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"There are as many species as the infinite being created diverse forms in the 
beginning, which, following the laws of generation, produced many others, 
but always similar to them: therefore, there are as many species as we have 

different structures before us today."  
 

~ Carl Linnaeus ~ 
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Elucidating cryptic diversity in East African frogs: the case of 
Arthroleptis francei Loveridge, 1953. 

vi. Abstract  
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Detailed information on the diversity of species and their distributions is crucial for 

the implementation of useful conservation measures. Here, I focus on the 

Afromontane region of Malawi and Mozambique, and use molecular techniques, 

environmental inferences and species delimitation methods to clarify the 

phylogenetic position, existing phylogenetic diversity and distribution of the direct-

developing leaf litter frog Arthroleptis francei, a species which is currently listed as 

Vulnerable (VU) by the IUCN. This study is based on already available as well as 

newly collected specimens (n = 52), and also serves to test wider biogeographic 

hypotheses for Afromontane isolates in Mozambique (Mount Mabu, Mount Socone, 

Mount Chiperone, Mount Inago, Mount Lico and Mount Namuli) and Malawi (Mount 

Mulanje). The derived phylogenetic trees were based on sequence data across one 

nuclear (rag-1, 629bp) and two mitochondrial (12S and 16S, 352bp and 455bp, 

respectively) genes, and suggest the presence of several cryptic taxa linked to 

mountain clusters. The Bayesian analysis yielded putative species within the 

mitochondrial gene (16S). Mount Inago diverges from the larger clade with a 

posterior probability of 1.  This larger clade can further be split into five smaller 

clades per mountain however, Mounts Lico and Chiperone form a clade dispite their 

vast geographic distance.  Mount Mabu appears occupied by two separate taxa, 

which were found in sympatry within the same locality. The putative distinct taxa 

could however not be separated with morphometric means, or through colouration. 

A species distribution model based on environmental data suggests the possible 

presence of A. francei further atop the explored mountains, as well as on smaller 

outcrops nearby. Details of the first recorded call of A. francei are presented. I also 

combined the phylogeny of evolutionary lineages and geographic distribution of the 

A. francei complex to estimate the weighted endemism, phylogenetic endemism, 

phylogenetic diversity and species richness. Endemism was mainly average whilst 

species richness was high in seven hotspots. The newly acquired information 

contributes to a better understanding of the diversity within A. francei and will 

hopefully lead to a revision of conservation management practices and 

recommendations.  
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1. Introduction 

Here, I focus on the Afromontane region of Malawi and Mozambique, and use molecular 

techniques, environmental inferences and species delimitation methods to clarify the 

phylogenetic position, phylogenetic endemism, existing phylogenetic diversity and 

distribution of the direct-developing leaf litter frog Arthroleptis francei, a species which is 

currently listed as Vulnerable (VU) by the IUCN. The study is based on already available as 

well as newly collected specimens (n = 52), and also serves to test wider biogeographic 

hypotheses for Afromontane isolates in Mozambique (Mount Mabu, Mount Socone, Mount 

Chiperone, Mount Inago, Mount Lico and Mount Namuli) and Malawi (Mount Mulanje). The 

derived phylogenetic trees were based on sequence data across one nuclear (rag-1, 629bp) 

and two mitochondrial (12S and 16S, 352bp and 455bp, respectively) genes, and suggest the 

presence of several cryptic taxa linked to mountain clusters.  

The Bayesian phylogenetic analysis, species delimitation and haplotype network analysis 

jointly suggest that A. francei comprises of cryptic taxa distributed across the inselbergs of 

Southern Malawi and Mozambique, including a case of a divergence at the same location, 

Mount Mabu.  The species delimitation model identifies all locations as well supported 

lineages of distinct species except for the populations located in Mount Socone, Inago and 

Namuli.  The molecular analyses uncovered that speciation events have likely occurred on 

each mountain.  There is evidence for three allopatric speciation events between Mount 

Lico and Mount Chiperone, between Mount Inago, Mount Socone and Mount Namuli and 

between Mount Mulanje.  Interestingly, the individuals on Mount Mabu indicate potential 

sympatric speciation as they were located in the same geographic coordinates.   

The putative separate taxa could however not be separated by morphometric means, 

bioacoustically or through skin colouration. This is mainly due to the small sample sizes and 

is an area for further research.  A species distribution model based on environmental data 

suggests the possible presence of A. francei further atop the explored mountains, as well as 

atop smaller outcrops on Mount Ribáuè, Mozambique  and the Zomba mountain range in 

Malawi amongst others. Details of the first recorded call of A. francei are presented. The 

newly acquired information contributes to a better understanding of the diversity within A. 

francei, and will hopefully lead to a revision of conservation management practices and 

recommendations.  
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1.2. Paleogeography of Southern Africa 

The continent of Africa is home to a diverse and rich array of vertebrate communities that 

have undergone substantial changes. During the Paleogene (ca. 66.0 – 23.03 ma) many 

species assemblages differed from those of the present day (Kappelman et al., 2003) due to 

significant geological and climatic events.  An understanding of the current biogeographical 

patterns of the African fauna can be revealed by an evaluation of species’ evolutionary 

histories, and how this corresponds to shifting palaeoenvironmental conditions (Tolley, 

Chase and Forest, 2008). Evolutionary relationships allow us to reconstruct the 

biogeographic history of regions using either single lineages (such as the brevicipitid frogs in 

east Africa, Loader et al., 2014), or entire species assemblages (for example those presented 

by Barratt et al. 2018).  

There are some key events in the biogeographic history of the African continent that are 

believed to have had strong influences on the current biota. It is hypothesised that lineage 

diversification in southern African vertebrates were impacted by climatic shifts, particularly 

in the Pliocene era (5.3 – 2.6 ma; Bauer and Lamb, 2005; Lee-Thorp, Sponheimer and Luyt, 

2007).  Furthermore, the topography of Africa went through a major change in the late 

Neogene (23ma to 2.6ma), and during the Eocene-Oligocene (33.9 ma) the Eastern branch 

of the East African Rift System (EARS) began to form.  This range starts in southern Ethiopia, 

intersecting the north of Kenya at the Turkana depression to the Aberdare range which is 

located to the south west and ending in the north of Tanzania where Mount Kilimanjaro is 

located (Partridge, 1997; Sepulchre et al., 2006; Gordon et al., 2012).  The western branch 

of the EARS formed the central Tanganyika Basin in the middle to late Miocene era (10ma – 

12ma) where more recently (5ma – 2ma) the Tanganyika and Malawian rifts formed.  These 

geological processes impacted species distributions and the types of assemblages that 

diversified or became more or less prominent. The Eastern Arc (EA) and the Southern Rift 

mountains which run from the Taita Hills in Kenya to southern Tanzania (Gordon et al., 2012) 

in East Africa are an important geological feature that formed and influenced the 

diversification of rainforest species which became restricted to these mountains – refuges 

for rainforest habitats.  The area is recognised as a hotspot of high species richness – now 

called the Eastern Afromontane Biodiversity Hotspot (EABH). This region continued to 
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change from the middle to the late Miocene period (23ma to 5.3ma) from the Tanganyika 

basin to Mount Mulanje (3002m asl.) in the south of Malawi (Sepulchre et al., 2006; Kaspar, 

Prömmel and Cubasch, 2010).  Landscapes were evolving, and further mountains such as 

the ones located in northern Mozambique were formed. These isolated mountains extend 

eastwards and southwards from Mount Mulanje in Malawi and into Mozambique, such as 

Mounts Gorongosa, Mabu, Namuli, Chiperone amongst others, including the Mafinga 

mountains that border Zambia and Malawi (Gordon et al., 2012).  These have become 

significant areas for biodiversity. The EABH is formed of many different mountains of varying 

geological origin but have likely been connected at various times, linking mountains in 

Ethiopia, Kenya, Tanzania, Rwanda, Malawi, Mozambique and Zimbabwe at various times 

(Gordon et al., 2012, Figure 1). It is also likely that the EABH has intermittently been 

connected to the coastal forests of East Africa during wetter phases where forests have 

expanded across mountains and to lower elevations, such as the coastal forests of East 

Africa. 

These changes in the topography influenced the climatic regime of eastern and southern 

Africa (Kaspar, Prömmel and Cubasch, 2010), with forests that once dominated the whole 

East African landscape becoming mainly restricted to mountains and coastal regions 

(Griffiths, 2011).  Global climate also influenced the distribution of forests in Africa. It was 

in the mid Miocene when forests started to shrink due to changes in precipitation resulting 

from global cooling (Lovett, Midgley and Barnard, 2005; Sepulchre et al., 2006; Kissling et 

al., 2012). The uplift of the Tibetan Plateau led to intensified monsoons, continental 

aridification and increased erosion also in Africa (Dupont-Nivet et al., 2007; Gupta et al., 

2004).  With the decline of forests, grasslands began to dominate the landscape, resulting 

in poor connectivity between the forests (Kissling et al., 2012).  More recently, humans have 

converted a large proportion of forests into croplands (Gordon et al., 2012; Ryan, Berry and 

Joshi, 2014; Adole, Dash and Atkinson, 2018).   

The climate and vegetation of mainland Southern Africa are predominantly influenced by 

oceanic currents: the Benguela current in the south west of Africa in the Atlantic Ocean, and 

the Agulhas current south east of Africa in the Indian Ocean (Figure1).  South pole air 

circulation in the southern ocean coupled with the cool Benguela current drove the 
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aridification in the south west region during the Miocene (Neumann and Bamford, 2015).  

South Atlantic winter rainfall in the form of cyclones, prevailing winds with high pressure 

systems and seasonal shifts determine the climatic conditions in southern Africa.  These 

climatic conditions move northwards in the winter months (Sciscio et al., 2013), and the 

Great Escarpment (GE in Figure 1) and the warm Agulhas current cast a rain shadow over 

East Africa, influencing the moist environmental conditions (Neumann and Bamford, 2015).  

This indicates that temporal and spatial climate dynamics and landform evolution have 

played a large part of the distribution of both flora and fauna.   

1.3. Biogeography and Speciation 

 
Macroecologists and biogeographers particularly have an interest in partitioning 

geographical regions, large or small, into meaningful biological units.  This interest dates 

back to A. R. Wallace more than 100 years ago, when he proposed the evaluation of the 

world’s zoogeographical expanses (Rueda, Rodríguez and Hawkins, 2013).  Early 

biogeographical regions were almost entirely based on the knowledge researchers had 

gained on species distributions, such as those proposed by Wallace.  Current studies 

enhance past knowledge with latest techniques by information provided on digital 

databases coupled with various laboratory and statistical methods.  Nevertheless, 

whichever method is used, an assemblage of species can still be created for a determined 

biogeographic area, and, more than likely, the species would share this distribution with 

others of similar nature (Carstensen et al., 2013).  Carstensen et al. (2013) refer to 

biogeographic regions as operational species pools which hold clues to the geographic 

distribution in response to biological or physiological influences.   

The principal aim of biogeographic studies is to examine how the environment, and its 

changes, influences species diversification. For example, are closely related species found 

on two adjacent mountains the product of an ancient fragmentation of these two mountain 

areas or some other process? To address this question, we need to understand something 

about both the geology of the mountains (the “geography” in biogeography) and the timing 

of diversification/speciation (the “bio” in biogeography). 
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Figure 1. Biodiversity hotspots of sub-Saharan Africa:  EABR – East Afromontane Biodiversity Region, SKR – Succulent 
Karoo Region, CFR – Cape Floristic Region, MPA – Maputa-Pondoland-Albany, CFEA -Coastal Forest of East Africa, GE 
– Great Escarpment. DP shows the direction of the plate movements to form the great rift valley which is partly shown 
on this map.  Green shades depict elevation where darker is greater and lighter was lower. Adapted from Nielsen et 
al., (2018).  
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Therefore, biogeography is the coupling of geographic and biological processes. Often, 

however, knowledge of one set of data is used to infer something about the biological or 

geographical processes. Different geographic processes often produce predictable 

outcomes in the evolutionary patterns of organisms.    

 

The fragmentation of once continuous habitat, caused by drying, climatic and vegetation 

changes, resulted in the creation of isolated refuges.  This is referred to as the refuge 

hypothesis, a term coined by Edward Forbes in 1846 and later by Charles Darwin (Mayr and 

O’Hara, 1986).  Analytical biogeography refers to traits of a species in response to the 

environment they inhabit, being behaviours, reproduction rates and dispersal methods.  

Ecological biogeography refers to how a species responds to the abiotic (physical) 

environment (soil, light, temperature, land formations, fire, water), and the biotic 

surroundings (parasites, predators, competition, disease, Huggett, 2004).  During periods of 

biotic and abiotic alterations, these changes resulted in the evolution of taxa in refuges such 

as isolated forests that were surrounded by savannah, followed by forest expansions due to 

increased precipitation.  Landscape changes are hypothesised to have driven vicariant 

evolution by fragmenting species distributions that were formerly continuous (Barratt et al., 

2018).  Closely related species arise from natural barriers such as rivers as recognised 

through the ‘river refuge hypothesis’ by Wallace (1852) on birds (Mayr & O’Hara, 1986; 

Voelker et al., 2013) and primates (Harcourt and Wood, 2012), or mountains (Park and 

Allaby, 2017; López et al., 2018).  The spatial partitioning of species across forested to non-

forested habitat in light of the vanishing of the original habitat is known as the ‘vanishing 

refuge hypothesis’ (Vanzolini and Williams, 1981).   

  

With these abiotic processes in mind, populations can become discontinuous, forming 

island-like, separated sub-populations becoming endemics to an area. Variations in 

phenotypes and genotypes are a result of these isolates and can lead to speciation.  

Speciation is the formation of new species through mechanisms that will maintain them and 

establish cohesive units of interbreeding individuals that retain a degree of individuality 

(Huggett, 2004).  Various scenarios will result in different speciation models: sympatric, 

allopatric, stasipatric, parapatric and peripatric.  Allopatric speciation is where a 

geographical barrier divides and isolates a population preventing gene flow.  Should this 
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barrier persist long enough, the two new populations will evolve into two new species.  

Peripatric speciation is similar to allopatric speciation, yet with the exclusion of a geographic 

barrier.  A small sub-set of populations disconnects from the original population, becoming 

isolated and evolving into a new species (e.g  Tanysiptera, the Paradise kingfishers of New 

Guinea; Mayr, 1942).  Parapatric speciation is a result of divergent evolution where two 

populations are living next to each other, and due to local adaptation natural selection 

eliminates between-population hybrids.  Sympatric speciation occurs in a geographical area 

where species overlap yet natural selection encourages reproduction isolation.  

 

Other land use changes have taken place due to anthropogenic factors, intensified 

agriculture practices, livestock (Newbold et al., 2017), infrastructure growth, urbanisation 

(Smith., et al, 2018) deforestation (charcoal industry), mining (Edwards et al., 2014) as well 

as natural processes (extreme weather and erosion, Sintayehu, 2018).  Over large temporal 

frames, with the influence of climatic conditions and land use changes, the phylogenetic 

relationships of organisms that have diversified and dispersed can help in identifying 

historical connectivity (Blackburn, 2008b).  Lineages from Africa are old, yet have 

successfully persevered alongside the evolving modern ones, which could be related to a 

number of biogeographic influences (Neumann and Bamford, 2015).   

 

With such influences, species become endemic to a specific area which can therefore 

threaten their existence.  Studies of for example endemic amphibian species within the 

Southern montane isolates are limited to Nothophryne baylissi, N. inagoensis and N. 

ribauensis (Conradie et al., 2018a).  However, both environmental and phylospatial data 

have not been considered to validate that they are endemic, only the genetic divergence 

and call differences between localities.  To conclude with certainty, the endemism requires 

a broad multi-level analysis considering phylogenetic endemism and species richness.  

Species richness (SR) as measured at the level of biodiversity, can be supplemented with 

phylogenetic information, which is based on branch lengths which connect each tip to the 

root of an evolutionary tree, to obtain a measure of phylogenetic diversity (PD: Faith, 1992).  

Later, Rosauer et al. (2009) enhanced the use of PD by combining it with weighted 

endemism (WE: Crisp et al., 2001) which results in phylogenetic endemism (PE) which 

indicates where considerable sections of PD are spatially restricted.  Because cryptic 
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diversity can be incorporated in PE, this measure  has gained momentum amongst macro 

ecologists and conservationists and studies within this area have increased (Rosauer and 

Jetz, 2015; Rosauer et al., 2016; Barratt et al., 2017).   Usually areas of high PE are found 

where geographically restricted relatives are few in numbers and close together on a 

phylogenetic tree.  These species are considered as important in a conservation setting 

because they indicate refugia where, over time, a large amount of evolutionary history has 

accumulated (Rosauer et al., 2009; Rosauer and Jetz, 2015).  Qualifying biodiversity loss is 

an urgent priority accompanied with explanations as to why some areas are richer in 

biodiversity than others, helping in prioritising conservation efforts.  Species endemism and 

high biodiversity at global and regional scales have been shown to correlate with current 

and historical climatic regimes and topography (Kissling et al., 2012), yet inclusive 

assessments are limited within biodiversity hotspots. 

 

1.4. Biodiversity Hotspots 

Biodiversity hotspots (BHs) were conceptualised to prioritise areas around the world where 

immediate attention is needed to alleviate biodiversity loss, and distribute funds 

accordingly. Myers et al. (2000) identified 25 biodiversity hotspots globally, as areas 

experiencing loss of habitat and having high concentrations of endemic plants and 

vertebrates.  For the biodiversity hotspot assessment criteria, 70% or more of the original 

habitat must have been lost and 0.5% of the world’s plant species, mainly consisting of 

vascular plants, must have been lost within an area.  Vertebrates exclude fishes due to 

insufficient data, and do not have to meet a global total as they act as a backup support for 

the assessment.   

 

Identifying hotspot areas aids in conservation planning to prevent the mass extinctions we 

are currently facing. This outlook aids in the prioritisation of locations where the greatest 

protection of species can be obtained for the amount of resources available.  Hotspot 

boundaries across the globe have been determined by areas sharing ‘biological 

commonalities’ from the smallest (New Caledonia, 526.7 km2) to the largest (Mesoamerica, 

138 437 km2) (Myers et al., 2000).  In Africa, one of the largest biodiversity hotspots is the 

Eastern Afromontane Hotspot EABR, Figure 1).  This hotspot spans more than one million 

km2, and comprises a) the Eastern Arc Mountains and Southern Rift, b) the Albertine Rift, 



Masters by Research 2020                                                                                 @00280579                                    

 18 

and c) the Ethiopian Highlands (Mittermeier et al., 2004). Of the hotspots mentioned, the 

Eastern Arc Mountains are ranked within the eight hottest globally, in terms of number of 

both plant and vertebrate endemics and endemics per area to habitat loss.   It is to the south 

of this region where the montane islands of southern Malawi and central Mozambique are 

found.  

 

1.5. Vegetation of the Southern Montane Islands  

Temperate, tropical and boreal forests are among the richest ecosystems in the world, 

covering an area of 30% of the land surface of the world of which 18% is found in Africa 

(FAO, 2016).  This vital habitat provides home to around 80% of the global terrestrial animals 

and plants, yet only 50% of the African fauna is found here (Aerts and Honnay, 2011).  

Central Africa is characterised by 90% of forest cover, whereas other representative 

numbers are 6% in Western Africa, 2.2% on the island of Madagascar, and 2.4% in Eastern 

Africa (Malhi et al., 2013).  African savannah is a dominant vegetation type in such areas 

(Eardley, Gikungu and Schwarz, 2009), accounting for over half of the coverage of the 

continent (Adole, Dash and Atkinson, 2018), with forests having an estimated area of 675 

million hectares, yet 7.4 million hectares have been lost since 1990 (FAO, 2016; Mucova et 

al., 2018).  With such rich and varied flora, the biodiversity in Africa is extremely diverse and 

home to more than 10% of fish, birds and plants, in addition to 6% of mammals and reptiles 

of the world (IUCN, 2019).    

 

The topography changes from the low-lying coastal region of eastern Mozambique to the 

west on the Southern Montane Islands of Mozambique and southern Malawi.  Much of the 

vegetation in the lowlands in this area has been shaped by extended and seasonal droughts, 

where hardy species form the iconic miombo woodlands dominate the landscape (e.g. 

Brachystegia spp., Julbernardia spp.).  Within this generally flat landscape lie scattered 

inselbergs, which are “steep-sided isolated hills rising relatively abruptly above gently 

sloping ground” (Young, 1972). These inselbergs are covered with different vegetation 

types, such as grasslands, heathlands and evergreen forests (Timberlake et al., 2007).  
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1.6. ‘Sky Islands’ 

The granite inselbergs in southern Malawi and the Zambezia province of Mozambique, also 

called ‘sky islands’, reach heights of 3000m asl. at Mount Mulanje and 2500m asl. at Mount 

Namuli respectively.  Many of these inselbergs are crowned with moist, evergreen forests 

(Bayliss et al., 2014) surrounded by miombo woodland (Timberlake et al., 2007).  These 

inselbergs are a result from millions of years of uplifts due to tectonic events and subsequent 

erosion, surrounded by areas of flat, dry and predominantly subsistence farmed land 

(Timberlake et al., 2007). They are commonly found at the southern point of Malawi near 

Mount Mulanje and extend eastwards into the west of Mozambique to form the Southern 

Montane Islands as seen in Figure 1.  This region forms an important link between the 

Coastal Forests of East Africa and the Eastern Arc Mountains and falls within the Eastern 

Afromontane Biodiversity Hotspot.   

Timberlake et al. (2007) compiled a list of vegetation on Mount Namuli, the second highest 

mountain in this region.  Depending on the altitude and composition, these moist forests 

can be separated into three categories: montane forest, medium-altitude forest and riverine 

forest, each with canopy, understory and forest floor layers with a wooded shrubby 

transitional zone.  A thick and slow degrading layer of leaf litter covers the forest floor.  

These delicate and rich habitats are the last remining evergreen forests in this region and 

are disappearing fast, mainly due to subsistence farming and illegal logging. Slash-and-burn 

practices undertaken by subsistence farmers, succession of native bracken (Pteridium 

aquilinum) on the barren land dominates after fires or after cultivated land has been left to 

naturally regenerate (personal observation).  This leads to habitat loss and has a 

catastrophic effect on the biodiversity of this region. 

1.7. Frogs of East Africa 

The tetrapod vertebrate class Amphibia comprises three modern groups: salamanders 

(Caudata), frogs (Anura) and caecilians (Gymnophiona).  According to the IUCN, amphibians 

are the most threatened vertebrates on earth, with 40% of species (predominantly 

terrestrial) classified as threatened with extinction (IUCN, 2019a).  In Sub-Saharan Africa, 

11.5% are for example jointly listed as threatened for Malawi and Mozambique.  Overall 

threats on a global scale can be linked to habitat loss and fragmentation (Funk et al., 2005; 



Masters by Research 2020                                                                                 @00280579                                    

 20 

Green, 2003), disease (Pounds et al., 2006; Stuart et al., 2004), and climate change (Courtois 

et al., 2016; Pounds et al., 2006; Stuart et al., 2004).  According to the IUCN (2019a), the 

threats to Sub-Saharan African amphibians are predominantly due to land use changes by 

agriculture practices, and the expansion of residential and commercial development (Tsinda 

et al., 2016).  The ranges of amphibians can be greatly reduced when their vital 

requirements become restricted, and fragmentation of their habitat has occurred 

(Cushman, 2006).  Local extinctions will result from the reduction of a species’ range within 

their distribution (Pocock et al., 2006).  The vulnerability of amphibians will depend on their 

response to occurring changes. This will involve habitat tracking of the required climatic 

conditions for survival, adaptation to new climatic conditions (i.e. niche evolution), 

phenotypic plasticity and an evolution of behaviours to maximise their existence (Sunday et 

al., 2014; Pacifici et al., 2015).   

 

Frogs are not uniformly distributed across Africa, and have their highest species richness in 

lowland forest (n = 575 species), savannah habitats (n = 528 species) and montane forests 

(n = 467 species) (IUCN, 2019).  These ecosystems consist of five macro-habitats for 

amphibians following du Preez & Carruthers (2017):  

- Endorheic systems are depressions in the land such as pans, pools, and ponds filled 

with rainwater or run off, often depleted by evaporation or absorption.  

- Riverine systems such as permanent rivers, dry riverbeds, flood plains, temporary 

streams, perennial streams and mountain torrents. 

- Lacustrine systems are large bodies of water, predominantly permanent such as 

manmade dams and natural lakes. 

- Palustrine systems are shallow marshland with a no greater depth than 2m, such as 

vleis (marshy, grass covered wetland), perched wetland and inundated grassland 

- Terrestrial systems with no standing, permanent or semi-permanent water bodies 

such as a forest floor, rocky outcrops, sand dunes, open fynbos and open grasslands. 

 

Amphibians generally exhibit three main different reproductive modes, with 85% of species 

being egg laying, 10% direct developers and 1% live bearing (Franco et al., 2008).  For direct 

development, reproduction takes place in terrestrial areas without direct access to water 

bodies (McDiarmid and Altig, 1999).  Tadpole development is completed within the egg, 
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from which miniature forms of the adult emerge (Altig and Johnston, 1989).  This breeding 

mode relies on moist environmental conditions to enable the survival of small clutches of 

eggs. 

 

Despite the diversity and distribution of frogs in Africa, they remain poorly studied (Poynton, 

1999; Frost et al., 2006; Zimkus and Blackburn, 2008a).  Between 2004 and 2019, 18 new 

species of anurans have been described for Mozambique and Malawi out of a total of 278 

species being described in the whole of Africa (AmphibiaWeb, 2019). Of late, there has been 

an increase of sampling intensity which has led to the discovery of new species, such as 

Tomopterna branchi (Wilson and Channing, 2019), Nothophryne baylissi, N. inagoensis, N. 

ribauensis, N. ulilurio (Conradie et al., 2018a), Hyperolius stictus (Conradie et al., 2018b), 

Breviceps passmorei (Minter, Netherlands and Du Preez, 2017) and Arthroleptella 

kogelbergensis (Turner and Channing, 2017).   These discoveries highlight the need for 

further research and an urgent need for the protection of these mountains.  Habitats are 

disappearing before we have the chance of describing their biodiversity. The more we can 

understand them, the better evidence can be gathered for their conservation. 

 

1.8. Conservation of Amphibians 

Impacts on the earth’s ecosystems and a decrease of biodiversity have been linked to the 

expansion of the human population, pollution, spread of invasive species, disease, climate 

change and overexploitation (Davies, 2015; Mimouni and Beisner, 2016).  Current extinction 

rates are estimated to be several orders of magnitude higher than historical values, leading 

the natural world towards a sixth mass extinction (Plotnick et al., 2016).  However, due to a 

lack of taxonomic and distribution data for many species, precise extinction rates can 

currently only be approximated (the “Linnean and Wallacean shortfall”, Brown and 

Lomolino, 1998; Mimouni & Beisner, 2016).  Detailed information on species and their 

distributions are also crucial for assessing their conservation status as listed on the 

International Union for the Conservation of Nature (IUCN) Red List of Threatened Species 

(Brito, 2010).  Of the 6035 worldwide anurans listed on the IUCN Red List, 1218 are data 

deficient (DD: information is insufficient to make a conservation status assessment, IUCN, 

2018).  It is important to improve on the data of these species, to broaden our knowledge 

on the true extent of the extinct and extant biodiversity (Tapley et al., 2018).   
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1.9. Study species: Arthroleptis francei 

One example of a lack of baseline knowledge for amphibians relates to taxonomic 

arrangements within the family Arthroleptidae, including the reclassification of the genera 

Arthroleptis, Cardioglossa and Schoutedenella.  De Witte (1921) described Schoutedenella 

as a monotypic genus, being very similar to Arthroleptis but lacking maxillary teeth.  Laurent 

(1954) disagreed with De Witte (1921) as individuals lacking teeth could be juveniles of the 

larger species.  Frost et al. (2006) rejected previous suggestions by Laurent (1954), where 

the smaller species of Arthroleptis (snout-vent length [SVL] <25mm) were previously 

assigned to Schoutedenella, and those with a SVL greater than 25mm were placed within 

Arthroleptis.  Laurent and Fabrezi (1985) stated that the small Schoutedenella are more 

closely related to Cardioglossa than to Arthroleptis, which was later rejected by Frost et al. 

(2006).  Duellman (1993) grouped all Schoutedenella with Arthroleptis and altered their 

names, but again this was disregarded by Frost et al. (2006) as they synonymised 

Schoutedenella with Arthroleptis based on molecular evidence.  Phylogenetic analysis based 

on molecular data presented by Frost et al. (2006) and Blackburn (2008b) suggest that 

Schoutedenella and Arthroleptis are monophyletic groups.  Along with the discrepancies 

over the placement of A. francei, this species has undergone a number of name changes 

over the years.  It was Loveridge (1953) who originally gave the name Arthroleptis 

adolfifriederici francei, yet later disregarded this stating it was merely related to the central 

African species, A. adolfifriederici.  Laurent (1957) suggested the name Abroscaphus 

adolfifriederici francei by implication but it was Poynton and Broadley (1985) who refer to 

the species by the name known today as Arthroleptis francei.  Despite some progress with 

the taxonomy of this group (Blackburn, 2008b; Tolley et al., 2018), there are still some 

taxonomic conundrums, particularly within the smaller species of Arthroleptis (Blackburn, 

2009a).  

 

Arthroleptis, also known as African squeakers, is a genus of frogs widespread throughout 

sub-Saharan Africa, inhabiting a diverse array of habitats and currently comprising more 

than 40 species (Figure 2).  In the last 30 years, new species have been discovered in central 

(Blackburn, Gvoždík, & Leaché, 2010; Zimkus & Larson, 2009), eastern (Blackburn, 2012; 

Blackburn, 2009a; Poynton, 2003), and western Africa (Ernst, Agyei and Rödel, 2008; Rödel 
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et al., 2009).  These recent discoveries suggest that there may be further hidden diversity 

within this genus. 

 

 

Figure 2.  Distribution of the Arthroleptis francei across Africa in the right inset.  Distribution of Arthroleptis francei in 
Mozambique and Malawi. Mount Mulanje is the type locality where the type specimens were collected by Arthur Loveridge.. 
 

Members of the Arthroleptis genus are terrestrial leaf 

litter frogs that feed on arthropods (Blackburn & 

Moreau, 2006; Loveridge, 1953).  They are direct 

developers, which means that embryo development is 

completed within the egg and fully metamorphosed 

froglets emerge (Schweiger et al., 2017).   They are 

narrow range endemics, relatively small in size, live in 

moist forest environments and are known to be 

confined to the sky islands which provides delicate 

requirements for survival (Blackburn, 2009a).  Snout-

vent length (SVL) ranges from 16 to 54mm  (Zimkus and 

Arthroleptis francei 
Arthroleptis genus distribution 
Africa 
Type locality 

Figure 3. Leaf litter in which the specimens 
were collected on Mount Inago, Mozambique, 
2018 expedition.  The variation in colouration 
matching the phenotypic morphs. 
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Blackburn, 2008; right inset, Figure 2).  Currently there are 48 species within this genus 

(Frost, 2019), from the largest, Arthroleptis nikeae with an SVL of up to 55mm, to one of the 

smallest, Arthroleptis xenodactyloides with a SVL of up to 22mm when fully grown (du Preez 

and Carruthers, 2017). 

 

Up until very recently, Arthroleptis francei (Loveridge, 1953) was only known to exist on 

Mount Mulanje, a UNESCO-MAB Biosphere Reserve in Malawi and part of the EABH.  

Timberlake et al. (2009) reported the first record of A. francei outside its type locality, on 

Mount Namuli in northern Mozambique.  Later, Conradie et al. (2016) recorded this species 

on Mount Mabu, also in northern Mozambique. Individuals putatively belonging to A. 

francei have further been found on other inselbergs in Mozambique (Bittencourt-Silva pers. 

comm. 2018; Conradie et al., 2016), and preliminary molecular data suggests the existence 

of at least one new species within A. francei (Bittencourt-Silva pers. comm. 2018). 

 

1.10. Aims and Objectives  

Phylogenetic studies in Africa have proved challenging in the past due to its sheer size, 

political unrest (Timberlake et al., 2007) and the inaccessibility of areas (Jongsma et al., 

2018).  However, sampling efforts on African taxa increased within the last two decades, 

covering amphibians (Blackburn, 2008a; Conradie et al., 2016; Jongsma et al., 2018; Tolley 

et al., 2018), mammals (Neves, Da Luz Mathias and Bastos-Silveira, 2018; Van Berkel et al., 

2019), birds (Dowsett-Lemaire, 2010), reptiles (Ceccarelli et al., 2014; Branch et al., 2019) 

and plants (Van Noort, Gardiner and Tolley, 2007).  Due to their low dispersal capacity and 

sensitivity to habitat and climate changes amphibians constitute a good model to study 

biogeographic patterns and climatic influences on their genetic structure (Zeisset and 

Beebee, 2008). 

This study uses a multilocus dataset to understand the phylogenetic relationships, haplotype 

networks, species distribution modelling to construct the bio/phylogeographic history of the 

complex.  I aim to assess: 

1. The A. francei species complex and eliminate taxonomic uncertainty to reveal 

possible cryptic species within this taxon.  I used two mitochondrial genes (12S and 
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16S ribosomal RNA genes) and one nuclear gene (recombination activating gene-1; 

rag-1) to reconstruct the phylogeny of A. francei.  I investigated the cryptic diversity 

and the species distribution. 

2. To understand where this species has persisted during the periods of climatic 

instability and changes in the physical environment.  Taking into account the climatic 

oscillations and changes in the forest cover in eastern Africa since the Miocene, we 

hypothesise that climate and land use changes have had a major influence on the 

phylogeographic history of Arthroleptis francei.  It is assumed that due to these 

habitat changes, this species has undergone various speciation events, are restricted 

and therefore endemic to each separate mountain forest.   

3. Areas of endemism, species richness and phylogenetic diversity through climatic 

patterns and the phylogenetic analysis. 

4. A revision in the conservation of Arthroleptis francei.  By incorporating all these 

findings will help identify areas of importance and prioritise conservation efforts by 

focussing on areas with high endemism. This revision will also be a suggestion to the 

IUCN status of A. francei due to the findings of new lineages. 
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2. Methods 

This study did go through ethical considerations and was classified as Type 1 under the 

University of Salford ethical procedures.  Specimens included in this study were collected by 

the Natural History Museum London under a permit conceded by the Mozambican 

Government and the Museu de História Natural de Maputo. 

 

2.1. Field Study 

A total of 52 specimens of Arthroleptis francei were collected from Northern Mozambique 

and Southern Malawi between 2008 to 2018 (Figure 2) from the following expeditions: 

Mount Mulanje (Blackburn, 2008b), Mount Lico and Mount Socone (Bittencourt and 

Conradie, 2018), Mount Namuli and Mount Ribáuè (National Geographic Expedition 

arranged by SANBI, 2014) and finally Mount Inago and Mount Ribáuè by myself, alongside 

the Natural History Museum (NHM), South African National Biodiversity Institute (SANBI) 

and Pretoria Museum for two weeks in November to December 2018 (Figure 4 and 5).   

 
 

Figure 4. Mount Inago, Zambezia province in Mozambique.  One of the field sites where Arthroleptis francei were collected 
in November 2018 (Woest, 2019). 

Figure 5. Mount Ribáuè, Zambezia province in Mozambique.  Field site visited in November 2018 where males were heard 
calling but not located or collected (Woest, 2019). 



Masters by Research 2020                                                                                 @00280579                                    

 27 

The majority of individuals were found on montane forests atop granite rocky outcrops as 

seen in Figure 4 and 5.  From the latest 2018 expedition, tissue samples were collected from 

livers of 13 male voucher specimens.  These males were mostly found elevated <1m off the 

ground, perched on branches or leaves.  Tissue samples from these and all other specimens 

from the previous expeditions are held at the NHM (Table 2). 

 

2.2. Arthroleptis francei 

The Ruo River screeching frog (Arthroleptis francei) is endemic to the southern montane sky 

islands of Malawi and Mozambique.  This species is found in elevations ranging from 400m 

asl. to 1890m asl. (Table 1).  Dorsal colour pattern varies from golden yellow to dark brown; 

the belly is white to light grey, mottled with darker grey; mature males have a darker throat.  

A distinctive black band running from the nostril and above the eye towards the forearm is 

prominent in all individuals.  They are leaf litter dwellers but can be found elevated on lower 

understorey vegetation (<1m); fingers and toes lack webbing and the tips are slightly 

swollen; mature males develop a long third finger (Loveridge, 1957; Zimkus & Blackburn, 

2008b). Measurements from Conradie et al. (2016) suggest that males are smaller than 

females, with a snout-urostyle length (SUL) of 22.85 mm and 31.10 mm, respectively.  

Arthroleptis francei is currently listed as Vulnerable (VU) on the IUCN Red List, and their 

population trend is decreasing (IUCN, 2019).   

 

2.3. Holotype  

Specimen number: MCZ 27479 (Figure 6). 

A gravid female, Arthroleptis adolfifriederici francei was discovered below the Ruo River 

Falls, Mount Mulanje, Malawi around 1524m elevation by Arthur Loveridge, 4th April 1949 

(Appendix 1. Loveridge, 1953).  The species was renamed by Laurent (1957) as Abroscaphus 

adolfifriderici francei, is now known as Arthroleptis francei, Ruo River screeching frog 

(Poynton and Broadley, 1985).  The name ‘France’ originates from a young forestry officer, 

Mr. F. H. France who passed away crossing the Ruo River, Mount Mulanje, Malawi in 1949 

near to where the initial specimens were collected in 1949 (Loveridge, 1953). 
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2.4. Morphometrics and Sexual Dimorphism 

Seventeen morphometric measurements were taken to compare populations from different 

mountains (largely following Napoli, 2006 and Tolosa et al. 2015 ): SVL – Snout-vent length, 

FL – Foot length, HW – Head width, THL – Thigh length, TL – Tibia length, TD – Tympanum 

diameter, ED – Eye diameter, HL – Head length, FOL – Forearm length, LHU – Length of 

humerus, IOD – Interorbital distance, IND – Internarial distance, END – Eye-nostril distance 

and DD3 – Forearm third digit disk width; to characterise possible differences within A. 

Figure 6. Photographs with size comparison and details of the gravid female holotype Arthroleptis francei (MCZ. 27479), 
collected by Arthur Loveridge in 1949.  A. Dorsal view, C. Side view of the head, B. Lateral view, D. Details of the type 
specimen.  Photos and data taken from gbif.org (2019). 
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francei,  the length of lateral head band, the length of the inner-metatarsal tubercle and the 

third digit length on the forefoot were further included (Figure 7).  Measurements were 

taken to the nearest 0.02mm three times for each characteristic with digital Vernier callipers 

(calibrated to 0.1) then averaged to reduce any errors.  The SUL measurements from 

Conradie (2016) cannot be included in this analysis as here, the SVL was taken and 

eliminating them will allow standardisation.  

 

Due to logistical and timing constraints of accessing the fifty-two specimens, I made the 

decision to randomly measure representatives from each mountain within the small 

collection held at the NHM.  This limited morphological data results in a basic graphical 

illustration, however they do give an introduction to a further understanding the species 

and direction for research.  No statistical analysis was performed due to the small sample 

size (n = 14) but measurements were taken for an initial idea of sizing.  Individuals measured 

are highlighted in grey in Table 2.  Sexes were identified by call (males only), throat 

colouration (darker on males), presence of enlarged third finger (mature males) and size 

(females are generally larger).  The morphological measurements were plotted in R Studio 

SVL 

TL 

FL 

DD3 

TD
L 

FOL 

THL 

IOD 
IND 

ED 
TL 

LHU 

END 

BL 

HL HW
x 

IMT 

Figure 7. Morphometric measurements adapted from Tolosa et al., (2015). SVL – Snout-vent length, FL – Foot length, HW 
– Head width, THL – Thigh length, TL – Tibia length, TD – Tympanum diameter, ED – Eye diameter, HL – Head length, FOL 
– Forearm length, LHU – Length of humerus, IMT – Inner metatarsal length, TDL – Third digit length, BL – Band length, DD3 
– Third digit diameter, END - Eye nose distance, IND – Inner nostril distance and IOD – Inner eye diameter.  Illustrations and 
annotations by Natasha Woest (2019). 
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using the ggplot2 package (Wickham, 2016) for a stacked box and whisker graph.  Each 

individual graph represents the different feature measured, displaying the collective 

measurements separated by sex or unknown sex per mountain.   

 

2.5. DNA Extractions and Polymerase Chain Reactions (PCRs) 

DNA was extracted using a Qiagen DNeasy Blood and Tissue Kit, following the protocol for 

purification of DNA from animal tissue set out by the manufacturer.  Tissue samples in this 

study based on mostly liver were derived from 52 individuals stored at the Natural History 

Museum London (Table 2).  The choice of the target loci was due to the already available 

data on GenBank and widely used on amphibian phylogenetics in Africa. Two partial 

mitochondrial rRNA (12S) and  rRNA (16S) and one nuclear recombination activating gene-

1 (rag-1) were amplified (primers shown in Table 1).  Both the mitochondrial genes were 

sequenced in a forward direction whilst rag-1 was sequenced in both forward and reverse 

directions (Table 1). 

 
Table 1. Primer used to amplify the sequence 12S, 16S mitochondrial genes and a rag-1 nuclear gene. Bp – Base pairs 

 

Polymerase chain reactions were carried out using illustraTM puReTaq Ready-To-GoTM PCR 

Beads (GE Healthcare UK Limited) using the following conditions for 12S and 16S: single cycle 

for 5min denaturation at 95oC followed by 1 min at 95oC, 1 min annealing at 51oC and a 1.5 

min extension at 72oC.  This was followed by 35 cycles with a 1 min denaturation at 95oC. A 

7min extension at 72oC finishing off with 4oC until removed from the machine (Goebel, 

Gene Direction Target  Length 

(bp) 

Source 

Reference  

12S  
L1091 

Forward AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT 400 (Kocher et al., 
1989) 

12S 
H1478 

Reverse TGACTGCAGAGGGTGACGGGCGGTGTGT 400 (Kocher et al., 
1989) 

16SAF Forward CGCCTGTTTATCAAAAACAT 600 (Palumbi et al., 
1991) 

16SAR Reverse CCGGTCTGAACTCAGATCACGT 600 (Palumbi et al., 
1991) 

rag-1 Forward AGCTGCAGYCARTAYCAYAARATGTA 1500 (San Mauro, et 
al., 2004) 

rag-1 Reverse AACTCAGCTGCATTKCCAATRTCA 1500 (San Mauro, et 
al., 2004) 
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Donnelly and Atz, 1999).  The same conditions were used for rag-1 with only the annealing 

temperature set to 54oC (San Mauro et al., 2004). 
 

PCR products were run on 1% agarose gels made from 100ml TAE buffer and 1g Agarose 

powder, which was microwaved until boiling, cooled and placed in the relevant tray with 

the relevant comb to create the wells. The gel was loaded with 2μM of DNA sample and 

4μM of blue dye (bromophenol blue, xylen cyanol, glycerol, dH2O and 2 gel red) per well.  

Electrophoresis was performed using a VWR, Powersource 250V set at 100V, Amp 19, 19W 

to draw the sample from the negative to the positive set on a timer for 30 minutes. 

 

2.6. Data analysis and alignment 

This dataset included an  outgroup specimen  represented by the close relative Arthroleptis 

reichei (specimen voucher MCZ:HERP:A-138365): rag-1 (GenBank accession number 

MH744350) and the concatenated 12S and 16S genes (GenBank accession number 

FJ151151) from Blackburn (2008b).  There was an inclusion of one additional A. francei from 

GenBank due to the availability of all three loci: Accession number MH744349, MCZ:HERP:A-

137038 (rag-1), and Accession number FJ151100.1, MCZ:HERP:A-137038 (12S and 16S) 

(Blackburn, 2008b). The total number of sequences that were included in this analysis per 

marker was 47 (12S: 352bp), 49 (16S: 455bp) and 47 (rag-1: 629bp) as summarised in Table 

2.  

 

Sequences were aligned in Geneious version 7.0.6 (Kearse., et al., 2012) using MAFFT 

(Multiple Analysis Fast Fourier Transform) v7.017 (Katoh, Kuma & Miyata, 2002) with default 

settings. First, alignments were checked by eye by two people independantly for a thorough 

investigation and for obvious mistakes which were corrected manually, then ambiguously 

aligned blocks were removed using GBlocks (Talavera & Castresana, 2007) set to allow gaps 

in the final blocks within the non-coding mitochondrial sequences (12S and 16S). For rag-1, 

TranslatorX was used to find the correct reading frame and resolve translation ambiguities 

when possible (Abascal, Zardoya & Telford, 2010). 
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Table 2. Taxa samples used for genetic analyses. DNA vouchers with “T” refer to unpublished sequences from the DNA 
collection from the Natural History Museum (London); others are from GenBank   ‘-‘ = Missing information, “Y” = used 
sample. Grey highlighted specimen vouchers numbers refer to those included in the morphometric analysis. 

DNA 
voucher 

Specimen 
voucher Species Latitude Longitude 

Elevation (m) 
asl. Mountain Country 12S 16S rag-1 

MH744349 MCZ A-137038 A.francei -16.00028 35.72417 1710 Mount Mulanje Malawi   Y 
FJ151100.1  MCZ A-137038 A.francei -16.00028 35.72417 1710 Mount Mulanje  Malawi Y Y  

T0762 M 415 A.francei -16.00028 35.72417 1710 Mount Mulanje Malawi Y Y Y 
T0787 M 101 A.francei -16.00028 35.72417 1710 Mount Mulanje  Malawi Y - - 
T0800 M 310 A.francei -16.00028 35.72417 1710 Mount Mulanje Malawi Y - - 
T0802 M 406 A.francei -16.00028 35.72417 1710 Mount Mulanje  Malawi Y - - 
T5737 WC 3232 A.francei -16.28622 36.40006 1892 Mount Namuli Mozambique Y Y Y 
T5738 WC 3233 A.francei -15.38986 37.03019 1779 Mount Namuli Mozambique Y Y Y 
T5739 WC 3235 A.francei -15.38986 37.03019 1779 Mount Namuli Mozambique Y Y Y 
T5740 WC 3236 A.francei -15.38986 37.03019 1779 Mount Namuli Mozambique Y Y Y 
T5741 WC 3244 A.francei -15.39797 37.01978 1611 Mount Namuli Mozambique Y Y Y 
T5742 WC 3247 A.francei -15.39797 37.01978 1611 Mount Namuli Mozambique Y Y Y 
T5743 WC 3354 A.francei -15.38986 37.03019 1779 Mount Namuli Mozambique Y Y Y 
T5744 WC 3364 A.francei -15.39797 37.01978 1611 Mount Namuli Mozambique Y Y Y 
T5747 WC 3073 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5748 WC 3074 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5749 WC 3075 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5750 WC 3076 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y - - 
T5751 WC 3110 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5752 WC 3111 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5753 WC 3112 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5754 WC 3138 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5755 WC 3139 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5756 WC 3140 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5757 WC 3141 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5760 WC 3077 A.francei -16.28910 36.39250 1247 Mount Mabu Mozambique Y Y Y 
T5761 WC 3083 A.francei -16.28153 36.44378 430 Mount Mabu Mozambique Y Y Y 
T5763 WC 3174 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5764 WC 3175 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5765 WC 3176 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5766 WC 3177 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5767 WC 3182 A.francei -16.29682 36.39243 1644 Mount Mabu Mozambique Y Y Y 
T5768 WC 3183 A.francei -16.29682 36.39243 1644 Mount Mabu Mozambique Y Y Y 
T5769 WC 3184 A.francei -16.29682 36.39243 1644 Mount Mabu Mozambique Y Y Y 
T5770 WC 3185 A.francei -16.29682 36.39243 1644 Mount Mabu Mozambique Y Y Y 
T5772 WC 3187 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5773 WC 3188 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5774 WC 3220 A.francei -16.28622 36.40006 919 Mount Mabu Mozambique Y Y Y 
T5775 WC 3245 A.francei -15.39797 37.01978 1611 Mount Namuli Mozambique Y Y Y 
T5776 WC 3246 A.francei -15.39797 37.01978 1611 Mount Namuli Mozambique Y Y Y 
T5777 WC 3248 A.francei -15.39797 37.01978 1611 Mount Namuli Mozambique Y Y Y 
T5778 WC 3249 A.francei -15.39797 37.01978 1611 Mount Namuli Mozambique Y Y Y 
T5779 WC 3355 A.francei -15.38986 37.03019 1779 Mount Namuli Mozambique Y Y Y 
T6836 MOZ17-051 A.francei -16.50801 35.73143 997 Mount Chiperone Mozambique - Y Y 
T7132 WC 6415 A.francei -15.73623 37.28815 1159 Mount Socone Mozambique Y Y Y 
T7133 WC 6485 A.francei -15.79470 37.36216 844 Mount Lico Mozambique Y Y Y 
T7166 WC 6453 A.francei -15.78978 37.36457 1039 Mount Lico Mozambique Y Y Y 
T7376 MOZ17-428 A.francei -15.15340 37.42950 1291 Mount Inago Mozambique Y Y Y 
T7377 MOZ17-429 A.francei -15.15340 37.42950 1291 Mount Inago Mozambique - Y Y 
T7378 MOZ17-430 A.francei -15.15340 37.42950 1291 Mount Inago Mozambique - Y Y 
T7379 MOZ17-431 A.francei -15.15340 37.42950 1291 Mount Inago Mozambique - Y Y 
T7381 MOZ17-438 A.francei -15.15340 37.42950 1291 Mount Inago Mozambique - Y Y 

Outgroup           
FJ151151 MCZ A-138365 A.reichei -8.19770 35.56399 1950 Udzunga Mountains Tanzania Y Y  

MH744340 MCZ A-138365 A.reichei -8.19770 35.56399 1950 Udzunga Mountains Tanzania   Y 

 
 

2.7.  Bayesian Phylogenetic Analysis  

For the phylogenetic relationship analysis, mitochondrial and nuclear genes were gathered 

with the use of Bayesian inference (BI) approaches.  PartitionFinder (Lanfear et al., 2016) 

was used applying the Bayesian Information Criterion to select best partitioning schemes 

and models of evolution for each gene.  The following models were applied to each partition: 

GTR+I+G for 12S and 16S, and HKY+G for rag-1.  Phylogenetic trees were reconstructed for 

each gene and for a concatenated alignment (12S, 16S and rag-1) using MrBayes v3.2 

352bp   455bp    629bp 
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(Ronquist and Huelsenbeck, 2003). Two runs were executed (using four chains) for 50 million 

generations with trees sampled every 10000 generations with the initial 25% discarded as 

burn-in.  Final trees were built in MrBayes and visualised using FigTree v.1.4.4 (Rambaut, 

2018).  TRACER v1.7.1 (Rambaut et al., 2018) calculated the model convergence and 95% of 

the highest posterior density (HPD) intervals.   

 

Evolutionary analyses of the distance estimations were conducted in MEGA X (Kumar et al., 

(2018).  The number of base differences per site from between sequences were calculated 

using MEGA X software for MacOS (Stecher et al., 2020). Standard error estimate(s) were 

obtained by a bootstrap procedure of 500 replicates. This analysis involved 49 nucleotide 

sequences for the substitution p-distance model including d: transitions and transversions. 

All ambiguous positions were removed for each sequence pair (pairwise deletion option). 

There was a total of 437 positions in the final dataset.  During this comparison, the number 

of changes of base changes and the insertion and deletion events are tallied and displayed 

as a proportion of the overall sequence length.   

 

2.8. Species delimitation 

Possible cryptic species were explored within the samples of Arthroleptis 16S gene and 

analysed by using a Bayesian implementation of the General Mixed Yule-Coalescent model 

(bGMYC, Reid and Carstens, 2012). This gene was chosen due to it being the most widely 

used and universal DNA barcoding marker in amphibians (Vences et al., 2005).  The data 

were initially prepared in BEAUTi v 1.10.3 (Drummond, Rambaut and Marc, 2016) using the 

HKY model (Hasegawa, Kishino and Yano, 1985) with estimated base frequencies was 

selected with an uncorrelated relaxed clock.  Tree priors were set to a random starting 

Speciation Yule Process tree (Yule, 1925; Gernhard, 2008).  The MCMC chain length was set 

to 100 000 000, with the echo state and log parameters set to 10000.  An ultra-metric tree 

with Yule and lognormal relaxed molecular clock (Drummond et al., 2006) priors was 

selected for a species level analysis in BEAST v 1.10.3 (Drummond, Rambaut, & Marc, 2016).  

The bGMYC model produced in BEAST was expressed in RStudio v 1.2.1335 (RStudioTeam, 

2019) where 100 trees were randomly selected with a 10% burn in rate discarded and 5000 

bGMYC generation simulations sampling every 100th generation using the APE (Paradis, 

Claude and Strimmer, 2004) and bGMYC (Noah, 2014) packages (Appendix 4).   
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2.9. Distribution network 

Distribution networks, also known as haplotype networks, were used in the analysis and a 

visualisation of population genetic data at an intraspecific and interspecific level.  These 

networks can also help understand the biogeographic distribution of populations (Leigh and 

Bryant, 2015).  The software Population Analysis with Reticulated Trees (PopART) was used 

(Leigh and Bryant, 2015) with the Templeton approach (Templeton, Crandall and Sing, 

1992).  The TCS network package uses an algorithm where clusters are progressively 

combined with one or more connecting edges. TCS was used for estimating the gene 

genealogies which was selected for the visualisation for all three genes separately: 12S, 16S 

and rag-1 (Clement et al., 2002) with the Nexus file produced in Geneious with the addition 

of the longitude and latitude of each taxa added.  The inbuilt statistical package was used 

for a basic analysis for the Analysis of Molecular Variation (AMOVA, Excoffier, Smouse and 

Quattro, 1992).  Geographical locations of each individual were used with the k-means 

algorithm to cluster the sequences according to the six mountain clusters for 12S and rag-1 

genes, and seven for 16S gene, Mount Chiperone.  Number of samples per cluster are 

determined by the circle size.  The sister group was excluded from the distribution network 

as this is purely to display the A. francei and candidate species.  

 

2.10. Species Distribution Models (SDM) 

Species distribution models are also referred to as Ecological Niche Models (ENM).  

Occurrence co-ordinates were used from the field data stored at the NHM, only for the A. 

francei used in the phylogenetic analysis.  Projection for the species distribution against the 

19 different climatic conditions (Current: the average for 1960 – 1990) were downloaded 

from WorldClim (http://www.worldclim.org/) at a spatial resolution of 2.5 arc minutes/km.  

Bioclim variables are widely used in ENM, where Bio 1 – 11 reflect temperature and Bio 12 

– 19 reflect precipitation systems (Booth et al., 2014).   

The R Studio packages Raster, Maps and MapData were used to prepare the BioClim data 

for the following ten variables: BIO1 – Annual mean temperature, BIO2 - Mean diurnal range 

(mean of monthly maximum temperature − minimum temperature),  BIO3 – Isothermy 

(mean diurnal range temperature range), BIO7 – Temperature annual range, BIO8 – 

Temperature of the wettest quarter, BIO11 - Mean temperature of the coldest quarter, 
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BIO12 – Annual Precipitation, BIO15 – Precipitation seasonality, BIO18 – Precipitation of the 

warmest quarter and BIO19 – Precipitation of the coldest quarter. These variables are 

identical to a previous study on the closely related A. whalbergii (Tolley et al., 2018).  

Layers were cut to the focal area in R Studio and standardised to the same resolution, using 

a mask fitted to the species distribution regions co-ordinates (xmin - 34.72417, xmax - 

38.4295, ymin - -17.29682, ymax – -14.1534) set to WGS 1984.  The output format for each 

file was set to ASCII (ESRI .asc format) to fit the requirements of the Maximum Entropy 

Modelling (MaxEnt).  The software MaxEnt 3.4.0 (Dec 2016) was used to calculate the SDMs, 

using a machine-learning algorithm based on maximum entropy principles (Phillips, Dudík 

and Schapire, 2019).  This approach is suggested to be the most appropriate for modelling 

presence data (Hijmans and Elith, 2017).  The output format was set to logistic, ASC, with a 

random subset test percentage set to 20 of the occurrences and used the remaining 

localities for testing at 100 replicates.  MaxEnt generates the probability distribution in a 

pixelated grid format from a uniform distribution and repeating the runs to improve the fit.  

Output files were visualised and formatted using QGIS (QGIS, 2019). 

2.11. Phylospatial distribution of Arthroleptis francei  

Here, phylospatial distributions, a term used by Rosauer (2020) incorporates spatial and 

phylogenetic data from this study which were integrated to investigate phylogenetic 

endemism (PE), phylogenetic diversity (PD), weighted endemism (WE) and species richness 

(SR) across the mountain range to the south of Malawi and into Mozambique.  Statistical 

scrips were provided by Rosauer et al. (2015 and 2020) and adapted to suit the A. francei 

data within this study and later used to estimate PE, PD, WE and SR (Appendix 9).  Firstly, a 

batch multi method was used to break down the SDM into constituent lineage models for 

the six cryptic species from the 16S BI analysis.  Branches from the type localities (T0762, 

GenB 1 and 2 were collapsed as they were identical, yet other branches were left as separate 

tips to enable a thorough investigation of each individual.  These clades referred to as Mount 

Mabu 1 – M1, Mount Mabu 2 – M2, Mount Mulanje – MUL, Mounts Namuli, Inago and 

Socone – NIS, Mount Chiperone – CHI and Mount Lico – LIC.   The SDM was consequently 

separated into linear distribution models (LDM) by geological data and known geo-

referenced genetic data (Rosauer and Jetz, 2015).  The likelihood of species occurrence for 
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each grid cell and the lineage data were kept as continuous which were later used to 

estimate the PE, PD, WE and SR.  This data was extracted from the spatial occurrences, 

climatic data from the SDM model and the tree tip lengths from the mitochondrial 16S 

phylogeny (Figure 13) and were used at a 1km2 resolution to align the species distribution.  

Phylogeny branch lengths were partitioned into grid cells of occurrences based on the SDM 

and scored accordingly (0 and 1 for all but with PD being scored between 0 and 2).  Maps 

were produced for each output displaying the PE, PD, WE and SR per grid cell where each 

cell corresponds to the branches on the 16S phylogeny and analysed across the region as 

presented in the SDM model.       

 

2.12. Conservation 

To identify the diversity within a specific geographic location can be summed by the total 

PE, a measure of the spatial range of each branch on the phylogeny.  Areas with medium to 

high PE results were retained and used to intersect the shapefiles of protected areas 

provided by the Critical Ecosystem Partnership Fund (CEPF: http://www.cepf.net) and the 

World Resources Institute (WRI: http://www.wri.org).  This then helps to visualise whether 

areas harbouring evolutionary history of A. francei and the candidate species are protected.   

 
2.13. Call analysis 

As taxonomic complexities are prevalent in Arthroleptis, leading to difficulties distinguishing 

between species on morphologies in the field, calls could prove useful.  A detailed analysis 

of advertisement calls on a species basis could help in the clarification of any taxonomic 

uncertainties (Köhler et al., 2005).  Unfortunately, only a single male courtship call was 

recorded whilst at the study site on Mount Inago using a Samsung Galaxy S9 (SM-G960F) 

mobile phone.  The call was later visualised with Luscinia 2.25.03.15.01 (Lachlan, 2007) and 

analysed using Praat 6.1 (Boersma and Weenink, 2019).  This is the only known call to have 

been recorded of A. francei to date.  Upon approaching the individuals, they terminated 

calling, even when waiting in silence and all lighting was turned off.  Due to only one call 

recording with a duration of a minute, only standard measurements can be taken: call 

intensity (dB), call frequency (Hz), call times and syllables per call. 
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3. Results  

3.1. Morphometrics 

Morphological measurements were taken from fourteen individuals from five out of seven 

mountains: Mounts Mabu, Lico, Inago, Namuli and Socone.  Specimens were not available 

for morphometric analysis from Mount Mulanje and Mount Chiperone.  According to the 

museum tags, five specimens were male and female each, and four specimens were listed 

as unknown.  Due to colouration and size, they are presumed male but were excluded in the 

sexual dimorphism analysis.  As the sample size was too small to perform statistical tests, 

Table 3 displays the measurements and the difference in size by percentage between males 

and females.  Females were larger than males overall (SVL = 30.7%, HW = 40.3%, TL = 31.2%, 

END = 38.4%, IMT = 34.8% and BL = 33.1%).  The third digit length (TDL) is 3.7% larger in 

females, but in proportion to the body size (SVL) males’ TDL is longer (24.5%) compared to 

females (17.6%).  Band lengths (BL) are similar in proportion to the snout-vent-length (SVL) 

between the sexes, where females averaged 44.52% and males averaged 43.13%.    

 
Only one female was measured from Mount Namuli and four from Mount Mabu, limiting 

any comparisons between localities.  Males were sampled from three mountains (Table 3).  

It is again evident that females are larger than males in all their features, except for the third 

digit length (TDL) which was longer in males (Figure 3 and 8).  Forearm length (FOL), length 

of humerus (LHU) and thigh length (THL) are all very similar in size between the sexes, 

suggesting that females are stocky in built due to shorter limbs, in comparison to their body 

size.  Variation in size is greatest on Mabu, yet this could be due to more specimens 

measured and collected from this mountain (Figure 8).    



Table 3. Morphological features (first column) of Arthroleptis francei were measured in millimetres (mm).  For each sex, the measurements were standardised by displaying the mean and 
standard deviation (Mean±STD).  Individuals were chosen based on having all three genes and random representatives from each mountain.  All specimens could not be measured due to 
logistics and time constraints.  Mount Chiperone and Mount Mulanje are missing as these specimens are not held at the NHM.  Abbreviations for each feature are explained in Section 4.3. 
Sex of individuals were stated:   = Males,   = Female and those unknown are left blank. 
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Figure 8. Box and whisker graph showing the variation in measurements of the features taken from curated Arthroleptis francei specimens from NHM.  Pink = Female, 
Green = Male and Blue = Unknown.  Mount Namuli is a female specimen and Mount Socone and Mount Inago are male. The sample sizes are small and are therefore 
represented by a black line.  Cross referencing data in Table 2 helps interpreting the sex. 
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Figure 9. Images of four male calling Arthroleptis collected on Mount Inago,  
December 2018. 

1a 1b 

2a 2b 

3a 3b 

4a 4b 

1a. Side profile – Copper 
colouration, darker sides 
small epiderma lumps on 
the skin, distinct band 
across the eye, darker 
bands along the forearm. 
Bicolour iris.  
1b. Ventral view – Very 
dark brown with light 
mottling and a lighter 
belly area. 
 
 
  
 
2a. Side profile – Very dark 
brown with a lighter 
brown head and a distinct 
dark band along the eye.  
There are small white 
spots clustered on the 
smooth torso. Bicolour 
iris.  
2b. Ventral view – dark 
brown vent particularly 
under the chin and rear 
with a lighter belly area. 
  
3a. Side profile – Rough 
golden-brown fading to a 
darker brown on the 
torso.  Distinctive dark 
band along the eye past 
the tympanum. Bicolour 
iris  
3b. Ventral view – Dark 
brown under the chin and 
the rear with lighter 
mottling to the centre. 
Very long third digits on 
the forearm feet.    
 

 
 
 
4a. Side profile – Golden 
on the entire dorsal.  
Smooth skin with the 
distinctive band along the 
eye. Light bands along the 
forearms and hind legs. 
Bicolour iris. Short third 
digit on forefoot.     
4b. Ventral view – Very 
dark chin and lighter rear 
with a white mottling in 
the centre. 
 
Figures 1a – 4b: Woest, 2019. 
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Morphological features of A. francei vary in colouration with different shades of brown 

to golden colours (Figure 9).  Specimen 1a in Figure 9 has a copper colouration with a 

darker torso with small, white epidermal spot clusters.  There were also sparsely 

dispersed white spots along the dorsal.  This was the only specimen with such spots out 

of all the individuals collected on Mount Inago.  For all specimens collected, there is a 

distinct band across the eye and tympanum and a bicolour iris, with a lighter part at the 

top third and darker on the lower two thirds with a horizontal pupil as also described 

by Meijden (2006).  Specimen 1a, 3a and 4a have darker bands along the forearms.  All 

photographed individuals in the last expedition possessed a bicolour iris and a 

distinctive band along the eye and tympanum but all four were varying in shades of 

brown and golden.  For all the specimens in the morphological analysis, the skin was 

not smooth on the back, yet small rough spots could be seen and felt.   All the individuals 

had a dark brown chin and rear which extends to all four limbs, with a white mottling in 

the centre on the belly.  There is very little webbing on the front feet and almost none 

on the hind feet. 

 

3.2. Bayesian Phylogenetic Analysis 

When considering the divergence from the sister taxon A. reichei, each tree formed 

three or four distinctive clades: 1.) Mount Lico and Chiperone (Southern), 2.) Mounts 

Mabu, Mulanje, Socone, Namuli and Inago (Northern), 3.) Mount Mabu 1 (Central), and 

4. Mount Mabu 2 (Sandwich) (Figure 10).  Mount Chiperone does not appear in the 

nuclear tree as sequence data were missing.  In all cases (Appendix 2, Figures 12 - 14), 

Mount Mabu has two sympatric populations, P1 (T5764, T5766, T5765, T5756) and the 

larger population comprising of all the remaining individuals (P2, P3, P4; Figure 10).   
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To simplify the Bayesian phylogenetic analysis (BPA), a concatenated 12S, 16S and rag-

1 pruned tree was created with representatives from each mountain and clade (Figure 

11). Taxa with missing genes were excluded from this tree, resulting in the absence of 

the individual from Mount Chiperone in the 16S analysis.  Despite the low branching 

support of all the individual genes, a sympatric divergence on Mount Mabu is 

confirmed, with a questionable additional clade consisting of T5757.  Mounts Namuli, 

Mulanje, Inago and Socone support their own clade.  Mount Lico is in the second Mabu 

clade. 

 

 

 

 

 

 

Figure 10. Left figure: Outline of Mozambique and the red box with an ‘A’ refers to the location of Mount Mabu.  Top 
Right: A closer view of ‘A’, Mount Mabu samples (n = 24). Bottom right: Closer view of the samples from Mount 
Mabu. P1. referring to Population 1 of which 18 samples were collected.  P2. n = 4, P3. n = 1 and P4. n = 1.  Mount 
Mabu has a two-way sympatric population split where four samples from P1. form a definite clade with the 
remainder taxa forming a large, monophyletic clade. 
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Bayesian phylogenetic analysis produced different topologies between the three 

markers used.  According to all three markers (mtDNA – 12S and 16S and nuDNA – rag-

1 in Figure 12 – 14 and Appendix 2) Mount Mabu is occupied by two separate lineages 

(posterior probability of 0.21), and Mount Lico is occupied by another, distinct lineage.  

The concatenated mitochondrial 12S and 16S tree (Appendix 2) agrees with the nuclear 

rag-1 tree (Figure 14), both supporting different posterior probabilities yet producing 

the same monophyletic relationships.  There is strong evidence throughout the trees to 

support that Mount Lico (Figures 12 - 14) as well as Mount Chiperone (Figure 13) form 

distinct lineages.  Mutations have created a hierarchy of shared substitutions to 

reconstruct the evolution history of the clade (Figures 12 – 13).  Branch lengths 

represent the rate of substitutions, for example, with individuals from Mount Mabu 
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Figure 11. Phylogenetic tree of the three genes (12S, 16S and rag-1) of representatives from each mountain 
displaying the probability of divergence between 0 and 1. Here it maintains the split on Mount Mabu and the 
cluster of Mount Namuli, Inago and Socone with the inclusion of another cluster containing Mounts Mabu and Lico 
individuals 
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(T5772: Figure 12) and Mount Chiperone (T6836: Figure 13) showing longer branch 

lengths.  Comparative differences in substitution rates are higher in rag-1 (Figure 14). 

 
Figure 12. A 12S phylogenetic relationship between Arthroleptis francei candidate species where A. reichei was used 
to root the tree.  Branch support posterior probability values are displayed from 0 to 1. Tip labels represent the 
individual by the ‘T’ number and Mountain on which they were collected.  Tip colouration is by mountain. 
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Figure 13. A 16S phylogenetic relationship between Arthroleptis francei candidate species where A. reichei was used 
to root the tree.  Branch support posterior probability values are displayed from 0 to 1. Tip labels represent the 
individual by the ‘T’ number and Mountain on which they were collected.  Tip colouration is by mountain.   
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Figure 14. A rag-1 phylogenetic relationship between Arthroleptis francei candidate species where A. reichei was used 
to root the tree.  Branch support posterior probability values are displayed from 0 to 1.  Tip labels represent the 
individual by the ‘T’ number and Mountain on which they were collected 
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It was in Blackburn (2008b) that A. francei was first sampled, but only represented by 

populations from the type locality in Mulanje, Malawi. The present study provides 

evidence that there is extensive variation in intra-species divergence of A. francei across 

the known populations.  The proportional (p) distances in Table 4 displays a matrix of 

all the possible sequence pairs from the 16S gene sequences for those used within this 

study.  Based on a Mount Mulanje specimen (GenB1) in the 16S analysis (Figure 13), the 

divergences between individuals from other mountains form monophyletic clusters 

according to mountain.  With the Mount Mulanje specimens being from the type 

locality, distances between the clusters formed in Figure 13 are as follows with the p-

distances stated in brackets taken from Appendix 10. Results revealed a low 

intrapopulational variation of 0 - 0.07 uncorrected pairwise distances in the 16S gene 

from the GenB1 individual: GenB1 to Mount Inago individuals - T7378 (0.04), T7381 

(0.04), T7377 (0.04), T7379 (0.04), T7376 (0.04).  GenB1 to Mount Chiperone T6836 

(0.09). GenB1 to Mount Mabu individuals - T5757 (0.05), T5765(0.05), T5764 (0.05), 

T5766(0.05).  GenB1 to Mount Lico – T7133(0.07) and T7166 (0.07).  GenB1 to Mount 

Socone - T7132 (0.03).  To simplify, a comparison of the proportional (p) distance 

between the clusters in the 16S BI analysis are displayed in a matrix in Table 4.  The p-

distance in Table 4 reveal the Malawi clades (Mulanje) to be c.  3% - 9% divergence from 

the Mozambiquean clades.   

 
Table 4. A comparison of proportional (p) distances for the 16S BI Arthroleptis francei clusters. The bottom matrix 
presents the interclade distances. 

 Malawi Mozambique 
  Mulanje Inago Mabu 1 Mabu 2 Lico Chiperone Socone Namuli 
Mulanje 0.000        
Inago 0.042 0.000       
Mabu 1 0.054 0.041 0.000      
Mabu 2 0.031 0.025 0.037 0.000     
Lico 0.066 0.062 0.059 0.062 0.000    
Chiperone 0.087 0.083 0.076 0.083 0.028 0.000   
Socone  0.033 0.009 0.034 0.021 0.057 0.078 0.000  
Namuli  0.038 0.005 0.037 0.021 0.057 0.078 0.005 0.000 
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3.3. Distribution network 

There was a clear separation between the main geographic haplotype groups across all 

three genes; 12S and 16S rRNA (Figure 15 and 16 respectively) and rag-1 nuDNA (Figure 

17).  The 12S marker showed an overlap between lineages which only occurred on 

Mounts Mabu, Socone and Namuli.  The same was the case for rag-1, with the addition 

of Mount Inago.  All 16S haplotypes were fully diagnostic for specific mountains.  Mount 

Mabu (green) supports two separate clades, whilst rag-1 results in a possible three-way 

split.  Individual T5756 has multiple index mutations from the larger Mabu clade as well 

as T7133 from Mount Lico.  Haplotypes from Mounts Namuli, Socone and Inago have 

fewer index mutations, resulting in a close relationship with those from the type 

locality, Mount Mulanje.  The geographic haplotype clusters in Figures 15 and 16 concur 

with each other, resulting in Mount Mabu harbouring two populations, and populations 

from Mounts Inago, Socone and Namuli being closely related to each other.  Mount Lico 

and Mount Chiperone form distinct populations. 

 

The rag-1 TCS network (Figure 17) follows a similar pattern but forms four main clusters: 

1) Mount Mabu, 2) Mounts Mabu and Socone, 3) Mount Lico and 4) all other mountains.  

One specimen from Mount Socone (T7133) differs from other Mount Socone individuals 

who share close similarities with Mounts Namuli, Mabu and Inago.  One individual from 

Mount Mabu is positioned closely to those from Namuli, Socone, Mulanje and Inago.   

 



Masters by Research 2020                                                                                 @00280579                                    

 49 

 
 

Figure 15. TCS Network for mtDNA 12S with circle colour representing the locality and the circle size depicting the 
number of individuals.  Mutations at index restriction sites are presented with a diagonal strikethrough on the branch 
which is proportional to the number of mutational steps.  These index mutations display the change in haplotypes 
from the common ancestor 
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Figure 16. TCS Network for mtDNA 16S with circle colour representing the locality and the circle size depicting the 
number of individuals.  Mutations at index restriction sites are presented with a diagonal strikethrough on the branch 
which is proportional to the number of mutational steps.  These index mutations display the change in haplotypes 
from the common ancestor 
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Figure 17. TCS Network for nuDNA rag-1 with circle colour representing the locality and the circle size depicting the 
number of individuals.  Mutations at index restriction sites are presented with a diagonal strikethrough on the branch 
which is proportional to the number of mutational steps.  These index mutations display the change in haplotypes 
from the common ancestor 

 
3.4. Species delimitation 

The species delimitation method (Bayesian General Mixed Yule Coalescent - bGMYC) 

revealed six cryptic species of Arthroleptis (Figure 18).  Mounts Inago, Socone and 

Namuli formed a joint clade, and Mounts Chiperone, Lico and Mulanje forming a clade 

each.  The previously revealed split into two lineages on Mount Mabu remains and is 

also supported throughout the 16S BPA posterior probability (Figure 13). The bGMYC 

shows more support than the BPA in defining a larger number of lineages.  The distinct 

Mount Inago lineage (green) is supported by the BPA model, whilst bGMYC groups them 

with Mount Namuli and Mount Socone.  The bGMYC posterior probability threshold 

was set to 0.5 for the lumping of samples into species, also to avoid over lumping or 

further splitting.   
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Figure 18. Species delimitation using bGMYC for the 16S gene of Arthroleptis francei displaying posterior probabilities. The heat map 
shows six putative species of Arthroleptis with A reichei as the outgroup.  Specimen numbers and locations are coloured according 
to a new clade.  Probability subsets of the heat map are: Low (red) to High (yellow) with the values of P = 0 – 0.05, 0.05 – 0.5, 0.5 – 
0.9, 0.9 – 0.95, 0.96 – 1.  Right: Simplification of the 16S bGMYC and BPA models (taken from Figure 13) where each colour 
corresponds to a new radiation.  The hollowed-out shapes represent the different Mabu clades 
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3.5. Species Distribution Model (SDM) 

The species distribution model (Figure 19) reveals the predicted locations suitable for 

A. francei.  The total permutation importance variation of the model consisted of annual 

precipitation (Bio 12, 90.9%), mean temperature of the coldest quarter (Bio 11, 6%), 

temperature of the wettest quarter (Bio 8, 2.2%) and annual mean temperature (Bio 1, 

0.9%).  The jacknife test verified that Bio 12 is the most important environmental 

variable with the highest gain.  Arthroleptis francei are known to live in moist forest at  

high elevations, atop granite inselbergs where temperature and precipitation are 

important.  This is confirmed by a model where precipitation dominates, despite the 

additional influence of temperature (see also Appendix 8).  In Figure 19, the probability 

of distribution is displayed as a colour ramp from white being low (0.018%) and red 

being high (0.99%).  Mount Ribáuè has a probability of A. francei occurrence between 

0.504 and 0.747, which corresponds with males being heard calling in November 2018 

(personal observation).  Several locations are suggested to have a high probability of 

occurrence, including the Zomba mountain in Malawi where the species was not 

Mulanje 

Mabu 

MALAWI 

MOZAMBIQUE 

Namuli 
Inago 

Socone 

Lico 

Chiperone 

Zomba 

Ribáuè 

Figure 19. Species distribution model for Arthroleptis francei for the current climate.  The colour ramp in the key 
indicating the probability of distribution and the yellow dots displaying the known distribution of specimens in the 
phylogenetic study. The star denotes the location where Arthroleptis males were heard calling but not collected.  The 
circles denote the separate clades according to the bGMYC model (Figure 18). 
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recorded during past expeditions (Simon Loader, pers. comm.).  Mount Chiperone was 

identified as a suitable location which led to the individual T6836 being included in this 

study.  

 

3.6. Phylospatial distribution of Arthroleptis francei  

The phylospatial analysis resulted in an uneven distribution of PE, PD, WE and SR across 

the geographic region, with three, four, five and six hotspots, respectively (Figure 20).  

The highest level of PE (0.020) was found at Mount Chiperone, but this may be due to 

limited genetic sampling.  The PE for the isolates, Mounts Mulanje, Mabu and Lico have 

highly divergent lineages resulting in a medium PE whilst the remaining isolates resulted 

in low PE per unit area.  Compared to PE, WE measured slightly greater spatial 

distribution throughout the geographic area, yet the higher levels were the same with 

Mount Mabu and Mount Namuli resulting in medium endemicity.  Sampling here would 

be beneficial to confirm such results.  Mounts Mulanje, Chiperone, Lico, and Mabu all 

show a medium to high PD across the region which corresponds with the diversity 

within the BI (Figure 13) and the species delimitation model (Figure 19).  The SR is the 

diversity of species within a given area or ecosystem.  Therefore, with the phylogeny 

and SDM data for A. francei candidate species, Mounts Mulanje, Mabu, Chiperone, 

Namuli, Socone and the area of high ground between Mabu and Namuli have all 

resulted in high SR (0.6 – 0.8).  All the phylospatial data confirms the high endemism 

and richness rankings of the A. francei candidate species on the SMI.   
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Figure 20.  Distribution of phylogenetic endemism (PE), phylogenetic diversity (PD), weighted endemism (WE) and species richness (SR) of A. francei candidate species 
within this study in Malawi and Mozambique.  Models were constructed with 16S phylogenetic data from Figure 13 and distribution data from Figure 20.   
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3.7. Conservation  

Three areas, Mounts Chiperone, Mulanje and Lico were identified as hotspots for PE.  

Of these montane isolates, only Mount Mulanje is listed as protected on the world 

database of protected areas.  Mounts Namuli, Mabu and Chiperone feature as KBA’s by 

the CEPF, with Mount Morrumbala, to the south of Chiperone being listed as a KBA 

awaiting assessment (Hoffman et al., 2016).  Of the eight sites where specimens were 

collected, four contain a certain protection status with A. francei potentially residing on 

Mount Morrumbala.  So far no known specimens were collected from this isolate, 

therefore it could be an area requiring further surveying efforts.  The PE on Mount Lico 

measures at a medium level (between 0.010 – 0.015) and along with the phylogenetic 

analysis, this lineage is separate to that of the initially named A. francei (Figure 21).  A 

new lineage endemic to this mountain is sufficient to point to a possible requirement 

for protection. 

 

 

 

MALAWI MOZAMBIQUE 
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Figure 21. Identified PE hotspots intersecting protected areas in both Malawi and Mozambique.  These protected 
areas are provided by the World Database of Protected Areas and the Critical Ecosystem Partnership Fund.  A total 
of 50% of the locations where specimens were found in this study have received a level of a protection status.   
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3.8. Call analysis 

The documented call (Figure 22) is of a single male A. francei.  The call displays three 

parts, with ten syllables in total.  Part 1 consists of a short “beep” (# 1), followed by six 

longer calls, increasing in intensity and sounding like a drawn out, high pitched 

“beeeep” (# 2-7), with similar time gaps between each.  Part three consists of three 

rapid “beeps” with similar short gaps between them. 

 

The entire call lasted 25.82 seconds (Table 5). The total mean call intensity (measured 

in decibels - dB) of Part 1 was 54.40dB (between 10.96dB for syllable 1 and 58.34dB for 

syllable 9).  The call intensity of Part 2 was greater than Part 1 at 70.79dB, with the 

minimum at the start at 48.33dB and a maximum in the centre at 75.72dB.  The 

minimum frequency (measured in Hertz – Hz) was 2975.95Hz at both syllable 3 and 4 

with a maximum recording in the last three syllables, in particular the final one at 

3034.15Hz.  The frequency tends to slightly fluctuate throughout the call ending with a 

graduating increasing frequency at the end.         
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Table 5. Acoustic analysis of the call data where the column headings represent the sections visualised in Figure 22.  Section 8 in Figure 22 encompasses 8, 9 and 10 in the table below.  
Abbreviations: dB – Decibels, Hz - Hertz 

 

 

 
 

        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        
 
        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        
 
        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        
 
        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        
 
        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        
 
        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        
 
        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        
 
        1               1a                         2                2a              3                      3a                     4                   4a                 5                  5a                 6          6a       7       7a 8 
        

Figure 22. Spectrogram to visualise the call of a male Arthroleptis francei from Mount Inago, Mozambique. Sections with whole numbers 1 – 8 display the intermediate units (syllables) within the song.  
The gaps are labelled with smaller numbers (1a – 7a).  Light blue – frequency change, dark green – amplitude. 
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4. Discussion  

This study has conducted a phylogenetic analysis based on the largest sequence data 

set of A. francei accessible to date.  This phylogeny was used as a basis for investigating 

several phylogenetic, biogeographic and trait-related hypotheses.  Furthermore, with 

the incorporation of distribution modelling, morphometrics and elevation analyses, the 

study has provided an opportunity to suggest further areas for research.  The study 

framework builds on previous work by Blackburn (2008b), with the addition of further 

elements to the research and a larger dataset.  The trees are based on the largest 

geographical sampling of A. francei to date, propose new relationships among 

populations, and reveal cryptic diversity suggesting the existence of a species complex.   

 
4.1. Morphology  

This study revealed marked variation in both size and colour in A. francei, however 

without consistent patterns across populations, suggesting that further research is 

required.  Due to data missing for specimens from the type locality Mount Mulanje, a 

thorough comparison of both colour and size between specimens from other locations 

cannot be made.  Four of the five females measured belong to the largest Mabu clade 

with reference to the SDM (Figure 19).  Three males and one female were from the 

Inago/Socone/Namuli clade, and two males were from the small Mabu clade.  The 

female-biased sexual size dimorphism (SSD) revealed in the present study conforms to 

previous findings, and is exhibited by around 90% of anurans around the world (Shine, 

1979; Fairbairn, Blanckenhorn and Székely, 2007; Bagaturov, 2018). Female-biased SSD 

is generally consistent with Shine’s (1979) sexual selection hypothesis which predicts 

that females are on average 30% larger than the males.  Male-biased SSD is only 

exhibited by 3% of frogs, and examples include the Limonectes genus (fanged frogs) 

from South East Asia (Emerson, 1994).  Larger males are usually linked to territorial 

behaviours, display aggressive male to male combat, and have developed secondary 

adaptations such as fangs or tusks (Tsuji, 2004).  Differences in age structure between 

the sexes result in sexual bi-maturity, whereby females can be older than males and 

also mature at a smaller size (Halliday and Verrell, 1986; Monnet and Cherry, 2002).  

Many other factors can affect SSD in A. francei, such as life histories, fecundity, sexual 
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and correlational selection as well as ecological and energetic constraints (Liao et al., 

2013).  Being direct developers, size could be positively correlated with investment into 

offspring production, resulting in males being smaller (Zhang and Lu, 2013).  

 

Males secondary sexual traits of Arthroleptis and Cardioglossa include the possession 

of an elongated third finger, which is reflected in their name, meaning ‘long-fingered’.  

Within these genera the males’ third finger (TDL) can reach lengths of 30-40% of their 

snout vent length (SVL), whilst respective values for females are generally <20% 

(Blackburn, 2008b). In the present study, males’ TDL is longer at an average of 24.5% 

compared to females, reaching only 17.6% of SVL.  Despite the female’s overall larger 

body size, the males’ TDL are absolutely longer than those of females.  There have been 

no comprehensive studies regarding secondary sexual traits within Arthroleptis, and 

only brief mentions of male-biased TDL within Cardioglossa (Herrmann et al., 2004; 

Blackburn, 2008a).  As there are no other documented differences between the sexes, 

it is likely that the TDL and SVL are characteristics of sexual selection processes as first 

mentioned by Darwin (1879).  This is then later confirmed by Blackburn (2009b), who 

concluded that a positive relationship between SVL and finger length is a result of 

allometric growth.   

 

The use of these longer digits still remains unclear and raise many questions for their 

uses: Are they used as a warning signal? Are they for attracting females? Are they useful 

in amplexus? Or, do they help in male to male combat as seen with A. stenodactylus 

(Bittencourt-Silva, Langerman and Tolley, 2020)? Blackburn (2009) looked into various 

hypotheses of TDL with the inclusion of digital and inguinal spines on the toes to 

understand the diversity and evolution of secondary sexual characters in Arthroleptis 

and Cardioglossa.  Male traits were present in the most recent common ancestor, whilst 

the reduction or loss occurred later on.  Changes in sexual selection pressures are 

important in understanding mail trait diversity and whether it contributes to 

reproductive success.  However, without in-depth behavioural studies, it is impossible 

to understand the exact purpose of the third digit length and other morphologies such 

as the spines as mentioned by Blackburn (2009b).  Further research is needed on 

Arthroleptis candidate species in regard to SSD on a per-species basis, and phylogenetic 
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comparative analyses would be beneficial in understanding the complex evolutionary 

patterns of anuran SSD and mating systems.   

 

As data on the calls of A. francei are limited to the present study, more research is 

needed to determine the two sympatric clades identified on Mount Mabu exhibit any 

niche partitioning.  To the ear, the call on Mount Ribáuè was indiscernible from the call 

which was recorded on Mount Inago.  None of the measured morphological 

characteristics enabled a differentiation between the candidate species, despite 

differences in the length of the humerus and the third digit between Mount Mabu and 

Inago.  Further measurements of specimens in collections and a statistical analysis 

would aid in the identification of diagnostic morphological characteristics between taxa.        

 

Selection promotes the evolution of exaggerated secondary sexual traits (Darwin, 1879; 

Shuster and Wade, 2003), and in combination with multiple biotic and abiotic factors 

impacts on colour phenotypes of animals (Rudh and Qvarnström, 2013).  Colour and 

patterns have evolved for predator avoidance (Segami Marzal et al., 2017), attracting a 

mate (Stuart-Fox and Ord, 2004), thermoregulation (Tracy et al., 2010), intra- and 

interspecific communication (Caro, 2005), and UV-B protection (Garcia, Stacy and Sih, 

2004).  Sexual dimorphism amongst anuran species is visually evident in morphological 

traits such as colouration and body size (Hoffman and Blouin, 2000).  The colouration 

and patterns of the candidate species in this study vary greatly from golden to dark 

brown, some presenting patterns on their dorsal side, and none being uniform in colour.  

The forest floor habitat the species reside in contains a variation in the colouration and 

sizes of leaves which form the leaf litter (Figure 3).  This plays a large part on the 

evolution of colouration which would aid in camouflage for predator avoidance such as  

Rhinella margaritifera with a leaf litter colouration (Duellman and Trueb, 1994), similar 

to that of A. francei.  Local adaptations often induce geographical colouration 

differences, camouflaging to the backgrounds inhabited in particularly when there is a 

higher risk of predation (Krohn and Rosenblum, 2016).  Within the candidate species in 

this study, there are different colour and pattern phenotypes within the same location 

(Figure ), yet all individuals within the same or different populations are different to 

each other.  Variation of colour and size between specimens leads to taxonomic 
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implications when in the field identifying between specimens.  To make a thorough 

analysis on whether colour and/or size plays a defining factor in distinguishing between 

populations will help solve the taxonomic uncertainties.   

 

During adaptive radiation, selection results in rapid phenotypic diversification within a 

species (Glor, 2010).  A large body of literature focussed on adaptive radiation for 

example in the famous Darwin’s finches (Grant and Grant, 2002), cichlids in Lake Malawi 

(Seehausen, 2006), and a range of mammals (Baldwin & Sanderson, 1998; Campagna et 

al., 2015; Couzens & Prideaux, 2018).  However, this area is less explored in amphibians 

(Blackburn et al., 2013; Bossuyt & Milinkovitch, 2000; Stuckert, Linderoth, MacManes, 

& Summers, 2019), and could be an area for further research.  There is a close 

correlation between amphibian phenotypes and habitat types (Duellman and Trueb, 

1994), where there is substantial opportunity for dispersal limitations and high 

philopatry leading to population divergence (Vences and Wake, 2007).  The adaptive 

radiation in this Arthroleptis francei clade could be enabled by advances in life histories 

such as being direct developers or their morphologies.  Studies on relationships 

between habitat utilisation and morphological variation which are linked to adaptive 

radiations are limited (Kozak et al., 2005), yet this has been seen in the tropical 

plethodontid salamanders (Wake, 2009).  Could the colouration of the Arthroleptis 

candidate species be a trait of adaptive radiation or a characteristic of niche 

segregation?  With niche segregation applying to different species inhabiting the same 

locality, yet adapting to the use of different habitats, geographic areas, diets and much 

more to successfully co-inhabit.  This may only be applicable to the two populations on 

Mount Mabu, as phylogenetics have resulted two populations within the same locality.  

Without knowing the full extent of their ecologies, could the phenotypic traits of skin 

colour be the adaptation to perhaps occupying different niches? 

 

As most amphibians are nocturnal, the importance of colour in communication has 

largely been neglected.  However, there are studies stating the that colouration plays 

an important factor in mating (Rudh and Qvarnström, 2013), and it is not only the 

vocalisations that attract females (Jacobs et al., 2017).  Colouration and vocalisation, in 

the purpose of mate choice, may convey different signals (Gomez et al., 2011) where 
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the vocal sacs may be a visual cue rather than for sound proliferation (Starnberger, 

Preininger and Hödl, 2014).  For A. francei, the vocal sacs of males are darker than the 

rest of their underside, and therefore could act as a visual attractant.  Female squirrel 

tree frog (Hyla squirella), have been found to prefer males with a larger lateral body 

stripe at given calls  displayed (Taylor, Buchanan and Doherty, 2007), whilst female 

European tree frogs (Hyla aborea) have shown to prefer noticeably coloured males 

(Gomez et al., 2009).  Here, colour may not just be an adaptation to the environment 

but also a display to attract a mate. 

 

4.2. Phylogeny and taxonomy  

Phylogenies based on molecular data enable an understanding of the taxonomy of a 

group as well as diversification patterns.  By combining existing and new molecular data 

this is the first detailed, phylogenetic analysis of A. francei.  The Bayesian phylogenetic 

analysis, species delimitation and haplotype network analysis jointly suggest that A. 

francei comprises of cryptic taxa distributed across the inselbergs of Southern Malawi 

and Mozambique, including a case of a divergence at the same location, Mount Mabu.  

The species delimitation model identifies all locations as well supported lineages of 

distinct species except for the populations located in Mount Socone, Inago and Namuli.  

The multilocus analysis supports a split amongst the Mabu specimens, which is 

independently evidenced by the three investigated genes (Figures 12 - 14), and the 

concatenated results (Appendix 2).  There are six well supported clades from the seven 

mountains investigated in the SDM, confirming a high probability of two taxa on Mount 

Mabu.   

 

With these new findings, an updated phylogeny of Arthroleptis from Blackburn (2008b) 

can be created.  The sister species of A. francei are A. nikeae, A. reichei and A. tanneri, 

all larger Arthroleptis found in the Eastern Arc Mountains in Tanzania (Blackburn, 

2008b).  The only larger species of Arthroleptis found in Mozambique is currently A. 

francei, suggesting that the Arthroleptis species in this region could have originally 

radiated from the northern part of the EAR.  Recent studies from the sky islands of this 

region are helping in the identification of cryptic vertebrates such as in reptiles 

(Ceccarelli et al., 2014; Branch et al., 2019), and amphibians (Conradie, Bittencourt-Silva 
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et al., 2018) (Conradie, Verburgt et al., 2018) and all pertain a similarity in their 

distribution between the inselbergs of Malawi and Mozambique.  It was in Blackburn 

(2008b) that A. francei was first sampled, but only represented by populations from the 

type locality in Mulanje, Malawi. The present study provides evidence that there is 

extensive variation in intra-species divergence of A. francei across the known 

populations.   It was in Blackburn (2008b) that A. francei was first sampled, but only 

represented by populations from the type locality in Mulanje, Malawi. The present 

study provides evidence that there is extensive variation in intra-species divergence of 

A. francei across the known populations.    

 

Research on how much molecular difference constitutes whether a population can be 

considered a new species or not has been looked at extensively (Fregin et al., 2012). 

Pairwise distances in 16SrRNA among populations of over 5% provides a good support 

for thinking they represent distinct and separate lineages. For A. francei, we see almost 

all populations >5% which suggests a strong possibility of multiple cryptic species.  

While these results are the first to document the phylogenetic relationships among 

clades within A. francei.  Nuclear loci retain ancestral polymorphisms, particularly in 

more recently divergent species.  With the species delimitation model, Mount Mabu 

was intensely sampled whilst all other locations had a low effort with Mount Chiperone 

and Socone with only one specimen for each.  These phylogenetic relationships give an 

interesting insight into the biogeographic patterns of Arthroleptis specimens on the 

SMI.  The genetic divergence suggests that these populations were once connected by 

a widespread continuous forest which are now restricted to higher altitudes atop these 

isolated inselbergs.  The significant population-level genetic divergence of Arthroleptis 

candidate species and the fact that they are specialist species in regard to habitat and 

breeding mode could be linked to their limited dispersal abilities.  Given the limited 

number of biological surveys in the SMI region and the vast expanse across which the 

inselbergs are distributed, there is a possibility that more species await discovery.  

Further sampling will determine the support for the addition of new taxa.   
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4.3. Biogeographic Distribution  

The phylogenetic relationships of the taxa in this study, along with those of other 

species (Conradie, Bittencourt-Silva et al., 2018), help build an understanding of 

biogeographic distributions in Mozambique and Malawi.  The SDM suggests that 

populations of A. francei might be present on further mountains than those investigated 

in this study (Figure 19), as well as at other locations of surveyed mountains.  There is 

still a lot more to be discovered on the distribution of forest-restricted taxa.  During 

field work for the present study, the calls of A. francei were heard on Mount Ribáuè, 

and only due to time constraints we were unable locate any individuals.  This however 

confirms the predictions of the SDM that Mount Ribáuè is a suitable habitat for A. 

francei.  According to the SDM, Mount Chiperone was also a potential site to find A. 

francei, and a specimen at NHM was indeed confirmed to be A. francei and included in 

the 16S phylogenetic analysis.  Further expeditions to the scattered inselbergs in this 

mountain range in Mozambique, in particular Mounts Namuli and Mabu and other parts 

of Mount Mulanje, Zomba mountains are needed to compile a more comprehensive 

distribution map of A. francei.  An individual (BM 93.10.26.80) was collected allegedly 

from the Zomba region in the nineteenth century with no exact locality and was later 

rejected as A. francei by Loveridge (1953).  Although this specimen is macerated, the 

description does resemble that being A. francei yet Loveridge leaves no explanation why 

the location was rejected and that the specimen being A. macrodactyla, a synonym 

(female) of A. poecilonotus (male) from central Africa.  This however does not rule out 

the fact that the Zomba mountains are unsuitable for the A. francei complex, and 

further exploration here would be beneficial. 

 

Further sampling effort across Mount Namuli and Mount Mulanje will confirm the 

predictions of 0.747% – 0.99% likelihood of occurrence in such locations (see Figure 19), 

similar values compared to Mount Chiperone, Socone and Lico where A. francei was 

recorded.  Care however needs to be taken when interpreting the model, as the central 

area between the Zomba Mountain and the southern tip to the east of Mount 

Chiperone (Figure 19) represents a low elevation, non-forested area which likely would 

not be suitable.  The SDM in this study utilised climatic variables which do not account 

for areas that might have previously been forest but due to anthropogenic change no 
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longer have forest habitats. The SDM should not be used entirely on its own when 

predicting occurrences but used as a guide in conjunction with ground-truthing field 

surveys and current forest distribution maps.  As all occurrences except Mount Mabu 

(n = 24) are based on a sample size of less than ten records, the inferences made should 

only be taken as a guidance.   

 

4.4. Taxanomic issues 

This genetic analysis reveals that the populations on the Mozambiquean sky island 

forests represent candidate species.  The Mount Inago clade is well supported as 

distinct, and is differentiated from the collective other mountain clades in the barcoding 

(BI) analysis.  However, the clade containg individuals from Mounts Namuli, Socone is 

only moderately supported as monophyletic with a low 0 – 0.24 Bayesian posterior 

probability (Bpp).  There is a further divergence within this larger clade with a 0.71 Bpp  

forming the smaller Mounts Mabu, Lico and Chiperone clade with a further 0.99 Bpp 

dividing Mount Mabu and jointly Mounts Lico and Chiperone.  The largest Mount Mabu 

clade has a 0.99 Bpp from the type location, Mount Mulanje.  Within the rag-1 analysis, 

there is a common allele shared with the smaller Mount Mabu and Mount Lico clades 

unlike those within the mitochondrial 16S analysis.  This rag-1 allele could be the result 

of being ancestory stored within the larger clade giving that 16S haplotypes are 

extremely divergent.  Currently, with the 16S mitochondrial divergence and barcoding 

results and the species delimitation of the 16S all lead to supporting the recognition of 

six distinct lineages (Figure 13).   

 

The species delimitation method is a further analysis to understand divergence by 

grouping individuals into putative lineages.  This method does not test whether the 

identified groups are independently evolving to one another.  This analysis in 

conjunction with the understanding of any reproductive barriers can give clarity in 

understanding the species boundaries.  As these populations are forest restricted 

species, the habitat fragmentation between the mountains and the vast distances 

would give confidence in accepting the results of species delimitation.  Mount Socone 

and Mount Lico have the least distance between them within the whole mountain range 
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however, according to Figure 18, there is an obvious divergence between the two 

clades.   

The phylogenetic relationships revealed for A. francei resemble other Sub-Saharan 

African taxa found within Nothophryne (Bittencourt-Silva et al., 2016; Conradie, 

Bittencourt-Silva, et al., 2018), Dipsadaboa (Branch et al., 2019) and Hyperolius 

(Conradie, Verburgt, et al., 2018), representing groups of closely related or identical 

species found atop mountain isolates.  A thorough molecular analysis by Bittencourt-

Silva et al. (2016) on the specialist Nothophryne species revealed a substantial genetic 

divergence between populations restricted to isolated moist habitats in the sky islands 

in Mozambique and Malawi.  A similar pattern can also be seen in the Arthroleptis 

candidate species within this study (Figure 23).  The mountain chain between Mount 

Mulajne and Mount Ribáuè spans across approximately 464 km, with distances 

between mountains ranging between approximately 63 km (Mount Mulanje to Mount 

Chiperone) and 14 km (Mount Socone and Mount Lico).  Forest dominated this 

landscape in the late Oligocene-Miocene eras (Sepulchre et al., 2006), providing a 

suitable habitat for Arthroleptis to disperse and inhabit a wider range and connecting 

the populations, perhaps at all elevations.  Climatic fluctuations have played a large 

factor in the ever expanding and contracting of forest habitats in similar environments 

(Lawson et al., 2015), and this physical process could be the influence of the distribution 

of these Arthroleptis candidate species.  More recently, aridification and anthropogenic 

changes have resulted in further habitat fragmentation, therefore restricting these 

forest dwellers to isolated populations in higher elevations. Further paleo-geographical 

data will aid in the understanding of the biogeography and biodiversity of these SMI. 
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I understand that this study did not include a large morphological analysis due to the 

availability of specimens however this would only complement the phylogenetic results 

which strongly support my decision to recognise the cryptic species within Arthroleptis 

francei.  In addition, the call analysis is an addition as with the morphological analysis.  

This was chosen to be included in this study as a result of a personal discussion with 

Werner Conradie and Gabriella Bittencourt on the field trip in November 2018.  The 

reason being due to there being limited studies in this region on amphibian bioacoustics 

and it will be beneficial to build up a database for future research.  This being the 

hypothesis that there could be slight call differentiations between the newly diverged 

species.  Additional collection of specimens from locations where the sampling effort 

was poor such as Mounts Inago, Socone and Chiperone would help in a further 

phylogenetic analysis along with expeditions to mountain presented in the SDM model.  

Behavioural studies would help in understanding the ecologies of this species and 

inparticular, their breeding habits, habitat use, colour morphologies and the differences 

between sexes.  

 

 

 

Figure 23. A simplified comparison between the SDM of Arthroleptis candidate species in this study and 
Nothophryne from Bittencourt-Silva (2016). 

Nothophryne species 
 
Nothophryne species 

Arthroleptis candidate species 
 
Nothophryne species 
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4.5. Speciation 

The predominant divergence of populations found amongst the SMI suggests that 

mountain formations and retracting forest act as a significant barrier for dispersal.   

Without dated divergence, we can only assume the current driving forces contributing 

to the speciation of the candidate taxa within Arthroleptis francei.  The molecular 

analyses uncovered that speciation events have likely occurred on each mountain.  

There is evidence for three allopatric speciation events between Mount Lico and Mount 

Chiperone, between Mount Inago, Mount Socone and Mount Namuli and between 

Mount Mulanje.  Interestingly, the individuals on Mount Mabu indicate potential 

sympatric speciation as they were located in the same geographic coordinates.  Further 

research will help in understanding if the two Mount Mabu taxa are evolving 

independently, and if niche separation allows the separate Mabu clades to co-exist in 

the same location.  There could be a possibility of the species from the Mabu clades 

being in secondary contact with each other and had diverged earlier.  These patterns of 

spatial segregation are associated with adaptations to the environments and limited or 

lack of gene flow.  Ancestral species accumulate independent genetic changes 

(mutations) through time, often after the populations have become reproductively 

isolated.    

 

With the forest habitat retreating on each mountain, it would be beneficial to map the 

last remaining forests to monitor and predict the rate of loss of species.  As the 

Arthroleptis candidate species are known to inhabit forest isolates, the minimum range 

between the points of collection to the maximum elevation on Mount Mabu and Mount 

Mulanje are 56m and 1292m, respectively (Appendix 6b).  Only one individual from 

Mount Mabu was located at 430m asl, which appears to be an outlier whilst all the other 

individuals were collected at elevations above 844m.  These species are specialists and 

rely on higher, forested habitats.  This reliance links to the potential conservation 

implications and restricted gene flow of already isolated populations.   

 

Our knowledge of amphibian diversification mechanisms on montane isolates in the 

EABR is limited.  Breviceptid frogs appear to have arisen from allopatric speciation 

within forest and grassland habitats (Loader at al.  2014), whereas for spiny-throated 
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reed frogs’ divergence predominantly through a combination of peripatric and 

allopatric speciation resulted in an increase of species richness (Lawson et al., 2015).  

Within the habitats on the SMI, there are high concentrations of old and new endemics 

with fragmented distributions.  An in-depth analysis of speciation amongst amphibians 

in these habitats is lacking therefore further studies on an individual species or 

community approach are necessary to clarify speciation mechanisms, and to gain a 

broader knowledge of its rich biota.  From this study, it seems there are two main 

speciation processes occurring, yet a further analysis would help in clarifying this.  

Knowing more about the drivers of these events would be beneficial to the conservation 

of this species complex.  If elevation is the driving factor, taxa at higher elevations may 

be prone to genetic bottlenecks and reduced habitat ranges, which puts the survival of 

the species at risk.  Fragmentation, habitat destruction and climate change pose major 

threats and force slightly lower elevation species to even higher elevations, where 

extinctions and speciation events might occur at a faster rate.   

 

4.6. Conservation 

This multi-analysis approach of phylogenetic, spatial data and distribution modelling 

with the discovery of cryptic species results in an in-depth insight into a species complex 

and confirms where efforts for conservation are needed.  These montane isolates are 

known to harbour a rich diversity of species, and the A. francei complex adds to the 

need to increase the protection of these critical habitats.  According to the CEPF and 

the world database of protected areas, only 50% of these mountains within this study 

are protected, with a greater investment into Mounts Mulanje, Mabu and Namuli.  

Other mountains such as Lico and Chiperone have proved to be endemic hotspots, and 

Mount Morrumbala remains to be surveyed.  The phylospatial modelling highlights 

areas of conservation importance, but there are certainly gaps in other areas which 

need a species-wide assessment and protection planning.  Protected areas in this study 

region are few, and with the rapid loss of these forests perhaps strengthening the 

protection of areas that fall within the PE hotspots will be a strategic move.  

 

With molecular-based analyses showing a genetic difference between lineages, it is 

evident there are multiple species distributed across the isolated inselbergs.  The likely 
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presence of cryptic species within the A. francei complex will affect the future species’ 

conservation status on the IUCN red list, where it is currently listed as Vulnerable.  The 

revision of this status would result in a possible elevation to Endangered due to a more 

restricted range of A. francei, jointly with an independent assessment of newly 

emerging taxa.  As these species are currently known to only occur on single mountain 

blocks each, they effectively have a narrow range.  Coupled with this range, their 

specific habitat needs, and breeding biology suggest that any changes to the habitat will 

be detrimental to the species.  The isolated forested sky island inselbergs are an 

important ecosystem in Africa, providing a vital habitat for many species of flora and 

fauna.  These forests are disappearing entirely or have reduced in size due to the local 

practices of slash and burn for agriculture purposes (Figure 24).  These practices are 

generally conducted on the outskirts of the forest with a gradual encroachment towards 

the centre (Ryan et al., 2014).  Forests are also used for the extraction of trees for 

firewood and bushmeat hunting, where fires are set to capture animals and gin traps 

can be found for trapping (personal observations).  The surrounding boarder of the 

forests are miombo woodlands which act as a buffer zone but are too being lost for 

firewood.   

 

Forests are known to be vital terrestrial habitats that act as a carbon sink (Pan et al., 

2011).  A study by Bayliss et al. (2014) on the carbon storage of the forest of Mount 

Mabu resulted in a value of 3 634 539 Mg (3.6 Tg), including the live vegetation, woody 

debris, soil, and the below-ground live matter.  If the total forest was lost to bushland 

and agriculture with sparse crops, 117 Mg ha-1 or 2.7 Tg of carbon in total will be 

released into the atmosphere, reducing to 2.2 Tg of carbon If converted into agriculture 

combined with woodland (Willcock et al., 2012).  The forested habitat on the 

surrounding mountains in Southern Malawi and Northern Mozambique (north of the 

Zambezi river) show similar ecological characteristics, underlining their importance for 

carbon sequestration and as a habitat for people and animals alike.   
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The increased interest in research on Mount Mulanje lead to the formation of the non-

governmental Mulanje Mountain Conservation Trust (Bayliss et al., 2014), with the aim 

to, as a joint venture between funding and educational organisations, initiate an 

ongoing biodiversity assessment also for other inselbergs of Mozambique.  The 

presentation of data collected by Julian Bayliss and the research expedition team where 

a number of new specimens were discovered has indeed resulted in the protection of 

Mount Mabu by the government of Mozambique (Windsor, 2009).  The discovery of 

new species, and the gaining of new knowledge of already known species has more 

recently resulted in the protection of Mount Ribáuè, where any person caught 

deforesting the last remaining forest will receive a monetary fine and imprisonment 

(pers. comm.). With enforcement being low and these anthropogenic processes, this 

SMI region is a cause for conservation concern.  Government co-operation and 

community-based projects on sustainable farming practices and reforestation would be 

a vital investment to the protection of these forests, and to protect the biodiversity it 

harbours. 

 

Figure 24. Deforested forest which has been converted into farmland (currently maize) with a temporary thatched 
hut for shelter when the land is being managed.  This location was a five hour walk from the nearest village which 
once was thick forest as seen by the expedition two years prior. Photo: Woest (2019). 
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5. Conclusion 

The phylogenetic results from this study display diversity amongst Arthroleptis francei 

distributed on different mountains, including new candidate species from southern 

montane sky islands.  There is a substantial amount of genetic variation between 

populations, with a similar pattern arising between the three genes and the delimitating 

approaches (BI model and bGMYC).  In total, A. francei appears to comprise of six to 

seven candidate species, which are mostly endemic (Mounts Mabu, Chiperone, Lico, 

Namuli and Mulanje) and isolated to single mountains except for individuals from 

Mount Socone which are grouped with Mount Namuli and Mount Mabu, which 

harbours two taxa.   According to species delimitation methods, populations from 

Mount Namuli, Mount Socone and Mount Inago are diverged but belong to the same 

taxon, whereas populations from the remainder of the mountains display divergence at 

the level of species.  The overall distribution of Arthroleptis candidate species is 

determined by vicariance due to geological and climatic events and, more recently, 

anthropogenic land use changes, in particular in Malawi and to the east of Mount Mabu.  

With more intense sampling effort, understanding the complex nature of Arthroleptis 

francei will be better understood in the future.  The present work is an insight into a 

both phenotypically and genetically diverging species endemic to isolated small areas 

of the last remaining rainforest pockets in East Africa.  The integrative approach in this 

study merits a thorough species delimitation, providing a first step to uncover 

previously unrecognised diversity.  This mixed method approach is applicable to 

discovering the distributions of biodiversity within any given area and scale and the 

phylospatial analysis can include cryptic diversity.  This allows a broad approach to 

identifying critical areas and the prioritisation of conservation efforts. 
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7. Appendix 

Appendix 1  
 
Arthroleptis francei directly described by Arthur Loveridge (1953): 

Holotype. M.C.Z. No. 27479, a gravid female from the forested banks of the Ruo River 

just below the Ruo Falls on Mlanje Mountain, about 5000feet. Collected by Arthur 

Loveridge, April 4, 1949.  

 

Paratypes 
M.C.Z. Nos. 27470-8 and twenty uncatalogued duplicates taken at the same time and 

place as the type.  

 

Diagnosis 
Obviously related to adolfifriederici Nieden of Central Africa, from which it differs in the 

much less developed dilations of fingers and toes (strongly dilated in adolfifriederici), 

the shorter hind limbs (which when adpressed in adolfifriederici reach from between eye 

and nostril to beyond end of snout), and general ground color (varying shades of nut 

brown in adolfifriederici). 

 

Description 
Type female. Head not wider than body (also in paratypes); tympanum distinct, half the 

orbital diameter (in entire series); first finger slightly shorter than second which extends 

as far as fifth when pressed together, fourth (on its outer side) less than twice as long as 

the fifth (twice as long in the male paratypes); tips of fingers slightly, of toes strongly, 

swollen, their bases without webbing; tibio-tarsal articulation of the adpressed hind 

limb reaches the eye (as is the case with 26 of the paratypes) or between eye and nostril 

(in 3 instances) ; an inner, but no outer, metatarsal tubercle whose length is shorter than 

the first toe. 

 

Colour of female type in life 
Above, dark brownish red; from nostril through eye above (and on upper portion of) 

tympanum to above forearm, a deep black band edged with lighter above, especially 

pale on eyelid; from eyelid to eyelid an obsolescent crossbar; similar dusky markings 
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occur as marblings on back, flanks, limbs and around anus. Below, pinkish white with 

underlying dusky markings and silvery white flecks on chest, sides of abdomen, posterior 

aspects of thighs, and on the almost blackish soles of hind feet; palms, fingers and toes 

more reddish. A slightly smaller female had the snout and anterior half of head pale 

pinkish buff, the black interorbital crossbar merging into the general black of the 

vertebral region which is dorso-laterally bounded by the same shade as the snout; on 

each flank, especially posteriorly, and on each hind limb, are a score of cream colored 

spots about whose edges are superposed small red dots that enhance this frog's striking 

appearance. In alcohol the entire series is predominantly gray, but in life the ground 

color was gray, buff, fawn, pale green, or rich brick red. The vertebral hour-glass pattern 

characteristic of Arthroleptis, conspicuous in some, appears to be absent in others, but 

can usually be detected with the aid of a lens; dark dorso-lateral lines are present on 

two young frogs causing them to look a little like pinkish Hyperolius. Even more imposing 

is a 20 mm. juvenile that is black except for the tip of its snout, which is buffy, an almost 

whitish interorbital bar, and numerous white spots on back and limbs. Below, all are 

substantially the same as described for the type except that grayish, not pinkish, 

predominates. 

 

Size 
Snout to anus of paratype cf (M.C.Z. 27476), 32 mm.; of type female, 46 (49 just after 

death) mm.; the entire series ranges from 10 to 46 mm., but only nine frogs are over 30 

mm. Breeding. In April the ova were only moderately large. Habitat. Unlike the 

equatorial forests of Tanganyika, Nyasaland forests at high altitudes apparently become 

too cold for amphibians owing to the drop in temperature when it comes on to rain. In 

a three-hour (7 to 10 am) walk up through the forest from the Power House under 

conditions that appeared ideal, I did not see a single frog. During the first two hours the 

enveloping cloud cap rendered it dull but afterwards intermittent shafts of sunlight 

illuminated stretches of the leaf-strewn path. It was on our way down from the Ruo 

Plateau that I caught the first frog among moss-grown boulders on the east bank, then, 

after recrossing the Ruo immediately below the Falls, a large one among leaves on the 

west bank. By this time it was again overcast and dark with rain threatening. Ten 

minutes later we took the other twenty-eight frogs within an area of a 100 square yards 
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between the path and the river bank. It began to rain but not another frog was seen 

during the rest of the way down the mountain to the Power House. 

 

Appendix 2 
Appendix 2. mtDNA (12S and 16S) concatenated tree of Arthroleptis francei candidate species. 
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Appendix 3 
Appendix 3. 16S Caterpillar 

 
 

Appendix 4. 

 

R Script for bGMYC 

#set directory 
#Load packages 
library(ape) 
library(bGMYC) 
 
#Read file 
All_trees<-read.nexus("A_francei_16SNew.trees") 
 
#Subset of 100 trees from my mcc tree file 
subset<-sample(All_trees, 100) 
 
#Using the subset of trees. t1 and t2 need to be set to possible values (e.g. between 2 and the 
number of leaves in the tree); the starting value for that parameter (the third value in the "start" 
vector) needs to be t1<start<t2 or else there will be an error. 
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# t2: must be less than or equal to the number of tips in the trees being analyzed. Gives the maximum 
number of species for which the prior probability is greater than 0. If it is greater than the number 
of tips in the tree, an error will result. 
result.multi<-bgmyc.multiphylo(subset, mcmc=50000, burnin=40000, thinning=100, t2=49, 
start=c(1,1,4)) 
 
#Plot 
plot(result.multi) 
 
#to check the behavior of the MCMC. These plots may look a little funny, however, because they are 
the results of several sequential MCMC runs, each with their own burn-in. You may find that one or 
two of the trees fails to reach stationarity or winds up in a weird area of parameter space. This may 
suggest that you should use a longer burn-in.  
 
#If things look fine, then you can run 
result.spec<-bgmyc.spec(result.multi) 
 
#If you want to visualize the posterior distribution in the context of the tree, you should do: 
result.probmat<-spec.probmat(result.multi) 
 
beast.tree<-read.nexus("A_francei_16SNew.trees") 
 
#Ladderize trees 
beast.tree<-ladderize(beast.tree, right = TRUE) 
right ladderized, do right right = TRUE 
plot(result.probmat,beast.tree) 
 
#Plot 
plot(result.probmat, subset[[1]]) 
 
#I have recently added another function to visualize the results in a way that will hopefully be 
helpful. The GMYC model is likely to be successful when the rate of branching for the coalescent 
process is much higher (approaching an order of magnitude higher) than for the Yule process. 
Accordingly, there is a function "checkrates" that will output all parameter values from the run in a 
table. If we look at the distribution of ratios of the Coalescence to Yule rates sampled in the analysis, 
we would like to see that it is well above 0, with no negative values. If this is true, then the model 
may be a decent approximation to the reality of the data. If the ratio of rates overlaps or is close to 
0, then the transition between branching processes (if it exists) is likely to be indistinct and estimates 
of species limits may be misleading. Log ratios of less than 0 would indicate a higher speciation rate 
than coalescence rate. If such samples ever appear in the MCMC this should raise huge red flags and 
you should consider the possibility that the model may not be a good fit for your data. The usage for 
these functions is: 
bgmycrates<-checkrates(result.multi) 
 
#Plot 
plot(bgmycrates) 
 
#bgmyc.point(probmat, ppcutoff) 
#probmat:  output from function spec.probmat of class "bgmycprobmat" 
#ppcutoff:  a posterior probability threshold for lumping samples into species. e.g. if 0.05 were 
selected, all individuals having greater than 0.05 posterior probability of conspecificity will be 
lumped into species returned. 
 
species.list<-bgmyc.point(result.probmat, 0.5) 
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#Add labels to the mcc tree tips  
species.df<-
data.frame(Species=rep(c(1:length(species.list)),lapply(species.list,length)),individuals=unlist(speci
es.list)) 
rownames(species.df)<-species.df$individuals 
species.df<-species.df[beast.tree$tip,] 
rownames(species.df)==beast.tree$tip 
plot(beast.tree, tip.col=as.numeric(species.df$Species), cex=0.5) 
 
#Add labels to the tree tips 
species.df<-
data.frame(Species=rep(c(1:length(species.list)),lapply(species.list,length)),individuals=unlist(speci
es.list)) 
rownames(species.df)<-species.df$individuals 
species.df<-species.df[subset[[1]]$tip,] 
rownames(species.df)==subset[[1]]$tip 
plot(subset[[1]], tip.col=as.numeric(species.df$Species), cex=0.5) 
 
#Save 
save.image("bgmyc_out.Rdata") 
 
#get the posterior probabilities of each possible species cluster 
#optionally writes to an output file.  
bgmyc.spec(res=result.multi)->result.spec 
 

 

Appendix 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 5.  Mined concatenated alignment of 12S, 16S and rag-1 where taxa with missing genes or those with 
short sequences have been excluded.  Large black bars represent missing nucleotides replaced as ‘N’ whilst smaller 
black lines are changes of nucleotides between sequences. 

 
Appendix 5.  Mined concatenated alignment of 12S12S, 16S and RAG-1rag-1RAG-1RAG-1 where taxa with missing 
genes or those with short sequences have been excluded.  Large black bars represent missing nucleotides replaced 
as ‘N’ whilst smaller black lines are changes of nucleotides between sequences. 

12S1
2S 

16S 
 

rag-1 
 



Masters by Research 2020                                                                                 @00280579                                    

 96 

Appendix 6 

 
Appendix 6a.  Elevation of where individuals were collected on each mountain. 

 
 

 
Appendix 6b. Elevation where individuals were collected (grey) and difference from located to the total elevation of 
the mountain (blue).  Repetitions were omitted.  Pale blue background denotes data of mountains containing a single 
elevation point. 
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Appendix 7 
Appendix 7.  Elevation in meters (m) for the specimens in this study 

Code Mountain Elevation (m) Max Elevation (m) Difference (m) Difference (%)  Range (m)  
T5761 Mount Mabu 430 1700 1270 74.7  0 - 450  
T7133 Mount Lico 844 1100 256 23.3  451 - 850  
T5747  Mount Mabu 919 1700 781 45.9  851 - 1250  
T5748   Mount Mabu 919 1700 781 45.9  1251 - 1650  
T5749     Mount Mabu 919 1700 781 45.9  1651 - 2050  
T5751 Mount Mabu 919 1700 781 45.9    
T5752   Mount Mabu 919 1700 781 45.9    
T5753 Mount Mabu 919 1700 781 45.9    
T5754  Mount Mabu 919 1700 781 45.9    
T5755 Mount Mabu 919 1700 781 45.9    
T5757 Mount Mabu 919 1700 781 45.9    
T5763 Mount Mabu 919 1700 781 45.9    
T5764 Mount Mabu 919 1700 781 45.9    
T5765 Mount Mabu 919 1700 781 45.9    
T5766 Mount Mabu 919 1700 781 45.9    
T5772 Mount Mabu 919 1700 781 45.9    
T5773  Mount Mabu 919 1700 781 45.9    
T5774 Mount Mabu 919 1700 781 45.9    
T7166 Mount Lico 1039 1100 61 5.5    
T7132 Mount Socone 1159 1379 220 16.0    
T5760  Mount Mabu 1247 1700 453 26.6    
T7376  Inago 1291 1804 513 28.4    
T7377 Inago 1291 1804 513 28.4    
T7378  Inago 1291 1804 513 28.4    
T7379 Inago 1291 1804 513 28.4    
T7381 Inago 1291 1804 513 28.4    
T5741 Mount Namuli 1611 2419 808 33.4    
T5742 Mount Namuli 1611 2419 808 33.4    
T5744 Mount Namuli 1611 2419 808 33.4    
T5775 Mount Namuli 1611 2419 808 33.4    
T5776 Mount Namuli 1611 2419 808 33.4    
T5777    Mount Namuli 1611 2419 808 33.4    
T5778 Mount Namuli 1611 2419 808 33.4    
T5767 Mount Mabu 1644 1700 56 3.3    
T5768   Mount Mabu 1644 1700 56 3.3    
T5769 Mount Mabu 1644 1700 56 3.3    
T5770   Mount Mabu 1644 1700 56 3.3    
GenB1 Mount Mulanje 1710 3002 1292 43.0    
T0762  Mount Mulanje 1710 3002 1292 43.0    
T5738  Mount Namuli 1779 2419 640 26.5    
T5739 Mount Namuli 1779 2419 640 26.5    
T5740 Mount Namuli 1779 2419 640 26.5    
T5743   Mount Namuli 1779 2419 640 26.5    
T5779 Mount Namuli 1779 2419 640 26.5    
T5737 Mount Namuli 1892 2419 527 21.8    
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Appendix 8 
 
The following are results from the replicated maxent model for Arthroleptis francei for the 
BioClim variables:  
BIO1 – Annual mean temperature,   
BIO2 - Mean diurnal range (mean of monthly maximum temperature – minimum 
temperature),   
BIO3 – Isothermy (mean diurnal range temperature range),   
BIO7 – Temperature annual range,   
BIO8 – Temperature of the wettest quarter,   
BIO11 - Mean temperature of the coldest quarter,   
BIO12 – Annual Precipitation,   
BIO15 – Precipitation seasonality,   
BIO18 – Precipitation of the warmest quarter and   
BIO19 – Precipitation of the coldest quarter 
 
This page summarizes the results of 9-fold cross-validation for francei, created Thu Aug 01 
16:23:32 BST 2019 using Maxent version 3.4.1.   
 

 
Analysis of omission/commission 
The following picture shows the test omission rate and predicted area as a function of the 
cumulative threshold, averaged over the replicate runs. The omission rate should be close to 
the predicted omission, because of the definition of the cumulative threshold.   

 
 
The next picture is the receiver operating characteristic (ROC) curve for the same data, again 
averaged over the replicate runs. Note that the specificity is defined using predicted area, 
rather than true commission (see the paper by Phillips, Anderson and Schapire cited on the 
help page for discussion of what this means). The average test AUC for the replicate runs is 
0.943, and the standard deviation is 0.068.   
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Pictures of the model 
The following two pictures show the point-wise mean and standard deviation of the 9 output 
grids. Other available summary grids are min, max and median. 
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The following two pictures show the point-wise mean and standard deviation of the 9 models 
applied to the environmental layers in Documents. Other available summary grids 
are min, max and median.  
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Analysis of variable contributions 
 
The following table gives estimates of relative contributions of the environmental variables to 
the Maxent model. To determine the first estimate, in each iteration of the training algorithm, 
the increase in regularized gain is added to the contribution of the corresponding variable, or 
subtracted from it if the change to the absolute value of lambda is negative. For the second 
estimate, for each environmental variable in turn, the values of that variable on training 
presence and background data are randomly permuted. The model is re-evaluated on the 
permuted data, and the resulting drop in training AUC is shown in the table, normalized to 
percentages. As with the variable jackknife, variable contributions should be interpreted with 
caution when the predictor variables are correlated. Values shown are averages over replicate 
runs.  
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Variable Percent contribution Permutation importance 
bio12 76.3 90.9 
bio11 14.7 6 
bio8 7.4 2.2 
bio1 1.5 0.9 
bio19 0 0 
bio18 0 0 
bio15 0 0 
bio3 0 0 
bio7 0 0 
bio2 0 0 
 
 
The following picture shows the results of the jackknife test of variable importance. The 
environmental variable with highest gain when used in isolation is bio12, which therefore 
appears to have the most useful information by itself. The environmental variable that 
decreases the gain the most when it is omitted is bio12, which therefore appears to have the 
most information that isn't present in the other variables. Values shown are averages over 
replicate runs.  
 

 
 
The next picture shows the same jackknife test, using test gain instead of training gain. Note 
that conclusions about which variables are most important can change, now that we're looking 
at test data.   
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Lastly, we have the same jackknife test, using AUC on test data.  

 
 

 

Appendix 9 

R Script for the Phylospatial models.  

a. For intraspecific lineages to generate lineage distribution models (LDM). 
 
#### Copyright Dan Rosauer 2016         #### 
#### Australian National University     #### 
#### September 2012 - November 2016     #### 
#### dan.rosauer@anu.edu.au             #### 
 
######################################################################## 
# This program is free software: you can redistribute it and/or modify # 
# it under the terms of the GNU General Public License as published by # 
# the Free Software Foundation, either version 3 of the License, or    # 
# (at your option) any later version.                                  # 
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# This program is distributed in the hope that it will be useful,      # 
# but WITHOUT ANY WARRANTY; without even the implied warranty of       # 
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        # 
# GNU General Public License for more details.                         # 
 
# You should have received a copy of the GNU General Public License    # 
# along with this program.  If not, see <http://www.gnu.org/licenses/> # 
######################################################################## 
 
## This script uses a set of species distribution models and a set of points for intraspecific 
lineages 
## to generate lineage distribution models. 
 
## It was rewritten to run in R, from an earlier version with used ArcGIS functions via Python. 
 
## STEPS WHICH THE CODE DOES 
## 1. import the points for the whole species 
## 
## 2. to bound the whole analysis, use euclidian distance to create a grid to define a boundary 
at a specified distance 
## 
## 3. load a species distribution model for the whole species, generated before running this 
script 
## 
## 4. loop through all of the lineages in the species 
##    5a. generate a euc distance layer from sequenced locations for each lineage, bounded by 
the total species euclidean 
##        distance layer from (2) 
##     or 
##    5b. generate a cost distance layer from sequenced locations for each lineage, using the 
maxent model to define the cost. 
##        Cost = 1 - suitability 
## 
##    6a. generate a weight layer for each lineage as 1 / distance  from (5) 
##     or 
##    6b. generate a weight layer for each lineage as 1 / distance^n  from (5) where n = 2, 3 or 4 
## 
##    7.  set all weights below a threshold to 0, to reduce the effect of distant lineages 
## 
## 8. sum all of the lineage weight layers 
## 
## 9. divide each lineage weight layer by the sum of weights (8) so that the weights for each 
pixel 
##    sum to 1 An option in this step, is to exclude lineages from a pixel where they have a low 
probablility 
##    of occurring. Initial models found lineages predicted over a wide area beyond their 
primary range, 
##    but with very low values.  To use this option set the parameters: 
##          handle_minor = "threshold" 
##          omit_minor_threshold = 0.1 
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##    as an example, 0.1 means that a lineage with less that 10% of the total of all potential 
lineages for 
##    that species, in the pixel, would be omitted, with the model scaled across the lineages 
more likely 
##    to occur in that pixel. 
##    To not use this option, simply set 
##          handle_minor = "" 
## 
## 10. multiply each lineage weight layer by the model likelihood so that the weights for each 
pixel sum to the original 
##    SDM model value for that pixel. 
 
library(raster) 
library(sp) 
library(stringr) 
library(gdistance) 
 
rm(list=ls()) 
 
############## START OF PARAMETERS ############## 
 
genera              <- "Arthroleptis" # allows script to run for one or more genera 
 
base_dir            <- "/Users/natasha/Desktop/A_francei_PE/" 
target_dir          <- paste(base_dir, "asc/", sep="")  # where the lineage model grids and 
working data go 
 
buffer_dist         <- 2.5    # the buffer distance in map units (presumably decimal degrees) 
additional_buffer   <- 0      # how much (as a proportion) the output grids should extend 
beyond the buffered points 
grid_resolution     <- 0.01 
spRef               <- "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" 
 
 
output_model_extent        <- extent(34.7083333333333002,38.4166666666666359,-
17.2916666666666998,-14.1666666666666980)    # the maximum extent for all lineage 
models 
lineage_field_name  <- "lineage_from_mtDNA"   # the column for lineage name in the site 
data 
distance_method     <- "model-cost"           # determines whether distance is calculated as 
euclidean or model-weighted cost distance 
## so far, can be "euclidian" or "model-cost" 
weight_function     <- "inverse_cube"    ## determines whether lineage weight is calculated as 
1/distance or 1/(distance^2), or simply closest distance 
## so far, can be "inverse" or "inverse_square" or "cost_allocation" 
min_dist_value      <- grid_resolution/2  ## remove as a parameter, once working 
min_SDM_value       <- 0.005  # values below this for the SDM are set to zero, to simplify 
calculation in areas of essentially unsuitable habitat 
##   but keep current value for consistency in this study 
min_weight_threshold <- 0.02        ## weights below this for any layer are set to 0.  If the value 
here is 0, then no threshold is applied 
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scale_to            <- "model"      ## determines whether lineage weights within a model group 
sum to the SDM value or to 1 
## can be "model" or "one" 
 
handle_minor        <- "threshold"  # if handle_minor = 'threshold', then lineages with < than 
the specified proportion of the lineage sum 
omit_minor_threshold <- 0.1         # for that cell, are set to 0 
 
skip_distance_layers <- FALSE       # skip creating the distance layers - they are already done. 
# THIS OPTION IS ONLY TO SAVE TIME DURING DEBUGGING 
 
named_species       <- c("francei")          # a changeable list to allow for species in the dataset to 
be skipped 
use_list            <- "do"           # specify what to do with the named species: 
#do - the named species (use_list="do") 
#skip - the named species (use_list="skip") 
#do all the species in the data and ignore the named species list (use_list="" or anything else); 
 
lin_exclude_list    <- c()   # this list allows for skipping at the lineage level 
 
############### END OF PARAMETERS ############### 
 
cat ("\n\n*************************************** \n Lineage Distribution Estimation 
Tool ") 
cat ("\n    Dan Rosauer \n    September 2012 - November 2016") 
cat ("\n***************************************\n") 
 
SDM_model_base     <- paste(base_dir, "full_maxent_model", sep="") 
 
time_start <- Sys.time() 
 
# loop through each genus in the vector genera 
for (genus in genera) { 
   
cat("\nGenus:", genus, "\n") 
   
# Load the sequence site data 
cat ("Loading the lineage locations...\t") 
lineage_site_filename <- paste(base_dir, "species_sites/", genus, "_sites.csv", sep="") 
   
all_lineages_sites <- read.csv(lineage_site_filename) 
orig_rowcount <- nrow(all_lineages_sites) 
   
# filter the records 
not_sequenced <- grep("not_sequenced", all_lineages_sites[, lineage_field_name])  # remove 
records with 'not_sequenced' in the lineage name 
if (length(not_sequenced >0)) {all_lineages_sites <- all_lineages_sites[-not_sequenced, ]} 
all_lineages_sites <- all_lineages_sites[which(all_lineages_sites$Use %in% c(-1,1)), ]    # 
remove records where 'use' <> -1 or 1 
all_lineages_sites <- all_lineages_sites[which(is.finite(all_lineages_sites[, "latitude"]) & 
is.finite(all_lineages_sites$longitude)), ]    # remove without a numeric latitude and longitude 
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all_lineages_sites$model_group <- str_trim(all_lineages_sites$model_group) 
all_lineages_sites[, lineage_field_name] <- str_trim(all_lineages_sites[, lineage_field_name]) 
   
groupLineageList  <- unique(all_lineages_sites[, 1:2]) 
groups            <- unique(all_lineages_sites$model_group) 
groupLineages     <- unique(all_lineages_sites[, lineage_field_name]) 
   
cat (orig_rowcount, "rows read,", nrow(all_lineages_sites), "valid records loaded\n") 
   
# turn lineage points into a SpatialPoints object 
allLineagePoints <- SpatialPointsDataFrame(all_lineages_sites[, c("longitude", "latitude")], 
data=all_lineages_sites, proj4string = CRS(spRef)) 
allLineagePoints <- crop(allLineagePoints, output_model_extent) 
# python writes to file at this point, but prob not needed 
   
# restrict groups to particular species based on the named_species parameter 
if (use_list == "do") { 
groups <- intersect(groups, named_species) 
} else if (use_list == "skip") { 
groups <- setdiff(groups, named_species) 
  } 
   
 # print a list of model groups 
 cat ("\nModel groups to do in", genus, "\n") 
 for (group in groups) { 
 cat("\t", group, "\n") 
  } 
   
  # start looping through the model groups for this genus 
  for (group in groups) { 
  group <- as.character(group) 
  if (group == "0" | group == "") {next} 
     
  cat ("\nStarting group", genus, group, "on", date(), "\n") 
     
  # load the SDM model raster 
  #SDM_model <- paste(SDM_model_base, genus, "/", str_replace(group," ","_"),    

"_median.asc", sep="") 
   SDM_model <- 

"/Users/natasha/Desktop/A_francei_PE/full_maxent_model/Arthroleptis/Arthroleptis_franc
ei_median.asc" 
 SDM.ras <- raster(SDM_model) 

   projection(SDM.ras) <- CRS(spRef) 
   group_extent <- extent(SDM.ras) 
     
   # get a list of the lineages in this group 
   lineages <- groupLineageList[which(groupLineageList$model_group==group),    

lineage_field_name] 
    if (length(lin_exclude_list) > 0) { 
      lineages <- setdiff(lineages,lin_exclude_list) 
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    } 
     
    cat ("\nLineages in", group, ":") 
    for (lineage in lineages) { 
      cat ("\n   ", lineage) 
    } 
     
    # # set the environment 
    # env.snapRaster  = maxent_model 
    # env.mask        = maxent_model 
    # env.extent      = maxent_model 
     
    if (length(lineages) > 1) { # proceed with lineage models if there are multiple 
    # lineages - otherwise just copy the SDM for the model group 
       
    thisGroupPoints <- allLineagePoints[allLineagePoints$model_group == group, ] 
    thisGroupPoints <- crop(thisGroupPoints, group_extent) 
       
    # calculate a new extent 
    group_points_extent <- extent(thisGroupPoints) 
    buffer_ratio  <- 1 + additional_buffer 
    extent_buffer <- buffer_dist * buffer_ratio 
       
    # new extent is the same as points layer + a buffer, but where the extended buffer 
    # goes beyond the extent of the maxent model, limit to the output model extent. 
    xmin <- max(group_points_extent@xmin - extent_buffer,   output_model_extent@xmin) 
      ymin <- max(group_points_extent@ymin - extent_buffer, output_model_extent@ymin) 
      xmax <- min(group_points_extent@xmax + extent_buffer, output_model_extent@xmax) 
      ymax <- min(group_points_extent@ymax + extent_buffer, output_model_extent@ymax) 
      thisGroupExtent <- extent(xmin, xmax, ymin, ymax) 
       
   ### generate a weight grid for each lineage  START OF STEP 4 
       
   #SDM.ras[SDM.ras < min_SDM_value] <- min_SDM_value 
   if (distance_method == "model-cost") { 
   cat("\n\nCreating a transition matrix based on the SDM for", group, "\n") 
         
   model_cost.ras  <- -1 * log(SDM.ras)     # this is the original version of model cost 
   model_trans.ras <- 1 / model_cost.ras  # but using the inverse here, to fit the  accCost 
        # function which is based on a transition matrix. For accCost() the cost of moving between 
        # cells = 1 / transition value. 
        trans     <- transition(model_trans.ras, transitionFunction=mean, directions = 8) 
        trans     <- geoCorrection(trans, type="c", multpl=F) 
      } 
       
      cat ("\nLooping through the lineages in group", group, "to generate weight grids\n") 
      count <- 0 
       
  for (lineage in lineages) { 
         
  count <- count +1 
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  thisLineagePoints <- thisGroupPoints[thisGroupPoints@data[, lineage_field_name] == 

lineage, ] 
         
  # create a cost distance layer for the current lineage 
  if (lineage == "0") { 
  cat ("\nCreating distance layer for sequenced locations of unknown lineage") 
  } else { 
  cat ("\nCreating distance layer for lineage", lineage) 
     } 
         
        if (distance_method == "model-cost") {                                   ## STEP 5b 
          # calculates the least cost distance to the nearest lineage point 
          # the result is written directly to lineage_dist_gridname 
          lin_dist.ras = accCost(trans, thisLineagePoints) 
           
        } else { 
          thisLineagePoints.ras <- rasterize(thisLineagePoints, SDM.ras, 1) 
          lin_dist.ras <- distance(thisLineagePoints.ras) / 1000     ## STEP 5a 
        } 
         
        # change zero values to a very small non-zero value, to avoid nodata in division 
        lin_dist.ras[lin_dist.ras < min_dist_value] <- min_dist_value 
         
        if (weight_function == "inverse_square") {                 ## STEP 6b 
          lin_weight.ras <- 1 / (lin_dist.ras ^ 2) 
        } else if (weight_function == "inverse_cube") { 
          lin_weight.ras <- 1 / (lin_dist.ras ^ 3) 
        } else if (weight_function == "inverse_quad") { 
          lin_weight.ras <- 1/(lin_dist.ras ^ 4) 
        } else { 
          lin_weight.ras <- 1/lin_dist.ras 
        } 
         
        # add the results to stack of distance layers for this group 
        if (count == 1) { 
          weight.stack <- stack(lin_weight.ras) 
        } else { 
          weight.stack <- stack(weight.stack, lin_weight.ras) 
        } 
        names(weight.stack)[count] <- lineage 
      } 
       
      weight_sum.ras <- sum(weight.stack) 
      model.stack <- weight.stack / weight_sum.ras 
      model.stack <- model.stack * SDM.ras 
      names(model.stack) <- names(weight.stack) 
       
    } else { 
      SDM.ras[SDM.ras < min_SDM_value] <- min_SDM_value 
      model.stack <- stack(SDM.ras) 
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      names(model.stack)[1] <- lineages[1] 
    } 
     
    # write results to file for this group 
    model_names <- names(model.stack) 
     
    cat("\n") 
     
    for (i in 1:nlayers(model.stack)) { 
      model.ras <- model.stack[[i]] 
      model_filename <- paste("lin_model_", genus, "_", group, "_", model_names[i], ".asc", 
sep="") 
      model_path <- paste(target_dir, model_filename, sep="") 
      cat("writing model ascii for:", model_filename, "\n") 
      writeRaster(model.ras, model_path, overwrite=T) 
    } 
    cat ("\nLineage models done for", genus, "\n") 
    time_diff <- difftime(Sys.time(), time_start, units='mins') 
    cat ("\nTime elapsed:", round(time_diff,2), "minutes\n") 
     
  } 
   
} 
 

b. Lineage Modelling 

 

rm(list=ls()) 
library(raster) 
 
#define directories 
base.dir <- '/Users/natasha/Desktop/A_francei_PE/'   # modify to the base directory for your 
lineage modelling 
 
input.dir    = paste(base.dir, '/asc/', sep ='')          # location of existing lineage distribution models 
output.dir   = paste(base.dir, '/asc_aligned/', sep='')   # location to save aligned lineage 
distribution models 
template_ext = 
paste('/Users/Chris/Desktop/A_francei_PE/full_maxent_model/Arthroleptis/Arthroleptis_fran
cei_median.asc')   # an .asc grid with the extent to which all models will be cropped and aligned. 
 
new_only <- TRUE  # if true, skip grids which are already in the output directory 
file.pattern    <- '*.asc$'  #regex 
 
setwd(input.dir) 
 
input_files = list.files(path=input.dir, pattern=file.pattern, full.names=FALSE, recursive=FALSE, 
ignore.case=TRUE, include.dirs=FALSE) 
output_files= list.files(path=output.dir, pattern=file.pattern, recursive=FALSE, 
ignore.case=TRUE, include.dirs=FALSE) 
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template.ras = raster(template_ext) 
new_extent = extent(template.ras) 
 
raster_names <- "" 
 
for (tfile in input_files) { 
  filepath=paste(input.dir,tfile,sep='') 
  outname = paste(output.dir,tfile,sep="") 
   
  if ((!tfile %in% output_files) | (! new_only)) { 
  grid.ras = raster(tfile) 
  grid_ext.ras = extend(grid.ras,new_extent,value=0) # extend to the union of current grid and 

new extent 
  grid_ext.ras = crop(grid_ext.ras,new_extent) # crop back to new extent 
  writeRaster(grid_ext.ras,outname,overwrite=TRUE, NAflag=-9999) 
  cat("\nExtended asc written for",tfile) 
     
  # make a vector of the layer names 
  if (raster_names == "") { 
  raster_names <- outname 
  } else { 
  raster_names <- c(raster_names,outname) 
    } 
     
  } else { 
    cat("\nSkipped",tfile) 
  } 
} 
 
# now make a raster stack 
lin.stack <- stack(raster_names) 
writeRaster(lin.stack, "lin_models.stack") 
 
setwd(output.dir) 
 
maxval  <- stackApply(lin.stack,rep(1,nlayers(lin.stack)),fun=max,filename="max_val.asc") 
sum     <- stackApply(lin.stack,rep(1,nlayers(lin.stack)),fun=sum,filename="sum.asc") 
maxprop <- maxval / sum 
writeRaster(maxprop,"max_prop.asc") 
 
maxlin  <- which.max(lin.stack) 
writeRaster(maxlin,"max_lin.asc") 
stack_names <- data.frame(cbind(1:nlayers(lin.stack),names(lin.stack))) 
names(stack_names) <- c("layer_num","layer_name") 
write.csv(stack_names,"layer_names") 
########################### 
 

c. Script for calculating richness and endemism 
 
rm(list=ls()) 
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library(SDMTools) 
library(raster) 
library(ape) 
library(phylobase) 
library(foreach) 
library(doParallel) 
library(ggplot2) 
 
  source('/Users/natasha/Desktop/35_all_lineages/phylogenetic endemism.r') 
#############################################################################
### 
#first define some functions 
 
map_raster = function(raster, output_file, title) { 
   
  p         <- rasterToPoints(raster) 
  p         <- data.frame(p) 
  names(p) <- c("x", "y", "Model") 
  colour_gradient <- scale_fill_gradientn(colours = rainbow(15), values=p$model) 
  colour_gradient <- scale_fill_gradient2(low="white", mid="yellow", high="red", 
                                          limits=c(min(p$Model),max(p$Model)), midpoint=quantile(p$Model, 
0.75), space='Lab') 
  m <- ggplot(data=p) + geom_tile(aes(x, y, fill=Model)) + coord_equal() + labs(x=NULL, y=NULL) 
+ colour_gradient 
   
  # delete a previous file if needed 
  if (file.exists(output_file)) { 
    file.remove(output_file) 
    cat("Previous", output_file, "removed\n") 
  } 
   
  m <- m + ggtitle(title) 
  m <- m + theme(axis.title=element_text(face="bold", size="18")) 
  m <- m + theme(axis.text=element_text(face="bold", size="14")) 
  m <- m + theme(plot.title=element_text(face="bold", size="24")) 
  m <- m + xlab("longitude") + ylab("latitude") 
   
  png(output_file, width=image.width, height=image.height) 
  print(m) 
  dev.off() 
  m <- NULL 
} 
###################################################################### 
 
max.rows        <- 10000000 
core_count      <- 4 # number of cores to use for parallel steps 
write_matrices  <- TRUE 
 
# size in pixels for maps 
image.width=1400 
image.height=1400 
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#define directories 
base.dir        <- '/Users/natasha/Desktop/A_francei_PE/'      # modify to the base directory for 
your lineage modelling 
input.dir       <- '/Users/natasha/Desktop/A_francei_PE/asc_aligned/' 
output.dir      <- '/Users/natasha/Desktop/A_francei_PE/PE_output/'  # output location where 
diversity results and maps will be saved 
file_pattern    <- 'lin_model_'                     # modify this to a match the start of the name of all 
lineage model asc files 
 
group_lin_file  <- '/Users/natasha/Desktop/A_francei_PE/All_lineage_list.csv' 
 
#tree details  - this works for one genus at a time 
tree.file       <- '/Users/natasha/Desktop/A_francei_PE/A_francei16S.con.tre' 
outgroup        <- 'A_reichei' 
preface         <- "" 
 
genus           <- '' 
output_prefix   <- 'A_francei' 
threshold       <- 0.0000000000001  # this is not a species level threshold, but one used for each 
lineage model 
 
####  end of parameters  #### 
 
setwd(base.dir) 
files <- list.files(path = input.dir, pattern = file_pattern, recursive = FALSE,ignore.case = TRUE, 
include.dirs = FALSE) 
 
setwd(input.dir) 
template.asc = read.asc('../full_maxent_model/Arthroleptis/Arthroleptis_francei_median.asc') 
 
model_rows=nrow(template.asc) 
model_cols=ncol(template.asc) 
 
# the original version, excluding NA cells 
pos <- as.data.frame(which(is.finite(template.asc),arr.ind=TRUE)) #get all points that have data 
 
cat("\nLoading model rasters in parallel\n") 
 
cl <- makeCluster(core_count) 
registerDoParallel(cl) 
 
pos_par <- foreach (j=1:length(files), .combine=cbind, .packages='SDMTools') %dopar% { 
  tfile <- files[j] 
  pos_temp <- pos 
  checkname = unlist(strsplit(tfile,".",fixed=T)) 
  if (checkname[length(checkname)]=="asc") {   # only accept filenames ending in .asc 
     
    cat(j) 
     
    tasc = read.asc(tfile)                                #read in the data 
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    dataname=gsub(".asc",'',tfile) 
    newname <- tolower(gsub(preface, "", dataname)) 
     
    cat("About to do pos\n") 
     
    pos_temp[newname] <- tasc[cbind(pos_temp$row, pos_temp$col)] 
    pos_temp[(which(pos_temp[newname]< threshold)), newname] <- 0    # set values below the 
threshold to 0 
    pos_temp[(which(is.na(pos_temp[newname]))), newname]     <- 0    # set the nulls to 0 
    cat("\n", j, newname, "loaded") 
    newcol <- data.frame(pos_temp[, newname]) 
    newcol <- round(newcol,3) 
    names(newcol) <- newname 
    newcol 
  } 
} 
 
pos <- cbind(pos,pos_par) 
rm(pos_par) 
 
setwd(base.dir) 
group_lin_list <-read.csv(group_lin_file, stringsAsFactors=F) 
group_lin_list$lineage <- tolower(group_lin_list$lineage) 
group_lin_list <- group_lin_list[group_lin_list$genus == genus,] 
 
# read in the tree 
tree <- read.nexus('/Users/natasha/Desktop/A_francei_PE/A_francei16S.con.tre') 
plot(tree) 
# Your tree was not in format needed (per lineage) so I dropped tips for everything except one 
representative per lineage as that's what is needed 
tree <- drop.tip(tree, c('A_reichei','T5748', 'T5749', 'T5751', 'T5752', 'T5753', 'T5754', 'T5755', 
'T5756', 'T5760', 'T5761', 'T5763', 'T5767', 'T5768', 'T5769', 'T5770', 'T5772', 'T5773', 'T5774', 
'T5775', 'GenB2', 'T0762', 'T5738', 'T5739', 'T5740', 'T5741', 'T5742', 'T5743', 'T5744', 'T5764', 
'T5765', 'T5766', 'T5776', 'T5777', 'T5778', 'T5779', 'T7132', 'T7166', 'T7376', 'T7377', 'T7378', 
'T7379', 'T7381')) 
plot(tree) 
# also renamed the tips to match the models 
tree$tip.label[tree$tip.label=="T5747"] <- "lin_model_arthroleptis_francei_m1" 
tree$tip.label[tree$tip.label=="GenB1"] <- "lin_model_arthroleptis_francei_mul" 
tree$tip.label[tree$tip.label=="T5737"] <- "lin_model_arthroleptis_francei_nis" 
tree$tip.label[tree$tip.label=="T5757"] <- "lin_model_arthroleptis_francei_m2" 
tree$tip.label[tree$tip.label=="T6836"] <- "lin_model_arthroleptis_francei_chi" 
tree$tip.label[tree$tip.label=="T7133"] <- "lin_model_arthroleptis_francei_lic" 
plot(tree) 
 
tree <- phylo4(tree) 
plot(tree) 
labels(tree) <- tolower(labels(tree)) 
plot(tree) 
 
# ensure that the tree tips match the model names 
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model.names <- names(pos) 
model.names <- model.names[-(1:2)] # names of all columns except the 1st two which are row, 
col 
model.names <- tolower(gsub(preface,"",model.names)) 
 
model.groups <- data.frame(model.groups=vector("character",nTips(tree)),stringsAsFactors=F) 
 
for (i in 1:nTips(tree)) { 
  cat(labels(tree)[i],"\n") 
  row <- group_lin_list[group_lin_list$lineage==labels(tree)[i],] 
  if (nrow(row) > 0) { 
    new_tip_name <- tolower(paste(row$genus, row$model_group, row$lineage, sep="_")) 
    labels(tree)[i] <- new_tip_name 
    model.groups[i,1] <- as.character(row$model_group) 
  } 
} 
 
plot(tree) 
tree <- phylo4d(tree,tip.data=model.groups) 
tree 
 
tree.names  <- as.character(labels(tree)[1:nTips(tree)]) ## original line 
 
matched.names <- intersect(model.names,tree.names) 
matched.tips  <- which(labels(tree,"tip") %in% matched.names) 
cat("\nNot in tree names:",setdiff(model.names,tree.names),"\n") 
cat("\nNot in model names:",setdiff(tree.names,model.names),"\n") 
 
# a subtree containing only the tips for which there is a corresponding model 
subtree <- subset(tree,tips.include=matched.tips) 
subtree <- tree 
 
 
if (write_matrices) { 
  cat("\nWriting the site x lineage matrix to file\n") 
  write.csv(pos,paste(output.dir,"sites_x_lineage.csv",sep='')) 
} 
 
# limit the occurrence table to lineages which match the tree 
matching_pos_columns <- which(names(pos) %in% matched.names) 
matching_pos_columns <- unique(c(1, 2, matching_pos_columns))  # ensure that row and 
column are included 
pos <- pos[, matching_pos_columns] 
 
cat("\n\nRemoving unoccupied cells\n") 
cat("Before:",nrow(pos),"\n") 
rowsums <- apply(pos[,3:ncol(pos)],1,sum,na.rm=T) 
pos <- pos[which(rowsums>0),] 
rm(rowsums) 
cat("After:",nrow(pos),"\n") 
max.rows <- min(max.rows,nrow(pos)) 
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gc() 
result <- calc_PE_from_models(subtree,pos[1:max.rows,which(names(pos) %in% 
matched.names)], core_count = core_count) 
gc() 
 
cat("\nDiversity calculations completed. Now writing outputs to file.") 
 
pos_output <- cbind(pos[1:max.rows,1:2],result) 
pos_output <- pos_output[,-3] # omit the site column 
 
# add lat and long columns 
cellsize <- attr(template.asc,"cellsize") 
ymin <- attr(template.asc,"yll") 
xmin <- attr(template.asc,"xll") 
 
x <- ((pos_output$row - 1) * cellsize) + xmin 
y <- ((pos_output$col - 1) * cellsize) + ymin 
pos_output <- cbind(pos_output[,1:2],x,y,pos_output[,-(1:2)]) 
 
# add residual columns 
PE_WE_mod <- lm(pos_output$PE~pos_output$WE) 
pos_output$PE_WE_resid <- PE_WE_mod$residuals 
PE_WE_loglog_mod <- 
lm(log(pos_output$PE)~log(pos_output$WE),subset=which(!is.infinite(log(pos_output$WE)))) 
pos_output_log <- 
cbind(pos_output[which(!is.infinite(log(pos_output$WE))),],PE_WE_loglog_mod$residuals) 
 
dataframe2asc(pos_output_log[,c(4,3,10)],paste(output_prefix,"PE_WE_loglog_resid.asc",sep
=""),output.dir) 
 
pos_output$logPE <- log(pos_output$PE) 
filenames <- 
c(paste(output_prefix,"PE.asc",sep=""),paste(output_prefix,"PD.asc",sep=""),paste(output_pr
efix,"WE.asc",sep=""),paste(output_prefix,"SR.asc",sep=""),paste(output_prefix,"PE_WE_resid
.asc",sep=""),paste(output_prefix,"logPE.asc",sep="")) 
dataframe2asc(pos_output[,c(4,3,5:10)],filenames,output.dir) 
 
write.csv(pos_output,paste(output_prefix,"scores.csv",sep=""),row.names=FALSE) 
 
stopCluster(cl) 
 
setwd(output.dir) 
 
# make some output images 
PE.ras <- raster(filenames[1]) 
map_filename <- paste(output_prefix, "PE.png", sep="") 
map_raster(PE.ras, map_filename, paste(output_prefix, "PE")) 
 
# PE without the top 0.3% 
quant_top <- quantile(pos_output$PE,0.997,na.rm=T) 
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PE_top.ras <- PE.ras 
PE_top.ras[PE_top.ras > quant_top] <- NA 
map_filename <- paste(output_prefix, "PE_without_top_0.3.png", sep="") 
map_raster(PE_top.ras, map_filename, paste(output_prefix, "PE without top 0.3%")) 
 
# log PE 
PElog.ras <- raster(filenames[6]) 
map_filename <- paste(output_prefix, "log_PE.png", sep="") 
map_raster(PElog.ras, map_filename, paste(output_prefix, "log PE")) 
 
PD.ras <- raster(filenames[2]) 
map_filename <- paste(output_prefix, "PD.png", sep="") 
map_raster(PD.ras, map_filename, paste(output_prefix, "PD")) 
 
WE.ras <- raster(filenames[3]) 
map_filename <- paste(output_prefix, "WE.png", sep="") 
map_raster(WE.ras, map_filename, paste(output_prefix, "WE")) 
 
WElog.ras <- log(WE.ras) 
map_filename <- paste(output_prefix, "logWE.png", sep="") 
map_raster(WElog.ras, map_filename, paste(output_prefix, "logWE")) 
 
SR.ras <- raster(filenames[4]) 
map_filename <- paste(output_prefix, "SR.png", sep="") 
map_raster(SR.ras, map_filename, paste(output_prefix, "SR")) 
 
PE_WE_resid.ras <- raster(filenames[5]) 
map_filename <- paste(output_prefix, "PE_WE_resid.png", sep="") 
map_raster(PE_WE_resid.ras, map_filename, paste(output_prefix, "PE_WE_resid")) 
 
 
map_filename <- paste(output_prefix, "4maps.png", sep="") 
png(map_filename, 1600, 1200) 
par(mfrow=c(2,2),mar=c(3,4,3,2)) 
plot(PE.ras,main="PE",col=rainbow(25,start=0.1,end=1)) 
plot(PD.ras,main="PD",col=rainbow(25,start=0.1,end=1)) 
plot(WE.ras,main="WE",col=rainbow(25,start=0.1,end=1)) 
plot(SR.ras,main="SR",col=rainbow(25,start=0.1,end=1)) 
dev.off() 
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Appendix 10  

 

 
Appendix 10. Table displaying the estimates of evolutionary divergence between Arthroleptis francei 16S sequences (n=49). 

 


