American Journal of Primatology

Phylogenetic relationships in the genus *Cheracebus* (Callicebinae, Pitheciidae)

E	
Journal:	American Journal of Primatology
Manuscript ID	AJP-19-0267.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	02-Feb-2020
Complete List of Authors:	Carneiro, Jeferson; Universidade Federal do Pará, Genomics and Systems Biology; Universidade Federal do Pará, Instituto de Estudos Costeiros Sampaio, Iracilda; Universidade Federal do Para, Instituto de Estudos Costeiros; Universidade Federal do Pará, Genomics and Systems Biology Lima, Thaynara; Universidade Federal do Para, Instituto de Estudos Costeiros Silva Júnior, Jose; Museu Paraense Emilio Goeldi, Zoologia Farias, Izeni; Universidade Federal do Amazonoas, Hrbek, Tomas; Universidade Federal do Amazonoas, Laboratory of Evolution and Animal Genetics Valsecchi, João; Instituto de Desenvolvimento Sustentável Mamirauá, Grupo de Ecologia de Vertebrados Terrestres Boubli, Jean; University of Salford, School of Environment and Life Sciences Schneider, Horacio; Universidade Federal do Para - Instututo de Estudos Costeiros; Universidade Federal do Pará, Genomics and Systems Biology
Indicate which taxonomic group was the subject of your study (select all that apply or type another option)::	New World monkeys, Pitheciidae, Callicebinae, <i>Cheracebus</i>
Keywords:	titi monkeys, New World monkeys, Phylogeny, Taxonomy

2 3		
4 5	1	Phylogenetic relationships in the genus Cheracebus (Callicebinae, Pitheciidae)
6 7	2	Jeferson Carneiro ^{1,2} , Iracilda Sampaio ^{1,2} , Thaynara Lima ² , José de Sousa and Silva-
8 9 10	3	Júnior ³ , Izeni Farias ⁴ , Tomas Hrbek ⁴ , João Valsecchi ⁵ , Jean Boubli ⁶ , Horacio
11 12	4	Schneider ^{1,2}
13 14	5	
15 16 17	6	¹ Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
18 19	7	² Instituto de Estudos Costeiros, Universidade Federal do Pará, Campus Universitário de
20 21	8	Bragança, Pará, Brazil
22 23 24	9	³ Museu Paraense Emílio Goeldi, Mammalogy, Belém, Pará, Brazil
25 26	10	⁴ Universidade Federal do Amazonas, Laboratory of Evolution and Animal Genetics,
27 28	11	Manaus, Amazonas, Brazil
29 30 31	12	⁵ Mamirauá Sustainable Development Reserve, Amazonas, Brazil
32 33	13	⁶ School of Environment and Life Sciences, University of Salford, Salford, UK
34 35	14	
36 37 38	15	Running title: Phylogeny Cheracebus
39 40	16	
41 42	17	Corresponding author: Jeferson Carneiro
43 44 45	18	E-mail: jeferson.carneiro@yahoo.com
46 47		
48		
49 50		
51		
52 53		
55		
55		
56 57		
58		
59		
60		

19 Abstract

Cheracebus is a new genus of New World primate of the family Pitheciidae, subfamily Callicebinae. Until recently, Cheracebus was classified as the torquatus species group of the genus Callicebus. The genus Cheracebus has six species: C. lucifer, C. lugens, C. regulus, C. medemi, C. torquatus, and C. purinus, which are all endemic to the Amazon biome. Prior to the present study, there had been no conclusive interpretation of the phylogenetic relationships among most of the *Cheracebus* species. The present study tests the monophyly of the genus and investigates the relationships among the different *Cheracebus* species, based on DNA sequencing of 16 mitochondrial and nuclear markers. The phylogenetic analyses were based on Maximum Likelihood, Bayesian Inference and multi-species coalescent approaches. The divergence times and genetic distances between the Cheracebus taxa were also estimated. The analyses confirmed the monophyly of the genus and a well-supported topology, with the following arrangement: ((C. torquatus, C. lugens), (C. lucifer, (C. purinus, C. regulus))). A well-differentiated clade was also identified within part of the geographic range of C. lugens, which warrants further investigation to confirm its taxonomic status. **Key words:** titi monkeys, New World monkeys, phylogeny, taxonomy

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10 10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
37	
25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52 52	
22	
54	
55	
56	
57	
58	
59	
60	

36 Introduction

37 The titi monkeys are small to medium sized (adult body weight 1-2 kg) New 38 World primates of the family Pitheciidae. The monophyly of this group was not 39 recognized until the beginning of the 20th Century, and the species had been allocated 40 to a number of different genera, including *Callithrix* and *Saguinus* (see Hershkovitz, 41 1963). Thomas (1903) placed all the titis described up to that time in the genus 42 Callicebus. Hershkovitz (1963) recognized two species, Callicebus moloch, with seven 43 subspecies, and *Callicebus torquatus*, with three subspecies. Subsequently, following 44 the analysis of a much larger sample of specimens and geographic localities, 45 Hershkovitz (1988, 1990) updated the diversity of the genus to 13 species and a total of 46 25 taxa. These species were arranged in four species groups, based on their 47 morphological similarities and geographic ranges (Table 1). 48 Kobayashi and Langguth (1999) accepted the species group approach of 49 Hershkovitz (1988, 1990), but proposed an arrangement with five groups. This 50 arrangement was followed by van Roosmalen et al. (2002), who also considered all the 51 subspecies to be valid species. Groves (2005) subsequently proposed the division of 52 Callicebus into two subgenera, one of which, Torquatus, included the species of the 53 torquatus group, with all the other species being allocated to the subgenus Callicebus. 54 This arrangement was followed by Silva-Júnior et al. (2013). Recently, Byrne et al. 55 (2016) proposed the division of *Callicebus* into three genera, based primarily on 56 divergence times, including two new genera, given the lack of available nomina. The 57 two new genera were designated Plecturocebus (composed of the species of the 58 donacophilus, cupreus and moloch species groups) and Cheracebus (composed of the 59 species of the torquatus group). The species of the personatus group remained in the

genus *Callicebus*. The classification proposed by Byrne et al. (2016) was adopted in
the present study.

A variety of taxonomic arrangements have been proposed for the titi monkeys since the middle of the 20th Century, although the same six taxa compiled the torquatus species group of Hershkovitz (1988, 1990), Groves' (2005) Torquatus subgenus, and the genus Cheracebus of Byrne et al. (2016). These taxa are denominated here as Cheracebus torquatus (Hoffmannsegg, 1807), Cheracebus purinus (Thomas, 1927), Cheracebus lucifer (Thomas, 1914), Cheracebus lugens (Humboldt, 1811), Cheracebus regulus (Thomas, 1927), and Cheracebus medemi (Hershkovitz, 1963). The one exception has been the proposal of Kobayashi (1995), based on a geometric morphometric analysis, which placed the C. purinus in the personatus species group, the current genus Callicebus.

Cheracebus is endemic to the Amazon region, and the species are assumed to have an allopatric distribution, with species ranges separated by major rivers (Figure 1). The exact limits between the ranges of some species are still unclear, however, due primarily to the sampling deficiencies of many areas, as in the case of C. lucifer and C. *medemi*, which both occur between the Japurá/Solimões and Caquetá/Aguarico rivers, and are not separated by any obvious physical barrier. There are also a number of discrepancies on the distributions of *C. torquatus* and *C. lugens*. Hershkovitz (1990) suggested that a sympatric zone exists between these two species, while van Roosmalen et al. (2002) concluded that C. lugens occupies an extensive area to the north of the Branco River, including the basins of the Branco and Orinoco rivers, and a number of other, smaller rivers, whereas C. torquatus is restricted to the area between

3		
4	83	the Japurá and Negro rivers. However, Casado et al. (2006) proposed that C. lugens
5 6		
7	84	occurs on both margins of the Negro River, in agreement with Hershkovitz (1990).
8 9 10	85	The present study tested the monophyly of the genus Cheracebus and proposes
10 11 12	86	a first phylogenetic arrangement of the species of the genus based on DNA sequencing
13 14	87	of mitochondrial and nuclear markers.
15 16	88	
17 18 19	89	Material and Methods
20 21	90	Samples, and the Extraction, Amplification, and Sequencing of the DNA
22 23	91	Samples of blood and muscle tissue were obtained from 26 pitheciid specimens,
24 25 26	92	including 17 representatives of five of the six Cheracebus species (1 C. torquatus, 6 C.
27 28	93	lugens, 3 C. purinus, 3 C. lucifer, 4 C. regulus, 3 Plecturocebus, 3 Callicebus, 1
29 30	94	Chiropotes, 1 Cacajao, and 1 Pithecia). No samples of Cheracebus medemi could be
31 32 33	95	obtained for analysis in the present study. The samples (Table 2, Figure 1) were
34 35	96	identified based on the morphological traits of the specimens, which were compared
36 37	97	with the published descriptions of the respective species. The samples were provided by
38 39 40	98	five Brazilian institutions, the National Institute of Amazonian Research (INPA) and
41 42	99	the Federal University of Amazonas (UFAM) in Manaus, the Rio de Janeiro
43 44	100	Primatology Center (CPRJ), the Pontifical Catholic University of Minas Gerais (PUC)
45 46 47	101	in Belo Horizonte, and the Federal University of Pará (UFPA), in Belém.
48 49	102	Total genomic DNA was extracted using Promega's Wizard Genomic kit,
50 51	103	according to the manufacturer's protocol, and 16 molecular markers were amplified by
52 53	104	Polymerase Chain Reaction, PCR (Table 3). These markers included three fragments of
54 55 56	105	the mitochondrial DNA – Cytochrome oxidase subunit I (COI), Cytochrome b (Cytb),
57 58 59 60	106	and the ribosomal 16S gene (16S) – and 13 nuclear markers, RAG1, SIM, ZFX, and 10

1	07	Alu elements together with their flanking regions. The PCRs were standardized to a
1	08	final volume of 15 μ l, containing ~30 ng of genomic DNA, 2.4 μ l of dNTPs (1.25mM);
1	09	1.5 µl of 10X buffer (200 mM Tris-HCl, 500 mM KCl); 1 µl of MgCl ₂ (25 mM); 1 µl of
1	10	each primer (0.2 μ M), and 1 U of Taq DNA polymerase. With the exception of the
1	11	primer annealing temperatures, all other steps of the amplification protocol were
1	12	identical for all the markers. The thermocycler was programmed for the following
1	13	schedule: initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation
1	14	at 95°C for 30 s, annealing at 40 s, and extension at 72°C for 40 s, followed by a final
1	15	extension at 72°C for 5 min. The PCR products were purified with polyethylene glycol
1	16	(PEG) and ethanol. The sequence reactions were run with the Big Dye kit (Applied
1	17	Biosystems), and the samples were sequenced in an ABI 3500 XL automatic sequencer
1	18	(Applied Biosystems). The access numbers on GenBank of the sequences produced in
1	19	the present study are available in the supplementary table S1.
1	20	
1	21	Alignment of the sequences, evolutionary models, phylogenetic analyses, and
1	22	divergence times
1	23	The DNA sequences were aligned in ClustalW (Thompson et al., 1994) and
1	24	edited manually in BioEdit v. 7.2.5 (Hall, 1999). The outgroup was composed of
1	25	samples of the five remaining pitheciid genera, Callicebus, Plecturocebus, Pithecia,
1	26	Cacajao, and Chiropotes. PartitionFinder v.2 (Lanfear et al., 2016) was used to identify
1	27	the best data partitioning scheme and evolutionary models. We used the greedy
1	28	algorithm (Lanfear et al. 2012) and the Bayesian Information Criterion (BIC) and
1	29	protein coding regions were partitioned by position of the bases in the codons. Were
1	30	performed analysis for all concatenated markers, only nuclear regions, mitochondrial

131	regions and each individual molecular marker. The data partitioning schemes and their
132	respective evolutionary models can be viewed in the supplementary files (Table S2).
133	The phylogenetic analyses were based on the Maximum Likelihood (ML),
134	Bayesian Inference (BI) and coalescent approaches. The ML analysis was run in
135	RAxML v.8 (Stamatakis, 2014). The ML trees was found by 1000 searches followed by
136	1000 bootstrap pseudoreplicates. The BI was run in MrBayes v.3.2.1 (Ronquist and
137	Huelsenbeck, 2003) with two independent Markov chain Monte Carlo (MCMC) runs,
138	one cold and three hot, with 500,000 generations, and trees and parameters sampled
139	every 5000 generations. The first 20% of the runs were discarded as burn-in. The
140	species tree with a multi-species coalescent model was estimated with ASTRAL III
141	(Zhang et al., 2018). ASTRAL uses non-rooted gene trees as the input file. We use the
142	trees of the individual loci estimated in RaxML.
143	The percentage of genetic divergence between taxa was estimated with MEGA
144	v.6 (Tamura et al. 2013). We perform genetic distance analyzes for all concatenated
145	molecular markers, and for mitochondrial and nuclear data separately. We use K2P for
146	all analyzes of genetic distance.
147	Divergence times were estimated in BEAST v.1.8.3 (Drummond et al., 2012),
148	using two calibration points: (i) the Cacajao-Chiropotes separation, estimated at
149	6.7±2.3 million years ago (Ma) (Kiesling et al. 2015); (ii) a pitheciine fossil, <i>Nuciruptor</i>
150	rubricae (Meldrum & Kay, 1997) dated to 12.4–12.8 Ma, used in the node that groups
151	Pithecia, Chiropotes and Cacajao. Evolutionary models were assigned to each
152	molecular marker, following PartitionFinder. An uncorrelated relaxed clock was applied
153	to the branch lengths and a Yule model was applied as the prior for the tree. The
154	analyses were based on three independent runs, and the log parameters and trees were

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
-+U // 1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 52	
22	
54	
55	
56	
57	
58	
59	
60	

1

155 summarized in LogCombiner v.1.8.3 and TreeAnnotator v.1.8.3 (Drummond et al., 156 2013), respectively. The convergence of the runs was evaluated in Tracer v.1.6 157 (Rambaut et al., 2014), and an Effective Sample Size (ESS) of over 200 was considered 158 to be satisfactory. 159 Results 160 The 16 concatenated markers (nuclear and mitochondrial) provided a database 161 of 9427 base pairs (bps), 2181 bps from the mitochondrial sequences, and 7246 bps 162 from the nuclear sequences. Overall, approximately 16% of the data are missing due to 163 problems encountered in the amplification of the markers in all the samples. 164 The ML and BI had the same topology, both with maximum support values 165 (bootstraps or posterior probabilities) for most of the nodes (Figure 2). This analysis 166 separates the titis into three main clades, as suggested by Byrne et al. (2016), with 167 *Cheracebus* as the sister taxon of the clade composed of *Callicebus* and *Plecturocebus*. 168 Two well-supported clades were also identified within the genus *Cheracebus*, 169 one which included C. lugens and C. torquatus, and the other formed by C. regulus, C. 170 purinus, and C. lucifer. In this latter clade, C. lucifer was recuperated as the sister 171 species of the clade formed by C. regulus and C. purinus. All allelic diversity within 172 species was reciprocally monophyletic, and all the relationships within the genus 173 Cheracebus were strongly supported. The Phylogenetic analysis under the multi-species 174 coalescent model (Figure 3) recovered the same topology of probabilistic methods (ML 175 and IB), also with most of the nodes strongly supported. We obtained incongruity in the 176 phylogenetic position of C. torquatus when analyzed the mitochondrial and nuclear data 177 separately (Figura S1). Only mitochondrial data groups C. torquatus within of C.

178	lugens, with 60% of bootstrap, making paraphyletic C. lugens. In contrast, only nuclear
179	markers position C. torquatus as sister to other species of the genus Cheracebus.
180	All the concatenated molecular markers have genetic distances of approximately
181	13% separating the three titi genera, Cheracebus, Plecturocebus, and Callicebus (Table
182	4), whereas the mean genetic distance between Cheracebus species was 2.45%. The
183	distances ranged from 0.9% between C. regulus and C. purinus to 4% between C.
184	lugens and C. purinus. The C. lugens specimens from opposite margins of the Negro
185	River were separated by a genetic distance of 1.47%, a value similar to that recorded
186	between the two species (<i>C. lugens</i> and <i>C. torquatus</i>) in this clade. We also analyze
187	genetic distances separately using only mitochondrial and nuclear data. Mitochondrial
188	data has an average genetic distance 5.17 times greater than nuclear data (Table S3 and
189	S4)
190	The estimates of divergence times indicated that the present-day pitheciids
191	began to diversify approximately 19.22 Ma, with a 95% Highest Posterior Densities
192	(HPD) range of 15.95–22.49 Ma (Figure 4). It is interesting to note that the estimated
193	timing of the first diversification within the pitheciines (13.58 Ma; 95% HPD: 11.83–
194	15.33 Ma) is virtually the same as that of the first diversification within the callicebines,
195	given that the three lineages of the current genera Cheracebus, Plecturocebus and
196	Callicebus were already separated by 13.15 (95% HPD: 10.13–17.69 Ma). The current
197	Cheracebus species diversified only during the Pliocene, at around 3.92 Ma (95% HPD:
198	2.97–4.87 Ma). Cheracebus regulus and C. purinus are the species that diverged most
199	recently, of only 1.93 Ma (95% HPD: 1.38-2.48 Ma).

3		
4 5	200	
6 7	201	Discussion
8 9 10	202	Until recently, the titi monkeys were classified in five species groups within the
11 12	203	genus Callicebus, although Byrne et al. (2016) proposed a new arrangement, in which
13 14	204	the taxon was divided into three genera, Cheracebus, Plecturocebus, and Callicebus.
15 16 17	205	The results of the analyses presented here provide further, conclusive support for this
18 19	206	arrangement. The genetic distances between these lineages are comparable with those
20 21	207	found between the other pitheciid genera, and appear to be consistent with the timing of
22 23 24	208	the separation of the three genera, in the mid Miocene (~10 Ma). In fact, the
24 25 26	209	morphological differences among the three callicebines are smaller than those among
27 28	210	the three pitheciines. Even so, the DNA sequences support the recognition of the six
29 30	211	pitheciid genera conclusively.
31 32 33	212	Despite the lack of C. medemi samples, all the Cheracebus species were
34 35	213	recuperated as monophyletic groups in the present analysis, which is consistent eith the
36 37	214	morphological data (Groves, 2005; Hershkovitz, 1988, 1990; Kobayashi & Langguth,
38 39 40	215	1999; van Roosmalen et al., 2002). The data on the phylogenetic relationships among
40 41 42	216	the Cheracebus species point to an initial dichotomy between the C. lugens/C.
43 44	217	torquatus and C. lucifer/C. purinus/C. regulus clades, which are found exclusively on
45 46	218	opposite margins of the Amazon River. Cheracebus lugens and C. torquatus occur on
47 48 49	219	the northern margin of the Amazon (Solimões) River, while the other clade is found on
50 51	220	the southern margin.
52 53	221	The present estimates of divergence times indicate that these two clades
54 55 56	222	separated at approximately 3.9 Ma. The current drainage system of the Amazon basin
57 58	223	may have formed around 3 Ma (Ribas et al., 2012), although Hoorn et al. (2010)

American Journal of Primatology

Carneiro 11

proposed a date of approximately 7 Ma. Whether or not the formation of the Amazon River determined the separation of the two *Cheracebus* clades, it was almost certainly in place by at least 3 Ma, and would have contributed to their genetic isolation. *Cheracebus lugens* is the species with the largest geographic distribution of any *Cheracebus* species, although the present analysis identified two clades with a genetic distance of 1.4%, a value greater than that found between some pairs of recognized species, such as C. regulus and C. purinus, which were separated by a distance of 0.9%. Based on this parameter alone, the data suggest the existence of two valid species within C. lugens, although this inference may be premature, given that many species, even well-defined ones, may present intraspecific genetic divergences derived from distinct mutation rates and/or patterns of genetic drift. Furthermore, this genetic distance may be related to the ample geographic distance between the samples, and it is possible that the analysis of a broader sample including additional localities may reveal a more intermediate genetic distance. Further research will be needed to resolve this Lien question. Conclusions The present study is the first to test the monophyly of the genus *Cheracebus* systematically, and define interspecific phylogenetic relationships based on DNA sequences. The results of the study clearly support the monophyly of *Cheracebus*. However, the phylogenetic position of C. medemi remains unclear. This species has a restricted geographic distribution in the Caquetá and Putumayo departments of Colombia. The phylogenetic reconstruction indicated that the initial diversification of

the extant species led to the formation of two reciprocal, monophyletic clades on

248	opposite margins of the Amazon River at around 4 Ma. The origin of the clades may
249	thus be associated with the formation of the Amazon drainage system. As the
250	divergence of Cheracebus from the other callicebine genera occurred at approximately
251	13 Ma, this lineage either remained stable (with no speciation) for around 9 Ma or the
252	forms derived from the speciation processes that occurred during this period are now
253	extinct, and may only exist in fossil form. The two clades of C. lugens identified in the
254	present study, based on their accentuated genetic distance, indicate the existence of a
255	new, as yet unidentified species of Cheracebus. However, confirmation of this
256	hypothesis will require further genetic and morphological samples from the geographic
257	range of C. lugens.
258	
259	Ethics
260	All stages of the experiments and fieldwork were carried out in accordance with
261	Brazilian laws about primate research as well as the rules established by the American
262	Society of Primatologists in relation to the ethical treatment of primates. Research permits
263	were granted by Brazilian authorities (FUNAI and IBAMA/ICMBio), and by institutional
264	IACUC committees. The licenses to fieldwork and collection of tissue samples were
265	provided by IBAMA (License N° 005/2005 - CGFAU/LIC) and ICMBio (40217-1 and
266	5135-1).
267	
268	
269	Competing interests
270	We have no competing interests
271	

Carneiro 13

272 Authors' contributions

JC conceived of the study, participated in the data analyses and drafted the manuscript; IS designed the study, provided samples; TL carried out the molecular laboratory work and drafted the manuscript, JSSJ provided input on the manuscript, and revised the text; JB, IF, TH and JV provided samples and revised the manuscript; HS provided samples, and participated in the data analyses and the final revision of manuscript. All authors have approved the final version of the manuscript for publication.

280 Acknowledgements

We thank Luciana Watanabe, the laboratory technician at the Bragança campus of the Federal University of Pará for her support in processing the primate DNA samples. and Stephen Nash for the magnificent drawings provided for this study. Funding: this study was part of JC's doctoral thesis, which was supported by the Coordination for Higher Education Personnel Training (CAPES). It was also supported by funds provided by CAPES-PROAM 3296/2013 and CNPq (grants 306233/2009-6 to IS, and 473341/2010-7 and 305645/2009-9 to HS). Six field expeditions were funded in part by grants from CNPq/FAPEAM SISBIOTA Program (No. 563348/2010-0), CAPES/PRO-AMAZONIA/AUXPE (grant no. 3261/2013) to IPF.

290 References

- 291 Batzer, M. A. (2005). *Alu* insertion loci and platyrrhine primate phylogeny. *Molecular*
- 292 phylogenetics and evolution, 35(1), 117-126.
- 293 https://doi.org/10.1016/j.ympev.2004.10.023.
- 294 Byrne, H., Rylands, A. B., Carneiro, J. C., Alfaro, J. W. L., Bertuol, F., da Silva, M. N.
- 295 F., & Boubli, J. P. (2016). Phylogenetic relationships of the New World titi monkeys
- 296 (Callicebus): first appraisal of taxonomy based on molecular evidence. Frontiers in
- 297 Zoology, 13(1), 10. https://doi.org/10.1186/s12983-016-0142-4.
- 298 Carneiro, J., Silva Junior, J. S., Sampaio, I., Pissinatti, A., Hrbek, T., Rezende Messias,
 - 299 M., Rohe, F., Farias, I., Boubli, J. & Schneider, H. (2016). Phylogeny of the titi
- 300 monkeys of the Callicebus moloch group (Pitheciidae, Primates). American journal of
- *primatology*, 78(9), 904-913. https//doi.org/10.1002/ajp.22559.
- 302 Casado, F., Bonvicino, C. R., & Seuanez, H. N. (2006). Phylogeographic analyses of
- *Callicebus lugens* (Platyrrhini, Primates). *Journal of Heredity*, 98(1), 88–92.
- 304 https://doi.org/10.1093/jhered/esl054
- 305 Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian
- 306 phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution*,
- 307 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075

Groves, C. P. (2005). Order Primates. *Mammal species of the world: a taxonomic and geographic reference*, 1(3), 111–151.

310	Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and
311	analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
312	Hershkovitz, P. (1963). A systematic and zoogeographic account of the monkeys of the
313	genus Callicebus (Cebidae) of the Amazonas and Orinoco river basins. Mammalia,
314	27(1), 1-80. https://doi.org/10.1515/mamm.1963.27.1.1
315	Hershkovitz, P. (1988). Origin, speciation, and distribution of South American titi
316	monkeys, genus Callicebus (Family Cebidae, Platyrrhini). Proceedings of the Academy
317	of Natural Sciences of Philadelphia, 140(1), 240-272.
318	Hershkovitz, P. (1990). Titis, New World monkeys of the genus Callicebus (Cebidae,
319	Platyrrhini): a preliminary taxonomic review. Fieldiana, Zool. New Series, Field
320	Museum of Natural History, Chicago.
321	Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., &
322	Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape
323	evolution, and biodiversity. Science, 330(6006), 927-931.
324	https://doi:org/10.1126/science.1194585.
325	Kiesling, N. M. J., Soojin, V. Y., Xu, K., Sperone, F. G., & Wildman, D. E. (2015). The
326	tempo and mode of New World monkey evolution and biogeography in the context of
327	phylogenomic analysis. Molecular Phylogenetics and Evolution, 82, 386-399.
328	https://doi.org/10.1016/j.ympev.2014.03.027.
329	Kobayashi, S. (1995). A phylogenetic study of titi monkeys, genus Callicebus, based on
330	cranial measurements: I. Phyletic groups of Callicebus. Primates, 36(1), 101-120.

331	Kobayashi, S., & Langguth, A. (1999). A new species of titi monkey, Callicebus
332	Thomas, from north-eastern Brazil (Primates, Cebidae). Revista Brasileira de Zoologia,
333	16(2), 531–551. http://dx.doi.org/10.1590/S0101-81751999000200018.
334	Lanfear, R., Calcott, B., Simon, Y.W.H., Guindon, S. (2016). PartitionFinder: combined
335	selection of partition schemes and substitution models for phylogenetics analyses.
336	Molecular biology and evolution, 29(6), 1695-1701.
337	https://doi.org/10.1093/molbev/mss020.
338	Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016).
339	PartitionFinder 2: new methods for selecting partitioned models of evolution for
340	molecular and morphological phylogenetic analyses. Molecular biology and evolution,
341	34(3), 772-773. https://doi.org/10.1093/molbev/msw260.
342	Meldrum, D. J., & Kay, R. F. (1997). Nuciruptor rubricae, a new Pitheciin seed
343	predator from the Miocene of Colombia. American Journal of Physical Anthropology,
344	102(3), 407-427. https://doi.org/10.1002/(SICI)1096-8644(199703)102:3<407::AID-
345	AJPA8>3.0.CO;2-R.
346	Osterholz, M., Walter, L., & Roos, C. (2009). Retropositional events consolidate the
347	branching order among New World monkey genera. Molecular Phylogenetics and
348	Evolution, 50(3), 507-513. https://doi.org/10.1016/j.ympev.2008.12.014.
349	Palumbi, S., Martin, A., & Romano, S. (1991). 16s RNA primers. The simple fool's
350	guide to PCR, version, 2, 28.

1

Perelman, P., Johnson, W. E., Roos, C., Seuánez, H. N., Horvath, J. E., Moreira, [...] &

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20 27	
27	
29	
30	
31	
32	
33	
34	
35 36	
37	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51	
52	
53 F /	
54 55	
56	
57	
58	
59	
60	

Pecon-Slaterry, J. (2011). A molecular phylogeny of living primates. *PLoS Genet*, 7(3),
e1001342. https://doi.org/10.1371/journal.pgen.1001342.
Rambaut, A., Suchard, M., Xie, W., & Drummond, A. (2014). Tracer v. 1.6. Institute of
Evolutionary Biology, University of Edinburgh.

- 356 Ray, D. A., Xing, J., Hedges, D. J., Hall, M. A., Laborde, M. E., Anders, B. A., [...] &
- 357 Cracraft, J. (2012). A palaeobiogeographic model for biotic diversification within
- 358 Amazonia over the past three million years. *Proceedings of the Royal Society B:*
- 359 *Biological Sciences*, 279(1729), 681–689. https://doi.org/10.1098/rspb.2011.1120.
- Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference
 under mixed models. *Bioinformatics*, 19(12), 1572–1574.
 - 362 https://doi.org/10.1093/bioinformatics/btg180.
 - 363 Silva Júnior, J. S. (2013). Biogeography of the Amazonian primates. *Conference at the*
 - 364 2nd Latin American Congress of Primatology and 15th Brazilian Congress of
 - 365 Primatology.
 - 366 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-
 - analysis of large phylogenies. *Bioinformatics*, 30(9), 1312–1313.
- 368 https://doi.org/10.1093/bioinformatics/btu033
- 369 Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6:
- 370 Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and
- 371 *Evolution*, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
25	
36	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 E1	
51	
52 52	
55 57	
54	
56	
57	
58	
59	
60	

372	Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., & Stanhope,
373	M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in
374	bats. Nature, 403(6766), 188-192. https://doi.org/10.1038/35003188.
375	Thomas, O. (1903). XLIV.— Notes on South-American monkeys, bats, carnivores, and
376	rodents, with descriptions of new species. Annals and Magazine of Natural History,
377	12(70), 455-464.
378	Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the
379	sensitivity of progressive multiple sequence alignment through sequence weighting,
380	position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
381	22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673.
382	van Roosmalen, M. G. M., van Roosmalen, T., & Mittermeier, R. A. (2002). A
383	taxonomic review of the titi monkeys, genus Callicebus Thomas, 1903, with the
384	description of two new species, Callicebus bernhardi and Callicebus stephennashi,
385	from Brazilian Amazonia. Neotropical Primates, 10(Suppl.), 1-52.
386	https://doi:org/10.1007/s10533-007-9087-1.
387	Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA
388	barcoding Australia's fish species. Philosophical Transactions of the Royal Society B:
389	Biological Sciences, 360(1462), 1847-1857.
200	Zang C. Pahica M. Savyari E. & Mirarah S. (2018) ASTRAL III: polynomial time
390	Zang, C., Kablee, M., Sayyari, E., & Milarab, S. (2018). ASTKAL-III. polyholinar time
391	species tree reconstruction from partially resolved gene trees. BMC bioinformatics,
392	19(6), 153. https://doi.org/10.1186/s12859-018-2129-y.

Highlights:

- *Cheracebus* is a genus of the subfamily Callicebinae;
- *Cheracebus* lineages originated approximately 13 ma ago;
- The phylogenetic relationships between the species of th genus *Cheracebus* are

as follows: ((C. torquatus, C. lugens), (C. lucifer, (C. purinus, C. regulus))).

for per peries

60

69°0.0'W

66°0.0'W

C. lugens

C. purinus

C-hucife

regulus

63°0.0'W

60°0.0'W

57°0.0'W

54°0.0'W

Figure 2. Phylogenetic relationships between taxa of the Pitheciidae family. Numbers near nodes refer to bootstrap (left) and posterior probability (right) values.

338x190mm (96 x 96 DPI)

0.8

Figure 4. Estimated divergence time between Pitheciidae taxa. Each genus has a color: blue to Cheracebus, green to Callicebus, orange to Plecturocebus, yellow to Chiropotes; pink to Cacajao and red to Pithecia. (*) highlights clade of C. lugens on the left bank of the river Negro, while (+) indicates the samples collected on the right bank of this river. Numbers next node represent the average time estimated by cladogenesis

338x190mm (96 x 96 DPI)

 Table 1. Hypotheses for classification of titi monkeys.

Hershkovitz (1988, 1990)	Kobayashi and Langguth (1999)	van Roosmalen et al. (2002)	Groves (2005)	Byrne et al., (2016)
<i>Callicebus donacophilus</i> group	<i>Callicebus donacophilus</i> group	Callicebus donacophilus group	Subgenus <i>Callicebus</i> <i>Callicebus</i> group	Genus Plecturocebus
C. d. donacophilus	C. modestus	C. modestus	C. donacophilus	P. modestus
C. d. pallescens	C. d. donacophilus	C. donacophilus	C. pallescens	P. donacophilus
C. oenanthe	C. d. pallescens	C. pallescens	C. oenanthe	P. pallescens
C. olallae	C. olallae	C. oenanthe	C. olallae	P. oenanthe
		C. olallae		P. olallae
Callicebus moloch group C. moloch	Callicebus moloch group C. moloch	<i>Callicebus moloch</i> group <i>C. moloch</i>	<i>Callicebus moloch</i> group <i>C. moloch</i>	P. moloch P. cinerascens P. brunneus
C. cinerascens	C. cinerascens	C. cinerascens	C. cinerascens	P. hoffmannsi
C. cupreus cupreus	C. brunneus	C. brunneus	C. brunneus	P. baptista
C. c. discolor	C. hoffmannsi hoffmannsi	C. hoffmannsi	C. hoffmannsi	P. bernhardi
C. c. ornatos	C. h. baptista	C. baptista	C. baptista	P. cupreus
C. caligatus		C. bernhardi	C. bernhardi	P. caligatus
C. brunneus				P. discolor
C. hoffmannsi hoffmannsi C. h. baptista	<i>Callicebus cupreus</i> group <i>C. c. cupreus</i>	<i>Callicebus cupreus</i> group <i>C. cupreus</i>	<i>Callicebus cupreus</i> group <i>C. cupreus</i>	P. ornatos P. dubius
C. dubius	C. c. discolor	C. caligatus	C. caligatus	P. stephennashi
C. personatus personatus	C. ornatos	C. discolor	C. discolor	P. aureipalatii
C. p. melanochir		C. ornatos	C. ornatos	P. toppini

p. nigrifrons		C. dubius	C. dubius	P. urubambensis
p. barbarabrownae		C. stephennashi	C. stephennashi	P. miltoni
<i>llicebus modestus</i> group			Callicebus modestus group	P. vieirai
modestus			C. modestus	P. caquetensis
	<i>Callicebus personatus</i> group <i>C. personatus</i>	<i>Callicebus personatus</i> group <i>C. personatus</i>	<i>Callicebus personatus</i> group <i>C. personatus</i>	Genus Callicebus C. personatus
	C. melanochir	C. melanochir	C. melanochir	C. melanochir
	C. nigrifrons	C. nigrifrons	C. nigrifrons	C. nigrifrons
	C. barbarabrownae	C. barbarabrownae	C. barbarabrownae	C. barbarabrownae
	C. coimbrai	C. coimbrai	C. coimbrai	C. coimbrai
<i>llicebus torquatus</i> group t. torquatus	<i>Callicebus torquatus</i> group <i>C. t. torquatus</i>	<i>Callicebus torquatus</i> group <i>C. torquatus</i>	<i>Callicebus torquatus</i> group <i>C. torquatus</i>	Genus <i>Cheracebus C. torquatus</i>
t. lugens	C. t. lugens	C. lugens	C. lugens	C. lugens
t. lucifer	C. t. lucifer	C. lucifer	C. lucifer	C. lucifer
t. purinus	C. t. purinus	C. purinus	C. purinus	C. purinus
t. regulus	C. t. regulus	C. regulus	C. regulus	C. regulus
t. medemi	C. t. medemi	C. medemi	C. medemi	C. medemi
i. medemi		C. medemi	C. medemi	C. meden

 Table 2. Samples used in the present study and their respective codes, origins and locations.

Specie	Code	Origin	Locality
Cheracebus torquatus	JPB81	INPA	Mandiquie, right bank of river Negro, Amazonas, Brazil
Cheracebus lugens	JPB119	INPA	Marari, left bank of river Negro, Amazonas, Brazil
Cheracebus lugens	JPB124	INPA	Igarapé Anta, left bank of river Negro, Amazonas, Brazil
Cheracebus lugens	JPB136	INPA	Igarapé Cuieiras, left bank of river Negro, Amazonas, Brazil
Cheracebus lugens	CTGAM733	UFAM	Left bank of river Japurá, Amazonas, Brazil
Cheracebus lugens	CTGAM734	UFAM	Left bank of river Rio Japurá, Amazonas, Brazil
Cheracebus lugens	CTGAM753	UFAM	Left bank of river Japurá, Amazonas, Brazil
Cheracebus purinus	CTGAM154	UFAM	Rebio Abufari, left bank of river Purus, Amazonas, Brazil
Cheracebus purinus	CTGAM195	UFAM	Rebio Abufari, left bank of river Purus, Amazonas, Brazil
Cheracebus purinus	CTGAM209	UFAM	Rebio Abufari, left bank of river Purus, Amazonas, Brazil
Cheracebus lucifer	CTGAM703	UFAM	Right bank of river Rio Japurá, Amazonas, Brazil
Cheracebus lucifer	CTGAM726	UFAM	Right bank of river Rio Japurá, Amazonas, Brazil
Cheracebus lucifer	CTGAM727	UFAM	Right bank of river Rio Japurá, Amazonas, Brazil
Cheracebus regulus	JT053	UFPA	Right bank of river Jutaí, Amazonas, Brazil
Cheracebus regulus	JT054	UFPA	Right bank of river Jutaí, Amazonas, Brazil
Cheracebus regulus	JT061	UFPA	Right bank of river Jutaí, Amazonas, Brazil
Cheracebus regulus	JT071	UFPA	Right bank of river Jutaí, Amazonas, Brazil
Plecturocebus moloch	Cmo 1690	UFPA	Left bank of river Tocantins, Amazonas, Brazil
Plecturocebus brunneus	Cbr 2220	UFPA	Right bank of river Jamari, Rondonia, Brazil
Plecturocebus cupreus	Ccu 4986	UFPA	Left bank of river Madeira, Amazonas, Brazil
Callicebus melanochir	melan 2329	CNRJ	Eunápolis, Bahia, Brazil
Callicebus personatus	perso 2466	CNRJ	Aracruz, Espirito Santo, Brazil
Callicebus nigrifrons	04	PUC	Minas Gerais, Brazil
Chiropotes albinasus	CTGAM5663	UFPA	Right bank of river Tapajos

Cacajao calvus	CTGAM5666	UFPA	No information	
Pithecia pithecia	Pit 22	UFPA	Left bank of river Jari, Amapá, Brasil	

Table 3. Molecular markers used in this study, with their annealing temperatures and references.

Molecular markers	Primer forward Primer reverse T		Annealing Temperature	Reference
		Mitochondrial		
16 S	5' TGGACTATGAGTTGAGCAGAC 3'	5' TATGCTAATTACTCTTCTTGGGC 3'	58 °C	Palumbi et al. (1991)
COI	5' TCCATTACCAGGCCAGCTAG 3'	5' GAACTTGCTGGCTTTCATATC 3'	45 °C	Ward et al. (2005)
CYT b	5' GCACCTACCCACGAAAAGAA 3'	5' ACATTGCCTCTGCAAATTGA 3'	60 °C	Carneiro et al. (2016)
		Nuclear		
Pith_Alu1D_24	5' AAGCCATAACTCCATTACCAAA 3' /~	5' AGATTCTGGTCCCAAGTCCA 3'	60 ° C	Ray et al. (2005)
Pith_Alu1D_26	5' GTTTCATGAGGGCAGAACCT 3'	5' TCTGCACTTTGCAGCTGTTT 3'	60 °C	Ray et al. (2005)
Pith_Alu1D_27	5' AACCACATTTTGACTGTATGCTG 3'	5' CCCTTCAATGACTCCCTTCA 3'	57 °C	Ray et al. (2005)
Pith_Alu1D_30	5' CATGGGACATGCACTTTTTG 3'	5' AACAYCTTYCATCAACCTYTGAA 3'	61 °C	Ray et al. (2005)
Titi_1DF2_39	5'AACAGAGTTGGCCGTTCATCT 3'	5' GTCCTGTTCAAGTCAGCTACGTTG 3'	54 °C	Ray et al. (2005)
Pith_Alu1D_84	5' CTGCTACGTCAGACGTCGTAC 3'	5' CTGCTAGCACAAGCTAGTCGA 3'	62 °C	Ray et al. (2005)
Pitheciidae2	5' CAGCCAAAGGAGTGCTTCAC 3'	5' CTAAATGGTGYCCCATAAGG 3'	58 °C	Osterholz et al. (2009)
Pitheciidae3	5' CGGGGGCCTGATTACTAAAA 3'	5' ACCAAAYATAGGCCTCRAATT 3'	53 °C	Osterholz et al. (2009)
Pitheciidae4	5' GCTGGACTATTCCTTGCCATC 3'	5' CAGGCATCCTGTTTGGAATTA 3'	56 °C	Osterholz et al. (2009)
DENND5A1	5' CCAGAGTTATCATGGCCAATC 3'	5' GTACCAAGCAAGAAGCTGGG 3'	62 °C	Perelman et al. (2011)
SIM1	5' GACCTACCGCAGAAAATTCG 3'	5' CTGGGGCTCATCATTCATTC 3'	60 °C	Perelman et al. (2011)
ZFX	5' TGGAATGAAATCCCTCAAATA 3'	5' ATGTCCATCAGGGCCAATAAT 3'	52 °C	Perelman et al. (2011)
RAG1	5' GCTTTGATGGACATGGAAGAAGACAT 3'	5' GAGCCATCCCTCTCAATAATTTCAGG 3'	47 °C	Teeling et al. (2000)

Ium	ny i micendae.										
		1	2	3	4	5	6	7	8	9	10
1	Cheracebus lugens *										
2	Cheracebus lugens +	1.47									
3	Cheracebus torquatus	1.67	1.73								
4	Cheracebus regulus	2.80	3.27	2.67							
5	Cheracebus purinus	3.39	4.00	3.38	0.97						
6	Cheracebus lucifer	3.59	3.79	3.18	2.01	2.92					
7	Plecturocebus	13.7	13.3	12.6	13.1	13.9	13.2				
8	Callicebus	12.6	12.4	12.3	12.7	13.3	12.9	13.0			
9	Chiropotes	22.4	22.3	21.6	22.1	22.6	22.7	21.8	22.4		
10	Cacajao	21.1	20.9	20.3	20.8	21.3	21.4	22.0	21.1	12.7	
11	Pithecia	27.6	27.4	25.3	25.2	24.9	26.7	25.7	25.9	17.9	16.2

Table 4. Genetic distance between species of the genus *Cheracebus* and taxa of the family Pitheciidae.

* and + mean left and right bank of the river Negro, respectively.

John Wiley & Sons

Table S1. M	larkers and	their a	access	numbers	in	GenBank.
-------------	-------------	---------	--------	---------	----	----------

Marker	Access number range					
ZFX	MT011236	MT011248				
SIM 1	MT011223	MT011235				
Alu_Pitheciidae4	MT011205	MT011222				
Alu_Pitheciidae3	MT011186	MT011204				
Alu_Pitheciidae2	MT011167	MT011185				
Pith_Alu1D_84	MT011148	MT011166				
Titi_1DF2_39	MT011128	MT011147				
Pith_Alu1D_30	MT011113	MT011127				
Pith_Alu1D_27	MT011092	MT011112				
Cytochrome b	MN998472	MN998495				
rRNA 16S	MT002404	MT002424				
Cytochrome oxidase I	MN998547	MN998570				
Pith Alu1D 26	MN998449	MN998471				
Pith_Alu1D_24	MN998428	MN998448				
RAG 1	MN998418	MN998427				

<u>14</u>______

Number of Partitions	Partition names	Evolutionary Models	Numbers of sites
	All molecular markers		
	Cyt B_pos1, 16S, SIM1, RAG1_pos2, Cyt		
	B_pos2, COI_pos2, Alu84, RAG1_pos3,		
Ι	Alu27, PITH3, RAG1_pos1, DENND5A,	TRN+G	9191
	COI_pos1, Alu39, PITH2, Alu30, Alu26,		
	ZFX, PITH4, Alu24		
II	COI_pos3, CYTB_pos3	TRN+G	564
	Only nuclear markers		
	Alu24, Alu26, Alu27, Alu30, Alu39, Alu84,		
T	DENND5A, PITH2, PITH3, PITH4,	HKY+G	7574
1	RAG1_pos1, RAG1_pos2, RAG1_pos3,		7371
	SIM1, ZFX		
	Only mitochondrials markers		
<u> </u>	16S, COI_pos1, Cyt B_pos1	GTR+G	1052
<u>II</u>	COI_pos2, Cyt B_pos2	HKY+I	565
III	COI_pos3, Cyt B_pos3	TRN+G	564
	Individual molecular markers		
	16S	GTR+G	486
	COI	GTR+G	623
	Cyt B	GTR+I	1072
	Alu24	GTR	330
	Alu26	GTR	390
	Alu27	GTR+G	636
	Alu30	GTR	693
	Alu39	GTR	431
	Alu84	GTR	480
	DENND5A	GTR	637
	PITH2	GTR	179
	PITH3	GTR	537
	PITH4	GTR	491
	RAG1	GTR+I	1030
	SIM1	GTR	603
	ZFX	GTR	809

John Wiley & Sons

 Table S2. Data partitioning scheme, markers and respective evolutionary models.

1	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
17	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
20	
50	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
/1	
40	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
52	
53	
54	
55	

Table S3. Genetic distance of nuclear data between species of the genus Cheracebus and
taxa of the family Pitheciidae.

		1	2	3	4	5	6	7	8	9	10
1	Cheracebus lugens *										
2	Cheracebus lugens +	0.26									
3	Cheracebus torquatus	0.37	0.30								
4	Cheracebus regulus	1.22	0.40	0.45							
5	Cheracebus purinus	0.84	0.65	0.48	0.27						
6	Cheracebus lucifer	1.13	0.27	0.47	0.38	0.55					
7	Plecturocebus	2.71	3.24	1.47	3.58	2.60	3.56				
8	Callicebus	2.95	3.47	1.59	3.76	2.75	3.84	1.64			
9	Chiropotes	4.67	6.63	4.05	6.47	4.33	6.47	4.40	4.95		
10	Cacajao	4.07	6.92	4.86	6.62	3.89	6.52	3.90	4.16	1.79	
11	Pithecia	4.22	6.18	4.48	6.44	4.19	6.31	4.13	4.88	2.25	1.75

* and + mean left and right bank of the river Negro, respectively.

2	
3	
4	
5	
6	
0	
7	
Q	
0	
9	
10	
11	
11	
12	
12	
15	
14	
15	
10	
10	
17	
18	
10	
19	
20	
21	
21	
22	
22	
25	
24	
25	
20	
26	
27	
20	
20	
29	
30	
20	
31	
32	
22	
33	
34	
35	
22	
36	
37	
20	
38	
39	
10	
40	
41	
42	
42	
43	
44	
45	
45	
46	
17	
4/	
48	
10	

Table S4. Genetic distance of mitochondrial data between species of the genus *Cheracebus* and taxa of the family Pitheciidae

		1	2	3	4	5	6	7	8	9	10
1	Cheracebus lugens *										
2	Cheracebus lugens +	1.89									
3	Cheracebus torquatus	1.91	1.56								
4	Cheracebus regulus	3.54	3.32	3.50							
5	Cheracebus purinus	3.90	3.63	3.56	1.16						
6	Cheracebus lucifer	4.25	3.42	3.36	3.06	3.12					
7	Plecturocebus	12.40	12.39	13.10	11.80	12.21	13.41				
8	Callicebus	12.22	12.57	13.22	11.89	12.44	13.26	12.13			
9	Chiropotes	17.99	18.54	20.14	17.94	18.68	19.83	18.59	18.74		
10	Cacajao	17.15	17.26	18.54	16.62	17.40	18.36	18.38	18.03	10.26	
11	Pithecia	18.04	18.68	20.13	18.36	18.42	20.14	19.25	18.66	13.27	12.95

John Wiley & Sons

Dear Dr. Carneiro,

I thank you for submitting your manuscript AJP-19-0267 entitled "Phylogenetic relationships in the genus <i>Cheracebus</i> (Callicebinae, Pitheciidae)" for review and publication in the American Journal of Primatology. In light of my reading of your paper, as well as the evaluation of your Review Editor and the comments of the external reviewers, I am pleased to inform you that your paper is accepted pending minor revisions.

In addition to addressing the comments below, please include information regarding the ethical approvals for collection of the subject specimens. Specifically, please confirm both that the protocols were approved by the respective institutions, and that the research complied with the American Society of Primatologists Ethical Principles for the Treatment of Non-Human Primates.

R= We incorporated in the manuscript the license number of the collection and that the research followed the ethical principles of American Society of Primatologists.

When submitting your revised manuscript, please provide an itemized response to reviewer(s) comments in the space labeled "Response to Decision Letter." Please note that if you copy and paste your response from a separate document, bold, italicized, and colored text from the original document will appear as black, upright/roman text.

Please make these revisions within two months or less from the date of this letter.

You can upload your revised manuscript and submit it through your Author Center. Log into <u>https://mc.manuscriptcentral.com/ajp</u> and enter your Author Center, where you will find your manuscript title listed under "Manuscripts with Decisions".

IMPORTANT: We have your original files. When submitting (uploading) your revised manuscript, please delete the file(s) that you wish to replace and then upload the revised file(s).

Your article cannot be published until the corresponding author has signed the appropriate license agreement. Once the manuscript is accepted, the corresponding author will receive an email from Wiley's Author Services system which will ask them to log in and will present them with the appropriate license for completion.

We thank you for submitting your work to the American Journal of Primatology, and look forward to receiving your revised manuscript.

Sincerely,

Dr. Karen Bales Editor-in-Chief, American Journal of Primatology ajpeditorialoffice@wiley.com

EDITOR COMMENTS TO AUTHORS:

Review Editor: Vigilant, Linda

Comments to the Author:

The authors present a focused study on the phylogenetic relationships of the titi monkeys that should be of interest to readers of AJP with a particular interest in primate phylogenies. I find it well-written, but concur with the reviewers that further experimental/analytical detail is needed and also that it is not acceptable to concatenate mitochondrial and nuclear sequences for analyses. Please see the review for detailed suggestions and I look forward to seeing a revised version of the manuscript soon.

REVIEWER COMMENTS TO AUTHORS:

Reviewing: 1

Comments to the Author

The authors investigate phylogenetic relationships among 5 of the 6 species of Cheracebus. The authors can show that Cheracebus is indeed monophyletic and the branching pattern among the species is well resolved. The manuscript is well written, but some rewording is required. Methods and Results are well presented, but I am a little bit concerned about the fact that all analyses are done with a concatenated dataset; thus I recommed to redo some of the analyses.

R= We performed analyzes of mitochondrial and nuclear data separately. Additionally, we carried out a coalescent analysis following the suggestion of the reviewer 2.

Major points:

1. you use a concatenated dataset for all analyses. At least mitochondrial and nuclear data should be analysed separately; this concerns the phylogenetic trees, the dating as well as the genetic distance calculation. Particulary for the distance calculation, one would expect much larger differences in mtDNA compared to nuclear DNA. Trees based on the combined dataset can be presented as main figures and the individual trees in the supplement. **R= We performed analyzes of mitochondrial and nuclear data separately, the trees were included in the supplementary files. We also perform genetic distance analysis with mitochondrial and nuclear data separately.**

2. please provide more information about the calibration points for dating: what settings were used in BEAST? Are the 2 points based on fossils, previous molecular dating, etc.? please give here more information. Probably also good to include additional NWM genera and use more fossil-based calibrations

2	
3	
4	
5	
2	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
2.J ∧ ^	
24 2-	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
55	
34	
35	
36	
37	
27	
38	
39	
40	
41	
/ı∩	
42	
43	
44	
45	
46	
-TU 17	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	
00	

R= We used a fossil and a calibration based on previous study. We rewrote this part of the text and include the appropriate reference to clarify.

3. I can not find any information about the applied substitution models for the overall dataset or individual loci

R= We made a table that shows all the evolutionary models used in this study.

Minor points:

- 1. Please check the numbers of your affiliations; they are not in order
- 2. I32 and I97: based on DNA sequencing of 16
- 3. I44: 13 million years ago
- 4. 181: which placed purinus in the
- 5. l91: Roosmalen et al. (2002)
- 6. I113: Total genomic DNA
- 7. I119: 30ng of genomic DNA
- 8. I122, I125 and Table3: annealing instead of hybridizing/hybridization
- 9. I127: ethanol instead of alcohol; ... were run with the Big Dye
- 10. I138: The ML trees
- 11. I140-2: with two independent Markov chain Monte Carlo (MCMC) runs, with 500,000 generations, and trees and parameters sampled every 5000 generations.
- 12. I144: estimated with MEGA (xxx) (Tamura et al. 2013).; add also what version was used
- 13. I147: abbreviation Ma is not explained before
- 14. I151: LogCombiner v.1.8.3 and TreeAnnotator
- 15. I163: the clade composed of
- 16. I191: remove bracket after Callicebus
- 17. I200: which is consistent eith the morphological data
- 18. Figures 1 and 2: both can be lumped into one
- 19. Table1: check arrangements in the Hershkovitz (1990) column
- 20. Table2: Genebank accession number sare missing; could be added to

Table 2 or somewhere else

21. Table3: Mitochondrial instead of Mitochondrials; reference are not in reference list; emty space in reverse primer for RAG1; annealing NOT hybridization

R= Thanks for the corrections, all minor points were corrected.

Reviewing: 2

Comments to the Author

This work is a straightforward analysis of the phylogeny of a new genus of titi monkeys. The authors set out to test the monophyly of the newly proposed Cheracebus genus of neotropical primates. Using a larger sampling of loci, they confirmed earlier taxonomic proposals. Overall, their results are convincing, and the authors avoided going into speculations regarding the biogeography and causes of Cheracebus diversification. Because the subject of the manuscript is rather restricted, it will be of interest mainly to primatologists working on neotropical primate systematics. However, I think this is not a drawback. The only effective shortcoming is the absence of Cheracebus medemi sequences, which prevented the authors to make a de facto evaluation of the monophyly of the genus.

The authors should correct/clarify the following points:

- The authors should justify the concatenation of all loci into a single supergene instead of analyzing them independently. Although it is expected that mitochondrial genes will share the same evolutionary history, nuclear loci may have different histories if they are located either in different chromosomes or distantly enough in the same chromosome (a measure that will depend on the recombination rate). To make their work richer - and to further corroborate their findings - I suggest the authors to run a coalescent-based phylogenetic inference. You can try fast methods such as ASTRAL. There is no need to run a full coalescent inference in BEST, *BEAST or BPP (this will take many days and parameters will likely fail to converge). It might be the case that the coalescent-based phylogeny will be topologically identical to ML/BI. This is fine, because at

least the methodological section will be improved: it is reasonable to employ such methods particularly when dealing with shallow divergences. R= We performed analyzes of mitochondrial and nuclear data separately. Additionally, we carried out a coalescent analysis ASTRAL III.

Figure 2 should be corrected (text in Portuguese in figure).
 R= corriged. A new map was made

- The Methods section needs to be expanded. Please provide detailed information on the model of nucleotide substitution used in ML, BI and BEAST analyses.

R= We made a table that shows all the evolutionary models used in this study.

 Which node was calibrated by "the pitheciine fossil, Nuciruptor rubricae (Meldrum & Kay, 1997), dated to 14812.4–12.8 Ma." Was it the root node?
 R= We used a fossil and a calibration based on previous study. We rewrote this part of the text and include the appropriate reference to clarify.

- "The 16 nuclear and mitochondrial markers provided a database of 9755 base pairs (bps), 2300 bps from the mitochondrial sequences, and 7455 bps from the nuclear sequence". An alignment of 9755 base pairs (bps)?

R= Yes, it is the alignment of the concatenated loci. We corrected that part of the text, the complete alignment actually has 9427 base pairs.

- "All the species were identified as monophyletic". I suggest using "All allelic diversity within species was reciprocally monophyletic".

R= We made the suggested change

- "is virtually the same as that of the first diversification within the callicebines" --> close to the first?

R= there was a mistake. We wanted to refer to another node. The Split of *Pithecia* from the other pithecineos (*Cacajao* and *Chiropotes*).

- "are the species with the shortest divergence time" --> earliest divergence time?

R= We were referring to the most recent speculations within the genus Cheracebus. We rewrote to clarify

- Please clarify what you mean by "patterns of genetic drift".

R= We referred to random genetic drift events in different species. But we decided to remove that part of the text

John Wiley & Sons