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ABSTRACT 

Two-dimensional rheological laminar hemodynamics through a diseased tapered artery with a 

mild stenosis present is simulated theoretically and computationally. The effect of different 

metallic nanoparticles homogeneously suspended in the blood is considered, motivated by drug 

delivery (pharmacology) applications. The Eringen micropolar model has been deployed for 

hemorheological characteristics in the whole arterial region. The conservation equations for 

mass, linear momentum, angular momentum (micro-rotation), and energy and nanoparticle 

species are normalized by employing suitable non-dimensional variables. The transformed 

equations are solved numerically subject to physically appropriate boundary conditions using 

the finite element method with the variational formulation scheme available in the FreeFEM++ 

code. A good correlation is achieved between the FreeFEM++ computations and existing 

results. The effect of selected parameters (taper angle, Prandtl number, Womersley parameter, 

pulsatile constants, and volumetric concentration) on velocity, temperature, and micro-

rotational (Eringen angular) velocity has been calculated for a stenosed arterial segment. Wall 

shear stress, volumetric flow rate, and hemodynamic impedance of blood flow are also 

computed. Colour contours and graphs are employed to visualize the simulated blood flow 

characteristics. It is observed that by increasing Prandtl number (Pr), the micro-rotational 

velocity decreases i.e., microelement (blood cell) spin is suppressed. Wall shear stress 

decreases with the increment in pulsatile parameters (B and e), whereas linear velocity 

increases with a decrement in these parameters.  Furthermore, the velocity decreases in the 

tapered region with elevation in the Womersley parameter (α). The simulations are relevant to 

transport phenomena in pharmacology and nano-drug targeted delivery in hematology. 

 

KEYWORDS: Nano-pharmacodynamics; Tapered artery; Hemo-rheology; Micropolar fluid model; Nano-drugs; 

Pressure gradient; Wall shear stress; hemodynamic impedance; Finite Element Method, FreeFEM++.  
 

1. INTRODUCTION 

The mechanics of blood flow is fundamental to the formation and evolution of cardiovascular 

diseases. As elaborated by Skalak et al. [1], this subject has been evolved significantly over 

centuries. The sophisticated multi-physical simulations have become practical in hemodynamic 

simulation, featuring transport in complex geometries (bifurcations, bends, constrictions, etc.) 
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and rheological characteristics computation. In the last few decades, a significant progress can 

be seen in the combination of more sophisticated fluid dynamics models and numerical 

procedures to improve the analysis of real blood flows [2]. This has aided extensive 

improvement in our understanding of the multiple causes, progression, and possible treatments 

for various haematological conditions and diseases [3]. The blood flow characteristics in an 

artery can be changed significantly by arterial disease and common conditions which are 

aneurysms (vessel bulge) and stenoses (vessel constriction). The progress of atherosclerosis or 

stenosis in a blood vessel induced by the addition of lipids in the arterial wall is absolutely 

common. The growth of atherosclerotic plaques that bulge into the lumen, resulting in stenosed 

blood vessels and one of the most severe consequences of this obstruction can be count as 

resistance increment and the concomitant reduction of the blood flow to the specific vascular 

bed.  

Over the past few decades, an impressive number of comprehensive theoretical and 

experimental investigations related to blood flow in arteries in the presence of stenosis has been 

conducted with various methodologies [4]. Padma et al. [5], presented a mathematical model 

for blood flow in a diseased mild stenotic artery. The numerical simulations [6-9] of arterial 

blood flow have also assumed great importance due to their wide range of clinical applications 

and have utilized many different computational methods, including finite differences, finite 

elements, immersed boundary methods, finite volume solvers, molecular dynamics and 

smoothed particle hydrodynamics (SPH). These studies are fundamental to the human 

circulatory system [10].  

Bio-rheological hemodynamics has therefore emerged as a major branch of modern medical 

fluid mechanics. In recent years an increasing focus has been devoted to exploring real blood 

flows with a diverse spectrum of non-Newtonian models [11-15]. Cokelet [16] provided a 

seminal review of various rheological models for human blood. Shibeshi and Collins [17] 

presented the general classification of non-Newtonian models on blood flow simulations to 

various degrees of accuracy. Amiri et al. [18] used a commercial numerical package (ANSYS 

FLUENT) to simulate an unsteady 3-D non-Newtonian (Carreau shear-thinning) flow in the 

femoral blood artery using fluid-structure interaction. The model is considered as real model 

extraction of computerized tomography (CT) scan images of an artery bifurcation with 

moderate arteriosclerosis. Jamalabadi et al. [19] used a finite volume algorithm to numerically 

simulate the electrically conducting unsteady blood flow of Carreau-Yasuda fluid in the 

presence of a transverse magnetic field, noting that a flow pressure drop occurs for blockages 
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of more than 60 percent. Shabbir et al. [20] considered the transient Herschel–Bulkley 

hemodynamics in a diseased artery in the presence of multi-irregular stenoses using 

perturbation and Newton-Raphson iterative techniques. Ponalagusamy and Manchi [21] have 

investigated the blood flow through a stenotic artery in the four-layered model comprises a 

cell-rich core of suspension of all the erythrocytes described as a non-Newtonian (Jeffrey) 

fluid, a peripheral zone of cell-free plasma (Newtonian fluid) and the stenosed artery with a 

porous wall consisting of a thin transition (Brinkman) layer followed by a Darcy porous region. 

They observed that higher hematocrit (volume percentage of red blood cells in plasma) elevates 

both hemodynamic impedance and wall shear stress (WSS) whereas the converse response is 

induced with greater plasma layer thickness, Jeffrey viscoelastic parameter, Darcy number, and 

Darcy slip parameter.  

Several theoretical studies related to rheological blood flow through stenotic arteries have also 

appeared in recent years. Tzirakisa et al. [22] studied the Hershel–Bulkley biomagnetic blood 

flow model in a duct using a discontinuous/continuous Galerkin algorithm with a symmetric 

weighted interior penalty (SWIP) formulation and a Hershel–Bulkley model. They noted 

significant deviations in flow symmetry and wall shear stress from the Newtonian fluid model, 

for the case of a straight, rigid vessel with a 60% axisymmetric stenosis. Popular, although 

simplistic models deployed in this context, include viscoplastic [23] and power-law [24] 

models. Mekheimer and El kot [25], have discussed the time dependent blood flow with Sisko 

viscoelastic rheology in an overlapping anisotropic tapered stenotic elastic artery numerically.  

The above studies did not consider micro-structural effects in blood. Conventional non-

Newtonian models such as viscoelastic, viscoplastic, generally modify the Newtonian model 

with supplementary stress tensors. They cannot simulate microscopic rotational motions 

(gyration of fluid micro-elements), which characterize suspensions in blood e.g., erythrocytes, 

leukocytes, proteins, fats, etc. In a groundbreaking study, Eringen [26] introduced the 

micropolar fluid model for viscous fluent media containing suspensions through classical 

continuum and thermodynamics laws incorporating new kinematic variables (gyration tensor, 

micro-inertia moment tensor) and concepts of body moments, stress moments and micro-

stresses. The Eringen micromorphic formulation provides a much more sophisticated 

framework for simulating actual microrheological properties of biofluids, including blood, 

synovial fluid, gastric liquids, lymph, semi-circular canal fluid, etc. Eringen [27] generalized 

the micropolar model to microstretch fluids and further presented a rigorous appraisal of 

modifications of this theory in [28]. Over the past five decades, micropolar theory has therefore 

been implemented successfully in diverse branches of medical fluid dynamics. Ariman [29] 
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presented the first study of micropolar and microstretch blood flows in his analysis of small 

arteries of 100 micro meter diameters, deriving extensive analytical solutions for velocity, 

micro-rotation velocity, and microstretch to simulate deformable substructures in the blood 

(flexibility of erythrocytes) in addition to the independent spin of red cells under no-slip 

conditions at the vessel walls. A seminal investigation into micropolar blood flows was 

subsequently presented by Kang and Eringen [30] who, via energy considerations, developed 

new relationships for microelement concentration and gyration involving both macro- and 

micro motions in vessel hemodynamics. The micropolar model therefore provides a more 

realistic model for bio-fluid rheology [31, 32] compared with simpler polar models [33] which 

only include couple stress effects and therefore provide no field variable to simulate the 

variation of local hematocrit with radial position in actual blood flows. Subsequently, many 

researchers have explored the micropolar model in biofluid mechanics. Interesting areas 

investigated with this theory include drag effects on individual erythrocytes in Stokesian flows 

[34], capillary blood flows [35], biomagnetic hemodynamics in vascular tissue [36], 

deoxygenated hemodynamics [37], biotribology [38, 39], gastric transport phenomena [40], 

flow in trabecular bone [41], bacterial hydrodynamics [42], biomembranes [43], electrokinetic 

bio-microfluidics [44], biomaterial filtration [45] and ciliated propulsion in respiration [46].  

Some interesting analyses in stenotic hemodynamics have also considered the micropolar 

rheological model, including Devanathan and Parvathamma [47] on single stenosed arteries. 

Mass diffusion in micropolar stenotic tapered arterial blood flows has been addressed by 

Mekheimer and El Kot [48], Ikbal et al. [49] and Samad [50]. Ellahi et al. [51] computed 

arterial micropolar blood flow through a composite mild stenotic arterial segment. Zaman et 

al. [52] used a forward time centered space (FTCS) finite difference code to simulate transient 

micropolar blood flow in a catheterized stenotic arterial annular geometry. Very recently, 

Tiwari et al. [53] analyzed the hemodynamics in stenosed porous layered micro-vessels using 

both Eringen micropolar and Newtonian fluid models. All these studies have confirmed the 

superior abilities of micropolar theory in analysing practical hemodynamic transport problems.  

 

Significant progress in nanoscale biomechanics and simulation has also rapidly accelerated the 

production of more functional advanced nanomaterials and mobilized numerous pathways for 

advancing medical science, pharmacology, tissue repair, ocular medications, and the treatment 

of many diseases to achieve maximal therapeutic efficacy with minimal side effects. Sahoo et 

al. [54] explored the potential clinical applications of nanotechnology in medical sciences with 

scientific and technical aspects. Blood mediated nanoparticle transport achieves impressive 
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results in enhancing the heat and mass diffusion properties of drugs, i.e., pharmacological 

agents injected into the blood vessel. The use of nano- carriers formulated with dendrimers, 

liposomes, micelles, solid lipid nanoparticles, and gold, silver, and titanium oxide and cadmium 

sulphide polymeric nanoparticles together with magnetic nanoparticles have been shown to 

substantially improve the efficacy of conventional pharmacological agents [55]. In 

hemodynamic therapies, the base liquid is blood and can be doped with a variety of 

biocompatible nanoparticles, including gold. Bio-nanomedicine enhances the solubility, 

bioavailability, absorption, targeting, and controlled release of drugs [56, 57]. Akbar et al. [58] 

simulated nano-pharmacodynamic transport in unsteady variable viscosity blood flow through 

an overlapping stenotic artery with wall mass transfer and hydrodynamic slip effects. A 

theoretical analysis of blood mediated nanoparticle transport to combat the arterial disease was 

presented by Ijaz and Nadeem [59]. Tripathi and Bég [60] considered thermosolutal buoyancy 

effects in nano-doped hemodynamics in a two-dimensional channel with long wavelength and 

low Reynolds number approximations. Vasu et al. [61] presented extensive finite element 

simulations and contour visualizations using the FreeFEM++ code of the axisymmetric electro-

conductive viscoelastic nano-doped hemodynamics in a stenosed coronary artery with rigid 

walls under the radial magnetic field. They found that considerable acceleration is induced with 

increasing Brownian motion parameter and that a narrower stenosis significantly alters the 

temperature and nano-particle distributions and flow structures. An analytical solution for the 

hemodynamic study of gold nanoparticles in blood flow through tapered stenosis was reported 

by Elnaqeeb et al. [62] under the mild stenosis assumption. They studied different 

nanoparticles, such as Au, Cu, TiO2, and observed that gold nanoparticles achieve the most 

notable enhancement in blood flow and hemodynamic performance in the diseased artery. Very 

recently, Dubey et al. [63] investigated the effect of metallic nanoparticles on the blood flow 

through a diseased artery with hemorheological characteristics. Zaman et al. [64] employed a 

hybrid nanofluid model to simulate unsteady laminar hemodynamic flow through the stenosed 

tapered artery (converging and diverging) with an aneurysm and rigid walls, noting that hybrid 

Ag-Al2O3 nano-particles within blood induce significant deceleration compared with only 

homogenous silver nanoparticles (Ag). 

The above studies did not simultaneously consider both microstructural fluid rheology and 

nanoscale effects. A possible methodology for simulating nanoparticle behavior and 

microstructural hydrodynamics is the combination of Eringen micropolar and nanofluid 

models. Although very limited attention has been devoted to hemodynamics, several robust 

mathematical models of micropolar nanofluid dynamics in bioengineering have been 
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communicated. Prasad et al. [65] used the Keller box second-order finite difference scheme 

and a combined micropolar Buongiorno nanofluid model to compute the enrobing flow of bio-

nanopolymers on cylindrical components. Latiff et al. [66] used MAPLE quadrature to 

simulate the time-dependent microorganism-doped bioconvection nanofluid flow from 

contracting and extending coatings for anti-fouling applications. Computational 

pharmacodynamics plays a vital role in understanding drug delivery processes, the 

development of direct drug delivery methods with associated devices, and evaluation of drug 

delivery efficiency. It can be used to model aerosol dynamics in the human respiratory systems 

and particle hemodynamics in the human vasculatures and tissue heat and mass transfer as 

aspects of pharmacokinetics. Such capabilities with fairly realistic and accurate results at 

relatively low costs make computational pharmacodynamics a perfect tool for research and 

development in drug delivery. Numerous mathematical studies have explored the influence of 

bio-nanofluid transport in biomedical applications; however, these simulations have ignored 

micro-rotational effects. Motivated by presenting a more general microstructural fluid 

dynamics framework for nano-pharmacodynamics in blood flows, in the present article, a 

detailed finite element study is conducted of unsteady micropolar nano-doped hemodynamics, 

heat and mass transfer in a tapered diseased stenotic artery. Eringen’s non-Newtonian 

micropolar theory is deployed to mimic rotary motion (gyration) of micro-fluid elements in the 

blood. A modified Tiwari-Das homogenous nanoscale model [67] is deployed to study specific 

metallic nanoparticle dynamics. The versatile FREEFEM++ finite element software [68] is 

employed to solve the nonlinear conservation equations. These aspects constitute the novelties 

of the present work. Extensive finite element simulations are conducted with physically 

realistic material properties and boundary conditions and graphical visualization of the impact 

of micromorphic, nanoscale, thermophysical and geometric parameters on velocity, 

temperature and micro-rotational (Eringen angular) velocity, wall shear stress (WSS), 

volumetric flow rate and hemodynamic impedance of blood flow. Detailed interpretation of the 

computations is also provided of direct relevance to pharmacological nanoparticle-mediated 

rheological blood flow in stenotic arterial systems.     

 

2. MATHEMATICAL MODELLING OF BIORHEOLOGICAL NANO-DOPED FLOW 

Unsteady two-dimensional laminar blood flow in a tapered artery is considered wherein blood 

flow is modelled as a homogeneous fluid containing randomly distributed suspensions. Blood 

rheology is simulated with the micropolar fluid model. Heat and mass transfer are also present. 

Gold (Au) nanoparticles are injected into micropolar blood flowing through a stenotic tapered 
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artery. For the simulations, the pulsatile nature of blood has also been included. The velocity 

is taken as zero at the walls of the vessel, i.e., no-slip. We have considered a mild stenosis i.e.  

the level of stenosis is 40% in the diverging tapering artery, 60% in converging tapering artery 

and a little more than 50% in the non-tapered artery respectively. A cylindrical coordinate 

system ( , , )r z is therefore adopted where the flow in the  -direction has been neglected, i.e., 

the flow is only in the radial (i.e., r-axis) and axial (z-axis) directions as shown in Fig. (1). The 

fluid is incompressible. The tapered stenotic artery has finite length L and contains a symmetric 

stenosis with maximum depth   and length 1J . The geometry of the stenosis which is assumed 

to be symmetric can be described using the following relations: 

( )1

1 0 0 0 0 1( ) ( ) 1 ( ) ( )

( )

n nR z h z J z J z J J z J J

h z otherwise

 − = − − − −   +
 

=
   (1) 

 

  0( )h z d z= +           (2) 

 

Figure 1.  Schematic for micropolar nano-doped stenosed tapered arterial hemodynamics 

 

Here ( )h z is the radius of the tapered arterial segment in the stenotic region, 0d  is the radius of 

the non-tapered artery in the non-stenotic region, ξ is the tapering parameter, 1J is the length of 

the stenosis, ( 2)n  is a parameter determining the shape of the constriction profile which is 

termed the shape parameter and 0J  indicates its location (as shown in Fig. 1). The parameter 

η in Eqn. (1) s given by: 

 
1

0 1 1

n

n

n

n

d J n




−

=
−

        (3) 

Micropolar blood 
Bio-metallic nanoparticles (gold) 

Rigid arterial wall  
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Here   represents the maximum height of the stenosis located at 1
0 1

1n

J
z J

n −

= + . 

2.1 Physical properties of nanoparticles  

Blood is a suspension of tiny particles in a complex, continuous, aqueous solution, called 

plasma. The tiny particles defined as cells consist of a variety of blood cells, e.g., erythrocytes 

(red blood cells i.e., RBCs), leukocytes (white blood cells), lipoproteins, and platelets. In blood, 

RBCs occupy about 97% of the total cell volume, and their shape, size, deformation, and 

flexibility play a critical role in blood rheology. The physical properties such as specific heat 

capacity and thermal expansion coefficients dependent on density and temperature of the 

micropolar fluid based on Tiwari-Das nanoparticle volume fraction relations [67] are defined 

as: 

(1 )nf f s    = − +       (4) 

( ) ( ) (1 ) ( )p nf p f p sc c c    = − +     (5) 

( ) ( )
( ) ( )

2 2

2

s f s fnf

f s f s f

K K K KK

K K K K K





+ − −
=

+ + −
    (6) 

The nanoparticles are uniformly dispersed and are stable in the base fluid (blood). As noted in 

[67], among many other studies, the relative change in the concentration of the nanoparticles 

with respect to the base fluid is parabolic. The nanofluid’s viscosity is a function of the volume 

fraction of the nanoparticles in the base fluid. This methodology pre-dates modern nanofluid 

sciences. In the early 20th century, Einstein derived a famous equation using his Brownian 

motion theory, by studying the effect on the motion of a liquid containing very small spheres, 

suspended inside the liquid. Einstein’s relation is valid for the low volume fraction of the 

suspended spheres and represented as: 

 

    (1 2.5 )nf f  = +       (7) 

The classical Brinkman model developed much later -see Happel and Brenner [69] applies to 

the viscosity of concentrated suspensions and solutions and takes the form: 

 

    
2.5(1 )

f

nf





=

−
      (8) 

 

Batchelor [70] also considered the bulk stress, which appears owing to the Brownian motion 

in the dilute case, where the effective viscosity is considered as: 
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    2(1 2.5 6.2 )nf f   = + +      (9) 

All these models are classical and may be used appropriately for numerical simulations. 

However, they are not completely adequate for all types of nanofluids. Many researchers have 

verified the correct viscosity formulation for different nanoparticles through experiments, e.g., 

[67]. In the present study, the relations for the ratio of nanofluid viscosity (i.e. nano-doped 

blood) to the base fluid viscosity (blood) nf

f




are used as given in Table 1. The present 

simulations investigate the variations in the flow characteristics due to the doping of blood with 

Gold (Au) nano-particles, Copper (Cu) nanoparticles, Titanium Oxide ( 2TiO ) and Aluminium 

Oxide ( 2 3Al O ) nanoparticles (other properties e.g. density are also given in Table 1). 

 

Table 1. Thermo-physical properties of blood and different metallic nanoparticles 

 Gold 

(Au) 

Copper 

(Cu) 

Titanium 

( 2TiO ) 

Alumina 

( 2 3Al O ) 

Blood 

3( / )Kg m  19320 8933 4250 3970 1063 

( / )pc J Kg K  1288 235 686.2 765 3594 

( / )K W m K  314.4 401 8.9538 40 0.492 

5 110 ( )K − −  1.4 1.67 1.9 0.85 0.18 

nf

f




 
2.5

1

(1 )−
 

2.5

1

(1 )−
 

2.5

1

(1 )−
 

2.5

1

(1 )−
 

 

 

2.2 Governing Equations 

Here u and w are the velocity components in the r and z directions. Neglecting body forces, the 

governing equations for the hemodynamic transport may be presented in vectorial form as:  

0V =                  (11) 

2( )nf nf

V
V V p k V k V

t
 

 
+  = − +  + +  

 
            (12) 

'2 ( ) ( ) ( )nf

N
J V N kN k V N N

t
    

 
+  = − +  +  + + +   

 
           (13) 

2( )p nf nf

T
c V T K T

t


 
+  =  

 
                 (14) 
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Further, the micropolar material constants 
', , ,nf k   and   satisfy the following inequalities 

'2 0, 0, 3 0nf k k and     +   + +   . 

Since the flow is axisymmetric, the governing equations can be reduced to: 

 

0
u u w

r r z

 
+ + =

 
                           (15) 

                 
2

2 2

1
( )nf nf

u u u p u u u N
u w k k

t r z r r r r r z
 

          
+ + = − + + + − −    

          
           (16) 

             
( )2 2

2 2

1
( )nf nf

rNw w w p w w w k
u w k

t r z z r r r z r r
 

         
+ + = − + + + + +                  

      (17) 

( ) 2

2

1
2nf

rNN N N w u N
J u w kN k

t r z r z r r r z
 

          
 + + = − − − + +                  

        (18) 

2 2

2 2

1
( )p nf nf

T T T T T T
c u w K

t r z r r r z


       
+ + = + +  

        
                        (19) 

The pulsatile nature of the fluid flow is simulated using the following form of axial pressure 

gradient, following Fung [71]: 

0 1 cos( )p

p
A A t

z



− = +


               (20) 

where 0A  is the mean pressure gradient and 1A  is the amplitude of the pulsatile component 

which is responsible for systolic and diastolic pressures. The following boundary conditions 

are prescribed: 

0

( , ) 0, ( , ) 0, ( , ) 0 0

0, 0, 0 0

( , ) 0, ( , ) 0, ( , ) ( ) 0

w r t N r t T r t at t

w N T
at r

r r r

w r t N r t T r t T at R z

= = = =

  
= = = =

  

= = = =

             (21) 

Introducing the following non-dimensional variables: 

1

1 0 0 0 0

22
00 0

2

0 1 0 0

0

0

, , , , ,

, , , ,

( )
, Pr

f p

f f

f p

f

uJz r w h
z r w u h

J d U U d

dd p d N J
p N J

U J U d

cT T

T K



 


 




= = = = =

= = = =

−
= =

              (22) 
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Eqn. (22) is inserted into Eqns. (15) to (19), respectively, and the additional conditions adopted 

are: 

  

1

1

1

( ) Re 1
nn

i
J

 −

                            (23a) 

1

1
0

1

( ) ~ (1)
nd n

ii O
J

−

                (23b) 

Proceeding with the analysis, the appropriate equations describing the unsteady flow of 

micropolar blood in the case of the mild stenosis (
0

1
d


 ) then emerge as: 

 

( )2

2.5 2

1 1 1

1 1 1 1 1

(1 )

rNw p w w k
k

t z r r r r r


   

      
= − + + + +    

  −       
             (24) 

    
( )

2.5

1 1

1 1 1
2

(1 ) 2

rNN k w k
N

t J r r r r


  

     
= − + + +    

  −       
             (25) 

2

2

2

1 1 1

Pr

nf

f

K

t K r r r

  




   
= − + 

   
               (26) 

Here the dimensionless pressure gradient will be of the form (1 cos(2 ))
p

B e ct
z




− = +


, 

2

( )
1

( )

s

f

c

c


  


= − +  and 1

( )
1

( )

s

f


  


= − + . 

The dimensionless boundary conditions assume the form: 

 

    

( , ) 0, ( , ) 0, ( , ) 0 0

0, 0, 0 0

( , ) 0, ( , ) 0, ( , ) 1 ( ) 0

w r t N r t r t at t

w N
at r

r r r

w r t N r t r t at R z







= = = =

  
= = = =

  

= = = =

              (27) 

 

The non-dimensional form of the stenosis geometry is now described as: 

( )'

3 3 3 3( ) (1 tan ) 1 ( ) ( ) 1nR z z z J z J J z J  = + − − − −   +
              (28) 

With 
1

' * * 0
0 3

1

,
1

n

n Jn
d and J

n J
   

−

= = =
−
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In order to calculate the volumetric flow rate (Q ), wall shear stress (WSS) and the resistance 

to flow ( - hemodynamic impedance), the appropriate expressions in non-dimensional form 

are: 

    

1

2

0

Q R w x dx=                    (29a) 

( )2 2

1
nf

w K
WSS K N

R x


 


= + +


               (29b) 

1

2

0

(1 cos(2 ))B e ct

R w x dx




+
=



                (29c) 

 

3. NUMERICAL COMPUTATIONS WITH FREEFEM++ CODE 

The non-dimensional boundary value problem is derived i.e., Eqns. (24)-(26) with boundary 

conditions (27) is still quite formidable owing to strong nonlinearity, the coupling of different 

variables, and two space variables. A robust computational scheme is, therefore, essential to 

obtain fast and rapidly convergent solutions. Here the finite element method (FEM) with the 

variational approach, as available in the FreeFEM++ software [69], has been used. The weak 

formulation of the partial differential equation system (24)-(26) is derived by defining the 

function spaces: 

( ) 

( ) 

1

'

1

( ) , 0

( ) 0

in wall

in wall

X u H u a on u on

Q u H u on

=   =  = 

=   =   
                                                            (30) 

The weak form of Eqns. (24) - (26) is obtained by determining w, N ∈ X, and  ∈ P such 

that every 1 2,u u Q and 1p P where 2 ( )P L=  . A fundamental aspect of the current 

modeling is to obtain the weak form of the above system of Eqns. (24)-(26). To achieve 

smoothness of a solution which is bounded due to the weaker restriction, these differential 

equations cannot be solved directly. Therefore, the finite-dimensional subspaces have to be 

defined as 
hQ Q and

hP P . Consider the finite dimensional approximations as 

1 2,h h hu u Q and 1h hp P . In view of the finite dimensional approximations, the set of Eqns. 

(24)-(26) becomes: 
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( )

1 1

1

2

1 12.5 2

1 1

1
(1 cos(2 )

1 1 1 1

(1 )

h h

h h

w
u dr B e ct u dr

t

rNw w k
k u dr u dr

r r r r r

 


  

 

 


 = − + 



     
+ + +  +    

−       

 

 

          (31) 

( )

2 2

1

22.5

1

2

1 1 1

(1 ) 2

h h

h

N k w
u dr N u dr

t J r

rNk
u dr

r r r




 

 



  
 = − +  

  

   
+ +   

−     

 



             (32) 

2

1 12

2

1 1 1

Pr

nf

h h

f

K
p dr p dr

t K r r r

  



 

   
 = − +  

   
               (33) 

Eqns. (31)-(33) with boundary conditions (28) are solved numerically using the variational 

finite element method in FreeFEM++. We have adopted an unstructured fixed mesh optimized 

after extensive mesh independence tests. The final mesh comprises 27,746 piecewise linear 

triangular elements (P2) and 56,033 nodes for the divergent artery section, 17,876 piecewise 

linear triangular elements (P2) and 36,291 nodes for the convergent artery section and 23,214 

piecewise linear triangular elements (P2) and 46,969 nodes for the non-tapered artery section 

as shown in Figures 2(a), 2(b) and 2(c) respectively. The mesh is designed by taking advantage 

of the automatic FreeFEM++ mesh generator based on the Delaunay-Voronoi algorithm. 

Further details are given in Bathe [73]. The non-linear system of governing equations has been 

solved by employing the Generalized Minimal Residual (GMRES) iteration method. In the 

fixed mesh, a minimum step size 
minh  of 0.014192 is considered with the tolerance of 

computation 
610−  for all simulations. In Figures 2(a), 2(b) and 2(c), the level (degree) of 

stenosis is 40% in the diverging tapering artery, 60% in converging tapering artery and a little 

more than 50% in the non-tapered artery respectively. 

 
Figure 2(a). Unstructured fixed mesh of triangular elements ( 0.0592880 = ) 
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Figure 2(b). Unstructured fixed mesh of triangular elements ( 0.0592880 = − ) 

 

Figure 2(c). Unstructured fixed mesh of triangular elements ( 0.00 = ) 

 

4. MESH INDEPENDENCE ANALYSIS 

 

By conducting several different finite element mesh (grid) distribution tests, it may be 

established whether the calculated numerical results are grid-independent or not. The 

numerical values for wall shear stress at stenosis in all three tapering geometries, for various 

designs comprising unstructured fixed mesh elements with vertices and triangular elements, 

are provided in Figure 3. Seven different mesh distributions have been tested to ensure the 

simulated numerical results are mesh independent. Eventually, the selected mesh for the 

present calculations consisted of 27,746 triangular elements and 56,033 nodes for the divergent 

artery section, 17,876 triangular elements and 36,291 nodes for the convergent artery section 

and 23,214 triangular elements and 46,969 nodes for the convergent artery section 

respectively (simulation number 6 in Table 2). From Table 2 and figure 3, it is evident that 

increasing the mesh element density beyond this design does not modify the numerical values 

for non-dimensional wall shear stress significantly in the domain with the parametric values 

prescribed i.e. 𝜙 =  0.3, 𝛼 =  2.0,B =  1.0, e =  1.0, k = 0.3, Pr =  14 𝑎𝑛𝑑 𝑡 = 0.2 𝑎𝑡 𝑟 =

 0.190, for 0.0593, = − 0.0593 0.00and = = , respectively.  
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Table 2 (a). Grid Independency analysis with 0.0593,   0.3,    2.0,B  1.0,  = = = =  

e  1.0,  k = 0.3, Pr  14 0.2     0.190,    1.10and t at r z= = = = =  

 

Simulation 

No. 

Number of 

Elements 

Number of Nodes Wall shear stress 

(Stenosis) 

1. 8026 16363 3.6301 

2. 8894 18109 3.0439 

3. 13020 26441 1.355 

4. 22448 47417 1.1458 

5. 23448 47547 0.70632 

6. 27746 56033 0.87855 

7. 35514 71629 0.88798 

 

 

Figure 3(a): Grid Independence study (wall shear stress) 

 

Table 2 (b). Grid Independency analysis with 0.0593,   0.3,    2.0,B  1.0,    = − = = =  

e  1.0,  k = 0.3, Pr  14 0.2     0.190,    1.10and t at r z= = = = =  

Simulation 

No. 

Number of 

Elements 

Number of Nodes Wall shear stress 

(Stenosis) 

1. 5222 10755 -2.8284 

2. 5393 10952 -1.2126 

3. 5952 12225 3.1671 

4. 14296 29113 3.6699 

5. 15084 30649 1.2426 

6. 17876 36291 1.3458 

7. 23330 47201 1.296 
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Figure 3(b): Grid Independence study (wall shear stress) 

 

Table 2 (c). Grid Independency analysis with 0.00,   0.3,    2.0,B  1.0,    = = = =  

e  1.0,  k = 0.3, Pr  14 0.2     0.190,    1.10and t at r z= = = = =  

Simulation 

No. 

Number of 

Elements 

Number of Nodes Wall shear stress 

(Stenosis) 

1. 6494 13279 -0.69352 

2. 7748 15917 -2.3116 

3. 10586 21473 -3.5629 

4. 18176 36873 -2.868 

5. 19222 38925 1.5278 

6. 23214 46969 3.0533 

7. 29816 60233 3.1003 

 

 

Figure 3(c): Grid Independence study (wall shear stress) 
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5. RESULTS AND DISCUSSION 

In this section, the quantitative effect of selected parameters i.e., Eringen micropolar vortex 

viscosity material parameter (K), Prandtl number (Pr), concentration ( ), tapering angle ( ), 

and pulsatile constants (B and e), on the velocity, temperature and micropolar rotational 

velocity (Eringen micro-rotation) with the variation of time are examined in detail. The results 

are all visualized via tables, contour plots, and graphs. In the computations, the default values 

of various parameters are as documented in Table 3. 

Table 3: Prescribed parameter values implemented in FREEFEM++ computations  

Parameter n     Pr L α B e fK  f  fc  

Values 3 0.0592880 0.310 25 4.0 2.0 4.0 1.0 0.492 19320 3594 

 

Table 4: Comparison of dimensionless velocity (w) values, using the present scheme with 

published results for 0.7, 0.1, 0.1, 2.0, 2.0, 1.0, 0.1z k B e K = = = = = = = . 

r - axis 

Velocity values (w) for a converging tapering 

artery ( 0.1 = − ) with symmetric (composite) 

stenosis 

Correlation 

coefficient (cc) 

and p-value 

FDM solutions of  

Ali et al. [16]  

Present results using 

FREEFEM++ 

(variational approach)  

0.1889 0.0845 0.0841  

 

cc = 0.996920 and  

p-value = 7.2836E-

08 

0.2779 0.1245 0.12133 

0.36668 0.1421 0.14615 

0.4557 0.1437 0.14615 

0.5447 0.1335 0.13374 

0.6336 0.1128 0.10892 

0.7225 0.0827 0.0841 

0.8115 0.0448 0.046874 

 

To validate the FREEFEM++ code which has been adopted to simulate the problem, 

benchmarking against the published finite difference results obtained by Ali et al. [16] for 

velocity in viscous blood flow is conducted with the comparisons displayed in Table 4. 

Evidently a significant strong correlation is achieved testifying to the accuracy of the 

FREEFEM++ code. Confidence in the finite element simulations is therefore justifiably very 

high. 
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5.1 Effect of different metallic nanoparticles: 

Figures 4(a) – 4(b) depict the effect of different metallic nanoparticles, i.e., Gold (Au), 

Copper (Cu), Alumina ( 2 3Al O ), Titanium oxide ( 2TiO ) on the temperature distribution for 

the converging tapered arterial section along the radial direction at the throat of stenosis for 

a fixed time. The temperature initially decreases with radial distance from the midline and 

subsequently is elevated in magnitude towards the arterial wall. For gold nanoparticles, the 

temperature is evenly distributed compared to the other metallic nanoparticles i.e.; a more 

homogenous distribution is achieved. However, an increment in time shows a monotonic 

decrement in the temperature distribution, indicating that the blood flow regime is cooled 

with progress in time. 

 

 

Figure 4(a): Effect of metallic nanoparticle on temperature distribution when 0.06, 1.10, 2.0,z = − = =  

𝑒 = 1.0, 𝑃𝑟 = 25.  
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Figure 4(b): Effect of metallic nanoparticle on temperature with 0.06, 1.10, 2.0,z = − = = 𝑒 =

1.0, 𝑃𝑟 = 25. 

Figures 5 and 6 illustrate the impact of different metallic nanoparticles on flow characteristics. 

Figure 5 displays the linear velocity profile with time whereas figure 6 shows a comparison of 

micro-rotational velocity (N) at different times for Gold (Au) and other nanoparticles, 

respectively. All metallic nanoparticles in figure 5 consistently produce a periodic motion 

(pulsatile profiles); however, only gold and copper exhibit a marked increment as we move 

forward in time, whereas Alumina and titanium oxide generate exactly the opposite behaviour. 

The micro-rotational velocity in figure 6, again captures the pulsatile nature of the flow with 

time progression. Significantly higher amplitudes of micro-rotation are associated with the 

non-tapered section compared with the diverging section; however, the latter also produces 

higher magnitudes than the converging case, which corresponds to minimal micro-rotation 

amplitudes. The negative values of micro-rotation imply a reversal in the spin of the micro-

elements i.e., angular velocity in the opposite direction to positive values. Therefore, the 

geometric nature of the arterial zone exerts a profound influence on microstructural flow 

characteristics which cannot be captured, as elaborated earlier, with simpler rheological 

models. It is also noteworthy that at high time values, the micro-rotation magnitudes in the 

diverging section approach comparable values to the non-tapered artery; however, the values 

in the former are much lower at all other times. The unsteady model is, therefore, also a very 

important feature in appraising more accurately the microstructural rheology features of real 

blood. 
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Figure 5: Effect of metallic nanoparticle on velocity profile for 0.06, 2.0, 4.0, 1.0,B e = − = = =

0.1, 1.10 0.250z and r = = =  

 

 

 

Figure 6: Effect of tapering angle on micro-rotational velocity for Gold (Au), 1.10, 0.310,Pr 25,z = = =  

2.0, 0.150, 4.0, 1.0r B e = = = =  
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5.2 Effect of Prandtl number 

Figure 7 illustrates the effect of the Prandtl number on the micro-rotational velocity (N) with 

a temporal variation on a fixed point in the arterial segment, which is at the throat of the 

stenosis. It can be observed that a greater Prandtl number induces a reduction in the micro 

rotational velocity decreases; the maximum value of micro-rotational velocity again 

corresponds to the case of a non-tapered artery. Prandtl number is the key parameter dictating 

heat transfer in the blood. It is inversely proportional to thermal conductivity. Pr = 14, 

therefore, implies that thermal conductivity is half for the case of Pr = 7. The momentum to 

energy diffusion rate ratio for Pr = 14 is twice that for Pr =7. Although only forced convection 

is considered and there are no coupling terms between the linear velocity and temperature 

fields in Eqns. (24) and (26), there is a strong coupling between the linear momentum Eqn. 

(24) and the micro-rotation field (N) via the term−
𝑘

𝐽𝜙1
(2𝑁 +

𝜕𝑤

𝜕𝑟
). The enhancement in linear 

momentum diffusion with a higher Prandtl number generates a damping effect on 

microelement spin. However, with progression in time, there is a significant boost in micro-

rotation, indicating that microelement gyration is encouraged with time in the arterial regime. 

Fig. 8 also presents colored contours for three tapered angles at different periods. It is evident 

again that the maximum value of micro-rotational velocity is achieved for the non-tapered 

arterial case. The contour plots demonstrate that micro-rotational velocity contour magnitudes 

are suppressed with a greater time-period; furthermore, there is a decrement in micro-rotation 

magnitudes with distance from the core region to the wall in all cases. The darker red zones 

are progressively eliminated and replaced with green and then blue zones indicating a 

significant drop on micro-rotation magnitudes with time.  

 

Figure 7: Effect of Pr on micro-rotational velocity for Gold (Au), 0.5, 0.3, 2.0, 2.0,k B = = = =  

1.0, 0.100, 1.00e r z= = =  
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Additionally, it is pertinent to note that the strong circulation zones appearing both upstream 

and downstream of the stenosis at short times are progressively eliminated with more 

significant times, and a strong core zone is synthesized with elongated micro-rotation 

circulation zones far downstream of the diverging section of the arterial segment. 

 

  

    8(a)      8(b) 

  

    8(c)      8(d) 

   

    8(e)      8(f) 

Figure 8: Micro-rotational velocity profile for Gold (Au) when 0.3,Pr 14, 2.0, 2.0, 1.0, 0.3B e k = = = = = =  

at  ( ) 0.06, 0.2, ( ) 0.06, 0.4, ( ) 0.00, 0.2, ( ) 0.00, 0.4, ( ) 0.06, 0.2,a t b t c t d t e t    = − = = − = = = = = = =  

( ) 0.06, 0.4f t = =  

 

 



23 
 

5.3 Effect of (Womersley number of non-Newtonian fluid), B (dimensionless pulsatile 

constant), k and e 

Figure 9 shows the variation in pressure gradient (
p

z



 ) over time (t) for the two different 

values of pulsatile constants B and e. The graph shows that the pressure gradient value is 

directly proportional to B and e; hence an increment in both B and e increases the value of 

the pressure gradient. However, there is a strong decay in the axial pressure gradient with 

progression in time, indicating that momentum is depleted in the arterial regime as time 

passes. Therefore, the pulsatile effect weakens with time, which is characteristic of real blood 

flows [71]. 

 

 

Figure 9: Effect of B and e on Pressure gradient for Gold (Au), 0.5, 0.3, 2.0, 0.100,k r = = = =  

, 1.00,Pr 7.0z = = . 

Figure 10 shows the evolution in micro-rotational velocity with an increment in Womersley 

number (α). Evidently, there is strong damping of microelement spin (micro-rotation) with 

increasing Womersley number, a trend which is sustained at all times. Womersley number is 

a dimensionless expression which is very popular in hemodynamics; it represents the relative 

contribution of pulsatile flow frequency to viscous effects. In large vessels e.g., the aorta, α can 

range between 15 and 20 [71]; however, it is much smaller (< 5) in microvascular and capillary 

vessels, as considered in the present simulations for which α =2, 3. The linear velocity field 

(w) typically exhibits a periodic topology near the arterial walls, which resembles the Stokes 

layer on an oscillating flat plate. Linear momentum is generally suppressed with the 
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Womersley parameter since viscous effects become more dominant. This simultaneously 

inhibits gyratory motions of the micro-elements in the blood and produces angular 

deceleration, as observed in Fig. 10. Although not shown, the linear velocity close to the walls 

features a layer of thickness O (α−1), and the velocity adjusts rapidly to zero. Furthermore, the 

phase of the time oscillation varies quickly with position across the layer. The exponential 

decay of the higher frequencies is faster when α >> 1, a relatively small steady component of 

the pressure gradient gives rise to a steady velocity which is relatively much larger. A similar 

insight has been provided by Mazumdar [72]. Clearly therefore viscous effects attain some 

significance with time, and this serves to damp the micro-rotation velocity. With lower α, the 

pulsatile nature is amplified in the micro-rotation field.  

 

 

Figure 10: Effect of α on micro-rotational velocity for Gold (Au), 0.5, 0.3, 1.0, 0.5,k B e = = = =  

0.100, 1.00,Pr 7.0r z= = =  

Figure 11 depicts the variation in micro-rotational velocity (N) over a time period (t) for the 

three different values of the Eringen micropolar vortex viscosity parameter (k). This parameter 

defines the ratio of micropolar vortex viscosity to Newtonian dynamic viscosity. A significant 

enhancement in the value of micro-rotational velocity can be seen with a rise from k = 0.1 to 

k = 0.5 in converging tapered artery case, for large times, although the reverse behaviour is 

computed at shorter times. Therefore, the transient nature of the flow has a substantial 

influence on the impact of micropolar vortex viscosity on the gyratory motions of 
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microelements. There is no single consistent response computed, at all times, which further 

endorses the necessity for time-dependent mathematical models in hemodynamics [72]. 

Marked damping in the micro-rotation is observed at k = 0.3, implying again that there is a 

nonlinear relationship between the micropolar vortex viscosity and the microelement gyration 

i.e., the response to increment in micropolar vortex viscosity is not merely a linear one.  

 

 

Figure 11: Effect of k on micro-rotational velocity for Gold (Au), 0.5, 2.0, 1.0, 0.5,B e = = = =  

0.100, 1.00,Pr 7.0r z= = = . 

Figure 12 presents the variation in linear velocity profile (w) for the two different values of 

pulsatile constants B and e. The maximum value of velocity arises for the case of a converging 

tapering artery; as the vessel becomes more extensive, the velocity decreases, i.e., the diverging 

arterial section. In both these cases, the velocity is positive; however, strong flow reversal is 

induced for the non-tapered segment, manifesting in negative velocity. These patterns are 

maintained at all-time values and concur with many other hemodynamics investigations, 

including Devanathan and S. Parvathamma [47] and Samad [50]. 
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Figure 12: Effect of B and e on velocity for Gold (Au), 0.5, 2.0, 0.3, 0.100,k r = = = =  

1.00,Pr 7.0z = =  

Figures 13 to 17 are drawn for different values of the Womersley parameter (α) and pulsatile 

constants (B and e). Figures 13 - 14 correspond to micro-rotational velocity (N), and figures 

15 – 17 to linear velocity (w) distribution over the whole arterial segment.  Figures 13 and 14 

show that by increasing the pulsatile constant, the pulsatile nature of fluid particle increases, 

and also, the value of micro-rotational velocity increases while moving forward in time for a 

diverging tapering artery in comparison with a converging tapering and non-tapered artery. 

This is attributable to the greater space afforded to microelements in the diverging section, 

which assists in their spinning. However, figures 16 and 17 exhibits the opposite nature as the 

linear velocity increases with the increment in pulsatile constants (B and e) but only for the 

converging and non-tapering one; linear flow deceleration is induced for the diverging artery 

since by virtue of continuity (mass conservation) larger cross-section reduces flow velocities. 

Figure 15 visualizes the velocity evolution with time for different values of the Womersley 

parameter (α), and it is apparent that linear velocity decreases as the value of α increases. 
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Figure 13: Effect of e on micro-rotational velocity profile for Gold (Au), 1.10, 0.310,Pr 25,z = = =

0.100, 4.0, 2.0r B = = =  

 

 

Figure 14: Effect of B on micro-rotational velocity profile for Gold (Au), 1.10, 0.310,Pr 25,z = = =  

0.100, 2.0, 1.0r e= = =  
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Figure 15: Effect of α on velocity profile for Gold (Au), 1.10, 0.310, 0.100, 4.0, 1.0z r B e= = = = =  

 

 

 

Figure 16: Effect of B on velocity profile for Gold (Au), 1.10, 0.310, 0.100, 2.0, 1.0z r e = = = = =  
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Figure 17: Effect of e on velocity profile for Gold (Au), 1.10, 0.310, 0.1, 0.100,z k r= = = =  

4.0, 2.0B = = . 

Table 5, documents the wall shear stress (WSS) over time (t) and indicates that an increase in 

the value of pulsatile constants (B and e), decreases the wall shear stress and also the WSS 

decreases with the a reduction in micropolar vortex viscosity, k. 

Along with Table 5, Tables 6 and 7 provide values for the wall shear stress (WSS) for various 

different parameters with prescribed values of Prandtl number (Pr = 14), time period (t = 0.08) 

at the throat of the stenosis for the two tapering angles i.e., (𝜓 = 0.0592882 𝑎𝑛𝑑 𝜓 =

−0.0592880). The documented data indicates that in the diverging tapering case, an increase 

in nanoparticle volumetric concentration decreases the wall shear stress. 

 

Table 5: The temporal variation in wall shear stress for Gold (Au) nanoparticles  

 

Time (t) 

Pr=7, ϕ=0.5, Ψ = 0.06, r = 0.100 and z = 1.10 

α = 2.0, k = 0.3,  

B = 1.0, e = 0.5 

α = 2.0, k = 0.1,  

B = 1.0, e = 0.5 

α = 2.0, k = 0.3,   

B = 2.0, e = 1.0 

0.04 0.17808 0.22246 0.17905 

0.08 0.6857 0.14011 0.011724 

0.12 0.29016 0.10159 0.31973 

0.16 0.34412 0.46108 0.30686 
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0.20 0.26788 0.29359 0.29169 

0.24 0.93148 0.10665 0.23813 

0.28 0.75678 0.097939 0.2868 

0.32 0.71857 0.17131 0.08507 

0.36 0.78451 0.10707 0.30489 

0.40 0.58848 0.44031 0.61399 

0.44 0.80644 0.35926 0.3226 

0.48 0.48670 0.011966 0.48154 

0.52 0.81228 0.39076 0.34759 

 

Table 6: Numerical values of wall shear stress for different physical parameters at stenosis 

for a diverging tapering artery.  

 

Pr=14, Ψ = 0.06, r = 0.250 and z = 1.10 

ϕ α B e k WSS 

0.01 1.0 1.0 0.5 0.1 3.2837 

  1.5 1.0 0.2 4.0633 

0.03   1.0  3.8307 

 2.0 2.0  0.2 4.0957 

0.05    0.3 3.4184 

0.1 2.0    4.718 

 3.0 3.0 1.5 0.3 3.9179 

0.3   2.0  2.7622 

 3.0 3.0   1.4589 

0.4 4.0 4.0  0.4 1.8649 

   2.0  1.0381 

0.5 5.0 5.0 2.5 0.5 1.3863 

 

Table 7: Numerical values of wall shear stress for different physical parameters at stenosis 

for a converging tapering artery.  

 

Pr=14, Ψ = -0.06, r = 0.190 and z = 1.10 

ϕ α B e k WSS 
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0.01 1 1 0.5 0.1 3.0308 

0.02  1.5  0.2 2.6103 

     1.0  0.10599 

0.04 2 2  0.2 0.83586 



0.1 3 2  0.3 0.78861 

     2.0 0.3 1.9925 

0.3 3 3   0.90555 

0.4 4   1.5  1.0988 

  4  0.4 1.3622 

     2.0  1.549 

0.5 5 5 2.5 0.5 1.4269 

 

5.4 Effect of Volumetric Fraction ( ) 

Figure 18 – 21 display contour plots for micro-rotational velocity for different nanoparticle 

volumetric fraction (ϕ) with variation in time (t). In figure 18(a) to 18(e), it can be seen from the 

colored contours that with time progression, the micro-rotational velocity is damped, and the 

frequency of oscillations reduces with an increment in time. The figures 19 -21 shows the similar 

behaviour as figure 18, i.e., the frequency of oscillations reduces with increasing time; however 

it is also noted that by increasing the volumetric fraction (ϕ) the oscillations reduce within the 

arterial segment and simultaneously there is a dramatic elevation in values of micro-rotational 

velocity, i.e., greater doping of metallic nanoparticles (pharmacological agent) in the blood flow 

encourages the spin of microelements (red blood cells, etc.). 

   

   18(a)       18(b) 
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   18(c)        18(d) 

 

18(e) 

Figure 18: Micro-rotational velocity profile for Gold (Au) when 0.06, 0.01,Pr 25 = − = =  at  

( ) 0.04, ( ) 0.08, ( ) 0.12, ( ) 0.16, ( ) 0.2a t b t c t d t e t= = = = =  

   

   19(a)       19(b) 

   

   19(c)       19(d) 
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19(e) 

Figure 19: Micro-rotational velocity profile for Gold (Au) when 0.06, 0.02,Pr 25 = − = =  at  

( ) 0.04, ( ) 0.08, ( ) 0.12, ( ) 0.16, ( ) 0.2a t b t c t d t e t= = = = =  

 

   

   20(a)       20(b) 

   

   20(c)       20(d) 

 

20(e) 

Figure 20: Micro-rotational velocity profile for Gold (Au) when 0.06, 0.1,Pr 25 = − = =  at  

( ) 0.04, ( ) 0.08, ( ) 0.12, ( ) 0.16, ( ) 0.2a t b t c t d t e t= = = = =  
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    21(a)      21(b) 

   

   21(c)       21(d) 

 

21(e) 

Figure 21: Micro-rotational velocity profile for Gold (Au) when 0.06, 0.3,Pr 25 = − = =  at  

( ) 0.04, ( ) 0.08, ( ) 0.12, ( ) 0.16, ( ) 0.2a t b t c t d t e t= = = = =  

 

Table 6 shows the axial variation of micro-rotational velocity (N) of the blood with time in the 

diverging tapering arterial segment; evidently, the value of N is accentuated with an increment 

of time in the whole artery which contrasts with the trends in figures 18 – 21 for a converging 

tapering artery. Clearly the geometric nature of the vessel location exerts a pronounced 

influence on the micro-rotational field, again emphasizing the need for microstructural fluid 

mechanics models in hemodynamics. These features simply cannot be simulated with 

conventional Newtonian or non-Newtonian models.  
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Table 8: The axial variation in micro-rotational velocity for Gold (Au) nanoparticles at 

different times with 0.0590882, 2.0, 4.0, 1.0, 0.1, 1.10 0.250B e z and r  = = = = = = =  

z - axis t = 0.08 t = 0.16 t = 0.24 

0.00 -0.0070859 -0.013229 -0.07625 

0.20 -0.0033802 -0.057766 -0.01258 

0.40 -0.033802 -0.013229 -0.01258 

0.60 -0.033802 -0.013229 -0.01258 

0.80 -0.11395 -0.057766 0.07625 

1.00 -0.060518 -0.031307 0.07625 

1.20 -0.87233 -0.013229 0.07625 

1.40 -0.060518 -0.013229 -0.01258 

1.60 -0.24753 -0.5922 -0.72703 

1.80 -0.274241 -0.50313 -0.90564 

2.00 -0.22081 -0.41405 -0.45911 

2.20 -0.32768 -0.5922 -0.90564 

2.40 -0.30096 -0.63674 -0.90564 

2.60 -0.32768 -0.72581 -0.90564 

2.80 -0.274241 -0.41405 -0.63772 

3.00 -0.30096 -0.50313 -0.72703 

3.20 -0.30096 -0.41405 -0.63772 

3.40 -0.22801 -0.32498 -0.3698 

3.60 -0.24753 -0.32498 -0.45911 

3.80 -0.060518 -0.057766 -0.10189 

4.00 -0.033802 -0.013229 -0.01258 

 

5.5 Effect of tapering angle ( ) 

Figure 22 captures the strongly pulsatile nature of linear (translational) velocity profile and 

features three tapering angle cases with respect to time. At the centre line of the artery (core 

zone), the velocity is low for the non-tapered artery compared to the diverging and 

converging cases. However, it increases gradually with progress in time, and after a specific 

time, very prominent acceleration in the linear flow is observed i.e., the rapid ascent in 

velocity. 

 



36 
 

 

Figure 22: Effect of  on velocity profile for ( ), 0.10,Pr 25, 1.10, 0.1Gold Au r z = = = =  

Figures 23, 24 visualize the micro-rotation velocity variation with time again for three 

tapering angles and at two different axial locations. Micro-rotation topology is similar to the 

linear velocity profile (figure 22). The micro-rotation (angular velocity of microelements) for 

the non-tapered artery shows a marked increment initially and exhibits a significant 

decrement after a specific time. 

 

 

Figure 23: Effect of  on micro-rotational velocity for ( ), 0.10,Pr 25, 1.10, 0.1Gold Au r z = = = =  
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Figure 24: Effect of  on micro-rotational velocity profile for ( ), 0.10,Pr 25, 0.5, 0.1Gold Au r z = = = =  

 

Figures 25-27 display the volumetric flow rate over time (t) at different radial locations.  

 

Figure 25 shows that in the case of a converging tapering artery, the flow rate is more 

pulsatile in nature. Figures 26 and 27 demonstrate that the volumetric flow rate is enhanced 

as we progress forward from the centreline of the artery to the arterial wall. 

 

Figure 25: Volumetric flow rate (Q) for ( ), 0.025, 2.0, 2.0, 1.0, 0.3,Pr 14,Gold Au r B e k= = = = = =  

1.10, 0.5z = =  
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Figure 26: Volumetric flow rate (Q) for 

( ), 2.0, 2.0, 1.0, 0.3,Pr 14, 1.10, 0.5Gold Au B e k z = = = = = = =  

 

 

 

Figure 27: Volumetric flow rate (Q) for ( ), 0.06, 2.0, 2.0, 1.0, 0.3,Gold Au B e k = = = = =  

Pr 14, 1.10, 0.5z = = =  
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Finally, Fig. 28 presents the effect of tapering angles on hemodynamic impedance, which is 

initially high but gradually decreases with time progression for the converging tapering case 

(since this achieves a higher volumetric flow rate). 

 

 

Figure 28: Volumetric flow rate (Q) for 𝐺𝑜𝑙𝑑(𝐴𝑢), 𝑟 = 0.150, 𝐵 = 2.0, 𝛼 = 2.0, 𝑒 = 1.0, 𝑘 = 0.3, 

𝑃𝑟 = 14, 𝑧 = 1.10, 𝜙 = 0.5. 

 

6. STATISTICAL PARADIGM 

In this section, we have extended the study to investigate the relative influence of different 

parameters on transport characteristics with the priority being to understand the relation 

between the various physical parameter and wall shear stress. We have already reported the 

values of wall shear stress for different tapering artery in Tables 6 and 7. The values of 

correlation coefficients are calculated for both of the above-mentioned cases in Tables 9 and 

10 respectively. In the statistical analysis, to, for example, determine the significant correlation 

between the variables and p-value, we considered the value of the significance level as λ = 0.05. 

The correlation coefficient, cc, is defined as: 

 
( , )

x y

Cov x y
cc

 
=


      (34) 

Here ( , )Cov x y = Covariance of the two variables x and y, x = Standard deviation of variable 

x and y = Standard deviation of variable y. 
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For the p-value calculation, we first define the following relation: 

 
'

2

2

1

cc nt
cc

−=
−

     (35) 

Finally, the p-value is calculated as the corresponding two-sided p-value for the t-distribution 

with n-2 degrees of freedom using the relation:  

 
'_ 2 ( , 2)p value t dist t t n− = − − .       (36) 

Here cc = correlation coefficient, n = sample size and 't = t-score. 

The value of correlation coefficient (cc) lies between -1 and 1. It is not only employed to 

explore the relation between two variants but also used to reveal the inverse and direct 

correspondence between those variants. For the statistical analysis, the correlation coefficient 

has following interpretations: 

• If cc = 1, then there is a perfect positive linear relationship between the two variables. 

• If 0.80 0.999cc    , then there is a very strong positive (negative) linear relationship 

between the two variables. 

• If 0.60 0.799cc    , then there is a strong positive (negative) linear relationship 

between the two variables. 

• If 0.40 0.599cc    , then there is a moderate positive (negative) linear relationship 

between the two variables. 

• If 0.20 0.399cc    , then there is a weak positive (negative) linear relationship 

between the two variables. 

• If 0.00 0.199cc   , then there is a very weak positive (negative) linear relationship 

between the two variables. 

• If cc = 0, then there is no linear relationship between the two variables. 

• If cc = -1, then there is a perfect negative linear relationship between the two variables. 

 

Table 9: Correlation coefficient between wall shear stress and selected physical 

parameters at stenosis for a diverging tapering artery when Pr=14, Ψ = 0.06, r = 

0.250 and z = 1.10 

 

Parameter Correlation coefficient (cc) p-value 

ϕ -0.85342 0.01 (< λ) 

α -0.70167 0.08 ( > λ) 

B -0.73853 0.06 (> λ) 
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e -0.75160 0.05 ( = λ) 

k -0.78677 0.03 (< λ) 

 

Table 10: Correlation coefficient between wall shear stress and selected physical 

parameters at stenosis for a converging tapering artery when Pr=14, Ψ = -0.06, r = 

0.190 and z = 1.10 

 

Parameter Correlation coefficient (cc) p-value 

ϕ -0.42764 0.3 (> λ) 

α -0.30156 0.5 (> λ) 

B -0.44472 0.3 (> λ) 

k -0.51386 0.2 (> λ) 

 

From Tables 9 and 10, we can observe that in the case of a diverging tapering artery, the 

volume fraction (ϕ), Womersley number (α), pulsatile constant (B) and Eringen micropolar 

vortex viscosity material parameter (k), all exhibit a strong negative linear relationship with 

wall shear stress as the value of correlation coefficient (cc) exceeds 0.6. Also, it is noteworthy 

that in the case of a converging tapering artery, the volume fraction (ϕ), pulsatile constant (B) 

and Eringen micropolar vortex viscosity material parameter (k), demonstrate a moderate 

negative linear relationship with the wall shear stress. Based on analysing the statistically 

calculated p-value, for both converging and diverging tapered arteries, represented in Tables 

9 and 10, it can be inferred that in the case of a diverging tapering artery, the volume fraction 

(ϕ), the pulsatile constant (e) and Eringen micropolar vortex viscosity material parameter (k), 

the p-value is less than the λ value considered i.e., the p-value < λ. Hence for these cases we 

have identified a significant correlation. Noting that earlier, in Table 4, validation of the 

present study with the published finite difference results obtained by Ali et al. [16] was 

conducted, the value of correlation coefficient (cc) between the adopted numerical values of 

FDM and simulated values by FEM has been calculated as cc = 0.996920 with a 

corresponding p-value of 7.2836E-08. Hence the given data in table 4 represents the existence 

of a very strong positive correlation between the two calculated velocity values. Finally, it 

may be noted that the p-value is much less than the considered value of λ, confirming that the 

computations in Table 4 show a significant positive correlation. 
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7. CONCLUSIONS 

A novel mathematical model for axisymmetric rheological laminar hemodynamics conveying 

nanoparticles (pharmacological agents) through a diseased tapered artery with a mild stenosis 

present has been developed. Different metallic nanoparticles homogeneously suspended in 

the blood are considered, motivated by drug delivery (pharmacology) applications. The 

Eringen micropolar model has been utilized for hemorheological characteristics in the whole 

arterial region. The conservation equations for mass, linear momentum, angular momentum 

(micro-rotation), and energy and nanoparticle species are normalized by employing 

appropriate non-dimensional variables. The transformed equations are solved numerically 

subject to physically appropriate boundary conditions using the finite element method with 

the variational formulation scheme available in the FreeFEM++ code. A good correlation is 

achieved between the FreeFEM++ computations and published FDM results. The effect of 

selected parameters i.e., Womersley parameter (α), pulsatile constants (B and e), Prandtl 

number (Pr), Eringen micropolar vortex viscosity parameter (k), volumetric fraction (ϕ) on 

velocity, temperature and micro-rotational (Eringen angular) velocity, wall shear stress, 

volumetric flow rate and hemodynamic impedance of blood flow has been computed. Colour 

contours and graphs have been included to visualize the simulated blood flow characteristics. 

The present simulations have shown that: 

• The linear velocity exhibits greater enhancement in the converging tapering and non- 

tapered arterial segment in comparison to a diverging tapering artery while the micro-

rotational velocity shows a greater increment in the diverging tapering artery.  

• The tendency of variation is more in temperature as compared to velocity and micro-

rotational velocity; temperature shows a significant negative or positive transition over 

time with radial coordinate. 

• An increment in Prandtl number decreases the micro-rotational velocity i.e., suppresses 

microelement (e.g., red blood cell) spin with time increment in all the tapering cases. 

• The Womersley parameter shows the same effect on both linear velocity and micro-

rotational velocity i.e., both are decreased. 

• An increment in Eringen micropolar vortex viscosity parameter enhances the micro-

rotational velocity and amplifies the pulsatile nature of the profiles; however, at 

intermediate values microrotation is suppressed. 

• The pulsatile constants (B and e) have different effects on velocity, micro-rotational 

velocity and pressure gradient. Pressure gradient increases with the increment in B and 
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e. Also, the pulsatile nature of velocity and micro-rotational velocity increases with an 

increment of B and e. 

• Elevation in volumetric fraction (ϕ) damps the linear velocity oscillations within the 

arterial segment whereas it enhances micro-rotational velocity i.e., greater doping of 

metallic nanoparticles (pharmacological agent) in the blood flow encourages the spin 

of microelements (red blood cells etc). 

• Based on statistical analysis, a significant negative strong correlation is shown to exist 

between the wall shear stress (WSS) and volume fraction (ϕ), Eringen micropolar 

vortex viscosity material parameter (k) and pulsatile constant (e) for the case of a 

diverging tapering artery. 

 

The present study has furnished new insights into nano-doped non-Newtonian microstructural 

hemodynamics in stenosed tapered arteries. Future studies will consider flexibility of the 

arterial vessel i.e., fluid-structure interaction and will be communicated imminently. 
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