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Abstract 

Purpose-A numerical analysis is presented to investigate thermally and 

hydrodynamically fully developed convection in a duct of rectangular cross-section 

containing a porous medium and fluid layer.  

Design/methodology/approach-The Darcy-Brinkman-Forchheimer flow model is 

adopted. A finite difference method of second-order accuracy with the Southwell-Over-

Relaxation Method (SORM) is deployed to solve the non-dimensional momentum and 

energy conservation equations under physically robust boundary conditions.  

Findings-It is found that the presence of porous structure, and different immiscible fluids 

exert a significant impact in controlling the flow. Graphical results for the influence of 

the governing parameters i.e. Grashof number, Darcy number, porous media inertia 

parameter, Brinkman number and ratios of viscosities, thermal expansion and thermal 

conductivity parameters on the velocity and temperature fields are presented.  The 

volumetric flow rate, skin friction and rate of heat transfer at the left and right walls of 

the duct are also provided in tabular form. The numerical solutions obtained are validated 

with the published work and excellent agreement is attained.  

Originality/value-To the authors best knowledge this work original in developing the 

numerical code using FORTRAN to assess the fluid properties for immiscible fluids.  The 
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study is relevant to geothermal energy systems, thermal insulation systems, resin flow 

modeling for liquid composite molding processes and hybrid solar collectors.  

 

Keywords: Mixed convection, finite difference, vertical duct, Darcy-Brinkman-

Forchheimer model; interface; porous medium; Nusselt number. 
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1,2i=    quantities for region-1 and region-2 respectively. 

 

Subscripts 

1, 2       quantities for region-1 and 2, respectively. 

 

 

1. Introduction 

A vast amount of work, both theoretical and experimental, exists in the literature 

relating to thermal buoyancy effects in ducts.  Important monographs in this regard 

include the books by Lewis et al. (2004) and Nitiarasu et al. (2016) which rigorously 

address the fundamentals of the finite element method for heat and mass transfer 

technological applications.  This includes both purely fluid and porous media systems. 

Representative works on porous media in vertical enclosures include Prasad and Kulacki 

(1984), Beckermann et al. (1986) and Manole and Lage (1992) all of whom have studied 

diverse aspects of such flows. Convection in a homogeneous porous matrix enclosed in 

an oblique cavity was scrutinized numerically by Baytas and Pop (1999).  Management 

of geothermal systems, heat pipes, phase change applications and transpiration cooling, 

resin mold fabrication, drying, biochemical filtration, storing and transporting energy are 

several important applications in industry where porous media are featured. Tien and 

Vafai (1989) and Amiri and Vafai (1995) pointed out that in a heat sink medium, porous 

insertions play a beneficial role in heat transfer. If the boundaries are impermeable then 

the classical Darcy law (valid for viscous-dominated low Reynolds number flows) 

however cannot be applied.  In such cases the inclusion of inertia and boundary effects 

should be implemented. Engineers have therefore developed the Brinkman-Forchheimer-

extended Darcy model which is a nonlinear drag force which has been shown to more 

accurately address these effects.  The numerical approach for the porous channel using 

the Brinkman-Forchheimer-extended Darcy model was developed and applied 

extensively by Kaviany (1985), Vafai and Kim (1989) and Amiri and Vafai (1994). The 

finite element method in both static and dynamic consolidation of porous media with 

relevance to engineering geomechanics (including thermal transport) was lucidly 

elaborated in the excellent text by Lewis and Schrefler (1998).  Nield and Bejan (1999), 
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Kaviany (1991) and Vafai (2000) further elaborated on porous media hydrodynamics and 

heat transfer with modified Darcy formulations.  Umavathi and co-workers (2012a, 

2012b, 2013, 2015a, 2015b) have subsequently rigorously researched many aspects of 

transport phenomena in fluid-saturated porous media in channels/ducts. Using the 

approach of the continuum theory of porous media (TPM) and particle-based Lattice 

Boltzmann method (LBM), Mohamad et al. (2020) provided detailed computational 

simulations of flow through porous media.  These works robustly demonstrated that, 

coupling the TPM and LBM theories generated accurate and reliable simulations of 

realistic transport phenomena in deformable porous media. 

Transport in composite fluid-porous layers has also attracted significant attention 

in engineering sciences in recent years. Many interesting applications of such flows arise 

including post-accident cooling of nuclear reactors (Kuznetsov, 1999), convection in 

fibrous insulations (Bagchi and Kulacki, 2020), thermal duct technology (Min and Kim, 

2005), groundwater contamination (Khalili et al., 2003),  chemical reactor packed beds 

(Jones and Persichetti, 1986) and geothermal energy (Le Louis et al., 2018). Beckerman 

et al. (1987) presented one of the first studies of flow in composite fluid-porous media 

systems. They reported both numerical and experimental results for a rectangular 

chamber blocked with a mixture of a fluid layer and porous layer and identified that the 

convective pattern was significantly transformed  in comparison with the chamber 

comprising only either a clear fluid or a porous bed. Arquis and Caltagirine (1987) and 

Du and Bilgen (1990) also considered a similar composition and produced analogous 

observations corroborating the results reported by Beckerman et al. (1987). Assuming the 

impermeable condition at the interface between the porous and fluid layers, Campos et al. 

(1990) computed the flow patterns in a rectangular conduit.  Song and Viskanta (1994) 

also carried out a detailed theoretical and experimental review on convection in 

rectangular enclosures partially filled with anisotropic porous media. Srinivasan and 

Vafai (1994) scrutinized the linear encroachment of an immiscible fluid in a saturated 

porous bed.  The flow between two plates packed with immiscible fluids was examined 

by Kapur and Shukla (1964). Analytical solutions were derived by Srinivas and Ramana 

Murthy (2016a, b) for immiscible fluids adopting couple stress and micropolar fluid 

rheological models.  Magnetic effects were explored by Borrelli et al. (2017) in a vertical 



6 

 

conduit containing electrically conducting immiscible fluids.  For both fully and partially 

filled spheres in a cubic packing cavity, Manu et al. (2020) investigated numerically 

thermal convection flows.  They concluded that for large values of Rayleigh number 

(natural convection parameter) the Darcy-Forchheimer simulations under-predict the heat 

transfer. 

As noted earlier, flows in composite systems i.e. containing both a porous bed and 

an adjacent fluid layer are of considerable theoretical and practical interest. Melting of ice 

in frozen soils which arises owing to the changes in the weather is a further interesting 

application of transport phenomena between a porous bed and clear fluid. Mathematical  

models of transport in composite porous-fluid media also arise in crude-oil production, 

castings, biomedical (multi-phase tissue dynamics), foam fabrication, Gas Assisted 

Injection Molding (GAIM) and geophysical systems (Valette et al., 2004, Howell et al., 

2000, Christian et al., 2006, Renger et at al., 2007, Cole et al., 2010). Much of the 

motivation for the current study stems from common multi-fluid flow operations present 

in the construction and completion of oil and gas wells, e.g., primary cementing, drilling, 

and hydraulic fracturing, and also geothermal reservoirs.   

Umavathi and co-workers (Malashetty et al., 2001, 2004, 2005, Umavathi et al., 

2004, 2005, 2008, 2010, 2012, 2014, 2019) conducted extensive investigations into the 

dynamics of immiscible flow in conduits considering steady, unsteady, Newtonian and 

non-Newtonian fluids scenarios.  Prasad (1990) presented a succinct review of composite 

porous layer fluid dynamics. Simulation of composite porous medium flows has received 

considerable attention and was the focus of several investigations (Chikh et al. 1995, and 

Kim and Choi, 1996). The first attempt to robustly represent the conditions at the 

interface of fluid-porous media was made by Beavers and Joseph (1967).  They identified 

the velocity slip at the interface by performing careful experiments. Neale and Nader 

(1974) later formulated the slip velocity boundary conditions at the interface for a porous 

medium. They introduced the Brinkman term in the momentum conservation equation for 

the porous zone and proposed the continuity of velocity and also the velocity gradient at 

the interface. Furthermore, an exact solution for composite porous media incorporating 

the inertial effects was determined by Vafai and Kim (1990). The continuity of velocity 

and the continuity of shear stress at the interface between the clear viscous fluid and 
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porous medium was considered in the study of Vafai and Kim (1990).  Later, the flow of 

three immiscible fluids was analysed by Vafai and Thiyagaraja (1987) assuming 

continuity of shear stress and heat flux at the two interfaces, for the case in which clear 

fluid was sandwiched between porous media.  Later Alzami and Vafai (2001) presented 

various types of interfacial conditions between a clear fluid and a porous medium, 

following the interface conditions proposed by Vafai and Thiyaaraja (1987).  

 The works in the literate on immiscible fluids is limited owing to the complex 

nature which arises at the interface and also due to the wetting/non-wetting characteristics 

when the fluid adheres to the solid boundary.  Experimental (Hulin et al., 2008) and 

computational (Sahu and Vanka, 2011, Redapangu et al., 2012) works are available on 

buoyancy induced immiscible fluid flows which leave certain aspects unresolved and 

demand further elucidation. Motivated by this, we aim to introduce, for the first time, an 

immiscible two-dimensional model paving the way for more complex experimental and 

theoretical analyses to come in the future. The current study therefore addresses 

theoretically and numerically the buoyancy-induced flow in a vertical rectangular duct 

which is filled with both immiscible clear viscous fluid and viscous fluid saturated with a 

porous medium. The computations are relevant to mechanical engineering processes 

involving heat and mass transfer, chemical engineering packed beds, reservoir 

engineering thermal recovery processes, geothermic, fiber insulation, and also the 

dynamics of salty hot springs in ocean environments.  

 

2.  Governing Equations 

  The physical system (Figure.1) considered consists of a two-dimensional 

rectangular vertical duct filled with homogeneous isotropic porous and fluid layers.  The 

Darcy-Brinkman-Forchheimer model is used, taking into account the effect of viscous 

and Darcy dissipations.   
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Figure 1.  Schematic diagram 

 

The flow is assumed to be fully developed, incompressible, steady and laminar. For fully 

developed flow the relations on U  and V  are .  By 

the equation of continuity one obtains  and hence the velocity W  along the Z  

direction of the fluid is non-vanishing. The length of the conduit is 
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having density 
( )2

 , viscosity 
( )2

 , thermal expansion coefficient 
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  and thermal 

conductivity 
( )2

K .  The top and bottom duct boundaries are insulated 0
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wall has constant temperature 
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T  

with the condition imposed as 
( ) ( )2 1w w

T T  (i.e., heating at the right wall and cooling at 

the left wall). The fluids occupying the two regions are pure viscous fluid and possess 

constant physical properties except the density occurring in the buoyancy term (i.e. the 

Boussinesq approximation is taken into consideration). Mathematically the problem 

involves the coupling of the governing equations for the fluid region with the equations 

for the porous region through an appropriate set of matching conditions at the 

fluid/porous medium interface.  We assume the continuity of velocity, shear stress, 

temperature and heat flux at the interface (Neale and Nader, 1974).  As a first 

approximation we take eff  equal to the fluid viscosity 1  in the porous region. Also, a 

key assumption which is often adopted in the published literature is the thermal 

equilibrium between fluid in pores and solid material of the porous medium.  For 

instance, Sozen and Kuzay (1996) have studied heat transfer in a tube enhanced with 

mesh screens by making use of the thermal equilibrium approximation. Kim et al. (1994) 

have studied heat transfer in a channel filled with porous material subjected to oscillatory 

flow with the non-Darcy approach but with the equilibrium assumption for thermal fields.  

Following these references, it is assumed that the fluid within the porous medium 

saturates the solid matrix and both are in local thermodynamic equilibrium. Under these 

assumptions, the governing equations of motion and energy under the Oberbeck-

Boussinesq approximation reduce to (Nield and Bejan, 1999): 
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the pressure and temperature gradients.  The velocity is zero (no-slip condition) at the 

boundaries. Following Alzami and Vafai (2001), it is assumed that there is continuity of 

velocity, temperature, shear stress and heat flux at the interface. In this direction, 

Equations (1) to (4) are solved subject to the following boundary and interface 
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Using the following dimensionless variables  
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Equations (1) to (4) can be written as follows: 
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The boundary and interface conditions given in Equation (5) using Equation (6) become: 
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where  Gr  is the Grashof number, Da  is the Darcy number, I  is the Forchheimer 

inertial coefficient, Br  is the Brinkman number,   is the ratio of thermal expansion 

coefficient, n  is the ratio of densities,   is the ratio of viscosities,   is the ratio of 

thermal conductivities, 1A  is the aspect ratio of region-1 and 2A  is the aspect ratio of 

region-2 which are defined as follows: 
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3. Numerical solutions  

The numerical solutions of the governing equations are performed by the finite 

difference method (FDM).  The discretization is achieved on finite mesh.  The 

convection-diffusion terms are discretized using Taylor expansions, replacing the first 

and second order derivatives through first and second order central finite differencing 

approximations.  The pressure gradient is assumed to be constant.  The grid distribution is 

uniform and the grids chosen are 1i =  to 1Nx  in region-1 
( )( )1

,i jx y ,   1i =  to 2Nx  in 

region-2 
( )( )2

,i jx y ,  and 1j =  to Ny  in both regions.  x  is taken as the step length in 

x − direction and y  is taken as the step length in y -direction (for details refer to 

Umavathi and Bég, 2020).  Adopting the above procedure, the nonlinear, coupled partial 

differential equations as defined in Equations (7) to (10) along with corresponding 
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boundary and interface conditions as chosen from Equation (11) assume the following 

finite difference formations. 

 

Region-1 

( ) ( ) ( )

( )( )

( ) ( ) ( )

( )
( )

( ) ( )

1 1 1 1 1 1

1, , 1, , 1 , , 1 1

,2 2
1

1 1 2

, ,

2 2

1
0

i j i j i j i j i j i j

i j

i j i j

w w w w w w
Gr

yx

w I w p
Da


+ − + −

 
 − + − + 

+ + − 
      
 

− − =

          (13)                                                                                                                              

( ) ( ) ( )

( )( )

( ) ( ) ( )

( )

( ) ( )

( )

( ) ( )
( )

1 1 1 1 1 1

1, , 1, , 1 , , 1

2 2
1

2 2
1 1 1 1

1, 1, , 1 , 1 1 2

,1

2 2

0
22

i j i j i j i j i j i j

i j i j i j i j

i j

yx

w w w w Br
Br w

y Dax

     + − + −

+ − + −

 
 − + − + 

+ + 
      
 

    − −
 + + =   
        

                            (14)                            

                                                                                                   

Region-2 

( ) ( ) ( )

( )( )

( ) ( ) ( )

( )
( )

( )2 2 2 2 2 2 1
1, , 1, , 1 , , 1 2

,2 2
2

2 2
0

i j i j i j i j i j i j

i j

w w w w w w Gr n p

yx




 

+ − + −

 
 − + − + 

+ + − = 
      
 

     (15) 

( ) ( ) ( )

( )( )

( ) ( ) ( )

( )

( ) ( )

( )

( ) ( )

2 2 2 2 2 2

1, , 1, , 1 , , 1

2 2
2

2 2
2 2 2 2

1, 1, , 1 , 1

2

2 2

0
22

i j i j i j i j i j i j

i j i j i j i j

yx

w w w wBr

K yx

     



+ − + −

+ − + −

 
 − + − + 

+ + 
      
 

    − −
 + =   
        

                                            (16) 

The associated boundary conditions are: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1

,0 ,1 ,0 ,1, 1 , at 0 for 0i i i iw w Y x A = − = − − =    

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1

, 1 , , 1 ,, 1 at 1 for 0i Ny i Ny i Ny i Nyw w Y x A + += − = − =    

( ) ( ) ( ) ( ) ( )1 1 1 1 1

0, 1, 1, 0,, at 0 for 0 1j j j jw w x y = − = =    

( ) ( ) ( ) ( )

( )
( )

( )

( ) ( )( ) ( )

( )

2 1 1 2

2 1, 1, 1, 2,

1
1

1 2 2 1

1, 2, 2 1, 1,2

,

at for 0 1
,

Nx j Nx j Nx j Nx j

Nx j Nx j Nx j Nx j

w w w w

x A yx
w w w w

x

+ +

+ +

= + −


=  
= − + 

 
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( ) ( ) ( ) ( )

( )
( )

( )

( ) ( )( ) ( )

( )

2 1 1 2

2 1, 1, 1, 2,

1
1

1 2 2 1

1, 2, 2 1, 1,2

,

at for 0 1
,

Nx j Nx j Nx j Nx j

Nx j Nx j Nx j Nx j

x A Yx

x

   

    

+ +

+ +

= + −


=  
= − + 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 2 2

,0 ,1 ,0 ,1, 1 , at 0 fori i i iw w y A x A = − = − − =    

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 2 2

, 1 , , 1 ,, 1 at 0 fori Ny i Ny i Ny i Nyw w y A x A + += − = − =    

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 2

0, 1, 1, 0,, at for 0 1j j j jw w x A A y = − = = +        

                            (17) 

The difference equations as given in Equations (12) to (16) along with boundary and 

interface conditions as given in Equation (17) are iterated incorporating the Southwell-

Over-Relaxation method (ORM).  The iteration is carried out until the tolerance value is 

achieved.  The tolerance value is fixed as  
810−
.  The validation of the code is carried out 

in two ways as follows: 

 

1.  Grid independence study:  Table-1 provides the value of average Nusselt number at 

the left wall of the conduit for different sizes of grids.  This table infers that the grid sizes 

101x101 or 201x201 do not show any noticeable changes in the solutions.  That is to say 

that the solutions obtained using 101x101 and 201x201 agree very well, hence choosing 

either 101x101 or 201x201 does not alter the flow structure i.e. grid independence is 

achieved.  Hence the 101x101 grid size is adapted for the computations. 

2.   Validation of the code with previous studies:  The results obtained in the present 

code are compared with Umavathi and Bég (2020) in the absence of porous material.   

The validation of the code in Umavathi and Bég (2020) is carried in detail by comparing 

with Oztop et al. (2009) for a composite system, Moshkin (2002) for a two-layer system 

in an enclosure and Davis (1963, 1983). Therefore, the present FDM solutions concur 

with Umavathi and Bég (2020) in the absence of a porous matrix for pure viscous 

immiscible fluids.  Table-2 provides the values of average Nusselt number at the left 

plate for composite porous medium and viscous immiscible fluids (Umavathi and Bég, 

2020).  This table indicates that for large Grashof number, Nusselt number is less in 

Region-1 in comparison with Region-2.  Further the Nusselt number for clear viscous 

fluid (Region-2) is close to Umavathi and Bég, (2020).  One should note at this point that, 



15 

 

the Nusselt number for a composite porous medium in Region-2 (viscous fluid) will be 

different from the Nusselt number obtained for immiscible fluids owing to the 

contribution of the interface dragging effect for the porous matrix.   

 

4.  Results and discussion 

The influence of interface conditions occurring between a fluid layer and a porous 

layer inside a vertical duct on the velocity and temperature distributions, is studied for 

various Grashof number ( )Gr , Darcy number ( )Da , inertial parameter ( )I , Brinkman 

number ( )Br , viscosity ratio ( ) , thermal expansion ratio ( )  and thermal conductivity 

ratio ( ) . The prescribed data values (unless otherwise stated) are 

10.0, 0.01, 4.0, 1.0, 1.0, 1.0, 1.0, 1.0Gr Da I Br P  = = = = = = = =−  and the 

variations chosen are 0 10Gr  ,  0.00000 1Da  ,  0 8I  ,  0.1 1  ,  0.1 1   -  

these values are selected from the literature (Pop and Ingham, 2001,  Shail, 1973 and 

Vafai and Kim 1990).   

The visualization of the distribution of velocity and temperature fields are 

presented via three-dimensional ( )3D  and two-dimensional ( )2D  contours and also 

profiles in one dimension ( )1D .  The purpose of considering the visualization in 3 , 2D D  

and 1D  is to understand the distribution in a more elegant way.  In plotting the one 

dimensional graphs, the y  direction profiles varies from 0 to 1 at 0.5x = .  The graphs 

portrayed in 3D  appear at the top (denoted by the letter “a”) followed by 2D  (denoted 

by letter “b”) contours.   

Figures 2a and 2b illustrate the velocity and temperature contours for the effect of 

Grashof number.  Gr  is the ratio of buoyancy force to viscous force. Increasing the 

Grashof number indicates that the buoyancy forces dominates the viscous forces, which 

results in an enhancement of thermal convection. For 0Gr = , thermal buoyancy forces 

vanish and the flow is due to purely thermal conduction and since the right wall possesses 

a greater temperature in comparison with the left wall 
( ) ( )( )1 2w w

T T , hence the 3D  

contour plot for 0Gr =  shows that the velocity is dominant at the right wall in 

comparison with the left wall.  This can also be justified by noting that the number of 
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contours are dense at the right wall in comparison with the left wall as seen in the 2D  

graph. For 1Gr = , thermal buoyancy and viscous hydrodynamic forces are equal and the 

upward direction velocity is more in comparison with the downward direction ( )3D ,  the 

number of contours are less in the lower region ( )0 0.5y   in comparison with the 

upper region ( )0.5 1y   ( )2D .  For 0Gr = , there is almost a symmetric distribution 

of velocity in the upward and downward directions ( )3D  and the number of contours are 

equal in both the upper and lower regions ( )2D .  The figure 2b indicates that there is no 

significant influence of Gr  on the temperature distribution for all values of Grashof 

number.  The temperature distribution is almost linear and symmetric in both the upper 

and lower regions.  The effect of Gr  in Fig. 2c and 2d clearly illustrates that as Gr  

increases both the velocity and temperature increase i.e. momentum is assisted as is 

thermal diffusion.  This is a classical result since as Gr  increases, physically the 

intensification in thermal convection currents energizes the flow, as noted by Gebhart et 

al. (1988).   

The enact of Darcy number on the velocity and temperature fields are displayed in 

Figs. 3a, b, c, d.  As Da  increases the velocity increases only in the lower region ( )3D .  

Physically small values of Da   implies the porous matrix is densely packed (the 

permeability is minute), therefore for 0.000001Da= , there is negligible velocity 

occurring in the region 
( )1

0
2

a
x   ( 2D  graph shows no contours in this region).  The 

velocity contours are symmetric for 0.01Da = ,  1.  However for 0.01Da = , the 

contours are flattened in comparison with 1Da = .  Furthermore, the number of contours 

in the upper region (porous medium) are less in comparison with the lower region (clear 

viscous fluid).  The impact of Darcy number does not induce any noticeable deviation 

and the contours are symmetric with respect to the horizontal symmetric line. The 

effective influence of Da  is to increase the velocity and also the temperature i.e. to 

accelerate the flow and to heat the regime. The enhancement is however more prominent 

in velocity (Fig. 3c) in comparison with the temperature (Fig. 3d).  The large Darcy 
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number implies a corresponding reduction in friction drag which results in the increase of 

velocity in the porous region in comparison with the clear viscous fluid region.   

In Figs. 4a, b, c the velocity and temperature distributions for variation of inertial 

parameter ( )I  are depicted.  The 3D  graph reveals that the velocity is not significantly 

depleted with the inertial drag resistance in the upward and downward directions.  

However the shape of the contours in the 2D  plot clearly shows that the contours are flat 

in region-1 (porous medium) in comparison with the contours in region-2 (clear viscous 

fluid).  In Figs. 4b and 4c (when magnified) one can identify that the inertial drag 

generally reduces both the velocity and temperature fields i.e. it induces flow deceleration 

and cooling in the regime. 

An increase in Brinkman number manifests in a noticeable increase in the velocity 

in both upward and downward directions (Fig. 5a).  Figures 5b and 5c when magnified 

depict that both velocity and temperature distributions are boosted by enlarging the 

Brinkman number. Physically increase in the Brinkman number is associated with 

elevation in viscous dissipation effects which causes the increase in temperature and 

hence velocity is increased through the buoyancy term.   

The effect of viscosity ratio 
( )

( )

1

2






 
=  

 
 on the flow field is displayed in Figs. 6a, 

b, c. For values of 0.1 =   
( ) ( )( )2 1

10 =  indicates that the saturated porous medium is 

ten times more viscous than the clear fluid,  0.5 =   
( ) ( )( )2 1

2 =  implies that the 

fluid in region-1 is twice as viscous in comparison with the fluid in region-2, 1 =  

( ) ( )( )2 1
 =  implies that the viscosity of the fluid in both regions are equal.  In view of 

this for 0.1 = , there is almost no flow in region-1, for 0.5 =  , the flow is slow in 

region-1 and for 1.0 = , the flow is almost equivalent in both the regions.  Figure 6a 

shows that the flow is accelerated in region-1 as   increases ( )3D ; evidently in the 2D  

graphs there are no velocity contours in region-1 and relatively few contours for 0.5 =  

and significantly more contours for 1.0 = .  Figures 6b and 6c clearly reveal that as   

increases the velocity and temperature are both suppressed in region -1. 
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The effect of inertial parameter, Brinkman number and viscosity ratio on the 

temperature distributions exhibits a similar response for 3D and 2D  to that of Grashof 

number and hence are excluded for brevity. The effect of thermal conductivity ratio 

( )

( )

2

1

K

K

 

=  
 

 is visualized in Figs. 7a, b, c, d.  The 3D  graphs do not precisely locate 

impact of  , as the velocity contours resemble each other for all values of  .  Figure 7b  

depicts that the 2D  temperature contours are weakly nonlinear for 0.1 =  in 

comparison with 0.5, 1 = . Figure 7c, d showcase that both the velocity and 

temperature decrease as   increases.  However, the effect of   is not substantial on the 

velocity field.  The impact of   and   are similar to the impact of these parameters 

described in an earlier study by Umavathi and Bég (2020).  All the results are drawn 

considering equal height and width of the duct (square duct) i.e. the aspect ratio is unity. 

 The volumetric flow rate, skin friction and average Nusselt number at the left and 

right walls of the duct have also been computed and are provided in Tables-3, 4, 5 

respectively.  The volumetric flow rate increases with higher Grashof number, Darcy 

number and Brinkman number whereas it decreases with increment in inertial parameter, 

viscosity ratio and conductivity ratio, in both regions.  These trends are largely 

attributable to the accelerating influence of thermal buoyancy (Grashof number), porous 

medium permeability (Darcy number) and viscous dissipation effect (Brinkman number) 

and the retarding influence of inertial parameter (second order Forchheimer drag), 

viscosity ratio and conductivity ratio. The skin friction at the left wall, 
dw

dy
 at 0y =  and 

at the right wall 
dw

dy
 at 1y =  for both the regions are given in Table-4.  The skin friction 

increases for large values of Grashof number, and Darcy number at both duct walls and in 

both regions. An upsurge in Brinkman number decreases the skin friction at the left wall 

and increases at the right wall for both regions and the converse behavior is induced (i.e. 

increasing skin friction at the left wall and reducing skin friction at the right wall) with an 

elevation in thermal conductivity ratio.  An enhancement in the inertial (Forchheimer) 

parameter suppresses the skin friction at both the walls for region-1 and region-2 i.e. 
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consistently results in flow retardation at the duct boundaries.  The average Nusselt 

number increases at the left wall and decreases at the right wall with greater magnitudes 

of Grashof number, Darcy number and Brinkman number for both duct regions. A rise in 

inertial parameter, viscosity ratio and conductivity ratio produce the reverse effect i.e. 

they consistently decrease the Nusselt number at the left wall and increase it at the right 

wall in both regions of the duct. 

 

 

5. Conclusions 

Motivated by applications in geothermics, thermal insulation and industrial 

energy systems, a mathematical model has been developed for the thermally developing 

convection flow through a duct of rectangular cross section occupied by composite 

porous medium i.e. a fluid layer and porous medium layer. Variable thermophysical 

properties have been considered and also viscous heating. The Darcy-Brinkman-

Forchheimer formulation has been implemented. The governing conservation equations 

have been rendered non-dimensional with appropriate boundary conditions at the 

boundaries and the fluid/porous medium interface. A finite difference method along with 

Southwell’s Successive Over Relaxation method has been applied to solve the 

transformed nonlinear boundary value problem with appropriate physical data, A grid 

(mesh) independence study has been conducted. Validation with earlier studies has also 

been included.  Extensive visualization of results has been presented for the influence of 

the key governing parameters.  The present simulations have shown that: 

(i)Increasing Grashof, Darcy and Brinkman numbers promotes the velocity while 

elevation in inertial parameter, viscosity ratio and thermal conductivity ratio demotes the 

velocity.   

(ii)The temperature is not significantly modified with any of the governing parameters 

except the thermal conductivity ratio.  

(iii) The volumetric flow rate is considerably enhanced with higher values of Grashof, 

Darcy and Brinkman numbers whereas it is suppressed with greater values of the inertial 

(Forchheimer), viscosity ratio and conductivity ratio parameters.  
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(iv) Elevation in Grashof and Darcy numbers increases the skin friction at both walls for 

the two regions whereas a rise in Brinkman number (viscous dissipation) decreases the 

skin friction at the left wall and increases it at the right wall.  

(v) For both the regions the average Nusselt number increases at the left wall and 

decreases at the right wall with a boost in Grashof, Darcy and Brinkman numbers.  The 

opposite trend is computed with an elevation in the inertial parameter, viscosity ratio and 

conductivity ratio.  

(vi) In the absence of porous matrix the results agree with those computed earlier in 

Umavathi and Bég (2020).    

 

 

The present finite difference and SOR methodology is a versatile approach in immiscible 

and porous media thermofluid dynamic analysis. However, the model has assumed the 

porous medium to be rigid i.e. non-deformable. Future studies may consider 

deformability of the porous medium which is important in thermoelastic geological 

systems (boreholes, reservoir formations) and stratified flows and will be communicated 

in the near future.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2a) 



21 

 

 
 

 

(2b) 

 
 

 (2c)                                                                         (2d)                                                                                                           



22 

 

0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.00

0.02

0.04

w

x

G r  =  0, 1, 10

 
0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

G r  =  0,  1,  10

 

10

Gr   =  0,  1

 

x



 

 
Figure 2. Velocity (2a, c) and temperature (2b, d) contours and profiles for different Gr  
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Figure 3. Velocity (3a, c) and temperature (3b, d) contours and profiles for different Da  
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(4b)                                                                                           (4c) 
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Figure 4. Velocity (4a, b) and temperature (4c) contours and profiles for different I  
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(5b)                                                                                      (5c) 
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Figure 5. Velocity (5a, b) and temperature (5c) contours and profiles for different Br  
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Figure 6. Velocity (6a, b) and temperature (6c) contours and profiles for different   
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(7c)                                                                                          (7d) 
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Figure 7. Velocity (7a, c) and temperature (7b, d) contours and profiles for different   

 

Table 1. Grid independence test 

Size of the grid Region-1 Region-2 

11 11  1.02405361854933 1.03226665365408 

51 51  1.02377669154082 1.03360202945089 

101 101  1.02378068569846 1.03364978587588 

151 151  1.02378158702730 1.03365869051294 

201 201  1.02378191542428 1.03366181226918 

 

Table 2. Comparison for Pr 1, 0.1, 1, 1, 1Br Ec P   = = = = − = = =   

  

 Present ( )1, 4Da I= =  Umavathi and Bég (2020) 

( )0, 0Da I= =  

Gr  Region-1 Region-2 Region-1 Region-2 

1 1.0003734744657 1.0003748511311 1.0003783577697 1.0003783577697 

10 1.0435527851379 1.0439754132530 1.0444145000752 1.0444145000752 

20 1.1656069078517 1.1676634911878 1.1699171414455 1.1699171414455 
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Table 3. Volumetric flow rate 

 

 Volumetric Flow Rate 

 Region-1 Region-2 

Gr    

0.0 0.000850282128275056 0.002184807922801564 

1.0 0.000850639868417865 0.002186145002066430 

10 0.001202846270591417 0.003243189801734679 

Da    

0.000001 0.000000015729500906 0.001925163167817541 

0.01 0.001202846270591417 0.003243189801734679 

1.0 0.005661138851524346 0.005826400327368434 

I    

0.0 0.001205630197327104 0.003245643130821721 

4.0 0.001202846270591417 0.003243189801734679 

8.0 0.001200081904799690 0.003240752368332471 

Br    

0.0 0.000848684101737182 0.002183737570140714 

1.0 0.001202846270591417 0.003243189801734679 

2.0 0.001562484200892853 0.004319849760333960 

    

0.1 0.003183676864360223 0.070585858124905310 

0.5 0.001466473122143211 0.006736670074203001 

1.0 0.001202846270591417 0.003243189801734679 
    

0.1 0.001780004089626783 0.007766538485297454 

0.5 0.001323353533740122 0.003870810823821523 

1.0 0.001202846270591417 0.003243189801734679 

 

 

Table 4. Skin friction 

 

 Region-1 Region-2 

 
0y

dw

dy
=

 
 
 

 
1y

dw

dy
=

 
 
 

 
0y

dw

dy
=

 
 
 

 
1y

dw

dy
=

 
 
 

 

Gr      

0.0 0.0098488530 -0.0098488530 0.0181377773 -0.0181377773 

1.0 -0.0279502789 -0.0476509280 -0.0392296607 -0.0755190287 

10 -0.3660944326 -0.3897374930 -0.5500956289 -0.5976449319 

Da      

0.000001 -0.0000989799 -0.0001031051 -0.4630514858 -0.4957047084 

0.01 -0.3660944326 -0.3897374930 -0.5500956289 -0.5976449319 

1.0 -0.5960329782 -0.6678486590 -0.6012725456 -0.6749302692 

I      
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0.0 -0.3662633391 -0.3899487199 -0.5501492862 -0.5977280479 

4.0 -0.3660944326 -0.3897374930 -0.5500956289 -0.5976449319 

8.0 -0.3659261082 -0.3895271481 -0.5500421569 -0.5975621982 

Br      

0.0 -0.3679967978 -0.3876673947 -0.5555390474 -0.5918004152 

1.0 -0.3660944326 -0.3897374930 -0.5500956289 -0.5976449319 

2.0 -0.3642119428 -0.3918830336 -0.5446850423 -0.6036978433 

      

0.1 -0.3917853506 -0.4372797012 -4.469308047 -5.3596613930 

0.5 -0.3803449323 -0.4071583198 -1.021760996 -1.1191915300 

1.0 -0.3660944326 -0.3897374930 -0.550095628 -0.5976449319 
      

0.1 -0.3633573809 -0.3929958459 -0.5279281903 -0.6259044060 

0.5 -0.3654998540 -0.3903961688 -0.5468683154 -0.6012845736 

1.0 -0.3660944326 -0.3897374930 -0.5500956289 -0.5976449319 

 

Table 5. Average Nusselt number 

 

 Region-1 Region-2 

 

0y

dT

dy
=

 
 
 

 
1y

dT

dy
=

 
 
 

 
0y

dT

dy
=

 
 
 

 
1y

dT

dy
=

 
 
 

 

Gr      

0.0 1.00006139831 0.999938601684 1.000090226778 0.999909773220 

1.0 1.00020501063 0.999580032220 1.000265040552 0.999363953084 

10 1.02378068569 0.973330685655 1.033649785875 0.961175369387 

Da      

0.000001 1.00614730373 0.993395593238 1.022956882284 0.973883029103 

0.01 1.02378068569 0.973330685655 1.033649785875 0.961175369387 

1.0 1.04355278513 0.947957792504 1.043975413253 0.947309812445 

I      

0.0 1.02381274424 0.973289716789 1.033667135415 0.961152678748 

4.0 1.02378068569 0.973330685655 1.033649785875 0.961175369387 

8.0 1.02374878867 0.973371421240 1.033632524537 0.961197932366 

Br      

0.0 0.99999999993 1.00000000006 0.999999999936 1.000000000062 

1.0 1.023780685698 0.973330685655 1.033649785875 0.961175369387 

2.0 1.04707791512 0.945628144311 1.066231455491 0.920425543160 

      

0.1 1.08311476452 0.895223522022 1.222284258805 0.673008140285 

0.5 1.03171033782 0.964043438812 1.056842244289 0.932726223093 

1.0 1.02378068569 0.973330685655 

 

1.033649785875 0.961175369387 

      

0.1 1.03381369068 0.960144280765 1.216410180045 0.683065608990 
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0.5 1.02784478571 0.968592747828 1.058360368768 0.930316538235 

1.0 1.02378068569 0.973330685655 1.033649785875 0.961175369387 
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