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Abstract 

This study determines the bioaccessibility of toxic and carcinogenic arsenic (As) in composite 

food samples and evaluates potential exposure from food intake in Bangladesh children. Total 

As (tAs), inorganic As (iAs) and bioaccessible As (BAs) in food composite samples 

consumed by children were compared between an exposed and a control group (based on As 

in drinking water). Total As concentrations in composite food samples of children exposed to 

mean As level of 331 µg/l in drinking and cooking water ranged from 586 to 1975 µg/kg, dry 

weight over 76 to 90 µg/kg in the unexposed group. Average iAs in food composites was 
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73.9% (range: 49.3 to 90.8%). The fraction of BAs using gastric and gastrointestinal phases 

was 91±13 % and 98±11%, respectively. Daily intake of iAs in exposed group ranged from 

0.41 to 6.38 µg per kg body weight (BW), which was much higher than the unexposed group 

(0.08-0.15 µg per kg BW). High iAs content and BAs in composite food samples indicated 

elevated risk to exposed children. Further research should include both adult and children 

using larger sample size to determine overall As exposure from food intake in Bangladesh, 

attention must be given to lowering of As in food.  

Graphical Abstract 

Keywords: Arsenic; Children; Food composites; Arsenic speciation; Arsenic bioaccessibility; 

Health risk. 

1. Introduction

Human health risk assessment of trace elements, specifically arsenic (As) in food has 

received considerable attention in recent years because of food safety concerns (Antoniadis et 

al., 2017; Antoniadis et al., 2019). Health risk assessment of trace elements including As and 

its effects on plants and humans is crucial for effective regulatory guidelines. A recent study 
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explored the transfer of the trace elements from soil to humans, emphasising that the human 

health risk assessment is a global one. This is due to their possible transfer through the food 

chain to people and is considered to be the main exposure route (Antoniadis et al., 2019). 

Arsenic is a carcinogen that has been detected in the groundwaters of Bangladesh, used both 

for drinking and cooking. Chakraborti et al. (2010) reported 27.2% and 42.1% of the 52,202 

water samples analysed in Bangladesh had concentrations above 50 and 10 μg/l, respectively. 

In addition to drinking water, people from the As-endemic areas in Bangladesh are 

significantly exposed to As through their daily diet (Rahman et al., 2011; Rahman et al., 

2013; Rahman et al., 2009). The risk posed by rice based diet has been well reported 

(Carbonell-Barrachina et al., 2012; Islam et al., 2017c; Signes-Pastor et al., 2016) since rice is 

consumed in large quantities in Bangladesh. Its people usually consume more than 170 kg per 

capita per annum compared to the world average of 57 kg per capita per annum (Shew et al., 

2019). 

Average As content in the uncooked and cooked rice samples collected from 

households of Nawabganj district in Bangladesh was found to be 340 g/kg and 460 g/kg, 

respectively (Ohno et al., 2007) indicating a rising As concentration in cooking whereas 

average As concentration in cooked rice (139 μg/kg) was lower than uncooked rice (153 

μg/kg) in paired samples collected from households in the Noakhali district of Bangladesh 

(Rahman et al., 2011). Concentration of As may vary between uncooked and cooked rice, 

depending on the rice variety, As in raw rice, As in cooking water and process of cooking 

(Bae et al., 2002; Laparra et al., 2005; Mwale et al., 2018). A recent study reported that 

transfer of As from water to rice grains was influenced by the increasing concentration of As 

in water and rice type; concentrations of 84-105 µg/L in cooking water significantly increased 

As concentration (24-337%, and 114 % from sunned and parboiled rice, respectively) in 
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cooked rice (Chowdhury et al., 2020). (Sengupta et al., 2006) found that the traditional 

cooking procedure commonly used in Bangladesh (whereby rice is washed with water until 

clear and excess water is discarded after cooking) can remove up to 57% of rice As. In a study 

conducted in the Monohordi and Munshiganj districts of Bangladesh, the average As content 

reported in cooked rice and cooked vegetables were 358 g/kg and 333 g/kg, respectively 

(Smith et al., 2006). Hence, having cooked rice as a mainstay of the diet can be an important 

route of As exposure. 

Infant and young children are most susceptible to As toxicity, although arsenical 

symptoms in children are rare except when they are exposed to very high concentrations of 

As or suffer from malnutrition (Rahman et al., 2001). Chronic exposure to As pose high 

health risks including neurobehavioural problems and decreased intellectual function in 

children (von Ehrenstein et al., 2007; Wasserman et al., 2004). In a study from Mexico the 

total As (tAs) and inorganic As (iAs) concentrations in children’s diets ranged from 50 to 

1150 µg/kg, and 23 to 88 µg/kg, dry weight (DW), respectively and daily intake of tAs and 

iAs ranged from 0.15 to 10.49 µg per kg BW and from 0.06 to 1.11 µg per kg BW, 

respectively (García‐Rico et al., 2012). In one study from Bangladesh, 2–5 yrs and 6–10 yrs 

age groups were more exposed to As due to rice consumption (Islam et al., 2017b). These 

results are alarming considering the higher risk of children being exposed to As through the 

food they eat.  

In characterisation of As exposure and risk from food intake both in adults and 

children, one aspect that has recieved increased attention is the bioaccessibility of As (BAs) in 

consumed food (Laparra et al., 2005). Various studies have estimated the BAs in uncooked 

food (Signes‐Pastor et al., 2012; Trenary et al., 2012) including shrimp, radish, mushroom, 

etc. (Chi et al., 2018; Hu et al., 2019; Koch et al., 2013) while other studies concentrated on 
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raw and cooked rice (Laparra et al., 2005; Zhuang et al., 2016). A few studies investigated the 

BAs through simulated gastric phase (GP) and gastrointestinal phase (GIP) digestions 

(Llorente-Mirandes et al., 2016; Zhuang et al., 2016). The BAs of GP and GIP in raw rice and 

cooked rice varied from 36-102% and 72-96% respectively (He et al., 2012; Signes‐Pastor et 

al., 2012; Zhuang et al., 2016). While health risk assessments based on the evaluation of BAs 

using different in-vitro assay for individual food items, whether raw or cooked have been 

reported (Laparra et al., 2005; Llorente-Mirandes et al., 2016; Zhuang et al., 2016), As 

speciation and bioaccessibility in food composites using both GP and GIP are limited. 

Furthermore, estimates of children’s exposure to As in based on bioavailability of As in a 

composite diet are rare. To the best of our knowledge, no study has determined the 

concentrations of tAs, iAs and BAs in cooked food composites consumed by children in 

endemic areas which can provide an accurate estimate of As intake, exposure, and risks in 

children. 

 In this communication, for the first time we report As exposure in children from diet 

(lunch and dinner) comprising cooked rice, vegetables and pulses (which are the most 

commonly consumed foods by Bangladeshi people) from two As-contaminated villages in 

Bangladesh. The aim of this study is to determine tAs, iAs and BAs in the children’s diet in 

As-endemic areas of Bangladesh to estimate the health risks for children.  

2. Materials and methods 

2.1. Sample collection and preparation 

All the reagents used in this study were of analytical grade. The details of chemicals 

and reagents are given in the Supplementray Information (SI). For this study, a total of 14 diet 

samples from lunch and dinner menus were collected in 2018 from 14 households in two As-
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contaminated villages (Shahpur and Sursoi), which are located in Chandpur district of 

Bangladesh. It is worth noting that Chandpur was reported to be a severely As-contaminated 

area with 95.7% and 92.6% groundwater samples (n=1165) having As above 10 µg/L, the 

WHO provisional guideline value and 50 µg/L, the Bangladesh standard value of As in 

drinking water, respectively (Chakraborti et al., 2010). Usually in these areas, lunch and 

dinner comprise of cooked rice, fish curry with different vegetables and lentil soup (locally 

known as dal). Households with at least two children were selected at random. Details of 

ethical approval are presented in SI. Altogether 31 children were selected from these two 

contaminated villages (9 boys and 8 girls from Shahpur and 7 boys and 7 girls from Sursoi) 

for this study (denoted as exposed group) and their food portion sizes were weighted for lunch 

and dinner to determine their daily dietary intake rates. For these 31 exposed children (16 

boys and 15 girls) age, body weight as well as daily amount of food consumption (rice, curry 

and dal) was determined. The average age and weight of these children were 8.3 yrs (range 2 - 

15 yrs) and 26 kg (range 10 - 56 kg), respectively. The average daily food consumption (fresh 

wt.) was 304 g (range: 85 – 563 g). For the sake of comparison, diet samples of 4 children 

were also collected from Bhelanagar (denoted as unexposed group) which is situated in the 

Narsingdi Municipality where As-safe drinking water supply was available through a 

pipeline.  

Food samples were collected from a plate (duplicate portion) when it was being served 

to children. The separately cooked rice, curry and dal were mixed and homogenised properly 

to create a composite sample. The mixed food samples were stored in zip-lock bags and 

stored in an ice box with ice and transported to the laboratory and then kept refrigerated until 

processing. These samples were dried in an oven at 65°C for 72h. The dried samples were 

again homogenised by grinding them. The samples were stored in zip-log bags. We also 

collected cooking and drinking water samples from both exposed and unexposed groups. 
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Water samples from both these groups were collected in plastic bottle (pre-washed with 1:1 

nitric acid) and preserved with 0.1% (v/v) nitric acid. The samples were subsequently 

transported to the University of Newcastle by courier under strict biosecurity protocol. 

For tAs determination, the samples were digested using microwave acid digestion 

system that was employed by Islam et al. (2017c). The digests were diluted to 10 mL using 

0.1% HNO3 and passed through a 0.45 µm syringe filter for the determination of tAs in the 

diet samples and water samples using inductively coupled plasma mass spectroscopy (ICP-

MS, PerkinElmer, NexION 350, USA).  

Arsenic speciation analysis for inorganic As – sum of arsenite (AsIII), and arsenate 

(AsV), monomethylarsonic acid (MMA) and dimethyl arsinic acid (DMA) was carried out 

following the method of Signes-Pastor et al. (2016). Details of the procedure have been 

discussed in our previous publication (Islam et al., 2017c). High performance liquid 

chromatography (HPLC, Agilent 1200) coupled with ICP-MS (Agilent 7900) was used for As 

speciation analysis. 

2.2. In-vitro BAs assay 

Physiologically-based extraction test (PBET) is one of the most practical and feasible 

in-vitro methods to determine metal bioaccessibility. The method was adopted from the 

previously described studies (Kafaoglu et al., 2016; Llorente-Mirandes et al., 2016; Zhuang et 

al., 2016). Details procedure are given in SI. The prepared samples were anayzed using ICP-

MS for bioaccessible As.  

The BAs (%) was calculated according to the following equation. 

  s ( )  
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2.3. Quality control  

Standard reference material (SRM 1568b rice flour) obtained from the National 

Institute of Standard and Technology (NIST), USA was used to validate the analysis. 

Concentration of total As in SRM rice flour (1568b) was 266±11 (n=6) µg/kg, indicating 93% 

recovery (certified value of 285±14 µg/kg). Blanks, duplicates and calibration check 

verification (CCV) samples were included. The mean variation between duplicate samples 

(n=12) was 2.8% (0.5-7.1%) and the recoveries for CCVs (n=5) amounted to 103% (99 -

105%). In addition, we determined the accuracy of the As speciation method using SRM rice 

flour. The certified values for DMA, MMA and iAs in SRM rice flour were 180 ± 12 µg/kg, 

11.6 ± 3.5 µg/kg and 92 ± 10 µg/kg, respectively. The analytical results (n=5) for As 

speciation indicated that the values for DMA, MMA and iAs were 162 ±14 µg/kg, 8.2 ± 3.1 

µg/kg and 83 ± 8 µg/kg, respectively. Thus, recoveries for DMA, MMA and iAs were 90%, 

70.7% and 90.2%, respectively. 

2.4. Statistical analysis 

Data were analysed and represented graphically using statistical software JMP version 

14, IBM SPSS version 25, Microsoft Excel 2013, and Graph Pad Prism 8. Confidence level 

from 95% was considered for all statistical analyses. 

2.5. Risk assessment 

To evaluate the potential exposure of children to As , we evaluated the established 

daily dietary intake (EDDI) of As, hazard quotient (HQ) and cancer risk (CR) from cooked 

food using the following equations:  
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 and 

            

Where, FC is cooked food consumption (g/day, fresh weight, FW); iAs is the concentration of 

the inorganic As in food component (µg/kg using FW); BAs is bioaccessibility of As through 

GIP tract (%); BW stands for body weight, (kg) of respective children; ED represents 

exposure duration (years) of the children taking into consideration their respective ages; EF is 

exposure frequency (365 days per year); AT represents average lifetime (365 days per year × 

number of exposure years); CSF is cancer slope factor (1.5 mg/kg per day); and RfD is oral 

reference dose (3×10
-4

 mg/kg per day for As), as suggested by USEPA (IRIS 2013). In the 

case of HQ <1, non-carcinogenic risks are not considered but for HQ >1, there may be 

adverse health effects arising from exposure (Abtahi et al., 2017; Shibata et al., 2016; Zhuang 

et al., 2016). In terms of carcinogenic risk assessment, if CR <10
-6

, the increased cancer risk 

is deemed to be negligible, and >10
-6

 a departure from negligible risk, CR > 10
-4

 is considered 

to be an unacceptable increased cancer risk (Fakhri et al., 2018; Shibata et al., 2016).  

3. Results and discussion 

3.1. Total As in diets 

Mean As in cooking and drinking water (n=5) for the exposed group was 331 µg/l 

(range: 88 - 720 µg/l) whereas As concentration in cooking and drinking water (supply tap 

water, n=2) of the control group was <1 µg/l. The concentration of tAs, iAs and BAs (%) in 

the composite food samples are summarized in Table 1. The mean and range of As in food 

(dry wt.) were 1072 g/kg and 586 – 1975 g/kg for the exposed group, respectively. 

Considering that on average the moisture content was 80% in cooked composite food in this 
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study, the mean and range of As in food (fresh wt.) were 214 g/kg and 117 – 395 g/kg, 

respectively. The tAs concentrations (mean and range) in composite food samples (dry wt.) 

for the control group were 85 µg/kg and 76-90 µg/kg, respectively (Table 1), which were 

equivalent to 17.1 µg/kg and 15.3 – 18.1 µg/kg, fresh wt., respectively. The results (Fig. 1) 

revealed that there was a significant difference between the mean As concentrations in food 

samples between the exposed and control groups (p<0.001), while the mean As concentration 

in food samples collected from exposed group was 12.5 times higher than in the unexposed 

group. The highest concentrations of tAs were 1975 µg/kg (DW) and 395 µg/kg (FW) from 

sample RC1. The tAs concentration in the diets of children in Sonora, Mexico ranged from 50 

to 1150 µg/kg, dry wt (García‐Rico et al., 2012), which was much lower than reported in this 

study.  

It is important ot note here that although children from the control group live in 

municipal areas and use tap water (As<1 µg/L) for drinking and cooking, we do not know 

whether they use food items that are low in As. Generally in the municipal and city areas of 

Bangladesh, food crops including rice, vegetables and pulses are sourced from As-

contaminated villages which are available in local markets. In this study, we were not sure 

about the sources of food crops for both the exposed and control groups, whether they 

originated from contaminated or uncontaminated areas or mixed agro-ecological zones. 

However, since As concentrations in composite food samples for the exposed group were 

much higher than those in the control group, we expect that As concentration in cooking 

water contributed to the increase in As in the cooked food composites. It is also expected that 

the cooking procedure would have affected the concentration of As in food samples (Bae et 

al., 2002; Laparra et al., 2005).  
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3.2. Inorganic As content and speciation 

n this study, inorganic As was the major species present in the food samples (Table 2) 

with an average of 74% (range 49-91%). This is similar to the study conducted by Laparra et 

al. (2005) who reported 77 % (range: 32-103%) of iAs in cooked rice. Smith et al. (2006) 

reported iAs content of 87% and 96% in cooked rice and vegetables, respectively, in samples 

from Bangladesh. Ohno et al. (2007) found up to 100% of iAs in cooked rice from 

Bangladesh. Based on their duplicate diet survey conducted in Pabna, Bangladesh, Kile et al. 

(2007) reported that on average 82% of As present in food samples was iAs (n=35). We could 

not detect any MMA (V) in the food samples but DMA (V) was present in all samples except 

RC 8.  

The iAs concentration in the diets of children in Sonora, Mexico was 23 to 88 µg/kg, 

dry wt (García‐Rico et al., 2012), which is much lower than the present study. The higher iAs 

(289 to 1624 µg/kg, dry wt) detected in this study could be attributed to both cooking process 

and As-contaminated water used for cooking (Bae et al., 2002; Laparra et al., 2005; Zhuang et 

al., 2016). Laparra et al. (2005) reported a 5-17 fold increase in iAs content in the rice, after 

cooking with simulated As-contaminated water. This to a great extent reflects the reality of 

the situation concerning As-endemic areas throughout Asia. A recent study reported that 

cooking water (84-105 µg/l) significantly increased As concentration in sunned (24-337%) 

and parboiled rice (114%) (Chowdhury et al., 2020). 

Maximum tolerance level of iAs in the rice (uncooked) for infants and young children 

is 100 g/kg as recommended by the European Union (EU) (Ashmore et al., 2019). Out of 14 

samples in the exposed group, all exceeded the EU safe level for infants and young children. 

Simulating the cooking practices followed in Asian As-endemic areas, Laparra et al. (2005) 

reported that both tAs and iAs increased when cooking with As-contaminated water and BAs 
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depends on toxic iAs content. However, iAs in cooked rice could be more harmful due to the 

high bioaccessibility of As (>90%) compared to raw rice (Laparra et al., 2005).  

3.3. BAs in cooked food composite 

The bioaccessible fractions of As (mean ± SD) determined in both in-vitro GP and 

GIP digestion were 91 ± 13 % (range 68 -106%) and 98 ± 11% (range 72 -117%), 

respectively (Table 1). No significant difference were observed between the two phases (GP 

and GIP) although slightly more BAs is found in the GIP, which could be due to the effect of 

time. There was no noticeable difference of BAs between the samples collected from the 

control and exposed group. In Sonora, Mexico, BAs ranged from 4 to 97% (mean 44%) 

(García‐Rico et al., 2012), hence, the average value of BAs was much higher in this study 

compared to Sonora. In our previous study, we determined in-vivo BAs in various rice 

genotypes ranging from 25-94% and we reported that the BAs varied based on rice varieties 

(Islam et al., 2017a). Cooking process affects the BAs both in GP and GIP extraction as 

Zhuang et al. (2016) reported that BAs in raw rice using GP and GIP extraction were 62-93% 

and 75-96%, respectively, whereas 38-67% and 72-80% were evident in cooked rice. Several 

studies have investigated the BAs, which ranged from 20% to 99% considering rice, seaweed, 

mushroom, radish and shrimp using different in-vitro methods (Table 2). Based on the limited 

data of BAs regarding cooked and composite food samples further analysis is recommended 

and particularly for children’s diets from other As-contaminated areas.  

The concentrations of tAs, iAs and BAs in both GP and GIP in food composite 

samples of the exposed group were significantly higher (p < 0.001) than the control group 

(Figs. 1A and B). There was, however, no noticeable difference in BAs fraction (shown as 

percentage) between the control and exposed groups. No correlation was observed between 

Jo
ur

na
l P

re
-p

ro
of



13 

 

tAs, iAs and BAs with cooking water. This could be attributed to the food composites, 

including types of rice, vegetables, fish and pulses used in this study. 

Bioaccessibility is generally influenced by the level of contamination in food samples 

(Zhuang et al., 2016). The linear regression illustrated in Fig. 2 displays statistically 

significant relationships (R
2
 = 0.964 -0.983, p <0.001) between tAs with iAs and BAs (both 

GP and GIP) in composite food samples, which confirmed that BAs does rely on As 

concentration (Zhuang et al., 2016). A similar strong relationship (R
2
=0.928, p<0.01) has 

been found between contamination level and bioaccessibility of As in raw rice, and this 

dose’s proportional relationship was considered for the purposes of risk assessment (Zhuang 

et al., 2016).  

3.4. Potential health risk assessment 

Different risk assessment indices such as EDDI, HQ, CR have been calculated using 

the generated data of different cooked food composites for 31 children, which is presented in 

Table 3. Daily intake of tAs and iAs ranged from 0.84-7.75 (mean: 2.7 ± 1.8 and median: 2.1) 

µg per kg/ BW and 0.41-6.38 (mean: 2.0 ± 1.5 and median: 1.7) µg per kg/ BW, respectively. 

In this study, the exposed group had unusually higher values of As intake than the control 

group. Daily intake of tAs was 2.7 (0.15-10.49) µg per kg/BW in García‐Rico et al. (2012) 

study, similar to our findings, yet daily intake of iAs 0.52 (0.06-1.11) µg per kg/BW was 

much lower than this study. A few studies reported higher iAs intake than our findings (Díaz 

et al., 2004; Martí-Cid et al., 2007). The recommended upper limit for iAs exposure by the 

Joint FAO/WHO Expert Committee on Food Additives (JECFA) using the benchmark dose 

lower confidence limit for a 0.5% (BMDL0.5) increased incidence of lung cancer is 3 μg/kg 

BW per day (Cubadda et al., 2017). The mean iAs exposure in this study was below the upper 

recommended limit of 3 μg/kg  W per day although the maximum exposure is more than 
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double the limit. Overall, 32% of the children in our study exceeded the above tolerance level, 

which is also consistent with the 32% reported by (Kile et al., 2007) based on a duplicate 

dietary survey at Pabna district in Bangladesh. The USEPA has stated that there is no "safe" 

level of exposure to iAs because it is very toxic. Inorganic As is directly related to BAs, so 

there is a need to elucidate the risk assessment. A recent study showed that regulation limits 

in most countries do not take into account of the environmental interfaces such as mobility of 

trace elements in plants. It concluded that there were reduced limits of trace elements and 

consequently health risk associated with As were underestimated (Antoniadis et al., 2019). 

Considering BAs as the input parameter for As, EDDI value was 0.35-6.2 μg/kg  W 

per day which was substantially higher than that of the control group in this study (Table 3) 

and higher than the US-based study of Shibata et al. (2016) who reported 0.82 -1.1 μg/kg  W 

per day and the value of 0.53-0.74 μg/kg  W per day as reported by Zhuang et al. (2016). In 

this study, the HQ ranged from 1.2-20.5 (mean: 6.8 and median: 5.6) and the highest value 

was for Sh-B1 in the RC 1 group (Table 3, Fig. 3). All participants in the study area exceeded 

the tolerance level of HQ (>1) that could induce adverse health effects, and HQ was less than 

1 in the control group. Zhuang et al. (2016) found HQ value of 2.3-5.8 for cooked rice while 

(Shibata et al., 2016) stated values of 0.02-0.37 and 0.19-5.17 for acute and chronic doses of 

As from rice cereal and other dietary sources for infants and toddlers in the USA, 

respectively, which were all much lower than this study. Based on the CR assessment, all 

children in this study had a risk level greater than 10
-4

 and Sh-G1 in the group showed the 

highest risk of 9.2x10
-3

. The CR value in this study was notably higher than what Fakhri et al. 

(2018) found (0.2-5.5) ×10
-5 

for shrimp but much lower than the value of (4.5-5.5) ×10
-2 

reported for rice in Iran.  
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To the best of our knowledge this is the first study on bioaccessibility of As in 

children’s composite diet over single food item comparing exposed and non-exposed 

participants in Bangladesh. It is important to note that all soluble fractions of metals are not 

bioavailable/absorbable in the human body (Laparra et al., 2005). Furthermore the in-vitro 

metal bioavailability technique has many problems and limitations, for example, human 

physiology of food digestion is quite complex, involves many biochemical reactions and 

varies from person to person. Also, the amount of soluble/digested metals is not fully 

accessible or absorbable to animal organs (Van Campen and Glahn, 1999). Therefore, further 

research is recommended and both in-vitro and in-vivo bioaccessibility models using a wide 

range of samples must be considered.  

4. Conclusion  

This study evaluated the tAs, iAs and BAs in food composites consumed by children 

in Bangladesh, comparing samples from As exposed and unexposed (based on As in drinking 

water) groups. Results indicated that exposure to iAs from food composite is one of the major 

risks to health due to very high bioaccessibility and consequently should be considered a high 

priority public health issue in Bangladesh where major mitigation measures are focused on 

drinking water. This study revealed that the mean As concentration in food composite 

samples from the exposed group was much higher than those of the unexposed group. It also 

appears that BAs was higher in GIP digestion than GP digestion in food composites. Based on 

the BAs results, the mean EDDI of  s from food composite was just below the JECF ’s 

recommended upper limit of 3 μg/kg  W per day. The higher values of HQ and CR observed 

for the exposed group indicated high risk to children in As-endemic areas. As a part of routine 

As monitoring in Bangladesh, further research is required with larger sample sizes along with 

other food components to estimate the actual risk of As from food intake. Furthermore, 
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considerable attention must be given to lowering of As in food to curtail exposure and health 

risk in As-endemic populations, especially children. Certain practices such as use of As-safe 

cooking water for food preparation and appropriate cooking methods to reduce As content 

should be advocated in As-endemic areas to ensure consumption of food, especially rice in a 

protective way. This study highlights the importance of BAs estimation in food and provides 

a framework for better exposure and risk assessment.  
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Highlights 

 Arsenic bioaccessibility and speciation in food composites of children diet. 

 Inorganic arsenic in food composites was on an average 74%.  

 Arsenic in food composites influenced by contaminated cooking water.  

 Arsenic bioaccessibility was higher in gastrointestinal (99%) than gastric phase (92%). 

 HQ and CR from food intake indicated high risk to children. 
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Fig. 1. Concentrations (µg/kg) of (A) tAs, iAs and (B) BAs (GP and GIP) in food composites 

of children diets. Levels not connected by same letter are significantly different (P<0.001, 

Student t test). 

 

Fig. 2. Statistical correlation between iAs and BAs (GP and GIP) as a function tAs present in 

the children diets from Bangladesh. 
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Fig. 3. Risk assessment of participant’s children regarding ( ) hazard quotient (HQ) and ( ) 

cancer risk (CR) assessment. 

Table 1. Concentrations of tAs, speciated As and BAs in food composites collected from 

Bangladesh 

SM

PL 

ID 

Concentration (dry wt. basis), 

(µg/kg) 

Concentration (fresh wt. basis), (µg/kg) 

tAs  iAs 

(As
III

+

As
V
) 

D

M

A 

BAs 

(GP) 

BAs 

(GIP) 

tAs  iAs D

M

A 

% 

iAs 

BAs 

(GP

) 

BAs 

(GIP

) 

% 

GP 

% 

GI

P 

Exposed group 

RC 

1 

1975 1624 25.

5 

1843 1908 325 325 5.1 82.
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368 381 93.

3 

96.

6 

RC 

2 

758 689 9.9 805 800 138 138 2.0 90.

9 

161 160 106

.1 

105

.5 

RC 

3 

1147 798 13.

6 

994 1102 159 159 2.7 69.

5 

198 220 86.

7 

96.

1 

RC 

4 

839 702 12.

6 

840 887 141 140 2.5 83.

7 

168 177 100

.1 

105

.7 

RC 

5 

792 638 8.5 825 929 128 127 1.7 80.

5 

165 186 104

.1 

117

.2 

RC 
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889 743 16.
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915 986 149 148 3.2 83.
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183 197 103

.0 

110

.9 

RC 1361 1085 15. 1314 1360 217 217 3.2 79. 263 272 96. 99.
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7 9 7 5 9 
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1814 1245 N
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1504 1890 249 249 N

D 

68.
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301 378 82.
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104

.2 
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830 656 11.
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868 820 131 131 2.3 79.
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174 164 104

.7 

98.
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10 
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.4 
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94.
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121 120 72.
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71.
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79 100 67.
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85.
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Me
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N
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72-
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Unexposed (control) group 
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90.3 63.8 13.

2 

93.1 77.2 12.7 12.8 2.6 70.

6 

18.6 15.4 103

.1 

85.

4 

RC 

16 

76.3 38.9 10.

2 

64.2 72.2 7.8 7.8 2.0 51.
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12.8 14.4 84.
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94.
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RC 

17 

90.0 58.2 14.

5 

81.7 100.6 11.6 11.6 2.9 64.
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16.3 20.1 90.

8 

111

.7 

Me

an 

86±8 54±13 13

±2 

80±1
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13 
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13-
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103 

85-
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fresh weight (FW)-after considering 80% moisture content in food composites 
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Table 2. Bioaccessibility of As in different foods 

Food type BA (%) in 

GP fraction 

BA (%) in 

GIP fraction 

Reference 

Food composites (cooked rice, 

curry and dal) 

68 - 106 72 - 117 This study 

Cooked rice 78-81 - (Alava et al., 2013) 

Raw shrimp 76.9 ± 4.3 - (Chi et al., 2018) 

Boiled shrimp 83.7 ± 1.9 - (Chi et al., 2018) 

Fried shrimp 85.9 ± 6.6 - (Chi et al., 2018) 

Children diet 4-97 - (García‐Rico et al., 2012) 

Cooked rice 53-102 - (He et al., 2012) 

Raw radish 60.1 ± 2.3 97.5 ± 1.2 (Hu et al., 2019) 

Boiled radish 32.4 ± 0.9 52.1 ± 1.1 (Hu et al., 2019) 

Raw mushroom 20-91 22-94 (Koch et al., 2013) 

Cooked rice 63-99 - (Laparra et al., 2005) 

Cooked rice, white 75 - (Lee and Lee, 2017) 

Cooked rice, brown 66 - (Lee and Lee, 2017) 

Raw mushroom 74-88 86-97 (Llorente-Mirandes et al., 2016) 

Griddled and boiled mushroom 77-89 80-100 (Llorente-Mirandes et al., 2016) 

Rice (parboiled) 59-99 - (Signes‐Pastor et al., 2012) 

Rice (nonparboiled) 36-69 - (Signes‐Pastor et al., 2012) 

Cooked rice (parboiled) 80-99 - (Signes‐Pastor et al., 2012) 

Cooked rice 38-57 - (Sun et al., 2012) 

Rice 45-79 - (Trenary et al., 2012) 

Raw rice 62-93 75-96 (Zhuang et al., 2016) 

Cooked rice 38-67 72-80 (Zhuang et al., 2016) 
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Table 3. Daily intake of tAs, iAs and health risk assessment of children in Bangladesh  

Sample 

ID 

according 

to gender 

Food 

composites 

ID 

Age 

(yrs) 

Body 

weight 

(BW), 

kg 

Intake 

rate of 

food 

(g/day), 

FW 

Intake of 

tAs µg/kg 

BW 

Intake of 

iAs µg 

per kg 

BW 

EDDI 

(µg/kg 

BW/day) 

HQ CRx10 
-3

 

 Exposed group 

Sh-B1 RC1 5 16.4 315 7.59 6.24 6.0 20.08 9.0 

Sh-B2 RC2 12 33.4 563 2.56 2.32 2.4 8.14 3.6 

Sh-B3 RC4 14 32.9 401 2.05 1.71 1.8 5.97 2.7 

Sh-B4 RC5 7 17.1 263 2.44 1.96 2.3 7.68 3.4 

Sh-B5 RC5 13 43.7 319 1.16 0.93 1.1 3.64 1.6 

Sh-B6 RC5 3 13.3 176 2.10 1.68 2.0 6.61 2.9 

Sh-B7 RC6 3 13.1 148 2.01 1.68 1.8 6.19 2.8 

Sh-B8 RC8 7 19.5 289 5.38 3.69 3.8 12.79 5.7 

Sh-B9 RC8 9 19.1 299 5.68 3.90 4.0 13.51 6.1 

Su-B10 RC10 8 21.2 218 3.81 3.19 3.1 10.52 4.7 

Su-B11 RC11 7 32.2 299 1.36 0.76 0.72 2.39 1.1 

Su-B12 RC11 13 35.1 331 1.38 0.77 0.73 2.43 1.1 

Su-B13 RC11 14 38.5 348 1.33 0.74 0.70 2.32 1.0 

Su-B14 RC12 8 23.9 395 1.98 1.39 1.3 4.38 2.0 

Su-B15 RC12 4 16.2 281 2.07 1.46 1.4 4.59 2.17 

Su-B16 RC14 9 26.5 203 0.90 0.44 0.4 1.26 0.6 

Sh-G1 RC1 3 13.2 259 7.75 6.38 6.1 20.51 9.2 

Sh-G2 RC2 6 16.5 385 3.54 3.22 3.4 11.27 5.1 

Sh-G3 RC3 9 28.4 424 3.42 2.38 2.3 7.65 3.4 

Sh-G4 RC3 2 10.1 85 1.93 1.34 1.3 4.31 1.9 

Sh-G5 RC4 7 20.3 405 3.35 2.80 2.9 9.78 4.4 
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Sh-G6 RC5 15 40.7 457 1.78 1.43 1.7 5.61 2.5 

Sh-G7 RC7 3 12.8 232 4.93 3.94 3.9 13.10 5.9 

Sh-G8 RC9 14 31.8 355 1.85 1.47 1.4 4.82 2.2 

Su-G9 RC10 13 42 316 2.79 2.33 2.4 8.09 3.6 

Su-G10 RC11 11 56.2 489 1.28 0.71 0.7 2.24 1.0 

Su-G11 RC12 7 24.4 226 1.11 0.78 0.7 2.45 1.1 

Su-G12 RC12 3 15.7 182 1.39 0.98 0.9 3.07 1.4 

Su-G13 RC13 2 9.9 171 2.90 1.71 1.2 4.09 1.8 

Su-G14 RC14 15 50.5 360 0.84 0.41 0.3 1.18 0.5 

Su-G15 RC14 11 29.9 251 0.98 0.49 0.4 1.39 0.6 

Mean  8.2±4.2 26±12 304±106 2.7±1.8 2.0±1.5 2.0±1.5 6.7±5.1 3.1±2.3 

Range  2-15 10 -56 85-563 0.8-8 0.4-6 0.3-6 1-20 0.5-9 

 Unexposed group 

Bh-G1 RC15 11 47.2 356 0.09 0.09 0.08 0.3 0.1 

Bh-G2 RC15 11 46.6 354 0.10 0.09 0.08 0.3 0.1 

Bh-B1 RC16 6 29.4 316 0.17 0.08 0.08 0.2 0.1 

Bh-B2 RC17 7 25.4 323 0.16 0.15 0.09 0.3 0.1 

Mean  8.7±2.6 37±11 337±21 0.13±0.04 0.10±0.03 0.08±0.01 0.3±0.03 0.12±0.01 

Range  6-11 25-47 316-356 0.1-0.2 0.1-0.1 0.07-0.09 0.3-0.3 0.12-0.14 

Note: Sh = Shahpur, Su = Sursoi, Bh = Bhelanagar, B= Boy; G=Girl Jo
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