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Abstract

Consider a two dimensional steady low Reynolds number flow past a circular
cylinder. A boundary integral representation that matches an outer Oseen
flow and inner Stokes flow is given, and the matching error is shown to be
smallest when the outer domain is as close as possible to the body. Also,
it is shown that as the Greens function is approached, the oseenlet becomes
the stokeslet to leading order and has the same order of magnitude error as
the matching error. This means a novel boundary integral representation in
terms of oseenlets is possible. To test this, a corresponding boundary element
code is developed which uses point collocation weighting functions, linear
shape functions, two-point Gaussian quadrature with analytic removal of the
Greens function singularity for the integrations. The method is compared
against various methods for the benchmark problem of flow past a circular
cylinder. In particular, the drag coefficient is used for the comparison. The
advantage of this method over existing ones is demonstrated and discussed
particularly in the Reynolds number range Re = 1 ∼ 4.
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1. Introduction1

In biological fluid dynamics, the modelling of the motion of macroscopic2

and microscopic organisms represented by a generic closed swimming body is3

important, such as flagellated propelled organisms like spermatozoa [14]. In4

particular, the far-field effect at a centimetre scale is often required. As a first5

step in this paper, a new boundary element method is developed that also6

incorporates the far-field matching for low Reynolds number two-dimensional7

steady flow [1].8

The Boundary Element Method (BEM) can be traced back to the 1960’s9

[2], its numerical implementation was made robust with the advent of com-10

puters that aid solving sets of integral equations. Partial differential equa-11

tions can be solved numerically by many different methods such as the Finite12

Difference Method (FDM) and the Finite Element Method (FEM) which are13

domain methods. However, in certain circumstances such as this one, if a14

boundary integral formulation is available, then a formulation based on this15

such as the Boundary Integral Method (BIM) [4] has advantages. For exam-16

ple, the formulation is expressed on the boundary and so has one dimension17

less than the domain methods FDM and FEM, making it faster and more18

accurate. With the development of quadratures and stable discretization,19

the evaluation of integrals becomes more accurate and efficient [4].20

Studies of slow motion of viscous fluid flow past a body in an unbounded21

domain dates back to the work of Stokes in 1851 [15]. Because of the difficulty22

in satisfying boundary conditions both at the cylinder surface and the far-23

field, Stokes draws a conclusion that such a solution does not exist and24

this hypothesis was later termed Stokes’ paradox. Several analytical studies25

began to emanate, seeking solution to the Stokes’ paradox and this include26

the approximation given by Oseen [11] solved approximately by Lamb [8],27

[9], and Imai [6]. However, Oseen’s approximation assumes linearisation28

to the free stream velocity which breaks down on the body boundary. To29

overcome this, the method of matched asymptotic expansions was presented30

by Proudman and Pearson [13] and Kaplun [7] and it combines linearisation31

to Stokes flow in the near-field matched to linearisation to Oseen flow in32

the far-field region. Experimental studies [17] with different qualitative and33

quantitative results have also been presented, in particular for the benchmark34

problem of steady flow past a circular cylinder.35

Further to different numerical methods used, Yano and Kieda [19] applied36

a discrete singularity method to solve a two-dimensional flow by distributing37
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oseenlets, sources, sinks and vortices in the interior of an obstacle with a38

least square criterion to satisfy the boundary condition. Their result was39

benchmarked against the analytic results of Lamb [9], Kaplun [7] and the40

experiment of Tritton [17] for the drag coefficient. It was revealed that when41

the Reynolds number is below one (Re < 1), there is good agreement, but42

when the Reynolds number is in the range 1 to 4 the analytical results do43

not align very close with experiment except the numerical studies presented44

by Yano and Kieda [19]. The analytical results work well for body surfaces45

with simple geometries, but as soon as the geometry becomes complicated,46

numerical approaches provide better basis for analysis. To apply to more47

complicated geometries, Lee and Leal [10] considered a matched asymptotic48

expansion method that used Green’s integral representations of the velocity.49

Chadwick [1] takes this approach and matched Stokes and Oseen flow within50

a boundary integral formulation. It was found that the error is least if the51

matching boundary is on the body itself. Here, it is noted that this approach52

does not break down on the body boundary because in the formulation the53

oseenlet approximates to the stokeslet.54

In this paper, the above mentioned approach in Chadwick [1] is tested by55

developing a BEM using point collocation weighting functions, linear shape56

functions, and two-point Gaussian quadrature with analytic removal of the57

Greens function singularity for the integrations. The Green’s integral repre-58

sentation of oseenlets are distributed over the boundary surface. The BEM59

in this study compares favourably with Tritton experiment [17], analytical60

results of Lamb [9], Kaplun [7], Tomotika [16], and the numerical results of61

Yano and Kieda [19] for the drag coefficient. Hence, our method is simple62

yet robust in solving steady two-dimensional flow past a circular cylinder in63

an unbounded domain.64

2. Formulation of Governing Equations65

The motion of any continuous fluid is governed by the Navier-Stokes equa-66

tion, and for a creeping flow, a linearisation of the Navier-Stokes equation67

yields Stokes and Oseen equation which govern a viscous fluid. Hence, away68

from a body surface the Oseen equation governs the flow in an outer region69

(see figure 1a) given by70

ρU
∂ui
∂x1

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi , (1)
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71

∂ui
∂xi

= 0 , (2)

where Eq. (2) is the continuity equation, ρ is the density of the fluid, ui is72

the velocity, p is the pressure, µ is the viscosity, U is the uniform stream73

velocity, and fi is the applied force. Similarly, near the body Stokes equation74

governs the flow in an inner region (see figure 1b) given by75

0 = − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi , (3)

76

∂ui
∂xi

= 0 . (4)

The viscous forces in Eq. (3) are dominant over the inertial forces, and77

by dimensionless analysis, the dimensionless Reynolds number tends to zero78

near the body with length dimension l and Re = ρUl
µ
→ 0. To apply the79

Green’s integral, it is supposed that an external force is exerted by the body80

on the fluid such that the applied force is fi.81

The work of Chadwick [1] considers a matched near-field region using82

Stokes flow and the far-field using Oseen flow. The common boundary where83

the matching takes effect, has L as the length dimension of the matched84

region and it is seen that ReL
l

is the error. So the error is reduced by85

choosing L = l and Oseen flow assumed everywhere in the flow field, as86

shown in section 4.87

3. Green’s Function for Oseen and Stokes Equation88

The oseenlet is the Green’s function of the Oseen equation. In the limit89

as the Reynolds number tends to zero, the oseenlet approximates to the90

stokeslet which is the Green’s function of the Stokes equation. The drag and91

lift oseenlet are92

u
(1)
i =

1

2πρU

(
∂

∂xi

(
ln r + ekx1K0(kr)

)
− 2kekx1K0(kr)δi1

)
, (5)

93

p(1) = − 1

2π

∂

∂x1

(ln r) , (6)
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and94

u
(2)
i =

1

2πρU
εij3

∂

∂xj

(
ln r + ekx1K0(kr)

)
, (7)

95

p(2) = − 1

2π

∂

∂x2

(ln r) , (8)

where K0 is the modified Bessel function of order zero, k = ρU
2µ

, εijk = 1 for96

(i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), εijk = −1 for (i, j, k) = (1, 3, 2), (2, 1, 3),97

(3, 2, 1), εijk = 0 otherwise, and δij is Kronecker delta such that δij = 1 for98

i = j and δij = 0 for i 6= j.99

To obtain the stokeslet from the oseenlet, consider kr → 0, ekx1 = 1 +100

kx1 +O(k2r2) and K0(kr) = − ln r+O(r2 ln r). This will yield the drag and101

lift stokeslet respectively given as102

u
(1)
i =

1

4πµ

(
δi1 ln r − x1xi

r2

)
(1 +O(kr)) , (9)

103

p(1) = − 1

2π

x1

r2
, (10)

and104

u
(2)
i =

1

4πµ

(
δi2 ln r − x2xi

r2

)
(1 +O(kr)) + Ci, (11)

105

p(2) = − 1

2π

x2

r2
, (12)

where Ci = δi2
4πµ

. Thus, up to order kr and a constant, the two-dimensional106

stokeslet is given by107

u
(m)
i =

1

4πµ

(
δim ln r − xmxi

r2

)
(1 +O(kr)) + C

(m)
i , (13)

108

p(m) = − 1

2π

xm
r2
, (14)

where C
(m)
i = δi2δm2

4πµ
.109
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4. Green’s Integral Formulation110

4.1. Outer Region111

Consider the space Σ enclosed by the boundary around and approach-112

ing the point xi, the body boundary lB, and the boundary on the far-field113

tending to an infinite distance away l∞ (see figure 1). The Green’s integral114

formulation for the Oseen flow [12] can be found by considering the integral,115

116 ∫
Σ

(
−ρU ∂u

(m)
i (z)

∂y1

− ∂p(m)(z)

∂yi
− µ∂

2u
(m)
i (z)

∂yj∂yj
+ f

(m)
i (z)

)
ui(y)dΣ

+

∫
Σ

(
−ρU ∂ui(y)

∂y1

− ∂p(y)

∂yi
+ µ

∂2ui(y)

∂yj∂yj
− fi(y)

)
u

(m)
i (z)dΣ = 0 ,

(15)

where yi is a vector position of the exterior domain integrated space Σ and117

in this case an area integral with zi = xi− yi, so the differential equation for118

the Green’s functions satisfies the conjugate Oseen equation since ∂
∂yj

= − ∂
∂xj

119

and f
(m)
i (z) = δ(z)δim where δ(z) is the Dirac delta function.120
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Outer Oseen

Inner Stokes
region

region

l∞

lm

ni

(a) Green’s integral repre-
sentation for outer Oseen
flow

Body

Inner
Stokes region

lm

ni

lB

ni

xi

(b) Green’s integral repre-
sentation of inner Stokes flow

lm

ǫ

fi Σǫ

ni

lB

xi

Body

(c) Spatial distribution of
point sources

Figure 1: Green’s integral representation of a body in a near-field and far-field region

In the outer region, there is no body force so fi = 0 and the point xi is121

in the inner region, so there is no contribution f
(m)
i (z) around the point xi.122
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Rearranging Eq. (15) then gives123

0 =

∫
Σ

−ρU ∂

∂y1

(
u

(m)
i (z)ui(y)

)
dΣ

−
∫

Σ

∂

∂yi

(
p(m)(z)ui(y) + p(y)u(m)(z)

)
dΣ

+

∫
Σ

−
(
µ
∂

∂yj

(
∂u

(m)
i (z)

∂yj
ui(y)

)
− µ ∂

∂yj

(
∂ui(y)

∂yj
u

(m)
i (z)

))
dΣ .

(16)

From the continuity equation (Eq. 2), it can be seen that µ
∂u

(m)
i

∂yj

∂ui
∂yj

cancel124

out in Eq. (16) by applying the divergence theorem. This then gives the125

Oseen’s integral representation as126

0 =

∫
lm

(
ρUu

(m)
i (z)ui(y)n1 +

(
p(m)(z)ui(y) + p(y)u

(m)
i (z)

)
ni

)
dl

+

∫
lm

µ

(
∂u

(m)
i (z)

∂yj
ui(y)− ∂ui(y)

∂yj
u

(m)
i (z)

)
njdl

(17)

where lm is the matching boundary. From Fishwick and Chadwick [3] the far127

field integral bounding the exterior domain Σ in the Oseen representation is128

zero, where the boundary of the domain in two-dimension is a closed curve.129

4.2. Inner Region130

The same approach used in the preceding section can be applied to give
the Green’s integral representation for the inner Stokes flow over a different
domain integral (see figure 1b). Again there is no body force, so fi = 0, but
there is a contribution around the point xi. Rearranging and simplifying Eq.
(15) to get

−
∫

Σ

f
(m)
i (z)usi (y)dΣ = −

∫
Σ

δ(z)δimu
s
i (y)dΣ

= −usm(x) ,

where usi (x), ps(x), u
(m)s
i (x) and p(m)s(x) are the inner Stokes velocity and

pressure, and inner Stokeslet velocity and pressure respectively. This then
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gives

−usm(x) =

∫
Σ

−ρU ∂

∂y1

(
u

(m)s
i (z)usi (y)

∂

∂yi

(
p(m)s(z)usi (y) + ps(y)u(m)s(z)

))
dΣ

+

∫
Σ

−µ ∂

∂yj

((
∂u

(m)s
i (z)

∂yj
usi (y)

)
+

(
∂usi (y)

∂yj
u

(m)s
i (z)

))
dΣ ,

131

usm(x) = −
∫
lB

(
p(m)s(z)usi (y) + ps(y)u

(m)s
i (z)

)
nidl

−
∫
lB

µ

(
∂u

(m)s
i (z)

∂yj
usi (y)− ∂usi (y)

∂yj
u

(m)s
i (z)

)
njdl

+

∫
lm

(
p(m)s(z)usi (y) + ps(y)u

(m)s
i (z)

)
nidl

+

∫
lm

µ

(
∂u

(m)s
i (z)

∂yj
usi (y)− ∂usi (y)

∂yj
u

(m)s
i (z)

)
njdl .

(18)

4.3. Matching Inner and Outer region132

Here the inner and outer region are matched using Eq. (18) and Eq.133

(17), an error introduced as a result of the matching is giving next. In two-134

dimensions, the constant term C
(m)
i give the leading order approximation135

to the velocity oseenlet
(
1 +O

(
1

ln kr

))
=
(

1 +O
(

1
lnReL

l

))
on the matching136

boundary where r = O(L). Hence, the matching integral in Eq. (18) is137 ∫
lm

(
p(m)s(z)usi (y) + ps(y)u

(m)s
i (z)

)
nidl +

∫
lm

µ

(
∂u

(m)s
i (z)

∂yj
usi (y)− ∂usi (y)

∂yj
u

(m)s
i (z)

)
njdl

×
(

1 +O
(

1

lnReL
l

))
= −

∫
lm

(
ρUu

(m)
i (z)ui(y)n1 +

(
p(m)(z)ui(y) + p(y)u

(m)
i (z)

)
ni

)
dl

+

∫
lm

µ

(
∂u

(m)
i (z)

∂yj
ui(y)− ∂ui(y)

∂yj
u

(m)
i (z)

)
njdl = 0 .

(19)

So, to make the error as small as possible, we let L = l and consider Oseen138

flow everywhere in the flow field.139
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5. Green’s Integral for the Boundary Element Method140

Now consider the space Σ enclosed by the boundary around the body141

boundary lB and the boundary on the far-field: an infinite distance away l∞.142

The body is represented by a distribution of forces fi in the region Σε which143

is a distance ε away from the body boundary lB (see figure 1) and Eq. (17)144

then becomes (up to the error in the matching Eq. (19))145 ∫
Σ

(
− f (m)

i (z)ui(y) + fi(y)u
(m)
i (z)

)
dΣ =

∫
Σ

−ρU ∂

∂y1

(
u

(m)
i (z)ui(y)

)
dΣ

−
∫

Σ

∂

∂yi

(
p(m)(z)ui(y) + p(y)u(m)(z)

)
dΣ

−
∫

Σ

(
µ
∂

∂yj

(
∂u(m)(z)

∂yj
ui(y)

)
+ µ

∂

∂yj

(
∂ui(y)

∂yj
u

(m)
i (z)

))
dΣ

=

∫
l∞

(
ρUu

(m)
i (z)ui(y)n1 +

(
p(m)(z)ui(y) + p(y)u

(m)
i (z)

)
ni

)
dl

−
∫
l∞

µ

(
∂u

(m)
i (z)

∂yj
ui(y)− ∂ui(y)

∂yj
u

(m)
i (z)

)
njdl = 0 .

(20)

We let146 ∫
Σε

fi(y)u
(m)
i (z)dΣ =

∫
lB

Fi(y)u
(m)
i (z)dl , (21)

on the body boundary so that as ε→ 0, it gives the force on the body as147

Fi(y) = lim
ε→0

∫ ε

0

fi(y)dε . (22)

Therefore,148

um =

∫
Σ

(
−f (m)

i (z)ui(y) + fi(y)u
(m)
i (z)

)
dΣ

=

∫
Σε

fi(y)u
(m)
i (z)dΣ

(23)

Hence,149

um(x) =

∫
lB

Fi(y)u(i)
m dl (24)

because by symmetry, u
(m)
i = u

(i)
m from Eq. (5) and Eq. (7).150

To proceed with the numerical method, Eq. (24) is discretised in the BEM151

given next.152
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6. Numerical Method153

In the preceding section, the oseenlet is derived and given in Eq. (24)154

for a two-dimensional flow satisfying the Oseen equation for the far-field155

region and it was also shown above that in the matched region the oseenlet156

becomes the stokeslet. We shall compute the drag experienced by a circular157

cylinder in a steady flow in an unbounded domain. To do this, Eq. (24) is158

discretised using the BEM with a point collocation weighting function as seen159

in figure 2a, where xαi is the position xi of node α, the two nodal points are160

given by xαi and xα+1i, while the midpoint between them is the collocation161

point. The collocation point is chosen not to lie on the nodes so that the162

Green’s function singularity in the integral is more easily removed, because163

the singularity lies wholly within the element integration rather than divided164

across two elements. For ease of numerical formulation, the boundary is165

approximated by a linear rather than a curved variation, but as the number166

of nodes are increased the collocation points will move closer to the boundary167

and so this is not expected to be a problem.168

xαi xα+1iCollocation Point

∂lB

(a) Diagram showing collocation point

Nβ

β − 1

β

β + 1

I = 2
I = 1

I = 3
I = 4

(b) Diagram showing Gaussian points

Figure 2: Figure showing the nodal points and Gaussian points used for collocation
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In figure 2b, a two-point Gaussian quadrature is shown with Gaussian169

points I = 1, 2 for the integral from node β − 1 to β, and I = 3, 4 for the170

integral from node β to β + 1, Nβ is the linear shape function at node β and171

gpwI is the Gaussian point weight at point I. Hence Eq. (24) now becomes172

ui(x) =

∫
lB

Nβfβju
(j)
i dl

= fβjNβjuijIgpwI ,

. (25)

where there are implied summations over 1 ≤ β ≤ n (for n nodes), over173

1 ≤ I ≤ 4 (for Gaussian points associated with node β (see figure 2), and174

over 1 ≤ j ≤ 2 (for spatial dimension).175

Also, uijI is the value of the oseenlet Green’s function u
(j)
i positioned at176

the Gaussian point I of node β, and determined at the node α. Hence,177

this collocation point method transforms the integral equation into a linear178

system of algebraic equations with a no slip boundary condition yielding179

Af = Y (26)

where A is a 2n×2nmatrix, f is the force coefficient and Y is an n dimensional180

vector given by applying the boundary condition. Singularities from the181

Green’s function which formed part of the matrix A are removed analytically.182

The full numerical formulation, including how the singularity is removed, is183

put in the appendix.184

6.1. Flow Past a Circular Cylinder185

As a first step of testing the BEM developed here, we begin by plotting186

streamlines for a flow past a circular cylinder. Although figure 3 and figure187

4 do not give any quantifiable information, but they do give visualization188

for the streamlines in Reynolds number range 0.01 to 4 as expected from189

experiment, giving confidence in the formulation. It was noticed that for190

Re = 0.01, the streamlines align (see figure 3). Whereas when the Reynolds191

number is increase to about 4, eddies began to form near the cylinder (see192

figure 4) which is expected from experiment [18]. This is benchmark against193

analytical results for low Reynolds number below 0.1, given accuracy of 1%.194
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Figure 3: Streamlines of steady flow past a circular cylinder at Re = 0.01 in an unbounded
domain.
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Figure 4: Streamlines of steady flow past a circular cylinder at Re = 4 in an unbounded
domain which formed eddies
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To validate against existing results, the drag coefficient CD from the BEM195

presented in this study is compared against results of Lamb [9] Eq. (27),196

Tomotika [16] Eq. (28), Kaplun [7] Eq. (29), experimental results of Tritton197

[17], and numerical results of Yano and Kieda [19] all for a Reynolds number198

Re ranging between 0 and 4 (see figure 5). The approximation of the drag199

coefficients for the various listed results are200

Lamb: CD =
4π

ReT1

(27)

201

Tomotika: CD =
4π

ReT1

(1− T2) (28)

202

Kaplun: CD =
4π

ReT1

(
1− 0.87T−2

1

)
(29)

203

Lee and Leal: CD =
−2π

Re ln(2Re)

(
1 +

1

ln(2Re)

(
1

2
− γ + ln 4

))
(30)

where the Reynolds number Re is defined by Re = aU
ν

, with a as the cylin-204

der radius and ν = µ
ρ

is the kinematic viscosity with µ as the dynamic205

viscosity of the ambient fluid. The parameter T1 =
(

1
2
− γ − log Re

4

)−1
,206

T2 = Re2

8T1

(
T 2

1 − 1
2
T1 + 5

16

)
with γ = 0.577216... as the Euler constant.207
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In figure 5, the drag coefficient is plotted against the Reynolds number.208

Lamb’s [9] and Kaplun’s [7] vary increasingly as the Reynolds number is209

increased beyond 1 (Re > 1), and the present results together with Yano210

and Kieda [19] give the closest match to Tritton’s experiment [17]. The211

Stokes drag shows clearly that the velocity diverges when considering a 2D212

flow past a circular cylinder in an unbounded domain as expected from Stokes213

paradox. When considering the Reynolds number below 1 (Re < 1), it can214

be seen that the difference in the results are not significant (see figure 5),215

they all aligned with experiment at very low Reynolds number. Analytic216

result of Kaplun and Lagerstrom actually diverge to a negative value as the217

Reynolds number increase above 2.9 (Re > 2.9).218

Furthermore, the present result is compared with the discrete singularity219

result of Yano and Kieda [19] at similar range of Reynolds number (see figure220

6). In their formulation, Yano and Kieda choose a specific points within a221

body surface and distributed oseenlets, sink, and sources within a body. It is222

unclear on how to extend the work of Yano and Kieda [19] to a general closed223

body as their method specifically tailored to the circular cylinder, whereas224

the method presented here is straightforward to apply for any closed body.225
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Observe that in figure 7, Lamb [8] and present result appear the same226

in the range 0.01 < Re < 0.3, but the result of Lee and Leal [10] begin227

to diverge as the Reynolds number increases. The result of Lee and Leal228

diverges to negative values when Re > 0.28.229

6.2. Flow Past an Elliptical Cylinder230

The BEM developed here is also tested on elliptical cylinder at different231

angle of inclination ranging from 0◦ to 90◦. In figures 8 and 9, we consider232

the thickness ratio of the elliptic cylinder denoted by t, which is the ratio of233

the minor axis to major axis of the ellipse. The figures are shown for the drag234

coefficient against angle of attack α, varying from 0◦ to 90◦ for the ellipse.235

In figure (8), the Reynolds number is set to Re = 0.1. When t = 1, it can be236

seen that the drag coefficient remains constant irrespective of the angle α, it237

is true because that gives a circular cylinder. When t = 0.1 and t = 0.5 it can238

be seen that the drag coefficient reaches optimal when the angle is 90◦, this239

is expected when compared to the results of Yano and Kieda [19]. In figure240

9, the Reynolds number is now set to Re = 1 with the same angle of attack241
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as in figure (8), it can be seen that the drag coefficient here is lower but it242

also reaches optimal drag values when the angle is 90◦. The drag coefficient243

here is lower than when the Reynolds number is Re = 0.1 which is expected.244
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0.1 plotted against angle α for present result
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Hence matching Stokes and Oseen equation in a boundary element for-245

mulation using point collocation weighting functions, linear shape functions,246

two-point Gaussian quadrature with analytic removal of the Green’s function247

singularity for the integrations give good results compared to other methods248

discussed.249

7. Conclusion250

A BEM for solving a two-dimensional steady flow past a circular cylinder251

has been presented. Our results agree against the other benchmark results252

and are an improvement at the higher Reynolds number range up to 4. So253

our representation gives a good description of the flow field even outside the254

low-Reynolds number region of Re < 1. In particular, it gives better results255

than the matched asymptotic method of Kaplun [7]. The present result is256

also able to deal with complicated geometries. For future work, consider257

biological fluid dynamics and the modelling of the motion of macroscopic258

organisms, microscopic organisms, and micro robots. Such an organism can259
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be represented by a generic closed swimming body in a quasi-steady problem260

by using this boundary element method.261

8. Appendix262

8.1. Numerical Formulation263

The discretisation leading to Eq. (25) is

ui =

∫
∂Σ0

fjuijdl
′

=

∫
∂Σ0

Nβfβjuijdl
′

(31)

where Nβ(x
′
) is the shape function, uij(x−x′) is the Green’s function evalu-

ated at x
′
, x
′

is a position on the domain ∂Σ0, dl
′

is an element of the length
integration variable. 1 ≤ i, j ≤ m, where m is the size of the dimensional
space and 1 ≤ β ≤ n represents the descritisation points.
On the boundary,∫

∂Σ0

Wαuidl =

∫
∂Σ0

Wα

∫
∂Σ0

Nβfβjuijdl
′
dl

where 1 ≤ α ≤ n, Wα(x) is the weighting function at node α integrated over264

x position on Σ element of length dl.265

As a result,266

uαi = uαβijfβj (32)

where

uαi =

∫
∂Σ0

Wαuidl

uαβij =

∫
∂Σ0

Wα

∫
∂Σ0

Nβuijdl
′
dl .

We need to renumber (32) so that we can put it into a matrix form in order267

to solve it in a matrix solver.268

Hence, we renumber to α∗ = α + (i− 1)n, and α = α∗ − (i− 1)n,269

with β∗ = β + (j − 1)n, and β = β∗ − (j − 1)n, where 1 ≤ α∗, β∗ ≤ m × n,270

i = 1 +
(
α∗

n+1

)
integer division

, and j = 1 +
(
β∗

n+1

)
integer division

.271

In renumbered form, (32) becomes272

uα∗ = uα∗β∗fβ∗ , (33)
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and the matrix we require is273

fβ∗ = u−1
α∗β∗uα∗ . (34)

Consider a uniform flow δi1 past a two dimensional (m = 2) circular cylinder274

of radius 1, given that the weighting function is the collocation point and the275

shape function is a linear two-point Gaussian, we want to evaluate uα∗ [uαi]276

uαi =

∫
∂Σ0

Wαuidl

=

∫
∂Σ0

δ(xα+ 1
2
)uidl

=ui(xα+ 1
2
)

The last term on the above equation is the mid point shown in figure 2a .
For clarity purposes, xα/xαi is a position vector xi of node α and xα+ 1

2
/xα+ 1

2
i

is the position vector xi of the mid-point between nodes α and α+1. xα+ 1
2
i =

1
2

(xαi + xα+1i) is the mid-point with the boundary condition ui|∂Σ0 = −δi1,
which means that uαi = uα+ 1

2
i = −δi1. We also want to evaluate the Non-

degenerative singularity case, first, for α 6= β − 1, β which gives

uαβij =

∫
∂Σ0

Wα

∫
∂Σ0

Nβuijdl
′
dl

=

∫
∂Σ0

Nβuij(xα+ 1
2
− x)dl

′

=NβIgpwIuij(y), (35)

where yi = xα+ 1
2
i−xβiI , NβI is the shape function at Gaussian points I, NβI =(

1
2
− 1

2
√

3
, 1

2
+ 1

2
√

3
, 1

2
+ 1

2
√

3
, 1

2
− 1

2
√

3

)
, gpwI is the Gaussian point weight at

point I with gpwI =
(
l−

2
, l
−

2
, l

+

2
, l

+

2

)
where the length between nodes is given

as l− =| xβi − xβ+1i |, and l+ =| xβ+1i − xβi |. The four different Gaussian
points are illustrated in figure 2b, xβiI is the position xi of Gaussian point I
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of node β such that

xβiI =
xβ−1i + xβi

2
− xβi − xβ−1i

2
√

3
,

xβ−1i + xβi
2

+
xβi − xβ−1i

2
√

3
,

xβ+1i + xβi
2

− xβ+1i − xβi
2
√

3
,

xβ+1i + xβi
2

+
xβ+1i − xβi

2
√

3

uij(y) is the stokeslet given by277

uij(y) =
Re

4π

(
δij ln r − yiyj

r2

)
, (36)

and where r = +
√
yiyj.

We also wish to evaluate the degenerate case with singularities for i = j,
α = β. In this case, the singularity needs to be removed

uαβij =

∫
∂Σ0

Nβuijdl
′

=

∫
l−
Nβuijdl

′
+

∫
l+
Nβ

(
uij − us

∗

ij

)
dl
′
+

∫
l+
Nβu

s∗

ij dl
′

=Nβ1uij(y)gpw1 +Nβ2uij(y)gpw2 +Nβ3

(
uij − us

∗

ij

)
gpw3

+Nβ4

(
uij − us

∗

ij

)
+

∫
l+
Nβu

s∗

ij dl
′
,

where s∗ denotes a singularity, and when the singularity is solved analytically,278

it becomes279

uij =
Re

4π
δij ln r. (37)

Thus, ∫
l+
Nβu

s∗

ij dl
′
=
Re

4π

∫
l+
Nβ ln rdl

′

=
Re

4π
δij

(
l+

2

(
ln

(
l+

2

)
− 1

))
, (38)
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and when i = j and α = β − 1, then

uαβij =

∫
∂Σ0

Nβuijdl
′

=

∫
l−
Nβ

(
uij − us

∗

ij

)
dl
′
+

∫
l−
Nβu

s∗

ij dl
′
+

∫
l+
Nβuijdl

′

=Nβ1

(
uij − us

∗

ij

)
gpw1 +Nβ2

(
uij − us

∗

ij

)
gpw2

+

∫
l−
Nβu

s∗

ij dl
′
+Nβ3uijgpw3 +Nβ4uijgpw4 (39)

so that we have ∫
l−
Nβu

s∗

ij dl
′
=
Re

4π
δij

∫
l−
Nβ ln rdl

′

=
Re

4π
δij

(
l−

2

(
ln

(
l−

2

)
− 1

))
. (40)

To find the solution to (39), we shall find the velocity in the domain, pressure
coefficient on the cylinder, as well as the drag coefficient.
In the fluid, the velocity becomes

ui(x) =

∫
∂Σ0

Nβfβjuijdl
′

≈NβIfβjuij(x− xβI)gpwI . (41)

By linear superposition,280

p(x) ≈ fβjNβIpj(x− xβI)gpwI (42)

where pj is the Stokes pressure given by281

pj =
−1

2π

yj
r2

(43)

On the cylinder, the pressure at node β is282

pβ = −fβjnj|β (44)
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where nj|β = xβj.
The force coefficient:

Ci =

∫
∂Σ0

fidl

≈
∫
∂Σ0

Nβfβidl

≈fβiNβigpwI (45)

=fβi

(
sβ

(
l+ + l−

2

))
=fβisβL (46)

where sβ = 1 is the summation vector and l = l++l−

2
for n nodes. When

l− = l+ = l, then l = 2π
n

, and

Ci =
2π

n
fβisβ

=
2π

n

n∑
β=1

fβi. (47)

Where i = 1, equation (47) describes the drag coefficient, while for i = 2, it
describes the lift coefficient.
These numerical results must be tested against known analytical solutions.
The analytical solutions are

ui =
8π

Re
ui1 +

2π

Re
ui1,jj

and

p =
8π

Re
p1 +

2π

Re
p1,jj,

so the analytical solution is represented by a drag stokeslet of strength 8π
Re

283

plus a quadrupole giving drag, such that284

CD =
8π

Re
. (48)

Recall that the stokeslet velocity and pressure are given as

uij =
Re

4π

(
δij ln r − yiyj

r2

)
,
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pj = − 1

2π

yj
r2
,

and the Stokes equation given by

0 = −p,i +
1

Re
ui,jj

Therefore, the velocity is shown to be a uniform stream, given by

ui|r=1 =

[
8π

Re
ui1 + 2πp1,i

]
r=1

=

[
8π

Re

(
Re

4π

(
δij ln r − yiyj

r2

))
+ 2π

(
− 1

2π

yj
r2

)
,i

]
r=1

=

[
2δi1 ln r − 2yiy1

r2
− r2δi1 − yi2ryi/r

r4

]
r=1

=

[
2δi1 ln r − 2yiy1

r2
− δi1
r2

+
2yiy1

r4

]
r=1

= −δi1.
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