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ABSTRACT

Generally, in computational thermofluid dynamics, the thermophyvsical properties of flu-
ids (e.g. viscosity and thermal conductivity) are considered as constant. However, in
many applications, the variability of these properties plays a significant role in modify-
ing transport characteristics while the temperature difference in the boundary layer is
notable. These include drag reduction in heavy oil transport systems, petroleum purifi-
cation and coating manufacturing. Motivated by the last of these applications, in the
current study, a comprehensive mathematical model is developed to explore the impact of
variable viscosity and variable thermal conductivity characteristics in magnetohydrody-
namic non-Newtonian nanofluid enrobing boundary laver flow over a horizontal circular
cylinder in the presence of cross diffusion (Soret and Dufour effects) and appreciable
thermal radiative heat transfer under a static radial magnetic field. The Williamson
pseudoplastic model is deploved for rheology of the nanofluid. Buongiornos two com-
ponent model is emploved for nanoscale effects. The dimensionless nonlinear partial
differential equations have been solved by using an implicit finite difference Keller box
scheme. Fxtensive validation with earlier studies in the absence of nanoscale and vari-
able property effects is included. The influence of notable parameters like Weissenberg
number, variable viscosity, variable thermal conductivity, Soret and Dufour numbers on
heat, mass and momentum characteristics are scrutinized and visualized via graphs and
tables. The outcomes disclose that the Williamson nanofiuid velocity declines by enhane-
ing the Lorentz hydromagnetic force in the radial direction. Thermal and nanoparticle
concentration boundary layer thickness are enhanced with greater streamwise coordinate
values. An increase in Dufour number or a decrease in Soret number slightly enhances
the nanofiuid temperature and thickens the thermal boundary layer. Flow deceleration is
induced with greater viscosity parameter. Nanofluid temperature is elevated with greater
Weissenberg number and thermophoresis nanoscale parameter.

Keywords: Magnetohydrodynamics; Buongiorno nanofluid model; Williamson rheological
model; Variable viscosity: Variable thermal conductivity.



Nomenclature

a radius of the cylinder [m]
By strength of the constant magnetic field [kg s=2 A~1]
C concentration of the fluid [kg 'm._3]
C7 skin friction coeflicient
(Cp)s specific heat of fluid [J kg 1K 1]
Cs concentration susceptibility
Cw concentration at the surface [k-g m_3]
Coo ambient concentration [kg m_3]
Dg Brownian diffusion [m2 s_]']
D, Dufour number
Dt thermophoretic diffusion [mg 3_1]
Ja acceleration due to gravity [m s 2]
Gr Grashof number
k constant fluid thermal conductivity [T/V m~! K_l]
kg mean absorption coefficient [m~!]
ky fluid thermal conductivity [W’ m™! K_l]
T thermal diffusion [m2 5_1]
M, magnetohydrodynamic parameter
Ng Brownian motion parameter
N, species to thermal buoyancy ratio parameter
Np thermophoresis parameters
Nwu*  Nusselt number
Pr Prandtl number
R, Rosseland conduction-radiation parameter
Sc Schmidt number
Sh* Sherwood number
Sy Soret number
T temperature of the fluid [K]
T mean fluid temperature [K]
Ty temperature at the surface [K]
T ambient temperature [K]
u, v velocity components in =, y directions [m S_]‘]
We Weissenberg number
T,y Cartesian coordinates [m]

Greek symbols

B coefficient of nonlinear thermal expansion [K ~!]
I'  material constant

+*  wvariable viscosity parameter

&%  wvariable thermal conductivity parameter

n constant dynamic viscosity [kg m—t s !

gy dynamic viscosity [kg m~! s7]

py density of fluid [Fr-g m_?‘]

pp  density of particle [Fr-g m_3]

vy  kinematic viscosity [m2 s_l]

o electrical conductivity [S m~1]

op  Stefan Boltzmann constant [= 1.3807 x 1072%J K]
T ratio between particle and base fluid

T shear stress sensor



1. Introduction

Molecular transport in a binary mixture driven by a temperature gradient is known
as the thermo-diffusion (Soret) effect while molecular transport caused by a con-
centration gradient is known as the diffusion-thermo (Dufour) effect. Collectively,
these cross-diffusion effects are often neglected because of the order of magnitude
is smaller than effects expressed by means of Fourier and Fick laws. The Soret
effect is quite important when higher density differences exist in fluid transport.
The Dufour effect is ineffective in a mixture of various liquids although it can exert
a notable impact in gases diffusing in liquids. Soret and Dufour effects also play
a major role in a mixture of gases between very light (Hydrogen, Helium) and
medium (Nitrogen, air) molecular weights as deployed in isotope separation. Heat
transfer properties are strongly coupled with mass transfer properties when double-
diffusive (thermo-solutal) convection is considered with the influence of Soret and
Dufour numbers. Soret and Dufour effects also feature extensively in various engi-
neering technologies and industrial processes including the solidification of binary
alloys, crystal growth, contaminant transport in groundwater, pollutant movement,
chemical reactors, magmatic geophysical flows, oceanography, underground treat-
ment of nuclear waste materials and drying technologies [Beg et al. (2009a); Beg
et al. (2009b); Kumar and Sivaraj(2013); Rashad and Chamkha (2014); Raju and
Sandeep (2016); Reddy and Chamkha(2016); Ruhail et al.(2017); Muthtamilselvan
et al. (2018)]. Sivaraj et al. (2019) examined the cross-diffusion (Soret and Dufour)
effects on Casson fluid flow with variable fluid properties and observed that higher
values of Dufour effect or lower values of the Soret effect elevate Casson fluid tem-
perature. Makinde and Olanrewaju (2011a) discussed the time-dependent mixed
convective flow over a moving permeable plate with the influence of Soret and Du-
four effects and found that the velocity of the fluid decreases with an increase in
the Soret effect. Pal et al. (2016) used a numerical method to explore the Soret
and Dufour impacts on three different water-based nanofluids over a plate and de-
duced that the water nanofluid concentration decays as a result of increasing Soret
number or with decreasing Dufour number. Other studies include Beg et al. (2011)
on micropolar coating flows, Beg et al. (2019) on MHD ocean generators and very
recently Bhatti et al. (2020) on ferro-magnetic transport properties.






The wast majority of analytical boundary layer flow studies have been con-
fined to constant thermo-physical properties of the fluid. When there is a high-
temperature difference between the surface and the fluid in the boundary layer,
the thermo-physical properties of the fluid can vary notably. Compared with other
thermo-physical properties, the fluid viscosity is highly sensitive to temperature.
For instance, in lubricating liquids, heat is produced as a result of internal friction
which causes a change in the viscosity of the fluid. The absolute viscosity of water
declines by 240% due to an increase in temperature from 1007 C to 500° C. As a
result, it is logical to consider variable viscosity in order to more precisely deter-
mine transport characteristics. Varying viscosity with respect to temperature arises
in many branches of modern technology including smart coating enrobing, drawing
of plastic films, surfacial spray deposition, glass fiber production, petrolenm re-
finement, fabrication of thin film concentrating solar receivers, food processing, gas
turbine film cooling, fluid film tribology ete [Manjunatha and Gireesha(2016); Sheik-
holeslami and Rokni (2017); Astanina et al.(2019); Makinde and Chinyoka(2012);
Salahuddin et al.(2019); Kumar and Sivaraj (2013)]. Animasaun (2015) reported a
numerical study of free convective flow of Casson fluid over a plate with the cross-
diffusion, showing that higher viscosity parameter reduces the Casson fluid tem-
perature. Reddy et al. (2018) utilized a Crank Nicholson scheme to explore flnid
transport property influence on entropy generation in time-dependent viscoelas-
tic (Reiner Rivlin second grade) polymeric fluid flow and observed that a boost
in viscosity parameter enhances entropy heat generation. Mehmood et al. (2018)
exhibited the influence of variable viscosity on non-orthogonal stagnation flow of
Cu-water nanofluid solar gel coatings and found that increasing nanoparticle vol-
ume fraction decelerates flow. Hayat et al. (2016) analytically investigated the flow
of mixed convective time-dependent over an exponential surface in the presence of
temperature-dependent viscosity.

Non-Newtonian fluids are fluids which have viscosity shear-dependence in ad-
dition to shear-thinning /shear-thickening characteristics. These fluids have numer-
ous industrial applications, including petroleum production, bionic hydrogels in
robotics, chemical process industries, plastic polymers, ferrofluid lubricants, pack-
aging materials for food preservation, cosmetic products, and manufacture of op-
tical fibers. Non-Newtonian fluids have complex rheological characteristics, so the
flow properties of such fluids cannot be elucidated by the Navier-Stokes equations
which is based on the elementary Newtonian viscosity law. As a result, a diverse
range of constitutive models including the Maxwell upper convected (UCM) fluid,
Williamson fluid, Johnson-Segalman fluid, Cross fluid, FENE-P fluid, Walters B-
fluid, PPT fluid, Casson fluid, Eringen micropolar fluid and Carreau fluid mod-
els have been proposed by various researchers. Transport characteristics of various
non-Newtonian fluid models were investigated by several researchers [Gaffar et al.



(2015); Makinde et al. (2011b); Khan et al. (2019); Nadeem et al. (2017), Latiff
et al. (2016), Norouzi et al. (2018) and Basha et al. (2020)]. The Williamson fluid
model is a popular industrial rheological model developed originally for analyzing
molten plastic molding (Williamson 1929). This fluid model expresses the exact
hehavior of pseudoplastic fluids which differ from ideal plastics in that there is no
real yield value. Due to its shear-thinning nature, the Williamson fluid model can
be used to analyze many other technological and natural liquids including blood,
suspensions, magnetic polymers etc.

Nanofluids, which are suspensions of base fluids engineered to contain nanometer
sized metallic or carbon-based particles (Das et al. 2007) have proved very popular
in recent yvears due to their superior thermal conductivity properties. Recently, many
researchers have theoretically and experimentally explored the heat transfer char-
acteristics of various nanoparticles for several industrial processes, manufacturing
processes, and renewable energy applications| Mansoury et al. 2019; Ma et al. 2019;
Basha et al. 2019]. Nanofluids have also been shown with certain volume fractions
to exhibit shear-thinning behaviour and other rheological characteristies. Several
careful experimental studies have confirmed the strong non-Newtonian properties
of nanofluids in a diverse array of applications ranging from thermal engineering
systems (Anoop et al. 2009, Chang et al. 2019) to petroleum drilling fluids (Beg
et al. (2018). Laboratory testing of nanofluid thermal enhancement features with
rheological behaviour has also been accompanied with considerable numerieal in-
vestigation e.g. Hussanan et al. (2017)., Kang et al. (2014). Acharya et al. (2019)
addressed the multi-slip impact on Williamson nanofluid flow from a sheet, not-
ing that the rate of heat transfer declines with increment in velocity and thermal
slips. Basha et al. (2020) numerically explored the variable fluid property effects
on Williamson nanofluid flow over three different geometries with wall slip mecha-
nisms. Subbarayudu et al. (2020) used the Williamson nanofluid model to simulate
blood flow over a wedge surface with radiation heat transfer, indicating that higher
values of Weissenberg number (ratio of elastic to viscous forces) accentuates blood
temperature.

An inspection of the literature has revealed that generally computational studies
of external boundary layer flows of rheological nanotluids have featured only ordi-
nary differential equation boundary value problems i.e. only a single space variable
has been considered. Furthermore, most studies have also ignored thermophysical
property variation and cross diffusion effects. The objective of the current work is
therefore to present a more generalized two-dimensional approach to axisymmetric
rheological nanofluid boundary layer flow from a cylindrical body with thermal ra-
diation. The model developed also features a Williamson-Buongiorno nanofluid and
includes magnetohydrodynamic, Soret and Dufour effects. Rosselands diffusion flux
approximation is utilized for radiative heat transfer. These constitute the novelties



of the present work. The Williamson nanofluid viscosity and thermal conductivity
are considered as variable due to temperature difference. The steady-state conser-
vation equations are transformed, rendered non-dimensional and then solved with
appropriate wall and free stream conditions by means of unconditionally stable
implicit finite difference Keller box scheme. Extensive contour plots are drawn to
manifest the significance of diverse multi-physical parameters on the fluid transport
characteristics. Verification of the accuracy of the Keller box method with earlier
published works is presented. The simulations are relevant to high-temperature mag-
netic nano-polymer coating flow systems (Beg et al. 2019, Dhumal et al. 2015, Hong
et al. 2007, Sansom et al. 2013, Sheparovych et al. 2006, Vshivkov and Rusinova,
2017).

2. Mathematical Formulation

The schematic view of geometry for the present problem is shown in Fig. 1 in
a two-dimensional Cartesian coordinate system (x,y). The viscosity and thermal
conductivity variation in natural convective time independent flow of electrically
conducting Williamson nanofluid (magnetic nano-polymer) over a circular eylinder
is considered. A magnetic field, By, which is assumed to be uniform and static and
is applied radially. The coordinates = and y are taken along the circumference and
normal direction of the cylinder, respectively, and a is the radius of the cylinder.
Changes in density for the buoyancy terms are determined by employing the Boussi-
nesq approximation. The constant temperature (T ) and concentration (Cy) of
the wall are presumed to be greater than the ambient temperature (T, ) and ambi-
ent concentration (', ), respectively. The Buongiorno (two phase) nanofluid model
(Das et al. 2007) is employed to formulate the momentum, energy and nano-particle
concentration equations with the following assumptions.

e Natural convection, laminar, time independent, incompressible flow of
Williamson nanofluid is considered.

e The flow equation is accounting the body force.

e The induced magnetic field strength is smaller compared to the external
magnetic field and hence it is neglected (small magnetic Reynolds number).

e The cireular cylinder is isothermal, iso-solutal and electrically insulated.

e Soret and Dufour effects are taken into consideration.

e Hall current, ion slip and Maxwell displacement currents are neglected.

Based on the aforesaid considerations, the transport equations for the present prob-
lem in Cartesian coordinates (x,y) are [Beg et al. (2009b); Animasaun (2015);
Sivaraj et al. (2019) and Acharya et al. (2019)] can be shown to take the form:
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Fig. 1. Physical configuration of the problem.

du N v 0 |
o Ty (1)
; 2
Jow ., ou_ 10 {# (T) %} n Iv2 [E {[# (T) @] %H _8,
dr Oy psOy Oy pr 9y dy | Oy Pr
. - . T
+9a[(1 = Coe) 9181 (T = Toe) = (p = 1) (C = Coc)Jsin () (2)
O 0T L 0 9T (p, ¢ Dr ary?
dr Oy (pCp)s Oy oy | Ty oy T\ By
1 dg, Ky 8C
- ey pp—L (3)
(PCo)s Dy " (Cp)sCs By?
ac  ac 0:C Dy 0°T Kp 0°T
R Pl e Mt S 1
“or Ty T UBe T o BT, 0 @

We further note that in the present formulation, the modified shear term in Eqn.
(2) is based on the extra stress tensor for a Williamson fluid (1929) which is defined
as X = [foo + (10 + oo ) (1 — 7*A) 1Ay, in which we consider p, = 0 and 7¥A < 1,

2
with the shear stress sensor given by 7* = w., A= gradV+[g‘radV]T.



The houndary conditions imposed are as follows:

u=0 v=0 T=Ty, C=Cy at y=0, (5)
u=0 T—=T, C—=C, as y — 00. 7
whereyf:%fanda—:%?.

Viscosity changes due to temperature can be expressed as follows[Kumar and
Sivaraj(2013)]

P T
i 1-9(T-Tx), (6)

According to Sivaraj et al. (2019), the thermal conductivity may be considered
as a linear function of temperature

F_ =14+46(T-T.), (7)
kg
The radiative heat flux (g,) which is unidirectional can be written as:
_ _Aop (0T _ 160gT5 (OT (%)
r="3% \oy )T 3k, \Oy)°

Let us infroduce a dimensional stream function, 1, as defined by the famous

Cauchy-Riemann equations, u = a{w[{ 1) &y = _%{;H])! in addition to suitable

non-similarity variables as follows:

§=2. = (G (Y), § = /Gy, } o)
T=Te+0(Tw—Ty),C=Co+6(Cw —Co).

By implementing the above variables, Eqns. (2)-(4) are transformed to the fol-
lowing non-similar form in a (£, %) coordinate system:
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the transformed boundary conditions emerge as:

f=f=0 f=¢=1 at n =10, (13)
=0, #—0, ¢—=+0 asn— oco.
where Gr = 2 “poe(1=Coe ﬁ“ﬁlm‘ —Te) , We DII—@QGLH , Pr= %, M, =
ga® By N. (Pp—ps1(Cw—Cs) v =y (Tw —Tw), Ng = TDR(Cw —Cm],

(Gr) 2pppp? T T T (1-Cx)piBi(Tw—Tx)?
ey TDr(Tw=Te) 5
Ry = o= Nr = Tyﬂtm 6" = 8 (Tw —

Sr = i!Tm(C-'w—Cm} and Se = 5.

U}'
__ DKr(Cw—Ca)
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At the wall, dimensional forms of skin friction factor (Cy), heat transfer rate
(Nu*) and mass transfer rate (Sh*) are expressed as follows:

* — 0 Gy * _a'}w
Cr=7, Nu' —— 29w gp=_ . 14
T A S T, T Dp(Co—Coy Y

— a7
dw =k () |5 -+ (@)ym0,
— ac
Ju‘ - DB [E} y:ﬂ-
by employing 7, g, and J,, in Equ. 14, then Equ. 14 can be written as

2
Cp = p(T) {%MQ(S;)] :
y=0

N —a(k(M)[3E] _ +ar), ) (15)
- Fc_f{T —Tae) bl
. %
Sh* = g=y.

In non-dimensional, skin friction (C}’), heat transfer rate (Nu™) and mass trans-

fer rate (Sh*) can be written as

C; (Gr3/) = (1—~°0) 1" (0) ¢ (1+ €% 1" (0))
Nu (Gr=1/4) = — ((1 L 540) + W) # (0), (16)
Sh* (Gr=1/4) = —¢/ (0).

2

where, C" = Yo
pive®

3. Numerical method

Keller box method (KBM) which is introduced by Keller (1971). This method is
initially applied to solve parabolic problems. Later, this scheme is applied to solve
various problems in laminar and turbulent boundary layer flows. The notable merits
of this scheme are:

10



This scheme is well-organized, simple and flexible to program.

In this scheme, there is no need to formulate any conditions to compute
very close to the point of boundary layer separation.

The variations in streamwise coordinate (£-direction) are rapidly admitted.

The scheme has second-order acenracy and unconditionally stable.

The non-similar solutions are obtained for boundary layer flow problems.

The similarity solution merely depends on the free stream velocity for the hound-
ary layer equations. But the boundary layers may arise from various factors like the
variation in wall temperature, free-stream velocity, suction/injection of fluid at the
wall, and buoyancy effect. The non-similar solution ecan account these effects in
the boundary layer. In addition, there is no clarity for ignoring certain streamwise
derivatives in the similarity solution when converting the governing equations into
dimensionless form. This dilutes the accuracy of the solutions. In a non-similar so-
lution, only the auxiliary equations are removed from the fluid transport equations.
Thus the original fluid transport equations with boundary conditions remain same.
Hence, it is expected that the non-similar solutions can provide more accurate re-
sults than the local-similarity solution. The procedure to obtain the solution by
using the Keller box method is given below

The n'* order dimensionless equations are transformed into n first order
dimensionless equations.

The transformed n first order equations are discretized by employing central
differences approach.

The algebraic equations are linearized by means of Newton’s method.

The results are obtained by solution of the block matrix system (block
tri-diagonal elimination technique).

Step 1:

We consider a new set of variables u (£, 1), v (£, ), s (§,m),£(£1),9 (&n),p(&n) to
transform the n'" order dimensionless equations into the first order dimensionless
equations, which depends on £ and 7.

The new set of variables are assumed as

f:f':f!:'u'! u!:v:9:5.‘3’:??:'#':959;:?: {17j

11



By implementing the above variables, Egs. (10)-(12) are transformed to

(1 —~"s)v" +2Wef (1 —v"s)v'v — W’e{’y*{vjzt — 5 vs

(18)
Ou af
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SC[MNB +dp+ 5.t =g [ugl -] (20)
with the boundary conditions
n=0: u=0, f=0 s=1, g=1 (21)
n—o0: u=0 s=0  g=0
Step 2:
The net point on the (£, ) plane is expressed using the following relations:
=0, =611k, i=123.1 (22)

where k; is A¢ spacing at the i"* node and h; is An spacing at j* node. The
following discretizations are applied:

/)iy ko T \On/;y _

i—1 i
gt 2 0 =00

At the midpoint ({i, ?}j_%) between the segments (fi: 7?3‘—1) ({i, ??j) the following
central difference approximations are deployed:

; o uptuiy (f; —15-1)
ff=u= w1 = 5 = 7y \ (24)
vl + ol ul —ul
u':b::“v’“_lz ] i 1:(3 g 1} (25)
i 2 h;

12



13

pi+pi o (gt —giq)
g =p=p_y =g = (27)
3

First order PDEs (16) to (18) are approximated by centering at ({““ nj__)
from the rectangle points (P;, P3, P53, and Py) giving the following equations:

(55025 i (552)
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. (t; 1f2vj—1f2) +(1+a) (f;_]ﬁvj. 1;2)_(14"-’*) (‘”‘j‘—ug)
= (Ma)u}_y o + 0w} 1112; P U?“LB(SJ 1/2 Nr-g;_”z) \(25)
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n-1/2 sin(gm~ 1?2
where o = & —, B = ;f_m, )
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The boundary conditions become

fi:'EE:D:5321593215'{13:0,53:0,‘@'3{: {31)
Step 3:
The unknowns (f, uj, vj. g5, p}. s, t) are calculated with help of follow-
ing knowns f_;“_l, u;_l,v}_l,g;_l, p;_],.s;_],t;_l where 0 < j < J and
(f3: 45, V5 95> Ps 535 £5) = (55 ug5 05, 95, Pjs 850 1)

The set of central difference equations can be expressed as

Uyt Uy _ fj _fj—l
2 h;

U; + U5 Uj; — Uj_q
= ; (33)
2 h;

t;+1t; 4 S§;— 84
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Here [El]J 12 [E;_,-]j 1/2 and [Eg]j1 1/2 are the known quantities

Linearization and block elimination processes of KBM scheme have provided in
the appendix section.

In the present problem, the maximum values of £ and 5 considered as 1 and
30, respectively. The difference between the spatial nodes are taken as 0.05 in both
directions for convergence of the solution. It is noteworthy to mention that the
psendoplastic nanofluid boundary layer regime is meshed with a (20 x 600) grid.
To increase the accuracy of the present solution the convergence criterion has been
fixed as 107% at all grid points. Comparison results of Nu* for various values of
streamwise coordinate, £, are provided in Table 1. It is evident that the current
Keller box solutions achieve a very good agreement with the results obtained by
Merkin (1977), Yih (2000) and Prasad et al. (2019) when nanoscale and other ef-
fects are neglected to reduce the current boundary value problem to exactly that
considered by these earlier studies with exactly the same data preseribed. It is wit-
nessed that the obtained Keller box code is therefore justifiably very high. Tables 2,
3 and 4 documents the Keller box solutions for skin friction factor, rates of heat and
mass transfer with diverse values in key parameters. These tables provide a useful
benchmark for future researchers to validate alternative numerical computations
with supplementary multi-physical effects against. Fig. 2 illustrates the Keller hox
numerical methodology, boundary layer mesh and Keller box discretization process.
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4. Results and discussion

The current section is aimed to visualize the influence of emerging parameters on
velocity (f'), temperature (#), concentration (¢), skin friction factor (C}), wall heat
transfer rate (Nu*) and wall nanoparticle mass transfer rate (Sh*). The parame-
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Table 1. Comparison result of Nu for various values of £ with Pr=0.71, R, — oo, M;=0.5, Se=0.6,

We=N,=y*=6*=Np=Np=Dy=5,=0

3 Nu* (Gr=1/%) = —#' (£,0)
Merkin(1977) | Yih(2000) | Prasad et al.(2019) | Present
0.0 0.4212 0.4214 0.4211 0.4211
0.2 0.4204 0.4207 0.4206 0.4206
0.4 0.4182 0.4184 0.4185 0.4185
0.6 0.4145 0.4147 0.4146 0.4146
0.3 0.4093 0.4096 0.4095 0.4095
1.0 0.4025 0.4030 0.4027 0.4027
1.2 0.3942 0.3950 0.3947 0.3947
1.4 0.3843 0.3854 0.3852 0.3852
1.6 0.3727 0.3740 0.3735 0.3735
1.8 0.3594 0.3608 0.3598 0.3598
2.0 0.3443 0.3457 0.3448 0.3443
2.2 0.3270 0.3283 0.3280 0.3280
24 0.3073 0.3086 0.3076 0.3076
2.6 0.2847 0.2860 0.2852 0.2852
2.3 0.2581 0.2595 0.2592 0.2592
3.0 0.2252 0.2267 0.2255 0.2255
T 0.1963 0.1962 0.1961 0.1961
wslk ¥=02 Westll, 8 =05 N =05, | h 805, Wesl, M_05 N =05,
L Pr=i71, R =05 N =N =03, Pren71, R =05, N =N =03
) D =06, 5=0.1, 5c=0.3, {=1 D =0.6, § =1, Se=0.3, £=1
s \‘\\ M =00,05 10,15 ¥ =00, 02 04,06

Fig. 5. ¢ for uplifting values of M.

Fig. 6. f' for uplifiing values of v*.

ters varied and their ranges are: Weissenberg number (We = 0,0.5, 1, 1.5), magnetic
field (M, = 0.0,0.5,1.0,1.5), variable viscosity parameter (" = 0.0,0.2,0.4,0.6),
variable thermal conductivity parameter (4* = 0.0,0.5,1.0,1.5), Brownian mo-
tion (Ngp = 0.2,0.4,0.6,0.8), thermophoresis (Nt = 0.01,0.1,0.3,0.5), radiation

17



Table 2. Impacts of v* and 4* on local skin friction coefficient (C’J‘;{Gr‘s:"i})._ dimensionless local
rate of heat transfer (Nu* (Gr— 134)) and dimensionless local rate of mass transfer(Sh*(G‘-r‘1»“)}
for various values of £

18

Physical | Values Physical £ CPU

Parameters Quantities 0 0.5 | 1.5 2 2.5 | time(Sec.)
Cr(Gr=3/Y) 0 [ 02284 [ 0.4048 | 0.4779 | 0.4482 | 0.2708

0 | Nu*(Gr— V%) 105761 | 0.5500 | 0.5271 | 0.4757 | 0.4055 | 0.3013 | 8.365484
ShH(Gr=17%) [ 0.1523 | 0.1479 | 0.1395 | 0.1261 | 0.1078 | 0.0804
CHGr™Y) 0 | 0.2006 | 0.3612 | 0.4178 | 0.4047 | 0.2421

0.2 | Nu*(Gr= %) | 0.5839 | 0.5645 | 0.5338 | 0.4802 | 0.4118 | 0.3056 | 8.061629
Sh*(Gr=1%) ] 0.1542 | 0.1492 | 0.1411 | 0.1272 | 0.1093 | 0.0814
CHGr) 0 | 0.1667 | 0.3059 | 0.3479 | 0.3433 | 0.2156

0.4 | Nu*(Gr=Y%) ] 0.5933 | 0.5701 | 0.5414 | 0.4850 | 0.4186 | 0.3118 | 9.043056
Sh*(Gr=1/%) ] 0.1564 | 0.1504 | 0.1430 | 0.1283 | 0.1109 | 0.0830
CcHGrY) 0 | 0.1466 | 0.2719 | 0.3077 | 0.3046 | 0.1996

0.6 | Nu*(Gr=1%) | 05987 | 0.5728 | 0.5455 | 0.4877 | 0.4221 | 0.3158 | 12.654024
Sh*(Gr=1%) [ 0.1577 | 0.1510 | 0.1439 | 0.1289 | 0.1118 | 0.0839
G 0 | 0.1962 | 0.3529 | 0.4081 | 0.3948 | 0.2354

0 | Nus(Gr1/%) | 0.5469 | 0.5286 | 0.4096 | 0.4490 | 0.3844 | 0.2839 | 8.193623
ShH(Gr=17%) [ 0.1400 | 0.1355 | 0.1281 | 0.1154 | 0.0989 | 0.0735
C(Gr 1) 0 [0.2006 | 0.3612 | 0.4178 | 0.4047 | 0.2421

§* 0.5 | Nu*(Gr—17%) 1 0.5839 | 0.5645 | 0.5338 | 0.4802 | 0.4118 | 0.3056 | 8.239927
Sh*(Gr=17%) [ 0.1542 | 0.1492 | 0.1411 | 0.1272 | 0.1093 | 0.0814
C(Gr31) 0 [0.2045 | 0.3683 | 0.4261 | 0.4132 | 0.2480

L0 [ Nu*(Gr-T7%) [ 0.6198 | 0.5993 | 0.5660 | 0.5104 | 0.4384 | 0.3268 | £.009305
Sh*(Gr=17%) [ 0.1657 | 0.1603 | 0.1518 | 0.1368 | 0.1178 | 0.0880
Cr(Gr3/%) 0 [0.2077 [ 0.3744 | 0.4333 | 0.4206 | 0.2532

L5 | Nu*(Gr='7%) | 0.6546 | 0.6332 | 0.5991 | 0.5398 | 0.4642 | 0.3474 | 9.210965
Sh*(Gr=1*%) 1 0.1753 | 0.1695 | 0.1606 | 0.1448 | 0.1249 | 0.0935

(R, =0.1,0.3,0.5,0.8), Soret number (S, = 0.4,0.2,0.1,0.075), and Dufour number
(D, =0.15,0.3,0.6,0.8). All data utilized in the simulations is based on practically
viable nano-materials processing systems and extracted from Das et al. (2007) and
Jaluria (2013). Figures 3-22 depict the variation in momentum, heat and nanopar-
ticle concentration characteristics and consistently smooth profiles are achieved in
the free stream, testifying to the prescription of an adequately larger infinity bound-
ary condition. A further novelty in the current study is that Figs. 23-25 have been
included to visualize the 3-D contour distributions and Figs. 26-28 have been pro-
vided to illustrate the streamline, isothermal and iso-concentration distributions.

This colour contoured visnalization has invariably been omitted in the majority of
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Keller box numerical studies.

The impact of magnetic field (M,) on velocity (f'), temperature (/) and
nanoparticle concentration (¢) are depicted in Figs. 3-5. In an electrically con-
ducting fluid (e.g. magnetic nano-polymer), the magnetic field (By) applied in the
transverse direction creates an orthogonal hydromagnetic retarding force (Lorentz
force) which resists the fluid motion. The magnitude of Lorentz force increases with
magnetic field, By, which acts to significantly reduce the velocity of nanofiuid. Mo-
mentum (hydrodynamic) related boundary layer thickness is therefore enhanced hy
employing stronger magnetic field. The implication is that regulation in coating flow
of the magnetic nano-polymer is achieved successfully via a boost in radial mag-
netic field which permits more homogenous distribution of the nano-polymer over
the cylinder periphery. The classical velocity overshoot arising in close proximity to
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the wall (cylinder surface) is also clearly captured and is progressively suppressed
with greater values of M,. Maximum acceleration and thinnest boundary layer
thickness corresponds to the electrically non-conducting case ( M, = 0). Although
a slight switch in the effect of magnetic field on velocity distribution is generated
further from the eylinder surface (approaching the free stream), the dominant effect
is retardation. However back flow is never instigated since velocities are consistently
positive indicating that even at relatively strong magnetic field (M, = 1.5), flow
separation is avoided. The evolutions in temperature and nano-particle concentra-
tion with magnetic field are displayed in Figs. 4 and 5, respectively. Strengthening
the magnetic field results in enhanced Lorentz force which necessitates greater work
expenditure by the nanoflnid in dragging against the action of the magnetic field.
This excess work is dissipated as thermal energy which heats the coating regime
and elevates thermal boundary layer thickness. A consistently monotonic decay




in temperatures from the cylinder surface to the free stream is computed (Fig.
4). Simultaneously the nanoparticle diffusion is assisted in the boundary layer i.e.
nanoparticle concentration magnitudes (Fig. 5) are boosted as is the nanoparticle
concentration boundary layer thickness. Magnetic field therefore has the dual bene-
fit of flow control and mobilization of more homogenous migration of nanoparticles;
however, it leads to temperature elevation.

The response in velocity distribution to variable viscosity parameter (v*) is given
in Fig. 6. 4" takes positive values to characterize the water, crude oil, and benzene
whereas it takes negative values to represent air, methane, and helium. It is ap-
parent that increasing the viscosity of Williamson fluid initially slightly increases
the velocity near the cylinder surface (wall); however the dominant effect is a de-
celeration which extends through the majority of the boundary layer region and is
attributable to the reduction in momentum diffusion with larger viscosity. A simi-
lar response has been reported hy Kafoussias and Williams (1995) and Nasrin and
Alim (2009), among many other studies. Figures 7 and 8 exhibit the influence of
variable thermal conductivity parameter 4* on nanofluid velocity and temperature.
It is evident from these figures that both characteristics manifest an elevation with
higher values of #*. This parameter features in the augmented thermal diffusion
term, 1/Pr (1 + §*#)8" in the energy eqn. (11) and accentuates heat transfer inside
the nanofluid. The greater thermal conductivity of the nanofluid intensifies thermal
conduction which assists also in thermal diffusion and momentum diffusion. This
results in a decrease in hydrodynamic boundary layer thickness and accentuation in
thermal boundary layer thickness. Evidently the inclusion of thermal conductivity
variation produces results which more accurately predict the velocity and temper-
ature magnitudes. Absence of this parameter (§*=0) leads to an under-prediction
in both quantities and higher momentum and lower thermal boundary layer thick-
ness estimates, which are undesirable in manufacturing operations and can incur
expenses, as noted by Jaluria (2013).

Figures 9 and 10 depict the influence of Rossleand conduction-radiation pa-
rameter (R,) on fluid velocity and temperature profiles, respectively. As with the
thermal conductivity variation parameter, 6%, the Rossleand conduction-radiation
parameter R, = %5— is also an additional feature in the thermal diffusion term,
(4/3Pr R,) 0" &lthough it is not nonlinear. Although the parameter is a denomi-
nator, the contribution is still that of thermal conduction heat transfer relative to
radiative heat transfer. As R, increased, thermal conduction becomes progressively
larger (for Ra < 1 it always dominates thermal radiation) and this causes the flow to
declines (fig. 8). For smaller values of R, thermal radiative heat transfer contributes
more and this energizes the nanofluid leading to higher temperatures and a greater
thermal boundary layer thickness (fig. 9). It is also noteworthy that the Rosseland

model assumes that radiative equilibrium is sustained in the simulations and the
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nanofluid is gray and furthermore that the intensity is the black-body intensity at
the nanofluid temperature. Implicit in this flux approximation is the requirement
that the optical thickness exceeds 3 for reasonable accuracy as noted by Modest
(1993) and later Beg et al. (2016). Optical thickness and absorption coefficient
are dimensionless quantifications of how much a given medium (nanofluid) retards
the passage of thermal radiation. Radiative intensity falls by an exponential factor
when optical thickness is unity. Physically optical thickness will be a function of
absorption coefficient (ke ) , medium density and propagation distance. Although the
flux model is much simpler than other algebraic approximations (e.g. P1 Tranggot
model), it does predict fairly accurately the influence of radiative flux.

Figure 11 illustrates the effect of thermophoresis (Nt) on nanofluid tempera-
ture distribution. In the phenomenon of thermophoresis, the heated nanoparticles
are pushed from a hot surface to a cold area. Thermophoretic body force therefore
mobilizes nanoparticle migration from the cylinder surface, and also encourages
heat diffusion into the boundary layer away from the wall. This results in an ele-
vation in nanofluid temperature and a concomitant increase in thermal boundary
layer thickness. A similar pattern has been reported in many other studies including
Prasad et al. (2019) and Raju and Sandeep (2016). The influence of thermophore-
sis on nanoparticle concentration profiles is illustrated in Fig.12. It is confirmed
that thermophoretic body force promotes the transport of nanoparticles away from
the heated albeit isothermal cylinder wall into the nanofluid boundary layer regime,
and therefore enhances nanoparticle concentration magnitudes. The amplification in
magnitudes is also considerably greater than temperatures since thermophoresis is
essentially a species diffusion phenomenon which affects thermal field, as simulated
in the quadratic temperature derivative term, NT(H’}Q in the thermal boundary
layer eqn. (11). A simultaneous enhancement in nanoparticle concentration bound-
ary layer thickness is also induced.

The effect of Brownian motion parameter, (Ng) on Williamson nanofluid tem-
perature is exhibited in Fig.13. It is known that larger values of Brownian motion
parameter, N g. (which in the Buongiorno model correspond to smaller nanoparticle
sizes and a reduction in ballistic collisions) diminish the nanoparticle concentration
i.e. there is a depletion in the volume fraction. In the Buongiorno model, Np arises
in a coupled thermal-species diffusion term, also in the energy equ. (11), viz Np#'¢’.
When this term is magnified, the species diffusion is reduced. A limitation of this
model is that actual nanoparticle types e.g. metallic oxides or carbon silicates can-
not be simulated since a framework for their properties cannot be accommodated.
This is achievable in the Tiwari-Das model, as noted by Beg et al. (2019b). However,
the Tiwari-Das model does not feature a mechanism for species diffusion since it
omits a concentration balance equation. A possible remedy to this dilemma is the
fusion of both models and this is currently under investigation.
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Figure 14 exhibits the modification in velocity profiles with Weissenberg rheo-
logical number. It is known that Weissenberg number is the ratio between the fluid
stress relaxation time and specific process time. This parameter is also a measure of
the elastic foree in a fluid to the viscous hydrodynamic force. It can also be regarded
as the product of shear rate and relaxation time and is generally obtained via scaling
the evolution of the stress, based on a careful selection of shear or elongation rate,
and the length-scale. Weissenberg number features strongly in the momentum eqn.
(10) in the terms, +2Wef (1 —~*8) f"' f"' — Vv"e{‘f*{f”)gr‘?’. A weak flow decelera-
tion is induced near the cylinder surface whereas further into the boundary layer,
transverse to the cylinder, a weak acceleration is observed. The pseudoplastic fluid
experiences strong tensile stresses near the wall which prohibit momentum diffusion.
These forces are relaxed with greater distance form the wall (cylinder surface) and
manifest in a slight enhancement in velocities. This is the dominant effect of greater
Weissenberg number which diminishes viscous effects and results in a thinning in
the pseudoplastic nanofluid boundary layer thickness. These findings are corrobo-
rated with other investigations including Malik et al. (2016). Figure 15 shows the
influence of Weissenberg number on temperature profiles. Higher values of Weis-
senberg number enhance the fluid relaxation time, as a result, momentum diffusion

is encouraged. Although We does not feature in the energy eqn. (11), the velocity-
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and f#' result in an indirect effect of elasticity on the temperature field. This re-

temperature coupling terms which include the convective terms, £ [

sults in a weak elevation in nanofluid temperature increases with an increase in
Weissenberg nimber and a slight thickening in thermal boundary layer external to
the cylinder.
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Figures 16-18 are portrayed to display the influence of Soret and Dufour numbers
on nanofluid velocity, temperature, and nanoparticle concentration distributions, re-
spectively. Williamson nanofluid velocity and temperature distributions (figs. 16, 17)
consistently increase with inerement in Dufour number and simultaneous decrement
in Soret number. The Dufour diffuso-thermal concentration gradient term, ID,¢" in
the energy eqn. (11) clearly assists in thermal diffusion whereas the Soret thermo-
diffusion term, S-0” in the nanoparticle concentration eqn. (12) opposes thermal
diffusion. Effectively thermal boundary layer thickness is boosted with greater Du
values and depleted with greater Sr values. The modification in velocity is via
coupling of the energy and nanoparticle concentration equations to the momen-
tum eqn. (10) in numerous terms, but notably the dual buoyancy (thermo-solutal)

term, S

ra (# — N,¢). The contrary behaviour is computed in Fig. 18, wherein
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an inerease in Dufour number and reduction in Soret number is observed to de-
press nanoparticle concentrations. Stronger Soret effect (thermo-diffusion) is there-
fore assistive to migration of nanoparticles whereas stronger Dufour effect (diffuso-
thermal) is inhibitive.

Figures 19 and 20 show the impact of Brownian motion parameter on Nusselt
and Sherwood numbers at the cylinder surface. A substantial suppression in Nusselt
number is induced with increasing values of Brownian motion but the reverse be-
havior is exhibited (i.e. a strong elevation) in Sherwood numbers. In both plots, the
maximum rates of heat and mass transfer at the wall are computed at £= 0 (lower
stagnation point) and progressively decrease with increasing streamwise coordinate,
£. Greater Brownian motion clearly encourages heating in the nanofluid (elevation
in temperatures, as shown in earlier figures) which draws heat away from the cylin-
der surface leading to a plummet in Nusselt number. Conversely higher Brownian
motion effect (smaller nanoparticles) produces a reduction in nanoparticle concen-
tration values in the nanofluid such that greater translocation of nanoparticles to
the boundary (cylinder surface) is mobilized, which explains the considerably mag-
nification in Sherwood number.

Figure 21 illustrates the influence of Soret and Dufour numbers on the skin fric-
tion factor i.e. dimensionless shear stress at the cylinder surface. Skin friction factor
vanishes at £=0, a characteristic of stagnation point flow i.e. the flow is brought
to rest here and no shear stress can be generated. With increasing streamwise co-
ordinate, £, there is generally a strong monotonic increase in shear stress which is
associated with boundary layer growth along the eylinder periphery, as eloquently
noted by Glauert and Lighthill (1955) based on an exceptionally rigorous asymp-
totic analysis. However, there is a terminal point for the elevation in skin friction
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which is a result of the eventual decay in momentum along the cylinder surface
under fixed species and thermal buoyancy forces. Beyond this critical point, the
skin friction begins to descend. Figure 22 displays the influence of Soret and Dufour
numbers on the Sherwood number. An increase in Dufour number (and concomi-
tant decrease in Soret number) are observed to markedly increase the rate of mass
transfer. A consistently monotonic decay in Sherwood number is computed i.e. the
maximum nanoparticle mass transfer to the cylinder surface arises at the stagnation
point and progressively diminishes with increasing streamwise coordinate, £. This
behaviour is clearly only computable with two-dimensional axisymmetric models (£,
1) which are easily simulated with the Keller-box scheme. The equations (10)-(12)
at the stagnation point, £ ~ 0, clearly contract to ordinary differential equations,
implying that single-spatial variable models (5) lack the physical rigor for realistic
simulations of axisymmetric heat transfer from curved bodies.

Figures 23-25 visualize the impacts of magnetic field, and thermophoresis on
the skin-friction factor and heat transfer rate through 3D and contour plots, re-
spectively. It is to be noted that the numerical domain is meshed with 25 x 25
grid for these visualizations. Figure 23 reveals that skin friction factor is strongly
angmented with increasing streamwise coordinate (£), again to a critical point (elab-
orated earlier) at which it peaks ( £ ~ 2) thereafter descending steadily with further
streamwise distance, as characterized by the parabolic-type topology. Figs. 24 and
25, show that Nusselt number is greatly suppressed with higher M, and Ny values
i.e. heat transfer rate to the wall is a decreasing function of magnetic field and
thermophoresis. This corroborates the earlier computations which have shown that
temperature is elevated with stronger magnetic field and thermophoretic body force.
Since the pseudoplastic nanofluid is heated with both effects, there is an associated
decrement in heat transfer to the cylinder surface (boundary) i.e. lower Nusselt
numbers. It is noticed from these figures that the lower Lorentz force and lower
thermophoresis have a high rate of heat transfer at the stream coordinate ( £ ~ 1).
Furthermore, increasing values of the Lorentz force and thermophoresis promotes
pseudoplastic nanofluid temperature which leads to reduce heat transfer rate.

Figures 26-28 illustrate the streamlines, isothermal and iso-concentration dis-
tributions for various values of streamwise coordinate, £ , magnetic field, M, and
buoyancy ratio parameter, N,. Fig. 26 shows that the streamlines are denser near
the wall (cylinder boundary). It is to be noted that increasing the streamwise co-
ordinate, £ , from 0.5 to 1.5 serves to intensify the streamlines density whereas a
subsequent increment in this coordinate from 1.5 to 2.5, manifests in a relaxation in
streamlines. Moreover, higher values of magnetic field and buoyancy ratio parame-
ter (progressively stronger species buoyancy, although for N, < 1 thermal buoyancy
is dominant) tend to reduce the density of streamlines, which expand in a fan-like
manner the transverse direction (7). Figures 27 and 28 indicate that an increase in
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Fig. 23.
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Fig. 24. Impact of M, on N ,*

the streamwise coordinate, £, magnetic field and buoyancy ratio parameter, inflate
the thermal and mass boundary layer thickness. When strengthening the magnetic
field, the Lorentz force triggers electrical conductivity particles in the pseudoplastic
nanofluid, causing high heat and concentration in the psendoplastic nanofluid, thus
increasing the heat and mass boundary layer thickness. Generally, N, expressed
as the ratio of thermal buoyvancy force of the nanoparticle concentration. N, only

occurs in terms of S?E (6 — N,&) in the momentum boundary layer equation. There-

fore, nanofluid temperature and nanoparticle concentration are strongly coupled in
the nanofluid low equation. Hence, thermal and mass boundary layer thickness rises
slightly by rising values of N;.. Also, higher values of magnetic field and buoyancy
ratio parameter generate an enhancement in heat and mass transfer to the wall, as

testified to by the lateral fanning in isotherms and iso-concentrations.
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5. Conclusion

Motivated by simulating high-temperature magnetic nano-polymer coating flow
transport phenomena, a detailed mathematical study has been presented to in-
vestigate the thermosolutal (combined natural convection heat and mass transfer)
characteristics in magnetohydrodynamic radiative psendoplastic nanofluid bound-
ary layer flow external to a circular cylinder under radial static magnetic field,
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Fig. 26. Streamlines for uplifting values of £, M, and N,.
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with variable viscosity, variable thermal conductivity, Soret and Dufour effects.
The nanoscale transport is modeled by employing the Buongiorno two-component
model and the rheological behaviour is accommodated with the Williamson model.
Non-similar variables are utilized to transform the dimensional mass, momentum,
energy and nanoparticle concentration (volume fraction) equations into dimension-
less form. This nonlinear coupled boundary value problem is solved with the implicit
finite difference Keller box method under appropriate wall and free stream bound-
ary conditions. Extensive validation of the solutions with earlier published resnlts
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is included. The heat, mass and momentum characteristics are studied for variation
in all thermophysical parameters and visualized as graphs versus transverse coordi-
nate, three-dimensional surface plot, contour plots, and streamline, isothermal and
iso-concentration plots. Extensive numerical details are provided. The main findings

of the current study may be summarized as follows.

¢ Nanofluid temperature and nanoparticle concentration magnitudes are el-

evated significantly with increasing magnetic field strength.
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Fig. 28, Isoconcentration for uplifting values of £, M, and N,.

e Flow deceleration is induced with larger values of the variable viscosity
parameter

¢ Higher values of the thermal conductivity parameter enhance velocity and
temperature magnitudes and reduce momentum boundary layer thickness
but increase thermal boundary layer thickness.

e An enhancement of Dufour number and simultaneous decrement in Soret
number generates marked flow acceleration and heating i.e. greater tem-
perature magnitudes

e An increase in Weissenberg number (i.e. stronger elastic forces relative to
viscous forces and greater relaxation time of the psendoplastic fluid) and
thermophoresis parameter increases the nanofluid temperature, although
the effect is more pronounced for the latter.

o The density of streamlines is reduced with inereasing the magnetic field
and buoyancy ratio parameter.

e Increasing magnetic field and buoyancy ratio parameter boost the Nusselt
and Sherwood numbers i.e. increase heat and mass transfer to the wall.

The present study has ignored nanoparticle types e.g. metallic oxides. These
will be considered using the Tiwari-Das formulation in future investigations. Fur-
thermore, ferromagnetic effects may also be considered including magnetic dipoles
which also feature in magnetic nano-materials processing systems.
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Appendix A.

To linearize the nonlinear system of equations using Newtons method, we introduce
the following iterates:

wf{™ = MY — £,

i i
wug_n) _ u§n+1} _ uﬁ-ﬂ’h
wvj(n] _ vj(_n+1} _ UEH),
wsJEn] = S§n+1) — SJEHJ.

(n) _ ,(n41) _ ,(n)
wt D =t5 =t
wg;n) _ g§n+1) _ g(_'n}’
wpg_n) :pgn+1) _ gn)

Implementing the above expressions in Eqns. (30)-(36) and neglecting higher-order
terms of w, leads to:

wfj—wfi—1— %wuj — ?jwuj_l —(e1); =0
WU — wij—1 — %wvj - %wvj_1 — (ez)j =10
Wsj — wsj_1 — %wtj- — %wtj-_l —(eg); =0

wgj — wgj—1 — %ij - %ij—l —(e4); =0

(a1)jwv; + (ag)jwvj_q + (az)jwf; + (ag)swfi—q + (as)jwu;
+ag) jwuj_1 + (a7)jws; + (as)jwsj—1 + (ag)jwt;
+ago)jwtj—1 + (a11)jwg; + (a12)jwgj—1 — (e5)j—12 =0,

(b1)jwt; + (ba)jwtj—1 + (ba)jwfj + (be)jwfi—1 + (bs)jwu; + (bg)jwu;—y
+(br)jws; + (bs)jwsj_1 + (bo) jwp; + (b1o)jwpj_1 — (e6)j—1/2 =0

(e1)jwp; + (e2)jwpj—1 + (e3)jwf; + (ca)jwfi—1 + (c5)jwu; + (cg)jwui_q
+(er)jwgs + (e8)jwgj—1 + (co)jwty + (c10)jwtj—1 — (e7);_1/2 =0,
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The boundary conditions (29) emerge as:

wfo =0, wug =0, wsy =0, wgyg=0,

wiy; =0, ws; =0, wg; =0, f§ =uy =0,

so=1 gy=1 uj=0 s5=0 g7=0
Step 4:

The block-elimination method is used to compute the linearized difference Eqns. (47)-
(56) as outlined by Cebeci and Bradshaw (1984) using the matrix-vector form,

Aw=c¢
where,
[ [A1] [C1]
[Bs] [A2] [Cs]
A=
| [By—1] [Ay-1] [Cy—1]
Bj] [Cy] |
[ [wi1] 7 [ [e1] ]
[wa] lea]
[wy—1] leg—1]
| [ws] L [eq] |




The elements of the matrices are as follows:

o 0o 0 1 0 0 0
- 0 0 0 - 00
I 0o 0 0 % o0
=10 o % o o o -4
Eazh 0 (310}1 (53)1 |&11]'1 0 (GQJ1
0 (bio)y (b2)y (B3); O (bo)y (b1)y
[ 0 (e2); (c10)y (ez)y O (e1)y (co)y
[-% 0o 0o 1 0o 0 0]
-1 0 0 o0 % o o
0 -1 0 o o -4 o
=10 o -1 0o o o H|.2=5=J
(aﬁ}j (‘112)3' {‘18)5 {‘13:]5 {aljj 0 [:G-Q)j
(b); 0 (bs); (ba); O (bo); (b1);
_Ecﬁ]j (Cﬁ}j 0 [:‘5313' 0 (Cl}j Ecg)j
000 -1 0 0 0 7
ooo o -4 o o
ooo o 0o -4 o
[Bjl=|000 0o o o L], 2<5<J
000 (ag); (a2); 0 (a10);
D00 (bg); 0O (bro); (b2);
(000 (eq); 0 (e2); (e10); ]
(%X 0 0 0000]
1 0 0 0000
0 1 0 0000
C=| 0 0 1 ooo0|,1<j<J—1
(ﬂg,]lj (a11jj [a-?}j 0000
(bs); 0 (b7); 0000
_(cgjj ECT)j 0 0000
_I'.A)'UD_ _I'.A)I.I-J'_l_
wpp wgi—1
wip Wsji—1
wi] = | whfi [:.uj]— wf; 2<45<J
wuy W
wp1 wp;
| wiq | | ot
[(e1)j—q1/2) ]
(e2);_1/2)
€3)j—(1/2)
L1l

)
)
)
and [e;] = 'ifﬂi%j—um
)
)
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Table 3. Impacts of M, and [, & 5, on local skin friction coefficient (C‘}‘:(G-r*s»"ij). dimen-

sionless local rate of heat transfer (.-’\-‘u‘(G'?"l-""“)) and dimensionless local rate of mass transfer
(S'h‘(Gr’l-""*i}) for various values of £
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Physical Values Physical CcPuU
Parameters Quantities 0 0.5 1 1.5 2 2.5 time(Sec.)
C} (G’T‘_SH) 0 0.2521 | 0.4667 | 0.5634 | 0.5959 | 0.4613
0.0 Nu*(Gr— 1*'4) 0.6688 | 0.6499 | 0.6256 | 0.5798 | 0.5282 | 0.4504 B.757T7T43
Sh-’"{_G?'_l-’q) 0.1758 | 0.1710 | 0.1646 | 0.1527 | 0.1391 | 0.1188
C-';f (GT‘_S-""I) 0 0.2006 | 0.3612 | 0.4175 | 0.4047 | 0.2421
M, 0.5 Nu™(Gr~ 1"4) 0.5839 | 0.5645 | 0.5338 | 0.4802 | 0.4118 | 0.3056 9.832399
Sh‘{:G?'_'l-*"i) 0.1542 | 0.1492 | 0.1411 | 0.1272 | 0.1093 | 0.0814
C-';f (GT‘_SH} 0 0.1681 | 0.2968 | 0.3344 | 0.3061 | 0.1558
1.0 Nu*(Gr~ 1;4) 0.5206 | 0.5009 [ 0.4666 | 0.4089 | 0.3318 | 0.2136 | 10.132770
Sh.*{:G}'_'l-'q) 0.1385 | 0.1334 | 0.1245 | 0.1095 | 0.0893 | 0.0581
C} (G’T‘_SH) 0 0.1463 | 0.2554 | 0.2837 | 0.2521 | 0.1206
1.5 Nu*(Gr~ 1"4} 0.4744 | 0.4549 | 0.4195 | 0.3614 | 0.2835 | 0.1692 9.951370
Sfi-*{_G'?'_1-"4) 0.1274 | 0.1223 | 0.1132 | 0.0981 | 0.077 0.0473
0.15 C;f (G’T‘_s-""l) 0 0.1974 | 0.3552 | 0.4109 | 0.3977 | 0.2374
& Nu*(Gr— 1*"4) 0.5919 | 0.5722 | 0.5411 | 0.4867 | 0.4172 | 0.3087 8.980526
0.4 Sh-*{'G?'_l-’q} 0.1391 | 0.1347 | 0.1276 | 0.1152 | 0.0992 | 0.0742
0.3 C} (GT‘_S-""I} 0 0.1988 | 0.3577 | 0.4137 | 0.4006 | 0.2393
D, &S, & Nu*(Gr— 1"4) 0.5913 | 0.5716 | 0.5405 | 0.4860 | 0.4166 | 0.3086 | 12.504586
0.2 Sh.*{:G?'_l-"‘i) 0.1465 | 0.1418 | 0.1342 | 0.1210 | 0.1041 | 0.0776
0.6 C} (G’T‘*s-"‘i) 0 0.2006 | 0.3612 | 0.4178 | 0.4047 | 0.2421
& Nu*(Gr~ 1*'4} 0.5839 | 0.5645 | 0.5338 | 0.4802 | 0.4118 | 0.3056 | 14.960204
0.1 S-’i-*{:G?'_l-’q) 0.1542 | 0.1492 | 0.1411 | 0.1272 | 0.1093 | 0.0814
0.8 C; (G’T‘_3f"1) 0 0.2019 | 0.3634 | 0.4204 | 0.4073 | 0.2439
& Nu™(Gr— 1"4) 0.5774 | 0.5582 | 0.5279 | 0.4750 | 0.4075 | 0.3029 9.496180
0.075 Sfi-*{'G?'_1-*'4} 0.1584 | 0.1532 | 0.1450 | 0.1306 | 0.1122 | 0.0836
Table 4. Impacts of N, and R, on local skin friction coefficient (C}(G‘r—s-"i}) ., dimensionless local
rate of heat transfer (.-'\-'u‘(G-r‘UJJ] and dimensionless local rate of mass transfer (.S’h‘(G-r_jJ“])
for various values of £
Physical Values Physical CPU
Parameters Quantities 0 0.5 1 1.5 2 2.5 time(Sec.)
C;(Cr‘g-"l} 0 0.3210 | 05917 | 0.6793 | 0.6852 | 0.4260
0.1 Nu*(Gr=14) [ 0.6097 | 0.6749 | 0.6419 | 0.5792 | 0.5055 | 0.3873 | 9.280738
Sh* (GT‘_IH} 0.1838 | 0.1774 | 0.1688 | 0.1523 | 0.1330 | 0.1020
C;(Gr_g-"l} 0 0.2631 | 0.4797 | 0.5531 | 0.5481 | 0.3359
Ny 0.3 Nu* (GT‘_l ""1} 0.6478 | 0.6256 | 0.5934 | 0.5348 | 0.4631 | 0.3503 9.395184
Sh* (GT‘_l-"l} 0.1704 | 0.1647 | 0.1563 | 0.1409 | 0.1222 | 0.0926
C}(Gr_g-"l} 0 0.2006 | 0.3612 | 0.4178 | 0.4047 | 0.2421
0.5 Nu* (GT‘_l-""l) 0.5839 | 0.5645 | 0.5338 | 0.4802 | 0.4118 | 0.3056 8.220380
Sh* (GT‘_l-"l} 0.1542 | 0.1492 | 0.1411 | 0.1272 | 0.1093 | 0.0814
C;(Gr_g-"l} 0 0.0941 | 0.1652 | 0.1909 | 0.1746 | 0.0967
0.8 Nu*(Gr=1%) | 0.4480 | 0.4344 | 0.4093 | 0.3677 | 0.3102 | 0.2203 T.504675
Sh*(GT"l-"l} 0.1211 | 0.1176 | 0.1112 | 0.1004 | 0.0854 | 0.0614
C;(Gr_g-"l} 0 0.2287 | 0.4134 | 0.4791 | 0.4674 | 0.2867
0.1 Nu* (GT‘_1-""1} 1.4922 | 1.4514 | 1.3847 | 1.2702 | 1.1242 | 0.9021 12.398441
Sh* (G’T‘_l-"l} 0.2309 | 0.2229 | 0.2116 | 0.1910 | 0.1657 | 0.1259
C}(Gr_g-"l} 0 0.2103 | 0.3791 | 0.4388 | 0.4261 | 0.2570
R, 0.3 Nu* (GT‘_l-"4) 0.7667 | 0.7420 | 0.7026 | 0.6341 | 0.5467 | 0.4123 | 12.864155
Sh* (Gr—l-"l} 0.1828 | 0.1766 | 0.1673 | 0.1507 | 0.1299 | 0.0974
C}(Gr‘g-"l} 0 0.2006 | 0.3612 | 0.4178 | 0.4047 | 0.2421
0.5 Nu*(Gr—1/7) [ 0.5839 | 0.5645 | 0.5338 | 0.4802 | 0.4118 | 0.3056 | 16.059574
Sh* (Gr‘fl-“l} 0.1542 | 0.1492 | 0.1411 | 0.1272 | 0.1093 | 0.0814
C;(Gr‘g-"l} 0 0.1922 | 0.3457 | 0.3998 | 0.3867 | 0.2300
0.8 Nu* (GT‘_L""I} 0.4651 | 0.4496 | 0.4252 | 0.3823 | 0.3276 | 0.2414 | 14.713669
Sh* (G’T‘_l-"‘l} 0.1257 | 0.1220 | 0.1158 | 0.1049 | 0.0907 | 0.0681




