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ABSTRACT:  
Unsteady viscous two-dimensional magnetohydrodynamic micropolar flow, heat and mass transfer from an infinite vertical surface with Hall 
and Ion-slip currents is investigated theoretically and numerically. The simulation presented is motivated by electro-conductive polymer (ECP) 
materials processing in which multiple electromagnetic effects arise. The primitive boundary layer conservation equations are transformed 
into a non-similar system of coupled non-dimensional momentum, angular momentum, energy and concentration equations, with 
appropriate boundary conditions. The resulting two-point boundary value problem is solved numerically by an exceptionally stable and well-
tested implicit finite difference technique. A stability analysis is included for restrictions of the implicit finite difference method (FDM) 
employed. Validation with a Galerkin finite element method (FEM) technique is included. The influence of various parameters is presented 
graphically on primary and secondary shear stress, Nusselt number, Sherwood number and wall couple stress. Secondary (cross flow) shear 
stress is strongly enhanced with greater magnetic parameter (Hartmann number) and micropolar wall couple stress is also weakl y 
enhanced for small time values with Hartmann number. Increasing thermo-diffusive Soret number suppresses both Nusselt and Sherwood 
numbers whereas it elevates both primary and secondary shear stress and at larger time values also increases the couple stress. Secondary 
shear stress is strongly boosted with Hall parameter. Ion slip effect induces a weak modification in primary and secondary shear stress 
distributions. The present study is relevant to electroconductive non-Newtonian (magnetic polymer) materials processing systems. 

KEYWORDS: Micropolar fluid; Hall and Ion-slip current; Thermal diffusion; Species diffusion; wall couple stress; 

primary and secondary shear stress; magnetic field; implicit finite difference method (FDM); electroconductive 
polymer processing; Galerkin finite element method (FEM). 

1. INTRODUCTION 

Electromagnetic flows of both Newtonian and non-Newtonian fluids continue to attract the attention 

of researchers owing to ever-growing applications in aerodynamics and propulsion systems [1,2], 

materials processing [3-5], rotating disk reactor and trickle-bed chemical engineering technologies 

[6,7] and novel biomedical engineering developments [8,9]. Electromagnetic flows are frequently 

accompanied with heat and mass transfer and are of interest due to the proven ability of magnetic 

fields in controlling and manipulating performance of electrically conducting liquids [10]. Numerous 

theoretical and computational studies of such flows have been communicated in the past two decades 
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using a variety of magnetic non-Newtonian models including Walters-B models [11], couple stress 

models [12], Oldroyd-B models [13] and Casson models [14]. Among the diverse range of rheological 

models available, the micropolar model introduced by Eringen [15] has certain exceptional features 

which allow the simulation of micro-structural effects in non-Newtonian fluids. Micropolar fluids are 

able to support local stress moment, body moments and are influenced by the microelement spin 

inertia. Micropolar fluids, a sub-class of the more general micromorphic fluid [16], can therefore 

represent real engineering fluids consisting of rigid, randomly oriented or spherical particles 

suspended in a viscous medium in which the deformation of the particles is ignored. This model is very 

useful for simulating certain electro-conductive polymers, food stuffs, detergents, gel propellants, 

colloidal suspensions, liquid crystals, lubricants, bubbly liquids, paints and physiological fluids. The 

theory of micropolar fluids has been a field of active research in fluid mechanics, for nearly five 

decades. Magnetohydrodynamic studies of micropolar flows have received considerable attention in 

recent years and researchers have utilized a diverse range of numerical algorithms to solve these 

nonlinear boundary value problems. Bég et al. [17] employed the network simulation electro-thermal 

code, PSPICE, to analyze magnetohydrodynamic thin film flows of micropolar fluids along oblique 

surfaces. Eldabe et al. [18] used a Chebyshev spectral finite difference method to analyze 

hydromagnetic micropolar convection boundary layer flow from an extending polymeric sheet. Bég et 

al. [19] used a homotopy algorithm with symbolic software to simulate unsteady magneto-micropolar 

squeeze film hydrodynamics.  Rawat et al. [20] applied a variational finite element method to simulate 

unsteady hydromagnetic free convection heat and mass transfer in porous media with variable 

thermophysical properties. Further studies have been communicated by Hayat et al. [21], Kumar et 

al. [22] and Haque and Alam [23], the latter also examining Ohmic and viscous dissipation effects. 

 In the above studies generally, weak magnetic fields have been considered, for which Hall and ionslip 

currents may be neglected. However, in certain manufacturing processes [24], very strong magnetic 

fields are deployed and as such both Hall current and ionslip effects become important.  With the 

application of a strong magnetic field, a significant voltage difference (or Hall voltage) is generated 

across an electric conductor (working fluid) where the magnetic field is perpendicular to the current. 

The Hall parameter is significant when the magnetic field is very high or when the collision frequency 

is very low. Certain materials e.g. electro-conductive polymers become highly conducting under 

ionization. Therefore, Hall currents may exert a critical role in the behaviour of such fluid materials. 

Several researchers have studied magnetohydrodynamic convection heat transfer (and mass transfer) 

flows with Hall current and/or ionslip effects. Interesting analyses include Datta and Mazumder [25], 

Ram [26], Raptis and Kafoussias [27] and Sattar and Hossain [28]. More recent studies of 

hydromagnetic flows with Hall and ionslip effects include Bég et al. [29] who studied hydromagnetic 
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rotating channel flow in inclined magnetic fields and porous media using network simulation, Zueco 

et al. [30] who also considered Joule heating, Ghosh et al. [31] who considered Ekman number effects 

and Zueco et al. [32] who examined dusty fluids.  These studies did not consider micropolar fluids 

which have received very little attention in Hall and ionslip magnetohydrodynamics. In the present 

investigation, therefore we consider transient ionized micropolar convection heat and mass transfer 

flow with the influence of Hall and Ion-slip currents. Viscous dissipation and Joule heating (Ohmic 

dissipation) effects are also considered as are thermo-diffusion (Soret) effect. The presence of Hall 

currents generates a secondary (cross) flow and therefore a two-dimensional formulation is necessary. 

The governing unsteady two-dimensional partial differential conservation equations are transformed 

into a dimensionless system of non-similar non-linear partial differential equations which are solved 

by implicit finite difference method (FDM). A numerical stability analysis is also conducted. The 

influence of micropolar rheological and other thermophysical parameters on dimensionless primary 

and secondary shear stresses, couple stress (dimensionless wall micro-rotation gradient), Nusselt 

number (dimensionless wall heat transfer rate) and Sherwood number (dimensionless wall mass 

transfer rate) are examined in detail. Validation of solutions is also included using a Galerkin finite 

element method (FEM). Although many commercial codes are available for multi-physical 

electromagnetic modelling e.g. COMSOL Multiphysics, ANSYS Maxwell, ADINA, STAR-CCM  etc, which 

are excellent for simulating coupled fluid and electromagnetics, nevertheless they are confined to very 

simple material fluid models e.g. Newtonian, Carreau fluid, power-law fluid. They do not feature a 

non-Newtonian routine or solver for micropolar fluids. i.e. they do not provide a solver for 

micromorphic (angular micro-spin) and this is why researchers worldwide are still compelled to use 

their own programs to solve micropolar hydromagnetic flows. As such in the present study therefore 

a finite difference method code which has been extensively validated is adopted in addition to a finite 

element code for verification. The present study is relevant to electromagnetic thermal processing of 

conducting polymers.  

 

2. MATHEMATICAL ELECTROMAGNETIC MICROPOLAR FLOW MODEL  

We consider unsteady free convection heat and mass transfer from an ionized micropolar fluid along 

an infinite vertical surface (located at y = 0). The vertical surface is an electrically non-conducting plate 

oriented along the x-axis in the upward direction. A uniform magnetic field of strength, Bo, acts along 

the positive y-direction, normal to the plate. Hall and ion slip effects are present, and the applied 

magnetic field is strong [33, 34]. From the Gauss equation of conservation of charge    • J = 0 (where 

J denotes current density) and this yields Jy = 0 i.e. electric current vanishes at the plate and 

everywhere else. The magnetic Reynolds number is sufficiently small to neglect magnetic induction 
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effects. The physical configuration for the flow regime is depicted in Fig. 1. The late is permeable and 

a uniform suction velocity, v0 acts in the y-direction. The plate is assumed to be of infinite extent and 

the fluid motion is unsteady so that all the flow variables are dependent only on the y-coordinate and 

time, t. The presence of Hall currents induces a cross flow in the z-direction. Therefore, flow occurs in 

the y-z plane and requires two momentum conservation equations for its accurate description. In 

accordance with the above assumptions and invoking the Boussinesq approximation, following Ghosh 

et al. [35], the boundary layer equations for linear momentum, angular momentum, heat and species 

diffusion, for the flow may be defined as follows:  

Primary linear momentum conservation (y-direction): 
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Secondary linear momentum conservation (z-direction): 
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Angular momentum conservation:   
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Energy (heat) conservation:   

𝝏𝑻

𝝏𝒕
− 𝒗𝟎

𝝏𝑻

𝝏𝒚
=

𝒌

𝑪𝒑
(

𝝏𝟐𝑻

𝝏𝒚𝟐) +
𝟏

𝑪𝑷
(𝝑 +

𝑲


) [(

𝝏𝒖

𝝏𝒚
)

𝟐
+ (

𝝏𝒘

𝝏𝒚
)

𝟐
] +

𝝈𝒆𝑩𝟎
𝟐

𝝆𝑪𝝆
(𝒖𝟐 + 𝒘𝟐)    (4) 

Species diffusion (concentration) conservation 

𝝏𝑪

𝝏𝒕
− 𝒗𝟎

𝝏𝑪

𝝏𝒚
= 𝑫𝒎 (

𝝏𝟐𝑪

𝝏𝒚𝟐) + 𝑫𝑻
𝑲𝑻

𝑻𝒎

𝝏𝟐𝑻

𝝏𝒚𝟐       (5) 

The boundary conditions for the present problem are given by: 

   𝒖 = 𝟎, 𝒘 = 𝟎, 𝑵 = −𝒔
𝝏𝒖

𝝏𝒚
, 𝑻 = 𝑻𝝎, 𝑪 = 𝑪𝒘  𝒂𝒕 𝒚 = 𝟎   

   𝒖 = 𝟎, 𝒘 = 𝟎, 𝑵 = 𝟎, 𝑻 → 𝑻∞, 𝑪 → 𝑪∞  𝒂𝒕 𝒚 = ∞       (6)   

Here u,v,w are the velocity components in the x,y,z direction respectively, g is the acceleration due to 

gravity,  is the coefficient of volume expansion,  *  is the volumetric coefficient of expansion with 

concentration, T and T are the temperature of the fluid inside the thermal boundary layer and the 

fluid temperature in the free stream, respectively while C and C are the corresponding 

concentrations.   is the kinematic Newtonian viscosity, K is the Eringen vortex viscosity,  is 

micropolar fluid density, N is the micro-rotation (angular velocity), e is the electrical conductivity, Bo 
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is the strength of the applied magnetic field, e is the Hall parameter, e = 1+i e (where i is the ion-

slip parameter),  is the spin gradient viscosity, j is the micro-inertia per unit mass,  is the thermal 

conductivity of the medium, cp is the specific heat at constant pressure, cs is concentration 

susceptibility, Dm is the coefficient of mass diffusivity, DT is the coefficient of thermal diffusivity, KT  is 

thermal diffusion rate, Tm denotes mean fluid temperature, t is dimensional time, s is an arbitrary 

micropolar wall constant. The last parameter here warrants some elaboration. The s parameter 

controls the wall micro-rotation boundary conditions in eqn. (6). With s = 0, then N = 0 and this 

corresponds to the no-spin condition i.e., the microelements in a concentrated particle flow close to 

the wall are not able to rotate. The case s = 0.5 is associated with the vanishing of the anti-symmetric 

part of the stress tensor and represents weak concentrations of micropolar fluid micro-elements. In a 

fine particulate suspension, the particle spin is equal to the fluid velocity at the wall. Finally, the case 

s =1, denotes the transitional or turbulent boundary layer flow case, which is not relevant to the 

present laminar flow simulations. In the wall boundary condition (6), the constant v0 represents a 

suction/injection velocity (positive for suction, negative for injection). The primitive form of the 

transport model defined by Eqns. (1)-(6) is challenging to solve, even with numerical methods. It is 

advantageous to normalize the model which eliminates the second spatial variable (z) and 

simultaneously introduces dimensionless thermo-physical parameters which allow the fluid dynamics 

to be more easily studied. Proceeding with the analysis we introduce the following non-dimensional 

variables to facilitate a subsequent numerical solution of the two-point non-linear partial differential 

equation boundary value problem. 

 Y =
yU0


, U =

u

U0
, W =

w

U0
, τ =

tU0
2

ϑ
, Ω =

Nϑ

U0
2 , θ =

T-T∞

Tw-T∞
, =

C-C∞

Cw-C∞
   (7) 

where Y is dimensionless y-coordinate, U is dimensionless x-direction velocity (primary velocity), W is 

dimensionless z-direction (cross flow i.e. secondary) velocity,  is non-dimensional time,  is 

dimensionless angular velocity,  is dimensionless temperature,  is dimensionless species 

concentration and Uo is characteristic velocity. Introducing the non-dimensional variables (7) in 

equations (1) to (5), the transformed conservation equations describing the regime reduce to the 

following form: 

𝝏𝑼

𝝏𝝉
− 𝝐

𝝏𝑼

𝝏𝒀
= (𝟏 + 𝜟)

𝝏𝟐𝑼

𝝏𝒀𝟐 + ∆
𝝏𝜴

𝝏𝒀
+ 𝑮𝒓𝜽 + 𝑮𝒓

∙  −
𝑴

(𝜶𝒆
𝟐+𝜷𝒆

𝟐)
(𝜶𝒆𝑼 + 𝜷𝒆𝑾)    (8) 

𝝏𝑾

𝝏
− 𝝐

𝝏𝑾

𝝏𝒀
= (𝟏 + 𝜟)

𝝏𝟐𝑾

𝝏𝒀𝟐 + (
𝑴

𝜶𝒆
𝟐+𝜷𝒆

𝟐) (𝜷𝒆𝑼 − 𝜶𝒆𝑾)       (9) 

𝜕𝛺

𝜕𝜏
− 𝜀

𝜕𝛺

𝜕𝑌
= 𝛬

𝜕2𝛺

𝜕𝑌2 − 𝜆(2𝛺 +
𝜕𝑈

𝜕𝑌
)                       (10) 

𝝏𝜽

𝝏𝝉
− 

𝝏𝜽

𝝏𝒀
=

𝟏

𝑷𝒓

𝝏𝟐𝜽

𝝏𝒀𝟐 + (𝟏 + 𝜟)𝑬𝑪 [(
𝝏𝑼

𝝏𝒀
)

𝟐
+ (

𝝏𝑾

𝝏𝒚
)

𝟐
] + 𝑴

𝑬𝒄

(𝜶𝒆
𝟐+𝜷𝒆

𝟐)
(𝑼𝟐 + 𝑾𝟐)           (11) 
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𝝏

𝝏𝝉
− 𝝐

𝝏

𝝏𝒀
=

𝟏

𝒔𝒄

𝝏𝟐

𝝏𝒀𝟐 + 𝒔𝟎
𝝏𝟐𝜽

𝝏𝒀𝟐             (12) 

The corresponding transformed initial and boundary conditions are: 

01,1,,0,0 ===



−=== Yat

Y

U
SWU                                                                             (13a) 

→===== YasWU 1,0,0,0,0                                                                                     (13b) 

Here   is the transpiration parameter (
o

o

U

v
= and this parameter > 0 for suction, < 0 for injection, 

and equal to zero for a solid plate),  is the Eringen micropolar material parameter or vortex viscosity 

parameter and is defined as 


  ), Gr  is thermal Grashof number, M is the magnetohydrodynamic 

parameter, Gr * is species Grashof number,  is the spin gradient viscosity parameter =




j
,  is  the 

dimensionless vortex viscosity parameter. Also, Pr is Prandtl number, Sc is Schmidt number, So denotes 

Soret number and Ec represents the Eckert number, and these parameters assume their usual 

definitions – see references [20, 33].  

3. NUMERICAL SOLUTION WITH FINITE DIFFERENCE METHOD (FDM) 

We seek a robust numerical solution to the boundary value problem defined by eqns. (8)-(12) under 

conditions (13). Each partial differential equation is a second order coupled dimensionless equation 

in two independent variables (Y, ). For simplicity the implicit finite difference method has been used. 

This method has also been employed recently by the authors to solve a number of complex multi-

physical problems and the reader is referred to [36]-[38]. It is very efficient and has been benchmarked 

with many published results. Confidence in the FDM code is therefore high. However, to provide 

further confirmation of the accuracy in the next section an FEM validation is presented for the entire 

model. In FDM the region within the boundary layer is discretized as depicted in Fig. 2.  

It is assumed that the maximum length of boundary layer is Ymax = 30 which corresponds to Y at infinity. 

After experimentation with the finite difference mesh, a grid spacing in the Y-direction is selected as 

m =200. Hence the constant mesh size along the Y-axis is Y =0.15 (0Y 30). The time variable is 

discretized with a time step of  =0.01, ensuring excellent convergence of solutions. Let 

 𝑈𝑖
𝑛, 𝑊𝑖

𝑛 , 𝛺𝑖
𝑛 , 𝜃𝑖

𝑛 and 𝑖
𝑛  denote the values of  U, W, , ,  at the end of a time-step respectively. 

Using the implicit finite difference approximations, the eqns. (8)-(12) assume the algorithmic form: 
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Primary Momentum 

𝑼𝒊
𝒏+𝟏 − 𝑼𝒊

𝒏

𝜟𝝉
− 𝝐

𝑼𝒊+𝟏
𝒏 − 𝑼𝒊

𝒏

𝜟𝒀
= (𝟏 + 𝜟)

𝑼𝒊+𝟏
𝒏 − 𝟐𝑼𝒊

𝒏 + 𝑼𝒊−𝟏
𝒏

(𝜟𝒀)𝟐  

𝜟
𝜴𝒊+𝟏

𝒏 −𝜴𝒊
𝒏

𝜟𝒀
+ 𝑮𝒓𝜽𝒊

𝒏 + 𝑮𝒓
∗𝒊

𝒏 −
𝑴

(𝜶𝒆
𝟐−𝜷𝒆

𝟐)
(𝜶𝒆𝑼𝒊

𝒏 + 𝜷𝒆𝑾𝒊
𝒏) (14) 

Secondary Momentum 

𝑾𝒊
𝒏+𝟏−𝑾𝒊

𝒏

𝜟𝝉
− 𝝐

𝑾𝒊+𝟏
𝒏 −𝑾𝒊

𝒏

𝜟𝒀
= (𝟏 + 𝜟)

𝑾𝒊+𝟏
𝒏 −𝟐𝑾𝒊

𝒏+𝑾𝒊−𝟏
𝒏

(𝜟𝒀)𝟐 +
𝑴

(𝜶𝒆
𝟐+𝜷𝒆

𝟐)
(𝜷𝒆𝑼𝒊

𝒏 − 𝟐𝜶𝒆𝑾𝒊
𝒏)      (15) 

Angular Momentum (Micro-rotation) 
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Energy 

𝜽𝒊
𝒏+𝟏−𝜽𝒊

𝒏

𝜟𝝉
− 𝝐

𝜽𝒊+𝟏
𝒏 −𝜽𝒊

𝒏

𝜟𝒀
=

𝟏

𝒑𝜞

𝜽𝒊+𝟏
𝒏 −𝟐𝜽𝒊

𝒏+𝜽𝒊−𝟏
𝒏

(𝜟𝒀)𝟐 + (𝟏 + 𝜟)𝑬𝒄 [(
⋃ +𝟏𝒏

𝒊 −𝑼𝒊
𝒏

𝜟𝒀
)

𝟐

+ (
𝑾𝒊+𝟏

𝒏 −𝑾𝒊
𝒏

𝜟𝒀
)

𝟐

] +

𝑴
𝑬𝒄

(𝜶𝒆
𝟐+𝜷𝒆

𝟐)
(𝑼𝒊

𝒏𝟐
+ 𝑾𝒊

𝒏𝟐
)         (17) 

Species (Concentration) 

𝒊
𝒏+𝟏−𝒊

𝒏

𝜟𝝉
− 𝝐

𝒊+𝟏
𝒏 −𝒊

𝒏

𝜟𝒀
=

𝟏

𝑺𝑪

𝒊+𝟏
𝒏 −𝟐𝒊

𝒏+𝒊−𝟏
𝒏

(𝜟𝒀)𝟐 + 𝑺𝒐
𝜽𝒊+𝟏

𝒏 −𝟐𝜽𝒊
𝒏+𝜽𝒊−𝟏

𝒏

(𝜟𝒀)𝟐     (18) 

At the end of any time step Δτ, the new temperature 𝜃𝑖
𝑛+1, the new concentration 𝛷𝑖

𝑛+1, the new 

secondary velocity 𝑊𝑖
𝑛+1, the new angular velocity 𝛺𝑖

𝑛+1 and the new primary velocity 𝑈𝑖
𝑛+1 at all 

interior nodal points, are obtained by successive applications of the above difference equations, 

respectively. This process is repeated in time and  𝑈𝑖
𝑛, 𝑊𝑖

𝑛 , 𝛺𝑖
𝑛 , 𝜃𝑖

𝑛 and 𝑖
𝑛, eventually all converge 

to values which approximate the solution of the master dimensionless equation. Also, the numerical 

values of the shear stresses, couple stress, Nusselt number and Sherwood number are evaluated by 

five-point approximate formula for the derivatives. The stability conditions of the implicit finite 

difference method are given by: 

Primary and secondary momentum: 

𝝐
𝜟𝝉

𝜟𝒀
+ 𝜦

𝟐𝜟𝝉

(𝜟𝒀)𝟐 + 𝝀𝜟𝝉 ≤ 𝟏         (19) 

Energy: 
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𝝐
𝜟𝝉

𝜟𝒀
+

𝟐

𝑷𝒓

𝜟𝝉

(𝜟𝒀)𝟐 ≤ 𝟏          (20) 

Species (Concentration) 

𝟐

𝑺𝒄

𝜟𝝉

(𝜟𝒀)𝟐 − 𝝐
𝜟𝝉

∆𝒀
≤ 𝟏           (21) 

Here when   and Y  approach zero, the problem attains convergence. This implies that the results 

of the implicit finite difference method approach the actual solutions. 

4. VALIDATION WITH VARIATIONAL FINITE ELEMENT METHOD 

Since the present model constitutes a significant extension to the existing literature, it is not possible 

to validate it comprehensively with earlier studies without neglecting many important effects. 

Therefore, verification of the solutions is conducted via a variational finite element method code 

based on a weighted residual approach and the Galerkin finite element method. This methodology 

has been deployed extensively by the authors in recent years in time-dependent micropolar transport 

phenomena in magnetic materials processing. Relevant examples include Gupta et al. [39] (on mixed 

convection contracting sheet micropolar flow), Shamshuddin et al. [40] (transient chemically reacting 

hydromagnetic dissipative micropolar thermosolutal flow  from a tilted surface), Shamshuddin et al. 

[41] (unsteady magnetohydrodynamic heat and mass transfer from a rotating surface in porous 

media) and Shamshuddin et al. [42] (periodic thermosolutal reactive micropolar flow). The 

fundamental steps involved in the finite-element analysis are summarized in [39]-[42] and not 

repeated here. FDM uses numerical differentiation whereas FEM uses numerical integration. 

Generally, the latter is more accurate for nonlinear problems, although it has been used here also for 

validation of the FDM solutions. The finite-difference method is the most direct approach to 

discretizing partial differential equations. A point in space is considered where one takes the 

continuum representation of the equations and replaces it with a set of discrete equations, called 

finite-difference equations. The finite-difference method is typically defined on a regular grid and this 

fact can be used for very efficient solution methods. The method is therefore not usually used for 

irregular engineering geometries, but more often for rectangular or block-shaped models. Certain 

formulations of the finite-element method defined on a regular grid are identical to a finite-difference 

method on the same grid. Regular grids can often be used in meteorological, seismological, and 

astrophysical simulations, for example. FEM is generally much more popular for complex geometries. 

However, FDM still remains a powerful and very adaptive tool for electromagnetic fluid dynamics 

problems. The authors have extensively used both approaches and indeed many others including 

network electrothermal simulation (PSPICE), Adomian decomposition, smoothed particle 

hydrodynamics (SPH), Lattice Boltzmann methods (LBM) for magnetofluid dynamics problems in 
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recent years. However, for micropolar magnetohydrodynamics, the most versatile approach is 

undeniably the finite difference method which is therefore adopted in the present study.  Proceeding 

with the finite element formulation, two-node linear elements are deployed. Arbitrary test 

(interpolation) functions 1, 2, 3, 4 and 5, are prescribed for the variations in U, W, , ,   

respectively. After dropping the order of integration and non-linearity, variational forms are derived 

for each of the conservation equations (8)-(12). The finite element model may be obtained from these 

new equations by substituting finite element approximations of the form:  

 

 𝑈 = ∑ 𝑈𝑗
𝑒𝜓𝑗

𝑒2
𝑗=1 , 𝑉 = ∑ 𝑉𝑗

𝑒𝜓𝑗
𝑒2

𝑗=1 , = ∑ 𝑗
𝑒𝜓𝑗

𝑒2
𝑗=1 , 𝜃 = ∑ 𝜃𝑗

𝑒𝜓𝑗
𝑒 2

𝑗=1 ,  = ∑ 𝑗
𝑒𝜓𝑗

𝑒2
𝑗=1               (22) 

 

Here 1 = 2 = 3 = 4 = 5 = 𝜓𝑗
𝑒(𝑖 = 1,2), where 𝑈𝑗

𝑒, 𝑊𝑗
𝑒 , 𝑗

𝑒 , 𝜃𝑗
𝑒𝑎𝑛𝑑 𝑗

𝑒 are the primary 

velocity, secondary velocity, micro-rotation (angular velocity), temperature and species concentration 

values, respectively, at the 𝑗𝑡ℎ node of typical 𝑒𝑡ℎ element (𝑌𝑒, 𝑌𝑒+1) and 𝜓𝑖
𝑒 are the finite element 

shape functions for this element (𝑌𝑒, 𝑌𝑒+1) which are taken as: 

 

 𝜓1
𝑒 =

𝑌𝑒+1−𝑌

𝑌𝑒+1−𝑌𝑒
𝑎𝑛𝑑 𝜓2

𝑒 =
𝑌−𝑌𝑒

𝑌𝑒+1−𝑌𝑒
, 𝑌𝑒 ≤ 𝑌 ≤ 𝑌𝑒+1                                                                               

(23) 

The finite element model of the equations for the the  element is a 5th order matrix system in which  

{[𝐾𝑚𝑛], [𝑀𝑚𝑛]} and {{𝑈𝑒}, {𝑊𝑒}, {𝑒}{𝜃𝑒}, {𝑒}, {𝑈′𝑒}, {𝑊 ′𝑒}, {′𝑒}, {𝜃 ′𝑒}, {′𝑒}𝑎𝑛𝑑{𝑏𝑚𝑒}} (𝑚, 𝑛 =

1,  2,3,4, 5) are the set of matrices of order 2 × 2 and 2 × 1 respectively and 𝑝𝑟𝑖𝑚𝑒(′) indicates
𝑑

𝑑𝑌
. 

The matrices definitions are omitted for brevity. Here the entire flow domain is discretized into 

successively sized grids of order 121x121 after grid independence tests on more coarse (i.e. less 

refined) meshes (61 X61, 81X 81, 101X101) in the Y- direction. All the computations are executed with 

121 intervals of equal step size 0.01. At each node, 5 functions are to be evaluated and after assembly 

of the element equations, a set of 605 non-linear equations are obtained which necessitate an iterative 

solution subject to the specified boundary conditions. The iterative process is terminated when the 

following condition is met: ∑ |𝑛+1 − 𝑛|𝑖,𝑗 ≤ 10−6where  = 𝑈, 𝑉,, 𝜃,  and n denotes the 

iterative step. Comparison with the FDM solutions is visualized in Figs. 3-4 for primary shear stress 

(x), secondary shear stress (z) with M = 0.03 (weak magnetic field). Excellent correlation is achieved 

testifying to the accuracy of the FDM code.  

 

Inspection of Figs. 3 to 4 which depict the effect of magnetic parameter (Hartmann number, M) on 

the steady-state shear stresses indicate that the primary flow (Fig. 3) as simulated via primary shear 

stress at the plate) is decreased with the magnetic parameter, M, since magnetic field imposed 
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generates a Lorentz damping force which has a decelerating effect. Therefore, minimal shear stress 

corresponds to the largest Hartmann number. The application of a transverse magnetic field to the 

electrically conducting polymer flow clearly counteracts the primary flow. Fig. 4 however reveals 

that secondary (cross flow i.e. transverse) shear stress is conversely enhanced with greater 

magnetic parameter. This is invoked due to the Hall current which generates a secondary (cross) 

flow in the boundary layer regime. Therefore, a lateral acceleration will also be induced in the cross 

flow with increasing magnetic body force parameter. It is also noteworthy that both finite 

difference and finite element methods remain very popular and versatile for electromagnetic 

mechanics and other applications including sensors, power transformers, electrical machines, 

antennas etc. Representative studies include Zhao et al. [43] on magnetic thrust bearings, Nasiri-

Gheidari [44] on linear resolvers in electrical energy conversion, Moradnouri et al. [45] on genetic 

simulation of transformer flux diverters, Borghi and Cristofolini [46] on finite difference computation 

of electrodynamics in MHD energy generation systems and Yoshida et al. [47] on finite element and 

finite difference open cycle hydromagnetic energy generators.  

 

5. RESULTS AND DISCUSSION  

Extensive computations have been performed for the present problem and are depicted in Figs. 5-

44. These figures illustrate the influence suction parameter (), magnetic parameter (M), Hall 

current (e), Prandtl number (Pr), Schmidt number (Sc), microrotation parameter (), vortex 

viscosity (), spin gradient viscosity (), thermal Grashof number (Gr), species Grashof number 

(G*r), ion-slip parameter (i), Soret number (SO) and Eckert number (Ec). The values of Grashof 

number, Gr and modified Grashof number, Gr* for the heat transfer are taken to be positive. Since 

the most important fluids are atmospheric air, salt water and water, the results are limited to Pr = 

0.71 (Prandtl number for air at 20 Celsius), Pr = 1.0 (Prandtl number for electrolytic solution such 

as salt water at 20 Celsius), Pr = 7.0 (Prandtl number corresponding to water at 20 Celsius). For 

Schmidt number, Sc, values selected are as follows: Sc = 0.6 for water vapour diffusing in air, 0.95 

for carbon dioxide diffusing in low density materials and 5.0 for denser molecular weight gases in 

highly viscous fluid [48]). Figs 5-44 depict the variations in the key engineering design parameters 

(wall gradients of the variables) which are presented for the primary and secondary shear stresses 

(primary shear stress is the gradient of primary velocity at the plate i.e. x = 
𝜕𝑈

𝜕𝑌
, and secondary shear  

stress is the gradient of secondary velocity, W, at the plate z = 
𝜕𝑊

𝜕𝑌
 at Y=0), micropolar couple stress 

(gradient of angular velocity, , at the plate i.e. 
𝜕𝛺

𝜕𝑌
 at 𝑌 = 0), Nusselt number (gradient of 
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temperature, , at the plate i.e. 
𝜕

𝜕𝑌
at 𝑌 = 0) and Sherwood (gradient of concentration, , at the 

plate i.e. 
𝜕

𝜕𝑌
at 𝑌 = 0). Plots included show the variation of these functions with time (). The wall  

micro-rotation constant, S is selected as 0.5 (as discussed earlier), representing weak micro-

element concentrations. To achieve “steady-state solutions” for the computations, these are 

executed up to a dimensionless time of  = 80.99. It has been verified that computational values 

exhibit very little variation after  = 10. Thus, the solution attained at  = 20 is essentially the steady 

state solution. Hence the primary (longitudinal) velocity, transverse (secondary i.e. crossflow) 

velocity, angular velocity, temperature and concentration profiles are visualized at three key time 

stages  = 1, 7, 20. 

Figs 5-44 illustrate the time development of the dimensionless steady-state shear stresses (namely 

x, z ), couple stress (Mc), Nusselt number (Nu) and Sherwood number (Sh) versus dimensionless 

time ().   

Fig. 5 depicts the effect of magnetic parameter (Hartmann number, M) on the steady-state couple 

stress. Micropolar couple stress is slightly increased initially with increasing magnetic field. At low 

time values, in fact negative spin of the micro-elements is induced. However, with greater 

progression in time, couple stress is observed to increase steadily and peaks at very high time 

values. For the majority of time values studied, the couple stress is sustained as positive. A 

significant reduction in couple stress accompanies increasing values of the magnetic parameter as 

time progresses. Spin of micro-elements is therefore inhibited with increasing time. This has 

implications in materials processing since the gyratory motion of microelements (suspended 

particles) is damped as time elapses which in turn interacts with the velocity fields and leads to 

modifications in shear stress distributions. Fig.6 indicates that secondary shear stress (z) is 

elevated markedly with an increase in Hall parameter, (e). z generally also increases steadily from 

the initiation of flow but tends to plateau after a short elapse of time. Thereafter time is found to 

have no effect on the secondary shear stress. Furthermore, computations (not shown for brevity) 

have revealed that the primary shear stress, x, is not affected by the Hall parameter, as 

anticipated, since this parameter is associated with the cross flow (secondary flow field). These 

trends have also been reported by Datta and Mazumder [25] and Ram [26], even for Newtonian 

flows. It has also been reported in other studies including Bég et al. [24] and Zueco et al. [32] and 

Cramer and Pai [33]. The trends in fig. 6 confirm that an electrically- conducting fluid is strongly 

affected by Hall currents in the presence of transverse magnetic field. The effects of Hall current 

gives rise to the Lorentzian force in the z-direction. Therefore, a crossflow is generated in the 

lateral direction. This aids in the secondary flow development and accelerates the secondary flow, 
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manifesting in an enhancement in secondary shear stress (z) with increasing values of e, even for 

relatively low values of e.  

Figs. 7-11 illustrate the time development in primary and secondary shear stresses, couple stress, 

Nusselt number and Sherwood number for different values of dimensionless Prandtl number, Pr. 

Prandtl number, Pr, defines the ratio of momentum diffusivity to the thermal diffusivity. It is evident 

from Figs.7 and 8, that both shear stress components, x, z  decrease as  increases. Initially as time is 

increased the shear stress components both increase; however, after a short elapse in time they attain 

a maximum value and remain invariant with time thereafter. Couple stress (fig. 9) is observed to be 

initially increased slightly with rising Prandtl number but decreases initially with time. However, with 

greater elapse of time, there is a strong increase in wall couple stress and also a decrease with Prandtl 

number. Figs.10 and 11 demonstrate that with increasing values of Pr, steady state Nusselt number 

increases significantly whereas Sherwood number decreases. Heat transfer rate at the wall is 

therefore elevated whereas species diffusion (mass transfer) rate is depressed with greater Prandtl 

number. With an increase in time, both Nusselt and Sherwood numbers are observed to decrease 

initially and then sustain constant values for subsequent increase in time.   

Figs 12-16 illustrate the temporal evolution of the flow characteristics for different values of Schmidt 

number, Sc. Schmidt number embodies the ratio of the momentum diffusivity to the mass (species) 

diffusivity. It physically relates the relative thickness of the hydrodynamic boundary layer and mass 

transfer (species concentration) boundary layer. Evidently both steady-state primary and secondary 

shear stress components, x, z  (figs. 12, 13) decrease with increasing Schmidt number, although the  

primary shear stress magnitudes are several orders of magnitude higher. With an increase in time, 

both shear stress components initially rise sharply and then attain a constant value which remains 

unchanged with subsequent times. Fig.14 indicates that wall couple stress initially increases with 

Schmidt number and time, , but thereafter with greater passage of time, couple stress is strongly 

depressed with increasing Schmidt number. Nusselt number and Sherwood number (Figs. 15 and 16) 

are both markedly enhanced with an increase in Schmidt number. Heat and mass transfer rates at the 

wall are therefore greater for higher density species diffusing, as opposed to lower molecular weight 

species. The boost in Nusselt and Sherwood numbers implies a concomitant decrease in temperatures 

and species concentration values within the body of micropolar fluid. 

Fig. 17 illustrates the time development of couple stress for different values of Eringen vortex viscosity 

parameter, . Couple stress decreases as  rises, indicating that as viscosity is enhanced, the rotary 

motions of micro-elements are depressed, and local spinning is suppressed. For lower values of this 

vortex viscosity parameter, the couple stress increases with time to a steady-state value. However, 
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for larger values, there is an initial very steep decay in couple stress, following which the couple stress 

begins to ascend towards the steady-state value.  

Fig. 18 illustrates the evolution of couple stress with  i.e. the spin gradient viscosity parameter (=

). Initially there is a decrease in spin reversal in micro-elements leading to lesser negative wall 

couple stress values with increasing spin-gradient viscosity, at low times. With further elapse in time, 

the wall couple stress is observed to be significantly depressed with increasing spin gradient 

parameter and steady-state values are achieved relatively smoothly.  Spin gradient viscosity is 

therefore a critical micropolar parameter influencing the angular velocity gradient at the wall. 

Figs. 19-23 depict the influence of time and thermal Grashof number (buoyancy parameter) on the 

micropolar flow characteristics. Primary shear stress (fig. 19) is strongly decreased since thermal 

buoyancy opposes primary momentum development. However, this is compensated for by the 

enhancement in secondary shear stress (fig. 20) with increasing Grashof numbers (Gr). Magnitudes of 

primary shear stress, as noted earlier, are however considerably greater than secondary shear stress, 

at any time and for any thermal Grashof number. Buoyancy force acts like a reverse pressure gradient 

which decelerates the primary flow whereas it accentuates the secondary flow. With increasing 

thermal Grashof number, couple stress is initially depressed at low values of time; however, it is 

significantly boosted with thermal Grashof number at larger time values. Figs. 22 and 23 show that 

Nusselt number is depressed with increasing Gr values whereas the Sherwood number is accentuated. 

Mmass transfer at the wall is therefore aided with greater buoyancy (larger Grashof number), whereas 

heat transfer is inhibited.  

Figs. 24-28 illustrate the response of the flow characteristics with species Grashof number (Gr*) and 

time. Species buoyancy force defines the ratio of the species (solutal) buoyancy force to the viscous 

hydrodynamic force. For Gr* = 1 both forces contribute equally. Both primary and secondary shear 

stress components are strongly elevated with increasing species Grashof number (figs. 24, 25). Couple 

stress (fig. 26) is initially decreased with greater species Grashof number at low times, whereas the 

opposite effect is induced at higher values of time. Nusselt number is observed to be very considerably 

decreased with increasing thermal Grashof number (fig. 27), whereas the Sherwood number 

demonstrates the opposite behaviour i.e. Sherwood number is elevated with greater species Grashof 

numbers, indicating that mass diffusion to the plate is aided with greater species buoyancy forces. 

Thermal diffusion to the plate is however opposed with greater species buoyancy forces. 





j
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Figs. 29-32 present the distribution of shear stress components, Nusselt number and Sherwood 

number, with time for various Eckert numbers (Ec). Eckert number arises owing to the viscous heating 

and also Joule heating (Ohmic dissipation) effects. It features in the last two terms of the 

dimensionless energy eqn. (11). The viscous heating term features quadratic terms of the primary and 

secondary velocity gradients, whereas the Joule heating (magnetic dissipation) term features only the 

quadratic terms for velocity components. Ec is therefore expected to exert considerable influence on 

flow characteristics. With greater Eckert number, both primary and secondary shear stresses are both 

very strongly enhanced (figs. 28, 29). Conversely Nusselt number is significantly reduced with 

increasing Eckert number. This is due to the fact that as Eckert number increases, greater kinetic 

energy in the flow is transformed into thermal energy. This heats the fluid regime but draws heat away 

from the plate, leading to a decrease in wall heat transfer rates i.e. a reduction in Nusselt number. On 

the other hand, Sherwood number receives a marked enhancement with increasing Eckert number. 

Therefore, greater mechanical energy dissipation and conversion to heat aids in species diffusion 

(mass transfer) to the wall, whereas it strongly depresses heat transfer to the wall.  

Figs. 33, 34 present the effect of the ionslip parameter, i, on primary and secondary shear stress 

components. Very little tangible influence is computed. This parameter arises in both momenta 

equations (8, 9) and the energy equation (11) i.e. −
𝑀

(𝛼𝑒
2+𝛽𝑒

2)
(𝛼𝑒𝑈 + 𝛽𝑒𝑊) in eqn. (8), 

+ (
𝑀

𝛼𝑒
2+𝛽𝑒

2) (𝛽𝑒𝑈 − 𝛼𝑒𝑊) in eqn. (9) and the modified Ohmic dissipation term, +𝑀
𝐸𝑐

(𝛼𝑒
2+𝛽𝑒

2)
(𝑈2 + 𝑊2) 

in eqn. (11), in which e = 1+i e.  The impact of ion slip is vert weak, which is in stark contrast to the 

influence of the Hall parameter, e as described earlier, which influences the flow characteristics quite 

strongly. The consideration of weak magnetic fields is no doubt a major reason for the negligible 

influence of ion slip parameter. This parameter [33, 34] is expected only to exert any influence on flow 

characteristics at very strong magnetic fields.   

Figs. 35-39 present the effect of wall transpiration parameter () on the shear stress components, 

couple stress, Nusselt and Sherwood number plotted against transient time. We consider only the 

case of suction (positive ) i.e. blowing (injection) is not considered. Clearly both shear stress 

components are depressed with increasing suction, since this causes the fluid to be drawn more 

strongly to the wall and decelerates flows. It is also interesting to note that at high values of suction, 

the shear stress components quickly attain steady state values, whereas at lower values (0.5) there is 

a much more gradual ascent in both primary and secondary shear stress. Strong suction therefore 

while decelerating the primary and cross flows, also simultaneously stabilizes the flow regime and 

increases momentum boundary layer thicknesses. With increasing suction, couple stress (fig. 37) is 

enhanced in magnitude (values are negative for low suction indicating spin reversal of micro-
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elements). Figs 38 and 29 demonstrate that with greater suction, generally both Nusselt number and 

Sherwood number are significantly increased (for all time values). However, in fig. 39, we also observe 

that for low suction, the Sherwood number attains highest magnitudes with greater elapse of time- 

these magnitudes are in fact greater than those computed for higher suction values, but only for large 

time elapse.  

Finally, figs. 40-44 present the influence of thermal-diffusion parameter (Soret number i.e. So) on flow 

characteristics. The Soret effect is described in the species conservation eqn. (12) by a second order 

temperature derivative i.e. in the term, 𝒔𝟎
𝝏𝟐𝜽

𝝏𝒀𝟐 . Increasing Soret number generally enhances both the 

primary and secondary shear stress components (figs. 40, 41). Couple stress is initially depressed with 

greater Soret number for low time values; however, with greater time values there is a strong 

elevation in couple stress which eventually achieves steady state values. Both Nusselt number and 

Sherwood number are strongly decreased with greater Soret number, as observed in figs. 43, 44. 

Greater thermo-diffusive effect therefore inhibits both heat transfer and mass transfer (species 

diffusion) to the wall and will conversely accentuate the magnitudes of temperatures and species 

concentration in the boundary layer. 

 

6. CONCLUSIONS 

A mathematical model has been developed for transient thermosolutal magnetohydrodynamic free 

convection flow of an ionized incompressible viscous micropolar fluid from an infinite vertical surface 

in the presence of Hall current and ion-slip effects, as a model of electroconductive materials 

processing. The transformed nonlinear time-dependent boundary value problem has been solved 

computationally, subject to pertinent boundary conditions with a well-tested, stable, efficient, implicit 

finite difference method. Validation of the FDM solutions has been achieved with a Galerkin finite 

element method (FEM). The influence of Hall parameter e, Ion-slip parameter i, magnetic 

parameter, M, vortex viscosity parameter , spin gradient viscosity parameter, , Prandtl number, Pr, 

Grashof number, Gr, solutal Grashof number Gr*,  Eckert number, Ec, Schmidt number, Sc as well as 

wall suction (later mass efflux) parameter,  and Soret number, So on primary and secondary shear 

stress components, wall couple stress and Nusselt and Sherwood number, have been evaluated and 

presented graphically. Interesting responses in flow characteristics to these parameters have been 

described. The main findings are summarized below: 

(i)Wall suction has a stabilizing influence on the flow regime and to enhance couple stress and both 

Nusselt and Sherwood numbers.  
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(ii) Increasing Soret number has been shown to depress both Nusselt and Sherwood numbers whereas 

it enhances both primary and secondary shear stress and at larger time values boosts the couple 

stress.  

(iii) Secondary shear stress is elevated markedly with an increase in Hall parameter and greater 

magnetic parameter (Hartmann number). 

(iv) Micropolar couple stress is also weakly enhanced for small time values with increasing 

magnetic field parameter.  

(V)Generally primary shear stress is enhanced with thermal Grashof number, species Grashof 

number, Eckert number and Soret number whereas it is suppressed with increasing Prandtl number 

and Schmidt number.  

(VI) Secondary shear stress is observed to be enhanced with thermal Grashof number, species Grashof 

number, Eckert number and Soret number but depressed with increasing Prandtl number and Schmidt 

number.  

(VII) Finally, the wall couple stress is shown to be boosted with increasing Prandtl number, Schmidt 

number, spin gradient viscosity parameter and Soret number but is depressed with increasing thermal 

Grashof number, species Grashof number, vortex viscosity and suction parameters.  

The present study has neglected chemical reaction effects, which are also important in 

electromagnetic polymer materials processing [49, 50] and these will be considered in the future. 

Furthermore, emerging electro-conductive polymers are also featuring biological micro-organism 

doping for enhanced performance e.g. Zhang et al. [51] and Bhatti et al. [52] in addition to bioinspired 

walls (boundaries) e.g. Bhatti et al. [53]. These also constitute interesting possible pathways for 

extending the current study.  
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FIGURES AND CAPTIONS 

 

 

Fig. 1: Magnetohydrodynamic micropolar materials processing flow system  

 

 

 

 

Fig 2: Finite difference numerical grid (mesh) 
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Fig. 3. Comparison of primary shear stress x for different values of M with FDM and FEM. 

 

Fig. 4. Comparison of secondary shear stress z  for different values of M with FDM and FEM. 
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Fig. 5. Couple stress for different M.  Fig. 6. Secondary shar stress for different e. 

 

 

 

 
Fig. 7. Primary shear stress for different Pr  Fig. 8. Secondary shear stress for different Pr  

 

 

 

 
Fig. 9. Couple stress for different Pr  Fig. 10. Nusselt number for different Pr 
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Fig. 11. Sherwood number for different Pr  Fig. 12. Primary shear stress for different Sc 

   

 

 

 

Fig. 13. Secondary shear stress for different Sc  Fig. 14. Couple stress for different Sc 
   

 

 

 
Fig. 15. Nusselt number for different Sc  Fig. 16. Sherwood number for different Sc 
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Fig. 17. Couple stress for different .  Fig. 18. Couple stress for different . 

 

 

 

 
Fig. 19. Primary shear stress for different Gr.  Fig. 20. Secondary shear stress for different Gr. 

 

 

 

 
Fig. 21. Couple stress for different Gr.  Fig. 22. Nusselt number for different Gr. 
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Fig. 23. Sherwood number for different Gr.  Fig. 24. Primary shear stress for different G*r. 

 

 

 

 
Fig. 25. Secondary stress with various G*r.  Fig. 26. Couple stress for different G*r. 

 

 

 

 
Fig. 27. Nusselt number for different G*r.  Fig.28. Sherwood number for different G*r. 
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Fig. 29. Primary shear stress with Ec.  Fig.30. Secondary shear stress with Ec. 
 

 

 

 
Fig.31. Nusselt number for different Ec.  Fig.32. Sherwood number for different Ec. 

 

 

 

 
Fig.33. Primary shear stress for ion slip (i)  Fig.34. Secondary shear stress for ion slip (i) 
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Fig. 35. Primary shear stress with suction ().  Fig. 36. Secondary shear stress with suction () 
   

 

 

 
Fig.37. Couple stress with suction ().  Fig.38. Nusselt number with suction (). 

 

 

 

 
Fig.39. Sherwood number with suction ().  Fig. 40. Primary shear stress with Soret effect 

(So) 
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Fig. 41. Primary shear stress with Soret effect 
(So) 

 

 Fig. 42. Couple stress with Soret effect (So). 

 

 

 
Fig.43. Nusselt number with Soret effect (So)  Fig.44. Sherwood number with Soret effect (So) 

 

 

 


