Temperature is a key factor influencing the invasion and proliferation of *Toxoplasma gondii* in fish cells

Yun Yang, Shao-Meng Yu, Ke Chen, Geoff Hide, Zhao-Rong Lun, De-Hua Lai

PII: S0014-4894(20)30203-4

DOI: https://doi.org/10.1016/j.exppara.2020.107966

Reference: YEXPR 107966

To appear in: Experimental Parasitology

Received Date: 22 April 2020

Revised Date: 15 July 2020

Accepted Date: 5 August 2020

Please cite this article as: Yang, Y., Yu, S.-M., Chen, K., Hide, G., Lun, Z.-R., Lai, D.-H., Temperature is a key factor influencing the invasion and proliferation of *Toxoplasma gondii* in fish cells, *Experimental Parasitology* (2020), doi: https://doi.org/10.1016/j.exppara.2020.107966.

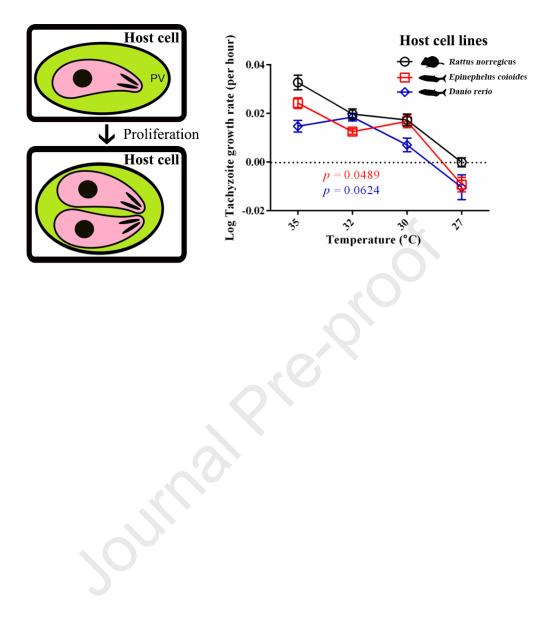
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

CRediT authorship contribution statement

Yun Yang: Formal analysis, Investigation, Visualization, Writing - Original

Draft. Shao-Meng Yu: Validation, Investigation. Ke Chen: Investigation, Resources.


Geoff Hide: Writing - Review & Editing. Zhao-Rong Lun: Conceptualization,

Methodology, Writing - Review & Editing, Supervision, Project administration,

Funding acquisition. De-Hua Lai: Conceptualization, Writing - Original Draft,

Writing - Review & Editing, Funding acquisition.

.n.

	Journal Pre-proof
1	Temperature is a key factor influencing the invasion and
2	proliferation of Toxoplasma gondii in fish cells
3	
4	Yun Yang ^{a,#} , Shao-Meng Yu ^a , Ke Chen ^a , Geoff Hide ^b , Zhao-Rong Lun ^{a,b*} , De-Hua
5	Lai ^{a*}
6	
7	^a Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of
8	Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life
9	Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
10	
11	^b Biomedical Research Centre and Ecosystems and Environment Research Centre,
12	School of Science, Engineering and Environment, University of Salford, Salford, M5
13	4WT, UK
14	
15	[#] Present address: Tsinghua-Peking Center for Life Sciences, School of Medicine,
16	Tsinghua University, Beijing 100084, PR China
17	
18	*Corresponding authors at: ZRL, <u>lsslzr@mail.sysu.edu.cn;</u> DHL,
19	laidehua@mail.sysu.edu.cn
20	
21	
22	
23	

24 Abstract:

25	Toxoplasma gondii has long been considered a ubiquitous parasite possessing the
26	capacity of infecting virtually all warm-blooded animals globally. Occasionally, this
27	parasite can also infect cold-blooded animals such as fish if their body temperature
28	reaches 37°C. However, we are currently lacking an understanding of key details such
29	as the minimum temperature required for T. gondii invasion and proliferation in these
30	cold-blooded animals and their cells. Here, we performed in vitro T. gondii infection
31	experiments with rat embryo fibroblasts (REF cells), grouper (Epinephelus coioides)
32	splenocytes (GS cells) and zebra fish (Danio rerio) hepatocytes (ZFL cells), at 27°C,
33	30°C, 32°C, 35°C and 37°C, respectively. We found that <i>T. gondii</i> tachyzoites could
34	penetrate REF, GS nd ZFL cells at 27°C but clear inhibition of multiplication was
35	observed. Intriguingly, the intracellular tachyzoites retained the ability to infect mice
36	after 12 days of incubation in GS cells cultured at 27°C as demonstrated by bioassay.
37	At 30°C, 32°C and 35°C, we observed that the mammalian cells (REF cells) and fish
38	cells (GS and ZFL cells) could support T. gondii invasion and replication, which
39	showed a temperature-dependent relationship in infection and proliferation rates. Our
40	data demonstrated that the minimum temperature for T. gondii invasion and
41	replication was 27°C and 30°C respectively, which indicated that temperature is a key
42	factor for T. gondii invasion and proliferation in host cells. This suggests that
43	temperature-dependent infection determines the differences in the capability of <i>T</i> .
44	gondii to infect cold- and warm-blooded vertebrates.

45 Key words: *Toxoplasma gondii*; invasion; proliferation; fish cells; *in vitro* cultivation;

46 cold-blooded animals

47

48

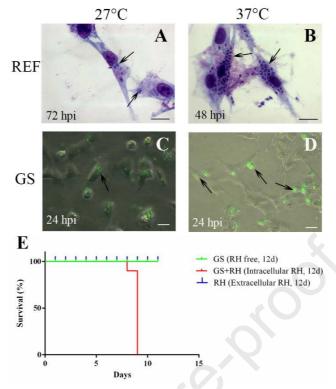
Journal

49 **1. Introduction**

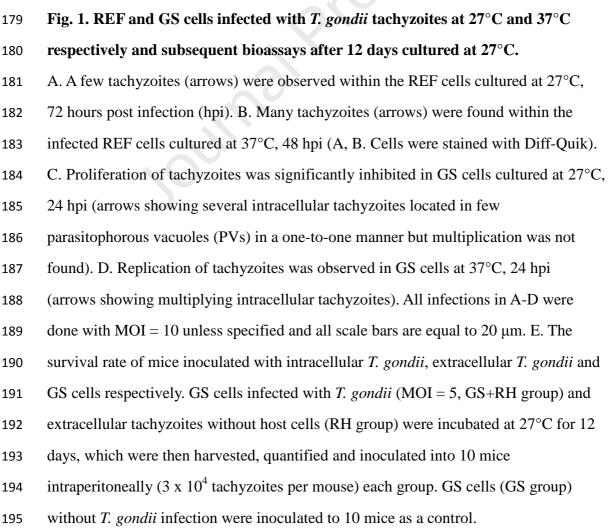
50	Toxoplasma gondii is an important intracellular protozoan parasite, which is
51	distributed globally and can infect almost all warm-blooded animals, including
52	humans, but is thought to be incapable of infecting cold-blooded animals except as
53	transport hosts (Dlugonska, 2017). Felids are the definitive host of T. gondii, in which
54	sexual reproduction occurs in the epithelial cells of the small intestine, leading to the
55	production of unsporulated oocysts in feces. Virtually, all warm-blooded vertebrates
56	can be infected with oocysts and serve as intermediate hosts in which T. gondii
57	undergoes asexual reproduction ultimately forming dormant tissue cysts (Halonen and
58	Weiss, 2013). In general, warm-blooded animals and humans can also be infected via
59	consumption of water or meat contaminated with T. gondii oocysts or cysts (Dubey
60	and Beattie, 1988). In most warm-blooded animals, including humans, infection is
61	asymptomatic but acute infection during pregnancy is detrimental to the developing
62	fetus and can result in devastating neurological impairment or abortion (Hampton,
63	2015).
64	There is growing concern that toxoplasmosis is a waterborne zoonosis being
65	transmitted to animals and humans through water contaminated with oocysts (Dubey,
66	2004). A large outbreak of human toxoplasmosis was shown to be linked with oocyst

67 contamination of a municipal water reservoir in Canada by wild felids infected with *T*.

- 68 gondii (Bowie et al., 1997), suggesting that infective oocysts are stable in aquatic
- 69 environments. This is further supported by reports that sporulated *T. gondii* oocysts
- can survive in seawater for at least 24 months (Lindsay and Dubey, 2009). Meanwhile,

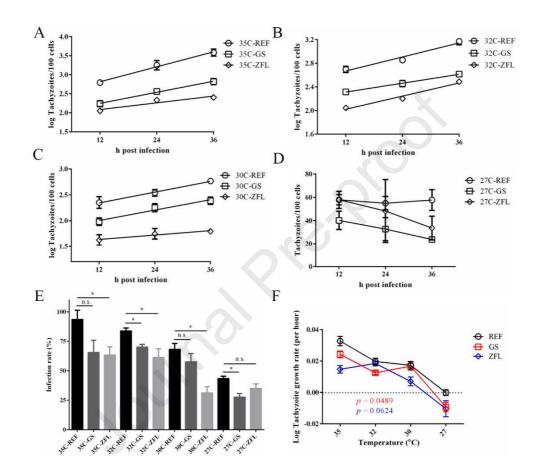

71	substantial evidence has shown that poikilothermic animals are capable of serving as
72	vectors of T. gondii oocysts, including oysters (Lindsay et al., 2001), mussels (Arkush
73	et al., 2003, Miller et al., 2008), filter feeding fish (Massie et al., 2010), abalones
74	(Schott et al., 2016) and gammarids (Bigot-Clivot et al., 2016). These findings above
75	suggest that T. gondii is likely to encounter cold-blooded animals in aquatic
76	environments, which raises an interesting question as to whether T. gondii can
77	penetrate cells of cold-blooded animals and replicate as tachyzoites.
78	As an obligate intracellular parasite, invasion of host cells is the most important
79	first step for T. gondii to establish a successful infection. Studies on cells from
80	cold-blooded animals indicated that they could be infected by T. gondii via
81	tachyzoites at a temperature of 37°C (Omata et al., 2005). Additionally, an in vivo
82	study on zebrafish at 37°C showed that intraperitoneal injection of <i>T. gondii</i> cysts led
83	to the multiplication of tachyzoites in different tissues including heart, blood vessel,
84	liver parenchyma, spleen and brain with corresponding histological and pathological
85	changes, resembling the situation found in acute infection in mammals (Sanders et al.,
86	2015). However, so far as we know, there is no evidence that <i>T. gondii</i> tachyzoites
87	invade and proliferate in the cells of cold-blooded animals at temperatures below
88	37°C. This suggests that the major limitation on <i>T. gondii</i> establishing an infection in
89	cold-blooded vertebrates may be highly dependent on temperature.
90	In order to find the minimum temperature for T. gondii invasion and replication,
91	we performed experiments at a range of temperatures with cells from rat (Rattus
92	norvegicus), grouper (Epinephelus coioides) and zebra fish (Danio rerio).

93	
94	2. Materials and methods
95	2.1. Mice and rats
96	All mice (Swiss Webster, male) and rats (SD, female) were purchased from the
97	Experimental Animal Center of Sun Yat-Sen University, at age of 6-8 weeks
98	(weighing 20 - 25 g for mice and 150 - 200 g for rats). All animals were strictly
99	maintained in a special pathogen free room with ad libitum access to food and water
100	according to protocols approved by the Laboratory Animal Use and Care Committee
101	of Sun Yat-Sen University under license NO. 2017YFD0500400.
102	
103	2.2. Cell culture and staining
104	Rat embryo fibroblasts (REF cells) were derived from an embryo collected from
105	the uterus of a healthy pregnant SD rat after euthanization. Grouper (Epinephelus
106	coioides) splenocytes (GS cells) and zebrafish (Danio rerio) hepatocyte (ZFL cells)
107	cell lines were gifted by Professor Qi-Wei Qin from the College of Marine Sciences,
108	South China Agricultural University and Professor Wen-Shen Li from the School of
109	Life Sciences, Sun Yat-Sen University. REF cells were maintained in RPMI 1640
110	medium supplemented with 10% FBS (fetal bovine serum) and 100 units/ml of
111	penicillin and 100 μ g/ml streptomycin at 37°C. GS cells were maintained in L-15
112	medium supplemented with FBS, penicillin and streptomycin as described at $27^{\circ}C$
113	(Liang et al., 2018). While, ZFL cells were maintained in 50% L-15 medium and 40%
114	RPMI 1640 medium supplemented with 10% FBS, penicillin and streptomycin at


115	27°C as described (Lopes et al., 2018). After digestion with 0.25% trypsin and 0.02%
116	EDTA, REF, GS and ZFL cells were harvested and they were seeded onto the wells of
117	a 24-well plate at an initial density of 10^{5} /well, and non-adherent cells were washed
118	away after 12 h incubation at the temperature described above.
119	
120	2.3. Toxoplasma gondii strains and infection
121	Tachyzoites of the T. gondii RH strain, a type I strain initially isolated from a
122	toxoplasmic encephalitis case in 1939 which showed faster growth, enhanced
123	extracellular survival rate and inability to form tissue cysts after a long history of
124	passage in mice and <i>in vitro</i> cultivation (Yang et al., 2013). The RH strain used in this
125	study was genetically manipulated to express green fluorescence protein (Nishikawa
126	et al., 2003) and was cryopreserved in liquid nitrogen before use. After thawing,
127	tachyzoites were inoculated into two mice and passaged into another two mice. At the
128	late stage of infection (usually 4 days post infection), infected animals were
129	euthanized, ascites were collected after injection of 5 ml PBS (phosphate buffer saline,
130	pH 7.4) into the peritoneal cavity. Macrophages were removed from ascites by adding
131	0.25% trypsin and 0.02% EDTA as a final concentration (Derouin et al., 1987). After
132	centrifugation at 4°C, 2000 \times g for 10 min, pelleted tachyzoites were resuspended in
133	culture medium at 27°C (see below) and quantified using a haemocytometer.
134	The host cells (REF, GS and ZFL cells) were placed at the designed experimental
135	temperatures (27°C, 30°C, 32°C, 35°C and 37°C) for over one hour before an
136	infection assay. After 12 hours of incubation with <i>T. gondii</i> using a 5 to 10 multiplicity

137	of infection (MOI), free tachyzoites were washed away with fresh medium and more
138	than 300 infected cells were counted under a fluorescent microscope. The infection
139	rate was represented by the ratio of infected cells/total cells. Meanwhile, at the time
140	points of 12 h, 24 h and 36 h, numbers of T. gondii tachyzoites in 100 host cells were
141	counted by fluorescence microscopy (Vert A1, Zeiss).
142	Otherwise, cells were seeded onto coverslips as above, and were washed with fresh
143	medium and stained by Diff-Quik. Samples were then mounted with neutral resins
144	and observed by microscopy (Imager A1, Zeiss).
145	
146	2.4. Mouse bioassay
147	In order to detect the ability of <i>T. gondii</i> to infect mice when continually cultured
148	in GS cells at 27°C, tachyzoites were collected from the infected GS cells after 12
149	days infection and were intraperitoneally inoculated into 10 mice, each with 3 x 10^4
150	tachyzoites (Gao et al., 2017). Tachyzoites kept in media at 27°C for 12 days were
151	inoculated as an extracellular group (10 mice), and GS cells were used as negative
152	control (10 mice). Inoculated mice were monitored daily.
153	
154	2.5. Statistical Analysis
155	Statistical analysis was carried out using GraphPad Prism 6.0 software. All data
156	were showed as the means \pm standard deviations of at least three independent
157	experiments. Data were compared and analyzed by the Student's paired t test, and $P <$
158	0.05 was accepted as statistically significant.

159	
160	3. Results
161	3.1 Growth of <i>T. gondii</i> in mammalian and fish cells at 27°C and 37°C
162	We firstly investigated the possible invasion and development of <i>T. gondii</i>
163	tachyzoites in the mammalian REF cells at 27°C. T. gondii tachyzoites were collected
164	from an infected mouse and resuspended in 27°C culture medium, added to the REF
165	cells, and incubated at 27°C. To our surprise, a few tachyzoites could be found in
166	parasitophorous vacuoles (PV), although proliferation was obviously limited and
167	could only be observed at a later stage at 72 hours post inoculation (hpi). While the
168	control group at 37°C, which was treated in the same way, showed normal
169	multiplication of tachyzoites in PV at 48 hpi. We also applied the same test in
170	cold-blooded fish cells. Similarly, in the GS cells cultured at 37°C, multiplication of
171	tachyzoites was found at 24 hpi even though some of the GS cells shrunk and rounded
172	up as 37°C is not a suitable temperature for them. While at 27°C, <i>T. gondii</i> tachyzoites
173	were still able to penetrate into the GS cells but the proliferation was not observed at
174	72 hpi (Fig. 1A). A further observation, taking advantage of detection of fluorescence
175	in the T. gondii strain, also revealed a decreasing number of intracellular tachyzoites
176	from day 1 till day 9 (data not shown).


	urn	D	-n	
	ан II			

197	To reveal the viability of the tachyzoites, a bioassay was carried out by inoculating
198	10 mice with a fixed amount of fluorescent tachyzoites (3×10^4) from the infected GS
199	cells at 27°C harvested on day 12. A survival curve revealed that the intracellular
200	tachyzoites remained infective, while the extracellular tachyzoites and
201	tachyzoites-free GS cells from parallel experiments (12 days in medium) were not
202	(Fig. 1B).
203	Together, the tachyzoites of <i>T. gondii</i> could invade both mammalian and fish cells
204	at 37°C and 27°C, and retain viability for at least 12 days post infection at 27°C,
205	although the proliferation was clearly inhibited.
206	
207	3.2 Growth of <i>T. gondii</i> tachyzoites at 35°C, 32°C, 30°C and 27°C
208	To identify how the temperature affects the growth of tachyzoites, we performed
209	experiments with a temperature series at 35°C, 32°C, 30°C and 27°C, respectively,
210	using mammalian (REF) and fish (GS, ZFL) cells. It is intriguing that GS and ZFL
211	cells grew well at 35°C, as did the invaded <i>T. gondii</i> parasites, both in a similar
212	manner to growth in the REF cells (Fig. 2 A). Quantitative analysis revealed that
213	tachyzoites could grow well in REF, GS and ZFL cells from 30°C to 35°C, but not at
214	27°C (Fig. 2 A-D). Infection rates in these groups were also determined at 12 hpi, and
215	mild host preferences were observed at the tested temperatures (Fig. 2E). Clearly, the
216	growth of <i>T. gondii</i> in REF, GS and ZFL cells at the tested temperature series
217	indicated a temperature-dependent manner (Fig. 2F). However, to our surprise, a

significant difference in growth rates was found between mammalian REF and fish

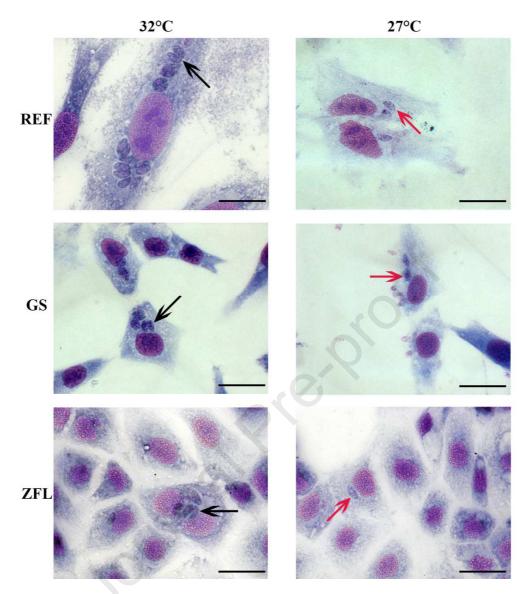
- GS cells (p = 0.049), while the difference between REF and fish ZFL cells
- approached significance (p = 0.062).

221

222

Fig. 2. The status of growth and infection rates of *T. gondii* in REF, GS and ZFL cells cultured at 35°C, 32°C, 30°C and 27°C.

A, B, C and D, logarithmic scale (or linear scale for D) growth curves of tachyzoites


in REF, GS and ZF-L cells cultured at 35°C (A), 30°C (B), 32°C (C) and 27°C (D),

respectively. Tachyzoites were assessed in around 100 cells per well using fluorescent

- 228 microscopy. E, infection rates of REF, GS and ZFL cells cultured at 35°C, 32°C, 30°C
- and 27°C, respectively. More than 200 cells per well were counted under an inverted
- fluorescence microscope at 12h post infection with tachyzoites and the infection rate
- 231 was expressed as the ratio of infected cells to total cells. F, Logarithmic scale curves
- of tachyzoite growth rates (per hour) in REF, GS and ZFL cells cultured at 35°C,

233	32° C, 30° C and 27° C, respectively. All infections were done with a MOI = 6. Each
234	measurement was performed in triplicate and repeated three times $(n = 3)$ and all
235	presented values are meaning \pm SD. Statistical significance was indicated by using a
236	paired Student's <i>t</i> test between different groups. $*P < 0.05$; $**P < 0.01$; $***P < 0.001$;
237	N.S., not significant.
238	

- Furthermore, we selected temperatures of 32°C and 27°C to get a clearer visual
- observation of tachyzoite infection in REF, GS and ZFL cells at 24 hpi. Consistent
- 241 with the experiments above, *T. gondii* showed obvious multiplication in REF, GS and
- 242 ZFL cells at 32°C, while no signs of proliferation were observed at 27°C (Fig. 3).

243

Fig. 3. The growth of *T. gondii* in REF, GS and ZFL cells cultured at 32°C and

245 **27°C respectively and stained with Diff-Quik.**

246 Black arrows indicate the tachyzoites within the PVs, while red arrows indicate the

tachyzoites without PVs. Images were taken at 24 hpi, MOI = 6, scale bar for all

248 photos = 20 μ m.

```
Taken together, these results showed that at 30 - 35°C, T. gondii tachyzoites could
invade and multiply in both marine and fresh water fish cells, although this was not as
efficient as in mammalian cells.
```

253

254 **4. Discussion**

255	Toxoplasma gondii has been widely known to be capable of invading virtually all
256	nucleated cells of warm-blooded animals including humans since the discovery of this
257	marvelous parasite (Dubey et al., 1998). However, whether animals apart from
258	homothermic ones can serve as potential host for T. gondii remains a controversy.
259	Interestingly, <i>T. gondii</i> tachyzoites could survive in three <i>Aedes</i> cell lines at 35°C for
260	at least 15 days, as verified using intraperitoneally inoculated mice with washed cell
261	suspensions, nevertheless, no data on T. gondii tachyzoite proliferation was mentioned
262	in the study (Buckley, 1973). Attempts to infect insects with T. gondii indicated a
263	maximum of three days survival of the parasite in an in vivo study of four species of
264	mosquito, judged by the retained infectivity of either cysts or tachyzoites orally fed to
265	mosquitoes, whether the temperature was 26°C or 37°C (Chapman and Ormerod,
266	1966). However, the combination of the above results, suggested T. gondii failed to
267	penetrate mosquito cells during the in vivo test, whereas T. gondii survived for a much
268	shorter time than in the in vitro test. In other words, T. gondii may not be capable of
269	infecting insects.
270	In addition, results from some previous studies indicated that T. gondii could
271	survive in cold-blooded animals from fish to reptiles both under natural (Nasiri et al.,
272	2016) and experimental conditions (Sanders et al., 2015). However, cold-blooded
273	animals including filter-feeding fish and other aquatic invertebrates were only

considered as carriers of *T. gondii* oocysts in the wild (Arkush et al., 2003, Miller et

275	al., 2008, Massie et al., 2010, Bigot-Clivot et al., 2016). To our knowledge, there is no
276	direct evidence in the literature shows that T. gondii can naturally multiply in the cells
277	of wild cold-blooded animals to expand its population. Therefore, it still remains an
278	attractive question as to what is the key factor that limits the invasion and
279	proliferation of <i>T. gondii</i> in cold-blooded animals or their cells.
280	By definition, one of the fundamental distinctive differences between
281	cold-blooded and warm-blooded animals is their body temperature; therefore, we
282	assumed that temperature could be the prerequisite for T. gondii to establish invasion
283	and proliferation in various host cells. As expected, using marine and fresh water fish
284	cells in the present study, we demonstrated that T. gondii could invade and proliferate
285	in these cells at temperatures of 30°C, 32°C and 35°C. At 27°C, a temperature lower
286	than 30°C, invasion and proliferation of <i>T. gondii</i> tachyzoites was significantly
287	inhibited, although parasites remained infective to mice for at least 12 days. These
288	findings are supported by previous observations at an experimental temperature of
289	37°C in which <i>T. gondii</i> could establish an infection in goldfish (<i>Carassius auratus</i>)
290	cells in vitro (Omata et al., 2005) and zebra fish in vivo (Sanders et al., 2015).
291	More importantly, our study also revealed a temperature dependent manner for <i>T</i> .
292	gondii invasion and proliferation at the range of 27°C to 35°C, with higher
293	temperature associated with greater invasion efficiency and faster growth of the
294	parasite. Indeed, Omata and his colleagues found a similar tendency using two
295	temperature conditions of 33°C and 37°C with goldfish cells (Omata et al., 2005).
296	Interestingly, this temperature dependent manner is not restricted to T. gondii infecting

297	cold-blooded hosts, as a similar behavior was observed in the rat cells. We found that
298	tachyzoites had a slightly better growth and invasion efficiency in the rat cells than
299	the two types of fish cells, which may indicate an adaption by <i>T. gondii</i> to its natural
300	warm-blooded host. On the other hand, the viability of <i>T. gondii</i> in the fish cells for
301	12 days at 27°C also indicated a tolerance to ambient temperature (27°C) of this
302	parasite, retaining its infectivity to new host for at least 12 days.
303	It is well known that <i>T. gondii</i> is a parasite which can infect most warm-blooded
304	vertebrates, while many other related species in the Apicomplexa, such as Eimeria
305	tenella only naturally infects the cecum of chickens (Clark et al., 2017), and
306	Plasmodium falciparum specifically infects humans and chimpanzees (Miller et al.,
307	2002). Our findings suggest a mechanism limiting the broad host range of <i>T. gondii</i>
308	that is determined by a low-temperature-barrier preventing the infection of <i>T. gondii</i>
309	in poikilothermal animals. Therefore, although results from the earlier investigations
310	demonstrated that T. gondii was found in amphibians and reptiles (Nasiri et al., 2016),
311	it is unlikely that <i>T. gondii</i> can establish a persistent infection in these cold-blooded
312	animals. In other words, cold-blooded vertebrates inhabiting regions that have
313	temperatures at 30°C to 37°C (Sun, 1996, Engeszer et al., 2007, Zhang et al., 2010,
314	Woolway et al., 2016, Chaidez et al., 2017, North Temperate Lakes, 2010), may be at
315	risk of T. gondii infection. Therefore, an epidemiological survey for T. gondii
316	infections in fish and other cold-blooded animals, especially in tropical areas, could
317	obtain some very interesting results pertinent to understanding the endemic status of T .
318	gondii in these animals. Based on our current results and related published data, we

319	consider that temperature, rather than cell type or host, is a key contributor to the
320	successful development of <i>T. gondii</i> in cells (and hosts) at least in vertebrates. This
321	raises an interesting question as to the nature of host-parasite interactions that
322	determine this temperature dependence. It can be inferred that T. gondii is capable of
323	infecting nucleated cells of virtually all vertebrates, which reflects the advantages of
324	employing T. gondii as a perfect model to explore the evolutionary relationships
325	between intracellular parasites and host cells. Furthermore, the high plasticity of
326	host-parasite interactions in <i>T. gondii</i> may be determined by such studies and provides
327	insights into the potential of this fascinating parasite to evolve the capability of
328	infection in cold-blooded vertebrates.
329	
330	Data Availability Statement
330 331	Data Availability Statement The datasets generated during the study are available from the corresponding author
331	The datasets generated during the study are available from the corresponding author
331 332	The datasets generated during the study are available from the corresponding author
331 332 333	The datasets generated during the study are available from the corresponding author on reasonable request.
331 332 333 334	The datasets generated during the study are available from the corresponding author on reasonable request. Declaration of Interests
 331 332 333 334 335 	The datasets generated during the study are available from the corresponding author on reasonable request. Declaration of Interests
 331 332 333 334 335 336 	The datasets generated during the study are available from the corresponding author on reasonable request. Declaration of Interests The authors declare no competing financial interests.
 331 332 333 334 335 336 337 	The datasets generated during the study are available from the corresponding author on reasonable request. Declaration of Interests The authors declare no competing financial interests. Acknowledgements

- 341 Lancaster, UK) for access to water temperature data. This work was supported by
- 342 grants from The National Key R&D Program of China (2017YFD0500400) and The
- 343 National Natural Science Foundation of China (31772445).
- 344
- 345

Journal Prevention

346	References
346	References

- 347
- 348 Arkush, K.D., Miller, M.A., Leutenegger, C.M., Gardner, I.A., Packham, A.E.,
- Heckeroth, A.R., Tenter, A.M., Barr, B.C., Conrad, P.A., 2003. Molecular and
- bioassay-based detection of *Toxoplasma gondii* oocyst uptake by mussels
- 351 (*Mytilus galloprovincialis*). Int J Parasitol. 33(10), 1087-1097.
- 352 <u>https://doi.org/10.1016/s0020-7519(03)00181-4</u>
- Bigot-Clivot, A., Palos Ladeiro, M., Lepoutre, A., Bastien, F., Bonnard, I., Dubey, J.P.,
- Villena, I., Aubert, D., Geffard, O., Francois, A., Geffard, A., 2016.
- 355 Bioaccumulation of *Toxoplasma* and *Cryptosporidium* by the freshwater
- 356 crustacean *Gammarus fossarum*: Involvement in biomonitoring surveys and
- trophic transfer. Ecotoxicol Environ Saf. 133, 188-194.
- 358 <u>https://doi.org/10.1016/j.ecoenv.2016.07.006</u>
- Bowie, W.R., King, A.S., Werker, D.H., Isaac-Renton, J.L., Bell, A., Eng, S.B.,
- 360 Marion, S.A., 1997. Outbreak of toxoplasmosis associated with municipal
- drinking water. Lancet. 350(9072), 173-177.
- 362 https://doi.org/10.1016/s0140-6736(96)11105-3
- 363 Buckley, S.M., 1973. Survival of *Toxoplasma gondii* in mosquito cell lines and
- establishment of continuous infection in Vero cell cultures. Exp Parasitol. 33(1),
- 365 23-26.
- 366 https://doi.org/10.1016/0014-4894(73)90005-2
- 367 Chaidez, V., Dreano, D., Agusti, S., Duarte, C.M., Hoteit, I., 2017. Decadal trends in

- Red Sea maximum surface temperature. Sci Rep. 7(1), 8144.
- 369 <u>https://doi.org/10.1038/s41598-017-08146-z</u>
- 370 Chapman, J.M., Ormerod, W.E., 1966. The survival of *Toxoplasma* in infected
- 371 mosquitoes. J Hyg (Lond). 64(3), 347-355.
- 372 https://doi.org/10.1017/s0022172400040626
- 373 Clark, E.L., Tomley, F.M., Blake, D.P., 2017. Are *Eimeria* Genetically Diverse, and
- Does It Matter? Trends Parasitol. 33(3), 231-241.
- 375 https://doi.org/10.1016/j.pt.2016.08.007
- 376 Derouin, F., Mazeron, M.C., Garin, Y.J., 1987. Comparative study of tissue culture
- and mouse inoculation methods for demonstration of *Toxoplasma gondii*. J Clin
- 378 Microbiol. 25(9), 1597-1600.
- 379 Dlugonska, H., 2017. Are poikilothermic animals real hosts for *Toxoplasma gondii*?
- 380 Ann Parasitol. 63(1), 3-5.
- 381 <u>https://doi.org/10.17420/ap6301.77</u>
- 382 Dubey, J.P., 2004. Toxoplasmosis a waterborne zoonosis. Vet Parasitol. 126(1-2),
- 383 57-72.
- 384 <u>https://doi.org/10.1016/j.vetpar.2004.09.005</u>
- 385 Dubey, J.P., Beattie, C.P., 1988. Toxoplasmosis of Animals and Man. In: Beattie, C.P.
- 386 (Ed.), CRC Press, Boca Raton, Florida (pp. 220)
- 387 Dubey, J.P., Lindsay, D.S., Speer, C.A., 1998. Structures of *Toxoplasma gondii*
- tachyzoites, bradyzoites, and sporozoites and biology and development of tissue
- 389 cysts. Clin Microbiol Rev. 11(2), 267-299.

- Bigeszer, R.E., Patterson, L.B., Rao, A.A., Parichy, D.M., 2007. Zebrafish in the wild:
- a review of natural history and new notes from the field. Zebrafish. 4(1), 21-40.
- 392 https://doi.org/10.1089/zeb.2006.9997
- 393 Gao, J.M., Xie, Y.T., Xu, Z.S., Chen, H., Hide, G., Yang, T.B., Shen, J.L., Lai, D.H.,
- Lun, Z.R., 2017. Genetic analyses of Chinese isolates of *Toxoplasma gondii*
- reveal a new genotype with high virulence to murine hosts. Vet Parasitol. 241,
- **396 52-60**.
- 397 <u>https://doi.org/10.1016/j.vetpar.2017.05.007</u>
- Halonen, S.K., Weiss, L.M., 2013. Toxoplasmosis. Handb Clin Neurol. 114, 125-145.
- 399 <u>https://doi.org/10.1016/B978-0-444-53490-3.00008-X</u>
- 400 Hampton, M.M., 2015. Congenital Toxoplasmosis: A Review. Neonatal Netw. 34(5),
- 401 274-278.
- 402 <u>https://doi.org/10.1891/0730-0832.34.5.274</u>
- 403 Liang, Y., Ding, X., Yu, X., Wang, Y., Zhou, Y., He, J., Shi, Y., Zhang, Y., Lin, H., Lu,
- 404 D., 2018. Identification and functional characterization of Toll-like receptor 13
- 405 from orange-spotted grouper (*Epinephelus coioides*). Fish Shellfish Immunol. 74,
- 406 309-317.
- 407 <u>https://doi.org/10.1016/j.fsi.2017.12.054</u>
- 408 Lindsay, D.S., Dubey, J.P., 2009. Long-term survival of *Toxoplasma gondii* sporulated
- 409 oocysts in seawater. J Parasitol. 95(4), 1019-1020.
- 410 <u>https://doi.org/10.1645/GE-1919.1</u>
- Lindsay, D.S., Phelps, K.K., Smith, S.A., Flick, G., Sumner, S.S., Dubey, J.P., 2001.

- 412 Removal of *Toxoplasma gondii* Oocysts from Sea Water by Eastern Oysters
- 413 (*Crassostrea virginica*). J Eukaryot Microbiol. 48, 197-198.
- 414 https://doi.org/10.1111/j.1550-7408.2001.tb00517.x
- Lopes, F.M., Sandrini, J.Z., Souza, M.M., 2018. Toxicity induced by glyphosate and
- 416 glyphosate-based herbicides in the zebrafish hepatocyte cell line (ZF-L).
- 417 Ecotoxicol Environ Saf. 162, 201-207.
- 418 https://doi.org/10.1016/j.ecoenv.2018.07.005
- 419 Massie, G.N., Ware, M.W., Villegas, E.N., Black, M.W., 2010. Uptake and
- 420 transmission of *Toxoplasma gondii* oocysts by migratory, filter-feeding fish. Vet
- 421 Parasitol. 169(3-4), 296-303.
- 422 https://doi.org/10.1016/j.vetpar.2010.01.002
- 423 Miller, L.H., Baruch, D.I., Marsh, K., Doumbo, O.K., 2002. The pathogenic basis of
- 424 malaria. Nature. 415(6872), 673-679.
- 425 <u>https://doi.org/10.1038/415673a</u>
- 426 Miller, M.A., Miller, W.A., Conrad, P.A., James, E.R., Melli, A.C., Leutenegger, C.M.,
- 427 Dabritz, H.A., Packham, A.E., Paradies, D., Harris, M., Ames, J., Jessup, D.A.,
- 428 Worcester, K., Grigg, M.E., 2008. Type X *Toxoplasma gondii* in a wild mussel
- 429 and terrestrial carnivores from coastal California: new linkages between
- 430 terrestrial mammals, runoff and toxoplasmosis of sea otters. Int J Parasitol.
- 431 38(11), 1319-1328.
- 432 <u>https://doi.org/10.1016/j.ijpara.2008.02.005</u>
- 433 Nasiri, V., Teymurzadeh, S., Karimi, G., Nasiri, M., 2016. Molecular detection of

- 434 *Toxoplasma gondii* in snakes. Exp Parasitol. 169, 102-106.
- 435 <u>https://doi.org/10.1016/j.exppara.2016.08.002</u>
- 436 Nishikawa, Y., Xuenan, X., Makala, L., Vielemeyer, O., Joiner, K.A., Nagasawa, H.,
- 437 2003. Characterisation of *Toxoplasma gondii* engineered to express mouse
- 438 interferon-gamma. Int J Parasitol. 33(13), 1525-1535.
- 439 <u>https://doi.org/10.1016/s0020-7519(03)00204-2</u>
- 440 North Temperate Lakes. 2010. North Temperate Lakes LTER: High Frequency Water
- 441 Temperature Data Lake Mendota Buoy 2006 current.
- 442 <u>https://doi.org/10.6073/pasta/8ceff296ad68fa8da6787076e0a5d992</u>, (Accessed 18
- 443 September 2019).
- 444 Omata, Y., Umeshita, Y., Murao, T., Kano, R., Kamiya, H., Kudo, A., Masukata, Y.,
- 445 Kobayashi, Y., Maeda, R., Saito, A., Murata, K., 2005. *Toxoplasma gondii* does
- 446 not persist in goldfish (*Carassius auratus*). J Parasitol. 91(6), 1496-1499.
- 447 <u>https://doi.org/10.1645/GE-3503RN.1</u>
- 448 Sanders, J.L., Zhou, Y., Moulton, H.M., Moulton, Z.X., McLeod, R., Dubey, J.P.,
- 449 Weiss, L., M.Kent, M.L., 2015. The zebrafish, *Danio rerio*, as a model for
- 450 *Toxoplasma gondii*: an initial description of infection in fish. J Fish Dis. 38(7),
- 451 675-679.
- 452 <u>https://doi.org/10.1111/jfd.12393</u>
- 453 Schott, K.C., Krusor, C., Tinker, M.T., Moore, J., Conrad, P.A., Shapiro, K., 2016.
- 454 Concentration and retention of *Toxoplasma gondii* surrogates from seawater by
- 455 red abalone (*Haliotis rufescens*). Parasitology. 143(13), 1703-1712.

- 456 <u>https://doi.org/10.1017/S0031182016001359</u>
- 457 Sun, Z., 1996. Analysis of water temperature different depths of fish ponds. Journal of
- 458 Lake Sciences 8(4), 325-329. (in Chinese)
- 459 Woolway, R.I., Jones, I.D., Maberly, S.C., French, J.R., Livingstone, D.M., Monteith,
- 460 D.T., Simpson, G.L., Thackeray, S.J., Andersen, M.R., Battarbee, R.W.,
- 461 DeGasperi, C.L., Evans, C.D., de Eyto, E., Feuchtmayr, H., Hamilton, D.P.,
- 462 Kernan, M., Krokowski, J., Rimmer, A., Rose, K.C., Rusak, J.A., Ryves, D.B.,
- 463 Scott, D.R., Shilland, E.M., Smyth, R.L., Staehr, P.A., Thomas, R., Waldron, S.,
- 464 Weyhenmeyer, G.A., 2016. Diel Surface Temperature Range Scales with Lake
- 465 Size. PLoS One. 11(3), e0152466.
- 466 <u>https://doi.org/10.1371/journal.pone.0152466</u>
- 467 Yang, N., Farrell, A., Niedelman, W., Melo, M., Lu, D., Julien, L., Marth, G.T.,
- 468 Gubbels, M.J., Saeij, J.P., 2013. Genetic basis for phenotypic differences
- between different *Toxoplasma gondii* type I strains. BMC Genomics. 14, 467.
- 470 <u>https://doi.org/10.1186/1471-2164-14-467</u>
- 471 Zhang, Z.Y., Zhang, Z.W., Zhang, C.J., Wu, G.J., Chen, Y.S., Liu, H.L., 2010.
- 472 Analysis of water temperature of fishing pond in south Jiangsu coast area.
- 473 Marine Science Bulletin 29(6), 674-677. (in Chinese)
- 474

Highlights

- Toxoplasma gondii RH strain tachyzoites are capable of invading fish cells and maintaining infectivity for at least 12 days post infection at 27°C although proliferation was clearly inhibited.
- Multiple temperatures (27°C, 30°C, 32°C and 35°C) were tested for *T. gondii* infection, and the minimum temperature for *T. gondii* invasion is 27°C and for replication is 30°C.
- *T. gondii* infection is highly dependent on temperature which determines the differences in the capability to infect cold- and warm- blooded vertebrates, rather than cell type or host.

Johngibie