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Abstract 5 

 6 

Previous activity classification studies have typically been performed on normal weight 7 

individuals. Therefore, it is unclear whether a generic classification algorithm could be 8 

developed that would perform consistently across individuals who fall within different BMI 9 

categories. Acceleration data were collected from the hip and ankle joints of 50 individuals: 10 

17 normal weight, 14 overweight and 19 obese. Each participant performed a set of 10 11 

dynamic tasks, which included activities of daily living and gym-based exercises. The 12 

performance of a generic classification algorithm, developed using linear discriminant 13 

analysis, was compared across the three separate BMI groups for each sensor. Higher 14 

classification accuracies (92-95%) were observed for the ankle sensor; however, both sensors 15 

demonstrated consistent performance across the three groups. This is the first study to 16 

demonstrate the effectiveness of a generic classification algorithm across individuals with 17 

different BMI and may be a first step towards automated activity profiling in weight-loss 18 

programmes. 19 
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The performance of an algorithm for classifying gym-based tasks across 23 

individuals with different body mass index 24 

Introduction 25 

Objective measurement of physical activity in people who are overweight or obese is 26 

important for understanding the associations between patterns of physical activity and health-27 

related outcomes (Healy, Winkler, Brakenridge, Reeves, & Eakin, 2015), and also for 28 

evaluating and improving exercise interventions aimed at reducing weight (Goode et al., 2016). 29 

Using automated measurement of physical activity to provide individual feedback may also 30 

enhance adherence to prescribed physical activity during weight loss programmes (Cheatham, 31 

Stull, Fantigrassi, & Motel, 2018). In support of this idea, research has shown that participants 32 

who receive objective feedback on steps taken and on periods of moderate and vigorous activity, 33 

lose significantly more weight at 6-months, compared to participants without access to self-34 

monitoring technology (Hartman et al., 2016; Ross & Wing, 2016).  35 

Objective measurement of physical activity is readily achieved using a body-worn 36 

accelerometer, with analysis typically based on the use of predetermined thresholds, referred 37 

to as cut-points, which are applied to a measure of signal magnitude (Howe, Moir, & Easton, 38 

2017). With this approach, periods of activity are grouped into signal-intensity categories in 39 

order to give an overall measure of physical activity level (Tudor-Locke, Brashear, Johnson, 40 

& Katzmarzyk, 2010). Over recent years, support has grown for the use of “smart” approaches 41 

for estimating energy expenditure from accelerometer data (Plasqui, 2017). These techniques 42 

typically involve an initial recognition of the activity type, after which an activity-specific 43 

regression equation is used to obtain a value of energy expenditure (Bonomi, Plasqui, Goris, & 44 

Westerterp, 2009). Because activities that require different levels of energy expenditure can 45 
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sometimes lead to similar magnitudes of the acceleration signal, this approach can be used to 46 

improve predictions of energy expenditure (Crouter, Kuffel, Haas, Frongillo, & Bassett, 2010).  47 

In addition to improving energy expenditure estimation, automated recognition of 48 

different activities could be used to provide meaningful information to people on a weight loss 49 

programme (Stewart, Ferguson, Peng, & Rafferty, 2012). For example, providing people with 50 

personalised information on the activities that they undertake may be easier to interpret with 51 

respect to behaviour change, than simply providing feedback on the amount of time spent at 52 

different intensities of physical activity (Rabbi, Pfammatter, Zhang, Spring, & Choudhury, 53 

2015). Furthermore, the ability to accurately profile individual activities may improve 54 

understanding of the type, intensity and duration of activities that are most effective for weight 55 

loss and could, in turn, lead to enhanced public health guidelines (Department of Health, 2019). 56 

It is therefore important to develop classification algorithms that can differentiate between 57 

activities and which will work effectively with accelerometer data collected from people who 58 

are overweight or obese.  59 

To date, many studies that have created algorithms that can identify different activities 60 

from accelerometer data in normal weight participants (Ahmadi, Pfeiffer, & Trost, 2020; 61 

Farrahi, Niemelä, Kangas, Korpelainen, & Jämsä, 2019; Gao, Bourke, & Nelson, 2014). 62 

However, there has been minimal research that has aimed to test classification techniques 63 

across different body mass index (BMI) groups. This is important, since obese individuals 64 

display different movement characteristics to non-obese individuals (da Silva-Hamu et al., 65 

2013; Lai, Leung, Li, & Zhang, 2008; Sibella, Galli, Romei, Montesano, & Crivellini, 2003), 66 

which may result in differences in acceleration data for the same task. Furthermore, increased 67 

adipose tissue at the point where activity monitors are placed could be responsible for 68 

additional movement of the monitor and may lead to differences in signal characteristics 69 

between BMI groups. Interestingly, studies have shown that increased BMI can lead to 70 



4 
 

inaccuracy in pedometer-derived step count (Melanson et al., 2004) and that differences in tilt 71 

angle may underlie such error (Crouter, Schneider, & Bassett, 2005). Other research suggests 72 

that the accuracy of accelerometer-derived step count may be reduced in pregnant women 73 

(Connolly, Coe, Kendrick, Bassett, & Thompson, 2011). Given these findings, it is  important 74 

to understand whether increased BMI affects the performance of activity classification 75 

algorithms. 76 

Clinical studies that have examined the effects of physical exercise interventions on 77 

health-related outcomes for overweight and obese individuals have included many different 78 

aerobic activities. These include walking (Kiernan, King, Stefanick, & Killen, 2001), jogging 79 

(Wood et al., 1988), cycling (Cox, Burke, Morton, Beilin, & Puddey, 2004), rowing (Raz, 80 

Hauser, & Bursztyn, 1994) and stair stepping (Janssen, Fortier, Hudson, & Ross, 2002). In a 81 

recent study focused on people who were overweight or obese, Ellis et al. (2016)  showed it 82 

was possible to accurately identify sitting, standing, gait (walking/running), or riding in a 83 

vehicle. However, further research is required to understand to potential of creating algorithms 84 

which can be used to identify a wide range of activities in people who are obese. Given the 85 

limitations of previous research, this study aimed to develop and evaluate the accuracy of a 86 

classification algorithm, focused on gym-based exercises and activities of daily living, across 87 

different BMI groups. A secondary aim of this study was to compare classification accuracy 88 

between two accelerometer placement sites: the hip and the ankle. 89 

Materials and methods 90 

A sample of fifty participants completed the study. Participants were recruited via 91 

university advertisement, through online forums, social media platforms and through local 92 

weight loss groups. Individuals across a range of BMI categories were approached and 93 

recruitment was continued until it was possible to create three groups, with similar numbers 94 
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of participants, defined by BMI: normal (18.5-24.9 kg/m2), overweight (25.0-29.9 kg/m2) and 95 

obese (≥30 kg/m2). To ensure that physical exercise did not pose any risk, participants were 96 

required to complete the physical activity readiness questionnaire (Thomas, Reading, & 97 

Shephard, 1992). Participants with a history of high or low blood pressure were also excluded 98 

to minimise any possible risks during the testing protocol. In addition, people with diabetes 99 

were excluded as this condition may affect mobility, altering normal movement patterns.  100 

The study, which was conducted over a period of two years, was approved by the 101 

College of Health and Social Care Ethical Approval Panel at the University of Salford, and 102 

each participant provided written informed consent. Before activity data were collected, 103 

descriptive characteristics were obtained. These included age, weight (using electronic 104 

scales), height (using a stadiometer), waist circumference (using a tape measure at the level 105 

of the navel) and hip circumference (using a tape measure at widest part of the hips). It also 106 

included body fat percentage, measured using the Bodystat 1500 body composition analyser 107 

(BodyStat Ltd, Douglas, Isle of Man, UK).  108 

An ActiGraph GT3X+ activity monitor, sampling at 50Hz, was fitted at the right hip, 109 

either directly over, or just above, the iliac crest. Where possible, the strap supplied with the 110 

monitor, was threaded through the participant’s belt loops. If this was not possible, the strap 111 

was adjusted appropriately to ensure minimal movement of the monitor during dynamic 112 

activities. Another GT3X+ activity monitor (50Hz) was fitted at the right ankle, directly 113 

above the lateral malleolus using the elastic strap supplied.  114 

Each participant performed a total of ten different activities during a single testing 115 

session. The tasks included three actives of daily living: walking, stair ascent and stair 116 

descent. In addition, we included a set of gym-based activities, including treadmill walking, 117 

treadmill jogging, cross-training (using an elliptical trainer in a standing position), rowing (on 118 
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a rowing machine) and static cycling. The gym-based activities also included step aerobics 119 

(stepping up and down on a step), side-stretching (alternative leaning to opposite sides with 120 

arms raised) and sidestepping (initially standing with legs apart, then moving one foot to 121 

meet the other before returning to the initial position and repeating for the other foot). These 122 

activities were selected from consideration of previous obesity management studies and to 123 

ensure that there was a range of movement patterns large enough to present a sufficient 124 

challenge to the activity classification algorithm. Simple postural activities (standing, sitting 125 

and lying) were not included in this study as these tasks can be differentiated from dynamic 126 

activities using a simple threshold-based approach (Preece et al., 2009). It was felt that a 127 

threshold-based classifier could be implemented before a dynamic classification scheme to 128 

create a classification approach, which would be able to deal with both simple postural 129 

activities as well as dynamic activities. 130 

Walking data were collected both on a treadmill and over ground. For the treadmill 131 

walking, each participant was required to walk on the Ergo ELG55 treadmill (WOODWAY 132 

GmbH of Weil am Rheine, Germany) at four different speeds, ranging from slow to fast 133 

(approximately between 1.0 ms-1 and 1.7 ms-1), for five minutes each. These speeds were 134 

determined by the participant’s capacity for exercise and based upon a timed walk to 135 

ascertain normal walking speed. Participants were then asked to walk a designated route 136 

outdoors at a self-selected speed. The duration of the walk was approximately three minutes, 137 

depending on their walking speed. The walking surface was paved, and in some places 138 

uneven or sloped.  With this protocol, walking data were collected under different conditions 139 

across a range of different speeds; however, for the classification analysis, all walking data 140 

were considered the same type of activity.  141 

Participants were given some basic instruction on how to use exercise equipment or 142 

perform the aerobic activities, though no guidance was given with respect to technique. With 143 
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the exception of treadmill walking, described above, participants were asked to perform each 144 

exercise at their own pace for at least one minute and were instructed to maintain a consistent 145 

level of intensity. This included the treadmill jogging for which participants were instructed 146 

to select a treadmill speed, which was appropriate to their fitness level. For each activity, start 147 

and end times were manually recorded using a clock that was synchronised with the 148 

ActiGraph GT3X+ activity monitor.  149 

Three-dimensional acceleration data were obtained from the GT3X+ monitor and 150 

imported to MATLAB. The accelerometer data from each participant were segmented into 151 

sequential, non-overlapping windows of two seconds in duration. Each window was then 152 

associated with a specific activity type using the times recorded during data collection. A 153 

maximum of thirty windows (60 seconds data) of activity were selected at random for each of 154 

the ten activities and used for subsequent analysis; however, in some shorter duration 155 

activities, such as stair walking, fewer windows of data were generated. This procedure was 156 

repeated for the data from all 50 participants. 157 

Features were derived from the accelerometer data on a window-by-window basis for 158 

use as input to a classification algorithm. Five features were based on those suggested by 159 

Baek et al. (2004), mean, standard deviation, eccentricity, kurtosis, and skewness. In 160 

addition, five discrete cosine transform (DCT) components were select to capture frequency 161 

characteristics (He & Jin, 2009) and zero crossing rate (Maurer, Smailagic, Siewiorek, & 162 

Deisher, 2006), signal magnitude area (SMA), and percentile values (10th, 25th, 75th, 90th) 163 

selected to extend the statistical information. The features were obtained separately from each 164 

of the three accelerometer axes. The only exception was where the calculation required a 165 

combination of the three axes, as in the case of SMA. 166 



8 
 

Linear Discriminant Analysis (LDA) was chosen as the classification algorithm 167 

(Balakrishnama & Ganapathiraju, 1998). LDA defines a probability distribution for each 168 

possible class of activity based on training data. A window of activity data is classified by 169 

applying a discriminant function that returns the likelihoods of the window belonging to each 170 

activity distribution. The activity that is chosen by the classifier is the one returning the highest 171 

likelihood value from the discriminant function. For further details of LDA, the reader is 172 

directed to Balakrishnama et al. (1998). Example code for the implementation of this algorithm 173 

can be downloaded at: 174 

https://salford.figshare.com/articles/software/Example_LDA_classifier_zip/12613826   175 

Our primary objective was to understand whether a generic classification algorithm, 176 

created using the full cohort, would perform equally well when applied to different BMI groups. 177 

To address this objective, a leave-one-out cross-validation was used to obtain a classification 178 

accuracy for each of the activities performed by each individual participant. This was achieved 179 

by creating a classifier with training data from all participants apart from the individual under 180 

test. This algorithm was then applied to the data from the individual under test to obtain a 181 

predicted activity class for each activity window. This procedure was repeated until every 182 

participant had been tested once, after which average classification accuracies were calculated 183 

for four different groups: all participants, normal, overweight, and obese. For each group, the 184 

classification accuracy was calculated by dividing the number of correctly classified windows 185 

by the total number of activity windows for the group. In addition, sensitivity was obtained for 186 

each activity class, by calculating the percentage of correctly identified windows of that activity 187 

compared to the total number of windows of that activity. All analyses were performed 188 

independently for hip- and ankle-mounted accelerometer data.  189 

In addition to calculating point estimates of classifier accuracy, we used a two-way 190 

ANOVA analysis to test for statistical differences in classifier performance across the three 191 

https://salford.figshare.com/articles/software/Example_LDA_classifier_zip/12613826
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groups (normal weight, overweight and obese) and between the two placement sites (hip and 192 

ankle). The study was powered to detect an effect size of 0.5 in a three-group ANOVA 193 

comparison, which related to our primary objective of investigating differences in classifier 194 

accuracy between the three groups. We assumed a power = 0.8 and a critical alpha = 0.05. 195 

Using the g-power software, we estimated we would need a total of 42 subjects, at least 14 in 196 

each group. Our sample of 50 was therefore sufficient to detect differences between the three 197 

groups. Differences in descriptive characteristics between the three groups were investigated 198 

using ANOVA or chi-squared as appropriate, again with a critical alpha = 0.05. 199 

 200 

Results  201 

Descriptive characteristics for all three groups are presented in Table 1. There were no 202 

statistical differences in age, gender or height between the three groups. However, the other 203 

BMI-related parameters were shown to differ (P<0.05). 204 

 205 

TABLE 1 HERE 206 

 207 

There were relatively small differences in overall classification accuracy between the 208 

three BMI groups (Table 2). Specifically, data from the ankle placement demonstrated a 209 

difference of 3.6 percentage points between the normal and overweight group. Although there 210 

was slightly more variability for the hip placement, classification accuracies were still 211 

relatively consistent, with a difference of 8.2 percentage points between the overweight group 212 

and the obese group (Table 2). The ANOVA analysis showed no main effect of group 213 
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(p=0.15), nor group-placement interaction (p=0.15), confirming that classification accuracy 214 

did not differ statistically between the three groups.  215 

Figure 1a shows the sensitivity of the algorithm, broken down by activity, for the 216 

ankle placement. This plot illustrates that the algorithm was associated with similar levels of 217 

accuracy, across the groups, for most activities. With the exception of cycling and stepping, 218 

which were associated with lower sensitivities for the normal weight participants, the other 219 

eight activities were associated with minimal (<6 percentage point) differences in sensitivity 220 

between the BMI groups. In contrast, there was more variability between the groups at the 221 

hip site (Figure 1b), with six out of the ten activities being associated with moderate (>10 222 

percentage point) differences in algorithm sensitivity. 223 

 224 

TABLE 2 HERE 225 

FIGURE 1A AND 1B HERE 226 

 227 

Classification accuracy for all 50 participants (entire group) was 8.9 percentage points 228 

higher for the ankle compared to the hip placement. Importantly, higher classification for the 229 

ankle placement was observed for each of the separate BMI groups (Table 2). The ANOVA 230 

analysis showed a main effect of placement (p<0.001), confirming that classification 231 

accuracy was statistically higher for the ankle. The observation of higher classification 232 

accuracies is clearly visible in Figure 1, which shows algorithm sensitivity, broken down by 233 

activity. These data illustrate that ankle sensitivities were up to 37 percentage points higher 234 

and typically 5-10 percentage points higher than the corresponding hip sensitivity. Confusion 235 

matrices for all participants for the hip (Table 3) and the ankle (Table 4) illustrate the source 236 
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of activity misclassification. For the hip sensor, there was confusion between upstairs and 237 

stepping, between cycling and side-stretching and between side-stepping and side-stretching. 238 

For the hip, misclassification was primarily between upstairs and stepping and between the 239 

cross-trainer and cycling (Table 4). 240 

TABLES 3 AND 4 HERE 241 

Discussion 242 

The primary objective of this study was to establish if a generic activity classification 243 

algorithm would perform consistently across individuals with different BMI. To address this 244 

objective, we tested our algorithm on three separate groups, defined by BMI, showing similar 245 

levels of classification accuracy across the groups. When the data were broken down into 246 

different activities, we observed consistency across the BMI groups; however, algorithm 247 

sensitivities were more consistent for the ankle when compared to the hip sensor. Taken 248 

together, these findings suggest that differences in BMI are unlikely to affect classifier 249 

performance if the aim is to differentiate between gym-based exercises. 250 

The motivation for this study came from previous research that has demonstrated that 251 

BMI may impact on movement patterns (da Silva-Hamu et al., 2013; Lai et al., 2008; Sibella 252 

et al., 2003), and that body shape may influence the accuracy of accelerometer-derived step 253 

count (Connolly et al., 2011). It is possible that increased adipose tissue may create additional 254 

variability in the acceleration signals during the performance of the same activity, potentially 255 

lowering classification accuracy. In line with this idea, we observed a degree of variability in 256 

classifier performance at the hip, when the results were broken down into different activities 257 

(Figure 1); however, there was minimal variation for the ankle placement. This observation 258 

may reflect the idea that hip accelerations are more likely to be affected by soft tissue motion 259 

than accelerations measured at the ankle. As our overall classification accuracies were 260 
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consistent across the different BMI groups, the findings suggest that it should be possible to a 261 

create a generic classification algorithm using data from either a hip or ankle mounted 262 

accelerometer. 263 

A secondary objective of this study was to understand potential differences in 264 

classification accuracy between the ankle and hip site. In addition to demonstrating lower 265 

variability across the three BMI groups, we also observed higher overall performance from 266 

the ankle placement (Figure 1). It is likely that this improved performance is a result of the 267 

larger range of motion, and therefore distinct acceleration patterns, which are likely to be 268 

associated with the ankle in comparison to the hip site. We suggest that this leads to 269 

improved classifier performance. We would therefore advocate the practice of placing an 270 

accelerometer at the ankle if the objective is to differentiate between multiple different 271 

activities. However, we acknowledge that this current study was only tested to a gym setting 272 

and therefore further research is required to investigate a more comprehensive set of daily 273 

activities.  274 

It is difficult to compare the classification accuracies found in this study with those 275 

reported in other studies because of differences in activity sets and metrics used to calculate 276 

accuracy. Nevertheless, overall classification accuracies greater than 90% compare 277 

favourably with other studies on normal weight individuals (Gao et al., 2014; Gupta & 278 

Dallas, 2014; Moncada-Torres, Leuenberger, Gonzenbach, Luft, & Gassert, 2014; Parkka et 279 

al., 2006). However, it is important to point out that several previous studies have generated 280 

and tested classification algorithms on small numbers of participants, typically n=10 or fewer 281 

(Chang, Chen, & Canny, 2007; Gupta & Dallas, 2014; Moncada-Torres et al., 2014; Qi, 282 

Yang, Hanneghan, Tang, & Zhou, 2019). By developing and testing an algorithm on 50 283 

participants, we have shown that our classification approach can handle a wide range of 284 

individual variation, which is likely to be representative of the general population. This study 285 
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purposefully excluded static activities (sitting, standing and lying), as it was felt that 286 

differentiation between static and dynamic activities is a well-studied problem (Preece et al., 287 

2009), and that inclusion of static activities would have given an inflated picture of the 288 

effectiveness of the classification scheme. Importantly, despite excluding sitting, standing 289 

and lying, it was still possible to obtain over 90% accuracy. When combined with 290 

classification schemes that can be used to differentiate between static and dynamic activities, 291 

it is likely that much higher levels of accuracy would be achieved. 292 

There are two primary limitations to this study, which should be highlighted. First, 293 

data were not collected under free-living conditions, but were obtained using a predefined 294 

protocol under laboratory conditions. However, a wide range of different activities were 295 

studied and participants were given minimal instruction on how to perform each task; 296 

thereby, presenting the classification algorithm with considerable variability in accelerometer 297 

data. Although the algorithm performed well, we acknowledge that further development and 298 

testing is required to create a system that would be able to deal with real-world data. Another 299 

limitation was that our testing was limited to sensors on the ankle and hip. Sensor data were 300 

not collected from the wrist, as our objective was to be confident that we obtained dynamic 301 

signals for each activity, which could easily be differentiated from signals associated with 302 

sedentary activities (e.g. sitting). With the inclusion of cycling in our protocol, the ankle and 303 

hip were deemed to be placement sites that would provide dynamic signals, whilst at the 304 

same time being acceptable to people in a real-word setting.  305 

This study demonstrates that it is possible to identify activities of daily living and 306 

gym-based exercises with a single accelerometer in normal weight, overweight, and obese 307 

individuals. The highest accuracy was obtained with the ankle sensor (92–95%); however, 308 

classification accuracies of 82–90% were also obtained from the hip accelerometer. Further 309 

research is required to integrate the proposed classification scheme into an algorithm that can 310 
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deal with real-world data. This will enable the generation of continuous activity profiles for 311 

overweight and obese individuals undertaking programmes of prescribed physical activity. 312 

Such profiles should help improve adherence to prescribed physical activity programmes and 313 

provide greater insight into the relationship between physical activity type and weight loss. 314 
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Tables  449 

 450 

Table 1: Mean (SD) descriptive characteristics for the three BMI groups. Significant 451 

differences between the groups are indicated by *(p<0.05). 452 

 453 

 All participants Normal weight Overweight Obese 

Number of participants 50  17  14  19  

Gender 21M, 29F 9M, 8F 4M, 10F 8M, 11F 

Age (years) 34.6 (11.2) 32.1 (10.1) 38.2 (14.4) 34.2 (9.0) 

Height (m) 1.68 (.09) 1.72 (.09) 1.67 (.06) 1.67 (0.1) 

Body Mass (kg)* 81.3 (16.7) 66.7 (8.6) 77.4 (4.5) 97.2 (14.0) 

BMI (kg/m2)* 28.7 (6.2) 22.5 (1.6) 27.7 (1.2) 35.0 (4.5) 

BMI range 18.9 - 43.9 18.89 - 24.96 25.26 - 29.97 30.12 - 43.93 

Body fat (%)* 30.2 (11.1) 21.0 (8.1) 31.3 (9.2) 37.5 (8.8) 

Waist circumference (m)* 0.95 (0.15) 0.89 (0.07) 0.93 (0.06) 1.09 (0.12) 

Hip circumference (m)* 1.06 (0.11) 0.96 (0.06) 1.04 (0.06) 1.16 (0.08) 

 454 

  455 
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Table 2: Overall classification accuracy for the four groups for each accelerometer site 456 

 457 

Test dataset Hip placement Ankle placement 

Entire Group (n=50) 85.0% 93.9% 

Normal (n=17) 84.5% 91.6% 

Obese (n=19) 81.9% 95.0% 

Overweight (n=14) 90.0% 95.2% 

 458 

 459 

 460 

 461 

  462 
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Table 3: Confusion matrix for the hip placement for all participants. 463 

 464 

    Prediction 

 

True 

activity 

Walk Downstairs Upstairs Cycling Rowing Cross-

trainer 

Jog Stepping Side-

stepping 

Side-

stretching 

Walk 1309 71 72 19 0 0 3 4 7 15 

Downstairs 93 694 68 0 0 2 10 6 0 12 

Upstairs 56 42 741 1 0 14 10 43 9 15 

Cycling 9 0 22 1419 0 4 0 0 8 35 

Rowing 0 0 1 39 1419 0 0 4 0 35 

Cross-

trainer 

1 6 70 39 0 1249 10 0 79 41 

Jog 59 19 0 0 0 0 1386 0 0 30 

Stepping 18 34 105 9 0 0 0 1245 41 39 

Sidestepping 1 17 26 46 0 5 0 26 1190 189 

Side-

stretching 

0 0 2 213 0 0 0 36 173 1073 

 465 
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Table 4: Confusion matrix for the ankle placement for all participants. 467 

 468 

Prediction 

 

True 

activity 

Walk Downstairs Upstairs Cycling Rowing Cross-

trainer 

Jog Stepping Side-

stepping 

Side-

stretching 

Walk 1435 23 0 0 0 0 17 20 2 3 

Downstairs 0 853 15 0 0 0 1 13 0 0 

Upstairs 0 16 821 1 0 1 0 139 0 0 

Cycling 0 0 0 1372 0 120 0 0 0 0 

Rowing 0 0 0 0 1496 0 0 0 0 0 

Cross-

trainer 

0 0 0 16 30 1452 0 0 0 0 

Jog 20 6 0 0 0 0 1469 0 0 0 

Stepping 0 23 148 0 0 1 0 1321 5 2 

Sidestepping 0 0 0 0 0 0 0 4 1352 144 

Side-

stretching 

0 0 0 0 0 8 0 1 60 1414 

 469 
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Figures 471 

Figure 1: Sensitivity results for each activity across the different BMI groups for the (a) ankle 472 

and (b) hip accelerometer site. 473 

474 
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