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Abstract 

 

 

A series of combretastatin derivatives were designed and synthesised by a two-step stereoselective 

synthesis by use of Wittig olefination followed by Suzuki cross-coupling. Interestingly, all new 

compounds (2a-2i) showed potent cell-based antiproliferative activities in nanomolar concentrations. 

Among the compounds, 2a, 2b and 2e were the most active across three cancer cell lines. In addition, 

these compounds inhibited the polymerisation of tubulin in vitro more efficiently than CA-4. They 

caused cell cycle arrest in G2/M phase further confirming their ability to inhibit tubulin polymerisation.  

 

1. Introduction  

Microtubules are critical for cellular functions such as mitosis and cell structure. Mitosis is a key 

stage of cell division in which chromosomes are separated producing genetically identical daughter 

cells; the mitotic spindle is the cytoskeletal structure of cells that forms to separate these daughter cells. 

Interference with microtubule formation hinders the formation of this mitotic spindle required for cell 

division leading to mitotic arrest and eventual apoptosis (cell death). A number of microtubule targeting 

agents have been clinically successful in the treatment of cancer, making microtubules a significant 

target for anticancer drugs.1–4  Microtubule agents either inhibit or accelerate microtubule formation 

causing disruption to the formation of the mitotic spindle. A number of both natural and synthetic 

compounds target microtubule polymerisation with most of the antimitotic agents in use today being 

plant derivatives.5,6 Taxoids bind to tubulin, stabilizing the microtubules by accelerating 

polymerisation. Taxol (or paclitaxel) is routinely used in the treatment of a number of cancers including 

ovarian, breast, lung and pancreatic cancer. 7 Vinca alkaloids and colchicine (1) induce 

depolymerisation of microtubules. Vinca alkaloids are used in clinical practice to treat solid tumours 

mainly of the lung, testicle and breast. A number of natural ligands bind to the colchicine binding site 



of tubulin including combretastatin A-4 (CA-4, 2),8 and podophyllotoxin (3)9 (figure 1).  These agents 

comprise cis-locked aryl groups one of which is 3,4,5-trimethoxyphenyl.  

 

Figure 1.  Structure of natural ligands that bind at the colchicine site of tubulin. 

 

Tumour vasculature is a known therapeutic target for cancer treatment. A number of preclinical 

in vivo investigations and clinical trials have evaluated the toxicity of vascular disrupting agents 

(VDAs).10–12 However in several cases, VDAs have been shown to cause detrimental effects to the 

cardiovascular system due to long term dosing.13 Recently, VDAs have been investigated to overcome 

these effects as a glutamic acid conjugate14 and to induce the aggregation of gold nanoparticles.15 

Combretastatins are a group of natural products isolated from the bark of the South African 

willow Combretum caffrum.16 Combretastatins are of increasing interest due to their simple structures 

and easy synthesis.17 The most active combretastatin known to date CA-4 (2) binds to the colchicine 

site of tubulin, disrupting microtubule polymerisation and eventually induces apoptosis.18–20 CA-4 

disrupts endothelial cell structure in tumour capillaries, limiting blood flow and causing cell death21–23 

and so can be classed as a VDA. CA-4 is a poorly water-soluble compound and so a number of water-

soluble prodrugs have been developed including combretastatin A4 disodium phosphate (CA4-4P) 

which is converted into Z-CA4 by cellular phosphatases in the body.24 Preclinical and clinical trials of 

the water soluble phosphate prodrug CA4-P identified resistance at the tumour periphery;25–30 to 

overcome this combretastatins have been investigated as a combination therapy to complement 

traditional anticancer approaches.23,31–38 Limited advancement of these combination trials could be 

attributed to cardiovascular adverse events of CA4P.39 More recently, combretastatin A-1 diphosphate 

(OXi4503) has been in clinical trials for patients with relapsed or refractory acute myeloid leukemia40 

or myelodysplastic syndromes.41 Combretastatins are also being investigated for photodynamic therapy 

as a means to overcome the acute toxic effects of the cis-isomers and provide a more targeted treatment 

through photoactivated isomerisation of the non toxic trans-form.42,43  

Combretastatins continue to be compounds of interest with an increasing number of structurally 

modified combretastatin derivatives synthesized to exploit their properties for targeted therapeutic 

applications as VDAs. Modifications of combretastatins tended to retain the more cytotoxic cis-

conformation which included restriction of the cis- configuration by replacement  of the olefinic bond 

with heterocyclic rings such as imidazole 44, pyrazole 45, triazole 46 etc. There are a number of studies 

involving both modification on the olefinic bond and aromatic rings of CA-4.47–49 Modifications to the 

A-50 and B-51,52 rings have also been  investigated to try and improve activity and solubility. 

Synthetic routes for cis-stilbenes include the Wittig reaction,53 alkyne hydroboration,54 

selective reduction of alkynes using a Lindlar catalyst,55 Perkin condensation,56 Kumada-Corriu 

cross-coupling57, Negishi coupling58 and Ramberg–Bäcklund reaction.59 A very useful reaction 

for the stereoselective synthesis of cis-stilbenes is the Suzuki cross-coupling. The Suzuki cross-



coupling reaction has a broad application in the formation of carbon-carbon bonds owing to the 

mild reaction conditions and broad functional group toleration.60 

 

 

 

2. Results and Discussion  

 

2.1 Chemistry results 

Our designed combretastatin derivatives possess a 3,4,5-trimethoxyphenyl A-ring and electron 

withdrawing groups at the 2- and 4- position of the B-ring (table 1). There are several syntheses of 

combretastatins in the literature.53–60 Most of these methods failed to provide the required 

combretastatin derivatives, however a Suzuki cross coupling method proved successful.   

The general synthetic route for combretastatin derivatives 2a-m is illustrated in Scheme 1. 

3,4,5-Trimethoxy-β-iodostyrene (6) was readily prepared using Stork-Zhao olefination methodology61 

from iodomethylenetriphenylphosphonium iodide (4) (1.3 equivalents) and 3,4,5-

trimethoxybenzaldehyde (5) in the presence of NaHMDS (1.3 equivalents) in 72% yield. Z-

Combretastatins were synthesised following the Suzuki-coupling of this Z-iodostyrene compound with 

appropriately substituted aryl boronic acids (Scheme 1).  

 

Scheme 1. Synthesis of target compounds 2a-m Reagents and conditions: (a) NaHMDS, THF, -20 to -78 °C, 2 h; (b) 

arylboronic acids or pinacol esters, Pd(PPh3)4, DME, Na2CO3, 80 °C, 20 h. 

To further investigate the scope of this method and to extend the compound library, we 

synthesised 3-hydroxy substituted combretastatins. The boronic acids required for this synthesis were 

not commercially available. Although boronic acids react more efficiently, we chose to synthesise the 

corresponding boronic pinacol esters as they are easier to isolate and purify.62 The boronic  pinacol 

esters were synthesised by Miyaura borylation;63 bis(pinacolato)diboron (B2pin2) was reacted with aryl 

halides in the presence of a palladium catalyst and potassium acetate.  Z-Combretastatins were then 

synthesised as described above from 6 and appropriately substituted pinacol esters. We synthesised a 

small library of both known and unknown compounds with a variety of substituents including CHO 

(2a), CN (2h), NO2 (2j, 2k) and 3,4,5-trimethoxy (2l) in order to show the broad functional group 

toleration of this method (table 1).  Novel synthesised compounds were characterised by 1H and 13C 

NMR as well as High Resolution Mass Spectrometry. 

Application of this 2-step method to the synthesis of combretastatin A-4 gave an overall yield 

of 56% following purification by column chromatography and recrystallisation from methanol (scheme 

2). This was a huge improvement to the previously reported Suzuki cross-coupling synthesis.  



Gaukroger et al reported a 5-step process with an overall yield of 16%.63 Further to this, we avoided 

the use of highly toxic carbon tetrabromide and tin. Malysheva and co-workers reported a 2-step 

synthesis of combretastatin derivatives by Negishi cross-coupling of 6 with overall yields of 25-45%.58 

Negishi coupling however requires phenol protection; they synthesised combretastatin A-4  in 39% 

overall yield. Our method provides a higher yielding synthesis of combretastatin derivatives without 

the need to protect functional groups.  

 

Scheme 2.  New synthesis of Combretastatin A-4  

 

2.2 Biological results 

 

2.2.1 Antiproliferative activities of compounds 2a-2i 

We determined the cytotoxicity of these new analogues across three human cancer cell lines 

(table 1). The half-maximal inhibitory concentration (IC50) for all new compounds (2a−2i) tested against 

HepG2 hepatic carcinoma, HCT-116 colon cancer and HeLa human epithelial cervical cancer cells is 

shown in Table 1. We chose cell lines previously used for CA-4;64–67 CA-4 was used as a control to 

compare the potency of the synthesized combretastatin analogues.  

As shown in table 1 most of the combretastatin derivatives show antiproliferative activity in 

the micromolar range, although not as active as CA-4. The most active compounds were 2b (HeLa, 

HCT-116) and 2e (HepG2) with IC50 values of less than 100 nanomolar.  

Generally, the presence of an electron withdrawing carbonyl group in the 4-position of the B-

ring provided potent anti-proliferative activities. Based on the binding determined for CA-4,68 it can be 

presumed this is due to hydrophobic interactions in the colchicine binding site of tubulin at the 4-

position of these derivatives. Further to this, compounds lacking a 4-substitution pattern or with a nitrile 

group (2h, 2i) showed limited cytotoxicity. 3-Hydroxy substitution was not essential for anti-

proliferative activity but increased the activity when combined with a 4-carbonyl substitution (2b).  

 

Table 1. Structures of synthesised compounds 2a-m and antiproliferative activities of compounds 2a-i against 

human cancer cell lines in vitro 

 
 

Comp. R1 R2 R3 In vitro cytotoxicity (IC50 ± SD, μM) 

HepG2 HeLa HCT-116 

2a H H CHO 0.25 ± 0.05 0.28 ± 0.06 0.27 ± 0.15 

2b H OH CHO 0.23 ± 0.05 0.07 ± 0.01 0.09 ± 0.03 



2c CHO H OMe 0.14 ± 0.03 0.15 ± 0.03 0.14 ± 0.09 

2d CHO H H 1.06 ± 0.38 1.21 ± 0.31 2.61 ± 1.51 

2e H H C(=O)Me 0.06 ± 0.03 0.14 ± 0.02 0.25 ± 0.12 

2f H OH C(=O)Me 0.37 ± 0.09 0.34 ± 0.10 0.35 ± 0.23 

2g C(=O)Me H H 0.46 ± 0.12 0.14 ± 0.08 0.45 ± 0.12 

2h H H CN 0.96 ± 0.35 0.46 ± 0.10 1.42 ± 0.40 

2i H OH CN 0.53 ± 0.24 0.58 ± 0.13 0.79 ± 0.21 

2j H H NO2 n.d n.d n.d 

2k NO2 H H n.d n.d n.d  

2l OMe OMe OMe n.d n.d n.d 

2m H H H n.d n.d n.d 

CA-4 H OH OMe 0.006 ± 0.001 0.007 ± 0.002 0.010 ± 0.003 

IC50 was determined after 72 h of drug exposure. Each experiment was carried out in triplicate at least two times. SD represents 

standard deviation.  

 

 

2.2.2 Effect on microtubules  

  CA-4 is a microtubule-destabilising agent that binds with tubulin at the same site as that of 

colchicine.69,70 Combretastatins are known to depolymerize cellular microtubules. The inhibition of 

tubulin polymerisation by the combretastatin derivatives was tested using bovine brain tubulin.  

We analyzed the effect of compounds 2a-2i on the assembly kinetics of tubulin in vitro using a 

fluorescence-based assay. Combretastatins 2a, 2b and 2e inhibited tubulin polymerisation almost 

completely at 1 µM (Figure 2a); interestingly, these compounds were also the most cytotoxic. 

Compounds 2c, 2f and 2h slowed the rate of tubulin polymerisation with maximum polymerisation 

below that of untreated tubulin (figure 2b). These compounds showed a similar trend in cytotoxicity; 

they effected cell proliferation but were not as potent as 2a, 2b and 2e. Although compounds 2d, 2g and 

2i didn’t inhibit the final proportion of tubulin polymerised at a concentration of 1 µM (figure 2c), these 

compounds appeared to slow down the rate of tubulin polymerisation. 

Compounds 2d and 2g displayed tubulin polymerisation curves comparable to that of untreated 

tubulin with a clear growth phase. The rate of tubulin polymerisation was estimated by fitting the early 

times of the curve to a pseudo-first order rate equation (table 2). Values for compound 2i were not 

determined as the one–phase association was ambiguous. The rate constant (k) of microtubule 

formation under normal conditions was 0.0208 min-1 with a half-life of 33 min. Incubation with 

compounds 2d and 2g decreased the rate of microtubule formation with k values of 0.0116 min-1, 0.0123 

min-1 respectively. The half-life of tubulin formation also increased upon treatment with compounds 2d 

and 2g confirming that although the final volume of microtubules did not appear to be inhibited, these 

compounds slowed down the rate of tubulin polymerisation (k) and thus expected to disrupt the cell 

signalling pathways, as demonstrated by the cell toxicity results, Table 1.17 

An IC50 of the tubulin polymerisation was determined from the Vmax of the polymerisation 

curves at varying concentrations for 2a, 2b and 2e (Figure 2d). These combretastatin derivatives had 

IC50 values of 0.39, 0.32 and 0.28 μM respectively. This is almost a 10-fold increase in inhibition of 

tubulin polymerisation than that of colchicine (2.68 μM).71 Further to this, CA-4 is reported as one of 

the most potent tubulin polymerisation inhibitors with IC50 values reported to range from 0.53 to 2.4 

M.71–74 The inhibition of tubulin polymerisation correlated with the cytotoxicity towards cancer cell 

lines suggesting the main mode of action of these combretastatin derivatives is the inhibition of tubulin 

polymerisation.73–76 



 

 

Figure 2. Combretastatin derivatives (1 M) inhibited the assembly of tubulin in vitro. Normal tubulin 

polymerisation is shown as the control. Paclitaxel (3 M) and CA-4 (1 M) were used as positive controls and 

experiments were repeated three times. Data is shown for one of these repeats. (a) Compounds 2a, 2b, 2e; (b) 2c, 

2f, 2h; (c) 2d, 2g, 2i; (d) example of dose curves for compound 2a 1 µM, 0.5 µM, 0.1 µM.  

 

Table 2. Rate (k) and half-life (t1/2) of tubulin polymerisation after treatment with compounds 2d and 2g  

 

Conditions k (min-1) t1/2 (min) 

No drug control 0.0208 33 

2d (1 μM) 0.0116 59 

2g (1 μM) 0.0123 56 

 

2.2.3 Effect on Cell Cycle Arrest  

During mitosis, the microtubule is critical for the separation of chromosomes. Exposure to 

microtubule targeting agents leads to damaged mitotic spindles resulting in mitotic arrest and 

subsequent apoptosis; it is widely accepted that the G2/M cell cycle arrest is strongly associated with 

inhibition of tubulin polymerisation.77–79 To investigate the effect of the combretastatin derivatives on 

cell cycle arrest, flow cytometry was used to analyse the cell cycle distribution of HepG2 cells following 

treatment with compounds 2a, 2b and 2e at 1 M. Untreated cells showed a fairly even spread across 

the growth stages; the percentage of cells in the G0/G1 and G2/M phase were 45.6 % and 44.8% 

respectively (table 3). After treatment with 2a, 2b and 2e, the percentage of cells in the G2/M phase 

drastically increased to 91.6%, 94.6% and 94.7% respectively.  

After incubation for 48 hours with 2a, the percentage of apoptotic cells (sub-G1) increased 

(43.3%) and the percentage of G2/M arrested cells decreased (46.7%). The increased sub-G1 population, 

suggested extensive DNA fragmentation indicating apoptosis as a direct result of mitotic arrest.80 We 



observed a similar trend for compounds 2b and 2e after 48 hours; the percentage of apoptotic cells 

increased to 43.3% and 43.5% respectively. This cell cycle arrest in the G2/M phase and subsequently 

sub-G1 suggests compounds 2a, 2b and 2e inhibit tubulin polymerisation causing a mitotic block that 

leads to apoptosis.  

 

Table 3. Effect of compounds 2a, 2b and 2e on the cell cycle in HepG2 cells  

 

 2a 2b 2e No drug control 

 24 h  48 h 24 h 48 h 24 h 48 h 24 h 48 h 

Sub G1 3.3 44.2 1.2 43.3 2.7 43.5 1.2 5.9 

G0/G1 3.5 5.6 2.8 21.5 1.6 11.4 45.6 56.2 

S 1.6 3.5 1.3 4.1 1.0 4.1 8.4 12.5 

G2/M 91.6 46.7 94.6 31.1 94.7 41.0 44.8 25.4 

Number of cells arrested in each stage of the cell cycle are expressed as a percentage (%). 

3. Conclusion 

In conclusion, a series of combretastatin analogues were synthesised using a new two-step 

reaction by use of a Wittig olefination followed by the Suzuki cross-coupling.  Fourteen compounds 

were synthesised using this new route including the biologically active CA-4 in a 56% overall yield. 

This two-step synthesis is an improved synthesis of CA-4 which allowed for a library of combretastatins 

with B-ring modifications to be synthesised.  

New compounds (2a-2i) exhibited antiproliferative activities in nanomolar concentrations. 4-

Formyl-3',4',5'-trimethoxy-(Z)-stilbene (2a), 4-formyl-3-hydroxy-3',4',5'-trimethoxy-(Z)-stilbene (2b) 

and 4-Acetyl-3',4',5'-trimethoxy-(Z)-stilbene (2e) were the most potent across all three cell lines. Like 

CA-4, compounds 2a, 2b and 2e inhibited the rate and extent of an in vitro assembly of purified tubulin 

with IC50s of 0.39, 0.32 and 0.28 μM respectively. Additionally, compounds 2a, 2b and 2e appear to 

cause a mitotic block and eventual apoptosis in HepG2 cells, further confirming their ability to inhibit 

tubulin polymerisation.  

 

 

 

 

 

  



 

4. Experimental 

4.1 Chemistry 

General Considerations 

All reactants and reagents were obtained from the commercial source and used without further 

purification. The NMR spectra were recorded on a Bruker Avance DPX 400 MHz spectrometer in 

CDCl3 unless stated otherwise using TMS as an internal standard. J values are given in Hz. HRMS 

(ESI) were recorded with Bruker−Maxis mass spectrometers. The purity of synthesized compounds was 

analyzed by HPLC (Shimadzu LC-6AD system), Phenomenex RP-C18 column (250 mm × 4.60 mm), 

particle size 5 μm, flow rate 1 mL/min, using water−acetonitrile. Purity of tested compounds was >95%. 

 

Z-3,4,5-Trimethoxy-β-iodostyrene (6) 58 

A suspension of iodomethylenetriphenylphosphonium iodide (3.53 g, 6.67 mmol, 1.3 eq) in anhydrous 

THF (30 ml) was cooled to -20 °C and sodium bis(trimethylsilyl)amide in THF (3.33 ml of a 2 M 

solution, 1.3 eq) was added dropwise. The resulting mixture was stirred at -20 °C for 15 min, then 

cooled to -78 °C and 3,4,5-trimethoxybenzaldehyde (1 g, 1.45 mmol, 1 eq) in THF (10 ml) was added 

over 1 h with good stirring. The reaction was stirred for a further 2 h, quenched with saturated aq. 

NH4Cl (10 ml) and extracted with diethyl ether (3 x 10 ml). The combined organic layers were filtered 

to remove triphenylphosphine oxide, dried over MgSO4 and concentrated in vacuo. The residue was 

purified by flash chromatography on silica gel (hexane/EtOAc, 4:1) to give 6 (1.2 g, 72%) as a yellow 

oil. 1H δ ppm: 7.20 (d, J = 8.6 Hz, 2h), 6.91 (s, 2H), 6.48 (d, J = 8.6 Hz, 2h), 3.86 (s, 6H), 3.85 (s, 3H). 

 

General synthesis of boronic pinacol esters81 

Into a thick walled screw top flask containing a solution of appropriately substituted aryl halide (2.49 

mmol, 1 eq) in dry 1,4-dioxane (10 ml) were added bis(pinacolato)diboron (0.632 g, 2.49 mmol, 1 eq) 

[1,1'-Bis(diphenylphosphino)ferrocene]palladium(II) dichloride (0.03 eq) and potassium acetate (3 eq). 

The flask was cooled to 0 °C under argon for 30 min. The reaction mixture was gradually warmed to 

room temperature, and stirred at 80 °C for 16 h. After cooling to room temperature, the solvent was 

evaporated to dryness under reduced pressure. The residue was dissolved in n-hexane, and the solution 

was washed with H2O, brine and dried (MgSO4), further purification was by recrystallization from 

hexane.    

 

2-Hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (7a)81 

From 4-bromosalicylaldehyde (0.500 g, 2.49 mmol, 1 eq). 7a was isolated as a white solid (0.482 g, 

1.94 mmol, 78%). 1H δ: 1.28 (12 H, s, 4 x CH3), 7.35 (2 H, m), 7.48 (1 H, d, J = 8.16), 9.86 (1 H, s, 

CHO), 10.76 (1 H, s, OH). 

 

2-Hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acetophenone (7b) 

From 1-(4-bromo-2-hydroxyphenyl)ethanone (0.535 g, 2.49 mmol, 1 eq) 7b was isolated as a white 

solid (0.451 g, 1.72 mmol, 69%). 1H δ: 1.28 (12 H, s, 4 x CH3), 2.58 (3 H, s, CH3), 7.22 (1 H, dd, J = 

7.87, 0.97, para to OH), 7.35 (1 H, d, J = 0.97, ortho to OH), 7.64 (1 H, d, J = 7.87, meta to OH), 11.99 

(1 H, s, OH); 13C δ: 24.9 (4 C, CH3), 26.9 (1 C, CH3), 84.3 (2 C, C-O), 114.5 (1 C, C-COCH3), 119.9 

(1 C, Ar C), 124.6 (1 C, Ar C), 124.8 (1 C, C-B), 129.6 (1 C, Ar C), 158.8 (1 C, C-OH), 201.2 (1 C, 

C=O) 



 

2-Hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (7c) 

From 4-bromo-2-hydroxybenzonitrile (0.493 g, 2.49 mmol, 1 eq). 7c was isolated as a white 

solid (0.464 g, 1.89 mmol, 76%).1H δ: 1.27 (12 H, s, 4 x CH3), 7.14 (1 H, dd, J = 7.71, 1.28, 

para to OH), 7.35 (1 H, d, J = 1.28, ortho to OH), 7.36 (1 H, d, J = 7.71, meta to OH), 10.49 

(1 H, s, OH); 13C δ: 24.9 (4 C, CH3), 84.5 (2 C, C-O), 94.6 (1 C, C-CN), 105.2 ( 1 C, C-B), 

116.4 (1 C, CN), 120.1 (1 C Ar C), 127.9 (1 C, Ar C), 132.8 (1 C, Ar C), 158.2 (1 C, Ar C-

OH). 

Synthesis of Combretastatin A-4 and analogues (2a-i) 

 

General synthesis of combretastatins 

3,4,5-Trimethoxy-β-iodostyrene (0.22 g, 0.68 mmol, 1 eq) and tetrakis (triphenylphosphine) 

palladium(0) (0.04 g, 0.034 mmol, 5 mol %) were stirred in 1,2-dimethoxyethane (50 ml) under argon 

for 20 min. Aryl boronic acid (or ester) (1.02 mmol, 1.5 eq) (for 1 0.168 g, 2a 0.150 g, 2b 0.248 g, 2c 

0.180 g, 2d 0.150 g,  2e 0.164 g,  2f 0.262 g,  2g 0.164 g,  2h 0.147 g,  2i 0.245 g, 2j 0.167 g, 2k 0.167 

g, 2l 0.212 g, 2m 0.122 g) and aqueous sodium carbonate (1 ml of a 2 M solution, 3 eq) were added and 

the mixture heated at reflux for 20 h. The reaction mixture was allowed to cool to room temperature, 

passed through a plug of celite and the DME was removed in vacuo. DCM (20 ml) was added and 

washed with saturated brine, water, dried (MgSO4), and concentrated in vacuo. The residue was purified 

by flash column chromatography on silica gel (petroleum ether/EtOAc 10:1) and recrystallised from 

methanol. 

 

Combretastatin A-4 (1)53 

From 3-methoxy-4-hydroxyphenyl boronic acid (0.168 g, 1 mmol, 1.5 eq). Following purification 1 

was isolated as a white solid (0.168 g, 78%); Mp 117-118 (lit. mp42 116-118). 1H δ:  3.70 (6 H, s, 2 x 

OMe), 3.85, 3.87 (6 H, 2 s, 2 x OMe), 5.55 (1 H, s, OH), 6.43, 6.49 (2 H, 2 d, J = 12.2 Hz, olefinic Hs), 

6.67 (2 H, s, ArH ortho to OMe), 6.85 (1 H, d, J = 8 Hz, ArH meta to OH), 6.80 (1 H, dd, J = 8, 2 Hz, 

ArH para to OH), 6.93 (1 H, d, J = 2 Hz, ArH ortho to OH). 

 

4-Formyl-3',4',5'-trimethoxy-(Z)-stilbene (2a)82 

From 4-formylphenyl boronic acid (0.15 g, 1 mmol, 1.5 eq). Following purification 2a was isolated as 

yellow crystals (0.171 g, 84%); Mp 98-100C; 1H δ:  3.57 (3 H, s, 4’-OMe), 3.70 (6 H, s, 3’,5’-OMe), 

6.37 (2 H, s, 2’,6’-CH), 6.51 (1 H, d, J = 12.3, olefinic CH), 6.58 (1 H, d, J = 12.3, olefinic CH), 7.37 

(2 H, d, J = 8.2, 2, 6-CH), 7.69 (2 H, d, J = 8.2, 3, 5-CH), 9.08 (1 H, s, CHO). 13C (100 MHz)  55.9, 

(2 x OCH3), 60.9 (OCH3), 106.1 (2,6-C), 125.5 (2’,6’-C), 128.6, 129.6 (2 x olefinic CH), 130.1 (3’,5’-

C), 131.8 (1-C), 135.0 (4’-C), 137.7 (1’-C), 140.0 (4-C), 153.0 (3,5-C), 191.5 (CHO). HRMS calcd for 

C18H19O4 [M+H+]: 299.1278; found: 299.1278. 

 

4-Formyl-3-hydroxy-3',4',5'-trimethoxy-(Z)-stilbene (2b) 

From 2-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (0.248 g, 1.00 mmol). 

Following purification 2b was isolated as a pale yellow solid (0.113 g, 54%); Mp 89 °C. 1H : 3.71 (3 

H, s, OCH3), 3.87 (6 H, s, 2 x OCH3) , 6.50 (2 H, s, Ar H), 6.51 (1 H, d,  J = 12.3, CH), 6.53 (1 H, d,  J 

= 12.3, CH),  6.68 (1 H, dd, J = 7.7, 1.8, para to OH), 6.69 (1 H, d, J = 1.8, ortho to OH),  7.43 (1 H, 

d, J = 7.7, meta to OH),  9.83 (1 H, s, CHO), 11.06 (1 H, s, OH).13C (100 MHz) δ  56.2 (2 C, 2 x OCH3), 



61.0 (1 C, OCH3), 104.2 (1 C, o-OH), 106.2 (2 C, o-C-OCH3), 114.8 (1 C, C-CHO), 126.6 ( 1 C, o-

CHO), 128.3 (1 C, p-OH) 131.6 (1 C, ArC), 132.0 (2 C, CH), 138.9 (1 C, C-O CH3), 153.0 (2 C, C-O 

CH3), 153.5 (1 C, C-OH), 195.7 (1 C, C=O). HRMS calcd for C18H19O5 315.1230, found 315.1227. 

 

2-Formyl-3',4,4',5'-tetramethoxy-(Z)-stilbene (2c) 

From 2-formylphenyl boronic acid (0.18 g, 1 mmol, 1.5 eq). Following purification 2c was isolated as 

a pale yellow solid (0.176 g, 79%); Mp 88-91 C; 1H : 3.60 (3 H, s, 4’-OMe), 3.82 (6 H, s, 3’,5’-OMe), 

3.88 (3 H, s, 4-OMe), 6.31 (2 H, s, 2’,6’-CH), 6.72 (1 H, d, J = 12.2, olefinic CH), 6.88 (1 H, d, J = 

12.2, olefinic CH), 7.13 (1 H, dd, J = 2.9, 8.6, 5-CH), 7.28 (1 H, d, J = 8.6, 6-CH), 7.43 (1 H, d, J = 2.9, 

3-CH), 10.25 (1 H, s, CHO). 13C (100 MHz)  55.6, 55.8 (4, 4’-OMe), 60.9 (3’,5’-OMe), 106.4 (2,6-

C), 110.9 (3’-C), 114.6 (5’-C), 121.7 (6’-C), 125.2, 131.3 (2 x olefinic Cs), 131.9 (1-C), 133.3 (2’-C), 

134.2 (2’-C), 134.4 (1’-C), 139.4 (4-C), 152.9 (3,5-Cs), 159.1 (4’-C), 191.7 (CHO). HRMS calcd for 

C19H21O5 [M+H+]: 329.1384; found: 329.1385. 

 

2-Formyl-3',4',5'-trimethoxy-(Z)-stilbene (2d) 

From 2-formylphenyl boronic acid (0.15 g, 1 mmol, 1.5 eq). Following purification 2d was isolated as 

a yellow solid (0.162 g, 80%); Mp 91-93 C; 1H : 3.48 (3 H, s, 4’-OMe), 3.71 (6 H, s, 3’,5’-OMe), 

6.15 (2 H, s, 1’,6’-CHs), 6.66 (1 H, d, J = 12.5, olefinic CH), 6.86 (1 H, d, J = 12.5, olefinic CH), 7.27 

(1 H, d, J = 7.5, 4-CH), 7,34 (1 H t, J = 7.5, 6-CH), 7.47 (1 H, m, 5-CH), 7.85 (1 H, d, J = 7.5, 3-CH). 
13C (100 MHz)  56.2 (2 x OCH3), 60.9 (OCH3), 104.1 (2,6-Cs), 125.8 (6’-C), 127.2, 127.7 (2 x olefinic 

CH), 128.9 (3’-C), 130.6 (4’-C), 131.1 (5’-C), 133.3 (1-C), 134.0 (1’-C), 137.6 (2’-C), 141.5 (4-C), 

153.5 (3,5-Cs), 192.0 (CHO). HRMS calcd for C18H19O4 [M+H+]: 299.1278; found: 299.1278. 

 

4-Acetyl-3',4',5'-trimethoxy-(Z)-stilbene (2e) 

From 4-acetylphenylboronic acid (0.164 g, 1 mmol, 1.5 eq). Following purification 2e was isolated as 

a white solid (0.157 g, 74%); Mp 79-81 C; 1H : 2.51 (3 H, s, OCMe), 3.59 (6 H, s, 3’,5’-OMes), 3.77 

(3 H, s, 4’-OMe), 6.38 (2 H, s, 2’,6’-CH), 6.51 (1 H, d, J = 12.3, olefinic CH), 6.57 (1 H, d, J = 12.3, 

olefinic CH), 7.31 (2 H, d, J = 8.1, 2, 6-CH), 7.78 (2 H, d, J = 8.2, 3,5-CH); 13C (100 MHz)  26.4 (4’-

OCMe), 55.9 (3’,5’-OMes), 61.0 (4-OMe), 106.1 (2,6-C), 128.3 (olefinic C), 128.4 (2’,6’-C),, 128.8 

(olefinic C), 129.1 (3’,5’-C), 132.3 (1-C), 137.4 (4’-C), 139.5 (4-C), 143.5 (1’-C), 153.0 (3,5-C), 193.5 

(CHO). HRMS calcd for C19H21O4 [M+H+]: 313.1431; found: 313.1434. 

 

4-Acetyl-3-hydroxy-3',4',5'-trimethoxy-(Z)-stilbene (2f) 

From and 2-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acetophenone (0.262 g, 1.00 

mmol). Following purification 2f was isolated as a pale yellow solid (0.122 g, 56%). Mp 73 °C.
 1H : 

2.62 (3 H, CH3), 3.72 (6 H, s, 2 x OCH3), 3.87 (3 H, s, OCH3) , 6.51 (2 H, s, Ar H), 6.52 (1 H, d,  J = 

12.5, CH), 6.66 (1 H, d,  J = 12.5, CH),  6.83 (1 H, dd,  J = 8.2, 1.6, para to OH),  6.97 (1 H, d,  J = 1.6, 

ortho to OH), 7.60 (1 H, d, J = 8.2, meta to OH), 12.27 (1 H, s, OH). 13C (100 MHz)  26.6 (1 C, CH3), 

56.0 (2 C, 2 x OCH3), 61.0 (1 C, OCH3), 106.2 (2 C, o-C-OCH3), 118.3 (C-COCH3), 128.5 (1 C, o-

COCH3), 130.3 (1 C, p-OH), 131.8 (1 C, ArC), 132.9 (1 C, Ar C), 146.0 (1 C, C-OCH3), 153.0 (2 C, C-

O CH3), 162.4 (1 C, C-OH), 203.8 (1 C, C=O). HRMS calcd for C19H21O5 [M+H]: 329.1384; found: 

329.1385. 

 

 



2-Acetyl-3',4',5'-trimethoxy-(Z)-stilbene (2g) 

From 5-[(Z)-2-bromovinyl]-1,2,3-trimethoxybenzene (0.164 g, 1 mmol, 1.5 eq).) and 2-

acetylphenylboronic acid (0.169 g, 1.03 mmol). Following  purification 2g was isolated as a yellow 

solid (0.182 g, 0.58 mmol, 85%).1H : 2.56 (3 H, s, CH3), 3.60 (6 H, s, 2 x OCH3),  3.82 (3 H, s, OCH3), 

6.28 (2 H, s, Ar H), 6.56 (1 H, d,  J = 12.3, CH),  6.92 (1 H, d,  J = 12.3, CH),  7.33  (2 H, d, J = 7.4, 

Ar H)  7.36 (t, J= 1.58, 8.99, 1 H, Ar H), 7.79 (d, J=7,4 , 1 H, Ar H); 13C (100 MHz)  29.5 (CH3), 55.7 

(2 C, OCH3), 60.9 (OCH3), 106.4 (olefinic C), 126.7 (Ar C), 127.7 (Ar C), 129.1 (olefinic C), 129.9 

(olefinic C), 130.0  (Ar C), 131.2 (Ar C), 131.6 (Ar C), 132.0 (Ar C), 137.2 (Ar C), 138.0 (Ar C). 152.7 

(olefinic C), 200.7 (carbonyl C). HRMS calcd for C19H21O4 [M+H]: 313.1431, found: 313.1434 

 

 

4-Cyano-3',4',5'-trimethoxy-(Z)-stilbene (2h) 

From 4-cyanophenylboronic acid (0.147 g, 1 mmol, 1.5 eq). Following purification 2h was isolated as 

a white solid (0.156 g, 78%); Mp 89-91 C. 1H : 3.60 (s, 6 H), 3.78 (s, 3 H), 6.33 (s, 2 H), 6.47 (d, J = 

12.2, 1 H), 6.60 (d, J = 12.2, 1 H), 7.31 (d, J = 8.4, 2 H), 7,47 (d, J = 8.4, 2 H). 13C (100 MHz) 55.9 

(3’,5’ OMe), 61.0 (4’-OMe), 106. 0 (2’, 6’-C), 110.5 (1-C), 118.9 (1’-C), 128.0, 129.7 (2 x olefinic C), 

131.5 (CN), 132.4 (2, 6-C), 133.10 (3,5-C), 137.8 (4’-C), 142.3 (aromatic 4-C), 153.1 (3’, 5’-C). HRMS 

calcd for C18H18NO3 [M+H+]: 296.1287; found: 296.1281. 

 

4-Cyano-3-hydroxy-3',4',5'-trimethoxy-(Z)-stilbene (2i) 

 From 2-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (0.245 g, 2.00 mmol. 

Following purification, 2i was isolated as a dark yellow solid (0.100 g, 48%). Mp 95 °C. 1H : 3.70 (6 

H, s, 2 x OCH3), 3.85 (3 H, s, OCH3) , 6.45 (2 H, s, Ar H), 6.48 (1 H, d,  J = 12.2, CH), 6.63 (1 H, d,  J 

= 12.2, CH),  6.88 (1 H, dd,  J = 9.0, 1.2, para to OH),  6.98 (1 H, d,  J = 1.2, ortho to OH), 7.39 (1 H, 

d, J = 9.0, meta to OH). 13C (100 MHz)  55.9 (2 C, 2 x OCH3), 61.2 (1 C, OCH3),99.8 (1 C, C-CN), 

106.0 (2 C, o-C-OCH3), 121.4 (CN), 128.1 (1 C, o-COCH3), 1331.5 (1 C, p-OH), 132.8 (1 C, ArC), 

132.9 (1 C, Ar C), 143.9 (1 C, C-OCH3), 153.1 (2 C, C-O CH3), 159.4 (1 C, C-OH). HRMS calcd for 

C18H16NO4 3[M-H]:10.33, found 310.00. 

 

 

4-Nitro-3',4',5'-trimethoxy-(Z)-stilbene (2j)83 

From 4-nitrophenyl boronic acid (0.167 g, 1 mmol, 1.5 eq). Following purification 2j was isolated as a 

yellow solid (0.167 g, 78%); Mp 142-143 C. (Lit. Mp 210-212 C). 1H : 3.70 (6 H, s, 3’,5’-OMe), 

3.88 (3 H, s, 4-OMe), 6.51 (1 H, d, J = 12.0, olefinic H), 6.25 (1 H, d, J = 12.0, olefinic H), 6.45 (2 H, 

s, 2’, 6’-CHs), 7.48 (2 H, d, J = 8.1, 2,6-CHs), 8.15 (2 H, d, J = 8.1, 3,5-CHs). 

 

2-Nitro-3',4',5'-trimethoxy-(Z)-stilbene (2k)84 

From 2-nitrophenyl boronic acid (0.167 g, 1 mmol, 1.5 eq). Following purification 2k was isolated as 

a yellow solid (0.158 g, 74%); Mp 126-129 C. 1H : 3.60 (6 H, s, 3’, 5’-OMe), 3.82 (3 H, s, 4’-OMe), 

6.38 (2 H, s, 2’,6’-CHs), 6.69 (d, J = 12.1, olefinic H), 6.90 (d, J = 12.1, olefinic H), 7.38 (1 H, d, J = 

8.2, 3-CH), 7.42 (1 H, m, 4-CH), 7.48 (1 H, m, 5-CH), 8.10 (1.0, d, J = 8.2, 6-CH). 

 



3,3',4,4',5,5'-Hexamethoxy-(Z)-stilbene (2l)85  

From 3,4,5-trimethoxyphenyl boronic acid (0.212 g, 1 mmol, 1.5 eq). Following purification 2l was 

isolated as a white solid (0.181 g, 0.5 mmol, 74%); Mp 173-175 C. (Lit. Mp 173C). 1H : 3.72 (12 H, 

s, 3,3’,5,5’-OMe), 3.85 (6 H, s, 4,4’-OMe), 6.52 (2 H, s, 2 x olefinic Hs) 2 H), 6.53 (4 H, s, 2,2’,6,6’-

CHs)). 

 

3,4,5-Trimethoxy-(Z)-stilbene (2m)86 

From phenylboronic acid (0.122 g, 1 mmol, 1.5 eq). Following purification 2m was isolated as a yellow 

solid (0.149 g, 81%); Mp 105-107 C. (Lit. mp 106-8 C. 
 1H : 3.69 (3 H, s, 4-OMe), 3.85 (6 H, s, 3,5-

OMes), 6.47 (2 H, s, 2,6-Hs), 6.54 (1 H, d, J = 12.2, olefinic H), 6.62 (1 H, d, J = 12.2, olefinic H), 7.22 

- 7.32(5 H, m, 2’,3’,4’,5,,6’-Hs). 

 

 

4.2 Biology 

4.2.1 Cell culture.  

HepG2, HeLa and HCT-116 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with FCS (10 %), penicillin (100 units/ml), streptomycin (100 μg/ml) and L-glutamine 

(2 mM). Cell lines were cultured at 37 °C in a humidified incubator with 5% carbon dioxide. 

4.2.2 Cell-Based Screening Assay. Synthesized combretastatin analogues, (2a-2i) and CA-4 used in 

the study were dissolved in 100% cell culture grade DMSO. The compounds were serially diluted in 

DMEM to maintain the final concentration of DMSO as <0.1% for testing on cancer cell lines. A 

concentration of 50 μM of synthesized combretastatin analogues (2a-2i) and CA-4 were initially used 

for screening the potency of compounds in cell lines.  

4.2.3 Half-Maximal Inhibition of Tumour Cell Growth by Combretastatin Analogues. HepG2, 

HeLa and HCT-116 cells (1 × 105 cells/mL) were seeded in 96-well plates and incubated for 24 h for 

attachment. The cells were then incubated with different concentrations of synthesized combretastatin 

analogues and incubated for 24 h. Following incubation, MTT solution (50 μl; 3 mg/ml in PBS) was 

added to each well and incubated for a further 3 h. The half-maximal inhibitory concentration (IC50) for 

the respective compounds were determined using a known method. In short, formazan crystals were 

dissolved in DMSO (100 μl) and optical densities of the wells were read on a 

spectrophotometer platereader (Multiskan Ascent, Thermo Labsystems) at 540 nm with 690 

nm as a background reading.The no drug control sample was normalised to 100 % cell growth 

(no inhibition of cell growth). CA-4 was used as a control for comparing the potencies of the 

synthesized combretastatin analogues. Data was analysed using GraphPad. 6 sets of experiments were 

performed.  

4.2.4 Assembly Kinetics of Tubulin in vitro. A fluorescence-based tubulin polymerisation assay was 

performed according to the manufacturer’s protocol (cat # BK011P, Cytoskeleton, Inc.). Tubulin (10 

mg ml-1) was resuspended in a premixed buffer containing PIPES, EGTA, MgCl2 and fluorescent 

reporter (243 l), glycerol buffer (112 l) and GTP (100 mM, 4.4 l).  The tubulin reaction mix (50 l) 

was added to 1 M of test compounds and subsequently the assembly kinetics of tubulin was monitored 



using excitation wavelength 355 nm at 37 C using Spectramax M2. CA4 and paclitaxel were tested as 

controls and three independent experiments were performed for each compound.  

 

4.2.5 Cell Cycle Analysis by Flow Cytometry. HepG2 cells were incubated in the absence and 

presence of compounds 2a, 2b, 2e and CA-4 for 24 h or 48 h. Subsequently, the cells were fixed with 

70% ethanol. The fixed cells were then incubated with RNase (50 μl; 100 μg/ml in PBS) and propidium 

iodide (300 μl; 50 μg/ml in PBS) for 1 h. Flow cytometry analysis was performed using BD FACSVerse 

flow cytometer. 
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