays comparative study of (0), (0)F  for different , , , , Pr,Ma M P R . With increasing 

Marangoni number ( )Ma , there is an acceleration in the flow thus temperature is boosted. These results agree 

with  

Lin and Zheng [15]. As M increases, there is also a significant deceleration in the flow (due to the Lorentzian 

magnetic drag) whereas the heat transfer gradient is increased. This result was also obtained by other investigators 

including Hajabdollahi and Premnath [8]. An elevation in permeability parameter, P (decreasing porous media 

permeability), results in greater Darcian resistance to the flow and induces retardation; however, it leads to a 

strong enhancement in wall temperature gradient. With increasing Prandtl number ( Pr ) and radiation parameter 

( R ), there is no tangible modification in the velocity field; however the temperature significantly increased with 
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higher values of Pr whereas it is markedly suppressed with greater R (since heat transport to the disk surface is 

inhibited and temperatures are increased within the nanofluid due to energization from the radiative flux). 

 
Table 1: (0), (0)F   comparison for different values of , , , , Pr,Ma M P R  

  (0)F (ADM) GDQ (0)  (ADM) GDQ  

0 0.0452 0.0450 -1.4865 -1.4861 

0.015 0.0389 0.0386 -1.4097 -1.4094 

0.02 0.0374 0.0371 -1.3875 -1.3872 

0.03 0.0347 0.0343 -1.3472 -1.3471 

Ma      

0.4 -0.0026 -0.0023 -1.4556 -1.4551 

0.3 0.012 0.0109 -1.4077 -1.4072 

0.2 0.0408 0.0411 -1.4334 -1.4331 

0.1 0.0855 0.0852 -1.5497 -1.5492 

M      

0.1 -0.0575 -0.0572 -0.0575 -0.0572 

0.3 -0.2135 -0.2133 1.4473 1.44732 

0.5 -0.2846 -0.2841 3.1935 3.19347 

0.7 -0.358 -0.3577 5.3 5.2911 

P      

0 -0.1766 -0.1764 0.7489 0.7486 

0.2 -0.2511 -0.2509 2.3207 2.3204 

0.4 -0.3245 -0.3242 4.3126 4.3124 

0.6 -0.4025 -0.4021 6.6547 6.6543 

Pr      

0.7 -0.1766 -0.1764 -0.2067 -0.2069 

1 -0.1766 -0.1764 -0.1813 -0.1817 

4 -0.1766 -0.1764 0.2381 0.2388 

7 -0.1766 -0.1764 0.7489 0.7485 

R      

1 -0.2148 -0.2146 0.5148 0.5144 

2 -0.2148 -0.2146 0.2266 0.2261 

3 -0.2148 -0.2146 0.0924 0.0927 

4 -0.2148 -0.2146 0.0164 0.0168 

 
4. DISCUSSION OF RESULTS 

Figures. 2- 15 indicates velocity and temperature distribution responses to variation in the key control parameters, 

obtained via ADM solutions. Figure 2 illustrates the evolution in velocity with  . Generally, a decrease in 

velocity is induced such investigations can be found by other researchers including Ganesh et al., [11]. There is a 

weak reverse in this effect far from the disk surface, however. Overall an absence of nanoparticles (=0 i.e. pure 

water) achieves the best flow acceleration due to a lower overall viscosity whereas the highest volume fraction 

with Cu-water nanofluid (=3%) is associated with the strongest retardation throughout boundary layer. Backflow 

is not induced anywhere in the boundary layer on the disk.  Figure 3 shows that there is a clear elevation in 

temperature in the nanofluid with increasing volume fraction, although this is principally localized in the vicinity 

of the disk and the effect is depleted towards the free stream. Of course, relatively low volume fraction has been 
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studied i.e. up to 3%. It is envisaged that higher volume fraction of copper nanoparticles would also continue to 

enhance temperatures, although there is an upper limit to this trend i.e. at much higher volume fractions, the 

doping becomes counter-productive and inhibits thermal diffusion [37] and experimentally confirmed by Choi 

[38]. Figure 4 indicates that increasing   weakly decreases the shear stress at the disk surface, which is again 

consistent with the flow deceleration computed in Fig. 3). The effect is sustained at all values of the coordinate,.  

Figure 5 describes the impact of increasing Marangoni term to corresponding variations in velocity. A significant 

acceleration in the boundary layer flow is generated with greater values of Ma. Marangoni convection is associated 

with surface tension at the surface of the nanofluid and depends on temperature.  
fT

f

A
Ma






=
 

 and higher 

Ma values imply greater surface tension contribution. This reduces temperatures but increases velocity 

magnitudes. Figure 6 illustrates temperature magnitudes are depressed with increasing Marangoni number i.e. 

temperature decreases as the surface tension increases, and this observation is consistent with many other studies 

in this area including [14-15]. Figure 7 describes a weak decrease in surface shear stress is induced with increasing 

Marangoni number, Ma. Figure 8 portray a strong resistance to the flow velocity for a rising values of ( )M . The 

parameter 
2

0 /f fM B  =   relates the Lorentzian magnetic drag force to the inertial force in the flow. M 

arises in the linear impedance term in the momentum eqn. (10). For M = 0 the nanofluid is electrically non 

conducting and the magnetic field exerts no influence. As M increases the contribution of magnetic Lorentzian 

force progressively increases and this induces retardation in the flow. At higher values of M (0.5, 0.7) negative 

velocity is created close to the disk surface, although this effect is eliminated at higher values of the coordinate, 

. Excellent flow control is achieved therefore with an external magnetic field whereas significant flow 

acceleration is generated with increasing Marangoni effect. To regulate the flow on the disk therefore a careful 

selection of these two effects is required by designers. Figure 9 for varying values of magnetic field ( )M term. 

The term ( )M raised the heat transport in the system because the induced Lorentz force damped the flowing fluid 

which in turn stimulates viscosity and encourages energy source terms. As a result, energy distribution is improved 

and heat is able to transfer quickly from the disk surface. Figure 10 shows that the shear stress at the disk surface 

is generally increased with increasing magnetic parameter, except at very high values of the coordinate, . The 

influence of P (Permeability) on velocity, temperature and disk surface shear stress is illustrated in Figures. 11-

13. The parameter, /f KP  =  and is inversely proportional to the actual permeability of the porous medium 

adjacent to the disk. This parameter arises in the linear Darcian drag force term in the momentum eqn. (10). For 
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higher values of P , the permeability is lower and the Darcian drag force is naturally greater (more solid fibers 

are present to resist the flow). This induces strong deceleration in the boundary layer flow as seen in Figure 11. 

The presence of a porous medium may therefore be exploited to damp the flow significantly in hydromagnetic 

Marangoni convection. Reverse flow can also be amplified close to the disk surface (zero and small values of ). 

This backflow is in fact present even for the purely nanofluid regime ( 0P = ) but is exacerbated with decreasing 

permeability of the porous medium (i.e. more intense packing of fibers). Figure 12 shows that temperatures are 

accentuated strongly with increasing values of P . The progressive decrease in permeability (and corresponding 

elevation in Darcian impedance) encourages thermal conduction in the porous medium. Although the nanofluid 

cannot percolate as easily at higher values of P, this is compensated for via tighter packing of fibers (decreasing 

sparsity) which enables improved heat conduction through the porous medium, as noted by [39-40]. Although in 

the present simulations, a Darcian model has been adopted, with isotropic considerations, future studies may 

explore orthotropic media as studied earlier by Anwar Bég et al. [41] i.e. wherein permeability varies in both 

radial and tangential directions. Figure 13 shows that with increasing permeability parameter there is initially a 

reduction in shear stress at the disk surface; however, with further distance from the disk surface this trend is 

reversed and thereafter returns to the initial behavior in the free stream. For the purely nanofluid case (P= 0) there 

is a steady monotonic growth in shear stress with  -coordinate; however, for non-zero P values, the profiles 

demonstrate an undulatory nature. Overall lower permeability successfully damps the flow in the vicinity of the 

disk, and this further testifies to the excellent flow control properties of porous media. Figure 14 visualizes the 

temperature evolution in the regime with a change in Prandtl number, Pr . The monotonic decay computed for 

Pr 1  and Pr 1= is replaced with a temperature overshoot for Pr 1 . As Pr term rise, the thermal boundary layer 

is weakened, which leads to rising heat dispersion to the ambiances. This thereby shrinks the quantity of heat in 

the system and causes a consistent drop in the heat field as presented in the plot. Fig. 15 indicates that a significant 

boost in temperatures in the nanofluid is induced with an increase in radiative parameter, R. 
3

16 / 3R T k k
f


 

=  

and relates the relative contribution of radiative heat transfer to that of conduction heat transfer. It is also known 

as the Stark number and Rosseland number. Presence of radiative heat flux energizes the magnetic nanoliquid 

regime and prominently elevates temperatures further from the disk surface since supplementary heat is added to 

the nanoliquid. Radiative term exerts marked ascendancy on heat transfer characteristics for slight modification, 

although in the near-wall zone temperatures are initially suppressed, again due to the presence of Marangoni 

convection. In the absence of thermal radiation, 0R →  and this produces maximum temperatures near the disk 
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surface (with an associated overshoot); however deeper into the boundary layer the contrary behavior is induced, 

and significant heating arises.  A similar pattern has been computed by Ganesh et al., [11]. The neglection of 

radiative effects in mathematical models therefore severely under-predicts actual temperatures in the zone further 

from the disk surface and over-predicts temperatures closer to the disk surface.  

 

Figure 2: Volume fraction influence on ( )F  for 0, 0.2, 0, 0, Pr 7, 0M Ma P R = = = = = =  

 
Figure 3: Volume fraction influence on ( )  for 0, 0.2, 0, 0, Pr 7, 0M Ma P R = = = = = =  
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Figure 4: Volume fraction influence on ( )   for 0, 0.2, 0, 0, Pr 7, 0M Ma P R = = = = = =  

 

 

 
Figure 5: Marangoni parameter impact on ( )F  for 0, 0, 0, Pr 7, 0.01M P R = = = = =  
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Figure 6: Marangoni parameter impact on ( )  for 0, 0, 0, Pr 7, 0.01M P R = = = = =  

 

 

 
Figure 7: Marangoni parameter impact on ( )  for 0, 0, 0, Pr 7, 0.01M P R = = = = =  
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Figure 8: Magnetic term impact on ( )F  for 0.2, 0, 0, Pr 7, 0.01Ma P R = = = = =  

 

 

 
Figure 9: Magnetic term impact on ( )  for 0.2, 0, 0, Pr 7, 0.01Ma P R = = = = =  
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Figure 10: Magnetic term impact on ( )  for 0.2, 0, 0, Pr 7, 0.01Ma P R = = = = =  

 

 

 
Figure 11: Permeability effect on ( )F  for 0.1, 0.2, 0, Pr 7, 0.01M Ma R = = = = =  
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Figure 12: Permeability effect on ( )  for 0.1, 0.2, 0, Pr 7, 0.01M Ma R = = = = =  

 

 

 
Figure 13: Permeability effect on ( )  for 0.1, 0.2, 0, Pr 7, 0.01M Ma R = = = = =  
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Figure 14: Prandtl number influence on ( )  for 0.1, 0.2, 0, 0, 0.01M Ma P R = = = = =  

 

 
Figure 15: Radiation-conduction term effect on ( )  for 0.1, 0.2, 0, 0, 0.01M Ma P R = = = = =  
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5. CONCLUSION 

We investigate the thermal radiation and porosity impact on axisymmetric flow of Marangoni fluid with Cu-water 

nanofluid from a disk under the action of an axial static magnetic field in present study. The semi-analytical 

Adomain Decomposition solutions is obtained, these simulations have shown that:  

 
➢ Wall temperature gradient increases and rises for respective variation in R and temperature boosts further 

from the disk surface. 

➢ Flow is accelerated as temperature diminishes with rise in Marangoni term. 

➢ Increasing permeability (Darcy) term, temperatures are elevated due to the decrease in porous medium 

permeability i.e. presence of more solid fibers which encourages thermal conduction. 

➢ Strong damping in the velocity field is induced with increasing permeability (Darcy) parameter due to the 

elevation in Darcian porous bulk matrix impedance. 

➢ The magnetic field suppresses the velocity (generating a weak back flow near the disk surface) but enhances 

temperature. Robust axial magnetic field also damps temperature oscillations computed at weaker magnetic 

field strengths. 

➢ Increasing Prandtl number induces a temperature overshoot near the disk surface but thereafter reduces 

temperatures in the regime. 

Rapidly convergent and accurate solutions are achieved with both ADM and GDQ methods and these semi-

numerical techniques hold excellent promise for simulating more complex Marangoni magnetohydrodynamic 

nanofluid flows of relevance to coating and materials processing systems including non-Darcy transport Umavathi 

and Bég [42].  
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