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ABSTRACT 

The onset of double-diffusive (thermosolutal) convection in horizontal porous layer saturated 

with an incompressible couple stress nanofluid saturated is studied with thermal conductivity 

and viscosity dependent on the nanoparticle volume fraction. To represent the momentum 

equation for porous media, a modified Darcy-Maxwell nanofluid model incorporating the 

effects of Brownian motion and thermophoresis has been used. The thermal energy equation 

includes regular diffusion and cross diffusion (Soret thermo-diffusion and Dufour diffuso-

thermal) terms. A linear stability analysis depends on the normal mode technique and the 

onset criterion for stationary and oscillatory convection is derived analytically. The nonlinear 

theory based on the representation of the Fourier series method is applied to capture the 

behavior of heat and mass transfer. It is found that the couple stress parameter enhances the 

stability of the system in both the stationary and oscillatory convection modes. The viscosity 

ratio and conductivity ratio both enhance heat and mass transfer. Transient Nusselt number is 

found to be oscillatory when time is small. However, when time becomes very large, all the 

three transient Nusselt number values approach to their steady state values. 
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Nomenclature 

C solute concentration (moles) 

BD  Brownian diffusion coefficient ( 2m s )  

TD  thermophoretic diffusion coefficient ( 2m s ) 

H  dimensional sandwich layer depth ( m ) 

k  thermal conductivity of the nanofluid (W/m K) 

mk  overall thermal conductivity of the porous medium saturated by the nanofluid      

                   (W/m K) 

K permeability ( 2m ) 

Le thermo-solutal Lewis number 

Ln  Lewis number 

AN  modified diffusivity ratio 

BN  modified particle-density increment 

CTN  Soret parameter 

TCN  Dufour parameter 

*p  pressure (Pa) 

p  dimensionless pressure, ( ) ( )*

fp K   

a  non dimensional acceleration coefficient 

Va Vadász number 

TRa  thermal Rayleigh- Darcy number 

Rm  basic-density Rayleigh number 

Rn  concentration Rayleigh number 

PC  Couple-stress parameter, 
2

C

eff H




 

Rs solutal Rayleigh number 

*t  time (s) 

t  dimensionless time, ( )* 2

ft H  

*T  nanofluid temperature (K) 
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T  dimensionless temperature, 
* *

* *

c

h c

T T

T T

−

−
 

*

cT  temperature at the upper wall (K) 

*

hT  temperature at the lower wall (K) 

( ), ,u v w  dimensionless Darcy velocity components ( )* * *, , mu v w H  (m/s) 

v  nanofluid velocity (m/s) 

( ), ,x y z  dimensionless Cartesian coordinate ( )* * *, ,x y z H ; z is the vertically upward  

 coordinate 

( )* * *, ,x y z  Cartesian coordinates 

Greek symbols 

f        thermal diffusivity of the fluid, 2(m/s )  

C        solutal volumetric coefficient ( 1K − ) 

T  thermal volumetric coefficient ( 1K − ) 

  viscosity variation parameter 

  porosity 

  thermal conductivity variation parameter 

  dynamic viscosity of the fluid (kgm/s) 

  fluid density (kg/m3) 

p  nanoparticle mass density (kg/m3) 

  thermal capacity ratio 

*  nanoparticle volume fraction 

  relative nanoparticle volume fraction,
* *

0

* *

1 0

 

 

−

−
 

Subscripts/superscripts 

b       basic solution 

f       fluid 

p       particle 
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*       dimensional variable 

'        perturbed variable 

St       stationary 

Osc       oscillatory 

1. Introduction 

A fluid that contains particles with dimensions less than 100 nm is referred to as a 

nanofluid. The base fluid, or dispersing medium, can be aqueous or non-aqueous in nature. 

Typical nanometer-sized particles are metals, oxides, carbides, nitrides or carbon nanotubes. 

Their shapes may be spheres, discs or rods. Since nanofluids offer significant potential 

applications in engineering (e.g. petroleum recovery, electronics cooling etc), hence the study 

of nanofluids has evolved into a substantial branch of nanotechnology. The fundamental 

science of nanofluids spans colloidal science, surface chemistry, fluid mechanics and 

materials science. There has been a significant interest in nanofluids in recent years. This 

interest is generated by a variety of applications, ranging from laser-assisted drug delivery to 

heating control in lubrication systems. Nanofluids are composed of nanoparticles (with sizes 

typically in the range between 1 and 100 nm) suspended in a base fluid, which can be water 

or an organic solvent [1,2]. The area of nanofluids was pioneered by Choi and Eastman [3]. 

Characteristic features of nanofluids are the formation of very stable colloidal systems with 

very little settling (the stability of the suspension is typically achieved by electrostatic 

stabilization by adjusting the pH, [4]) and anomalous enhancement of the thermal 

conductivity in comparison with the base fluid [5]. An extensive number of recent papers 

report on the experimental measurements of thermophysical properties of nanofluids, 

including specific heat, thermal conductivity and viscosity [6-8]. Lee et al. [9] Researchers 

have demonstrated that oxide ceramic nanofluids consisting of CuO  or 2 3Al O  nanoparticles 

in water or EG exhibit enhanced thermal conductivity. Theoretical work for the nanofluids in 

the framework of boundary layer theory was initiated by Buongiorno [10] by  emphasizing 

the Brownian diffusion and thermophoresis slip mechanisms; this became subsequently 

known as the “Buongiorno model” and set a benchmark among later nanofluid boundary 

layer modelling. Combined thermophoresis and Brownian motion effects on nanofuid free 

convection heat transfer in an L-shaped enclosure were taken into consideration by 

Sheikholeslami et al. [11]. Their results show that the Nusselt number increases with 
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increases in either the thermal Rayleigh number or the Lewis number whereas it decreases 

with increases in either the aspect ratio or concentration Rayleigh number.  

The unsteady stagnation-point flow and heat transfer of a nanofluid containing 

gyrotactic microorganisms past a permeable moving surface was researched by Basir et al. 

[12]. They concluded that stability analysis distinguishes the upper branch solution as a 

stable solution, whereas the lower solution is the unstable solution.  Sheikholeslami et al. 

[13] demonstrated experimentally the influence of adding nanoparticles in boiling heat 

transfer of R600a within flattened pipes.  They used R600a/oil/Cuo as a carrier fluid and they 

concluded that an increase in the flattened percentage enhances the heat transfer coefficient.  

The impact of using fins and nano-sized materials on performance of discharging systems 

was investigated by Sheikholeslami et al. [14].  They reported that the shapes of 

nanoparticles also effect the transient process and that the presence of nanoparticles improves 

the discharging rate. Recently Sheikholeslami et al. [15] studied methods for accelerating 

discharge process of clean energy storage unit with insertion of porous foam considering 

nanoparticles enhanced with paraffin.  They noted that throughout solidification, liquid 

paraffin loses heat to air and become colder itself and solidifies and effectively this process 

guides the air to become warmer.  Sheikholeslami et al. [16] scrutinized energy and entropy 

generation in a two-phase simulation of nanoparticles within a solar unit featuring a new 

turbulator.  They claimed that to reach the accurate simulation of nanofluid, non-homogenous 

models give better results in comparison with single-phase models.  Mahalakshmi et al. [17] 

investigated numerically the natural convection inside an enclosure with a centre heater using 

nanofluids.  They considered ,Ag CuO  and 2 3Al O as nanoparticles and water as the carrier 

fluid. They proved that heat transfer was elevated with the heater and higher Rayleigh 

numbers. 

In recent years, a new type of heat transfer fluid using “hybrid nanofluids‟ has been 

developed. Different from the regular nanofluid which contains one type of nanoparticle, a 

hybrid nanofluid is an advanced nanofluid that contains two distinct nanoparticles dissolved 

in the base fluid. Waini et al. [18] derived and studied dual solutions of the unsteady flow of 

a hybrid nanofluid along a stretching or shrinking surface with heat transfer. Solution 

stability was analysed by conducting a temporal stability analysis, and it was shown that only 

one solution is stable whereas the other is not practicable. Waini et al. [19] also reported on 
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steady flow and heat transfer of hybrid nanofluids from a permeable moving surface.  They 

used alumina and copper as nanoparticles and water as a carrier fluid.  They discovered that 

the second solution was not stable while the first solution was stable. Izadia et al. [20] also 

considered hybrid nanofluids to investigate free convection under an inclined periodic 

magnetic field within a porous medium.  They considered the nano-liquid as Ag-MgO 

nanosized particles inserted in water, observing that  the magnetic field inclination angle and 

periodical magnetic field wavelength control the heat transfer performance within the liquid 

and solid phases. 

One promising application of nanofluids is heat transfer enhancement, and there is 

still a considerable number of unanswered questions in this area. During the last few decades, 

the problem of double-diffusive (thermo-solutal) convection in porous media has attracted 

considerable interest. Such flows arise in a wide range of applications, from the solidification 

of binary mixtures to the migration of solutes in water-saturated soils. Geophysical systems, 

electrochemistry and the migration of moisture through air contained in fibrous insulation are 

some other important examples. A comprehensive review of the literature concerning double-

diffusive natural convection in a fluid-saturated porous medium is provided by Nield and 

Bejan [21]. The articles by Mojtabi [22], Mojtabi and Charrier-Mojtabi [23] and Mamou [24] 

also furnish detailed surveys of double-diffusive convection in porous media. The multi-

dimensional heat equation of arbitrary order which arises in the diffusion process was 

derived by Kumar et al. [25] using He’s homotopy perturbation transform method and a 

residual power series method. A comparative study using Harr’s wavelet and Adams-

Bashforth-Moulton methods, was also presented by Kumar et al. [26] who studied the well- 

known Lotka-Bolterra population model.  Mixed convective flow in a vertical channel filled 

with electrically conducting viscous fluid with isothermal wall conditions was investigated 

by Umavathi et al. [27] for variable fluid properties.   

All the earlier studies on double-diffusive convective transport phenomena in porous 

media have been mainly concerned with the problem of convective instability in a horizontal 

layer heated with salt diffusion from below. Nield [28] initiated the study of double-diffusive 

convection in a porous medium based on linear stability theory for various thermal and 

solutal boundary conditions. An extension of Nield’s analysis was reported by Taunton et al. 

[29] who examined the salt-fingering convection case in a porous layer. In modern 



7 

 

engineering technology, the importance of non-Newtonian fluids has been growing with the 

development of novel systems and products and hence the investigations on such fluids are 

desirable. During recent years the theory of microstructural fluids has received much 

attention since traditional Newtonian fluids cannot precisely describe the characteristics of 

fluids containing suspended particles. The study of such fluids finds applications in the 

extrusion of polymers, solidification of liquid crystals, cooling of metallic plates in a bath, 

exotic lubricants, geophysical convection and colloidal suspensions in chemical engineering. 

In the category of non-Newtonian fluids, couple stress fluid has distinct features, such as 

polar effects. The theory of polar fluids and related theories provide a sound framework for 

simulating liquids with significant microstructural characteristics. Couple stresses are of 

noticeable magnitude in liquids with very large molecules. 

The thermal stability of a couple stress fluids has also received attention. Various 

investigators have considered multiple physical effects. Onset of thermal convection in an 

electrically conducting couple-stress fluid-saturated porous layer in the presence of a 

magnetic field was studied by Sharma and Thakur [30]. They reported that increasing couple 

stress effect postpones the onset of stationary convection. Sunil et al. [31] studied the 

hydrodynamic stability of superposed couple-stress fluids in a porous medium with magnetic 

body force. They derived a sufficient condition for the non-existence of over-stability. In 

another work, the effect of suspended particles on double-diffusive convection in a couple-

stress fluid-saturated porous medium was investigated by Sunil et al. [32]. They reported that 

for the case of stationary convection, the stable solute gradient and couple stress have 

stabilizing effects, whereas the suspended particles and medium permeability have 

destabilizing effects. 

Inspection of the scientific literature shows that the double diffusive (thermo-solutal) 

convection in a layer of porous medium saturated by a couple stress nanofluid however has 

not, thus far, received attention despite important applications in for example enhanced oil 

recovery. Therefore, the objective of the present paper is to investigate this problem in a 

parallel plate configuration with the additional effects of Soret and Dufour thermodiffusion 

and diffuso-thermal gradients, viscosity variation and thermal conductivity variation. 

Emphasis is placed on evaluating the onset of double diffusive convection using the couple 

stress non-Newtonian model with emphasis on how the conditions for the onset of 
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convection are modified by the presence of non-reactive, homogenously dispersed 

nanoparticles. Further we perform a weakly non-linear stability analysis of the rheological 

nanofluid thermal instability porous medium problem using the minimal representation of 

Fourier series to compute heat and mass transfer characteristics at the system boundaries 

(plates). Comprehensive visualization of computations is included, and a detailed 

interpretation provided.  

 

2. Mathematical formulation 

2.1  Conservation equations 

We select a coordinate frame in which the z*-axis is aligned vertically upwards. We consider 

a horizontal layer of couple stress nanofluid confined between the planes * 0=z  and * =z H . 

Asterisks are used to denote dimensional variables. Each boundary wall (plate) is assumed to 

be perfectly thermally conducting. The regime is depicted in Fig. 1. The plates lie in the x*-

y* plane.  

 

Fig. 1 Physical model 

The temperatures and concentrations at the lower and upper boundary are taken to be 

* *

0T T+  ,  * *

0C C+ , 
*

0T and *

0C  respectively. The Oberbeck Boussinesq approximation is 

employed. In the linear stability theory being applied here, the temperature change in the 

fluid is assumed to be small in comparison with 
*

0T . The mass conservation equation takes 

the form: 
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* *. 0D =v                                                                                                                     (1) 

Here, 
*

Dv  is the nanofluid Darcy velocity. We write ( )* * * *, ,D u v w=v  .  

In the presence of thermophoresis, the conservation equation for the nanoparticles, in the 

absence of chemical reactions, takes the form: 

1
. .D B T

T
D D

t T


 



  
    

 

  
+  =  + 

  
v                               (2)  

where    is the nanoparticle volume fraction,   is the porosity, T  is the temperature, BD  is 

the Brownian diffusion coefficient, and TD  is the thermophoretic diffusion coefficient. 

Introducing a buoyancy force, adopting the Boussinesq approximation, and using the Darcy 

model for a porous medium, the momentum equation can be written as: 

( )
*

*

D*

1
gD

eff Cp
t K


  



 
= − − − +



v
v        (3) 

Here   is the overall density of the nanofluid, which we now assume to be given by: 

( ) ( ) ( )* * * * *

p 0 T 0 01 1 CT T C C        = + − − − − −
 

                           (4) 

where C  is the concentration, p  is the particle density, 0  is a reference density for the 

fluid, T  is the thermal volumetric expansion coefficient and C  is the analogous solutal 

coefficient. The thermal energy (heat conservation) equation for the nanofluid can be written 

as:  

( ) ( ) ( )
* *

* * *2 * * *

D m B T *m f p
0

*2

.
. .

TC

T T T
c c T k T c D T D

t T

c D C

    




 





   
+  =  +   + 

  

+ 

v
  (5) 

Here c is the fluid specific heat (at constant pressure), mk   is the overall thermal conductivity 

of the porous medium saturated by the nanofluid, pc is the nanoparticle specific heat of the 

material constituting the nanoparticles, TCD  is a diffusivity of Dufour type.  

To this we add a conservation equation for the solute (distinct species from the nanoparticles) 

of the form: 

*
* * * *2 * *2 *

D*

1
. Sm CT

C
C D C D T

t 


+  =  + 


v                   (6) 
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Here S mD is the solutal diffusivity for the porous medium and CTD  is a diffusivity of Soret 

type. It has been assumed that the nanoparticles do not affect the transport of the solute. 

 

Thus, 

            (1 )m eff sk k k = + −                                                                                                      (7) 

where   is the medium porosity, 
effk  is the effective conductivity of the nanofluid (fluid plus 

nanoparticles), and sk is the conductivity of the solid material forming the matrix of the 

porous medium. 

We now introduce the viscosity and thermal conductivity dependence on nanoparticle 

fraction. Following Tiwari and Das [33], we adopt the following formulae based on mixture 

theory: 

* 2.5

1

(1 )

eff

f



 
=

−
                                                                                                          (8) 

*

*

( 2 ) 2 ( )

( 2 ) ( )

eff p f f p

f p f f p

k k k k k

k k k k k





+ − −
=

+ + −
                                                                                  (9) 

      Here fk and pk are the thermal conductivities of the fluid and the nanoparticles, 

respectively. Equation (8) was obtained by Brinkman [34], and (9) is the Maxwell-Garnett 

formula for a suspension of spherical particles originally reported by Maxwell [35]. 

In the case where *  is small compared with unity, we can approximate these formulae by: 

             
*1 2.5

eff

f





= + ,  

*

*

*

( 2 ) 2 ( ) ( )
1 3

( 2 ) ( ) ( 2 )

eff p f f p p f

f p f f p p f

k k k k k k k

k k k k k k k






+ − − −
= = +

+ + − +
                     (10) 

We assume that the temperature and the volumetric fraction of the nanoparticles are constant 

on the boundaries. The appropriate boundaries conditions are therefore: 

* * * * * * * * *

0 0 00, , ,w T T T C C C  = = + = + =  at 
* 0z = ,                                      (11a)                                             

  * * * * * * *

0 0 10, , ,w T T C C  = = = = at *z H=                                                              (11b)                                                      

We introduce dimensionless variables as follows. We define:  

* * * * 2 * * *( , , ) ( , , ) / , / , ( , , ) ( , , ) / ,m mx y z x y z H t t H u v w u v w H  = = = , 

* / f mp p K  = ,  
* *

0

* *

1 0

 


 

−
=

−
 ,  

* *

0

*

T T
T

T

−
=


,  

* *

0

*

C C
C

C

−
=


, 

2

C
P

eff

C
H




=             (12)                                            
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where 

( )
,

( ) ( )

p mm
m

p f p f

ck

c c


 

 
= =  

We also define 

 ,
eff

f





=   

p

f

k
k

k
= ,   s

s

f

k
k

k
= ,     m

f

k
k

k
=                                                                   (13)                                                                                   

From (7), (10) and (13) we have: 

* * *

0 1 01 2.5[ ( )]    = + + − , * * *

0 1 0

1
1 3[ ( )] (1 )

2

p

s

p

k
k k

k
     
 − 

= + + − + − 
+  

              (14) 

Then Eqn. (1) and (3) with (4), (5), (2), (11) take the form: 

. 0 =v                                                                                                                       (15) 

( ) ( )2 ˆ ˆ ˆ ˆ1 /a z T z z zp Cp Rme Ra Te Rs Le Ce Rn e
t

  


= − − −  − + + −


v
v                    (16) 

2 2. . .B A B
T C

N N NT
T k T T T T N C

t Ln Ln



+  =  +   +   + 


v                                    (17) 

2 21 1 1
. CT

C
C C N T

t Le 


+  =  + 


v                                                              (18) 

2 21 1 1
. AN

T
t Ln Ln


 

 


+  =  + 


v                                                                           (19) 

0, 1, 1, 0 0w T C at z= = = = = ,  0, 0, 0, 0 1w T C at z= = = = =            (20) 

Here 

a
Va





= , m

B

Ln
D


= ,

2 Pr
Va

Da


= ,

*

T
T

f m

g KH T
Ra

 

 


= , Pr

f

m




= ,

2

K
Da

H
= ,

*

C

f S m

g KH C
Rs

D

 




= ,

0 0(1 )p

f m

gKH
Rm

   

 

  + − = ,

* *

1 0( )( )p

f m

gKH
Rn

   

 

− −
= ,

*

* *

1 0

,
( )

T
A

B c

D T
N

D T  


=

−
 

*

1 0( ) ( )

( )

p

B

f

c
N

c

   



 −
= , 

f

S

Le
D


= , 

*

*

T C

T C

m

D C
N

T


=


, 

*

*

CT

CT

m

D T
N

C


=


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The parameter  a  is the non dimensional acceleration coefficient, Ln  is a thermo-nanofluid 

Lewis number, Va  is a Vadász number, TRa  is the familiar thermal Rayleigh–Darcy number,  

Pr is the Prandtl number, Da is the Darcy number, Rs is the familiar solutal Rayleigh number, 

The new parameters Rm and Rn may be regarded as a basic-density Rayleigh number and a 

concentration Rayleigh number, respectively. The parameter AN  is a modified diffusivity 

ratio and similar to the Soret parameter arising in cross-diffusion phenomena in solutions, 

while BN  is a modified particle-density increment, Le is the familiar thermo-solutal Lewis 

number.  

In the spirit of the Oberbeck–Boussinesq approximation, (16) has been linearized by 

the neglect of a term proportional to the product of   and T. This assumption is likely to be 

valid in the case of small temperature gradients in a dilute suspension of nanoparticles. 

 

3.  Solutions 

3.1 Basic solution 

We seek a time-independent quiescent solution of Eqns. (15) - (20) with temperature and 

nanoparticle volume fraction varying in the z-direction only, that is a solution of the form 

0, ( ), ( ), ( ), ( )b b b bp p z T T z C C z z = = = = =v                                                        (21) 

Equations (16)-(19) reduce to: 

( )0 /b
T b b b

dp
Rm Ra T Rs Le C Rn

dz
= − − + + −                                                           (22) 

22 2

2 2
0b b b bB A B

T C

d T d dT d CN N N
k N

dz Ln dz Ln dz dz

  
+ + + = 

 
                                                   (23) 

2 2

2 2

1
0b b

CT

d C d T
N

Le dz dz
+ =                                                                          (24) 

2 2

2 2
0b b

A

d d T
N

dz dz


+ =                                                                                                    (25) 

According to Buongiorno [10], for most practical nanofluids, ( )1 0Ln   −  is large, of 

order
510 –

610 , and since the nanoparticle fraction decrement is typically no smaller 
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than 310 this means so that Ln is large, of order 210 – 310 , while AN  is no greater than about 

10. Using this approximation, the basic solution is found to be: 

zTb −=1 , 1bC z= −  and so b z =                                                                           (26) 

 

 

 

3.2 Perturbation solution 

We now superimpose perturbations on the basic solution as follows: 

'=v v   , 'bp p p= + , 'bT T T= + , 'bC C C= + , 'b  = +                                       (27) 

These are substituted in Eqns. (13)–(19), and after linearizing by neglecting products of 

primed quantities, the following equations are obtained when Eqn. (26) is used: 

. ' 0 =v                                                                                                                      (28) 

( ) ( )
'

2 ˆ ˆ ˆ' 1 ' ' / ' 'a T z z zp Cp Ra T e Rs Le C e Rn e
t

  


= − − −  + + −


v
v                          (29) 

2 22' ' ' '
' ' 'B A B

T C

N N NT T T
w k T N C

t Ln z z Ln z

    
− =  + − − +  

    
                               (30)           

2 21 ' 1 1
' CT

C
w C N T

t Le 


+ =  + 


                            (31)           

2 21 ' 1 1
' 'AN

w T
t Ln Ln




 


+ =  + 


                                                                           (32)               

' 0w = , ' 0T = , ' 0, ' 0C = = at 0=z and at z = 1                                                       (33) 

Next the viscosity and conductivity distributions can be approximated by substituting the 

basic solution expression for  , namely that given by  (26), into (14), we obtain: 

* * *

0 1 0( ) 1 2.5 ( ) ,z z     = + + −  ( )* * *

0 1 0

1
( ) 1 3 (1 )

2

p

s

p

k
k z z k

k
     
 −  = + + − + −   +  

      

                                                                                                                                               (34) 

It will be noted that the parameter Rm  is essentially a measure of the basic static 

pressure gradient and is not involved in these and subsequent equations. The emerging 

problem has properties are heterogeneous. These are now the viscosity and thermal 

conductivity (rather that the more conventional permeability and thermal conductivity) and 
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the methodology of many studies is employed, as surveyed by Nield [36]. We assume that 

the heterogeneity is weak in the sense that the maximum variation of a property over the 

domain considered is small compared with the mean value of that property in the same 

domain. The seven unknowns u , v , w ,p ,T , ',C      can be reduced to four by operating on 

Eqn. (29) with 
zê curl curl and using the identity curl curl   grad div - 2  together with (28) 

and the weak heterogeneity approximation. The result is: 

( )( ) ( )2 2 ' 2 2 2 '( ) ( ) ' / 'a T H H Hz s z Cp w Ra T Rs Le C Rn   + −   =  +  −                (35) 

Here 2

H  is the two-dimensional Laplacian operator on the horizontal plane. 

The differential equations (35), (29), (30), (31), (32) and the boundary conditions (33) 

constitute a linear boundary-value problem which can be solved using the method of normal 

modes. We write: 

( )   ( )', ', ', ' ( ), ( ), ( ), ( ) expw T C W z z z z st ilx imy =    + +                                     (36) 

Substituting into the differential equations leads to: 

( ) ( )( )( ) ( )2 2 2 2 2 2 2( ) ( ) / 0a P Tz s z C D D W Ra Rs Le Rn       + − − − + +  −  =

                                 (37)                                              

( ) ( )2 2 2 22
( ) 0B A B B

TC

N N N N
W D k z D D s D N D

Ln Ln Ln
 

 
+ − + − − − + −  = 
 

   (38) 

( )2 2 2 21 1 1
0CTW D s N D

Le
 

 

 
+ − −  + −  = 

 
                                                 (39) 

( ) ( )2 2 2 21 1 1
0AN

W D D s
Ln Ln

 
 

 
− − − − −  = 

 
                                     (40) 

0, 0, 0, 0W =  = =  = at 0z =  and 1z =                                                        (41) 

where s  is the perturbation growth rate which is in general of complex form, and the 

following notation, is then used:  

dz

d
D   and  2 2 1/ 2( )l m = +  .                                                                                    (42) 

Thus   is a dimensionless horizontal wave number. 

For neutral stability the real part of s is zero. Hence we now write is = , where   is real 

and is a dimensionless frequency. 
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We now employ a Galerkin-type weighted residuals method to obtain an approximate 

solution to the system of (37)–(41). We choose the following trial functions (satisfying the 

boundary conditions), , , , ; 1,2,3......p p p pW p   =  and write: 

W=
1

N

p p

p

A W
=

 ,
1

N

p P

p

B
=

 =  ,
1

N

p p

p

C
=

=  ,
1

N

p P

p

D
=

 =                                         (43) 

Insertion into Eqns. (37)–(41), and making the expressions on the left-hand sides of those 

equations (the residuals) orthogonal to the trial functions, generates a system of 4N linear 

algebraic equations in the 4N unknowns , ,p p pA B C , pD , p =1, 2, . . . N. The vanishing of the 

determinant of coefficients produces the eigenvalue equation for the system. One can regard 

TRa  as the eigenvalue. Thus TRa  is found in terms of the other parameters. 

Trial functions satisfying the boundary condition (41) can be chosen as: 

sinp p p pW p z=  =  =  = ; p = 1, 2, 3, …                          (44) 

The eigenvalue equation is 

det M = 0                                                                                                                   (45) 

where, 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

M M M M

M M M M
M

M M M M

M M M M

 
 
 =
 
 
  

                                                                                      (46) 

and, for i, j = 1, 2, …, N. 
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( ) ( ) ( )( ) ( ) ( )( )

( )

( ) ( )

( )

( )

( ) ( ) ( )

( )

( )

2 2 2 2

11

2

12

2

13

2

14

21

2 2

22

2 2

23

24

/

2

a P j i a P j iij

T j iij

j iij

j iij

j iij

A B B
j i j i j i j iij

TC j i TC j iij

B

ij

M z s z C D W D W z s z C D W W

M Ra W

M Rs Le W

M Rn W

M W

N N N
M k z D k z s D

Ln Ln

M N D N

N
M

L

      











= − + − + + −

= − 

= − 

= 

= − 

 
= −   +   +   + −   

 

= −   +  

= j iD
n

 

 

( )

( )

( )

( )

( )

31

2 2

32

2 2

33

34

41

1

1

0

1

j iij

CT i j CT i jij

j i j i j iij

ij

j iij

M W

M N D N

s
M D

Le

M

M W










= − 

= −   +  

 
= −   +   +   

 

=

= − 

 

 

( ) ( )2 2

42
A

j i j iij

N
M D

Ln
=   −    

( )43 0
ij

M =  

( ) ( )2 2

44

1
j i j i j iij

s
M D

Ln



=   −   −                                                   (47) 

Here ( ) ( )
1

0

.f z f z dz   In the present case, where viscosity and thermal conductivity 

variations are incorporated, the critical wave number is unchanged, and the stability 

boundary becomes: 
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( ) ( )

1

2

3

4 2

2

1 1TC
T

TC CT a

P TC CT

JN J s s J s
Ra J

Ln Le Ln

J s J s s J s
J J J N N s

Le Ln Ln

J s J s J s s
C J N N J J

Ln Le Ln

Rs

Le

    


 

  




  



−

     
= + − + +     

     

 +     
− + + + + + +      

      

 +     
+ − + + +      

      

2

CT

CTA A
TC

J s J s J s
JN

Ln Ln

JNN J N Js J s s
Rn J J JN

Le Ln Le Ln



  




    

 
 
 
 
 
 
 

 +     − + + + +           
 

     +   
+ + + − +        

        

              (48) 

where 

J  =  2 2( ) + , ( )* *

1 01 1.25  = + +  

( )* *

1 03 1
(1 )

2 2

p

s

p

k
k

k

  
  

+  −
= + − +  

 + 

                                                                   (49) 

We observe that when there is no thermal conductivity variation (that is 1, = as when 

1sk = and 1)pk =  the effect of viscosity variation is to increase the critical Rayleigh number 

by a factor  . The additional effect of thermal conductivity variation   is expressed by Eqn. 

(49). When 1sk = , the maximum value of   is 2.5 ( )* *

1 0 +  which is achieved when 

1 = and pk → . 

It is worth noting that the factor  comes from the mean value of  ( )z  over the range [0,1] 

and the factor   is the mean value of ( )k z  over the same range. This implies that when 

evaluating the critical Rayleigh number it is a good approximation to base that number on the 

mean values of the viscosity and thermal conductivity which are founded in turn on the basic 

solution for the nanofluid fraction. 

 

3.3 Linear stability Analysis 

3.3.1 Stationary Mode 



18 

 

By virtue of the principle of exchange of stabilities (i.e., steady case), we have s = 0 

( ). ., 0r i r ii e s s is s s= + = = =  at the margin of stability. For a first approximation we take 

1N = . Then the Rayleigh number at which the marginally stable steady mode exists 

becomes: 

( )

( ) ( )

( )

1

2

3

4 3

2

2

1 1St TC
T

TC CT

P TC CT

CT

A

JN J J
Ra J

Ln Le Ln

J J J
J J J N N

Le Ln Ln

J J J
C J N N J

Ln Le Ln

Rs J J J
JN

Le Ln Ln

N J
Rn J

Le Ln

 







 





−

    
= −    

    

     
− + +     

     

     
−     

     

     
− + +     

     

+ ( ) CTA
TC

JNN JJ
J JN

Le Ln



  

 
 
 
 
 
 
 
 
 
 

     
− +     

     

                                     (50) 

 

In the case of double diffusion in a regular fluid, when ,TC CTN N and AN  are all zero,  Eqn. 

(50) reduces to 
0

St

TRa Rs R ,+ =  where ( 2

0 4 39 48R .= =  with 3 14c . = = ) as expected.  

 

3.3.2 Oscillatory Mode 

We now set s i= , where ( ) ( )( )Im 0Rp  = = in (48) and clear the complex quantities 

from the denominator, to obtain: 

1 2TRa i= +                                                                                                            (51) 

For oscillatory onset 2 0 =  ( )( )Im 0  and this gives a dispersion relation of the form (on 

dropping the subscript i) 

( ) ( )
2

2 2

1 2 3 0b b b + + =                   (52) 

Now Eq. (48) with 2 0 =  gives: 

( )2

0 1 2

Osc

TRa a a a= +                              (53) 

where 1 2, ,b b and 3b  and 0 1, ,a a  and 2a  and  1 and 2 are not presented here for brevity. 
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We find the oscillatory neutral solutions from Eqn. (53). This involves determining the 

number of positive solutions of Eqn. (52). If there are none, then no oscillatory instability is 

possible. If there are two, then the minimum (over 2a ) of  Eqn (53) with 2 given by Eqn. 

(52) gives the oscillatory neutral Rayleigh number. Since Eqn. (52) is quadratic in 2 , it can 

give rise to more than one positive value of 2  for fixed values of the parameters Rn, 

Ln, , , , , ,A aN      and  . However, the numerical solution of (52) for the range of 

parameters considered here gives only one positive value of 2  indicating that there exists 

only one oscillatory neutral solution. The analytical expression for oscillatory Rayleigh 

number given by Eqn. (53) is minimized with respect to the wavenumber numerically, after 

substituting for 2 (> 0) from Eqn. (52), for various values of physical parameters in order to 

establish their effects on the onset of oscillatory convection.  

 

3.3.3 Nonlinear stability analysis 

For simplicity, we consider the case of two-dimensional convective rolls, assuming all 

physical quantities to be independent of y. Eliminating the pressure and introducing the 

stream function we obtain: 

( ) 2 4 0a P T

T Rs C S
s C Ra Rn

x Le x x
  

   
+   +   + + − = 

   
                                    (54) 

( )

( )
2 2

,

,
TC

TT
T N C

t x x z


  
+ =  + + 

  
                                                                    (55) 

2 21 1 1 1 ( , )

( , )

ANS S
S T

T x Ln Ln x z  

   
+ =  +  +

  
                                                        (56) 

2 21 1 1 1 ( , )

( , )
CT

C C
C N T

T x Le x z  

   
+ =  +  +

  
                                                       (57) 

We solve Eqns. (54)–(57) subjecting them to stress-free, isothermal, iso-nano-concentration 

boundary conditions: 

2

2
0T S C

z





= = = = =


 at z = 0, 1                                                         (58)                                  

To perform a local non-linear stability analysis, we take the following Fourier expressions: 

( ) ( ) ( )
1 1

m n

n m

A t sin m x sin n z  
 

= =

=                                                                                         
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( ) ( )
1 1

( )cos
m n

n m

T B t m x sin n z 
 

= =

=                                                                                         

1 1

( )cos ( ) ( )
m n

n m

S C t m x sin n z 
 

= =

=                                                                                      

1 1

( )cos ( ) ( )
m n

n m

C D t m x sin n z 
 

= =

=                                                                       (59) 

Further, we take the modes (1, 1) for stream function, and (0, 2) and (1, 1) for temperature, 

and nanoparticle concentration, to get: 

11( ) ( ) ( )A t sin x sin z  =                                                                                                         

11 02( )cos ( ) ( ) ( ) (2 )T B t x sin z B t sin z  = +                                                                               

11 02( )cos ( ) ( ) ( ) (2 )S C t x sin z C t sin z  = +     

11 02( )cos ( ) ( ) ( ) (2 )C D t x sin z D t sin z  = +                                                            (60) 

where the amplitudes 11( )A t , 11( )B t , 02 ( )B t , 11( )C t , 02 ( )C t , 11( )D t and 02 ( )D t  are functions of 

time and are to be determined from the dynamics of the system.  

The first effect of non-linearity is to distort the temperature and concentration fields through 

the interaction of ,T and , S and also ,C . The distortion of these fields will correspond 

to a change in the horizontal mean, i.e., a component of the form (2 )sin z will be generated. 

It is obvious that   is minimally represented, since it is the simplest possible form for 

satisfying the boundary condition; it is also the form of   for the stability problem. The 

amplitude 11( )A t is (generally) a function of time and must be determined. The term 

11( )cos ( ) ( )B t x sin z  is also a minimal representation for  and is included as it must 

balance the stream function term in the heat transport equation. The term 

02 ( ) (2 )B t sin z represents the minimal representation for the distortion of the mean 

temperature field. The reason for the value 2 in the argument is that the mean temperature 

field is distorted by the convective term   , in the heat equation; since both   and   have 

components proportional to ( )sin z , this will force a (2 )sin z dependence on the mean 

temperature. Similar remarks apply to the solute concentration and nanoparticle 

concentrations. 
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Taking the orthogonality condition with the eigenfunctions associated with the considered 

minimal model, we get: 

2 411 11
11 11 11 112

( ) ( )1
( ) ( ) ( ) ( )T P

a

dA t Rs D t
RnC t Ra B t A t C A t

dt Le


     

 

 
= − − − − 

 
                                                                                         

2 211
11 11 11 02 11( ) ( ) ( ) ( ) ( )TC

dB
A t B t A t B t N D t

dt
     = − + + +                                                                             

2 202
02 11 11 024 ( ) ( ) ( ) 4 ( )

2
TC

dB
B t A t B t N D t

dt


  = − + −                                                                                         

211 11
11 11 11 02

( )1 1
( ) ( ) ( ) ( )AdC C t N

A t B t A t C t
dt Ln Ln

   
 

  
=− + + +  

  
                                                 

2 202
02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2

A
dC N a

C t B t A t C t
dt Ln Ln


  



 
= − + − 

 
         

211 11
11 11 11 02

( )1 1
( ) ( ) ( ) ( )CT

dD D t
A t N B t A t D t

dt Le
   

 

  
=− + + +  

  
                   

2 202
02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2
CT

dD a
D t B t N A t D t

dt Le


  



 
= − + − 

 
                                   (61) 

In the case of steady motion  
( )

0i

d
D

dt
= = , (i = 1, 2, .., 7) and writing all 'iD s  in terms of 

11A  leads to: 

211
1 11 11 112

( )1
( ) ( ) ( )T

a

Rs D t
D RnC t Ra B t A t

Le


   

 

 
= − − − 

 
                                                                                       

2 2

2 11 11 11 02 11( ) ( ) ( ) ( ) ( )TCD A t B t A t B t N D t    = − + + +                                                                                

2 2

3 02 11 11 024 ( ) ( ) ( ) 4 ( )
2

TCD B t A t B t N D t


  = − + −                                                                                           

2 11
4 11 11 11 02

( )1 1
( ) ( ) ( ) ( )AC t N

D A t B t A t C t
Ln Ln

   
 

  
= − + + +  

  
                                                  

2 2

5 02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2

AN a
D C t B t A t C t

Ln Ln


  



 
= − + − 

 
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and    1D = 2D  =  3D  =  4D  =  5D  = 6D  = 7D  = 0                                                             (62) 

 

The above system of simultaneous autonomous ordinary differential equations is solved 

numerically using a Runge–Kutta–Gill method. One may also conclude that the trajectories 

of the above equations will be confined to the finiteness of the ellipsoid. Thus, the effect of 

the parameters Rn, Ln, AN on the trajectories is to attract them to a set of measure zero, or to 

a fixed point to say. 

 

3.3.4 Heat and Nanoparticle Concentration Transport 

The Thermal Nusselt number NuT is defined as 

NuT
Heat transport by (conduction convection)

Heat transport by conduction

+
=   

2

0

2 /

0 0

1
a

B

z

T
dx

z

T
dx

z





=

 
 

 = +
 
 

 





                (63)                                                                                                     

Substituting expressions (26) and (60) in the above equation we get: 

021 2 ( )NuT B t= −  

The nanoparticle concentration Nusselt number NuF is defined similar to the thermal Nusselt 

number. Following the procedure adopted for arriving at NuT, one can obtain the expression 

for NuF in the form: 

 

( )02 021 2 ( )) (1 2 ( )ANuF C t N B t = − + −             (64)

 The solute concentration Nusselt number NuC is defined similar to the thermal 

Nusselt number. Following the procedure adopted for arriving at NuT, one can obtain the 

expression for NuC in the form: 

( )02 021 2 ( )) (1 2 ( )CTNuC D t N B t = − + −             (65) 

 

4 . Results and discussion 
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The expressions of thermal Rayleigh number for stationary and oscillatory 

convections are given by Eqns. (50) and (53) respectively. Figure 2a-f shows the effect of 

various parameters on the neutral stability curves for stationary convection with variation in 

one of these parameters. The effect of Soret parameter CTN  and Dufour parameter TCN   on 

the thermal Rayleigh number is shown in Figs. 2a,b, respectively, from which it can be seen 

that as CTN  and TCN  increases TRa  increases and hence CTN  and TCN  have a stabilizing 

effect on the system. From Fig. 2c, one can observe that as solutal Rayleigh number Rs 

increases, thermal Rayleigh number decreases which indicates that the solutal Rayleigh 

number Rs advances the onset of convection. The effects of viscosity ratio   and thermal 

conductivity ratio   on the thermal Rayleigh number are depicted in Figs. 2 d,e respectively, 

which show that as   and   increase, TRa  increases which indicates that   and   will 

stabilize the system. The effect of Soret parameter CTN , Dufour parameter TCN  and solutal 

Rayleigh number Rs on thermal Rayleigh number TRa  for stationary convection show 

similar results to those computed by Agarwal et al. [37]. Figure 2f reveals that as couple 

stress parameter PC  increases, TRa  increases which indicates that PC  (stronger couple stress 

length effect) will stabilize the system. 

Figures 3a-f displays the variation of thermal Rayleigh number for oscillatory 

convection with respect to various parameters. The effect of Soret parameter CTN  and 

Dufour parameter TCN  on the thermal Rayleigh number is shown in Figs. 3a, b, respectively, 

and evidently as CTN  and TCN  increase TRa  increases and hence CTN  and TCN  have a 

stabilizing effect on the system. From Fig. 3c, one can observe that as solutal Rayleigh 

number Rs increases, thermal Rayleigh number decreases which means that the solutal 

Rayleigh number Rs advances the onset of convection. Figures 3d,e indicate that larger 

viscosity ratio  and thermal conductivity ratio    both stabilize the system for oscillatory 

convection i.e. an increase in   and   increases the thermal Rayleigh number thus delaying 

the onset of convection. From Fig. 3g one can observe that as couple stress parameter PC  

increases, the thermal Rayleigh number also increases which effectively stabilizes the 

system. Thus, the couple stress parameter enhances the stability of the system for both 

stationary and oscillatory convection modes.  
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The nonlinear analysis provides not only the onset threshold of finite amplitude 

motion but also key information on heat and mass transfer at the boundaries (plates) in terms 

of thermal Nusselt number NuT, nanoparticle concentration Nusselt number NuF and solute 

concentration Nusselt number NuC. The Nusselt numbers are computed as functions of TRa , 

and the variations of these non-dimensional numbers with TRa  for different parameter values 

are depicted in Figs. 4a-f, 5a-f and 6a-f respectively. In Figs. 4a-f, 5a-f and 6a-f it is observed 

that in each case, nanoparticle concentration Nusselt number NuF is always greater than both 

thermal Nusselt number NuT and solute concentration Nusselt number NuC and all Nusselt 

numbers start with the conduction state value 1 at the point of onset of steady finite 

amplitude convection. When TRa  is increased beyond T cRa , there is a sharp increase in the 

values of Nusselt numbers. However further increase in TRa  will not change Nu and Sh 

significantly. It is to be noted that the upper bound of NuT is 3 (similar results were obtained 

by Malashetty et al. [38]). It should also be noted that the upper bound of NuF and NuC are 

not 3 (similar results were obtained by Bhadauria and Agarwal [39]). The upper bound of 

NuT remains 3 only for clear nanofluid. Whereas, the upper bound for NuF and NuC for clear 

fluid is 3 but for nanofluid it is not fixed.  

From  Figs. 4a and 5a we observe that as the Soret parameter CTN  increases, the 

value of NuT and NuF decrease, thus showing a decrease in the rate of heat and mass transfer 

at the plates, whereas the solute concentration Nusselt number  NuC (Fig. 6a) increases with 

increase in Soret parameter CTN  implying that Soret parameter CTN  enhances the solute 

concentration Nusselt number. We observe that as the Dufour parameter TCN  (Figs. 4b, 5b 

and 6b) and solutal Rayleigh number Rs (Figs. 4c, 5c and 6c) increases, the value of NuT, 

NuF and NuC decreases, thus showing a decrease in the rate of heat and mass transport. As 

the viscosity ratio   (Figs. 4d, 5d and 6d) and conductivity ratio   (Figs. 4e, 5e and 6e) 

increase all the Nusselt numbers increase, implying that   and   enhance the heat and mass 

transport. From Figs. 4f, 5f, and 6f one can witness that as the couple stress parameter PC  

increases, the values of  NuT, NuF and NuC decrease, thus showing a decrease in the heat 

and mass transport. Similar results were observed for steady motions by Umavathi and 

Monica [40] in the absence of couple stress effects. 
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The linear solutions exhibit a considerable variety in behavior of the system, and the 

transition from linear to nonlinear convection can be quite complicated. It is necessary to 

study transient results in order to analyze nonlinear convective stability. The transition can be 

well understood by the analysis of equation (61) for which the solution gives a detailed 

description of the two-dimensional problem. The autonomous system of unsteady finite 

amplitude equations is solved numerically using the Runge-Kutta method. The Nusselt 

numbers are evaluated as functions of time t, the unsteady (transient) behavior of NuT, NuF 

and NuC is shown graphically in Figs. 7a-g, 8a-g and 9a-g respectively. These figures 

indicate that initially when time is small, there occur large scale oscillations in the values of 

Nusselt numbers indicating an unsteady rate of heat and mass transport in the fluid. As time 

passes, these values approach to the steady state corresponding to a near convection stage. 

Figs. (7a, 8a, 9a), (7b, 8b, 9b), (7c, 8c, 9c) and (7d, 8d, 9d) depict the transient nature of 

thermal Nusselt number NuT,  concentration Nusselt number NuF number and solute Nusselt 

number NuC with variation in nanoparticle concentration Rayleigh number Rn, nanofluid 

Lewis number Ln, modified diffusivity ratio AN  and on solutal Rayleigh number Rs.  It is 

observed that as Rn, Ln, AN  and Rs increase, NuT, NuF and NuC are all enhanced, thus 

showing an increase in the heat and mass transport, which are the similar to trends observed 

by Agarwal et al. [23]. From Figs. (7d, 8d, 9d) we observe that viscosity ratio   increases  

the heat and mass transport and in Figs. (7e, 8e, 9e) we observe that as conductivity ratio  

increases the NuT, NuF and NuC decrease indicating that there is an inhibition of both heat 

and mass transports. Figs. 8f, 9f show that as the couple stress parameter PC  increases, the 

values of  NuF and NuC also increase, thus showing an elevation in the heat and mass 

transport, while larger couple stress parameter PC  decreases the thermal Nusselt number 

NuT.  Stronger non-Newtonian effect therefore reduces transfer of heat to the boundaries 

from the sandwiched layer with a concomitant cooling in the body of the layer. In the 

absence of couple stress parameter PC  all the results agree very well with earlier 

computations by Umavathi and Mohite [40]. 

 

5. Conclusions 
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A mathematical and numerical study of linear and nonlinear thermosolutal (double 

diffusive) convective instability in a horizontal porous medium saturated by a couple stress 

nanofluid, heated from below and cooled from above has been presented. The Darcy model 

for porous hydrodynamics has been deployed and nanoscale effects of Brownian motion and 

thermophoresis considered. Further the viscosity and thermal conductivity dependence on 

nanoparticle fraction have also been simulated by adopting the formulation of Tiwari and 

Das [33]. Linear analysis has been performed using the normal mode technique. However, 

for the nonlinear analysis, a truncated Fourier series representation having only two terms is 

considered. The following conclusions may be drawn: 

1. Increasing Soret, Dufour, viscosity and thermal conductivity ratio parameters 

stabilize the system. 

2. Increasing solutal Rayleigh number Rs destabilizes the system. 

3. Increasing couple stresses stabilize the system for stationary and oscillatory 

convections. 

4. The Nusselt, nanoparticle and solute concentrations are oscillatory for small time. 

5.  Steady state conditions are achieved for the Nusselt numbers when time is large. 
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Figure 2. Neutral curves on stationary convection for different values of 

(a) Soret   parameter CTN , (b) Dufour parameter TCN , (c) solutal Rayleigh number Rs, 

(d)viscosity ratio  , (e) thermal conductivity ratio  , (f) couple stress parameter PC . 
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Figure 3.  Neutral curves on oscillatory convection for different values of 

(a) Soret   parameter CTN , (b) Dufour parameter TCN , (c) solutal Rayleigh number Rs, 

(d)viscosity ratio  , (e) thermal conductivity ratio  , (f) couple stress parameter PC . 
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Figure 4. Variation of Thermal Nusselt number NuT with critical Rayleigh number for 

different values of (a) Soret   parameter CTN , (b) Dufour parameter TCN , (c) solutal 

Rayleigh number Rs, (d) viscosity ratio  , (e) thermal conductivity ratio  , (f) couple stress 

parameter PC . 
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Figure 5. Variation of nanoparticle concentration Nusselt number NuF with critical Rayleigh 

number for different values of (a) Soret   parameter CTN , (b) Dufour parameter TCN , (c) 

Solutal Rayleigh number Rs, (d) viscosity ratio  , (e) thermal conductivity ratio  ,  

(f) couple stress parameter PC . 
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Figure 6. Variation of solute concentration Nusselt number NuC with critical Rayleigh 

Number for different values of (a) Soret   parameter CTN , (b) Dufour parameter TCN , (c) 

solutal Rayleigh number Rs, (d) viscosity ratio  , (e) thermal conductivity ratio  ,  

(f) couple stress parameter PC . 
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Figure 7. Transient thermal Nusselt number NuT versus time for different values of 

(a) Nanoparticle concentration Rayleigh number Rn, (b) Thermo-nanofluid Lewis number 

Ln, (c) Modified diffusivity ratio AN , (d) Solutal Rayleigh number Rs,  (e) Viscosity ratio  , 

(f) Thermal conductivity ratio  , (g) couple stress parameter PC . 
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Figure 8. Transient nanoparticle concentration Nusselt number NuF with  time for different 

values of (a) Nanoparticle concentration Rayleigh number Rn, (b) Thermo-nanofluid Lewis 

number Ln, (c) Modified diffusivity ratio AN , (d) Solutal Rayleigh number Rs,  (e) Viscosity 

ratio  , (f) Conductivity ratio  , (g) Couple stress parameter PC .  
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Figure 9. Transient solute concentration Nusselt number NuC versus time for different 

values of (a) Nanoparticle concentration Rayleigh number Rn, (b) Thermo-nanofluid Lewis 

number Ln, (c) Modified diffusivity ratio AN , (d) Solutal Rayleigh number Rs,  (e) Viscosity 

ratio   , (f) Thermal conductivity ratio  , (g) Couple stress parameter PC . 
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