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ABSTRACT:  
We present a mathematical and numerical study of the transient Marangoni thermo-convection flow of an 
electrically conducting Newtonian fluid in an isotropic Darcy porous rectangular semiconductor melt 
enclosure with buoyancy and internal heat generation effects, in an (x, y) coordinate system. The 
governing equations comprising the mass conservation, x-direction momentum, y-direction momentum 
and energy equation are formulated subject to a quartet of boundary conditions at the four walls of the 
enclosure. The upper enclosure wall is assumed to be “free” with an appropriate surface tension dynamic 
boundary condition. A series of transformations are implemented to render the mathematical model 
dimensionless and into a vorticity form. The governing thermophysical parameters are shown to be the 
Marangoni number for surface tension (thermocapillary) effects (Ma), Prandtl number (Pr), Grashof 
number for buoyancy effects (Gr), enclosure aspect ratio (A), Hartmann hydromagnetic number (Ha), 

Darcy number for bulk porous resistance (Da), and the internal heat generation parameter () the latter 
being a function of the internal (RaI) and global Rayleigh numbers (Ra). An efficient finite difference 
numerical method is employed to solve the boundary value problem. Validations with earlier purely fluid 

solutions (Da →) are included. A mesh-independence test is included with further validation with other 
published studies. Isotherms and isovels (streamlines) are computed as are Nusselt numbers at selected 
boundaries. Solutions for the case of Pr = 0.054 (semiconductor melt) are also compared with earlier 
studies showing excellent correlation. The model finds applications in the bulk crystal growth of 
semiconductors, electromagnetic materials processing control and also hybrid fuel cells.  
 

KEY WORDS:  Marangoni Convection; Hydromagnetics; Porous Media; Darcy model; MAC 
computation; Heat Source; Semiconductor Melt; Buoyancy; Materials Processing. 
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NOMENCLATURE 

Dimensional 

x  co-ordinate parallel to base of enclosure (m) 

y co-ordinate perpendicular to base of enclosure (m) 

g acceleration due to gravity (m/s2) 

H height of enclosure (m) 

L length of enclosure (m) 

B uniform magnetic field vector (Tesla) 

u x-direction velocity (m/s) 

y y-direction velocity (m/s) 

Bo magnitude of B (Tesla)  

K permeability of the porous medium (m2) 

p hydrodynamic pressure (Pa) 

K effective thermal conductivity of fluid saturated porous medium (W/mK) 

t time (s) 

T temperature (K) 

Cp isobaric specific heat (J/kgK)  

J electrical current density (Amperes/m2) 

V field velocity vector (m/s) 

q’’’ volumetric internal heat generation rate (W/m3) 

 electrical conductivity of fluid (Siemens/m) 

 thermal expansion coefficient of fluid (/K) 

 electric potential (Volts) 

 dynamic viscosity of fluid (kg/ms) 

 kinematic viscosity of fluid (m2/s) 

 fluid density at reference temperature (kg/m3) 

* surface tension (N/m) 

 temperature coefficient (/K) 

 thermal diffusivity of fluid-saturated porous medium ((m2/s) 

q heat flux (w/m2) 

 

Dimensionless  

 dimensionless time  

Ha  Hartmann hydromagnetic number 
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Da Darcian porous number 

Ma Marangoni number 

Pr Prandtl number 

Nu Nusselt number 

Gr Grashof number 

Ra Rayleigh number  

RaI Internal Rayleigh number 

X dimensionless x co-ordinate 

Y dimensionless y co-ordinate 

U dimensionless u velocity 

V dimensionless v velocity 

 dimensionless temperature 

A aspect ratio (L/H)  

 stream function 

 vorticity function  

 

Subscripts and Superscripts 

 ( )H Hot wall (right of enclosure) 

( )C Cold wall (left of enclosure)   

 

1. INTRODUCTION  

Natural convection flows in enclosures continue to attract the attention of engineers and 

scientists owing to the extensive applications of such studies in solar energy systems, crystal 

growth technologies, storage of hazardous materials in geo-repositories, materials 

processing, large fuel tanks etc [1]. In conjunction with experimentation, extensive 

computational studies of both natural convection and thermosolutal convection flows have 

been reported using a variety of numerical procedures for both Newtonian and non-

newtonian fluids. Robillard et al. [2] investigated the heat transfer in a rectangular enclosure 

with a constant rate of cooling at the walls. Kwak and Hyun [3] considered the influence of 

side-wall transient temperature conditions on free convection in an enclosure using an 

unsteady finite difference model, showing that resonance is characterized by maximal 

amplification of the fluctuations of heat transfer in the interior and that resonance becomes 

more distinctive for large Rayleigh numbers when Prandtl number is of order unity. 
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Bennacer et al. [4] used a finite element method to investigate the unsteady free convection 

heat transfer in an enclosure with vertical mass transfer gradients. Welhezi et al. [5] 

deployed a second-order accurate finite volume approach on a staggered grid system and 

multi-grid acceleration to simulate the buoyancy-driven convection in a  body of cubical 

shape located at the center of an isothermal cooled spherical enclosure, considering three 

different fluids (air, water and dielectric liquid).  They noted that thermal and velocity fields 

eventually attain steady states when Rayleigh numbers range from 104 to 107.  Bhargava et 

al. [6] studied the double-diffusive convection in a square enclosure (as a model of a 

bioreactor) containing micropolar fluid. Using both variational finite element and optimized 

finite difference schemes and showing that microstructural parameters in combination with 

Lewis and Rayleigh numbers exert a profound influence on iso-temperature, iso-

concentration and iso-microrotation distributions. More recently Kuharat et al. [7] employed 

finite volume ANSYS FLUENT software to compute the thermal performance of silver and 

titanium oxide-water nanofluids in rectangular solar collector enclosures for a variety of 

volume fractions and aspect ratios. These studies considered purely fluid cavities i.e. 

neglected permeable material presence and also assumed the circulating fluid to be 

electrically non-conducting. However, many industrial applications involving thermal 

convection in enclosures feature porous media and also magnetized fluids subjected to 

external static or alternating magnetic fields. Engineers have therefore also studied 

magnetohydrodynamic convection in enclosures with/without porous media. Gelfgat and 

Bar-Joseph [8] considered the influence of external magnetic field on oscillatory convective 

flows in a rectangular enclosure, as a simulation of Bridgman crystal growth processes. For 

Prandtl number of 0.015, they computed the influence of magnetic field at various 

inclinations  on the stability of the two distinct branches (with a single-cell or a two-cell 

pattern) of the steady state flows, observing that a vertical magnetic field achieves the most 

effective stabilization. Bourantas and Loukopoulos [9] utilized a meshless point collocation 

method utilizing a velocity-correction scheme to analyze numerically the unsteady free 

convection magnetohydrodynamic micropolar-nanofluid (Al2O3/water) in an inclined 

rectangular enclosure is considered.  They noted that velocity and temperature are generally 

strongly modified by strength and orientation of the magnetic field and temperatures 

elevated with nanoparticle volume fraction up to a critical point. Sheremet et al. [10] 

employed a second order finite difference method to analyse the hydromagnetic free 

convection in an inclined wavy Cu–water nanofluid enclosure featuring an isothermal corner 

heater. They presented average Nusselt number and isotherm plots for the influence of 

Hartmann magnetic number, magnetic field inclination, wavy boundary undulation number, 
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inclination angle of the cavity, solid volume fraction parameter of nanoparticles and 

dimensionless time. Wang et al. [11] studied the free convection in a porous cavity using the 

Darcian formulation. Amahmid et al. [12] analyzed the convective heat and mass transfer in 

a vertical porous Darcian enclosure. Zhang et al. [13] used a mixed finite element method 

comprising a Brezzi-Douglas-Marini element and a discontinuous Galerkin element to 

compute heat and mass transfer in a Darcian porous enclosure for CO2 sequestration in 

brine aquifers. Stajnko et al. [14] employed a boundary domain integral method (BDIM), to 

compute convection heat transfer in an isotropic porous medium with the Darcy model and 

the velocity-vorticity formulation of the Navier-Stokes equations. Pekmen and Tezer-Sezgin 

[15] applied a dual reciprocity boundary element method (DRBEM) to compute the steady 

free magnetic convection in complex enclosures filled with a fluid saturated porous medium. 

They showed that stronger magnetic field and lower permeability damps the circulation and 

significantly alters conductive heat transfer. Magnetic field was therefore shown to be an 

effective mechanism of controlling heat transfer processes in porous media.  Alchaar et al. 

[16] investigated the influence of transverse magnetic field on free convection in a 

rectangular porous enclosure. Alsabery et al. [17] used COMSOL finite element software to 

analyse the impact of viscous heating and radiation on MHD natural convection in an 

oblique porous cavity with constant heat flux. They noted that the intensity of the 

streamlines and the isotherm patterns is reduced with an increment in Hartmann magnetic 

number and permeability (Darcy number) and that heat transfer is boosted with viscous 

heating and radiative flux. Pekmen and Tezer-Sezgin [18] studied mixed convection flow in a 

lid-driven square cavity filled with a porous medium under the effect of a magnetic field with 

the dual reciprocity boundary element method (DRBEM) and a Houbolt time integration 

scheme, including the effect of magnetic induction. They showed that lower permeability of 

porous medium and greater applied magnetic field induces flow deceleration and 

suppresses convective heat transfer whereas intensification in magnetic potential circulating 

throughout the cavity with high magnetic permeability of the fluid is generated.  Bég et al. 

[19] used network simulation PSPICE software to simulate the rotating 

magnetohydrodynamic Hall flow in a Darcian regime with oblique magnetic field, observing 

that decreasing Darcy number (lower permeability) strongly damps the velocity field and 

eliminates oscillatory instabilities. Bhatti et al. [20] used the successive linearization method 

to compute hydrodynamic wall slip and radiative heat flux effects on magnetic iron oxide-

water-based nanofluid Sakiadis flow in a porous medium with cross diffusion effects. An 

excellent study of non-Darcy convection in an annular porous structure was presented by 

Muralidhar and Kulacki [21].  Shivakumara et al. [22] investigated the unsteady non-Darcian 
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free convection in a vertical cylindrical porous medium annulus using a finite difference 

method, showing that decreasing Darcy number suppresses velocity fields and also reduces 

boundary heat transfer rates. Khadrawi and Nimr [23] considered the transient 

hydrodynamics and buoyancy-driven heat transfer in an open-ended vertical parallel-plate 

channel partially filled with a non-Darcian porous medium. Further studies deploying a 

robust Forchheimer-extended Darcy model include Rawat et al. [24] on time-dependent 

magnetoconvective non-Newtonian thermosolutal convection in a non-Darcy porous 

medium channel with variable thermal conductivity and heat source effects. They employed 

a variational finite element code and showed that significant modification in both core flow 

and wall shear stress, Nusselt number and Sherwood numbers is caused with increment in 

Forchheimer parameter and transverse magnetic field strength, although flow reversal is 

avoided. Prasad et al. [25] used a second order finite difference method to simulate Soret 

and Dufour cross diffusion effects on enrobing thermosolutal boundary flow from a 

cylindrical body in Darcy-Forchheimer permeable media. Prasad et al. [26] further 

investigated thermophoresis and Brownian motion effects on Buongiorno nanofluid coating 

flow over a spherical geometry in non-Darcy porous media, computing general solutions and 

also stagnation point characteristics. Aly [27] used an incompressible smoothed particle 

hydrodynamics (ISPH) method to compute the non-Darcy natural convective heat and mass 

transfer in an enclosure saturated with anisotropic porous media with and without a 

sloshing rod inside the enclosure. He utilized a semi-implicit velocity correction procedure 

and presented streamlines, isotherms, concentration contours and average Nusselt and 

Sherwood numbers. These computations showed that increasing Darcy number, porosity, 

permeability ratio and inclination angle substantially alter wall heat and mass transfer 

characteristics. Bég et al. [28] used a Darcy–Forchheimer isotropic porous medium drag 

force model, the P1 radiative model and both forward time centered space (FTCS) finite 

difference and network thermoelectric simulation codes (RAD-SPACE) to compute the 

velocity, temperature and dimensionless zero moment of intensity distributions in the 

annular region of a hybrid solar collector enclosure. These simulations indicated that 

increasing aspect ratio and Darcy number accelerates axial and radial flow and enhances 

radiative moment of intensity, whereas increasing Forchheimer number decelerates the 

axial and radial flow. They further showed that greater radiative optical thickness of the 

saturated porous medium retards radial flow whereas it accelerates axial flow and 

accentuates temperatures.  

In all the above studies either closed systems or boundary layer flows have been considered 

i.e. they have not considered the influence of a free surface on the convection regime. 
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However, when free surfaces are present in natural convection flows it has been shown that 

motion is induced in the fluid via surface tension at the free surface. It may also be induced 

by surfactant concentration gradients at the interface of two fluid layers which can produce 

interfacial flows from regions of low surface tension to region of high surface tension. 

Although discovered over a century ago, Marangoni flows continue to find novel 

applications in modern engineering sciences. These include ballistic phase spacecraft rocket 

fuel tank thermophysics [29], fuel flame spread in transient molten tin soldering processes 

[30], aircraft pool fires [31]. In electromagnetic materials processing, pulsed laser texturing 

[32] is employed in computer disk coating and exploits Marangoni convection. Owing to the 

highly localized melting pool, the high temperature gradients produced during the process 

require very judicious control and Marangoni convection effects dominate such regimes. 

Further applications of Marangoni convection flows arise in laser heating techniques [33], 

liquid metal processing [34] and floating zone micro-gravity flows in astronautical 

experiments [35]. Magnetohydrodynamic (MHD) Marangoni convection is of particular 

importance in Czochralski flows arising in semiconductor materials processing [36]. 

Marangoni MHD flows have therefore received considerable attention in recent years from a 

simulation perspective. Sastry et al. [37] computed the Marangoni hydromagnetic nanofluid 

flow from a plane surface using the the MATLAB “bvp4c” program, a surface tension 

boundary condition and considering various nanoparticles (Cu, Al2O3, and TiO2) with water 

base fluid. Zueco and Bég [38] used electrothermal network simulation to study the 

magnetohydrodynamic Marangoni mixed convection boundary layer flow from a vertical 

plate.  They showed that greater Hartmann hydromagnetic number damps the flow and 

elevates temperatures. Furthermore, they observed that increment in Marangoni mixed 

convection parameter in opposing Marangoni flow substantially boosts the flow whereas it 

depresses temperatures with the contrary behavior for assisting Marangoni flow. Zhang et 

al. [39]  applied a double-parameter transformation perturbation expansion method and 

Padé approximants technique to derive solutions for reactive MHD thermosolutal 

Marangoni convection with heat source present, with  a linear surface tension variation with  

both the temperature and concentration and an interface temperature and concentration 

being quadratic functions of the interface arc length. Bég et al. [40] computed the 

thermocapillary nanofluid magneto-convection from a non-isothermal surface with  

magnetic induction effects with Maple shooting quadrature for silver, copper, aluminium 

oxide and titanium oxide nanoparticles in aqueous base fluids using a Tiwari–Das model 

They showed that magnetic stream function is strongly increased with magnetic field in the 

presence of significant Marangoni surface tension effect whereas the flow and magnetic 
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stream function gradient are suppressed with increasing nanofluid solid volume fraction, 

whereas temperatures are significantly enhanced. Lin et al. [41] studied the Marangoni 

convection heat transfer of an electrically conducting power-law fluid driven by temperature 

gradient, with linear surface tension variation and a modified Fourier law for power-law 

fluids. Several works focused on magnetic Marangoni convection in enclosures have also 

appeared. Ma et al. [42] investigated forced convection in liquid encapsulated Czochralski or 

Kyropoulos growth of compound semiconductor crystals under a uniform vertical magnetic 

field. They observed that electromagnetic damping of the forced convection exceeds that 

due to buoyant convection and an intricate interplay exists between magnetic body force, 

thermal buoyancy and Marangoni surface tension. Rudraiah et al. [43] presented a rigorous 

study of thermocapillary hydromagnetic convection in a square cavity using an ADI 

(Alternating Direction Implicit) method, with upwind differencing for non-linear convective 

terms and the SLOR (Successive Line Over Relaxation) algorithm. They showed that magnetic 

field dampens hydrodynamic oscillations and can increase the purity of crystals.  Magnetic 

fields were shown to effectively regulate the heat transfer rates and stabilize flows in 

semiconductor crystal growth. Oscillatory instability can have a damaging influence on 

crystal development and magnetic fields have been shown to enhance compositional 

uniformity and minimize defect density in these and other studies. Chippada et al. [44] 

studied the buoyancy driven Marangoni convection in open cavities using the Chorin time-

splitting scheme. The influence of Marangoni number, Bond number, Ohnesorge number, 

Prandtl number and Grashof number on the flow regime was computed. Saghir et al. [45] 

presented a detailed study of Rayleigh-Marangoni convection in a Darcian porous medium 

cavity. They computed flow patterns for Darcy number of 9 x 10-6 and for a porosity of 0.39, 

for n-Hexane fluid using the finite element method. A finer numerical grid was implemented 

near the free surface where Marangoni effects are maximized. Marangoni convection was 

shown to induce a breakaway of the convection rolls generating four cells in the square 

cavity of different sizes and directions. Convection was thereby enhanced in the porous 

cavity and hexagonal patterns were identified. Juel et al. [46] studied hydromagnetic 

Marangoni convection in an enclosure filled with molten Gallium. Saleem et al. [47] 

simulated thermosolutal reactive Marangoni magneto-convection flow in a square cavity 

under inclined magnetic field using an alternate direct implicit (ADI) method.  They noted 

that average Nusselt number is reduced whereas the average Sherwood number is elevated 

with greater orientation of magnetic field from the horizontal to vertical positions. They also 

found that thermal buoyancy exerts a weaker influence on circulation relative to solutal 

buoyancy effect. Hossain et al. [48] used an upwind finite difference code with a SOR 
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technique to study the transient laminar natural magnetohydrodynamic Marangoni 

convection flow in a rectangular enclosure with internal heat source for Prandtl number of 

0.054 (semiconductor melt). They showed that modification in direction of the external 

magnetic force from horizontal to vertical reduces flow rates in both the primary and the 

secondary cells and increases the impact of the thermocapillary (Marangoni) effect. They 

also showed that greater heat generation multiplies significantly the number of vortex cells 

in the enclosure.  

The above studies did not simultaneously consider magnetohydrodynamics, Marangoni and 

Darcian porous media effects. This is the objective of the present study wherein a novel 

model is developed to simulate the composite effects of buoyancy, magnetic field, Darcian 

bulk resistance and internal heat generation and oblique magnetic field on Maragoni 

convection flow in a rectangular enclosure containing an isotropic porous medium. The 

Darcy formulation has been employed earlier by Bég et al. [49], Bég and Makinde [50], and 

Bég et al. [51]. A robust marker and cell (MAC) numerical code [52] is implemented to solve 

the vorticity form of the conservation equations and to compute flow regime isotherms and 

stream-function patterns. Verification of the computations is conducted with the purely fluid 

solutions of Hossain et al. [48]. Such a study constitutes an important extension to the 

literature on semiconductor melt convection in porous enclosures and has not been 

communicated thus far in the technical literature. The advantage and the disadvantage of 

the free layer assumption addressed by [63]. It is also important in chemical engineering 

control technologies and hybrid green fuel cell applications. 
 

2. MATHEMATICAL MODEL 

Consider the transient, two-dimensional, laminar, thermo-convection in an electrically-

conducting Newtonian (liquid metals with Pr=0.054) fluid-saturated rectangular porous 

media enclosure with an upper free surface, enclosure height H and length L with internal 

heat generation present, in an (x,y) coordinate system, where x is parallel to the base of the 

enclosure and y is normal to it. A magnetic field, B0, is applied parallel to the horizontal axis. 

The physical system is illustrated in Figure 1. In consistency with magnetohydrodynamics, 

following Cramer and Pai [53], the Maxwell equations define the electromagnetic body force 

exerted on the electrically conducting Newtonian fluid and the electrical current, J take the 

form: 
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Fig 1: Physical model for hydromagnetic Marangoni semiconductor melt porous enclosure 

 

Ohm’s’ Law  

                     J = (- +V  B)       (1) 

Electrical Current Continuity:  

                     • J = 0        (2) 

Lorentz Body Force Equation:  

                     F = J  B        (3) 

For the present case the boundaries of the enclosure are electrically-insulated and therefore 

the electrical potential, , in (1) is constant, so that following  Gelfgat and Bar-Yoseph [8] , 

Eqn. (1) is simplified and leads to the final modified form of (4), viz: 

                  F = (V  B) B       (4) 

The left-hand side and right-hand side walls of the enclosure are prescribed uniform 

temperatures, TC and TH respectively. The porous medium is assumed to be maintained in 

local thermal equilibrium and no stratification is present. Following Bég et al. [49, 51] a 

Darcy porous drag model is employed to simulate the effects of the retarding porous 

medium on the flow field. This takes the following form for general three-dimensional flow 

via an isotropic, homogenous, non-stratified, porous medium with high velocity effects: 

p= - (/K) V       (5) 

where V designates the velocity vector, p is the hydrodynamic pressure,  is the dynamic 

viscosity, K is hydraulic conductivity (permeability) of the porous material,  is the density of 

the fluid. A two-dimensional version of this equation with velocity vector V = (u, v, 0) is 
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employed in the current study. For isotropic flows the permeability is the same in all 

directions and therefore a single value, K, is used in the model. A linear variation of surface 

tension, *, with temperature is employed in our model, taking the form:  

  * = *0 [1-  (T-T0)]       (6) 

where the temperature coefficient of the surface tension, , is defined by the thermal 

gradient of surface tension:  

                    
T


=






0*

1
       (7) 

In (6), *0 is the reference surface tension, T is the fluid temperature in the enclosure and T0 

is the mean of the temperatures of the heated and cooled walls of the cavity (= (TH+TC)/2). It 

is also assumed that the influence of Joule electro-thermal heating is negligible and that the 

magnetic field applied is insufficient to generate magnetic induction effects. Following 

Gelfgat and Bar-Yoseph [8] the upper boundary is assumed to be perfectly horizontal and 

fluid above this surface possesses negligible viscous and thermal conductivity properties, so 

that no influence is exerted on the enclosure convection regime. With the upper and lower 

boundaries of the enclosure also insulated, both thermally and electrically, introducing the 

above equations into the general transport equations, the governing conservation equations 

for mass, momentum and heat in the enclosure can be defined as follows: 

0=



+





y

v

x

u
                     (8) 

           (9) 

  (10) 

pC

q
T

y

T
v

x

T
u

t

T




///
2 +=




+




+




                         (11)  

where 2 denotes the Laplacian operator. Only a y-direction Lorentzian magnetic body force 

in Eqn. (10) is invoked, which is transverse to the x-direction of application of the magnetic 

field. The corresponding boundary conditions (spatial and temporal) are imposed as follows 

at the left wall, base wall and right wall, which are fixed boundaries: 
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0:0 ==== TvutAt         (12) 

  )(0,0 wallrightLxatHyforTTvu H ====      (13) 

)(00,0 wallleftxatHyforTTvu C ====      (14) 

)(000,0 wallbaseyatHxfor
y

T
vu ==




==      (15) 

At the free surface (upper boundary), dynamic boundary conditions are required. A balance 

is needed between the surface tension gradient and shear stress at the free surface essential 

for generating thermo-capillary (Marangoni) convection in the enclosure. These are defined 

as follows: 

)(0,0,0 surfacefreeupperHyatHxfor
y

u

x

T

Ty

T
vu =




=








−=




== 


             (16) 

3. TRANSFORMATION OF MODEL 

For the mathematical model in terms of primitive variables, defined by Eqns. (8) to (11) with 

boundary conditions (12) to (16), a numerical solution is still complex. We therefore 

implement a series of dimensionless parameters to transform the system into non-

dimensional form, a procedure which invokes key control parameters and avoids the need 

for actual thermo-physical properties in the computations. This leads to the vorticity stream 

function formulation for the problem and greatly facilitates numerical simulations using the 

MAC finite difference method [52]. Defining:  

H

x
X = , 

H

y
Y = , 



 uH

Y
U =




= , 



 vH

X
V =




−= , 2−= , 

 
2H

t
 = ,

0

0

TT

TT

H −

−
= , 

H

L
A = ,

2H

K
Da = ,  

2

3)(



 HTTg
Gr CH −

= , 



=Pr , 

Ra

RaI2= , 





k

Hqg
Ra I

5///

= ,


 )(* CH TT

T
Ma

−




−= , 



HB
Ha 0=    (17) 

Introducing these transformations, the conservation equations with new dependent 

variables , U, V,  now become in vorticity formulation, with −= 2 :   

Momentum 
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 (18) 

Heat  

PrPr

1)()( 2 
+=




+




+












Y

V

X

U
           (19)  

The two original momentum equations are therefore reduced to a single equation in which 

Darcian drag terms are featured. The transformed conditions prescribed at the four 

boundaries now become: 

0:0 =====  VUAt         (20)  

 0100,0 ===== XatYforVU             (21)   

AXatYforVU ===== 101,0         (22)          

110
Pr2

,0,0 =



−=




==




=== YatXfor

X

Ma

Y

U

Y
VU


   (23) 

Of particular interest, in magnetic/semiconductor materials processing, is the non-

dimensional rate of heat transfer which in terms of the local Nusselt number, may be 

defined, for the right heated vertical wall, as follows: 

AX

CH XTTk

qH
Nu =




−=

−
= ][

2

1

)(2

1 
     (24) 

The corresponding average Nusselt number, designated by Nuav, may be computed as 

follows: 

                            (25) 

4. MAC NUMERICAL SOLUTION AND VALIDATION  

We employ a finite difference solver to solve equations (18) and (19) with initial and 

boundary conditions (20) to (24). This finite difference method (FDM) is stable, convergent 

and employs a collocation grid. The velocity–vorticity gradient causes strong coupling in the 

continuity equation and the projection method is implemented for the momentum equation 

(18). An in-house computational MATLAB-based version of this FDM code is employed in the 

simulations. The stream function is obtained by:  



14 

  

−= 2        (26) 

This is solved by the well-known iterative Gauss Seidel method. The finite volume scheme is 

used for the advection terms and a second order central difference scheme is used for 

diffusion term. In the MAC approach although we consider viscous flow, viscosity is not 

actually required for numerical stability. The marker particles do not participate in the 

calculation. Based on the weak conservative form of the two-dimensional momentum and 

heat conservation equation a grid meshing procedure is deployed.  

The convergence of the solution is assumed when the relative error for each of the variables 

satisfies the following convergence criteria: 

1

1

k k

k

 




+

+

−
  

where k represents the iteration number and   is the convergence criterion. In this study, 

the convergence criterion was set at  =10-6. 

We adopt a uniform mesh size 80 X 80 in the present computations which successfully 

achieves mesh-independent results. Denser grids are not required as the modification in 

solutions is not significant beyond 80 X 80 dense grids. Validations with earlier studies 

conducted by de Vahl Davis [54], Manzari [55] and Wan et al. [56] are also included and 

summarized in Tables 1 and 2. These validations are conducted for Pr = 0.71 (air), Ha = Ma 

== 0 and Da →. Excellent agreement is obtained with the 80X80 grid design. Confidence 

in the FDM solver is therefore justifiably high. The present MATLAB-based MAC code has 

also been used recently in a variety of enclosure convection flows including free convection 

in a trapezoidal enclosure [57] and radiative convection in a trapezoidal enclosure [58]. The 

grid differencing scheme is shown in Fig. 2. The mesh designs for three different aspect ratio 

enclosures are given in Figs. 3a-c. 
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Fig. 2 MAC grid finite differencing procedure 

 

Table. 1. Grid independence and validation for Average Nusselt number (Nu) with Pr = 0.71 

 
Ra 

 
Nu 

 
Ref. [54] 

 
Ref. [55] 

 
Ref. [56] 

FEM 

Present  
study 
40X40 

Present  
study 
80X80 

Present  
study 

120X120 

Present  
study 

160X160 

104 Average 2.243 2.084 2.254 2.2526 2.2455 2.2444 2.2442 

 



16 

  

 

a 

 

b 

 

c 

Figure 3a-c: Uniform mesh collocate grid for FDM with different aspect ratios a) A= 1 

(square), b) A = 0.5 (shallow), c) A= 2 (tall) 
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In addition to the mesh-independence and previous validations for average Nusselt number, 

further corroboration of the FDM simulations is conducted against the ADI solutions of 

Hossain et al. [48] and these are visualized in Figs. 4-5 for both non-magnetic (Ha = 0) and 

strong magnetic cases (Ha = 20).  

  

(a) 

 

(b) 

Fig 4: a)Streamlines and b) isotherms for Gr = 2 × 104 and Pr = 0.054 and Ma = 100 while Ha 

= 0 (absent magnetic field) and λ = 0 for Da →  (no porous media effects) (top colour plots-
MAC solution, below Hossain et al. [48]) 

Excellent correlation is achieved for both streamline and isotherm distributions. The dual 

vortex structure with asymmetry is captured in the streamline plot and smooth disparate 

isotherms are computed also in Fig. 4 when magnetic field is absent (Ha =0). These plots 

correspond to an aspect ratio of 1 and semiconductor melt (Pr = 0.054 for which thermal 

diffusivity greatly exceeds the momentum diffusivity and thermal conductivity is extremely 

high). Fig. 5a shows that with strong horizontal magnetic field  (Ha = 20), and thermal 

buoyancy a hundred times stronger and Marangoni effect ten times stronger (Gr = 2 x 106 

and Ma = 1000 in fig. 5a compared with Gr = 2 x 104 and Ma = 100 in Fig. 4)  the original 

upper laterally dispersed vortex structure is constricted into the top left corner owing to 

damping of the flow and the lower vortex expands. The isotherms are warped significantly 
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and evolve into sigmoidal distributions with more intense clustering near the upper left wall 

and the lower right wall, exactly as computed in [48], although the black and white plots in 

[48] are considerably less clear. Fig. 5b shows that the comparison of present study and 

experimental study [64], the comparison gives the confidence for the numerical method. 

The experimental study of semiconductors melts is addressed by GAMM Workshop 

[62].Confidence in the MAC simulations is therefore very high. 

  

Fig 5a: a) Streamlines and b) isotherms for Gr = 2 × 106 , and Pr = 0.054 and Ma = 1000 while 

Ha = 20 (strong horizontal magnetic field) and λ = 0 for Da →  (no porous media effects) 
(top colour plots-MAC solution, below Hossain et al. [48]) 

Table. 2. Comparison of Average Nusselt number (Nu) with Pr = 0.71 

 

Ra 

 

Nu 

Ref. [54] Ref. [55] Ref. [56] 

FEM 

Present study 

(MAC) 

103 Average 1.12 1.074 1.117 1.1185 

104 Average 2.243 2.084 2.254 2.2526 

105 Average 4.52 4.3 4.598 4.5907 

106 Average 8.8 8.743 8.976 8.9905 
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a 

 
                                                      b 

 
Fig 5b: Contour plot of temperature distribution, natural convection in an air filled cavity for a 

Rayleigh number of 1.58 X109. An experimental study [64] –a, Present study –b. 
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5. MAC NUMERICAL RESULTS FOR GENERAL MODEL  

The general mathematical model defined by the Eqns. (18), (19) with boundary conditions 

(20)-(23) features 6 parameters. These are: surface tension (thermocapillary) effect number 

i.e. Marangoni number (Ma), Prandtl number (Pr), Grashof number for buoyancy effects (Gr), 

Hartmann hydromagnetic number (Ha), Darcy number for bulk porous resistance (Da), 

Internal heat generation parameter () and additionally an aspect ratio (A)  can be varied. All 

MAC solutions are visualized for these parameters in Figs. 6-22. Figs. 6(a-d)-8(a-d) show the 

MAC results for variation in Darcy number (Da) and 3 different aspect ratios (A = 0.5, 1, 2).  

Inspection of Figs. 6a-d reveals a significant evolution in isotherms and a weaker 

modification in streamline distributions with greater Darcy number. At very low Darcy 

numbers (Da = 0.0001), the permeability in the regime is extremely low. This generates 

significant Darcian resistance to the Marangoni magnetic convection and asymmetric single 

vortex structure is computed for streamlines. The isotherms are also largely undistorted 

with a slight warping towards the right-hand side as they approach the base wall of the 

enclosure. As Darcy number increases to Da = 0.001, 0.01 to 0.1, streamlines morph leading 

to an asymmetric distribution and the vortex structure is larger towards the left cold wall 

boundary and constricts somewhat towards the right cooler wall. However, a single trapped 

cell is still sustained. A more significant modification is computed in the isotherms which are 

progressively constricted in the vicinity of the left wall and expand in the central zone, with 

considerably more divergence towards the lower base wall. This is also accompanied by a 

clustering of isotherms towards the right wall. Evidently the increase in Darcy number 

corresponds to a greater permeability which permits increased circulation of the hot fluid in 

the enclosure. These plots correspond to the “shallow” enclosure case (A = 0.5). the 

influence of Darcy number concurs with earlier studies in the field including Alchaar et al. 

[16] and also Alsabery et al. [17] who have also reported significant warping of isotherms 

with greater Darcy numbers in porous media magnetohydrodynamic convection, although in 

the absence of Marangoni surface tensions effects. Figs. 7a-d which correspond to a square 

enclosure (A = 1) and show the evolution of streamlines and isotherms over the same 

increment in Darcy number, are similarly found to exhibit a warping in the single cell vortex 

structure. However, the modifications are more towards the upper left corner and lower 

right corner of the enclosure, rather than towards the left wall alone. Isotherms are also less 

clustered towards the left and right walls with increasing Darcy number and a more even 

isotherm distribution (which remains warped towards the top left corner and lower base 

wall) is achieved, as compared with Figs. 6a-d.  
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a)Da=0.0001 
                  Streamlines      Isotherms 

   
b)Da=0.001 

  
c)Da=0.01 

  
d)Da=0.1 

  
 

Fig. 6(a-d): Streamline and isotherm plots with Gr=2×106, Ha = 5.0, Pr=0.054, Ma=100, =0 
(absent heat generation) for A= 0.5 (shallow enclosure) for various Darcy numbers (Da) 
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a)Da= 0.0001 

 
b)Da=0.001 

 
c)Da=0.01 

   
d)Da=0.1 

               
Fig. 7(a-d): Streamline and isotherm plots with Gr=2×106, Ha = 5.0, Pr=0.054, Ma=100, =0 

(absent heat generation) for A= 1.0 (square enclosure) for various Darcy numbers (Da) 
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a)Da=0.0001 
 

 
 
 

b)Da=0.001 
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c)Da=0.01 

 
d)Da=0.1 

 
Fig. 8(a-d): Streamline and isotherm plots with Gr=2×106, Ha = 5.0, Pr=0.054, Ma=100, =0 

(absent heat generation) for A= 2.0 (tall enclosure) for various Darcy numbers (Da)  
Figs. 8a-d indicate that again over an increment in Darcy number (Da) there is a distortion in 

isovels (streamlines) in the tall enclosure, towards the upper left corner and lower right 

corner of the enclosure, although significant stretching in the vertical direction is induced. 

Isotherms are also observed to become increasingly sigmoidal in nature and orientated 

more towards the top left and base wall than for the square enclosure, but less so than for 

the shallow enclosure.  
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Fig. 9: a) Streamline and b) isotherm plots with Gr=2×104, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =1 for 3 different aspect ratios (A=0.5, 2, 1)  
 

 

 

Fig. 10: a) Streamline and b) isotherm plots with Gr=2×104, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =2 for 3 different aspect ratios (A=0.5, 2, 1)  

a) 

b) 

a) 

b) 
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Fig. 11 a) Streamline and b) isotherm plots with Gr=2×104, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =3 for 3 different aspect ratios (A=0.5, 2, 1)  
 

 

 
Fig. 12 a) Streamline and b) isotherm plots with Gr=2×104, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =4 for 3 different aspect ratios (A=0.5, 2, 1)  

a) 

b) 

a) 

b) 
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Fig. 13 a) Streamline and b) isotherm plots with Gr=104, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =1 for 3 different aspect ratios (A=0.5, 2, 1)  

 

Fig. 14 a) Streamline and b) isotherm plots with Gr= 2x 104, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =1 for 3 different aspect ratios (A=0.5, 2, 1)  

a) 

a) 

b) 

b) 
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Fig. 15 a) Streamline and b) isotherm plots with Gr= 2x 105, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =1 for 3 different aspect ratios (A=0.5, 2, 1)  

 

Fig. 16 a) Streamline and b) isotherm plots with Gr= 2x 106, Ha = 20, Pr=0.054, Ma=100, Da 

=0.0001 with =1 for 3 different aspect ratios (A=0.5, 2, 1) 

a) 

b) 

b) 

a) 
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Fig. 17 (a-e) left - Streamline and right- isotherm plots with Gr= 2x 104, Ha = 20, Pr=0.054, Da 

=0.0001 with =1 for square enclosure (A = 1) with Ma = a)1, b)10, c)20, d)50, e) 100.  

e
) 

d
) 

c
) 

b
) 

a
) 
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Fig. 18 (a-e) left - Streamline and right- isotherm plots with Gr= 2x 104, Ha = 20, Pr=0.054, Da 

=0.0001 with =1 for shallow enclosure (A = 0.5) with Ma = a)1, b)10, c)20, d)50, e) 100.  

 

d
) 

c
) 

e
) 

b
) 

a
) 
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Fig. 19 (a-e) top - Streamline and bottom - isotherm plots with Gr= 2x 104, Ha = 20, 

Pr=0.054, Da =0.0001, =1 for tall enclosure (A = 2) with Ma = a)1, b)10, c)20, d)50, e) 100.  

 

Fig. 20 – Local Nusselt number at hot right wall with Ha = 5, Pr=0.054, Ma = 10, Da =0.0001 

and =1 for square enclosure (A = 1) with various Grashof numbers (Gr).  

a
) 

b
) 

c
) 

d
) 

e
) 
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Fig. 21 – Local Nusselt number at hot right wall with Ha = 5, Pr=0.054, Gr = 2x106, Ma = 100, 

=1 for square enclosure (A = 1) with various Darcy numbers (Da).  

 

Fig. 22 – Local Nusselt number at hot right wall with Pr=0.054, Gr = 2x106, Ma = 100, Da = 

0.1, =1 for square enclosure (A = 1) with various Hartmann numbers (Ha).  
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Fig. 9: a- b to 12a-b visualize the influence of increasing heat generation (source) parameter, 

, on streamline for 3 different enclosure aspect ratios (A=0.5, 2, 1). Here significant but not 

excessive thermal buoyancy is imposed (Gr=2×104), strong transverse magnetic field (Ha = 

20) for semiconductor melt (Pr=0.054) with weak thermocapillary convection (Ma=100) and 

minimum permeability (Da =0.0001) i.e. a tightly packed porous medium. Evolution in the 

velocity and temperature fields can therefore be understood by comparing respective 

figures in these plots. Figs. 9 a- b imply that for  =1, a triple vortex structure is present with 

A = 0.5 (shall enclosure) whereas dual cells are present in the enclosures for A = 2 and A=1. 

In the latter cases (i.e. tall and square enclosures) an approximately symmetrical larger cell 

occupies the majority of the lower half space with a smaller partial cell emerging in the 

upper half space, which tends to grow from the left upper corner and disperses laterally in 

the horizontal direction. However, for the shallow enclosure, the lower dominant cell is 

biased towards the left colder wall with an absence of any cell in the lower right corner. A 

second smaller cell grows from the upper left corner along the top boundary but does not 

extend to the right corner and terminates before this. A third cell is observed in the upper 

right corner which is much smaller than the primary and secondary vortex structures and is 

only partially developed indicating weak circulation in this vicinity. Comparing with earlier 

plots in which heat generation is absent (i.e. = 0 in Figs. 6a-d to 8a-d), the presence of a 

heat source clearly generates multiple cells in each enclosure and intensifies the circulation 

strength in the vicinity of the upper wall while simultaneously contracting the single cell 

structure and inducing asymmetric distortions in the streamlines. However, since the 

Grashof number is much lower in Figs. 9a-d (i.e. Gr=2×104) than Figs. 6a-d to 8a-d 

(Gr=2×106) and furthermore magnetic field is four times stronger (Ha = 20 here whereas in 

earlier plots it is 5), the weaker thermal buoyancy and stronger Lorentzian drag force will 

also contribute to morphing in streamline distributions. The isotherms are much more 

evenly distributed and approximately parallel to the vertical boundaries for all three 

enclosure aspect ratios in Fig. 9b. With increasing heat generation effect (Figs. 10b, 11b, 

12b) there is an intensification in isotherm clustering towards the colder left boundary which 

is direct result of the supplementary heat supplied to the circulating fluid, as noted by 

Gebhart et al. [59]. The isotherms however remain essentially vertical in nature. Fig. 10a 

shows that when heat generation is doubled (compared with Fig. 9b) i.e. increased to  = 2, 

a fourth cell emerges in the lower right hand corner of the shallow enclosure (A = 0.5) and 

the primary and secondary cells contract whereas  the tertiary cell present also at  =1 (top 

right corner of enclosure) also expands. However, for the other two enclosure geometries 
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(tall and square) there remain two basic cells as before although the primary cell is reduced 

slightly, and the secondary upper cell grows weakly. However, in Fig. 11b, it is evident that 

with further increment in heat generation effect (i.e.  = 3) a tertiary cell begins to 

synthesize in the tall and square enclosures in the vicinity of the upper right corner which 

grows with yet further increase in heat generation ( = 4 in Fig. 12b). There is also a 

tendency in Figs. 11b, 12b for the quadruple cell structure in the shallow enclosure to 

become more homogenously distributed with the fourth cell (lower right corner) growing to 

a similar magnitude to the primary cell (lower left corner), although there is still asymmetry 

in the structures, especially in the two upper (secondary and tertiary) cells present in earlier 

figures. Effectively heat generation which arises in the supplementary term, /Pr in the 

energy conservation eqn. (19) serves to supplement the thermal diffusion in the enclosure 

regime. is found to have a prominent influence on vortex structure in the enclosures and 

there is also an intimate interplay with geometry and a noticeable modification in isotherms.  

Figs. 13a-b to 16a-b present the impact of the Grashof number (Gr) on streamline and 

isotherm distributions. Gr is the key parameter dictating thermal buoyancy effects in the 

regime and coupling the velocity and temperature fields. It arises in the vorticity momentum 

eqn. (18) in the spatial temperature gradient term, . In all the cases studied in Figs. 

13a-b to 16a-b, Gr > 104 and this constitutes strong dominance of thermal buoyancy relative 

to viscous forces in the enclosure. In fig. 13a, b at Gr = 104 (weakest thermal buoyancy case), 

again dual cell structures are observed in the square and tall enclosures, whereas a triple cell 

structure is computed for the shallow enclosure. The primary cells are however weaker than 

in earlier plots due to the lower thermal buoyancy effect. Approximately parallel isotherms 

(vertical) are again generated in all three enclosures, with a stronger clustering towards the 

left vertical boundary. With a doubling in Grashof number to 2 x 104 (Figs. 14a, b), the 

primary and tertiary cells in the shallow enclosure grow whereas the secondary cell is 

constricted somewhat. In the tall and square enclosures, the primary cell expands, and the 

upper secondary cell is observed to contract. Isotherms are more evenly distributed across 

the enclosure for all three aspect ratios. With subsequent increase in Gr to 2x 105 (Fig. 15a, 

b) constituting a tenfold rise relative to Fig. 14a, b, the triple cell structure in the shallow 

enclosure and dual vortex structures in the square and tall enclosures observed at weaker 

Grashof number, are replaced with a single stronger cell which is generally symmetrical in 

the square and tall geometries, but is biased towards the left cold vertical wall in the shallow 

enclosure, rather than the right hot wall. The strength of this single cell is further enhanced 

with subsequent elevation in Gr to that maximum value simulated (i.e. Gr= 2x 106 in Figs. 
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16a, b)  in all three enclosures; however the single cell remains asymmetric in the shallow 

enclosure, skewed towards the left colder wall and does not extend uniformly across the 

entire cavity. Although the isotherms in Fig. 15b remain basically vertical in nature, they 

become warped in Fig. 16b i.e. they are more clustered towards the upper left corner and 

lower right corner of the enclosures, and this effect is most pronounced for the shallow 

enclosure. Clearly the thermal buoyancy effect plays a substantial role in regulating vortex 

structure and isotherm distribution in the cell and the topologies of the contours 

demonstrate significant sensitivity to Grashof number. These observations concur with other 

studies including Wang et al. [11] and Stanjnko et al. [14] (for non-magnetic Darcian 

convection in porous media) and Pekemen and Tezer-Sezgin [15] (for Darcian magneto-

convection in porous media). 

Figs. 17a-b to 19a-b present the impact of increasing Marangoni number (Ma) on streamline 

and isotherm contour plots for the square (A=1), shallow (A=0.5), and tall (A=2), enclosure 

cases, respectively. 


 )(* CH TT

T
Ma

−




−= and is proportional to the temperature 

difference between the left cold and right hot walls and inversely proportional to dynamic 

viscosity and thermal diffusivity. It arises in the surface tension boundary condition in Eqn. 

(23), viz, . Higher Ma values imply greater surface tension contribution. 

This reduces temperatures but increases velocity magnitudes. When Ma is small thermal 

diffusion dominates whereas for large Ma, Marangoni convection dominates which driven 

by the gradients in the surface tension (elastic surfacial liquid force). The Marangoni 

convection currents transport thermal energy, and the Marangoni number compares the 

rate at which thermal energy is transported by this flow to the rate at which thermal energy 

diffuses in the boundary layer regime. Inspection of Fig. 17a, b shows that for Ma =1, 10 i.e. 

low surface tension at the upper boundary, a single cell alone is present in the square 

enclosure and isotherms are essentially vertical. With increasing Ma values (20, 50, 100) in 

Figs. 17c-e, a secondary cell however is generated in close proximity to the top left corner 

and the upper boundary which grows and disperses laterally with stronger surface tension 

contribution. For Ma =20 this upper secondary cell does not reach the right upper corner; 

this is only achieved for Ma = 50 and 100. Simultaneously the primary lower cell is found to 

contract as the secondary upper cell expands. A slight clustering effect is also induced in the 

isotherms towards the left cold wall with greater Marangoni effect, although the topologies 

remain generally vertical. Fig. 18a-e show that for the shallow enclosure, isotherm contours 
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are generally similar to those computed for the square enclosure. A single cell is also 

computed at lower Marangoni numbers (Figs. 18 a, b); however, the cell does not occupy 

the entire cavity and is asymmetrically orientated towards the left cold wall. Although this 

trend is sustained with increment in Marangoni number, a secondary cell appears for Ma = 

20 (Fig. 18c) in the upper left corner and a tertiary cell emerges in the upper right corner. At 

Ma = 50 (Fig. 18d), these secondary and tertiary cells grow, the primary cell contracts and a 

fourth cell emerges in the vicinity of the right hot wall and lower right corner. However, at 

Ma = 100 (Fig. 18e), this fourth cell vanishes, the secondary cell pushes deeper, and the 

primary cell is contracted. The tertiary cell also grows significantly along the upper 

boundary, as a direct consequence of greater surface tension effect. A shallow enclosure 

therefore generates very different internal flow structures in the semiconductor melt with 

higher Marangoni effect than a square enclosure over the same increment of Marangoni 

number. Isotherms are also more laterally displaced for the shallow enclosure compared 

with the square enclosure. Figs. 19 a-e indicate that increasing Ma values for the tall 

enclosure, induce a similar effect to that computed for the square enclosure i.e. the single 

cell present at low Marangoni number is morphed into  a dual cell structure, with a weaker 

upper secondary cell and a stronger lower primary cell. The vortex structure is inevitably 

stretched in the vertical direction i.e. taller rather than wider as in the square enclosure 

case; however, it extends along the entire upper boundary in the tall enclosure whereas it is 

curtailed in the square enclosure. As with the other enclosure aspect ratios in the tall cavity, 

there is a pronounced clustering of isotherms towards the left cold wall with progressive 

increase in Marangoni number. Clearly the presence of surface tension at the upper 

boundary in semiconductor melt processing can be manipulated in conjunction with aspect 

ratio to achieve considerable modifications in internal thermofluid dynamics of enclosures, 

which may be beneficial to synthesizing different constitutions of materials manufactured, 

as noted by Langlois et al. [36], among others. 

Figs. 20-22 illustrate the distributions in local Nusselt number (Nu) at the right (hot) wall, 

computed using Eqn. (24) i.e. AX

CH XTTk

qH
Nu =




−=

−
= ][

2

1

)(2

1 
.This provides a 

quantification for the relative contribution of thermal convection to thermal conduction 

contribution at the wall. A very significant decrease in Nu is computed with high Grashof 

number with distance along the vertical wall (y), as observed in Fig. 20. This implies that heat 

transfer to the wall is strongly suppressed with greater thermal buoyancy effect since 

thermal diffusion to the enclosure fluid is increased i.e. heat is transported away from the 
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wall. At lower Grashof numbers, Nusselt number is largely invariant. With increasing Darcy 

number (Da), Fig. 21 shows that Nusselt number is markedly boosted i.e. heat transfer to 

the wall is enhanced with progressively greater permeability. This is attributable to the 

progressive decrease in presence of solid fibers in the porous medium which manifests in a 

decrease in thermal conduction between fibers and an elevation in thermal convection to 

the wall. With progression along the vertical wall from the base to the upper boundary i.e. 

increasing y values, there is a substantial reduction in Nusselt number. Nusselt numbers are 

therefore generally greater near the base of the enclosure compared with the upper 

boundary. Finally, Fig. 22 indicates that a significant depletion in Nusselt number is induced 

with increasing Hartmann number, 


HB
Ha 0= .  In all cases the Lorentzian magnetic 

body force considerably exceeds the viscous force (Ha>5). With greater magnetic field, 

increasingly more work must be expended to drag the fluid against the magnetic field. This is 

dissipated as heat which leads to a boost in temperatures in the enclosure. Therefore, 

heating is induced within the enclosure and cooling generated at the walls, resulting in a 

depletion in Nusselt numbers. This is a classical result in magnetohydrodynamic convection, 

as noted by Cramer and Pai [53] among others. Peak Nusselt numbers arise near the base of 

the right wall and are systematically reduced with progression upwards along the wall i.e. y 

coordinate values, plummeting to a minimum at the upper boundary. 

 

6. CONCLUSIONS 

Marangoni thermo-convection flow of an electrically conducting Newtonian fluid in an 

isotropic porous rectangular semiconductor melt enclosure with buoyancy and internal heat 

generation effects, has been studied in this article. Darcy’s model has been employed to 

simulate porous medium drag in the viscous-dominated regime. The governing equations 

comprising the mass conservation, x-direction momentum, y-direction momentum and 

energy equation have been presented with a quartet of boundary conditions at the four 

walls of the enclosure. The upper enclosure wall is assumed to be “free” with an appropriate 

surface tension dynamic boundary condition for thermo-capillary (Marangoni) convection. 

The boundary value problem has been rendered into vorticity-stream function form with 

appropriate transformations. An efficient marker-and cell (MAC) numerical finite difference 

method has been utilized to solve the boundary value problem with physically realistic data 

of relevance to semiconductor melts. Validations with earlier purely fluid solutions (infinite 



38 

  

Darcy number) have been conducted. A detailed parametric study of the influence of 

Marangoni number (Ma), Grashof number (Gr), Darcy number (Da) and internal heat 

generation parameter () on streamline and isotherm contours has been conducted for 

three different aspect ratios (shallow, tall and square enclosures) with Prandtl number (Pr) 

equal to 0.054. Local Nusselt numbers at the right (hot) wall are also computed for the 

influence of Hartmann hydromagnetic number (Ha), Grashof number (Gr) and Darcy number 

(Da). The simulations have shown that: 

(i) A substantial reduction in local Nusselt number at the right (hot) wall is produced with 

stronger magnetic field (greater Hartmann number) and Grashof number whereas it is 

enhanced with greater Darcy number. 

(ii) With increasing Marangoni effect, the single cell present in square and tall enclosures is 

morphed into a dual cell structure, with a weaker upper secondary cell and a stronger lower 

primary cell. However, a four-cell structure is computed in the shallow enclosure with 

increasing Marangoni number i.e. stronger surface tension effect at the upper boundary. 

(iii) For all three enclosures (shallow, square and tall), there is greater clustering of isotherms 

towards the left cold wall with increment in Marangoni number. 

(iv) With greater heat generation effect a tertiary cell is generated in the tall and square 

enclosures in the vicinity of the upper right corner which continues to expand. Furthermore, 

the quadruple cell structure in the shallow enclosure becomes increasingly symmetric with 

stronger heat source effect. 

(v) With a large increase in Grashof number, the triple vortex structure in the shallow 

enclosure and dual vortex structures in the square and tall enclosures observed at weaker 

Grashof number, morph into a single stronger vortex which is generally symmetrical in the 

square and tall geometries; however this single cell is orientated more strongly towards the 

left cold vertical wall in the shallow enclosure, rather than the right hot wall. 

(vi)For the shallow enclosure, with increasing Darcy number (i.e. higher permeability of the 

porous medium), streamlines become distorted and evolve into an asymmetric distribution 

biased towards the left cold wall boundary and a single trapped cell is computed. The 

isotherms are increasingly clustered towards the right wall.  

(vii) In the tall enclosure, an increment in Darcy number (Da) leads to a weaker distortion in 

isovels (streamlines) towards the upper left corner and lower right corner of the enclosure, 

with considerable elongation in the vertical direction is induced. Isotherms are also observed 
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to become increasingly sigmoidal in nature and biased more towards the top left and base 

wall than for the square enclosure, although less so than for the shallow enclosure. 

The present model which finds applications in the electromagnetic control of 

semiconductors, has been confined to the Darcian porous medium case with a horizontal 

magnetic field. Future studies will investigate the influence on non-Darcy (e.g. Forchheimer 

quadratic drag) [60] and oblique magnetic field effects [61] and will be communicated soon.  
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