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Abstract 

The deep sea is typically seen as a stable and constant environment. However, in recent years 

we are seeing increasing fragility caused by unprecedented human exploitation. Many deep-

sea fish species are typically long lived and have specific traits which often limit their resilience 

to impact and change. Due to the expansion of fisheries, it is important to better understand 

population structure and connectivity of these deep-sea populations, in order to ensure their 

sustainable management.  

In this study, samples of two deep sea species collected across their distribution range were 

screened: the common ling, Molva molva, and the deeper dwelling blue ling, Molva 

dypterygia. Using Genotype-By-Sequencing (GBS) and the M. molva reference genome, 6,566 

and 3,073 neutral Single Nucleotide Polymorphism (SNPs) were identified, respectively. 

Results indicate how the two species exhibit a different structure pattern, with the deeper 

blue ling showing fine scale differentiation within population samples along the Norwegian 

coast, and the common ling being more homogeneous. By identifying 3 outlier loci in the 

common ling, and 5 outlier loci in the blue ling, adaptive divergence is explored. No candidate 

genes could be identified from the common ling data. With data for the blue ling it was 

possible to link outlier loci with multiple genes and speculate adaptive divergence from this. 

Genes linked with responses to environmental variables including light and temperature were 

among those found. 

Overall, the findings presented in this study attempt at filling a knowledge gap about 

exploited deep sea fish species, and will hopefully aid the sustainable management of these 

species.  



8 
 

1. Introduction  

1.1. Overview 

The study of population connectivity is valuable for ecological, evolutionary, management 

and conservation applications (Etter and Bower, 2015). Connectivity studies in the marine 

environment have lagged behind that of terrestrial due to technical limitations, such as 

tracking individuals, especially those with a pelagic larval phase, over vast open spaces of 

water where there are few obvious barriers (Baxter, 2001; Sá-Pinto et al., 2012). This lagging 

research has led to a belief of strong connectivity within the marine environment, a belief 

which is now being challenged in more recent studies (Cowen et al., 2000). With genetic 

methods we can now explore structure within the marine environment, which is increasingly 

important for the future management of fisheries and conservation efforts (Hedgecock, 

Barber and Edmands, 2007).  

Marine fisheries are a major source of food for people around the world and with an ever-

growing population this pressure has increased over the years (Pauly and Zeller, 2016). It is 

now widely accepted that species across the world are becoming increasingly affected by 

human activity (Bernatchez, 2016). Due to this increased demand fisheries are now facing a 

decline in catches, which is possibly indicative of overfishing (Pauly and Zeller, 2016). Because 

of this there is now a substantial need to track the status of the oceans in terms of 

exploitation, to understand their current state and inform decisions of the future (Coll et al., 

2016).  

In order to sustainably manage marine populations, a better understanding of the degree of 

connectivity between management units or populations is needed (Verhelst et al., 2016; 

Coscia et al., 2019). Here, the population structure of two commercially exploited species, 

Molva molva (the common ling) and Molva dypterygia (the blue ling), is explored using 



9 
 

genomic tools, in order to unravel the patterns of population structure. Using Genotype-By-

Sequencing (GBS) data generated in the lab, bioinformatics is utilised to create a Single 

Nucleotide Polymorphism (SNP) array for each species using the reference genome recently 

published for the common ling (Malmstrøm et al., 2017). With the help of these new genomic 

technologies, this study aims to create data which can inform management, to create better 

strategies to ensure the future sustainability of these fishes.  

Combining any available data utilising different markers will allow for a broader 

understanding of interactions between populations (Santos et al., 2012; Fernández-Pérez et 

al., 2018). Here, the data and results generated for the common ling can be compared and 

combined with that which was found by Gonzalez et al. (2015) based on microsatellite 

markers, giving a stronger basis for management strategies in this species. Creating a SNP 

array for genomic analyses of the species will give a greater insight into the structural 

possibilities hinted at in Gonzalez’s study, and may allow insight into finer scale differentiation 

and adaptation across the range. Broadening to include the blue ling in this study means this 

valuable information is gained for more than one commercially exploited species for which 

data is deficient (ICES, 2017) and separate management strategies can be inferred onto the 

two. As fisheries go deeper this is even more essential, and research should continue to delve 

into the deep to gain an understanding of the human-induced pressures experienced here.  

After exploring population structure, adaptation within the species through the identification 

of outlier loci is then explored. This allows for an insight into any signatures of adaptive 

divergence  occurring within populations, and thus what could be driving differentiation 

between them (Duforet-Frebourg, Bazin and Blum, 2014; de Villemereuil and Gaggiotti, 
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2015). This study aims to overcome the issue of an understudied area by adding to the current 

knowledge of deep-sea connectivity. 

 

1.2. Marine genomics and fisheries 

Due to the great connectivity and thus high gene flow of marine species, it has often proven 

difficult to detect structure within marine populations (Junge et al., 2019). Due to this, more 

powerful tools were sought after (Bagley, Lindquist and Geller, 1999; Allendorf, 2017). Many 

studies have utilised microsatellites to begin exploring connectivity, often finding panmixia or 

low but significant genetic structure (Bagley, Lindquist and Geller, 1999; Allendorf, 2017; Saha 

et al., 2017). Issues with microsatellite DNA mostly arise through technical difficulty of 

creating the markers, and genotyping errors due to low yield and poor quality DNA (De Barba 

et al., 2016; Janjua et al., 2020). 

Further genetic research has allowed for the development of a greater biological 

understanding of the marine environment (Miller and Gunasekera, 2017). Next Generation 

Sequencing (NGS) has revolutionised research, where researchers have been able to expand 

on knowledge of population structure, traceability, phylogenetics, and so on (Kumar and 

Kocour, 2017). These new technologies are aiding exploration of structure in marine 

environments after decades of molecular studies in which limited data could be found 

(Gagnaire et al., 2015). Although the likes of genetic tools such as microsatellites are still 

greatly popular in marine studies, the use of genomic Single Nucleotide Polymorphisms (SNPs) 

is on the rise, making it increasingly possible to detect structure (Selkoe et al., 2016). SNPs 

occur upon the change of a single base in DNA sequence, and thus are the most common 

source of genetic variation in and among species (Ruperao and Edwards, 2015). 



11 
 

Application of SNP markers has already begun to unravel patterns of population structure for 

many marine species. This has been successful for Atlantic cod (Bradbury et al., 2013), Atlantic 

mackerel (Rodríguez-Ezpeleta et al., 2016), albacore and Atlantic blue fin tuna (Albaina et al., 

2013), European hake (Milano et al., 2014), Atlantic herring (Lamichhaney et al., 2017), and 

many other species. This focus on commercially valuable species has proven important for 

management. 

To begin on the path to better fisheries management, there is need for an increase in the use 

of NGS technologies (Cuéllar-pinzón et al., 2016). This means more genomic studies will be 

used to improve understanding of environmental variation (Bernatchez et al., 2017). This is 

paramount for assessing fish stocks worldwide, to understand exploitation in order to 

maintain food security, to conserve, and to achieve sustainability (Rosenberg et al., 2018). 

This has failed in the past for many reasons, including a lack of data on the issue (Rosenberg 

et al., 2018).   

The deep sea is the largest ecosystem in the world, with great biodiversity and importance 

(Clarke et al., 2015). Due to the great depths and distance from land, it is a difficult habitat to 

explore and monitor (Miller and Gunasekera, 2017). The species found here have slower life 

histories than those in shallower waters and may also be more vulnerable to fishing through 

aggregation at sea mounts, ridges, or slopes; commonly targeted by fisheries (Victorero et al., 

2018). It is assumed that deep sea species have a higher degree of connectivity, with greater 

dispersal than those in shallower waters (Baco et al., 2016). With higher connectivity there is 

an added assumption of greater resilience (Cowen et al., 2007). The deep sea is poorly 

understood and there are multiple misconceptions leading to these suppositions (Baco et al., 

2016). 
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Combining the decline of stocks with advancement of fishing technology has led to an 

expansion of fisheries away from the continental shelf into deeper waters (Mangi et al., 2016; 

Collie et al., 2017; Victorero et al., 2018). It is already known that many deep-sea fisheries are 

unsustainable, with an exhibited decline in abundance of commercial fish species since deep 

sea fishing began (Clarke et al., 2015). Negative impacts of fishing increase from 600m and 

deeper, along with a decrease in catch value from these depths (Clarke et al., 2015). This is 

salient, indicating that the deeper we go, the more impact we may be having on population 

levels and their recovery. It is also increased effort with a lesser payoff, and thus does not 

appear viable to continue in the long term. 

Genetic data has now allowed a greater insight into this habitat, helping towards estimation 

of connectivity and predicting decreases in diversity in the deep sea (Miller and Gunasekera, 

2017). Such studies are starting to indicate that the deep-sea is not as well connected as 

originally thought. It has been shown that deep basins may reduce gene flow, through limited 

adult migration and poor drift of pelagic larvae (Knutsen et al., 2009). Such limitations are 

likely to lead to population differentiation due to poor gene flow (Knutsen et al., 2009).  

With genomic data this is now being expanded on. Research using SNP markers on the deep 

sea orange roughy found population structure, with evidence for local adaptation and 

isolation by distance (Gonçalves da Silva et al., 2019). Genetic studies originally struggled to 

find any structure within this species and improved to find low levels of differentiation 

(Varela, Ritchie and Smith, 2013). This uncertainty can now be clarified through SNP analyses, 

and future studies may want to continue using these methods at differing geographic scales 

to further explore structure within this species.  
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Considering the current knowledge available for population genomics shows how this 

increasingly useful tool can be used to tackle the challenges which are associated with 

sustainable fisheries management, and more effort should be directed towards integrating 

such methods into these practices (Bernatchez et al., 2017; Mullins et al., 2018; Pecoraro et 

al., 2018). We can now use genomics to gain a genome-wide and allele-specific view into the 

structure and diversity of any organism (Valenzuela-Quiñonez, 2016). It is crucial that we have 

been able to identify structure in highly mobile species of commercial importance (Junge et 

al., 2019). Whether this structure be that of high connectivity or showing differentiation 

between populations, there is knowledge which can then be taken into consideration with 

fisheries management (Junge et al., 2019). Therefore, the use of genomics to explore 

population structure is needed in marine species for conservation and stock management 

(Lal, Southgate, Jerry and Zenger, 2016).  

If fisheries management does not change, then further decline and collapse of worldwide 

fisheries can be expected (Costello et al., 2016). Such change would be specific to different 

areas and/or species, thus, in order to make changes there must be further research to 

increase knowledge for informing management strategies. With better strategies recovery 

can happen quickly, increasing fish abundance as well as security for maintaining populations 

and profits for the fisheries industry (Costello et al., 2016). 

 

1.3. Neutral vs. adaptive divergence 

As well as structural analyses, signatures of selection can now also be explored with genomic 

methods (Riginos et al., 2016). This knowledge combined with environmental factors helps to 

identify neutral or adaptive differentiation within/between populations (Riginos et al., 2016). 
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Neutral genetic mutations will occur over time as the natural process of random drift 

transpires (Allen et al., 2015). Also occurring is selection, which can over time lead to 

differentiation between populations and even speciation (Allen et al., 2015). Through 

selection, rapid evolution can take place in response to environmental change (Bosse et al., 

2017). We can now identify the signatures of this selection through genomic research; linking 

our genetic understanding with ecological factors to predict potential drivers of selection 

(Bosse et al., 2017). Using genomic techniques, we are able to investigate the adaptive 

diversity of populations through outlier loci (Valenzuela-Quiñonez, 2016). This opens the door 

to a new understanding of the potential effects of fishing and/or climate change on fish 

populations and stocks (Valenzuela-Quiñonez, 2016). 

Although the great dispersal and connectivity of marine populations comes with an 

assumption of limited local adaptation, we are finding an increase in evidence for adaptation 

to different environments (Sherman et al., 2016). With the nature of the marine environment 

allowing for large populations, we are now discovering that there is great genetic diversity 

within these populations (Kelley et al., 2016). This aids towards adaptation to novel/different 

environments (Kelley et al., 2016).  

With genomic techniques, it is now possible for us to identify specific genes linked with 

differentiation and infer adaptation from these. For example, changes within opsin genes 

have been described within marine species in response to differing light levels (Rennison et 

al., 2016; Pierotti et al., 2017). Such an adaptation is thought to be commonplace (Rennison 

et al., 2016). Because of this, and due to the rapid evolution of these genes allowing for great 

adaptability, it has thus been a useful tool in testing for adaptive divergence (Rennison et al., 

2016; Pierotti et al., 2017).  
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As well as identifying genes associated with adaptive divergence, genomic methods can 

identify parallel evolution in geographically distant populations where similar forces are 

driving natural selection (Lamichhaney et al., 2017). Such convergent evolution is not only of 

interest within different species who exhibit similar phenotypes, but also on a finer scale 

within a single species across populations. This has been seen in Atlantic herring, whose 

populations are geographically distant and genetically distinct, but share linking genetic 

factors with timing of reproduction (Lamichhaney et al., 2017).  

Adaptive evolution has become of particular interest in invasion biology. In these scenarios, 

adaptation occurs rapidly under the selective forces of a novel environment (Bernardi et al., 

2016). We have been able to study invasive species to gain knowledge on adaptive evolution 

(Bernardi et al., 2016). This, and studies looking at fishery-induced evolution, go on to help us 

predict adaptability of marine species/populations in a changing global environment 

(Bernardi et al., 2016; Foo and Byrne, 2016; Waples and Audzijonyte, 2016). With climate 

change comes oceans which are warmer, have a lesser oxygen content, and lower pH levels 

(Foo and Byrne, 2016; Waples and Audzijonyte, 2016). Marine species are now experiencing 

a great need to adapt to deal with the stressors brought on by the changing climate and 

through the pressures of fishing. 

 

1.4. Next-Generation Sequencing 

Over the past 50 years population genetics have been used to explore variation and evolution; 

to gain an understanding of populations and their interactions (Casillas and Barbadilla, 2017). 

New developments have now led to the production of genomic methods of analysis, such as 

Next-Generation Sequencing (NGS) which allows sequencing of the entire genome in a short 
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period of time (Toriello, 2016). Compared with genetics, genomics allows exploration of 

genome-wide effects rather than loci-specific, giving a much broader and informative 

understanding (Elmer, 2016). This has allowed for larger data sets for such studies, now 

growing in number as techniques improve (Selkoe et al., 2016).  

NGS can refer to any highly parallel or high output sequencing method which produces 

genomic data (Levy and Myers, 2016). There are many companies and technologies already 

specialising in NGS and this continues to amplify with the decreasing cost, increasing speed, 

and increasing high-performance (Levy and Myers, 2016; Kumar and Kocour, 2017). The 

expanding ability of NGS means it is now possible to obtain billions of reads from a sequencing 

experiment (Reinert et al., 2015).  

Until more recently, genomic studies were generally performed on model species due to 

associated costs and complexities (Greminger et al., 2014). To battle this issue, a technique 

of reduced representation sequencing (RRS) was developed in which restriction enzymes are 

used to digest genomic DNA into fragments which can then be selected and sequenced 

(Greminger et al., 2014). This would give a fraction of the genome but allow for identification 

of polymorphisms and genotype calling in species with no reference genome, and without 

having to sequence the genome of every individual (Davey et al., 2011; Greminger et al., 

2014). If a reference genome is available, then RRS fragments can be mapped to this and SNPs 

can be called in this way (Davey et al., 2011). Such a method is therefore applicable to both 

model and non-model organisms. 

There are now multiple methods developed from this idea, including RAD-seq which utilises 

a single restriction enzyme and sequences essentially all fragments surrounding restriction 

sites associated with the enzyme (Davey et al., 2011; Kagale et al., 2016). The fragments in 
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this method are sheared to a desired length for sequencing (Davey et al., 2011; Kagale et al., 

2016). Another technique further developing from this is that of GBS which has indirect size 

selection, so fragment lengths will vary (Andrews et al., 2016). Other methods differ in 

approach by utilising more than one restriction enzyme but maintaining the fragment 

shearing, for example double-digest RAD (ddRAD) (Andrews et al., 2016).  

With a great shift from genetic to genomic research, NGS is now used in all manner of 

scientific disciplines and can be put forward to answer a plethora of questions (Kumar and 

Kocour, 2017). Notably, studies focused on ecology, evolution, and conservation genomics 

have benefited greatly from NGS (Andrews et al., 2016). One area of research which NGS has 

proven an essential tool is that of fisheries science, looking at population structure, 

phylogenetics, signatures of selection, and so on (Kumar and Kocour, 2017). Developing SNP 

arrays for exploited species is an important aspect in fisheries science, as it creates a basis for 

future research within such species (Martínez et al., 2017). This can then be geared towards 

stock assessment and management of species and marine areas.  

Bioinformatics has developed alongside NGS as a solution to the growing amounts of genomic 

data produced in the lab (Ogbe, Ochalefu and Olaniru, 2016; Bolyen et al., 2018). It allows for 

storing, retrieving, and organising such data, transforming it into that which is valuable for a 

number of analyses (Ogbe, Ochalefu and Olaniru, 2016). One of the common tasks performed 

through bioinformatics is calling of SNPs (Keane et al., 2016; Mielczarek and Szyda, 2016). In 

fish, SNPs are found around every 100bp (Siccha-Ramirez et al., 2018). This high density of 

SNPs makes them the most popular markers in genomic screening (Siccha-Ramirez et al., 

2018).  
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There is currently an array of bioinformatics software available for SNP calling. These pipelines 

allow for production of data with a reference genome available or can offer an alternative de 

novo method when no reference is available (Torkamaneh, Laroche and Belzile, 2016). This 

means that, although it is beneficial to have access to a reference genome when SNP calling, 

it is not essential, and we can still produce data for species lacking this. Many of these 

softwares have been tested out on GBS data in the past (Torkamaneh, Laroche and Belzile, 

2016), but since such programs are ever-updated and improved along with lab techniques 

any comparisons can become out of date. One of the most popular programs for generation 

of SNPs is STACKS (Catchen et al., 2013), which includes de novo and reference pipelines, and 

can support data produced from many different lab techniques (Paris, Stevens and Catchen, 

2017).  

An important element in SNP calling is that of filtering, as mistakes made during library 

preparation and/or bioinformatics may lead to incorrect interpretation of data in later 

analyses (O’Leary et al., 2018). Like with SNP calling in bioinformatics software, there are 

many options to choose from when it comes to filtering a SNP dataset. STACKS offers its own 

filtering options, along with the many alternative programs including TASSEL (Bradbury et al., 

2007), plink (Purcell et al., 2007), and vcftools (Danecek et al., 2011). There are also multiple 

packages in R (R Core Team, 2017) which can be used to filter through a dataset.  

Although there is a degree of reliability on SNPs called with a reference genome available, 

filtering is still required for this and de novo assemblies. Filters recommended include 

removing loci or individuals with a certain amount of missing data (O’Leary et al., 2018). This 

may seem obvious, to get rid of data which is not informative enough and could give false 

patterns in results. Applying these restrictions to data will allow optimisation of the dataset. 
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It can, however, have a negative effect on results through removing informative loci. This can 

come about during filtering for minor allele frequency which, due to uncertainty of accuracy, 

can remove rare SNPs which would otherwise infer structure (Malomane et al., 2018). This is 

also the case when filtering out SNPs which differ significantly from Hardy-Weinberg 

equilibrium. Due to this, the utmost care must be taken in the filtering process to find a 

balance in removing uncertain and inaccurate data, yet maintaining that which is informative 

for our analyses.  

 

1.5. The common ling, Molva molva 

The common ling Molva molva is a commercially fished species of the Lotidae family, which 

is a close relative to the cod (Gadus sp.) (Sustainable Fisheries Partnership, 2016; Luna, 

2020b). It is the largest species of the Gadiformes, growing up to 200cm in length (Rowley, 

2008). The distribution of the common ling ranges from the Barents Sea down to Morocco, 

and across the Northern Atlantic (Cohen et al., 1990; Luna, 2020b). They may also be rarely 

found in the Mediterranean Sea (Cohen et al., 1990). It can be distinguished by the length of 

the barbel compared to the diameter of the eye; the sensory barbel, protruding from the 

lower jaw, being longer than the diameter of the eye (Rowley, 2008; Luna, 2020b). This 

species can be found in depths of up to 600m (Rowley, 2008). It is generally a solitary, benthic 

species, found on rocky bottoms (Cohen et al., 1990; Rowley, 2008; Luna, 2020b). 
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Figure 1: Molva molva, the common ling (Cohen et al., 1990) 

Dietary data indicates that the common ling feeds on other fish species, such as blue whiting, 

herring, cod, and flatfish, as well as some crustaceans, cephalopods, and starfish (Rowley, 

2008; Luna, 2020b). 

The common ling spawns offshore in the months of March to August at around 100-300m 

depths (Cohen et al., 1990; Rowley, 2008). Females will grow faster and live longer than 

males, reaching maturity at around 90-100cm and living up to 14 years (Rowley, 2008). Males 

mature at around 80cm and can live up until 10 years (Rowley, 2008).  

Fisheries are known to catch the common ling through longlines, gillnets, and bottom trawls 

(Sustainable Fisheries Partnership, 2016). In Iceland, where this species is particularly sought 

after, stock assessment is carried out using size- and age-structured models and results 

appear to indicate a current decline (Elvarsson et al., 2018).  

It has been stressed by the International Council for the Exploration of the Sea (ICES) that 

research investigating the population structure of this species is now required to help inform 

management, as very little is known about it (Ring et al., 2009). Previous studies employing 

microsatellites suggested the possible presence of structure in the Northeast Atlantic (Ring et 

al., 2009; Gonzalez et al., 2015). Gonzalez et al. (2015) found that there was a split between 

the East and West, creating one group around Norway and another group consisting of Rockall 
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and Iceland. This prior knowledge can be used alongside any findings from this study to 

further inform management. 

 

1.6. The blue ling, Molva dypterygia 

The blue ling Molva dypterygia is also a commercially fished species of the Lotidae family and 

is the sister species of the common ling (Cohen et al., 1990; Barnes, 2008). It is smaller than 

the common ling, growing up to 155cm in length, with a shorter barbel which does not exceed 

the diameter of the larger eye (Cohen et al., 1990; Barnes, 2008; Papasissi, 2020). Distribution 

of the blue ling is similar to that of the common ling; ranging from the Barents Sea up to 

Spitsbergen, down to Morocco, across the Northern Atlantic, and into the Mediterranean Sea 

(Cohen et al., 1990; Papasissi, 2020). The two species will often occur next to one another in 

the water column, with a little overlap in depth distribution. This species can be found at 

depths of up to 1000m, living on muddy bottoms (Cohen et al., 1990; Papasissi, 2020). They 

are a demersal species and they are known to occur around seamounts and knolls (Stocks, 

2009). The blue ling feed on crustaceans and fish; such as flatfishes, gobies, and rocklings 

(Cohen et al., 1990; Papasissi, 2020). 

 

 

Figure 2: Molva dypterygia, the blue ling (Cohen et al., 1990) 
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Spawning behaviour for this species occurs in April and May between 500-1000m depths 

across West Scotland to Norway and from the Faeroes to South Iceland; they spawn 

separately in the Mediterranean from late winter to early spring at 500-600m depths (Cohen 

et al., 1990). Again, females are faster growing than males and will reach maturity at around 

88cm, living up to 20 years (Cohen et al., 1990). Males will reach maturity around 75cm and 

live to 17 years (Cohen et al., 1990).  

Like the common ling, the blue ling is commercially fished with longlines and bottom trawls, 

mainly in the North-Eastern Atlantic (Cohen et al., 1990). It is known that the blue ling have 

been fished for decades, and with increasing exploitation stocks began to collapse through 

the 1990s (Helle et al., 2019). Although there has been no genetic research for the blue ling, 

protection areas for spawning aggregations have been put in place to the West and North-

West of the British Isles, following warnings from ICES that the species is susceptible to 

sequential depletion of spawning aggregations (Large et al., 2010). Genetic studies are now 

desired for new and improved management strategies to be implemented to aid in the 

recovery of populations (Helle et al., 2019). 

Overall, the objectives of this study are to explore structural connectivity in two commercially 

exploited species using populations analyses. Connectivity and structure is explored using 

populations analyses, with Fst, PCA and DAPC, and Structure analyses. This can give us an 

insight into the population structure of such valuable deep-sea species, which have in the past 

been assumed as highly connected (Baco et al., 2016). This could change current views of 

deep-sea connectivity and thus the approach to deep-sea fishing in the future. Results for the 

common ling can also be discussed alongside those findings from Gonzalez et al. (2015), 

further expanding our knowledge for this species. 
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Comparisons can also be made between the two species studied here, seeing how increasing 

depth can influence connectivity. Additionally, candidate gene analyses are performed to 

explore signs of selection, and the possibilities of adaptive divergence through the links found 

with outlier loci are discussed. This gives an insight for the possible drivers of divergence 

connected with the deep sea. Together, the outcomes of this study should help expand 

current knowledge of deep-sea connectivity and deep-sea species in general.  
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2. Materials and Methods 

2.1. Data Collection/Lab work 

Samples of Molva molva and Molva dypterygia were caught throughout their range in the 

Atlantic by research surveys and fishing vessels, between the years 2005-2015. Coordinates 

were recorded for points at which fish were captured, as well as the length of each individual. 

Tissue samples were obtained from gill, muscle, or fin clips.  

Genotype-By-Sequencing (GBS) was used to produce Single Nucleotide Polymorphism (SNP) 

data (Elshire et al., 2011). In total, 83 common ling and 190 blue ling were sequenced. The 

laboratory work was not part of the present study, which exclusively carried out the 

bioinformatic analysis starting from the raw data provided.  DNA was extracted with the 

Blood and Tissue QIAGEN kit (QIAGEN, 2006), and its concentration was then standardised 

before using it to construct modified GBS libraries. GBS is a simple highly multiplexed system 

for constructing reduced representation libraries (Elshire et al., 2011). It was digested at 75C 

for 2h with ApeKI, followed by adaptor and barcode ligation, purification, PCR, another 

purification, and quantification and only after this step, pooling of the samples. The libraries 

were then sent to the KU Leuven Genomics Core (Genomics Core Leuvin, 2020), where all 

five libraries were individually size selected on a Pippin Prep unit (Sage Science, 2020), 

checked for quantity using qPCR, and paired-end sequenced on one lane of a HiSeq 2500 

platform (Illumina, 2020).  

Taking the coordinates which were provided for catching points of individuals we could create 

maps to visualise the samples and populations. These were plotted in QGIS (QGIS 

Development Team, 2019). One map was produced for the common ling and one map for the 

blue ling (Figs. 3 & 4).  
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Table 1: Population names, central coordinates of catch area, and number of individuals sampled from each 

population for the common ling 

Population Location Coordinates (Lat, Long) No. individuals 

BB15 Bay of Biscay 44, -3 2 

BE08 Bergen - Sotra 

Bridge 

60.39, 5.16 8 

BO14 Bømlafjorden 60.06, 5.45 10 

HA14 Hardangerfj., 

Steinstøberget 

60.38, 6.28 10 

IB13 Indre Boknafjord 59.28, 5.85 1 

NY13 Nygrunnen 69.18, 14.5 10 

RA08 Rockall 58.08, -13.35 8 

RA14 Rockall 57.79, -13.44 6 

RYF13 Ryfylke 59.13, 5.73 2 

RYV14 SW Ryvingen 57.88, 7.21 10 

SO14 Sørfjorden 60.43, 5.56 6 

TF05 Tromsoflaket 69.02, 13.44 10 

 

 

 

Figure 3: Map of common ling sample sites  
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Table 2: Population names, central coordinates of catch area, and number of individuals sampled from each 

population for the blue ling 

Population Location Coordinates (Lat, Long) No. individuals 

AD07 Anton Dohrn 57.42, -11.22 1 

BO14 Bømlafjorden 60.06, 5.45 4 

HA14 Hardangerfj., 

Steinstøberget 

60.39, 6.28 3 

IB13 Indre Boknafjord 59.28, 5.85 1 

NY13 Nygrunnen 69.18, 14.5 12 

RA07 Rockall 56.95, -13.43 5 

RA10 Rockall 56.01, -14.87 40 

RA11 Rockall 58.20, -14.96 47 

RS07 Rosemary Bank 59.10, -9.92 13 

RYF13 Ryfylke 59.27, 5.72 2 

RYV14 SW Ryvingen 57.88, 7.21 6 

SL07 Slope 57.61, -9.63 19 

SL11 Slope 58.50, -9 22 

SL14 Slope 56.72, -9.13 4 

SO13 Sørfjorden 60.43, 5.51 1 

GRE15 Greenland 

NAFOXIVb 

59, -44 10 

 

 

 

Figure 4: Map of blue ling sample sites 

 

 

BO14 
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2.2. Bioinformatics and filtering 

Raw data was provided to process using bioinformatics, to produce the SNP data required for 

analysis. This was accomplished through process_radtags, denovo_map.pl and ref_map.pl, 

and populations pipelines from STACKS v2 (Catchen et al., 2013). First, coverage was tested 

to check the quality of the data using FastQC (Andrews, 2010). This is generally used to 

identify the ideal length to use when truncating sequences (parameter -t) in STACKS. Through 

FastQC it was found that all sequences were of 126bp in length, of which none were flagged 

as poor quality, and the per base sequence quality remained high throughout with no 

significant drop to the end of the reads. From this came the decision to keep all sequences at 

this length, and allow other filters applied later in the process to remove any undesirable 

data.  

Using this information from FastQC, process_radtags could be informed to generate the 

stacks, feeding the program information using -t to indicate trim length deciphered from 

FastQC quality data (in this case leaving the length as is). Files were indicated to be paired, 

barcodes were given to identify individuals within the sequences, and the restriction enzyme 

used was given (ApeKI). The -r, -c, and -q functions were also given, which indicates to the 

program to rescue (-r) barcodes and RAD-Tags, clean (-c) data by removal of any uncalled 

bases, and to quality check (-q), discarding reads with low quality scores. These would help to 

quality control the data where trimming is not in place. 

The next step in the pipeline is to call SNPs, which can be done either de novo or with a 

reference genome. The reference-based approach is known to be the best of the two; 

generally calling more SNPs with greater accuracy (Shafer et al., 2017). It is suggested that 

this approach is taken with a closely related genome (Shafer et al., 2017). Both approaches 



28 
 

were carried out in order to compare the two, and with the recently produced Molva molva 

genome (Malmstrøm et al., 2017) this was therefore possible. There is no available genome 

for M. dypterygia yet, but being the two species of the same genus, we could assume that 

they were genetically related enough for us to use one genome as a reference for both 

(Nevado, Ramos-Onsins and Perez-Enciso, 2014; Shafer et al., 2017). This comparison of 

methods allows exploration of the outcomes when SNPs are called on raw data, against when 

the data is first aligned to the reference genome. It was expected, as has been indicated, that 

using a reference genome would allow more SNPs to be called with certainty, and thus 

generate more data for later analysis and be the more suitable option of the two (Shafer et 

al., 2017). 

First, with de novo, parameters must be chosen. Various parameters were tested in de novo 

to optimise the calls of SNPs.  This was performed on a subset of the data, and parameters 

chosen were used for both species for consistency and control. Values of m were tested 

between 3 and 7, as this should allow enough exploration of the parameter (Paris, Stevens 

and Catchen, 2017). With tests for M between 2 and 7, a value was chosen which was 

optimum at r80 (Paris, Stevens and Catchen, 2017). Finally, to decide a value for n it is 

suggested to explore -n = -M, -n = -M - 1, and -n = -M + 1 (Paris, Stevens and Catchen, 2017). 

Optimum parameters chosen were -m=3, -M=4, and -n = 5. These chosen parameters could 

then be input to stacks with the full dataset.  

To use reference-aligned data, reads were first aligned using Bowtie2 (Langmead and 

Slazberg, 2013), rather than programs such as BWA (Li and Durbin, 2010) or SOAP2 (R. Li et 

al., 2009) as it is faster, more sensitive, and more accurate than those alternatives (Kagale et 

al., 2016). This created sam files for each individual containing all of the aligned reads. These 
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files were then converted into bam files and sorted using SAMtools (H. Li et al., 2009; Li, 2011). 

These were then ready to run through ref_map.pl.  

In running the populations analysis in STACKS, minor filters were put in place to finally 

generate the initial SNP data. With r = 0.80 only SNPs in 80% of a population were kept, and 

with write_single_snp there was a single SNP written for each loci to minimise linking data. 

Output formats of vcf and genepop were generated. These formats could be used in R for 

filtering. 

The files generated by STACKS could be then further filtered in R (R Core Team, 2017). It was 

decided that both the de novo and referenced data would be filtered to compare outcomes, 

and see which method used in STACKS is preferential. R packages required for filtering 

included; poppr (Kamvar, Tabima and Grünwald, 2014; Kamvar, Brooks and Grünwald, 2015), 

adegenet (Jombart, 2008; Jombart and Ahmed, 2011), pegas (Paradis, 2010), vcfR (Knaus and 

Grünwald, 2016, 2017), hierfstat (Goudet, 2005), and diveRsity (Keenan et al., 2013). 

Either the genepop or vcf files produced could be used, through a genepop to genind 

conversion in the adegenet package, or through a vcf to genind conversion using the radiator 

package (Gosselin, 2019). In this study the genepop to genind conversion was chosen for use 

in both species to maintain consistency. Taking this route, use of the multiple packages listed 

offered different filtering options for the SNPs. The main sections involved in filtering were as 

follows: 

To filter the SNPs, focus was first directed towards missing data. With this, loci with a missing 

data content of over 10% were removed from the data. This was performed using the 

missingno function from poppr. 
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They were then filtered by Fis, removing loci with a Fis value greater than 0.999, or under -

0.999. This meant removing those which were too close to the values of 1 and -1, assuming 

that there is not complete inbreeding, or complete outbreeding. These values were calculated 

with the wc function in the hierfstat package. 

To filter for minor allele frequency (MAF), loci with a MAF value below the set threshold were 

removed. In order to retain the maximum number of informative loci, three MAF threshold 

we tested: 0.05 (the most widely used and also the most restrictive one), 0.025 and 0.01. 

These filters were applied to the data through informloci from poppr. The whole filtering 

process was run and three final datasets were generated in order to compare the outcomes.  

Markers not in linkage equilibrium (LD) were filtered out using two thresholds, 0.7 and 0.5, to 

test the effect of this parameter on the number of SNPs retained in the final dataset. Values 

for LD were calculated using pair.ia of the poppr package, and any loci with values over the 

chosen cut off could then be removed from the data sets. In this step a threshold of 0.7 was 

chosen for continued analyses. 

Then finally, filtering by Hardy-Weinberg equilibrium (HWE) was performed by removing loci 

with p-values of <0.05, as calculated by hw.test of the pegas package. The loci with 

undesirable values were removed using this data. This was the last step of the filtering 

process.  

The final SNP dataset was explored to find how individuals were affected by the process.  
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2.3. Exploring signals of adaptive divergence 

Neutrality tests were carried out using  three different approaches with different 

assumptions: pcadapt (Luu, Bazin and Blum, 2017), bayescan (Foll and Gaggiotti, 2008; Foll et 

al., 2010; Fischer et al., 2011) and the function lfmm of the package LEA (Frichot and Francois, 

2015).  Bayescan was run with default parameters; setting the parameters of the chain with 

5000 outputted iterations, a thinning interval size of 10, 20 pilot runs with a length of 5000, 

and an additional burn-in length of 50,000 (Foll, 2012). The parameters of the model were 

also set at default with the prior odds for neutral model set to 10, the Fis prior was set as 

uniform between 0 and 1, and a setting of 0.1 for the threshold for the recessive genotype as 

a fraction of maximum band density (Foll, 2012). LEA and pcadapt were run with an alpha 

value of 0.01 as a threshold for the outliers. For pcadapt, K was determined using a plot 

showing the proportion of explained variance as suggested by the authors. The value of K 

from LEA was determined using a plot of cross entropy values.  

The loci which were found in both the pcadapt and LEA analyses were separated from the 

SNP datasets, and analyses were carried out on putatively neutral datasets.  

To further investigate the outliers found, BLAST (Altschul et al., 1997) searches were 

conducted on the loci. This step was used as an indication of whether these loci became 

outliers through adaptive evolution, identifiable by links found between these loci and genes, 

in relation with the environment (Jones et al., 2012). It could also be indicative of neutral 

evolution through an absence of such links. Outlier locations were found by using the SNP 

number identified in the outlier calling process and tracing this back to the SNPs originally 

output from STACKS. Searching for these SNPs in the vcf files, which contain additional 

information on SNPs, the location of SNPs in the genome were found. This allowed sequences 
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for use in BLAST to be found. Since it is possible for SNPs to affect genes up and downstream 

within the genome, sequences 10,000bp in either direction were used. This would give a 

broad picture of the genes driving any change within these species.  

Through locating these sequences within the Molva molva genome (assembled to scaffold 

level) the scaffold in which each outlier was located and their locations upon these scaffolds 

were revealed. Scaffolds are labelled OOFG01000001.1 to OOFG01111875.1. Scaffold labels 

could then be used in BLAST to search up and downstream from each SNP. Using Integrative 

Genomic Viewer (IGV) (Thorvaldsdóttir, Robinson and Mesirov, 2013), outlier loci were 

viewed within their scaffolds, and spanning across scaffolds it was possible to search 

10,000bp up and down stream of the outliers, finding the full sequence areas which could be 

queried in BLAST.  

MEGAblast and blastn were utilised to search the outlier loci against the NCBI database. With 

each search a cut-off e-value of 1x10-10 was put in place,  (Humble, Martinez-Barrio, et al., 

2016; Humble, Thorne, et al., 2016; Rohfritsch et al., 2018; Cormier et al., 2019). 

 

2.4. Population Structure 

In R, using the package assigner, Weir and Cockerham’s Theta estimator (overall and pairwise) 

for Fst were computed, with pairwise confidence intervals estimated with 1000 permutations 

(Weir and Cockerham, 1984). Using these values, it could be determined whether Fst results 

were statistically significant. 

Population structure was estimated initially with Principal Component Analysis (PCA) and 

Discriminant Analysis of Principal Components (DAPC). These analyses were performed in R, 
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using dudi.pca of the ade4 package (Dray and Dufour, 2015; Bougeard and Dray, 2018) for 

PCA plots and dapc function of the adegenet package (Jombart, 2008; Jombart and Ahmed, 

2011) for DAPC plots.  Analyses were run on each dataset generated by different filtering 

values in order to estimate the influence of such settings on the results. 

First, for the PCA, missing data was removed which meant taking any loci which had missing 

data in any individuals out of the dataset. Cross-validation was performed to choose the 

number of axes to retain in principal component and discriminant analyses steps. The plotting 

of this data was then straight forward, through dudi.pca and s.class functions for PCA, and 

the dapc and scatter functions for DAPC plots. Overall, three PCA plots and three DAPC plots 

were produced for each species.  

The dataset was further analysed in Structure, another clustering approach with different 

underlying assumptions from PCA and DAPC (Pritchard, Stephens and Donnelly, 2000). This 

was performed with a burn-in of 20,000 and retaining 180,000 iterations. This was repeated 

five times for each value of K tested, from 1 to 10. The results of Structure were visualised 

with Structure Harvester (Earl and vonHoldt, 2012). 

Further population structure analysis was performed using fastStructure (Raj, Stephens and 

Pritchard, 2014) in Python (Van Rossum and Drake Jr, 1995). Structure was tested for 

population assumptions up to 10, and the program was also used to estimate the most likely 

number of populations in the data given. This was performed using chooseK; returning K 

values for model complexity that maximises marginal likelihood, and for model components 

used to explain structure in data. These values give a range of values within which K is 

predicted to fall.  
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Using the LEA package (Frichot and Francois, 2015) in R it is possible to carry out Structure-

like analyses, and even PCA and outlier analyses. This package can also run structure analyses 

at greater speeds than Structure itself, returning results within a time which would rival that 

of fastStructure. There were also no issues in obtaining these results, which made this package 

a very helpful tool. Performing the structure analyses in LEA, 10,000 iterations were 

performed, as has been suggested in past use of the function (Frichot and Francois, 2015). 

Again, K was measured from 1 to 10 with 5 repetitions to give results comparable to those of 

the Structure analysis.   
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3. Results 

3.1. Data quality 

FastQC showed that the sequencing data was of a very high quality. Drop off in quality 

towards the end of sequences was minimal, and no reads were flagged as ‘poor’. This was the 

case across all data for both species. 

 

Table 3: Basic statistics for sequences of the common ling, and the blue ling for lane1(L1) and lane 2 (L2) 

 Common ling  Blue ling L1 Blue ling L2 

Total sequences 501,736,552 488,705,838 531,172,060 

Sequences flagged as poor quality 0 0 0 

Sequence length 126 126 126 

%GC 50 52 51 

 

 

 

3.2. Bioinformatics  

In demultiplexing the data, STACKS retained 480,039,207 reads for the common ling and 

1,019,335,300 for the blue ling. When testing de novo parameters, SNPs decreased with 

increasing -m, and increased with increasing -M and -n, as is expected. These tests were 

performed on a subset of the data using individuals from both species.  
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Figure 5: Tests carried out using a subset of data from the two species, a) Showing the number of SNPs retained 

with changing values of m in blue, M in red, and n in green, all at r80, and b) showing number of SNPs generated 

through default parameters (m=3 M=2 n=1) versus optimum parameters (m=3 M=4 n=5) 

 

A value of m = 3 was chosen for the final production of STACKS (Fig. 5a). M = 4 was selected 

for the final dataset (Fig. 5a). Although higher than usual this appears to be optimum at r80 

(Paris et al., 2017). This could be indicative of alleles at low frequency, which can later be 

filtered out through removing loci below a minor allele frequency (Paris et al., 2017). Once M 

was set at 4 n was then tested (Fig. 5a), finding that n = M + 1 obtained the highest number 

of SNPs for the data.  
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Comparing the default parameters for STACKS with the optimum parameters calculated for 

this dataset, there are a substantial amount more SNPs obtained through the optimum than 

through default (Fig. 5b).  

 

3.3. Filtering 

From the initial production of SNPs in STACKS, with the minor filtering used in the populations 

program (SNPs in 80% of individuals & one SNP per loci), the initial SNPs were produced ready 

for filtering.  

After filtering through R, these decreased to more workable numbers. Although the blue ling 

produced more SNPs de novo, both species retained more SNPs from the reference-aligned 

data after the complete filtering. There was great difference seen between reference-aligned 

and de novo when filtering out missing data; with the aligned data maintaining around double 

the number of SNPs of those for the de novo dataset. Reference aligned common ling left 

6,569 SNPs, while de novo left 2,983 (MAF = 0.05) (Table 4). Reference aligned blue ling 

generated 3,078 and de novo gave 2,118 (MAF = 0.05) (Table 4).  

 

Table 4: Number of loci retained at each step of the filtering process in the various datasets 

 Reference 
common ling 

de novo 
common ling 

Reference blue ling de novo blue ling 

Initial SNPs after STACKS 134,133 126,267 133,610 144,648 
Missing loci filter 81,136 37,243 70,838 38,366 
Fis filter 71,843 35,856 68,038 37,915 
MAF filter 11,116 4,559 4,753 3,000 
LD filter 7,288 3,385 3,666 2,502 
HWE filter 6,569 2,983 3,078 2,118 
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Just the reference aligned data was used for further filtering tests. When changing MAF to 

0.025, 4,177 SNPs were retained for the blue ling and 9,714 SNPs for the common ling (Table 

5). With MAF at 0.01 this was 6,534 for the blue ling and 10,619 for the common ling (Table 

5). These were then to be further analysed to explore the effects of the differing filtering 

parameters on the population structure detected within these populations.  

 

Table 5: Changing values of MAF filtered for common ling and blue ling, and number of SNPs retained at each 

step after this filter 

 Common ling 
MAF 0.05 

Common ling   
MAF 0.025 

Common ling   
MAF 0.01 

Blue ling 
MAF 0.05 

Blue ling    
MAF 0.025 

Blue ling   
MAF 0.01 

MAF filter 11,116 16,828 31,824 4,753 6,379 9,772 
LD filter 7,288 10,708 10,619 3,666 4,928 7,553 
HWE filter 6,569 9,714 10,619 3,078 4,177 6,534 

 

 

 

3.4. Outlier loci and BLAST 

Using pcadapt, eight loci were identified as outliers for the blue ling and 43 for the common 

ling. Bayescan did not detect any outliers in the common ling, and only one was flagged for 

the blue ling (not matching any of those found in the pcadapt approach). The lfmm function 

of the LEA package found 11 outlier loci for the blue ling and five from the common ling data. 

For the sake of this study, we did not retain the Bayescan result, and we considered outliers 

only those loci that were identified as such in LEA and pcadapt.   This meant there were three 

outlier loci for the common ling leaving 6,566 SNPs once removed from the dataset, and five 

outlier loci in the blue ling data which left 3,073 SNPs. These SNP putatively neutral datasets 

were then used for the population structure analyses. 
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The three loci were found to show up in both analyses. These were numbered 183129_18, 

461445_111, and 660280_103 in the SNP dataset. This could then be traced back to the 

output from STACKS, which also held information for the location of these SNPs on the 

reference genome.  

For the first common ling outlier (scaffold OOFG01008146.1 at position 1603) scaffold 

00FG01008144.1 position 7590 to OOFG01008148.1 at position 5118 was used. The second 

common ling outlier (OOFG01029390.1 position 654) used the sequence from 

OOFG01029385.1 at position 1485 to OOFG01029393.1 position 2780, and the final search 

used OOFG01053503.1 at 908 to OOFG01053509.1 at 1296.  

Through the same methods as those used on the common ling, five outlier loci were found 

within the blue ling data. These were numbered 51266_27, 367341_115, 494102_9, 

714576_3, and 722729_54 in the dataset. 

In the blue ling the 5 loci were searched starting from the first (OOFG01001639.1 position 

2518) going from scaffold OOFG01001638.1 at position 4808 to OOFG01001639.1 at position 

12518. The second loci (OOFG01015574.1 position 977) was investigated using the sequence 

between OOFG01015571.1 position 4169 and OOFG01015577.1 position 3007. For the third 

outlier (OOFG01024386.1 position 2108) utilising the sequence from OOFG01024382.1 

position 1077 to OOFG01024388.1 position 3794. The fourth outlier (OOFG01048534.1 

position 6703) used the sequence from OOFG01048532.1 position 13344 to 

OOFG01048538.1 position 2244. The final outlier (OOFG01048943.1 position 3987) for M. 

dypterygia had a search sequence spanning from OOFG01048940.1 position 6669 to 

OOFG01048946.1 position 44.  
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In the BLAST search, no significant matches were found for genes in relation to the common 

ling outliers. For the blue ling the search results found genes which matched significantly with 

sequences provided for the outlier loci. Because the search included 10,000bp up and 

downstream of SNP locations, it was possible to find multiple genes related to each SNP for 

the blue ling. These are outlined in the following tables (Tables 6 – 10), with one table 

produced per SNP. Tables are presented with the protein name, the associated gene, the 

species from which the gene matched with our sequence from, the E-value of this match, the 

hit length, and finally a description of the function of said gene. It should be noted that the 

hit length is longer than the 126bp of sequences which the SNPs are based off due to the 

searching up and downstream from the SNP locations. This allowed the hit length to be more 

variable, and sometimes exceed the 126bp length.  
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Table 6: BLAST hits for SNP 51266_27 located on the scaffold OOFG01001639.1 at the 2518th base 

Protein  Gene  Species E-Value Hit length Function 

Short-wavelength sensitive opsin 2A 

and 2B 

SWS2A and SWS2B Lota lota 3e-22 220 Responsible for creating the protein opsin; 

proteins which allow for normal colour vision. 

Part of S cone cells; type 2 opsins in particular 

are responsible for picking up on the violet and 

blue spectrums. 

Anti-apoptotic protein NR-13 NR-13 gene Gadus morhua 7e-17 105 Encodes for the anti-apoptotic protein NR-13 

which stops/inhibits cell growth. 

Transmembrane growth hormone 

receptor 2 mRNA 

Growth hormone receptor 2 Epinephelus coioides 3e-11 70 Produces a transmembrane receptor for 

growth hormones which allows these 

hormones to pass through cell membranes. 
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With the first outlier locus, BLAST returned three significant matches to sequences within our 

search query (Table 6). This gave three different genes from knowledge of three different 

species. The first, and most significant of these results, being from Lota lota (Burbot); a 

species of the same family as the ling (Lotidae) (Luna, 2020a), and it is also known as the 

freshwater ling. This gene encodes for short-wavelength sensitive opsin 2A and 2B and had 

an E- value of 3e-22. Opsin are the proteins which allow for normal colour vision, with type 2 

in particular picking up on the violet and blue spectra (Marshall, Carleton and Cronin, 2015). 

The second gene found relating to the first outlier came from Gadus morhua (Atlantic cod) 

with an E- value of 7e-17. This gene encodes for an anti-apoptotic protein called NR-13, which 

stops/inhibits cell death. This protein has been found at high levels in embryos, but then 

decreasing in number after birth (Lee et al., 1999).  

The third, but still significant, matching gene came from the species Epinephelus coioides 

(Orange-spotted grouper) and encodes for the growth hormone receptor 2. This is a 

transmembrane receptor for the growth hormone which is related to development or overall 

size of a species (Herrington and Carter-Su, 2001). 
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Table 7: BLAST hits for SNP 367341_115 located on the scaffold OOFG01015574.1 at the 977th base 

Protein name(s) Gene name(s) Species E-Value Hit length Function 

Hepcidin precursor HAMP Gadus morhua 7e-46 312 Hepcidin is a hormone which controls regulation of iron 

absorption and distribution across tissues.As above. 

Antifreeze glycoprotein 

polypeptide 8 and 

antifreeze glycoprotein 

polypeptide 9  

AFGP8 and AFGP9 Boreogadus saida 2e-45 164 

 

These polypeptides bind to ice crystals to inhibit growth 

and recrystallisation of ice.Hepcidin is a hormone which 

controls regulation of iron absorption and distribution 

across tissues. 

Hepatoma-Derived 

Growth Factor 

HDGFL3 Esox lucius 9e-38 140 Plays a role in cellular proliferation and differentiation and 

is also linked with growth of tumours when at high levels 

of expression. 

Glucose transporter 1 GLUT1 Gadus morhua 1e-36 196 This transporter is responsible for the glucose level of 

uptake. 

Hepatoma-Derived 

Growth Factor 

HDGFL3 Danio rerio 1e-36 196 See column 6, row 3.  

Apolipoprotein E mRNA Apolipoprotein E Callorhinchus milii 4e-11 73 A protein involved in the metabolism of fats in the body. 
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For the second outlier there were five matching genes (Table 7). The first match came from 

Atlantic cod with an E-value of 7e-46. The Hepcidin precursor gene links our outlier with the 

hormone which controls the regulation of iron absorption and distribution across tissues 

(Mirciov et al., 2017).  

The second matching gene had an E value of 2e-45 and was found in Boreogadus saida 

(Polar/Arctic cod). This gene codes for the antifreeze glycoprotein polypeptides 8 (AFGP8) and 

9(AFGP9). These polypeptides bind to ice crystals to inhibit growth and recrystallisation of ice 

(Zhuang et al., 2019; Tsuda et al., 2020).  

A gene known in Esox lucius (Northern pike) was the third found for the second outlier, with 

an E value of 9e-38. This was a Hepatoma-Derived Growth Factor like 3 (HGDFL3) gene, which 

may play a role in cellular proliferation and differentiation and is also linked with the growth 

of tumours when at high levels of expression (Yang et al., 2016; Chung-Jung et al., 2018). This 

same HGDFL3 gene was also matched to our outlier through the species Danio rerio 

(Zebrafish), with an E value of 1e-36.  

The next gene was that of glucose transporter 1 (GLUT1) which again matched from Atlantic 

cod, with an E value of 1e-36. This transporter is responsible for the level of glucose uptake 

(L. Wang et al., 2019). 

The final hit for this outlier came from Callorhinchus milii (Elephant shark/Australian ghost 

shark) for a gene which codes for apolipoprotein E, matching with an E-value of 4e-11. This 

class of proteins are involved in the metabolism of fats in the body (Marais, 2019).  
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Table 8: BLAST hits for SNP 494102_9 located on the scaffold OOFG01024386.1 at the 2108th base 

Protein name(s) Gene name(s) Species E-Value Hit length Function 

NMDA receptor subunit  NR2B 

 

 

Carassius auratus 2e-50 146 When activated, by glutamate and glycine, allows 

positively charged ions to flow through the cell 

membrane; important for controlling synaptic plasticity 

and memory function. 

Pregnancy-associated plasma 

protein A (Pappalysin) 

PAPPA Salvelinus alpinus 2e-50 196 Insulin-like growth factor-binding proteins involved in 

local proliferative processes such as wound healing and 

bone remodelling. 
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The third outlier loci gave a BLAST match for just two genes (Table 8). The first of these came 

from Carassius auratus (goldfish) with an E value of 2e-50. The gene encodes for NMDA 

receptor subunit NR2B which, when activated by glutamate and glycine, allows positively 

charged ions to flow through the cell membrane (Furukawa et al., 2005). It is important for 

controlling synaptic plasticity and memory function (Li and Tsien, 2009).  

The other gene came from Salvelinus alpinus (Arctic char) with pregnancy-associated plasma 

protein A; E value 2e-50. These proteins are thought to be involved in local proliferative 

processes such as wound healing and bone remodelling (Bulut et al., 2018). 



47 
 

 

Table 9: BLAST hits for SNP 714576_3 located on the scaffold OOFG01048534.1 at the 6703rd base 

Protein name(s) Gene name(s) Species E-Value Hit length Function 

Somatotropin-2 Growth hormone 2 Oncorhynchus 

tshawytscha 

1e-168 441 Plays an important role in growth control and is involved 

in the regulation of several anabolic processes 

(implicated as an osmoregulatory substance important 

for seawater adaptation). 

Raftlin Raftlin-like 

pseudogene 

Oncorhynchus mykiss 3e-54 210 Pseudogenes are genes which are related to working 

genes but have lost some functionality. This gene is 

linked to the RFTN1 gene which produced Raftlin; a 

protein which activates signalling of T cells and B cells 

upon bacterial lipopolysaccharide stimulation and plays 

an important role in formation and maintenance of lipid 

rafts. 

Homeobox proteins HOX-epsilon14; 

HOX-epsilon13; 

HOX-epsilon11 

Lethenteron 

camtschaticum 

6e-37 168 See column 7, row 2. 

Homeobox proteins HOX6IV; HOX5IV; 

HOX4IV; HOX3IV; 

HOX2IV 

Eptatetrus burgeri 5e-14 86 Hox genes are a group of related genes that specify 

regions of the body plan of an embryo along the heal-tail 

axis of animals. 
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The 4 sequence matches for the fourth outlier indicated a larger number of possible genes 

affected. The first of those being a match to Oncorhynchus tshawytscha (Chinook salmon), 

informing us of a link with growth hormone 2, matching with an E value of 1e-168. This 

reaffirms strong connections of our outlier with growth-related functions. Growth hormones 

play an important role in growth control (Herrington and Carter-Su, 2001).  

The second sequence match contained information from Oncorhynchus mykiss (Rainbow 

trout), with an E value of 3e-54. The gene found here was of a Raftlin-like protein. Raftlin 

activates signalling of T cells and B cells upon bacterial lipopolysaccharide stimulation and 

plays an important role in formation and/or maintenance of lipid rafts (Matsumoto and 

Tatematsu, 2017).  

Eptatretus burgeri (Inshore hagfish) linked the outlier with 5 different genes; HOX6IV, 

HOX5IV, HOX4IV, HOX3IV, and HOX2IV. This scored an E value of 5e-14. The hox genes are a 

group of related genes that specify regions of the body plan of an embryo along the head-tail 

axis of animals (Song et al., 2020).  

The final sequence match for this outlier offered less of a diverse array of hox genes; HoxIV14, 

HoxIV13, and HoxIV11. These three genes came from a sequence from Lethenteron 

camtschaticum (Arctic lamprey), E value 6e-37. 
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Table 10: BLAST hits for SNP 722729_54 located on the scaffold OOFG01048943.1 at the 3987th base 

Protein name(s) Gene name(s) Species E-Value Hit length Function 

Antifreeze glycoprotein 

polypeptides 

AFGP1; AFGP2; AFGP3; AFGP4 

pseudogene 

Microgadus 

tomcod 

8e-36 139 These polypeptides bind to ice crystals to inhibit 

growth and recrystallisation of ice. 

Serine/threonine-protein 

kinase MAK and Ras-

related protein Rab-14 

MAK14 and RAB14 genes Boreogadus 

saida 

4e-33 139 MAK14 is part of a signalling cascade mediating cell 

growth, adhesion, survival, and differentiation 

through regulation of transcription, translation, and 

cytoskeletal rearrangements. RAB14 is involved in 

membrane trafficking between the Golgi complex and 

endosomes during early embryonic development. 

Antifreeze glycoprotein 

polypeptides 

AFGP1 pseudogene; AFGP2; AFGP3; 

AFGP4; AFGP5; AFGP6; AFGP7 

pseudogene 

Gadus morhua 1e-33 150 See column 6, row 1.   

Antifreeze glycoprotein 

polypeptides 

AFGP1 pseudogene; AFGP2; AFGP3; 

AFGP4; AFGP5 pseudogene; AFGP6 

pseudogene; AFGP7 pseudogene 

Boreogadus 

saida 

1e-32 150 See column 6, row 1. 

Serine/threonine-protein 

kinase MAK and Ras-

related protein Rab-14 

MAK14 and RAB14 genes Microgadus 

tomcod 

2e-31 124 See column 6, row2. 

Serine/threonine-protein 

kinase MAK and Ras-

related protein Rab-14 

MAK14 and RAB14 genes Gadus morhua 2e-30 139 See column 6, row 2. 

Retinoic acid receptor 

gamma 

RARG-like gene Pantodon 

buchholzi 

1e-26 102 Regulates gene expression, required for limb bud 

movement, required for skeletal growth/matrix 

homeostasis/growth plate function. 

Short-wavelength 

sensitive opsin 2A and 2B 

SWS2A; SWS2B Merluccius polli 3e-16 141 Responsible for creating the protein opsin; proteins 

which allow for normal colour vision. Part of S cone 

cells; type 2 opsins in particular are responsible for 

picking up on the violet and blue spectrums. 
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The fifth and final outlier found the greatest number of genes of all of the searches (Table 10). 

The first gene found in our final outlier search came from Microgadus tomcod 

(Frostfish/Atlantic tomcod/Winter cod), giving two of the matches linking with the sequence, 

with multiple genes found within these matches. These were MAK14 and RAB14 genes, E 

value 2e-31, and various antifreeze glycoproteins with an E value of 8e-36. The first match 

appears to link with the regulation of membrane trafficking (Junutula et al., 2004), while the 

latter with adapting to cold (Tsuda et al., 2020). These same groupings of genes (of MAK14 

and RAB14 with antifreeze glycoproteins) were also matched to our outlier through Gadus 

morhua (Atlantic cod) and Boreogadus saida (Polar cod/Arctic cod).  

Pantodon buchholzi (Freshwater butterflyfish) finally gave a different genetic match, with an 

E value of 1e-26. Here it indicated the gene for a RARG-like protein, creating the RERG 

receptor for retinoic acid, regulating gene expression, required for limb bud movement, and 

required for skeletal growth/matric homeostasis/growth plate function (Pennimpede et al., 

2010; Ikami et al., 2015; Shimo et al., 2019).  

Merluccius polli (Benguela hake) linked this outlier with short-wavelength sensitive opsin 2A 

and short-wavelength sensitive opsin 2B genes; E value 3e-16. As seen before, this links the 

outlier with genes required for normal colour vision (Marshall, Carleton and Cronin, 2015).  

In the overall searches, many gene matches were found under the term “predicted”, which 

suggests that in the future there will be more knowledge to help us understand the influence 

of outlier loci in fish species.  

For further comparison of the two species, the SNP locations for the outliers found in the blue 

ling were investigated in the common ling. None of these SNPs were produced in the common 

ling. This would be because there was a lack of any polymorphism at all found at these sites, 
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thus they were not SNPs. This shows that the effects allowing these minor alleles to exist 

within the blue ling are not having any influence on the common ling, which could be due to 

the environmental variation between the two species. This insight could have valuable 

inferences for the depth variation of the species, and the anthropogenic pressures which they 

face.  

 

3.5. Population structure of the common ling 

When performing the population analyses with the varied parameter datasets there was little 

difference found in the outputs. Because of this, the neutral datasets using the MAF filter of 

0.05 were chosen as the best representation of the data as this is the strictest of the three 

filters tested. The 3 SNPs which were found in the outlier loci analyses were removed from 

the dataset to leave 6,566 SNPs for population analyses. 

The highest pairwise Fst values are generally found between Atlantic-Fjord populations (Table 

11). However, the strongest of Fst values are found between the Bay of Biscay (BB15) and 

Rockall (RA08, RA14) populations, which are both situated in the Atlantic. 
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Table 11: Pairwise Fst values for common ling populations (left/bottom) with lower and upper confidence intervals (right/top); ranges which do not cross 0 indicate Fst values 

which are significantly different from 0 and are highlighted as such 

 BB15 BE08 BO14 HA14 IB13 NY13 RA08 RA14 RYF13 RYV14 SO14 TF05 

BB15  0.0165 – 

0.0330 

0.0149 – 

0.0300 

0.0155 – 

0.0311 

0 – 0 0.0165 – 

0.0331 

0.0198 – 

0.0373 

0.0334 – 

0.0495 

0 – 0 0.0162 – 

0.0320 

0.0124 – 

0.0293 

0.0152 – 

0.0311 

BE08 0.0243 

 

 0.0015 – 

0.0058 

0.0023 – 

0.0069 

0 – 0 0.0015 – 

0.0062 

0.0092 – 

0.0152 

0.0102 – 

0.0162 

0.0010 – 

0.0140 

0.0029 – 

0.0071 

0 – 0 5.07e-05 – 

0.0048 

BO14 0.0228 0.0036  0.0007 – 

0.0050 

0 – 0.0160 0.0013 – 

0.0055 

0.0060 – 

0.0111 

0.0062 – 

0.0118 

0 – 0.0090 0.0011 – 

0.0051 

0.0003 – 

0.0058 

0.0004 – 

0.0045 

HA14 0.0237 

 

0.0048 

 

0.0029 

 

 0 – 0 9.06e-05 – 

0.0041 

0.0069 – 

0.0121 

0.0078 – 

0.0137 

0 – 0.0074 0.0004 – 

0.0045 

0 – 0.0045 0 – 0.0031 

IB13 0 

 

0 

 

0.0047 

 

0 

 

 0 – 0.0059 0.0031 – 

0.0284 

0.0272 – 

0.0491 

0 – 0.0065 0 – 0.0172 0 – 0.0057 0 – 0.0106 

NY13 0.0245 

 

0.0037 

 

0.0034 

 

0.0020 

 

0 

 

 0.0059 – 

0.0110 

0.0075 – 

0.0133 

0 – 0.0093 0.0008 – 

0.0051 

0 – 0.0046 0 – 0.0021 

RA08 0.0282 

 

0.0121 

 

0.0086 

 

0.0095 

 

0.0150 

 

0.0084 

 

 0.0052 – 

0.0111 

0.0075 – 

0.0210 

0.0077 – 

0.0132 

0.0052 – 

0.0121 

0.0054 – 

0.0105 

RA14 0.0415 

 

0.0133 

 

0.0090 

 

0.0107 

 

0.0384 

 

0.0104 

 

0.0081 

 

 0.0166 – 

0.0288 

0.0079 – 

0.0136 

0.0115 – 

0.0184 

0.0062 – 

0.0115 

RYF13 0 

 

0.0074 

 

0.0033 

 

0.0013 

 

0 

 

0.0031 

 

0.0145 

 

0.0228 

 

 0.0009 – 

0.0135 

0.0008 – 

0.0148 

0 – 0.0067 

RYV14 0.0238 

 

0.0052 

 

0.0031 

 

0.0024 

 

0.0053 

 

0.0029 

 

0.0105 

 

0.0108 

 

0.0069 

 

 0.0004 – 

0.0059 

0.0008 – 

0.0051 

SO14 0.0208 

 

0 

 

0.0031 

 

0.0017 

 

0 

 

0.0017 

 

0.0087 

 

0.0148 

 

0.0079 

 

0.0031 

 

 0 – 0.0040 

TF05 0.0229 

 

0.0022 

 

0.0025 

 

0.0009 

 

0 

 

0.0002 

 

0.0080 

 

0.0087 

 

0.0002 

 

0.0031 

 

0.0013 
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Figure 6: Population structure of the common ling with; a) map showing coordinates for the locations of each 

population sample site; b) PCA; and c) DAPC 

 

 

In the PCA of the common ling there appears to be outlying populations stretching out from 

a clustered centre (Fig. 6b). The clearly differentiating populations shown in the PCA plots are 

the two Rockall population samples, and two fjord populations located around Bergen and 

Sørfjorden (BE08/turquoise and SO14/grey).  

The further analysis using DAPC shows the same populations creating the main cluster, with 

again the same populations deviating from this (Fig. 6c). The two Rockall populations 

(RA08/purple and RA14/yellow) are more strongly differentiated here, which corresponds to 

A 
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the distance found between these individuals and those found in the rest of the populations 

(fjords). The two fjord populations deviating are the same two seen in the PCA, found around 

Bergen.  

Population analyses of the outlier SNPs did not add to this data. Analyses were also carried 

out on a non-neutral dataset, which provided the same genetic structure as seen here. Both 

analyses of the outlier SNPs and of the non-neutral dataset can be found in the appendix as 

supplementary materials. A table of pairwise Fst values calculated using the outlier data for 

the common ling populations can also be found in the supplementary material. The values 

calculated were generally higher than that of the neutral data, but this bias and probable 

inaccuracy could be expected when reducing the markers to such a small number and thus 

this data is not being presented here (Willing, Dreyer and van Oosterhout, 2012).  

 

 

3.6. Population structure of the blue ling 

Again, the neutral dataset using the filter of MAF 0.05 was chosen for the best representation 

of the blue ling data. This was due to little difference again found between the analyses using 

the more relaxed filtering values and kept the analyses consistent between species. The 5 

SNPs which were found in the outlier loci analyses were removed from the dataset to leave 

3,073 SNPs for population analyses. 

The majority of the pairwise Fst values differed significantly from 0, indicated by the 95% 

confidence intervals, and most of the highest Fst values were recorded between Atlantic and 

fjord populations (Table 12). The only Atlantic population which differed significantly from 
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others was Anton Dohrn (AD07), differing from the Rockall (RA07, RA10 and RA11) and Slope 

(SL07, SL11 and SL14) populations (Table 12). Within the fjords, the Indre Boknafjord (IB13) 

and Bømlafjorden (BO14) populations differed from one another, and Nygrunnen (NY13) 

differed from all but Bømlafjorden (Table 12). The strongest values (>0.025) were all shared 

between Atlantic and fjord population pairs (Table 12). 

Notably the Rockall (RA) populations all have a value of 0, along with the Greenland 

population (GRE15) and most of slope populations (SL) as well (Table 12).
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Table 12: Pairwise Fst values for blue ling populations (left/bottom) with lower and upper confidence intervals (right/top); ranges which do not cross 0 indicate Fst values 

which are significantly different from 0 and are highlighted as such 

 AD07 BO14 HA14 IB13 NY13 RA07 RA10 RA11 RS07 RYF13 RYV14 SL07 SL11 SL14 SO13 GRE15 

AD07  0.0163 – 

0.0610 

0 – 

0.0450 

0 - 0 0.0170 – 

0.0485 

0.0030 – 

0.0408 

0.0031 - 

0.0343 
0.0017 - 

0.0319 
0 – 

0.0321 
0.0076 - 

0.0670 
0.0104 - 

0.0481 
0.0059 - 

0.0360 
0.0025 - 

0.0329 
0 – 

0.0316 
0 – 0 0 – 

0.0250 

BO14 0.0379 

 

 0 – 

0.0078 
0.0052 - 

0.0505 
0 – 

0.0066 
0.0038 - 

0.0197 
0.0076 - 

0.0173 
0.0064 - 

0.0154 
0.0013 - 

0.0118 
0 – 

0.0249 
0 – 

0.0031 
0.0072 - 

0.0177 
0.0072 - 

0.0173 
0 – 

0.0077 
0 – 

0.0205 
0.0022 - 

0.0148 

HA14 0.0222 

 

0 

 

 0 – 

0.0318 
0.0039 - 

0.0166 
0 – 

0.0168 
0.0063 - 

0.0172 
0.0057 - 

0.0172 
0.0035 - 

0.0168 
0 – 

0.0171 
0 – 

0.0124 
0.0083 - 

0.0204 
0.0067 - 

0.0196 
0 – 0 0 – 

0.0253 
0.0003 - 

0.0137 

IB13 0 

 

0.0272 

 

0.0048 

 
 0.0026 - 

0.0328 
0 – 

0.0335 
0.0065 - 

0.0381 
0.0051 - 

0.0363 
0 – 

0.0337 
0 – 

0.0516 
0 – 

0.0275 
0.0061 - 

0.0377 
0.0063 - 

0.0389 
0 – 

0.0327 
0 – 0 0 – 

0.0311 

NY13 0.0336 

 

0.0015 

 

0.0101 

 

0.0172 

 

 0.0098 - 

0.0189 

0.0112 - 

0.0162 

0.0116 - 

0.0163 

0.0098 - 

0.0156 

0.0053 - 

0.0225 

0.0026 - 

0.0099 

0.0121 - 

0.0174 

0.0130 - 

0.0179 

0.0038 - 

0.0145 

0.0001 - 

0.0296 

0.0085 - 

0.0148 

RA07 0.0225 

 

0.0117 

 

0.0085 

 

0.0132 

 

0.0143 

 

 0 – 0 0 – 0 0 – 

0.0002 

0.0132 - 

0.0372 

0.0047 - 

0.0168 

0 – 

0.0012 

0 – 

0.0013 

0 – 

0.0034 

0 – 

0.0386 

0 – 

0.0015 

RA10 0.0185 

 

0.0126 

 

0.0116 

 

0.0222 

 

0.0137 

 

0 

 

 0 – 

0.0002 

0 – 

0.0004 

0.0171 - 

0.0346 

0.0086 - 

0.0156 

0 – 

0.0012 

0 – 

0.0013 

0 – 

0.0012 

0.0098 - 

0.0397 

0 – 

0.0008 

RA11 0.0164 

 

0.0109 

 

0.0115 

 

0.0198 

 

0.0139 

 

0 

 

0 

 

 0 – 0 0.0140 - 

0.0310 

0.0095 - 

0.0168 

0 – 

0.0016 

0 – 

0.0005 

0 – 0 0.0075 - 

0.0368 

0 – 0 

RS07 0.0153 

 

0.0064 

 

0.0099 

 

0.0153 

 

0.0127 

 

0 

 

0 

 

0 

 

 0.0125 - 

0.0316 

0.0062 - 

0.0144 

0 – 

0.0017 

0 – 

0.0012 

0 – 

0.0009 

0 – 

0.0309 

0 – 0 

RYF13 0.0387 

 

0.0108 

 

0.0028 

 

0.0218 

 

0.0140 

 

0.0247 

 

0.0260 

 

0.0226 

 

0.0212 

 

 0 – 

0.0149 

0.0189 - 

0.0370 

0.0162 - 

0.0332 

0.0078 - 

0.0329 

0 – 

0.0407 

0.0085 - 

0.0286 

RYV14 0.029 

 

0 

 

0.0043 

 

0.0096 

 

0.0063 

 

0.0109 

 

0.0120 

 

0.0131 

 

0.0102 

 

0.0034 

 

 0.0115 - 

0.0187 

0.0090 - 

0.0170 

0.0004 - 

0.0147 

0 – 

0.0283 

0.0072 - 

0.0166 

SL07 0.021 

 

0.0123 

 

0.0144 

 

0.0221 

 

0.0147 

 

0 

 

0.0002 

 

0.0003 

 

0 

 

0.0278 

 

0.0149 

 

 0 – 

0.0024 

0 – 

0.0029 

0.0043 - 

0.0355 

0 – 

0.0015 

SL11 0.0176 

 

0.0123 

 

0.0132 

 

0.0222 

 

0.0156 

 

0 

 

0.0003 

 

0 

 

0 

 

0.0245 

 

0.0130 

 

0.0009 

 

 0 – 0 0.0045 - 

0.0381 

0 – 

0.0014 

SL14 0.0123 

 

0 

 

0 

 

0.0123 

 

0.0092 

 

0 

 

0 

 

0 

 

0 

 

0.0211 

 

0.0074 

 

0 

 

0 

 

 0 – 

0.0433 

0 – 0 

SO13 0 

 

0.0001 

 

0 

 

0 

 

0.0150 

 

0.0198 

 

0.0246 

 

0.0223 

 

0.0146 

 

0.0114 

 

0.0107 

 

0.0196 

 

0.0210 

 

0.0207 

 

 0 – 

0.0318 

GRE15 0.0093 

 

0.0084 

 

0.0070 

 

0.0135 

 

0.0116 

 

0 

 

0 

 

0 

 

0 

 

0.0187 

 

0.0117 

 

0 

 

0 

 

0 

 

0.0150 
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Figure 7: Population structure of the blue ling with; a) map showing coordinates for the locations of each 

population sample site; b) PCA; c) DAPC; and d) structure plot  

 

 

 

 

 

A 

BO14 

D 
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Two clear clusters are formed in the PCA plot (Fig 7b). Within these fjord samples are grouped 

together in one cluster and Atlantic samples in the other. Deviating from these clusters there 

are two individuals stretching out as outliers from the two groups (Fig. 7b). One individual 

from Hardangerfjord (HA14/dark blue), located in the fjords, and the other located on the 

Rockall slope (SL14/red).  

The DAPC also exhibits a similar pattern; here there is a very clear cluster of Atlantic 

populations formed, with the fjord samples separated from this (Fig. 7c). These fjords are then 

separated out from one another (Fig. 7c), which differs from the PCA (Fig. 7c). Possibly the 

most clearly separated is the Nygrunnen (NY13/orange) group, a fjord found a great distance 

from the rest in the North of Norway. 

Outlying individuals within the DAPC plot should also be noted. From the Atlantic population 

there are two individuals clearly branching out towards the fjord populations to the bottom 

of the plot; these individuals originating from Rosemary Bank (RS07/light blue) and the 

Rockall slope (SL14/red) (Fig. 5c). This is the same Rockall slope individual seen branching out 

in the PCA, and although this same behaviour is not seen from the Hardangerfjord (HA14/dark 

blue) individual like in the PCA, the slope individual is stretching out to sit with this same 

individual in the DAPC plot.  

Other deviating individuals are seen towards the top of the plot, with one individual stretching 

out from Nygrunnen (NY13/orange) more towards the Atlantic cluster, and with the one 

Anton Dohrn (AD07/beige) individual, an Atlantic population, sitting on its own between the 

Atlantic and Fjord groupings (Fig 7c). This may fit in with the Fst analysis (Table 12) in which 

this was the only Atlantic population found to significantly differ from the others.  
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With the Structure analysis of the blue ling there is more clear structure with the plot 

exhibiting a clear split between the Atlantic and the fjords, the likes of which are seen in the 

PCA and DAPC plots (Fig. 7d). In this plot the Atlantic group is to the left with most individuals 

here indicated by being mainly red in colour, and the fjords are found to the right of the plot 

with a mainly green colouring (Fig. 7d). There are also a couple of outliers in the Structure plot 

(Fig. 7d). The same two Atlantic outliers as those seen in the DAPC analysis, one individual 

from Rosemary Bank (RS07) and one individual from the slope (SL14), appear to fit better with 

the fjord individuals in this plot. These are seen as the two mostly green individuals sitting in 

the red Atlantic section of the plot (Fig. 7d). The fjord outliers are the Hardangerfjord (HA14) 

outlier seen in the PCA plots, and Ryvingen (RYV14), which doesn’t show up as a deviation in 

any other analyses. These two outliers are indicated in the plot as the two redder individuals 

within the green fjord area of the plot (Fig. 7d). 

Again, non-neutral analyses indicated the same structure and the analyses for the outlier SNPs 

did not add to this data. Both can be found in the appendix as supplementary material, along 

with a pairwise Fst table calculated using the outlier data for blue ling populations. This data, 

like the common ling, gave generally higher values of Fst but with so few outliers a high level 

of inaccuracy can be expected (Willing, Dreyer and van Oosterhout, 2012). Because of this the 

data is not presented in the main results.  
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4. Discussion 

In this study we explore patterns of population structure of common and blue ling in the North 

East Atlantic. For this purpose, we used a panel of 6,566 SNPs for the common ling, and 3,073 

SNPs for the blue ling, identified within this research project.  Two distinct genetic groups 

were discovered within the blue ling which expanded on the weaker differentiation seen in 

the common ling, separating an open water Atlantic group with a coastal Norwegian fjords 

group. This appears to divide further in the blue ling, where weak differentiation is exhibited 

between fjords. It was possible to then further investigate the blue ling dataset and identify 

genes which could be driving adaptation between these groups. Our results show the 

presence of strong population structure in deep sea fish species using novel genomic markers; 

an important insight which contrasts with the belief of strong connectivity in the deep sea, 

and thus has implications for their suspected resilience (Cowen et al., 2007; Baco et al., 2016). 

 

4.1. Common ling population structure 

Multivariate analyses performed on the common ling samples show that there is some 

structure within this species (Fig. 6b & 6c). The Rockall populations (RA08 and RA14) deviate 

a little from the main cluster, indicating some differentiation. This is the main population 

sample taken from the Northern Atlantic, while the samples from the Bay of Biscay (BB15) are 

located within the main cluster falling in with the fjord populations.  This could be indicative 

of a coastal species now expanding out into more open waters; indicated by the 

differentiation exhibited between the populations of the fjords and the Bay of Biscay (the 

coastal populations) clustering together versus the differentiated Rockall populations found 

further out into the Atlantic. 
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Fst values appear low (Table 11), as is seen often in marine relationships, so it can be difficult 

to infer from this data (Picq, Mcmillan and Puebla, 2016). We do find that the Bay of Biscay 

population (BB15) has the most consistently high (in relative terms) Fst values shared between 

other populations. This population falls into the main cluster with the fjords in the other 

analyses, so it is interesting that Fst picks up on something different here. Despite the low 

values across this data, confidence intervals calculate that most of these values are 

significantly different from zero. This may infer that each population, or most populations, 

are distinct from one another, if only at a minor level.  

Although we find low values of Fst across our data, it is shown that genetic differentiation can 

still be found in marine populations with values such as these (Cano et al., 2008). For example, 

a study on Atlantic salmon has shown low but significant genetic differentiation; finding 

significance in values of Fst = 0.018 (Aykanat et al., 2015). This brings more significance to our 

data here, in which many populations share an Fst higher than this. It is also stated that 

management decisions based solely on these differentiation values would produce poor 

fisheries policies (Cano et al., 2008). It is important that we combine this data with our other 

analyses, to create a broader understanding of structure to infer onto management.  

These results can be directly compared to Gonzalez et al. (2015), with both studies indicating 

some differentiation between coastal and open water populations. For Gonzalez et al. (2015), 

a PCA indicated strong population structure splitting the coast and the open Atlantic, stronger 

than that found here. Although they did not find most pairwise Fst values to be significantly 

different from 0, they found their Rockall sample groups did significantly differ from other 

populations; mainly Norwegian coastal populations (Gonzalez et al., 2015). The results from 
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this study back up the decision by Gonzalez et al. (2015) to reject the hypothesis of a single 

stock in the Northeast Atlantic.  

The results of this study do not indicate structure as strong as that seen by Gonzalez et al. 

(2015) and this could be due to some shortcomings. There could be uncertainty here due to 

the low number of individuals overall. With only 83 individuals investigated, compared to the 

647 of the Gonzalez et al. (2015) study, it is likely that this study is hindered by a low sample 

number, especially in a marine species. Genetic diversity can be underestimated if a sample 

size is too small, which could be the case with this data (Street et al., 1998). Despite these 

weaknesses, the data is still able to show a weak split between the two groups and can be 

used for future management decisions alongside the Gonzalez et al. (2015) study.  

 

4.2. Blue ling population structure 

Here we present data for the first genetic study of the blue ling. Patterns of population 

structure are much clearer in this species. Looking at the PCA and DAPC results, there appears 

to be a clear split between the Atlantic and Norwegian fjord populations, into two separate 

genetic clusters (Fig. 7b & 7c). This would appear to indicate strong differentiation between 

the two groups. Moving on to the Structure plot we find the same pattern here, with a very 

clear split of the Atlantic and fjords (Fig. 7d).  

It should also be noted that there are some outlying individuals found in these analyses. In 

the first PCA there are two very strong outliers who make it harder to see the overall pattern 

displayed in this plot (Fig. 7b). These individuals consist of one member of the Hardangerfjord 

population (HA14 in the fjords) and one from the slope population (SL14 in the Atlantic). Both 
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can be seen again grouped together in the DAPC (mainly the slope individual deviating), and 

again deviate from their clusters in Structure and LEA (Fig. 7c & 7d). Another notable outlier 

is an individual from Rosemary Bank in the Atlantic (RS07) who appears in the DAPC, Structure, 

and LEA plots (Fig. 7c & 7d).  

Again, the Fst values calculated are all low as we can expect in marine species (Table 12). 

Despite finding these low values again, the data does appear to concur with the previous 

analyses. The stronger values are generally exhibited between Atlantic and fjord population 

relationships. This is also the case when it comes to the confidence intervals, with mostly 

Atlantic – fjord relationships being significantly different from 0. This data can again be 

combined with that of our other analyses to create a better understanding of the populations 

structure in this species. Many of these values are above the 0.018 found to be statistically 

significant (Aykanat et al., 2015), and thus this could be taken into consideration when 

informing stakeholders.  

Looking at the DAPC analysis (Fig. 7c), there appears to be some fine-scale structure found 

between the fjord sample sites. With fjords fairly separated out from one another, we could 

expect that there may be more here than can be seen in the broader analysis. Although less 

so than the Atlantic/fjord split, this indicates a degree of divergence between these areas, 

potentially indicating that isolation (due to genetic drift and low connectivity) has been acting 

on these populations for several generations. Most notable is the fjord located furthest to the 

North, Nygrunnen (NY13), which separates out from the other fjords (Fig. 7c). Geographically 

this site is a great distance from the other fjord sample locations, which are more grouped 

together.  
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These results are comparable to Atlantic cod, where increasing SNP variation was found with 

increasing geographic separation of fjords along the Norwegian coast (Kirubakaran et al., 

2016). Such differentiation is not found in every species, for example European sprat (Sprattus 

sprattus) has been found to show a striking lack of genetic divergence across the Norwegian 

fjords (Quintela et al., 2020). This highlights the significance of this finding in the blue ling. 

This data suggests that there may be some differentiation between the fjords, just not at the 

same kind of scale as that seen between the fjords and the Atlantic.  Further study looking 

into this would be beneficial, and help inform future management efforts for fjord 

populations. 

Overall, our analyses join to reveal a clear structural pattern, in which the Atlantic samples 

cluster together to form one population, and fjord samples cluster to create another.  This 

data gives our first insight into the population genetic structure of this species, and it is 

important that this is now taken into consideration for the species’ management. To improve 

on this knowledge, further analysis within the fjords should be done to determine the extent 

of isolation between these locations and the individuals within them.  

 

4.3. Comparison of the two species 

These results are of particular interest considering that we find more substantial structure in 

the deeper dwelling of our two species. It is thought to be more common that deeper species 

will exhibit greater connectivity (Baco et al., 2016), and here we see the opposite of this. The 

structural pattern shown indicates a stronger separation of the fjords and the Atlantic for the 

deeper of the two species. A similar pattern to this has also been found in Pacific cod (Drinan 

et al., 2018). Here, coastal samples were compared with inland samples and two 
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differentiated populations were exhibited, with no hybridisation between the coastal and 

inland individuals (Drinan et al., 2018). This could be suggestive of local adaptation, as the 

lack of mixing among these individuals in very different environments could allow for adaptive 

evolution to take place.  

These results could also be suggesting that the blue ling has moved into a new 

niche/environment, adapting to this. Typically seen as a deep-sea species, they may have 

started inhabiting the fjords and began adapting to its many environmental differences to the 

ocean. As this presents a completely different environment to the species, adaptation will 

thus occur through natural selection (Bernatchez, 2016; Wilson et al., 2019).  

With the common ling we may be seeing hints of the opposite behaviour; A more coastal 

species moving out to deeper/more open waters. The individuals found at Rockall deviating 

from the other populations hints at this, and again it may be that these individuals are 

adapting to a different environment.  

For both species we have this differentiation between coastal and open water populations, 

comparable to that which was found with the common ling in the past (Gonzalez et al., 2015). 

The differentiation exhibited from the Rockall samples is particularly notable, and fits with 

that found by Gonzalez et al. (2015) for the common ling. It also follows a trend found in other 

species, for example saithe (Pollachius virens) was found to split into 4 genetic cluster across 

the Northern Atlantic; one of which being located around Rockall (Saha et al., 2015). This is 

also seen in tusk (Brosme brosme) where the Rockall population is considered a stock unit 

(ICES, 2014).  

It should also be noted, however, that in the blue ling analyses the individuals around Rockall 

fall into the same cluster as those from Greenland, which is a great distance to the West and 
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thus they are greatly geographically separated from one another. This implies that Rockall 

does not stick out as a singular stock in the blue ling, but falls into a broader North Atlantic 

stock. Knowing this, it would be of great interest to further investigate the common ling and 

see if this pattern continues into the sister species. This information would prove valuable for 

assessing stocks. 

These results are extremely important as they give a greater insight into the interactions of 

deep-sea species which are currently understudied. Combining such studies creates stronger 

evidence that there is differentiation within the deep sea, particularly between more coastal 

populations and those found in more open water (Gonzalez et al., 2015). We see here that 

we cannot just assume that all deep-sea populations are completely connected. It is best to 

be cautionary with the exploitation of these species and carry out more studies to increase 

our understanding of the deep sea.  

 

4.4. Outliers and adaptation 

Such a low number of outlier loci found in the data may be partially explained by the nature 

of marine populations, and the great connectivity experienced by them (Nickols et al., 2015). 

This could be seen as an advantage or a disadvantage, as lower levels of differentiation may 

mean that the outliers selected are only the strongest, most informative outliers. As a 

disadvantage, it could indicate a lack of adaptative divergence and not be so informative. A 

low number of outliers, however, is common in marine populations and should not be 

considered in the context of terrestrial studies (Lal, Southgate, Jerry, Bosserelle, et al., 2016; 

Carreras et al., 2017; Feutry et al., 2017; Jansson et al., 2017; Mathiesen et al., 2017).  
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To explore outliers within the datasets we used a combination of methods to ensure each 

SNP picked out was a true outlier, with no false positives (Milano et al., 2014; Lal, Southgate, 

Jerry, Bosserelle, et al., 2016; Coscia et al., 2019). Choosing out only those SNPs which were 

calculated by both methods gave few SNPs for either species, but these could then be 

explored further. Outlier loci are believed to be influenced by selective processes and to have 

an effect on the fitness of an individual (Nayfa and Zenger, 2016). By identifying outliers, we 

are able to get a better insight into the micro-evolutionary forces affecting populations, and 

possibly driving differentiation between them (Nayfa and Zenger, 2016). Using outliers we 

can identify genes which are possible targets of local selection, but environmental data is 

needed to confirm such data and give a greater insight (Pujolar et al., 2014).  

The outliers found here act as highly informative loci and may be associated with adaptive 

divergence between the populations found in this study (Russello et al., 2011; Funk et al., 

2016). This research is limited due to a lack of environmental data, which means that local 

adaptation cannot be identified in this case. It can, however, be speculated and here the 

adaptive possibilities are explored and discussed through the genes found to be linked with 

outlier loci. Future studies should make use of landscape genomics in order to identify local 

adaptation.  

There are three main factors which are believed to influence successful adaptation; 

generation time, population size, and population structure (Bernatchez, 2016). Here we may 

expect to find adaptive evolution linked with population structure, causing the variation 

found between the Atlantic and the fjords.  

Any genetic links found are greatly important as they can inform us of adaptive evolution 

occurring within the species/populations. In the past, local adaptation has mostly only been 
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possible to investigate in model organisms (Savolainen, Lascoux and Merilä, 2013).  Thanks to 

improving genomic tools, it is now possible to investigate adaptive divergence more reliably 

(Savolainen, Lascoux and Merilä, 2013). With this expectation for signals of adaptation to be 

found within populations who are living in different habitats, it can be assumed that differing 

depths will have an influence on this. Such distinct environments are known to drive local 

adaptation, causing reproductive isolation and ecological speciation (Daníelsdóttir et al., 

2008). Coastal/depth related adaptation has been discussed in multiple species (Fyhn et al., 

1994; Daníelsdóttir et al., 2008; Cadrin et al., 2010).  

 

4.5. Adaption to varying light environments 

When searching for genes linked with our outliers, there were significant matches found with 

all of the blue ling loci and none with the common ling. With a total of 24 genes we found 

some trends which could be indicative of adaptation within this species. The first interesting 

link found is that with the opsin protein, found twice in our searches (Tables 6 & 10). This is a 

gene commonly seen to adapt to varying light environments, affecting the sensitivity of 

photoreceptors (Pampoulie et al., 2015; Luehrmann et al., 2018). In fish these adaptations 

can be due to depth or water colour/turbidity variations and can be short-term (altering gene 

expression within the life of an individual) or long-term (affecting the evolution of the species) 

(Luehrmann et al., 2018). In this study there are two possibilities, in that environmental 

variations in the Atlantic and fjords could be driving the change, or it may be more depth 

related as this is the deeper of our two species. Depth changes may still be linked with the 

Atlantic/fjord split as we know the fjords to be more restricting with depth, for example 

Hardangerfjord with depths up to 890m (Buhl-mortensen and Buhl-mortensen, 2014), 
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Boknafjord limited to 550m depths (Stensvold and Minoretti, 2015), and Sørfjorden with a 

maximum depth of 390m (Beyer et al., 1996). Since the blue ling has a maximum depth range 

of around 1000m (Cohen et al., 1990; Papasissi, 2020), these fjords therefore limit this 

species. Links with depth seem likely, as only the short wavelength spectrum reaches down 

through 200m to 1000m depths (Pampoulie et al., 2015; de Busserolles and Marshall, 2017; 

Lin et al., 2017), and short wavelength sensitive opsins being those found connected with our 

outliers.  

Research has shown that, in fishes, opsin genes have evolved in three  different ways to adapt 

to the dimly lit marine environment (Chang and Yan, 2019). These include gene duplication, 

mutations, and plasticity of expression (Chang and Yan, 2019). The fact that we find a match 

for the same gene for two of our outliers located at different areas of the genome can thus 

be explained by gene duplication (Cortesi et al., 2014; Chang and Yan, 2019). This has been 

previously witnessed for short wavelength sensitive opsin in percomorph fishes (Cortesi et 

al., 2014). These duplications allow gained sensitivity to different wavelengths and can also 

be differentially expressed through development (Cortesi et al., 2014). It is possible that the 

two environments in which we find our blue ling (Atlantic and fjords) require adaptations to 

different light sensitivities. There are many variables in an environment which can influence 

these needs; as well as light conditions relating to depth, individuals must look out for visual 

cues such as those for foraging or avoiding predators (Luehrmann et al., 2018). For example, 

environmental colour can affect skin pigmentation (Costa et al., 2017), and thus another 

visual cue which is specific to varying habitats is born. It is possible that such factors would 

vary between the Atlantic and fjords, thus altering the visual needs of the populations within 

and leading to adaptive divergence. This could especially be the case for the Molva genus, 
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who are more dependent on visual stimuli in their feeding strategies than other gadoid 

species (Løkkeborg, Skajaa and Fernö, 2000).  

Recently, a study identified a trend in deep sea fish to independently adapt and expand their 

number of opsin genes (Musilova et al., 2019). This was found after inspecting 101 fish 

genomes and discovering this development within 3 different deep sea species (Musilova et 

al., 2019). This makes it even more likely that the blue ling may also have adapted to this 

environment and expanded its opsin genes.  

Similarly, local adaptation for the light pigment rhodopsin has been witnessed in Atlantic cod 

(Pampoulie et al., 2015). This has been linked with behaviours which exposed the divergent 

groups to differing light levels (Pampoulie et al., 2015). Combining this with the prior 

mentioned knowledge it seems likely that alterations to the opsin genes are driven by 

differences in the two environments our samples are found in. Whether this is through direct 

changes to light levels via depth, or from behavioural changes coming from environmental 

differences such as food availability or predators, is unknown.  

 

4.6. Adaption to colder environments 

Another trend seen throughout our outlier loci was a link with genes relating to growth and 

development. This could suggest morphological and size variations between the two 

populations of blue ling. One of the recurring genetic matches is with Hox clusters (Table 9), 

which decipher the body plan of a species at the embryonic stages (Pan et al., 2016). An 

example of one of the functions these are responsible for is that of forming limb buds (Kelley 

et al., 2016). This also links with another gene found (responsible for producing retinoic acid 
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receptor gamma) which has been linked with limb bud movement (Table 10). This could 

indicate that differing environmental variables within the two populations habitats are 

selecting for morphological traits suited more specifically to them. These environments could 

require different swimming capabilities (Kirk et al., 2016). This has similarly been found in 

hamlet fish species, where Hox genes appear to be indicative of differentiation and speciation 

(Picq, Mcmillan and Puebla, 2016).  

Temperature is possibly one of the most important effectors of growth and development in 

marine fish (Laurel et al., 2016). At a species’ optimal temperature, high growth rates have 

been recorded (Sandersfeld, Mark and Knust, 2017). This has inferences for changing 

temperatures in the future, which could affect marine species by deviating from the 

temperatures which they have evolved to live in. It has been suggested that Arctic cod are 

highly vulnerable to changing temperatures, with negative impacts on growth when 

increasing this factor (Laurel et al., 2016). There has also been a pattern witnessed in Arctic 

charr showing higher growth and metabolic rates in colder, more Northernly waters (Niloshini 

Sinnatamby et al., 2015). This is thought to be linked with phenotypic plasticity and genetic 

variation (Niloshini Sinnatamby et al., 2015). It seems likely from this that the genetic variation 

linking the many growth genes with our outlier SNPs is due to differences in environmental 

temperatures.  

Metabolic rates are often linked with growth (Munday, Donelson and Domingos, 2017; 

Sandersfeld, Mark and Knust, 2017). Apolipoprotein E, involved in the metabolism of fats, is 

another protein affected by our outliers which may also have links with colder climates (Table 

7). There is evidence that links changing metabolic rates, and thus differing energetic costs, 

with adaptation to habitat temperatures (Sandersfeld, Mark and Knust, 2017). This is even 
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more relevant to our data considering another genetic link with one of our outliers, with a 

gene encoding for glucose transporter 1 (Table 7). With these 2 linking genes affected by our 

outlier SNPs it would seem to back up the theory that there may be divergence occurring 

within the species due to thermal differences in the environment.  

This potential change of lipid metabolism may also be linked back to depth adaptations. It 

was found in a deep-sea snailfish that changes to genes linking with fatty acid metabolism 

could be aiding the membrane fluidity/flexibility of cells; helping the species to cope with the 

high pressures of the deep ocean (Wang et al., 2019). This could again suggest an 

environmentally forced change in depth of the species between the Atlantic and fjords. 

Again, linking with colder environments, we have outliers matching with genes encoding for 

multiple antifreeze glycoproteins (Tables 7 & 10). These proteins are already a very specified 

adaptation for organisms living in colder environments, which have evolved independently in 

Northern and Southern hemisphere fishes (Baalsrud et al., 2018). This adaptation is essential 

for fish species to survive in sub-zero waters (Yamazaki et al., 2018). Activity levels of these 

genes will differ depending on the environment, with great variability exhibited among 

species within a genus (Yamazaki et al., 2019). It seems plausible that this can then go to 

population level, considering that the influencing factor on this variable is the environmental 

temperature/condition. Mutations within the genes which produce antifreeze glycoproteins 

would suggest that our species is living within varying temperatures, which is driving selection 

of these genes. This could come about due to the colder waters around Norway, compared 

to warmer deep Atlantic waters (Gordon, 2001). It is therefore likely that this is one of the 

factors driving divergence between our 2 populations.  
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There are even more inferences to depth adaptation from these links with antifreeze 

glycoproteins. In species living in deeper waters there is a reduction in antifreeze activity due 

to the absence of ice nuclei (Yamazaki et al., 2019). If the blue ling located in the fjords are 

adapting to shallower waters, then selection would drive for increased activity of these genes.  

Together these give us an indication for climate driven adaptation in the blue ling. Considering 

the population pattern exhibited in our analyses, this would suggest that there is a difference 

in temperature for the Atlantic and fjords which is driving some divergence of these genes. 

Warming of the ocean is happening fast, for example there are areas of the Arctic with surface 

temperatures increasing by 0.5°C per decade (Laurel et al., 2016). This has inferences for the 

future; with climate change looming causing temperatures to rise, it would appear possible 

for fish to adapt to changing temperatures and survive. Despite this ability to adapt, the rate 

of warming seen in the ocean may be too rapid to allow for such changes to occur resulting 

in a great potential threat to the species. Increasing habitat temperatures can affect growth 

and reproduction, which may in turn lead to altered population structures and divergence 

(Sandersfeld, Mark and Knust, 2017). It is essential that we study these effects more to 

understand how changing temperatures in the future will impact fish species in the marine 

environment (Laurel et al., 2016) 

It is important that these do not appear to be phenotypically plastic changes to our 

populations, as they are altering the genetic code. This shows that the two populations are 

genetically deviating from one another. It appears that the environment of the Atlantic and 

fjords are largely diverse from one another; enough to drive adaptation in the blue ling.  
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4.7. Linking temperature with immune adaptations 

Antifreeze glycoproteins have also been shown to have anti-infective properties (Fikrig et al., 

2016), which ties in with some of our other genes linking with outliers. Here we found the 

PAPPA gene (Table 8), encoding for pappalysin which links with wound healing and bone 

remodelling, and a Raftlin-like pseudogene (Table 9), the functional gene of which produces 

Raftlin which activates signalling of T and B cells upon contact with bacterial 

lipopolysaccharides. These could be linked, and indicative of increased damage inflicted on 

individuals, and thus increased susceptibility to bacterial infection. This could come about 

through increased infection of parasites; something which has been linked with warmer 

temperatures (Schade, Raupach and Wegner, 2016; Franke et al., 2017; Strepparava et al., 

2018). Linking with earlier theories of cold adaptation, this may be a case of differences 

between the Atlantic and the fjords. It also seems possible that the more enclosed nature of 

the fjords would allow for increased infection of parasites, and thus possible selection to 

adapt to this.  

There is also the possibility of local adaptation within the parasites themselves, which can 

allow for increased compatibility to a host (Weber et al., 2017). Host specificity is high in 

parasites, as they evolve with their host species (Klapper et al., 2017). This is the case with 

Monogenean species, who have shown higher success in colder habitats (Klapper et al., 2017), 

contrasting to the higher temperatures found to be a better fit for endoparasites (Franke et 

al., 2017; Strepparava et al., 2018). This seems the more likely route to drive such adaptation, 

as Monogenean ectoparasites leave flesh wounds on the skin of fish which are then open to 

infection.  
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Any variation in this area could also be depth linked. It has been found that ectoparasite 

diversity and host specificity declines with increasing depths (Quattrini and Demopoulos, 

2016). This, again, points to differences found between the Atlantic and fjords. There could 

be multiple factors causing a need for change and adaptation towards healing and immune 

defences, specified for different environments.  

The immune system of Teleost fishes has been found to be highly adaptive and links immune-

related genes to speciation rates within these species (Malmstrøm et al., 2016). This flexibility 

can be linked with gene losses and expansions, acting as responses to changing environments 

(Solbakken et al., 2016, 2017). Such rapid adaptation has been witnessed in response to 

increased pollution levels (Reid et al., 2016). It has been suggested that a high nucleotide 

diversity is likely essential to drive this swift adaptation (Reid et al., 2016). This is another 

possibility within our species, in that pollution levels may vary between the Atlantic and the 

fjords. 

  

4.8. Memory adaptations 

Adaptations towards memory requirements have been described in Teleost species, for 

example that of long-term social memory (Madeira and Oliveira, 2017). Here, we have found 

a possible adaptation within memory requirements with a gene responsible for controlling 

synaptic plasticity and memory function (Table 8). Knowing that social recognition is present 

in these fishes could suggest an increased/decreased need for this function in one of our 

populations. It could be indicative of an increased memory capacity within the fjords, where 

a more confined area may allow for increased repeat interactions between individuals. 
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Another possibility is for different functional requirements between the environments due to 

varying factors such as that of survival (Andersen et al., 2016). These changes can be adapted 

to through natural selection for instincts and responses, or through learning and 

remembering from experience (Andersen et al., 2016). It could be possible that one of the 

environments in which we find our populations is more demanding in this sense, and thus 

leading to a change in requirements.  

Memory is also used in a spatial and navigational sense, and fish live in complex and unstable 

environments in which strong spatial memory is essential (Mcaroe, Craig and Holland, 2016). 

The capability for this across species is varied (Mcaroe, Craig and Holland, 2016) and thus 

probably adapted to each individually. This is another aspect which could be driving adaption 

within the blue ling between our two environments.  

Significant differences in learning and memory have been witnessed across fish populations, 

and it has been suggested that various interacting factors drive these functions (Roy and Bhat, 

2018). This brings together the different ideas for what could drive such an adaptation and 

indicates that many variances found between our environments may lead to adaptation 

within memory functions. More understanding and greater research is needed here, where 

few studies have investigated memory in fish species, and greater focus has been applied to 

mammal or bird species (Mcaroe, Craig and Holland, 2016; Madeira and Oliveira, 2017).  

 

4.9. Adaptation to seawater 

Linking back to adaptations affecting growth of our species, there are further functions of the 

growth hormone genes found linked with our outliers. As well as their role in growth control, 
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the somatotropin proteins (Table 9) are also known to improve salinity tolerance (Bystriansky 

et al., 2017). Higher levels of this hormone have been found when increasing salinity levels 

under experimental conditions (Semenova, Pritvorova and Krayushkina, 2018). Therefore, 

adaptation involving these genes could indicate differing salinity of the environment these 

fish are living in. We may expect that our fjords, being more inland, have a lesser salt content 

and thus do not require as high a tolerance to this factor. This could lead to variation between 

our populations; with a selection for this in the Atlantic individuals and not in fjord individuals. 

 

4.10. Adaptation comparisons between species 

All of the blue ling outlier SNPs were investigated in the common ling; to check the levels of 

polymorphism and see if the same genes affected in the blue ling are also experiencing 

selection in the common ling. Sequencing data was found for 4 out of 5 of the blue ling SNPs 

in the common ling, and there was a complete lack of polymorphism at every site. This shows 

clearly that the genes found to be potentially driving differentiation within the blue ling are 

not experiencing these same effects within the common ling. This may link back to population 

structure and be explained by the less distinct structure exhibited in the common ling data. 

This also has inferences for adaptation at different depths. This data would suggest that 

greater adaptive divergence is found in deeper-dwelling species, as has been seen elsewhere 

in deep sea species where an increased role of adaptation has been found with occurrence at 

a faster rate than would be expected elsewhere (Gaither et al., 2016; Porter, Roberts and 

Partridge, 2016; K. Wang et al., 2019; Sutton and Milligan, 2019). This could be due to the 

extreme environmental pressures experienced by deep sea species, pushing them to their 

physical limits (Sutton and Milligan, 2019). Much of the evidence points towards depth 
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differences between the Atlantic and fjords, which would then be further driven by a lack of 

connectivity experienced between the 2 populations in these locations.  

 

4.11. Conclusion 

This study seems to tell us a story of changing movements in two sister species, who are 

possibly moving into new environments and adapting to this. We can confidently say that 

there is strong differentiation between the Atlantic and fjord populations of the blue ling, 

with a lack of connectivity between these coastal versus open water individuals. Structure is 

less clear within the common ling, but suggests differentiation is seen from the more open 

water individuals from the Rockall populations, compared with the remaining coastal 

populations.  

Marine sampling is often opportunistic (Miller et al., 2016), and on this occasion the sampling 

numbers for the common ling are not quite as high. This data then fails to find strong 

indicators for structure within the species. From this I would suggest future research, with 

greater numbers. This would allow further exploration of the structural patterns within the 

common ling, hinted at within this study. This would clarify the length to which coastal and 

open water populations truly differentiate from one another.  

Despite this, we do have the Gonzalez et al. (2015) study to compare with this common ling 

data. In the prior study there was a pattern indicated which showed similarities to that which 

was found here in the common ling and the blue ling; with the more open water Atlantic 

populations differing from individuals located along the Norwegian coast (Gonzalez et al., 

2015). This strengthens the results found here in which the Rockall populations differ from 
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the remaining groups. It is comparable to studies of Maccullochella peelii (Murray cod), and 

brown trout, in which SNP and microsatellite analyses detected similar structural patterns 

(Harrisson et al., 2017; Saint-pé et al., 2019).  

Genetic and genomic analyses have been useful in informing management and conservation 

plans for wild populations over the last half century (Mamoozadeh, Graves and Mcdowell, 

2019). This data is therefore of great importance for management and can now be taken into 

consideration for future planning. For example, SNP analyses of the European hake were able 

to confirm a split between Northern and Southern populations, which were the current 

management units for the species (Leone et al., 2019). It also went further to identify 

additional structure within the Northern group, finding Norwegian individuals to be 

differentiated from the rest of the group (Leone et al., 2019). Due to these findings, it was 

suggested that stock units should be redefined to include the Norwegian population as its 

own unit (Leone et al., 2019). These findings are comparable to those found in this study, 

especially for the blue ling.  

Due to less studies concerning structure of deep sea species, there is a lack of examples in 

which such data has been incorporated into their management. Because of this, and the 

poorly understood nature of deep sea species, more effective management is needed in the 

deep sea (Gonçalves da Silva et al., 2019). For the commercially exploited deep sea orange 

roughy, genomic analyses identified population structuring which could be used for 

consideration of deep sea management in an area where the species was previously believed 

to be panmictic (Gonçalves da Silva et al., 2019). Finding such structure in deep sea species 

has greater inferences for fishing in the deep, as it shows that such populations may not be 

as connected as previously thought. Combining the orange roughy data with that of the 
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common ling and the blue ling shows clearly that structure in the deep sea is underestimated. 

These studies should now aid in the development of proper management of deep sea 

resources.  

We should use this as an indicator for further research and look at more commercially fished 

deep sea species to understand their structure and the impacts that fishing may have on 

them. More caution is needed when fishing in the deep sea and we should continue to study 

this area. Stock assessments for the common ling and the blue ling should be carried out with 

consideration of this data, and management enforced in correspondence with this.  

From this data we suggest that the blue ling should now be considered as at least 2 separate 

stock units in the Northeast Atlantic; one for the Norwegian fjords and one for the rest of the 

Northeast Atlantic. We suggest that differentiation between the fjords should be further 

investigated to determine any further structuring, and that the fjords to the North should be 

taken into consideration for a separate management plan. We agree with Gonzalez et al. 

(2015) that the common ling should be considered as 2 stock units; one coastal and one open 

water. Both species would benefit from continued research, assessing the species across the 

Atlantic to the West to determine further stock units. This would also be beneficial to 

determine whether or not the common ling Rockall population is a separate stock in its own 

right, or whether these individuals fall in with the rest of the Atlantic. This is of particular 

interest considering the separation seen in other studies (ICES, 2014; Gonzalez et al., 2015; 

Saha et al., 2015).  

 

  



81 
 

5. References 

Albaina, A. et al. (2013) ‘Single nucleotide polymorphism discovery in albacore and Atlantic 

bluefin tuna provides insights into worldwide population structure’, Animal Genetics, 44(6), 

pp. 678–692. doi: 10.1111/age.12051. 

Allen, B. et al. (2015) ‘The molecular clock of neutral evolution can be accelerated or slowed 

by asymmetric spatial structure’, PLoS Computational Biology, 11(2), pp. 1–32. doi: 

10.1371/journal.pcbi.1004108. 

Allendorf, F. W. (2017) ‘Genetics and the conservation of natural populations: allozymes to 

genomes’, Molecular Ecology, 26(2), pp. 420–430. doi: 10.1111/mec.13948. 

Altschul, S. F. et al. (1997) ‘Gapped BLAST and PSI-BLAST: a new generation of protein 

database search programs’, Nucleic Acids Research, 25(17), pp. 3389–3402. doi: 

10.1093/nar/25.17.3389. 

Andersen, B. S. et al. (2016) ‘The proximate architecture for decision-making in fish’, Fish 

and Fisheries, 17, pp. 680–695. doi: 10.1111/faf.12139. 

Andrews, K. R. et al. (2016) ‘Harnessing the power of RADseq for ecological and evolutionary 

genomics’, Nature Reviews Genetics, 17(2), pp. 81–92. doi: 10.1038/nrg.2015.28.Harnessing. 

Andrews, S. (2010) ‘FastQC: A quality control tool for high throughput sequence data.’ 

Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 

Aykanat, T. et al. (2015) ‘Low but significant genetic differentiation underlies biologically 

meaningful phenotypic divergence in a large Atlantic salmon population’, Molecular 

Ecology, 24(20), pp. 5158–5174. doi: 10.1111/mec.13383. 



82 
 

Baalsrud, H. T. et al. (2018) ‘De novo gene evolution of antifreeze glycoproteins in codfishes 

revealed by whole genome sequence data’, Molecular Biology and Evolution, 35(3), pp. 593–

606. doi: 10.1093/molbev/msx311. 

Baco, A. R. et al. (2016) ‘A synthesis of genetic connectivity in deep-sea fauna and 

implications for marine reserve design’, Molecular ecology, 25(14), pp. 3276–3298. doi: 

10.1111/mec.13689. 

Bagley, M. J., Lindquist, D. G. and Geller, J. B. (1999) ‘Microsatellite variation, effective 

population size, and population genetic structure of vermilion snapper, Rhomboplites 

aurorubens, off the southeastern USA’, Marine Biology, 134(4), pp. 609–620. doi: 

10.1007/s002270050576. 

De Barba, M. et al. (2016) ‘High-throughput microsatellite genotyping in ecology: Improved 

accuracy, efficiency, standardisation and success with low-quantity and degraded DNA’, 

Molecular Ecology Resources, 17(3), pp. 492–507. doi: 10.1111/1755-0998.12594. 

Barnes, M. K. S. (2008) Molva dypterygia Blue ling, Marine Life Information Network: Biology 

and Sensitive Key Information Reviews. Available at: 

https://www.marlin.ac.uk/species/detail/101 (Accessed: 14 January 2020). 

Baxter, J. M. (2001) ‘Establishing management schemes on marine special areas of 

conservation in Scotland’, Aquatic Conservation: Marine and Freshwater Ecosystems, 11(4), 

pp. 261–265. 

Bernardi, G. et al. (2016) ‘Genomic signatures of rapid adaptive evolution in the bluespotted 

cornetfish, a Mediterranean Lessepsian invader’, Molecular Ecology, 25, pp. 3384–3396. doi: 

10.1111/mec.13682. 



83 
 

Bernatchez, L. (2016) ‘On the maintenance of genetic variation and adaptation to 

environmental change: Considerations from population genomics in fishes’, Journal of Fish 

Biology, 89(6), pp. 2519–2556. doi: 10.1111/jfb.13145. 

Bernatchez, L. et al. (2017) ‘Harnessing the power of genomics to secure the future of 

seafood’, Trends in Ecology & Evolution. Elsevier Ltd, 32(9), pp. 665–680. doi: 

10.1016/j.tree.2017.06.010. 

Beyer, J. et al. (1996) ‘Contaminant accumulation and biomarker responses in flounder 

(Platichthys flesus L.) and Atlantic cod (Gadus morhua L.) exposed by caging to polluted 

sediments in Sørfjorden, Norway’, Aquatic Toxicology, 36, pp. 75–98. 

Bolyen, E. et al. (2018) ‘An introduction to applied bioinformatics: A free, open, and 

interactive text.’, Journal of Open Source Education, 1(5), pp. 1–10. doi: 

10.1109/EMBC.2016.7590696.Upper. 

Bosse, M. et al. (2017) ‘Recent natural selection causes adaptive evolution of an avian 

polygenic trait’, Science, 358, pp. 365–368. 

Bougeard, S. and Dray, S. (2018) ‘Supervised multiblock analysis in R with the ade4 package’, 

Journal of Statistical Software, 86(1). doi: 10.18637/jss.v086.i01. 

Bradbury, I. R. et al. (2013) ‘Genomic islands of divergence and their consequences for the 

resolution of spatial structure in an exploited marine fish’, Evolutionary Applications, 6(3), 

pp. 450–461. doi: 10.1111/eva.12026. 

Bradbury, P. J. et al. (2007) ‘TASSEL: Software for association mapping of complex traits in 

diverse samples’, Bioinformatics, 23(19), pp. 2633–2635. doi: 

10.1093/bioinformatics/btm308. 



84 
 

Buhl-mortensen, P. and Buhl-mortensen, L. (2014) ‘Diverse and vulnerable deep-water 

biotopes in the Hardangerfjord’, Marine Biology Research. Taylor & Francis, 10(3), pp. 253–

267. doi: 10.1080/17451000.2013.810759. 

Bulut, I. et al. (2018) ‘Pregnancy-associated plasma protein-A (PAPP-A) levels in patients 

with severe allergic asthma are reduced by omalizumab’, Journal of Asthma. Taylor & 

Francis, 55(10). doi: 10.1080/02770903.2017.1396471. 

de Busserolles, F. and Marshall, N. J. (2017) ‘Seeing in the deep-sea: Visual adaptations in 

lanternfishes’, Philosophical Transactions of the Royal Society B: Biological Sciences, 

372(1717). doi: 10.1098/rstb.2016.0070. 

Bystriansky, J. S. et al. (2017) ‘Salinity acclimation and advanced parr–smolt transformation 

in growth-hormone transgenic coho salmon (Oncorhynchus kisutch)’, Canadian Journal of 

Zoology, 95(9), pp. 633–643. doi: 10.1139/cjz-2016-0201. 

Cadrin, S. X. et al. (2010) ‘Population structure of beaked redfish, Sebastes mentella: 

Evidence of divergence associated with different habitats’, ICES Journal of Marine Science, 

67(8), pp. 1617–1630. doi: 10.1093/icesjms/fsq046. 

Cano, J. M. et al. (2008) ‘Genetic differentiation, effective population size and gene flow in 

marine fishes: Implications for stock management’, Journal of integrated field science, 5, pp. 

1–10. 

Carreras, C. et al. (2017) ‘Population genomics of an endemic Mediterranean fish: 

Differentiation by fine scale dispersal and adaptation’, Scientific Reports, 7. doi: 

10.1038/srep43417. 

Casillas, S. and Barbadilla, A. (2017) ‘Molecular population genetics’, Genetics, 205(3), pp. 



85 
 

1003–1035. doi: 10.1534/genetics.116.196493. 

Catchen, J. M. et al. (2013) ‘Stacks: An analysis tool set for population genomics’, Molecular 

Ecology, 22(11), pp. 3124–3140. doi: 10.1111/mec.12354.Stacks. 

Chang, C.-H. and Yan, H. Y. (2019) ‘Plasticity of opsin gene expression in the adult red shiner 

(Cyprinella lutrensis) in response to turbid habitats’, Plos One, 14(4), p. e0215376. doi: 

10.1371/journal.pone.0215376. 

Chung-Jung, L. et al. (2018) ‘Helicobacter pylori infection-induced hepatoma-derived growth 

factor regulates the differentiation of human mesenchymal stem cells to myofibroblast-like 

cells’, Cancers, 10(12). doi: 10.3390/cancers10120479. 

Clarke, J. et al. (2015) ‘A scientific basis for regulating deep-sea fishing by depth’, Current 

Biology, 25(18), pp. 2425–2429. doi: 10.1016/j.cub.2015.07.070. 

Cohen, D. M. et al. (1990) Vol.10. Gadiform fishes of the world (Order Gadiformes). Rome, 

Italy: FAO. 

Coll, M. et al. (2016) ‘Ecological indicators to capture the effects of fishing on biodiversity 

and conservation status of marine ecosystems’, Ecological Indicators, 60, pp. 947–962. doi: 

10.1016/j.ecolind.2015.08.048. 

Collie, J. et al. (2017) ‘Indirect effects of bottom fishing on the productivity of marine fish’, 

Fish and Fisheries, 18(4), pp. 619–637. doi: 10.1111/faf.12193. 

Cormier, F. et al. (2019) ‘A reference high-density genetic map of greater yam (Dioscorea 

alata L.)’, Theoretical and Applied Genetics, 132(6), pp. 1733–1744. doi: 10.1007/s00122-

019-03311-6. 



86 
 

Cortesi, F. et al. (2014) ‘Ancestral duplications and highly dynamic opsin gene evolution in 

percomorph fishes’, Proceedings of the National Academy of Sciences, 112(5), pp. 1493–

1498. doi: 10.1073/pnas.1417803112. 

Coscia, I. et al. (2019) ‘Fine-scale seascape genomics of an exploited marine species, the 

common cockle’, bioRxiv, pp. 1–44. 

Costa, D. C. et al. (2017) ‘The effect of environmental colour on the growth, metabolism, 

physiology and skin pigmentation of the carnivorous freshwater catfish Lophiosilurus 

alexandri’, Journal of Fish Biology, 90(3), pp. 922–935. doi: 10.1111/jfb.13208. 

Costello, C. et al. (2016) ‘Global fishery prospects under contrasting management regimes’, 

Proceedings of the National Academy of Sciences, 113(18), pp. 5125–5129. doi: 

10.1073/pnas.1520420113. 

Cowen, R. K. et al. (2000) ‘Connectivity of marine populations: Open or closed?’, Science, 

287(5454), pp. 857–859. doi: 10.1126/science.287.5454.857. 

Cowen, R. K. et al. (2007) ‘Population connectivity in marine systems: An overview’, 

Oceanography, 20(3), pp. 14–21. 

Cuéllar-pinzón, J. et al. (2016) ‘Genetic markers in marine fisheries: Types, tasks and trends’, 

Fisheries Research, 173(2016), pp. 194–205. 

Danecek, P. et al. (2011) ‘The variant call format and VCFtools’, Bioinformatics, 27(15), pp. 

2156–2158. doi: 10.1093/bioinformatics/btr330. 

Daníelsdóttir, A. K. et al. (2008) ‘Population structure of deep-sea and oceanic phenotypes 

of deepwater redfish in the Irminger Sea and Icelandic continental slope: Are they cryptic 

species?’, Transactions of the American Fisheries Society, 137(6), pp. 1723–1740. doi: 



87 
 

10.1577/t07-240.1. 

Davey, J. W. et al. (2011) ‘Genome-wide genetic marker discovery and genotyping using 

next-generation sequencing’, Nature Reviews Genetics, 12(7), pp. 499–510. doi: 

10.1038/nrg3012. 

Dray, S. and Dufour, A.-B. (2015) ‘ The ade4 package: Implementing the duality diagram for 

ecologists ’, Journal of Statistical Software, 22(4). doi: 10.18637/jss.v022.i04. 

Drinan, D. P. et al. (2018) ‘Population assignment and local adaptation along an isolation-by-

distance gradient in Pacific cod (Gadus macrocephalus)’, Evolutionary Applications, 11(8), 

pp. 1448–1464. doi: 10.1111/eva.12639. 

Duforet-Frebourg, N., Bazin, E. and Blum, M. G. B. (2014) ‘Genome scans for detecting 

footprints of local adaptation using a Bayesian factor model’, Molecular Biology and 

Evolution, 31(9), pp. 2483–2495. doi: 10.1093/molbev/msu182. 

Earl, D. A. and vonHoldt, B. M. (2012) ‘STRUCTURE HARVESTER: A website and program for 

visualizing STRUCTURE output and implementing the Evanno method’, Conservation 

Genetics Resources, 4(2), pp. 359–361. doi: 10.1007/s12686-011-9548-7. 

Elmer, K. R. (2016) ‘Genomic tools for new insights to variation, adaptation, and evolution in 

the salmonid fishes: A perspective for charr’, Hydrobiologia. Springer International 

Publishing, 783(1), pp. 191–208. doi: 10.1007/s10750-015-2614-5. 

Elshire, R. J. et al. (2011) ‘A robust, simple genotyping-by-sequencing (GBS) approach for 

high diversity species’, PLoS ONE, 6(5), pp. 1–10. doi: 10.1371/journal.pone.0019379. 

Elvarsson, B. Þ. et al. (2018) ‘Pushing the limits of a data challenged stock: A size- and age-

structured assessment of ling (Molva molva) in Icelandic waters using Gadget’, Fisheries 



88 
 

Research, 207, pp. 95–109. doi: 10.1016/j.fishres.2018.06.005. 

Etter, R. J. and Bower, A. S. (2015) ‘Dispersal and population connectivity in the deep North 

Atlantic estimated from physical transport processes’, Deep-Sea Research Part I, 104, pp. 

159–172. doi: 10.1016/j.dsr.2015.06.009. 

Fernández-Pérez, J. et al. (2018) ‘Mitochondrial DNA analyses of Donax trunculus (Mollusca: 

Bivalvia) population structure in the Iberian Peninsula, a bivalve with high commercial 

importance’, Aquatic Conservation: Marine and Freshwater Ecosystems, 28(5), pp. 1139–

1152. doi: 10.1002/aqc.2929. 

Feutry, P. et al. (2017) ‘Inferring contemporary and historical genetic connectivity from 

juveniles’, Molecular Ecology, 26(2), pp. 444–456. doi: 10.1111/mec.13929. 

Fikrig, E. et al. (2016) ‘Anti-infective properties of antifreeze proteins’, United States Patent 

Application Publication, 1(19). 

Fischer, M. C. et al. (2011) ‘Enhanced AFLP genome scans detect local adaptation in high-

altitude populations of a small rodent (Microtus arvalis)’, Molecular ecology, 20, pp. 1450–

1462. doi: 10.1111/j.1365-294X.2011.05015.x. 

Foll, M. et al. (2010) ‘Estimating population structure from AFLP amplification intensity’, 

Molecular Ecology, 19(21), pp. 4638–4647. doi: 10.1111/j.1365-294X.2010.04820.x. 

Foll, M. (2012) ‘BayeScan v2.1 user manual’, Ecology, pp. 1450–1462. 

Foll, M. and Gaggiotti, O. (2008) ‘A genome-scan method to identify selected loci 

appropriate for both dominant and codominant markers: A Bayesian perspective’, Genetics, 

180(2), pp. 977–993. doi: 10.1534/genetics.108.092221. 



89 
 

Foo, S. A. and Byrne, M. (2016) Acclimatization and Adaptive Capacity of Marine Species in a 

Changing Ocean., Advances in Marine Biology. 1st edn. Elsevier Ltd. doi: 

10.1016/bs.amb.2016.06.001. 

Franke, F. et al. (2017) ‘Environmental temperature variation influences fitness trade-offs 

and tolerance in a fish-tapeworm association’, Parasites and Vectors, 10(252), pp. 1–11. doi: 

10.1186/s13071-017-2192-7. 

Frichot, E. and Francois, O. (2015) ‘LEA: An R package for landscape and ecological 

association studies’, Methods in Ecology and Evolution, 6, pp. 925–929. doi: 10.1111/2041-

210X.12382. 

Funk, W. C. et al. (2016) ‘Adaptive divergence despite strong genetic drift: Genomic analysis 

of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon 

littoralis)’, Molecular Ecology, 25(10), pp. 2176–2194. doi: 10.1111/mec.13605. 

Furukawa, H. et al. (2005) ‘Subunit arrangement and function in NMDA receptors’, Nature, 

438, pp. 185–192. doi: 10.1038/nature04089. 

Fyhn, U. E. H. et al. (1994) ‘New variants of the haemoglobins of Atlantic cod: A tool for 

discriminating between coastal and Arctic cod populations’, ICES Marine Science Symposia, 

198(0), pp. 666–670. 

Gagnaire, P. A. et al. (2015) ‘Using neutral, selected, and hitchhiker loci to assess 

connectivity of marine populations in the genomic era’, Evolutionary Applications, 8(8), pp. 

769–786. doi: 10.1111/eva.12288. 

Gaither, M. R. et al. (2016) ‘Molecular phylogenetics and evolution depth as a driver of 

evolution in the deep sea: Insights from grenadiers (Gadiformes : Macrouridae) of the genus 



90 
 

Coryphaenoides’, Molecular Phylogenetics and Evolution, 104, pp. 73–82. doi: 

10.1016/j.ympev.2016.07.027. 

Genomics Core Leuvin (2020) Genomics Core Leuvin. Available at: genomicscore.be 

(Accessed: 22 June 2020). 

Gonçalves da Silva, A. et al. (2019) ‘Genomic data suggest environmental drivers of fish 

population structure in the deep sea: A case study for the orange roughy (Hoplostethus 

atlanticus)’, Journal of Applied Ecology, pp. 1–11. doi: 10.1111/1365-2664.13534. 

Gonzalez, E. B. et al. (2015) ‘Genetic analyses of ling (Molva molva) in the Northeast Atlantic 

reveal patterns relevant to stock assessments and management advice’, ICES Journal of 

Marine Science, 72(2), pp. 635–641. 

Gordon, J. D. M. (2001) ‘Deep-water fisheries at the Atlantic Frontier’, Continental Shelf 

Research, 21, pp. 987–1003. 

Gosselin, T. (2019) ‘radiator: RADseq data exploration, manipulation and visualization using 

R.’ Available at: https://thierrygosselin.github.io/radiator/. 

Goudet, J. (2005) ‘Hierfstat, a package for R to compute and test hierarchical F-statistics’, 

Molecular Ecology Notes, 5, pp. 184–186. doi: 10.1111/j.1471-8278. 

Greminger, M. P. et al. (2014) ‘Generation of SNP datasets for orangutan population 

genomics using improved reduced-representation sequencing and direct comparisons of 

SNP calling algorithms’, BMC Genomics, 15(1), pp. 1–15. doi: 10.1186/1471-2164-15-16. 

Harrisson, K. A. et al. (2017) ‘Signatures of polygenic adaptation associated with climate 

across the range of a threatened fish species with high genetic connectivity’, Molecular 

Ecology, 26, pp. 6253–6269. doi: 10.1111/mec.14368. 



91 
 

Hedgecock, D., Barber, P. H. and Edmands, S. (2007) ‘Genetic approaches to measuring 

connectivity’, Oceanography, 20(3), pp. 70–79. 

Helle, K. et al. (2019) ‘Development of SNP for the deep‑sea fish blue ling, Molva dypterygia 

(Pennant , 1784) from ddRAD sequencing data’, Conservation Genetics Resources. Springer 

Netherlands, 7. doi: 10.1007/s12686-019-01107-w. 

Herrington, J. and Carter-Su, C. (2001) ‘Signaling pathways activated by the growth hormone 

receptor’, Trends in Endocrinology and Metabolism, 12(6), pp. 252–257. 

Humble, E., Martinez-Barrio, A., et al. (2016) ‘A draft fur seal genome provides insights into 

factors affecting SNP validation and how to mitigate them’, Molecular ecology resources, 

16(4), pp. 909–921. doi: 10.1111/1755-0998.12502. 

Humble, E., Thorne, M. A. S., et al. (2016) ‘Transcriptomic SNP discovery for custom 

genotyping arrays: Impacts of sequence data, SNP calling method and genotyping 

technology on the probability of validation success’, BMC Research Notes, 9(1), pp. 1–12. 

doi: 10.1186/s13104-016-2209-x. 

ICES (2014) Advice May 2014 Widely distributed and migratory stocks Tusk (Brosme brosme) 

in the Northeast Atlantic. 

ICES (2017) Blue ling (Molva dypterygia) in subareas 1, 2, 8, 9, and 12, and in divisions 3.a 

and 4.a (other areas). doi: 10.17895/ices.pub.3056. 

Ikami, K. et al. (2015) ‘Hierarchical differentiation competence in response to retinoic acid 

ensures stem cell maintenance during mouse spermatogenesis’, Development, 142(9), pp. 

1582–1592. doi: 10.1242/dev.118695. 

Illumina (2020) Illumina. Available at: illumina.com (Accessed: 22 June 2020). 



92 
 

Janjua, S. et al. (2020) ‘Improving our conservation genetic toolkit: ddRAD-seq for SNPs in 

snow leopards’, Conservation Genetics Resources, 12(2), pp. 257–261. doi: 10.1007/s12686-

019-01082-2. 

Jansson, E. et al. (2017) ‘Genetic analysis of goldsinny wrasse reveals evolutionary insights 

into population connectivity and potential evidence of inadvertent translocation via 

aquaculture’, ICES Journal of Marine Science, 74(8), pp. 2135–2147. doi: 

10.1093/icesjms/fsx046. 

Jombart, T. (2008) ‘Adegenet: A R package for the multivariate analysis of genetic markers’, 

Bioinformatics, 24(11), pp. 1403–1405. doi: 10.1093/bioinformatics/btn129. 

Jombart, T. and Ahmed, I. (2011) ‘adegenet 1.3-1: New tools for the analysis of genome-

wide SNP data’, Bioinformatics, 27(21), pp. 3070–3071. doi: 10.1093/bioinformatics/btr521. 

Jones, F. C. et al. (2012) ‘Report a genome-wide SNP genotyping array reveals patterns of 

global and repeated species-pair divergence in sticklebacks’, Current Biology, 22(1), pp. 83–

90. doi: 10.1016/j.cub.2011.11.045. 

Junge, C. et al. (2019) ‘Comparative population genomics confirms little population 

structure in two commercially targeted carcharhinid sharks’, Marine Biology, 166(2), pp. 1–

15. doi: 10.1007/s00227-018-3454-4. 

Junutula, J. R. et al. (2004) ‘Rab14 is involved in membrane trafficking between the Golgi 

Complex and Endosomes’, Molecular Biology of the Cell, 15(5), pp. 2218–2229. doi: 

10.1091/mbc.E03. 

Kagale, S. et al. (2016) ‘Analysis of Genotype-by-Sequencing (GBS) data’, in Plant 

Bioinformatics. doi: 10.1007/978-3-319-67156-7. 



93 
 

Kamvar, Z. N., Brooks, J. C. and Grünwald, N. J. (2015) ‘Novel R tools for analysis of genome-

wide population genetic data with emphasis on clonality’, Frontiers in Genetics, 6, pp. 1–10. 

doi: 10.3389/fgene.2015.00208. 

Kamvar, Z. N., Tabima, J. F. and Grünwald, N. J. (2014) ‘Poppr: An R package for genetic 

analysis of populations with clonal, partially clonal, and/or sexual reproduction ’, PeerJ, 2, p. 

e281. doi: 10.7717/peerj.281. 

Keane, J. A. et al. (2016) ‘SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA 

alignments’, Microbial Genomics, 2(4), pp. 1–5. doi: 10.1099/mgen.0.000056. 

Keenan, K. et al. (2013) ‘DiveRsity: An R package for the estimation and exploration of 

population genetics parameters and their associated errors’, Methods in Ecology and 

Evolution, 4(8), pp. 782–788. doi: 10.1111/2041-210X.12067. 

Kelley, J. L. et al. (2016) ‘The life aquatic: Advances in marine vertebrate genomics’, Nature 

Reviews Genetics, 17(9), pp. 523–534. doi: 10.1038/nrg.2016.66. 

Kirk, M. A. et al. (2016) ‘Effects of water velocity, turbulence and obstacle length on the 

swimming capabilities of adult Pacific lamprey’, Fisheries Management and Ecology, 23, pp. 

356–366. doi: 10.1111/fme.12179. 

Kirubakaran, T. G. et al. (2016) ‘Two adjacent inversions maintain genomic differentiation 

between migratory and stationary ecotypes of Atlantic cod’, Molecular Ecology, 25(10), pp. 

2130–2143. doi: 10.1111/mec.13592. 

Klapper, R. et al. (2017) Biodiversity and Evolution of Parasitic Life in the Southern Ocean. 

Edited by S. Klimpel. Frankfurt/Main, Germany: Springer International Publishing 

Switzerland. doi: 10.1007/978-3-319-46343-8_1. 



94 
 

Knaus, B. J. and Grünwald, N. J. (2017) ‘VcfR: A package to manipulate and visualize variant 

call format data in R’, Molecular Ecology Resources, 17(1), pp. 44–53. doi: 10.1111/1755-

0998.12549. 

Knutsen, H. et al. (2009) ‘Bathymetric barriers promoting genetic structure in the deepwater 

demersal fish tusk (Brosme brosme)’, Molecular Ecology, 18(15), pp. 3151–3162. 

Kumar, G. and Kocour, M. (2017) ‘Applications of next-generation sequencing in fisheries 

research: A review’, Fisheries Research, 186, pp. 11–22. doi: 10.1016/j.fishres.2016.07.021. 

Lal, M. M., Southgate, P. C., Jerry, D. R., Bosserelle, C., et al. (2016) ‘A parallel population 

genomic and hydrodynamic approach to fishery management of highly-dispersive marine 

invertebrates: The case of the Fijian black- lip pearl oyster Pinctada margaritifera’, PLoS 

ONE, 11(8). doi: 10.1371/journal.pone.0161390. 

Lal, M. M., Southgate, P. C., Jerry, D. R. and Zenger, K. R. (2016) ‘Marine Genomics Fishing 

for divergence in a sea of connectivity: The utility of ddRADseq genotyping in a marine 

invertebrate, the black-lip pearl oyster’, Marine Genomics, 25, pp. 57–68. doi: 

10.1016/j.margen.2015.10.010. 

Lamichhaney, S. et al. (2017) ‘Parallel adaptive evolution of geographically distant herring 

populations on both sides of the North Atlantic Ocean’, Proceedings of the National 

Academy of Sciences, 114(17), pp. 3452–3461. doi: 10.1073/pnas.1617728114. 

Langmead, B. and Slazberg, S. L. (2013) ‘Fast gapped-read alignmnet with Bowtie 2’, Nature 

methods, 9(4), pp. 357–359. doi: 10.1038/nmeth.1923.Fast. 

Large, P. A. et al. (2010) ‘Spatial and temporal distribution of spawning aggregations of blue 

ling (Molva dypterygia) west and northwest of the British Isles’, ICES Journal of Marine 



95 
 

Science, 67, pp. 494–501. 

Laurel, B. J. et al. (2016) ‘Temperature-dependent growth and behavior of juvenile Arctic 

cod (Boreogadus saida) and co-occurring North Pacific gadids’, Polar Biology. Springer Berlin 

Heidelberg, 39(6), pp. 1127–1135. doi: 10.1007/s00300-015-1761-5. 

Lee, R. et al. (1999) ‘Role of Nr13 in regulation of programmed cell death in the bursa of 

Fabricius’, Genes and Development, 13, pp. 718–728. 

Leone, A. et al. (2019) ‘Genome-wide SNP based population structure in European hake 

reveals the need for harmonizing biological and management units’, ICES Journal of Marine 

Science, 76(7), pp. 2260–2266. doi: 10.1093/icesjms/fsz161. 

Levy, S. E. and Myers, R. M. (2016) ‘Advancements in Next-Generation Sequencing’, Annual 

Review of Genomics and Human Genetics, 17(1), pp. 95–115. doi: 10.1146/annurev-genom-

083115-022413. 

Li, F. and Tsien, J. Z. (2009) ‘Memory and the NMDA Receptors’, The New England Journal of 

Medicine, 361, pp. 302–303. 

Li, H. et al. (2009) ‘The Sequence Alignment/Map format and SAMtools’, Bioinformatics, 

25(16), pp. 2078–2079. doi: 10.1093/bioinformatics/btp352. 

Li, H. (2011) ‘A statistical framework for SNP calling, mutation discovery, association 

mapping and population genetical parameter estimation from sequencing data’, 

Bioinformatics, 27(21), pp. 2987–2993. doi: 10.1093/bioinformatics/btr509. 

Li, H. and Durbin, R. (2010) ‘Fast and accurate long-read alignment with Burrows-Wheeler 

transform’, Bioinformatics, 26(5), pp. 589–595. doi: 10.1093/bioinformatics/btp698. 



96 
 

Li, R. et al. (2009) ‘SOAP2: An improved ultrafast tool for short read alignment’, 

Bioinformatics, 25(15), pp. 1966–1967. doi: 10.1093/bioinformatics/btp336. 

Lin, J. J. et al. (2017) ‘The rises and falls of opsin genes in 59 ray-finned fish genomes and 

their implications for environmental adaptation’, Scientific Reports, 7(1), pp. 1–13. doi: 

10.1038/s41598-017-15868-7. 

Løkkeborg, S., Skajaa, K. and Fernö, A. (2000) ‘Food-search strategy in ling (Molva molva L.): 

Crepuscular activity and use of space’, Journal of Experimental Marine Biology and Ecology, 

247(2), pp. 195–208. doi: 10.1016/S0022-0981(00)00148-9. 

Luehrmann, M. et al. (2018) ‘Short-term colour vision plasticity on the reef: Changes in 

opsin expression under varying light conditions differ between ecologically distinct fish 

species’, The Journal of Experimental Biology, 221(22), p. jeb175281. doi: 

10.1242/jeb.175281. 

Luna, S. M. (2020a) Lota lota, Fishbase. 

Luna, S. M. (2020b) Molva molva, Fishbase. Available at: fishbase.se/summary/Molva-

molva.html (Accessed: 14 January 2020). 

Luu, K., Bazin, E. and Blum, M. G. B. (2017) ‘pcadapt: An R package to perform genome scans 

for selection based on principal component analysis’, Molecular Ecology Resources, 17(1), 

pp. 67–77. doi: 10.1111/1755-0998.12592. 

Madeira, N. and Oliveira, R. F. (2017) ‘Long-Term Social Recognition Memory in Zebrafish’, 

Zebrafish, 14(4), pp. 305–310. doi: 10.1089/zeb.2017.1430. 

Malmstrøm, M. et al. (2016) ‘Evolution of the immune system influences speciation rates in 

teleost fishes’, Nature Genetics, 48(10), pp. 1204–1210. doi: 10.1038/ng.3645. 



97 
 

Malmstrøm, M. et al. (2017) ‘Data descriptor: Whole genome sequencing data and de novo 

draft assemblies for 66 teleost species’, Scientific Data, 4, pp. 1–13. doi: 

10.1038/sdata.2016.132. 

Malomane, D. K. et al. (2018) ‘Efficiency of different strategies to mitigate ascertainment 

bias when using SNP panels in diversity studies’, BMC Genomics, 19(22), pp. 1–16. doi: 

10.1186/s12864-017-4416-9. 

Mamoozadeh, N. R., Graves, J. E. and Mcdowell, J. R. (2019) ‘Genome-wide SNPs resolve 

spatiotemporal patterns of connectivity within striped marlin (Kajikia audax), a broadly 

distributed and highly migratory pelagic species’, Evolutionary Applications, pp. 1–22. doi: 

10.1111/eva.12892. 

Mangi, S. C. et al. (2016) ‘The economic implications of changing regulations for deep sea 

fishing under the European Common Fisheries Policy: UK case study’, Science of the Total 

Environment. Elsevier B.V., 562, pp. 260–269. doi: 10.1016/j.scitotenv.2016.03.218. 

Marais, A. D. (2019) ‘Apolipoprotein E in lipoprotein metabolism, health and cardiovascular 

disease’, Pathology, 51(2), pp. 165–176. doi: 10.1016/j.pathol.2018.11.002. 

Marshall, J., Carleton, K. L. and Cronin, T. (2015) ‘Colour vision in marine organisms’, Current 

Opinion in Neurobiology, 34, pp. 86–94. doi: 10.1016/j.conb.2015.02.002. 

Martínez, J. G. et al. (2017) ‘SNPs markers for the heavily overfished tambaqui Colossoma 

macropomum, a Neotropical fish, using next-generation sequencing-based de novo 

genotyping’, Conservation Genetics Resources, 9(1), pp. 29–33. doi: 10.1007/s12686-016-

0610-3. 

Mathiesen, S. S. et al. (2017) ‘Genetic diversity and connectivity within Mytilus spp. in the 



98 
 

subarctic and Arctic’, Evolutionary Applications, 10(1), pp. 39–55. doi: 10.1111/eva.12415. 

Matsumoto, M. and Tatematsu, M. (2017) ‘Cell type-specific role of raftlin in the regulation 

of endosomal TLR signaling’, Inflammation and Cell Signalling, 4, pp. 1–8. doi: 

10.14800/ics.1326. 

Mcaroe, C. L., Craig, C. M. and Holland, R. A. (2016) ‘Place versus response learning in fish: A 

comparison between species’, Animal Cognition, 19(1), pp. 153–161. doi: 10.1007/s10071-

015-0922-9. 

Mielczarek, M. and Szyda, J. (2016) ‘Review of alignment and SNP calling algorithms for 

next-generation sequencing data’, Journal of Applied Genetics, 57(1), pp. 71–79. doi: 

10.1007/s13353-015-0292-7. 

Milano, I. et al. (2014) ‘Outlier SNP markers reveal fine-scale genetic structuring across 

European hake populations (Merluccius merluccius)’, Molecular Ecology, 23, pp. 118–135. 

doi: 10.1111/mec.12568. 

Miller, A. D. et al. (2016) ‘Contrasting patterns of population connectivity between regions 

in a commercially important mollusc Haliotis rubra: Integrating population genetics, 

genomics and marine LiDAR data’, Molecular ecology, 25(16), pp. 3845–3864. doi: 

10.1111/mec.13734. 

Miller, K. J. and Gunasekera, R. M. (2017) ‘A comparison of genetic connectivity in two deep 

sea corals to examine whether seamounts are isolated islands or stepping stones for 

dispersal’, Nature Scientific Reports, 7(46103), pp. 1–14. doi: 10.1038/srep46103. 

Mirciov, C. S. G. et al. (2017) ‘Characterization of putative erythroid regulators of hepcidin in 

mouse models of anemia’, PLoS ONE, 12(1). doi: 10.1371/journal.pone.0171054. 



99 
 

Mullins, R. B. et al. (2018) ‘Genomic analysis reveals multiple mismatches between 

biological and management units in yellowfin tuna (Thunnus albacares)’, ICES Journal of 

Marine Science, 75(6), pp. 2145–2152. doi: 10.1093/icesjms/fsy102. 

Munday, P. L., Donelson, J. M. and Domingos, J. A. (2017) ‘Potential for adaptation to 

climate change in a coral reef fish’, Global Change Biology, 23(1), pp. 307–317. doi: 

10.1111/gcb.13419. 

Musilova, Z. et al. (2019) ‘Vision using multiple distinct rod opsins in deep-sea fishes’, 

Science, 364(6440), pp. 588–592. 

Nayfa, M. G. and Zenger, K. R. (2016) ‘Marine genomics unravelling the effects of gene fl ow 

and selection in highly connected populations of the silver-lip pearl oyster (Pinctada 

maxima)’, Marine Genomics, 28, pp. 99–106. doi: 10.1016/j.margen.2016.02.005. 

Nevado, B., Ramos-Onsins, S. E. and Perez-Enciso, M. (2014) ‘Resequencing studies of 

nonmodel organisms using closely related reference genomes: Optimal experimental 

designs and bioinformatics approaches for population genomics’, Molecular Ecology, 23(7), 

pp. 1764–1779. doi: 10.1111/mec.12693. 

Nickols, K. J. et al. (2015) ‘Marine population connectivity: Reconciling large-scale dispersal 

and high self-retention’, The American Naturalist, 185(2), pp. 196–211. doi: 

10.1086/679503. 

Niloshini Sinnatamby, R. et al. (2015) ‘Latitudinal variation in growth and otolith-inferred 

field metabolic rates of Canadian young-of-the-year Arctic charr’, Ecology of Freshwater 

Fish, 24(3), pp. 478–488. doi: 10.1111/eff.12166. 

O’Leary, S. J. et al. (2018) ‘These aren’t the loci you’e looking for: Principles of effective SNP 



100 
 

filtering for molecular ecologists’, Molecular Ecology, pp. 3193–3206. doi: 

10.1111/mec.14792. 

Ogbe, R. J., Ochalefu, D. O. and Olaniru, O. B. (2016) ‘Bioinformatics advances in genomics – 

A review’, International journal of current pharmaceutical review and research, 8(10), pp. 5–

11. Available at: http://www.scopemed.org/?mno=231738. 

Pampoulie, C. et al. (2015) ‘Rhodopsin gene polymorphism associated with divergent light 

environments in Atlantic cod’, Behavior genetics, 45(2), pp. 236–244. doi: 10.1007/s10519-

014-9701-7. 

Pan, H. et al. (2016) ‘The genome of the largest bony fish, ocean sunfish (Mola mola), 

provides insights into its fast growth rate’, GigaScience, pp. 1–12. doi: 10.1186/s13742-016-

0144-3. 

Papasissi, C. (2020) Molva dypterygia, Fishbase. Available at: fishbase.se/summary/Molva-

dypterygia.html (Accessed: 14 January 2020). 

Paradis, E. (2010) ‘Pegas: An R package for population genetics with an integrated-modular 

approach’, Bioinformatics, 26(3), pp. 419–420. doi: 10.1093/bioinformatics/btp696. 

Paris, J. R., Stevens, J. R. and Catchen, J. M. (2017) ‘Lost in parameter space: A road map for 

stacks’, Methods in Ecology and Evolution, 8(10), pp. 1360–1373. doi: 10.1111/2041-

210X.12775. 

Pauly, D. and Zeller, D. (2016) ‘Catch reconstructions reveal that global marine fisheries 

catches are higher than reported and declining’, Nature Communications, 7, pp. 1–9. doi: 

10.1038/ncomms10244. 

Pecoraro, C. et al. (2018) ‘The population genomics of yellowfin tuna (Thunnus albacares) at 



101 
 

global geographic scale challenges current stock delineation’, Scientific Reports, 8(1), pp. 1–

10. doi: 10.1038/s41598-018-32331-3. 

Pennimpede, T. et al. (2010) ‘Analysis of Cyp26b1/Rarg compound-null mice reveals two 

genetically separable effects of retinoic acid on limb outgrowth’, Developmental Biology. 

Elsevier Inc., 339(1), pp. 179–186. doi: 10.1016/j.ydbio.2009.12.024. 

Picq, S., Mcmillan, W. O. and Puebla, O. (2016) ‘Population genomics of local adaptation 

versus speciation in coral reef fishes (Hypoplectrus spp, Serranidae)’, Ecology and Evolution, 

6(7), pp. 2109–2124. doi: 10.1002/ece3.2028. 

Pierotti, M. E. R. et al. (2017) ‘Rapid and parallel adaptive evolution of the visual system of 

neotropical midas cichlid fishes’, Molecular Biology and Evolution, 34(10), pp. 2469–2485. 

doi: 10.1093/molbev/msx143. 

Porter, M. L., Roberts, N. W. and Partridge, J. C. (2016) ‘Evolution under pressure and the 

adaptation of visual pigment compressibility in deep-sea environments’, Molecular 

Phylogenetics and Evolution. doi: 10.1016/j.ympev.2016.08.007. 

Pritchard, J. K., Stephens, M. and Donnelly, P. (2000) ‘Inference of population structure 

using multilocus genotype data’, Genetics, 155(2). 

Pujolar, J. M. et al. (2014) ‘Genome-wide single-generation signatures of local selection in 

the panmictic European eel’, Molecular Ecology, 23(10), pp. 2514–2528. doi: 

10.1111/mec.12753. 

Purcell, S. et al. (2007) ‘PLINK: A tool set for whole-genome association and population-

based linkage analyses.’, American journal of human genetics, 81(3), pp. 559–75. doi: 

10.1086/519795. 



102 
 

QGIS Development Team (2019) ‘QGIS geographic information system. Open source 

geospatial foundation project.’ Available at: http://qgis.osgeo.org. 

QIAGEN (2006) DNeasy Blood & Tissue Handbook. doi: 10.1111/ele.12937. 

Quattrini, A. M. and Demopoulos, A. W. J. (2016) ‘Ectoparasitism on deep-sea fishes in the 

western North Atlantic: In situ observations from ROV surveys’, International Journal for 

Parasitology: Parasites and Wildlife, 5(3), pp. 217–228. doi: 10.1016/j.ijppaw.2016.07.004. 

Quintela, M. et al. (2020) ‘Genetic analysis redraws the management boundaries for the 

European sprat’, Evolutionary Applications, Early View. doi: 10.1111/eva.12942. 

R Core Team (2017) ‘R: A language and environment for statistical computing’. Vienna, 

Austria: R Foundation for Statistical Computing. 

Raj, A., Stephens, M. and Pritchard, J. K. (2014) ‘FastSTRUCTURE: Variational inference of 

population structure in large SNP data sets’, Genetics, 197(2), pp. 573–589. doi: 

10.1534/genetics.114.164350. 

Reid, N. M. et al. (2016) ‘The genomic landscape of rapid repeated evolutionary adaptation 

to toxic pollution in wild fish’, Science, 354(6317), pp. 1305–1309. 

Reinert, K. et al. (2015) ‘Alignment of Next-Generation Sequencing Reads’, Annual Review of 

Genomics and Human Genetics, 16(1), pp. 133–151. doi: 10.1146/annurev-genom-090413-

025358. 

Rennison, D. J. et al. (2016) ‘Rapid adaptive evolution of colour vision in the threespine 

stickleback radiation’, Proceedings of the Royal Society B, 283. 

Riginos, C. et al. (2016) ‘Navigating the currents of seascape genomics: How spatial analyses 



103 
 

can augment population genomic studies’, Current Zoology, 62(6), pp. 581–601. doi: 

10.1093/cz/zow067. 

Ring, A. K. et al. (2009) ‘Development of 10 microsatellite loci in the ling (Molva molva)’, 

Molecular Ecology Resources, 9(5), pp. 1401–1403. doi: 10.1111/j.1755-0998.2009.02677.x. 

Rodríguez-Ezpeleta, N. et al. (2016) ‘Population structure of Atlantic mackerel inferred from 

RAD-seq-derived SNP markers: Effects of sequence clustering parameters and hierarchical 

SNP selection’, Molecular ecology resources, 16, pp. 991–1001. doi: 10.1111/1755-

0998.12518. 

Rohfritsch, A. et al. (2018) ‘Preliminary insights into the genetics of bank vole tolerance to 

Puumala hantavirus in Sweden’, Ecology and Evolution, 8(22), pp. 11273–11292. doi: 

10.1002/ece3.4603. 

Rosenberg, A. A. et al. (2018) ‘Applying a new ensemble approach to estimating stock status 

of marine fisheries around the world’, Conservation Letters, 11(1), pp. 1–9. doi: 

10.1111/conl.12363. 

Van Rossum, G. and Drake Jr, F. L. (1995) ‘Python reference manual’. Centrum voor 

Wiskunde en Informatica Amsterdam. 

Rowley, S. J. (2008) Molva molva Ling., Marine Life Information Network: Biology and 

Sensitive Key Information Reviews. Available at: https://www.marlin.ac.uk/species/detail/10 

(Accessed: 14 January 2020). 

Roy, T. and Bhat, A. (2018) ‘Divergences in learning and memory among wild zebrafish: Do 

sex and body size play a role?’, Learning and Behaviour, 46, pp. 124–133. doi: 

10.3758/s13420-017-0296-8. 



104 
 

Ruperao, P. and Edwards, D. (2015) ‘Bioinformatics: Identification of markers from next-

generation sequence data’, Plant Genotyping: Methods and Protocols, pp. 29–47. doi: 

10.1007/978-1-4939-1966-6. 

Russello, M. A. et al. (2011) ‘Detection of outlier loci and their utility for fisheries 

management’, Evolutionary Applications, 5(1), pp. 39–52. doi: 10.1111/j.1752-

4571.2011.00206.x. 

Sá-Pinto, A. et al. (2012) ‘Barriers to gene flow in the marine environment: Insights from two 

common intertidal limpet species of the Atlantic and Mediterranean’, PLoS ONE, 7(12). doi: 

10.1371/journal.pone.0050330. 

Sage Science (2020) Sage Science. Available at: sagescience.com (Accessed: 22 June 2020). 

Saha, A. et al. (2015) ‘Seascape genetics of saithe (Pollachius virens) across the North 

Atlantic using single nucleotide polymorphisms’, ICES Journal of Marine Science, 72(9), pp. 

2732–2741. 

Saha, A. et al. (2017) ‘Geographic extent of introgression in Sebastes mentella and its effect 

on genetic population structure’, Evolutionary Applications, 10(1), pp. 77–90. doi: 

10.1111/eva.12429. 

Saint-pé, K. et al. (2019) ‘Development of a large SNPs resource and a low-density SNP array 

for brown trout (Salmo trutta) population genetics’. BMC Genomics, pp. 1–13. 

Sandersfeld, T., Mark, F. C. and Knust, R. (2017) ‘Temperature-dependent metabolism in 

Antarctic fish: Do habitat temperature conditions affect thermal tolerance ranges?’, Polar 

Biology, 40(1), pp. 141–149. doi: 10.1007/s00300-016-1934-x. 

Santos, S. et al. (2012) ‘Isolation by distance and low connectivity in the peppery furrow 



105 
 

shell Scrobicularia plana (Bivalvia)’, Marine Ecology Progress Series, 462, pp. 111–124. doi: 

10.3354/meps09834. 

Savolainen, O., Lascoux, M. and Merilä, J. (2013) ‘Ecological genomics of local adaptation’, 

Nature Reviews Genetics, 14, pp. 807–820. 

Schade, F. M., Raupach, M. J. and Wegner, K. M. (2016) ‘Seasonal variation in parasite 

infection patterns of marine fish species from the Northern Wadden Sea in relation to 

interannual temperature fluctuations’, Journal of Sea Research, 113, pp. 73–84. doi: 

10.1016/j.seares.2015.09.002. 

Selkoe, K. A. et al. (2016) ‘A decade of seascape genetics: Contributions to basic and applied 

marine connectivity’, Marine Ecology Progress Series, 554, pp. 1–19. doi: 

10.3354/meps11792. 

Semenova, O. G., Pritvorova, A. V and Krayushkina, L. S. (2018) ‘Changes of somatotropin 

concentration in blood serum of juvenile Russian sturgeon Acipenser gueldenstaedtii 

(Acipenseriformes) during adaptation to hyperosmotic medium’, Journal of Ichthyology, 

58(2), pp. 265–268. doi: 10.1134/S0032945218020133. 

Shafer, A. B. A. et al. (2017) ‘Bioinformatic processing of RAD-seq data dramatically impacts 

downstream population genetic inference’, Methods in Ecology and Evolution, 8, pp. 907–

917. doi: 10.1111/2041-210X.12700. 

Sherman, C. D. H. et al. (2016) ‘What are we missing about marine invasions? Filling in the 

gaps with evolutionary genomics’, Marine Biology, 163(10), pp. 1–24. doi: 10.1007/s00227-

016-2961-4. 

Shimo, T. et al. (2019) ‘Chondrocyte-specific gene expression’, In Vivo, 33(1), pp. 85–91. doi: 



106 
 

10.21873/invivo.11443. 

Siccha-Ramirez, Z. R. et al. (2018) ‘SNP identification and validation on genomic DNA for 

studying genetic diversity in Thunnus albacares and Scomberomorus brasiliensis by 

combining RADseq and long read high throughput sequencing’, Fisheries Research, 198, pp. 

189–194. doi: 10.1016/j.fishres.2017.09.002. 

Solbakken, M. H. et al. (2016) ‘Successive losses of central immune genes characterize the 

Gadiformes’ alternate immunity’, Genome Biology and Evolution, 8(11), pp. 3508–3515. doi: 

10.1093/gbe/evw250. 

Solbakken, M. H. et al. (2017) ‘Linking species habitat and past palaeoclimatic events to 

evolution of the teleost innate immune system’, Proceedings of the Royal Society B, 

284(20162810). 

Song, J. Y. et al. (2020) ‘Hox genes maintain critical roles in the adult skeleton’, Proceedings 

of the National Academy of Sciences, 117(13), pp. 7296–7304. doi: 

10.1073/pnas.1920860117. 

Stensvold, B. and Minoretti, A. (2015) Long Span Bridge in Norway. 

Stocks, K. (2009) Seamounts Online: an online information system for seamount biology. 

Available at: http://seamounts.sdsc.edu (Accessed: 14 January 2020). 

Street, G. T. et al. (1998) ‘Reduced genetic diversity in a meiobenthic copepod exposed to a 

xenobiotic’, Journal of Experimental Marine Biology and Ecology, 222, pp. 93–111. 

Strepparava, N. et al. (2018) ‘Temperature-related parasite infection dynamics: The case of 

proliferative kidney disease of brown trout’, Parasitology, 145(3), pp. 281–291. doi: 

10.1017/S0031182017001482. 



107 
 

Sustainable Fisheries Partnership (2016) Ling NE Atlantic nei, FishSource. Available at: 

https://www.fishsource.org/stock_page/2014 (Accessed: 14 January 2020). 

Sutton, T. and Milligan, R. J. (2019) ‘Aquatic ecology: Deep-sea ecology’, in Fath, B. (ed.) 

Encyclopedia of Ecology. 2nd edn. Amsterdam, Netherlands: Elsevier, pp. 35–45. 

Thorvaldsdóttir, H., Robinson, J. T. and Mesirov, J. P. (2013) ‘Integrative Genomics Viewer 

(IGV): High-performance genomics data visualization and exploration’, Briefings in 

Bioinformatics, 14(2), pp. 178–192. doi: 10.1093/bib/bbs017. 

Toriello, H. V. (2016) ‘What is new in genetics and genomics?’, in Health Care for People with 

Intellectual and Developmental Disabilities Across the Lifespan, pp. 1–2307. doi: 

10.1007/978-3-319-18096-0. 

Torkamaneh, D., Laroche, J. and Belzile, F. (2016) ‘Genome-wide SNP calling from 

genotyping by sequencing (GBS) data: A comparison of seven pipelines and two sequencing 

technologies’, PLoS ONE, 11(8), pp. 1–14. doi: 10.1371/journal.pone.0161333. 

Tsuda, S. et al. (2020) ‘Fish-derived antifreeze proteins and antifreeze glycoprotein exhibit a 

different ice-binding property with increasing concentration’, Biomolecules, 10(3). 

Valenzuela-Quiñonez, F. (2016) ‘How fisheries management can benefit from genomics?’, 

Briefings in Functional Genomics, 15(5), pp. 352–357. doi: 10.1093/bfgp/elw006. 

Varela, A. I., Ritchie, P. A. and Smith, P. J. (2013) ‘Global genetic population structure in the 

commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on 

microsatellite DNA analyses’, Fisheries Research. Elsevier B.V., 140, pp. 83–90. doi: 

10.1016/j.fishres.2012.12.011. 

Verhelst, P. et al. (2016) ‘Acoustic telemetry as a tool for cod stock assessment’, in Degraer, 



108 
 

S. et al. (eds) North Sea Open Science Conference 2016: Abstract Booklet. Brussels, Belgium: 

Royal Belgian Institute of Natural Sciences; Belgian Biodiversity Platform. 

Victorero, L. et al. (2018) ‘Out of sight, but within reach: A deep-sea fisheries from >400m 

global history of bottom-trawled depth’, Frontiers in Marine Science, 5, pp. 1–17. doi: 

10.3389/fmars.2018.00098. 

de Villemereuil, P. and Gaggiotti, O. E. (2015) ‘A new FST-based method to uncover local 

adaptation using environmental variables’, Methods in Ecology and Evolution, 6(11), pp. 

1248–1258. doi: 10.1111/2041-210X.12418. 

Wang, K. et al. (2019) ‘Morphology and genome of a snailfish from the Mariana Trench 

provide insights into deep-sea adaptation’, Nature Ecology and Evolution, 3, pp. 823–833. 

doi: 10.1038/s41559-019-0864-8. 

Wang, L. et al. (2019) ‘Glucose transporter 1 critically controls microglial activation through 

facilitating glycolysis’, Molecular Neurodegeneration, 14(2). 

Waples, R. S. and Audzijonyte, A. (2016) ‘Fishery-induced evolution provides insights into 

adaptive responses of marine species to climate change’, Frontiers in Ecology and the 

Environment, 14(4), pp. 217–224. doi: 10.1002/fee.1264. 

Weber, J. N. et al. (2017) ‘Resist globally, infect locally: A transcontinental test of adaptation 

by stickleback and their tapeworm parasite’, The American Naturalist, 189(1), pp. 43–57. 

doi: 10.1086/689597. 

Weir, B. S. and Cockerham, C. C. (1984) ‘Estimating F-statistics for the analysis of population 

structure’, Evolution, 38(6), p. 1358. doi: 10.2307/2408641. 

Willing, E. M., Dreyer, C. and van Oosterhout, C. (2012) ‘Estimates of genetic differentiation 



109 
 

measured by Fst do not necessarily require large sample sizes when using many SNP 

markers’, PLoS ONE, 7(8), pp. 1–7. doi: 10.1371/journal.pone.0042649. 

Wilson, K. L. et al. (2019) ‘History variation along environmental and harvest clines of a 

northern freshwater fish: Plasticity and adaptation’, Journal of Animal Ecology, 88(5), pp. 

717–733. doi: 10.1111/1365-2656.12965. 

Yamazaki, A. et al. (2018) ‘Gene expression of antifreeze protein in relation to historical 

distributions of Myoxocephalus fish species’, Marine Biology, 165(11), pp. 1–11. doi: 

10.1007/s00227-018-3440-x. 

Yamazaki, A. et al. (2019) ‘Freeze tolerance in sculpins (Pisces; Cottoidea) inhabiting north 

Pacific and Arctic oceans: Antifreeze activity and gene sequences of the antifreeze protein’, 

Biomolecules, 9(4), p. 139. doi: 10.3390/biom9040139. 

Yang, G. et al. (2016) ‘Hepatoma-derived growth factor promotes growth and metastasis of 

hepatocellular carcinoma cells’, Cell Biochemistry and Function, 34(4), pp. 274–285. 

Zhuang, X. et al. (2019) ‘Molecular mechanism and history of non-sense to sense evolution 

of antifreeze glycoprotein gene in northern gadids’, Proceedings of the National Academy of 

Sciences, 116(10). doi: 10.1073/pnas.1817138116. 

  



110 
 

6. Supplementary material 

Before deciding on the use of the MAF = 0.05 dataset for the study, test analyses were run to 

compare filtering values of MAF at 0.05, 0.025, and 0.01, to ensure that the most suitable 

data was used. This was carried out on the dataset before removal of outlier SNPs, as a 

preliminary study to decide on which dataset to use for the main study. These results are 

presented here as supplementary material to show how this conclusion came about.  

Also covered here is some additional work on the dataset from the main study. Included are 

analyses in which the blue ling data was split into its apparent populations; the Atlantic and 

the fjords. Population analyses were repeated on these new datasets to see if any fine-scale 

structure could be found which was hidden in the main analysis.  

The supplementary material then goes onto the outlier dataset, for which the population 

analyses were again repeated. This has not been included in the main study as there were no 

findings of interest from this. With only a small number of outliers (3 for the common ling and 

5 for the blue ling) the results had some resemblance to the original analyses, but some 

individuals were dropped from the analyses due to missing data.  

 

6.1. Population structure of the common ling 

In the structure plot for MAF = 0.05 (Fig. 6d) we see some individual outliers coming from the 

BE08 and SO14 populations; the same two populations around Bergen which are shown to 

deviate in the PCA and DAPC analyses. This adds to the possibility of structure here, inferring 

that there is some stronger differentiation at work in this particular area/fjord. The 

corresponding plot from harvester (Fig. 6e) struggles to allocate one value to K, but upon 
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closer inspection K = 1 comes out as the best fit. However, it seems that K could equal 

anywhere between 1 and 5 from this data.  

The structural analyses carried out using LEA in R also give a general pattern to indicate one 

population overall (Fig. 6f), but again with some outlying individuals. This time they 

correspond with the PCA and DAPC (Fig. 6b & 6c) differently, indicating one of the Rockall 

populations to be differentiated from the rest of the population (RA14 – the purple 

population in PCA and DAPC plots). This is interesting that the different structural analysis 

methods pick up on different aspects of patterns found in PCA and DAPC.  
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Figure 6: Population structure of the common ling with; a) map showing coordinates for the locations of each 

population sample site; b) principle component analysis plot; c) discriminant analysis of principal components; 

d) structure plot; e) the corresponding plot produced in structure harvester of L(k) (mean +- SD) for each value 

of k tested (both produced using the dataset for MAF = 0.05); and f) structure plot produced in the LEA package 

in R for the common ling dataset MAF = 0.05 
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The cross-entropy values given (Table 13) are similar to the pattern seen in structure 

harvester, in that it isn’t completely clear what the best fit for K is from these values. Again, K 

= 1 comes out as best, but it is very close between that and K = 2. The pattern pointing toward 

K = 1 is also backed up by analysis in fastStructure (Table 14) which also indicated 1 as best 

fit.  

 

Table 13: the corresponding cross entropy values produced for LEA structure data (both produced using the 

dataset for MAF = 0.05) 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.655 0.663 0.672 0.684 0.702 0.715 0.732 0.742 0.768 0.776 

Mean 0.662 0.670 0.679 0.692 0.707 0.720 0.737 0.750 0.772 0.786 

Max 0.668 0.677 0.686 0.701 0.713 0.728 0.745 0.759 0.778 0.797 

 

 

 

Table 14: FastStructure results for best fit of k calculated using the dataset for MAF = 0.05 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 1 

 

 

 

With the MAF = 0.025 data the PCA and DAPC plots maintain the same patterns as those 

produced with the MAF = 0.05 data (Fig. 7b & 7c). The analyses then begin to differ, as we 

lose the outliers in the structure plot (Fig. 7d). This plot seems to more closely point towards 

K = 1, which again comes out as best fit in harvester (Fig. 7e). Again, we see that K could equal 

a number of values from this plot, falling anywhere between 1 and 6.  

With the LEA plot from the MAF = 0.025 dataset we get the same Rockall population deviating 

from the norm, and also a slight deviation from one individual in the RYF13 population (fjord) 
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(Fig. 7f). This deviation does not seem to correspond to any pattern found anywhere else in 

the analyses.  

 

Figure 7: Population structure of the common ling at MAF 0.025 with; a) map showing coordinates for the 

locations of each population sample site; b) principle component analysis plot; c) discriminant analysis of 
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principal components; d) structure plot; e) LEA plot; and f) structure harvester plot corresponding to the 

structure plot 

 

Again, K = 1 appears to come out as best fit from the cross-entropy values (Table 15) and this 

is also found in fastStructure (Table 16). 

 

Table 15: the corresponding cross entropy values produced for LEA structure data (both produced using the 

dataset for MAF = 0.025) 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.532 0.538 0.548 0.560 0.572 0.582 0.600 0.613 0.627 0.638 

Mean 0.534 0.540 0.552 0.562 0.576 0.587 0.602 0.619 0.632 0.649 

Max 0.537 0.544 0.555 0.565 0.581 0.593 0.609 0.625 0.637 0.658 

 

 

 

Table 16: FastStructure results for best fit of k calculated using the dataset for MAF = 0.025 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 1 

 

 

 

Again, as may be expected, with MAF at the value of 0.01 we find PCA and DAPC plots (Fig. 

8b & 8c) exhibiting the same patterns as those produced from MAF = 0.05 and MAF = 0.025. 

With the structure analysis we find that the outliers seen earlier appear again, along with a 

couple of extra individuals (Fig. 8d). The added individuals are from the populations HA14 and 

TF05, two more of the fjords, but this data does not appear to correspond with any deviations 

found anywhere else in the analyses. Maybe this is linked with the increased ability to find 

the fine-scale structural variations with an increased number of SNPs.  
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Harvester no longer gives the flatline pattern, and it is much clearer that K = 1 is best fit (Fig. 

8e). This could indicate that relaxing the filtering on minor alleles and retaining more SNPs 

allows us to find the true structure in the analyses. It seems that this becomes unclear with 

the loss of SNPs, and with the stricter datasets our analyses are unable to pick out one suitable 

value.  
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Figure 8: Population structure of the common ling at MAF 0.01 with; a) map showing coordinates for the 

locations of each population sample site; b) principle component analysis plot; c) discriminant analysis of 

principal components; d) structure plot; e) LEA plot; and f) structure harvester plot corresponding to the 

structure plot 
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Although harvester is more certain of the calculations for K in the MAF = 0.01 dataset, the 

cross-entropy values found by LEA do not seem to become any clearer (Table 17). Values 

remain consistently close, and K still seems to best fit as 1 population. The LEA plot is also 

very similar to that of MAF = 0.025, with the same outliers indicated (Fig. 8f). Again, 

fastStructure indicates 1 population overall (Table 18).  

 

Table 17: the corresponding cross entropy values produced for LEA structure data (both produced using the 

dataset for MAF = 0.01) 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.526 0.531 0.542 0.556 0.569 0.576 0.592 0.603 0.621 0.641 

Mean 0.538 0.544 0.555 0.568 0.581 0.591 0.609 0.619 0.637 0.654 

Max 0.547 0.554 0.564 0.580 0.590 0.602 0.623 0.627 0.649 0.661 

 

 

 

Table 18: FastStructure results for best fit of k calculated using the dataset for MAF = 0.01 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 1 

 

 

 

From these first analyses we do not find many differences between the results produced from 

the different filtered datasets. Slight changes in weight of differentiation for some of the 

populations are exhibited, which may indicate that some of the SNPs lost in stricter filtering 

are holding structural information; or it could be the opposite and increased SNPs could be 

hiding the true structure of the populations. Overall, from the (mostly) consistent results 

throughout we decided it was safe to go with a stricter filter and lose more SNPs, as structure 

should not be lost through this.  
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6.2. Population structure for the blue ling  

The analysis of the MAF = 0.05 filtered dataset gives an overall pattern of two populations, 

seeing a clear split of the Atlantic and fjords for the structure plot in Figure 9d, and the same 

signal to a lesser degree for the LEA plot in Figure 9f. Though this pattern appears quite clear 

in these plots, the harvester plot (Fig. 9e) still exhibits a flatline pattern across K = 1 to 4 and 

cross-entropy values from LEA (Table 19) are again unclear. This time, when looking closer at 

the harvester plot we find K = 2 to be best fit, although cross-entropy still finds a value of 1. 

The values we find in fastStructure seem to correspond more with the harvester values, 

finding that K could equal between 2 and 5 (Table 20).  

We also see a couple of outliers in our plots. That produced in the Structure program (Fig. 9d) 

shows the same two Atlantic outliers as those seen in the DAPC analysis (Fig. 9c), one 

individual from RS07 and one individual from SL14. The fjord outliers are the HA14 outlier 

seen in the PCA plot (Fig. 9b), and RYV14, which doesn’t show up as a deviation in any other 

analyses. 

The LEA plot (Fig. 9f), although the structure is less clear, exhibits the same two Atlantic 

outliers as the Structure plot and DAPC. From the fjords, we again find HA14 deviating, and 

also one individual from NY13.  
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Figure 9: Population structure of the blue ling with; a) map showing coordinates for the locations of each 

population sample site; b) principle component analysis plot; c) discriminant analysis of principal components; 

d) structure plot; e) the corresponding plot produced in structure harvester of L(k) (mean +- SD) for each value 

of k tested (both produced using the dataset for MAF = 0.05); and f) structure plot produced in the LEA package 

in R for the common ling dataset MAF = 0.05 
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Table 19: the corresponding cross entropy values produced for LEA structure data (both produced using the 

dataset for MAF = 0.05) 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.681 0.683 0.690 0.692 0.693 0.699 0.705 0.712 0.715 0.715 

Mean 0.685 0.686 0.692 0.695 0.697 0.702 0.707 0.713 0.718 0.722 

Max 0.687 0.688 0.695 0.699 0.700 0.706 0.714 0.714 0.723 0.725 

 

 

 

Table 20: FastStructure results for best fit of k calculated using the dataset for MAF = 0.05 

 K 

Model complexity that maximises marginal likelihood 2 

Model components used to explain structure in data 5 

 

 

 

With the MAF = 0.025 dataset (Fig. 10) we get the same patterns as in our population analysis 

at MAF = 0.05. All outlying individuals remain the same in all plots, and we still see this clear 

split between the Atlantic and fjord populations. Harvester again finds K = 2 (Fig. 10e), and 

cross-entropy indicates K = 1 (Table 21). This time fastStructure gives a best value of K to be 

between 1 and 3 (Table 22).   
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Figure 10: Population structure of the blue ling at MAF = 0.025 with; a) map showing coordinates for the 

locations of each population sample site; b) principle component analysis plot; c) discriminant analysis of 

principal components; d) structure plot; e) LEA plot; and f) structure harvester plot corresponding to the 

structure plot 
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Table 21: the corresponding cross entropy values produced for LEA structure data (both produced using the 

dataset for MAF = 0.025) 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.569 0.569 0.574 0.572 0.576 0.582 0.587 0.591 0.595 0.598 

Mean 0.571 0.572 0.576 0.578 0.581 0.585 0.588 0.592 0.596 0.600 

Max 0.573 0.575 0.580 0.581 0.584 0.589 0.591 0.597 0.599 0.603 

 

 

 

Table 22: FastStructure results for best fit of k calculated using the dataset for MAF = 0.025 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 3 
 

 

Again, there is little difference found from the MAF = 0.01 data (Fig. 11) compared with that 

of MAF = 0.05 and MAF = 0.025. However, with this data it is difficult to pick a value for K from 

harvester (Fig. 11e), which seems to be a best fit of either 1 or 3. Cross-entropy still indicates 

K = 1 (Table 23) and fastStructure finds that K is best fit with 2 or 1 (Table 24). The outlying 

individuals again follow the same pattern in both Atlantic and fjord populations in all of the 

plots.  
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Figure 11: Population structure of the blue ling at MAF = 0.01 with; a) map showing coordinates for the locations 

of each population sample site; b) principle component analysis plot; c) discriminant analysis of principal 

components; d) structure plot; e) LEA plot; and f) structure harvester plot corresponding to the structure plot 
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Table 23: the corresponding cross entropy values produced for LEA structure data (both produced using the 

dataset for MAF = 0.01) 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.413 0.414 0.413 0.417 0.420 0.422 0.426 0.429 0.432 0.437 

Mean 0.418 0.418 0.419 0.422 0.425 0.428 0.432 0.435 0.438 0.441 

Max 0.422 0.423 0.427 0.429 0.430 0.434 0.437 0.440 0.443 0.446 

 

 

 

Table 24: FastStructure results for best fit of k calculated using the dataset for MAF = 0.01 

 K 

Model complexity that maximises marginal likelihood 2 

Model components used to explain structure in data 1 

 

 

 

In the PCA and DAPC across the different filtering datasets for the blue ling we find the same 

consistency in results as found with the common ling data. Very little change is seen, possibly 

with even less effect within this species. Two clear clusters are formed in all plots; within these 

clusters we see fjord samples grouping together in one and Atlantic samples in the other.  

Drawing away from these clusters are the same two individuals in all PCA plots. One individual 

from the HA14 sample group, taken from one of the fjords, and the other from the SL14 

sample which comes from the Rockall Slope. These appear to greatly deviate from the rest of 

the individuals.  

We find the same scenario with the DAPC in which all plots across the datasets are almost 

identical. They also exhibit a similar pattern; we see a very clear cluster of Atlantic populations 

formed, with the fjord samples separated from this. These fjords are then separated out from 
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one another, which differs from the PCA. Possibly the most clearly separated is the NY13 

group, a fjord found much further North from the rest at Nygunnen in the North of Norway.   

Outlying individuals within these plots should also be noted. From the Atlantic population 

there are two individuals clearly branching out towards the fjord populations to the bottom 

of the plot; these individuals originating from RS07 and SL14. This is the same SL14 individual 

seen branching out in the PCA, and although we don’t see this same behaviour from HA14 

like in the PCA the SL14 individual is stretching out to sit with this same individual in the DAPC 

plots.  

Other deviating individuals are seen towards the top of the plot, with one individual stretching 

out from NY13 more towards the Atlantic cluster, and with the one AD07 individual (an 

Atlantic population) sitting on its own between the Atlantic and Fjord groupings.  

In all Structure plots we see the same two Atlantic individuals, RS07 and SL14, and the same 

two fjord individuals, HA14 and RYV14, acting as outliers. All LEA plots exhibit these same 

Atlantic outliers and from the fjords we see HA14 and NY13 deviating from the norm. The 

consistency of this throughout all analyses indicates the strength of these patterns, and 

confirms the presence of two distinct populations within the blue ling throughout the 

sampled area. Again, it was clear that the stricter filtering dataset of MAF = 0.05 was sufficient 

to detect structure in this study and thus results from those analyses were presented.  

 

6.3. Atlantic population analysis in the blue ling 

To investigate the results of the blue ling analyses further, we split the populations into the 

Atlantic and the fjords and repeated our analyses – excluding Fst as with it being pairwise it 
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should not change when excluding different populations. This should give us a deeper look 

into the two population clusters inferred in the previous analyses. Again, the analyses were 

done with the three different filtering datasets for comparison.  

 

 

Figure 12: Analyses for the blue ling Atlantic populations using the filtered dataset with MAF = 0.05; a) principal 

component analysis and b) discriminant analysis of principal components  

 

 

  

Figure 13: Structure harvester plot for analysis of Atlantic blue ling populations at MAF = 0.05 
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Table 25: Cross entropy values for LEA structure data produced using the dataset for MAF = 0.05 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.680 0.687 0.694 0.701 0.704 0.713 0.719 0.720 0.729 0.735 

Mean 0.685 0.692 0.698 0.706 0.711 0.717 0.722 0.728 0.732 0.738 

Max 0.690 0.698 0.704 0.711 0.716 0.720 0.726 0.732 0.736 0.741 

 

 

 

Table 26: FastStructure results for best fit of k calculated using the dataset for MAF = 0.05 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 4 

 

 

The inference of one population within our Northern Atlantic samples continues with the 

Structure, LEA, and FastStructure analyses. Both Structure and LEA analyses failed to find any 

structure within the samples. This is also backed up by structure harvester which this time is 

more clearly exhibiting K = 1 as best fit (Fig. 30). We again find this in the cross-entropy values 

also (Table 25). FastStructure gives a range of between 1 and 4 for best fit of K (Table 26). 

 

 

Figure 14: Analyses for the blue ling Atlantic populations using the filtered dataset with MAF = 0.025; a) principal 

component analysis and b) discriminant analysis of principal components 
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Figure 15: Structure harvester plot for analysis of Atlantic blue ling populations at MAF = 0.025 

 

 

Table 27: Cross entropy values for LEA structure data produced using the dataset for MAF = 0.025 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.572 0.577 0.585 0.588 0.592 0.594 0.602 0.606 0.611 0.618 

Mean 0.575 0.582 0.589 0.594 0.596 0.602 0.607 0.613 0.618 0.624 

Max 0.579 0.585 0.594 0.597 0.601 0.605 0.609 0.618 0.623 0.628 

 

 

 

Table 28: FastStructure results for best fit of k calculated using the dataset for MAF = 0.025 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 2 

 

 

With the MAF 0.025 dataset we find similar patterns as that of the MAF 0.05 data. No 

structure is exhibited in Structure or LEA analyses. In Structure Harvester we find the flatline 

returns and it is more difficult to accurately place K. Upon closer inspection Harvester gives K 
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= 1, and we see this again with cross-entropy values. FastStructure is closer to this in its range, 

with values of 1 or 2 given as best fit.  

 

Figure 16: Analyses for the blue ling Atlantic populations using the filtered dataset with MAF = 0.01; a) principal 

component analysis and b) discriminant analysis of principal components 

 

 

  

Figure 17: Structure harvester plot for analysis of Atlantic blue ling populations at MAF = 0.01 

 

 

Table 29: Cross entropy values for LEA structure data produced using the dataset for MAF = 0.01 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.673 0.678 0.686 0.694 0.701 0.705 0.707 0.715 0.720 0.728 

Mean 0.684 0.690 0.697 0.704 0.711 0.716 0.722 0.728 0.733 0.741 

Max 0.695 0.702 0.708 0.715 0.722 0.729 0.732 0.741 0.742 0.748 
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Table 30: FastStructure results for best fit of k calculated using the dataset for MAF = 0.01 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 1 

 

 

 

Similar results continue with the MAF 0.01 dataset. Structure and LEA again found a lack of 

structure indicative of one population, and the cross entropy and harvester values came out 

with K = 1 as best fit. Though a flatline for values is once again produced from Harvester, 

FastStructure chooses K = 1 as the best fit with no range.  

Looking at the analyses across the filtering datasets, starting with PCA analyses of the Atlantic 

populations, we find no further structure which is not already seen in the initial analyses. 

There is one very clear cluster indicated in all three analyses. It appears that this data backs 

up that we have just one highly connected population of blue ling in the Northern Atlantic. 

The DAPC plot produced from this data also exhibits one very clear cluster, but here we have 

one outlier from this group. This comes from a sample population containing just one 

individual. It may be possible that any differences found in this one individual would be 

amplified more so because of this. Had there been more samples taken from this site, we may 

have found this population to be less differentiated than it appears, or it could have allowed 

us to investigate further some fine-scale differentiation between individuals.  

Again, this data is reinforcing the result of one population of blue ling in the Northern Atlantic. 

It seems likely that the one outlier is just an artefact of the DAPC analyses as it does not appear 

to show up anywhere else in our analyses. It also appears to be minor allele frequency 
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differences drawing this individual out from the cluster as we find increasing differentiation 

when relaxing the MAF filter.  

 

6.4. Fjord population analysis in the blue ling 

Moving onto the fjord populations next, we may expect to see more structure considering the 

DAPC plots of the broader datasets. With fjords scattered about quite evenly in the previous 

plots, it may appear that all could be individual populations with further analysis. It is 

important to look into this further to gain an understanding of the interactions exhibited 

between fjord individuals.  

 

  

Figure 18: Analyses for the blue ling fjord populations using the filtered dataset with MAF = 0.05; a) principal 

component analysis and b) discriminant analysis of principal components 
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Figure 19: Structure harvester plot for analysis of fjord blue ling populations at MAF = 0.05 

 

  

Figure 20: Structure plot produced in the LEA package in R for fjord blue ling populations at MAF = 0.05 

 

 

Table 31: Cross entropy values for LEA structure data at MAF = 0.05 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.764 0.776 0.828 0.902 0.988 1.043 1.130 1.172 1.238 1.283 

Mean 0.787 0.812 0.875 0.940 1.014 1.091 1.150 1.221 1.304 1.320 

Max 0.813 0.831 0.906 0.965 1.054 1.117 1.189 1.260 1.343 1.405 

 

 

 

 

 

 



134 
 

 

Table 32: FastStructure results for best fit of k calculated using the dataset for MAF = 0.05 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 1 

 

 

 

First, for the analyses using the MAF = 0.05 data, we see PCA and DAPC plots (Fig. 35) which 

give no further insight into structure than those previously produced in the broader analyses. 

Fjord populations appear to be slightly spread out from one another like in the previous plots, 

suggesting there may be some differentiation between them. The Structure analysis failed to 

find any structure, which is confirmed by structure harvester (Fig. 36) where K = 1 appears to 

be best fit. Despite no structure being detected with the structure analysis, we appear to see 

a bit of structure hinted at in the LEA plot (Fig. 37). To the right of the plot we see the orange 

bars take up more of the plot compared to the left which is dominated by the pink colour. 

These more orange individuals are of the NY13 population to the North of Norway. This may 

hint at greater differentiation of this population from the others, which is separated out from 

the rest by a greater distance.  

Although we have these hints of structure, the cross entropy values to go with the LEA analysis 

indicate K = 1 as best fit (Table 31). This fits with the values given by fastStructure, which also 

gives K = 1 (Table 32).  
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Figure 21: Analyses for the blue ling fjord populations using the filtered dataset with MAF = 0.025; a) principal 

component analysis and b) discriminant analysis of principal components 

 

 

 

Figure 22: a) structure plot and b) structure harvester plot for analyses of fjord blue ling populations at MAF = 

0.025 

 

  

Figure 23: Structure plot produced in the LEA package in R for fjord blue ling populations at MAF = 0.025 

 

A B 



136 
 

 

Table 33: Cross entropy values for LEA structure data at MAF = 0.025 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.739 0.759 0.817 0.868 0.931 0.984 1.053 1.152 1.235 1.253 

Mean 0.751 0.775 0.833 0.887 0.970 1.020 1.111 1.168 1.248 1.308 

Max 0.766 0.802 0.852 0.897 1.024 1.064 1.137 1.180 1.272 1.346 

 

 

 

Table 34: FastStructure results for best fit of k calculated using the dataset for MAF = 0.025 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 1 

 

 

Similarly, with the MAF = 0.025 we have populations separated out in the PCA and DAPC plots 

(Fig. 38), although a little more so with this data. Here it looks a little clearer that the NY13 

population is slightly more deviated from the rest. The Structure plot doesn’t give any clear 

indication of structure (Fig. 39a), but to the right the green bars do appear to take up more of 

the plot compared to the more red coloured left, much like that which is seen in the LEA plot 

(Fig. 40). This is minimal and may not be noticed if it weren’t for the LEA plot but could be 

backing up the data in suggesting that NY13 is differentiated a little from the other fjord 

populations.  

Structure harvester is less clear with this analysis (Fig. 39b), and appears to find any value 

between 1 and 3 to be best fitted for K. This is not backed up by the LEA cross entropy values 

(Table 33) or the fastStructure values (Table 34) which both find K = 1.  
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Figure 24: Analyses for the blue ling fjord populations using the filtered dataset with MAF = 0.01; a) principal 

component analysis and b) discriminant analysis of principal components 

 

 

 

Figure 25: a) structure plot and b) structure harvester plot for analyses of fjord blue ling populations at MAF = 

0.01 

 

  

Figure 26: Structure plot produced in the LEA package in R for fjord blue ling populations at MAF = 0.01 

A B 
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Table 35: Cross entropy values for LEA structure data at MAF = 0.01 

 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 
Min 0.723 0.744 0.798 0.862 0.932 0.952 1.027 1.126 1.170 1.184 

Mean 0.735 0.757 0.811 0.875 0.956 1.010 1.073 1.134 1.199 1.272 

Max 0.759 0.781 0.840 0.887 0.984 1.064 1.135 1.146 1.246 1.305 

 

 

 

Table 36: FastStructure results for best fit of k calculated using the dataset for MAF = 0.01 

 K 

Model complexity that maximises marginal likelihood 1 

Model components used to explain structure in data 1 

 

 

We find with the MAF = 0.01 data that the PCA and DAPC plots become more spread out again 

(Fig. 41). NY13 becomes even more clearly separate from the other populations. This 

continues with the Structure and LEA plots. In the Structure analysis (Fig. 42a) we now see a 

clearer deviation between the left and right of the plot, which shows the NY13 population to 

be slightly differentiated from the other fjords. Again, this is also seen in the LEA plot (Fig. 43).  

With the structure harvester plot (Fig. 42b) we get the same results as the analysis of the MAF 

= 0.025 data, with the value for K being between 1 and 3. Again, these findings are lacking in 

the cross entropy (Table 35) and fastStructure (Table 36) results, both of which find K = 1.  

Overall, with the PCA analyses we see there is differentiation across the fjords, with a possible 

main cluster exhibited by some populations tightly grouped. This corresponds with the 

locations of fjords these samples are taken from, with these fjords relatively quite close in 

proximity. It appears the great differentiation is seen within the NY13 population, and this 

may be causing it to be clustering away from the other fjords. Geographically this population 
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is greatly separated from the rest of the fjords, and so this may account for such 

differentiation.  

The DAPC plots produced for this data show fjords more spaced out, but still it appears that 

the NY13 population is more separated from the rest. This could again infer some separation 

between this population and the rest of the fjords. 

When it comes to the structure analyses, it appears that such methods are unable to pick up 

on these same structural differences that lead to patterns shown in the PCA and DAPC plots. 

Overall, there is a trend for K = 1, and thus there appears to be no separation of the different 

fjords. Despite this, with the LEA plots, and slightly shown in Structure, we can see the NY13 

population drawing out from the rest of the fjords. Because of this, we cannot ignore the 

deviation exhibited by this population. Although there may be one fjord population overall, 

there is some differentiation in this NY13 population which could increase over time and 

potentially should be monitored for this. It is also possible that we are not seeing a full picture 

here as we do not have as many fjord individuals as we do those from the Atlantic.  

 

6.5. Outlier loci in the common ling; population structure 

Population analyses were repeated on the outlier dataset. Through outlier analyses 3 SNPs 

were identified in the common ling MAF = 0.05 dataset. 

Table 37 presents the pairwise Fst values for the common ling outlier dataset. We see here 

that values are much higher than that of the neutral dataset, but this bias can be expected 

with such a small number of outliers.  
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Table 37: Pairwise Fst values for common ling populations using the outlier SNP dataset 

 BB15 BE08 BO14 HA14 IB13 NY13 RA08 RA14 RYF13 RYV14 SO14 TF05 

BB15  0.212 0.399 0.400 0.429 0.429 0.363 0.276 0.333 0.485 0.195 0.336 

BE08 0.212  0.118 0.178 -0.134 0.104 0.263 0.047 -0.017 0.069 -0.043 0.115 

BO14 0.399 0.118  -0.018 0.226 -0.032 0.169 -0.026 -0.130 0.070 0.114 -0.055 

HA14 0.400 0.178 -0.018  0.212 0.039 0.072 -0.034 -0.140 0.180 0.135 -0.054 

IB13 0.429 -0.134 0.226 0.212  0.273 0.018 0.037 0.143 0.347 -0.208 0.030 

NY13 0.429 0.104 -0.032 0.039 0.273  0.280 0.007 -0.212 -0.006 0.142 -0.026 

RA08 0.363 0.263 0.169 0.072 0.018 0.280  0.047 0.016 0.399 0.140 0.097 

RA14 0.276 0.047 -0.026 -0.034 0.037 0.007 0.047  -0.117 0.107 0.013 -0.065 

RYF13 0.333 -0.017 -0.130 -0.140 0.143 -0.212 0.016 -0.117  0.025 -0.004 -0.252 

RYV14 0.485 0.069 0.070 0.180 0.347 -0.006 0.399 0.107 0.025  0.153 0.087 

SO14 0.195 -0.043 0.114 0.135 -0.208 0.142 0.140 0.013 -0.004 0.153  0.085 

TF05 0.336 0.115 -0.055 -0.054 0.030 -0.026 0.097 -0.065 -0.252 0.087 0.085  
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In Figures 27a and 27b we see PCA and DAPC of the outliers only dataset. With only 3 SNPs in 

total we may not expect the analysis to present any structure, but we can see a vague 

similarity with our PCA analysis. It appears to show BE08 and SO14 outstretching from the 

main cluster, like in the original analysis, and we can also see RA08 deviating slightly. These 

same two populations (BE08 and SO14) also deviate from the main cluster in the DAPC. This 

differs from the original DAPC but has more similarity with the PCA.  

The structure analyses of this data is as expected, with no structure found by the Structure or 

LEA analyses. Structure harvester (Fig. 28) gives a plot with a more certain value of K = 1 than 

the previous analyses. 

It should also be noted that the PCA and DAPC analyses remove missing data, and we see this 

here with our plots showing less individuals than we have sampled. This is due to the 

extremely small number of SNPs, which are not represented in all individuals. This makes the 

analysis redundant. 

 

Figure 27: Analyses for the common ling populations with outlier SNPs alone; a) principal component analysis 

and b) discriminant analysis of principal components 
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Figure 28: Structure harvester plot for analysis of common ling data with outliers alone 

 

 

6.6. Outlier loci in the blue ling; population structure 

With the blue ling we again used the MAF = 0.05 data, creating a dataset with the five outliers 

only. Again, the Fst values calculated are higher than those from the neutral dataset, which 

can be expected with so few SNPs to work with (Table 38). With the outlier data alone, we 

get a PCA plot which shows some similarities to that of the original data. Although the two 

main clusters join into one, the same two individuals deviate from the main cluster; HA14 and 

SL14. The same two are also seen in the DAPC, so again we produce a DAPC plot more similar 

to the PCA than to the original DAPC of the full dataset. The structure analyses again found 

no structure; the same with harvester.  
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Table 38: Pairwise Fst values for blue ling populations using the outlier SNP dataset 

 AD07 BO14 HA14 IB13 NY13 RA07 RA10 RA11 RS07 RYF13 RYV14 SL07 SL11 SL14 SO13 GRE15 

AD07  0.034 -0.732 0.000 0.399 0.273 0.322 0.297 0.588 0.600 0.280 0.446 0.092 -0.372 0.000 0.166 

BO14 0.034  0.002 0.034 0.244 0.171 0.254 0.217 0.292 0.132 0.123 0.246 0.121 0.033 0.133 0.175 

HA14 -0.732 0.002  -0.578 0.148 0.087 0.298 0.265 0.357 -0.105 0.072 0.337 0.124 -0.241 -0.700 0.172 

IB13 0.000 0.034 -0.578  -0.057 0.429 0.419 0.370 0.564 0.600 0.138 0.520 0.243 -0.177 0.000 0.397 

NY13 0.399 0.244 0.148 -0.057  0.247 0.288 0.270 0.284 0.203 0.096 0.313 0.201 0.194 -0.059 0.276 

RA07 0.273 0.171 0.087 0.429 0.247  -0.037 -0.019 0.005 -0.135 -0.004 -0.024 -0.025 0.051 0.250 -0.097 

RA10 0.322 0.254 0.298 0.419 0.288 -0.037  -0.005 0.021 -0.087 0.016 -0.004 0.007 0.185 0.190 -0.013 

RA11 0.297 0.217 0.265 0.370 0.270 -0.019 -0.005  0.023 -0.076 0.018 0.000 0.013 0.145 0.165 0.004 

RS07 0.588 0.292 0.357 0.564 0.284 0.005 0.021 0.023  -0.121 0.027 0.010 0.053 0.257 0.441 0.032 

RYF13 0.600 0.132 -0.105 0.600 0.203 -0.135 -0.087 -0.076 -0.121  -0.091 -0.075 -0.041 -0.066 0.600 -0.148 

RYV14 0.280 0.123 0.072 0.138 0.096 -0.004 0.016 0.018 0.027 -0.091  0.032 -0.002 0.071 -0.082 0.014 

SL07 0.446 0.246 0.337 0.520 0.313 -0.024 -0.004 0.000 0.010 -0.075 0.032  0.016 0.227 0.345 -0.011 

SL11 0.092 0.121 0.124 0.243 0.201 -0.025 0.007 0.013 0.053 -0.041 -0.002 0.016  0.075 0.045 -0.016 

SL14 -0.372 0.033 -0.241 -0.177 0.194 0.051 0.185 0.145 0.257 -0.066 0.071 0.227 0.075  -0.285 0.106 

SO13 0.000 0.133 -0.700 0.000 -0.059 0.250 0.190 0.165 0.441 0.600 -0.082 0.345 0.045 -0285  0.179 

GRE15 0.166 0.175 0.172 0.397 0.276 -0.097 -0.013 0.004 0.032 -0.148 0.014 -0.011 -0.016 0.106 0.179  
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Figure 29: Analyses for the blue ling populations with outlier SNPs alone; a) principal component analysis and b) 

discriminant analysis of principal components 

 

 

 

Figure 30: Structure harvester plot for analysis of blue ling data with outliers alone 

 

 

 


