
An Empirical Taxonomy of DevOps in Practice
Ruth W. Macarthy

School of Science, Engineering and Environment
University of Salford

Manchester, UK
r.w.macarthy@edu.salford.ac.uk

Julian M. Bass
School of Science, Engineering and Environment

University of Salford
Manchester, UK

j.bass@salford.ac.uk

Abstract—DevOps is described as a software engineering
culture and philosophy that utilises cross-functional teams to
build, test and release software faster and more reliably through
automation. Research shows that its adoption speeds up software
delivery time, improve quality, security, and collaboration in
software development. One controversial issue has been whether
DevOps is an organisation-wide culture or a job description. As
DevOps is an emerging concept, its definitions and best practices
are still hazy, making its implementation in practice less informed
and somewhat risky. The rising trend of DevOps adoption
among software development practitioners therefore heightens
the need for in-depth investigation into its implementation.This
paper seeks to contribute to the above by critically examining
DevOps implementation in practice through an exploratory case
study, based on interviews with 11 industry practitioners across
nine organisations. Transcripts of interviews were coded and
analysed using a method informed by Grounded Theory. This
study provides an empirical taxonomy of DevOps implementa-
tion, describing developers’ interaction with On-premises Ops,
Outsourced Ops, DevOps teams, and DevOps bridge teams.
We present a novel mapping of the approaches to on-premises
and cloud-based deployments, and identified the facilitators of
DevOps practices in the different modes. We further identified
three distinct groups of activities in the fourth mode: provisioning
and maintenance of physical systems, function virtualisation and
creation of automated pipelines, and development, deployment
and maintenance of applications, which may have given rise to the
implementation of DevOps as bridge teams. Interviewees claimed
these distinctions allowed developers to focus on delivering value
for the business.

Keywords-DevOps implementation, DevOps practices, Agile
operations, Agile deployment

I. INTRODUCTION

The evolution of software development methodologies is in
pursuit of optimised coordination of work among the actors
in the process, and standardisation [1]. Its continual change
is aimed at the faster delivery of quality software. DevOps
(Development and Operations) is described as an emerging
software engineering culture and philosophy that utilises cross-
functional teams (development, operations, security, and QA)
to build, test, and release software faster and more reliably
through automation [1]–[5]. The strategy promises benefits
such as faster delivery, improved quality and security, and
better collaboration.

A. The Goal of DevOps
The introduction of DevOps is an attempt to address co-

ordination in software development [1]–[5]. From literature,

We are grateful to Petroleum Technology Development Fund (PTDF) for
funding this research at the University of Salford, UK

it is understood that DevOps seeks to bridge the gap between
the conflicting priorities of the development and IT Ops teams.
According to [6], “DevOps community advocates communica-
tion between the operations staff and the development staff as
a means of ensuring that the developers understand the issues
associated with operations”. However, for [7], the actual gaps
to be bridged are “disconnects between processes, measure-
ments, technologies, and data”. We view the latter as a more
granular description of the “gap” between development and
deployment teams. [8] argues that three possible approaches
to bridging the gap are:

“Mix responsibilities: assign both development and op-
erations responsibilities to all engineers, or Mix personnel:
increase communication and collaboration between Dev and
Ops, but keep existing roles differentiated, or Bridge team:
create a separate DevOps team that functions as a bridge
between Devs and Ops”.

They carried out a study to investigate the ‘mixed responsi-
bilities’ approach. DevOps is fast becoming an integral part of
software development, as its popularity and adoption continues
to grow according to reports [9] [8] [5]. However, reasonable
uncertainty still surrounds its implementation in practice. It
becomes imperative to investigate the implementation of the
concept in practice. We seeks to answer the research question:
“How do practitioners in the study perceive and implement
DevOps in practice?” In particular, we will address the fol-
lowing questions:

• RQ1:What are practitioners’ perceptions of DevOps def-
inition and description?

• RQ2:How is DevOps implemented in practice?
• RQ3:How are DevOps functions different from IT Oper-

ations and development teams functions?

To answer the research questions, we conducted an em-
pirical case study based on interviews of practitioners. The
research adopts a method informed by Grounded Theory,
which is a systematic methodology of qualitative data gath-
ering and analysis, aimed at theory construction which allows
for the emergence of new concepts grounded in the data [10]–
[12]. This is mainly due to scarcity of literature on DevOps
implementation in practice. [13] stated that “Grounded Theory
is an excellent method for studying software engineering and
generating theories that are relevant to practitioners”. Their
study provides a mode for using Glaserian Grounded Theory
in software engineering research, which we have also adopted
in our research. Other software development investigations

have also demonstrated that Grounded Theory is well suited
to study practitioners interaction with the concept of DevOps
([14] [15] [4]). We identified four approaches to DevOps
implementation in the study, mapped them to on-premises and
cloud-based deployments, and identified the DevOps practices
facilitators for each of the approaches from practitioners’ point
of view. To the best of the authors’ knowledge, no previous
study explores DevOps in this regard. The rest of this paper
is organised as follows: we explore the concept of DevOps in
literature, presenting views of its description, characteristics,
and scope. We continue by describing the study methodology,
followed by a section on our findings. We discuss the findings
and present a conclusion.

II. THE NATURE OF DEVOPS

DevOps is described as a software engineering culture and
philosophy that utilises cross-functional teams, to build test
and release software faster and more reliably through au-
tomation. It aims at better collaboration between development
and operation team in software development. According to
available literature, benefit derived from DevOps adoption
include faster delivery, improved quality and security, and
better collaboration [3] [4] [16]. In [3], it was noticed that
“teams are happier and more engaged”, and shared technical
knowledge between Ops and development teams increased
collaboration between them after DevOps implementation.
There are however differing explanations of what the DevOps
concept means. Smeads et al [17] contend that there are two
conflicting views of DevOps in the blog-sphere: the view that
DevOps is a cultural movement to facilitate rapid software
development and deployment, and the argument that it is
rather a job description requiring both development and IT
operation skills. While the former view is more predominant
in available literature, the second view is mostly alluded to [4]
[8] [17]–[19]. However, Humble [20] stated in his blog post
that “there’s no such thing as a ‘DevOps team’”. Huttermann
[21] also insisted that DevOps is neither a job description
nor a department or a unit in an organisation. He stated
that “DevOps describes practices that streamline the software
delivery process, emphasising the learning by streamlining
feedback from production to development and improving the
cycle time”. Agreeing with Huttermann’s stance [21], [22]
identifies four significant characteristics of DevOps in a blog
post as culture, automation, measurement and sharing which
was referenced in [8]. Yet, the 2014 State of DevOps report
shows a growing number of DevOps teams [9]. Although
tailoring of software methods to suit specific organisational
need is common practice [23], and it is argued that organ-
isations should choose their own approach to DevOps, the
ambiguity and conflicts in the description of DevOps has
resulted in uncertainty of how to effectively implement the
concept [24] [15] [4]. A road-map for the standardisation of
DevOps terminologies and practices was presented in [25].
[15] carried out both a SLR and qualitative study of DevOps
application in practice based on data from six organisation.
The study mentioned four ways of DevOps definition in liter-

ature. It briefly described DevOps adoption of the individual
organisations but did not provide details of actual implemen-
tation of the concepts in these organisations. [8] mentioned
three possible approaches to DevOps, and provided evidence
of investigation into one of them – mixing responsibilities
between development and operations. The study identified
improved collaboration and trust, shared responsibility, and
smoother workflow as benefits of the approach. A systematic
literature review (SLR) [24] used ISO/IEC 24714 metamodel
elements to sort DevOps into people, process, technology,
and artefacts. The study reported the occurrence of DevOps
Engineer role, which can be performed by either developers
or Ops specialists, and identified automation as an enabler
of DevOps. In addition, the scope of DevOps differs in its
adoption. While some organisations view DevOps as just
“deployment automation” by select cross-functional teams,
others like International Business Machines (IBM) consider
it to be “improved automation, integration, collaboration, and
optimisation of development and operations” [7]. Although
there are no prescribed ceremonies in DevOps, it advocates
practices like continuous integration, continuous delivery, con-
tinuous deployment, automated testing, infrastructure-as-code,
and automated releases.

There are however challenges like the lack of appropriate
skill-sets, fast-evolution of technology stack and tools, as well
as resistance to change, associated with the DevOps adoption
journey [3] [4] [16]. [24] identified people and culture, and the
misunderstanding of DevOps as major challenges. [8] stated
that mixing of responsibilities between developers and Ops
specialists has created a new source of friction between both
groups of stakeholders.

Beyond anecdotal evidence [26] and survey data however,
empirical study of the impact of DevOps on the software
value stream is scarce in literature [15]. [4] carried out an
exploratory case study to provide empirical evidence of the
impact of DevOps adoption in a New Zealand organisation,
where DevOps was perceived as “embedded Ops”, as dedi-
cated Ops specialists were part of development teams. They
identified the employment of automation and cross-functional
teams as facilitators of DevOps value delivery. [27] introduced
a flow framework to create a value stream integration diagram
which he said would give perspective to how DevOps worked
in practice.

Our area of interest lies mainly in the understanding of
DevOps implementation among industry practitioners. As lit-
erature that provide empirical evidence on the variants of
DevOps implementation in practice is scarce, the research
adopts an exploratory case study approach to investigate
DevOps implementation in industrial settings.

III. RESEARCH METHODS

The methodology and sequence of actions taken in the
study is described in this section. First, a background to the
case study is given, then data collection and thereafter, the
data analysis is explained. We carried out an exploratory
empirical study based mainly on interviews with industry

practitioners, and adopted an approach informed by Grounded
Theory [10] [28]in our data analysis. For basic understanding
of the concept, the authors engaged in light literature review
as prescribed in Glaserian Grounded Theory [11] [12]. This
facilitated effective discussions during interviews. However,
in-depth study was done to understand and carry out Grounded
Theory methodology.

A. Research Sites
Eleven practitioners from nine organisations participated in

the study. The primary unit of analysis is software develop-
ment practitioners with at least two years experience of using
DevOps practices. Recruitment of participants for the study
was matched with the primary unit of analysis. Organisations
represented in the study are software development companies
as well as software intensive companies, in the financial
and public sectors based in the UK, Netherlands and Africa.
The diversity in the research sites provides richness to the
data and lends credence to the results. For instance, one of
the participating organisations is a multinational bank in the
Netherlands that deliver services to corporations and other
financial institutions through in-house solutions deployed both
on-premises and cloud-based platforms. The organisation is
one of the largest in the world and has significant presence
in Europe, with office around the world. Another is a large
international software development company based in Africa.
Table 1 shows a summary of their description. Some had co-
located teams, while others were geographically distributed.
Classification of organisations in this study is based on staff
count, adopted from the EU Recommendation 2003/361.

B. Data Collection
The source of data collection was through interviews with

11 practitioners across nine organisations (as shown in Table
1), conducted over a period of four months in 2019. The study
begins with the technique of initial purposive sampling, due to
the difficulty in getting organisations to participate in research.
Each participant was given an information sheet which told
them that the interviews will be recorded, and consent form
on which they indicated their choice of anonymity. Interviews
were conducted over Skype and lasted an average of 45
minutes. A bespoke semi-structured interview guide [29] was
designed, which contained a range of open-ended questions
relating to practitioners’ perception and practice of DevOps.
Initial questions were generated from both experience with
investigating agile methods, and light literature review of
DevOps. This passed through several iterations of reviews by
both researchers and were modified and evolved as data col-
lection progressed following constant comparison process. The
questions were tailored to suit interviewee’s role [30] during
interviews. A summary of participants’ description is shown
in Table 2. Recording of the interviews were transcribed, and
transferred to Nvivo, a qualitative analysis software.

C. Data Analysis
All Interviews were transcribed verbatim to avoid distortions

in meanings [30] [31]. This study involved four main aspects

of data analysis as stipulated by Glaserian Grounded Theory:
open coding, memoing, constant comparison, and saturation.

1) Open Coding: We began with the identification of
concepts found within the interview transcripts [10], which
involved line-by-line coding of participants’ responses without
any pre-determined codes. The authors used brief descriptive
phrases to represent codes. In the first instance, the codes were
handwritten onto hard copies of the interview transcripts, pro-
ducing 21 codes. A second transcript was independently coded
using the Nvivo software, from which 28 codes emerged. After
an initial comparison of the two independent transcripts, the
codes were merged into a single set of codes. These were
preliminary codes which evolved as data analysis progresses.
Subsequent transcripts are coded with already identified codes
as well as newly identified codes. Data was then grouped
into categories using concept classification [11], which become
saturated as new data is added [10].

2) Memoing: In this research, we used memos to capture
and refine concepts, and to express the relationship between
concepts identified using open coding as they develop into
categories [11]. Based on the identified codes, brief notes on
topics were made containing quotations from transcripts as
primary evidence, from which 10 memos emerged. Memo
writing helped to elucidate and converge ideas originating
from the codes, and sharpen categories evolving as new
transcript data is added [10]. This is a key stage in theory
generation [13]. Fig. 1 is an example of the emergence of
memos from codes and categories generated from the data.

3) Constant Comparison: We used constant comparison
technique to iterate between data collection and analysis,
constantly comparing data within itself and other instances
of the same event, without any preconceived outline. The
technique was used to refine categories and their roperties,
define and write the theory [10] [13].

4) Saturation: As expected, evidence began to converge
at the later stage of the research, and the addition of new
interviews had less and less impact on the categorisation.
Saturation is said to have occurred in the research when
new categories no longer emerge. There are arguments for
theoretical and data saturation, and some hybrid forms. While
the aim of the study is not to draw distinction between
theoretical and data saturation, it adopts Glaser’s definition
of saturation: “Saturation means that no additional data are

Fig. 1: Memo generation process

TABLE I: Description of organisations in the study

Organisation FinCo1 FinCo2 FinCo3 FinCo4 ITCo RegCo FreeCo PubCo FinCo5
Size Large SME SME Large Large SME SME Large SME
Business
Type

Financial Financial Insurance Financial IT Consulting Regulatory IT Consulting Public Financial

Team
Location

Distributed Co-located Co-located Distributed Distributed Co-located Co-located Co-located Co-located

Team Types Developers
DevOps Ops

Developers
DevOps Ops

Developers
DevOps Ops

Developers
DevOps Ops

Developers
DevOps

Developers
DevOps

Developers
Ops

Developers
Ops

Developers

Tools GitHub,
Kubernetes,
Ansible,
Docker,
Azure
DevOps,
Terraform,
Istio

GitHub,
SonarCube,
Docker,
Azure
DevOps,
Selenuim,
Veracode,
Slack

Kubernetes,
GitLab,
Ansible,
Docker,
Bamboo,
Jenkin,
Terraform,
Vault

Jenkins, Jira,
Slack, Gitlab

Github,
AWS cloud
formation and
other AWS
tools, New
relic, Slack,
Terraform

Gitlab, Slack,
Kibana,
Grafana,
Jenkins, Jira,
Terraform

Azure
DevOps,
Skype, Slack,
Github

- Github,
Docker,
Ansible,
Azure
DevOps,
Terraform,
Slack

Practices Scrum meet-
ings CI/CD

Scrum meet-
ings CI/CD

Scrum meet-
ings CI/CD

Scrum meet-
ings CI/CD

Scrum meet-
ings CI/CD

Scrum meet-
ings CI/CD

Scrum meet-
ings CI/CD

Scrum meet-
ings

Scrum meet-
ings CI/CD

Software
Methodology

Scrum, Spo-
tify

Scrum Scrum, Kan-
ban

Scrum, Spo-
tify

Scrum Scrum, Kan-
ban

Scrum Scrum Scrum

TABLE II: Participants’ description

Code Job Title SD Experience
(years)

DevOps
practice (years)

Finco1 DOps1 DevOps Engineer 18 4
Finco2 DOps DevOps Engineer 12 7
Finco1 DOps2 DevOps Engineer 20 4
Finco3 DOps DevOps Engineer 7 3
Finco6 DOps Network/DevOps

Engineer
31 5

ITco DOps DevOps Engineer 9 3
Finco4 Dvr System Developer 14 3
Finco4 Dvr Software Engineer 3 3
Regco Dvr Software Developer 15 2
Freeco Prjm Project Manager 20 4
Pubco Dba1 Oracle Apex Devel-

oper
9 -

Pubco Dba2 Oracle Apex Devel-
oper

19 -

being found” [10]. Emerging theories were identified from
memos of transcripts, more data is collected and coded and
constantly compared with the existing codes and memo until
no additional information seemed apparent. Although this is
not a claim of saturation, we believe that at this point in our
work, we can examine the theory emerging from analysis of
the data.

IV. FINDINGS

Our findings from analysis of interview transcripts is de-
scribed in this section. First, we present the description of
DevOps. This is followed by approaches DevOps imple-
mentation, then we explore the DevOps Engineer/team re-
sponsibilities. Thereafter, we present the identified difference
between developers, DevOps, and IT Ops teams. Out of the
nine organisations that participated in the study, eight had
adopted DevOps culture and implemented its practices across
the organisation. The remaining organisation has thus been
excluded from the finding herein presented.

A. Description of DevOps

Generally, participants described DevOps as better collabo-
ration between developers and Ops teams. Some interviewees
also described DevOps as end-to-end automation of the soft-
ware development pipeline, providing better software quality,
and creating seamless workflow of products at the shortest

possible time. We divided these descriptions into two groups:
DevOps as a culture, and as a job description.

1) DevOps as a Culture: The culture of collaboration
between developers and Ops specialists was widely reported
among interviewers. In FinCo1, the DevOps team assist de-
velopers re-configure their codes for containerisation. “And
so we joined with the team and we told them how we’re
actually working. And together with them, we tried to, we need
to adjust the application because it was not container aware.
So, together with them, we altered the code a little bit, so it
was container-ready”. [Finco1 DOps1]. Knowledge is shared
and a mutual understanding of basic activities across the
boundaries of teams, achieved through collaborative resolution
of code-related challenges. Similarly, [Finco1 DOps2] men-
tioned knowledge flow from developers to DevOps Engineers:
“So as I mentioned, there’s a couple of proper developers, we
have a great resource because they teach us, nope, sit back,
look. What are you trying to achieve? And write it properly
from scratch rather than just couple together something”.

DevOps teams in these organisations understand the codes
of developers and help out where necessary. Developers are
also made aware of how the automated infrastructure works,
though not directly involved in its creation or maintenance.
According to some practitioners, a level of confidence brought
about by the basic understanding of other aspects of the
process and familiarity with the other actors. Intra-team col-
laboration is reported as brainstorming and coding together
when issues are encountered. Collaboration in FinCo2 involves
the DevOps team creating users’ stories from requirements,
breaking them into manageable tasks and delegating these
tasks to developers through Azure DevOps.

2) DevOps as a Job Description: Some of the intervie-
wees had the job title of ‘DevOps Engineer’ and worked in
distinct DevOps teams or departments. “We don’t actually
have developers in our team. So, in our case. . . it’s just
DevOps” [Finco1 DOps1]. They further described their team
as “platform builders” for developers, “who support them and
host their applications on our platform.” Here, we see DevOps
being presented as a job description, with DevOps Engineers
responsible for carrying out “DevOps functions”, which we

TABLE III: DevOps implementation approaches in the study

Mode Ops Outsourced-
Ops

DevOps DevOps bridge

Organisation FreeCo1 FinCo5 ITCo1,
RegCo1

FinCo1, FinCo2,
FinCo3, FinCo4

Deployment
platform

Hybrid
cloud

Cloud Cloud Hybrid cloud

describe in the DevOps teams responsibility subsection. Some
participants expressed concern that having separate DevOps
teams might not be the right way to implement the concept,
however, others affirmed that the approach allowed developers
focus on providing value for the business, as they are not
encumbered with the extra burden of creating and managing
automated CI/CD pipeline for their deployments.

B. Approaches to DevOps

Practitioners in the study tell us that the decision of an
effective approach to DevOps implementation remains largely
uninformed as there are no prescribed best practices. From our
analysis, we present a taxonomy of DevOps implementation:
four dissimilar modes describing developers interaction with
Ops, Outsourced Ops, DevOps, and DevOps Bridge teams.
Fig. 2 shows the description of these modes. In Table 3, we
show the distribution of the organisations according to their
modes of DevOps implementation. It is important to note that
the developers’ teams encountered in the study include QA
and security experts.

Developers-Ops mode (shown in Fig. 2a) of DevOps im-
plementation depicts the instance where senior developers
performed automated infrastructure management alongside
development activities in a hybrid cloud deployment environ-
ment. The IT Ops team support the physical infrastructure and
on-premises hosted application, while developers wrote appli-
cation codes, deployed their codes through CI/CD pipelines,
and managed applications themselves. Here, senior developers
were seen as the facilitators of DevOps practices.

The Developers-Outsourced Ops mode (shown in Fig. 2b)
is similar to Developers-Ops mode described above. Senior
developers also write infrastructure codes to create and manage
deployment pipelines, the difference being that its deployment
environment is cloud-based, eliminating the need for Ops
experts.

Fig. 2c depicts the Developers-DevOps mode where Dev-
Ops teams creates, deploys, and manages both the cloud infras-
tructure and deployment pipelines. Developers applications are
also deployed and maintained by the DevOps team. Describing
this mode, [Regco Dvr] said “it allowed developers to focus
on providing value for the business”. This claim was clearly
expressed by some other participants. Here, developers are
not responsible for application deployment and management.
Completed applications or features are handed over to the
DevOps teams for deployment and management, who are the
DevOps practices facilitators. DevOps bridge team mode was
the mode widely used in our study. This mode (shown in
Fig. 2d) was found in hybrid environment of cloud and on-
premises deployment. Here, DevOps teams interface with both
developers and IT Ops to drive the practices of DevOps like

(a) Developers-Ops mode

(b) Developer-Outsourced Ops mode

(c) Developer-DevOps team mode

(d) DevOps bridge team mode

Fig. 2: Pictorial representation of DevOps implementation

configuration management, continuous integration and con-
tinuous delivery, automated testing, deployment, monitoring,
and metrics collection. Developers provide business solution,
leaving the creation, deployment, and management of both the
cloud infrastructure, virtual systems, and deployment pipelines
to the DevOps teams. These teams are provided services of
on-premises infrastructure by the Ops team. Essentially, the
DevOps teams are customers to the Ops team, and service
providers to developers. It is important to note that in this
approach to DevOps, everyone is responsible for their ac-
tions. Developers create codes, deploy them through CI/CD
pipelines, monitor and manage applications. In the same
vein, the DevOps team deploy their infrastructure through
the pipelines they create. However, the bridge teams are
the facilitators of the DevOps process. Further investigation
to understand this approach revealed three main classes of
activities: provisioning and maintenance of physical systems,
function virtualisation and creation of automated pipelines,
and development, deployment and maintenance of applications
(Continuous practices).

At the physical level, participants clearly explained that
the systems in their on-premises data-centers needed to be
configured and managed by IT Ops teams. Access is thereafter
granted to DevOps engineer, who built automation into these
systems. [Finco1 DOps2] describes the situation as “There’s
one team that does the physical installation, cabling of the
hardware. There’s another team that does the installation of
some sort of the OS, and there’s another team that customises
that OS and we get access to install our [tools]... So, we are

the consumers of it.”
Using automation tools, DevOps engineers create pipelines

to enable continuous practices such as continuous integra-
tion/continuous deployment, continuous testing etc. Scripts are
created for configuration management, and the deployment
of infrastructure-as-code. In FinCo1, FinCo2, FinCo3, and
FinCo4, these activities are solely the responsibility of the
DevOps teams. Applications and solutions are subsequently
developed and deployed through automated pipelines. The
processes are mostly automated, however code review and user
acceptance tests were described as manual processes.

Fig. 3 is a quadrant showing a taxonomy of DevOps imple-
mentation identified in the study. It describes the interaction
of developers with various teams and presents a summary of
the activities in each mode of DevOps implementation. The
x-axis shows the application deployment environment. The y-
axis shows the facilitators of DevOps practices.

Despite the seeming prevalence of bridge teams in the
study, some interviewees thought it was not the right ap-
proach to DevOps implementation, as “there is still segrega-
tion between development and infrastructure in some way.”
[Finco1 DOps1]

Although tooling is considered an essential part of DevOps,
we have not explored it in this paper as our focus is mainly
on the approach to its implementation.

C. DevOps Teams’ Responsibilities

The DevOps teams under study are be tasked with migration
from existing platforms to either cloud based or an automated
on-premises environment, and its subsequent maintenance.
Generally, they act as intermediary between IT Ops and
developers, providing the means to an end in software develop-
ment (SD) by creating automated pipelines on both physical
and virtualized servers to enable continuous integration and
continuous delivery. In FinCo1 and ITCo1, DevOps teams
are organised around specific products. Beyond provisioning
automated platforms and maintenance of the environment
however, there are only slight variations in the responsibilities

Fig. 3: Taxonomy of DevOps Implementation in the study

of the DevOps teams encountered in the study. For example,
the DevOps team in FinCo2 is tasked with development cycle
automation and tools unification. They also coordinate the
activities of the software development process.

In RegCo1 and ITCo1, DevOps teams are responsible for
all deployments. Developers hand over applications to these
teams, who oversee the journey through the CI/CD pipeline.
The teams also monitor the applications and function as first
line of support.

D. Functions Variations between Developers, DevOps Engi-
neers, and Ops specialists

An interesting point observed is the insistence of a dis-
tinction between “pure developers” and the DevOps engineers
and IT Ops by participants. For instance, some DevOps
engineers interviewed constantly referred to developers as
“them”. Some participants expressed the view that software
developers should spend their time working on their products
and not be bothered with what goes on “beneath the hood”
of the infrastructure side of the platform, as long as they can
deploy solutions seamlessly.

“Yes, they’re purely development teams. They create APIs,
beacon APIs or a full-term application or just parts of web-
sites...The only thing that we actually want them to do is write
the code and we should know how to start your application.
And they create the docker file which comes with it... from
there we try to pick up the rest.” [Finco1 DOps1]

Also, while the DevOps team works with the goal of
giving developers the best tools to get their work done, they
expect developers to take responsibility for their products. This
suggests boundaries of responsibilities.

Another observed instance is the distinction between Dev-
Ops and IT Ops, clearly seen in the responsibility for product
codes and delivery, the deployment pipeline and automated
infrastructure management, and the physical infrastructure
administration. Table 4 summarizes activities of developers,
DevOps and IT Ops teams identified in the study.

All deployments in the study, from developers and DevOps
teams, go through automated pipelines. Here, we see an inter-
section of an activity (deployment) between the developers and
DevOps team, however, Table 4 creates distinction between the
types of deployments carried out by each group.

V. DISCUSSION

In this section, we discuss the findings in relation to the
research questions and implication of research.

A. Description of DevOps (RQ1)

To answer the questions “What is practitioners’ percep-
tion of DevOps definition and description?”, our findings
show DevOps being described by practitioners in the study
as not just a culture and specific job description, but also
distinct teams separate from both developers and IT Ops
teams. Although members of these teams have backgrounds
in either software development or IT Ops, the nomenclature
“DevOps” now separates them from their original silos and

TABLE IV: Difference between developers, DevOps and IT
Ops

Developers DevOps Teams IT Ops
Coding Write code for

products and
features

Write codes for tools
and virtualized func-
tions

Write scripts
for functions

Continuous
Integration

Use CI/CD pipeline
to continuously
merge code to
master branch

Use CI/CD pipeline
to continuously merge
code to master branch

-

Deployment Deploys own
solutions to both
cloud and on-
premises platforms
using automated
tools

Deploys own solutions
to both cloud and on-
premises platforms us-
ing automated tools

Deploys
developers’
solutions to
on-premises
physical and
virtualized
systems

Infrastructure
manage-
ment

Manages cloud in-
frastructure (1 in-
stance)

Automation pipeline
management on both
cloud and on-premises
infrastructure

Physical
infrastructure
management

Other
identified
responsi-
bilities (1
instance)

- Translates requirements
to user stories, scrum
masters, assigning tasks
to developers, project
tracking/monitoring

-

classifies them as a unique team of “platform builders” as
Finco1 DOps1 described it. This seems consistent with the
2014 State of DevOps report of a growing number of Dev-
Ops teams [9]. In [20], Humble mentioned that Ops teams
may sometimes be referred to as “DevOps team” in some
organisations when they build self-service platforms, provide
tool chain, training and support developers and the platforms.
However, he argues strongly that the insertion of “another
layer of indirection between the dev and ops team and call
it a ‘Devops team’” is not the right way to address the
existing gap. Intriguingly, most teams under study fit nicely
into both sides of Humble’s argument - they are teams between
developers and IT Ops teams who provide all the above-
mentioned services.

B. Implementation of DevOps Practice (RQ2)

To answer the question “How is DevOps implemented in
practice?”, we present a taxonomy of four approaches to
DevOps based on interviewees description of the concept and
practice. As described in the finding section of this paper, they
are developers’ interaction with On-premises Ops, Outsourced
Ops, DevOps teams, and DevOps bridge teams. This describes
the collaboration between developers and DevOps teams based
on automation, mixed responsibilities of developers without an
IT Ops team, developers working with DevOps teams only,
and DevOps teams serving as a bridge between developers
and IT Ops teams. These are similar to [8] suggestion of
three possible approaches of mixed responsibilities, mixed
personnel, and bridge team, in which they provided evidence
and analysed one of the said approaches (mixed responsibili-
ties). This study however differs from theirs in the following
ways: firstly, we provide empirical data confirming practi-
tioners’ implementation of all three approaches mentioned
in their studies. Secondly, we present a novel mapping of
the approaches to on-premises and cloud-based deployments,
thereby presenting a fourth approach - which is essentially

a variant of mixed responsibilities but can only be found in
cloud-based deployment environment. Thirdly, we identified
the “facilitators” of DevOps practices in the four approaches
identified in the study.

C. Functions Variations between Developers, DevOps Engi-
neers, and Ops Specialists (RQ3)

To answer the question “How is DevOps functions different
from IT Operations and development teams’ functions?”, we
described the functions in DevOps practices identified in
the study. Generally, the responsibilities from development
to deployment include creating a piece of software, testing,
building and maintenance of automated deployment pipelines,
integration, deployment, providing metrics, and platform mi-
gration. However, personnel carrying out these functions vary,
depending on the DevOps approach adopted by an organi-
sation. The distinction in functions was particularly seen in
the Developers-DevOps-Ops mode, which from Table 3, seem
more prevalent in the study. Four out of the Five organisations
with hybrid platforms have teams made solely of ‘DevOps
engineers’. In a nutshell, IT Ops teams provide services to
DevOps teams in the form of physical infrastructure, DevOps
teams provide services to developers in the form of tooling
and automated pipelines, while developers provide business
value in the form of applications, features etc.

D. Threat to Validity

The study adopts the assessment for rigour and trustwor-
thiness in qualitative research as proposed by Lincoln and
Guba [32]: confirmability, dependability, internal consistency
(credibility), and transferability.

1) Confirmability: Confirmability denotes the researcher’s
ability to present a chain of evidence showing that the data
is a true representation of participants’ responses, and not the
researcher’s bias or opinion [13] [33] [34]. To ensure con-
firmability, we described how conclusions and interpretations
in the study was established.

2) Dependability: Dependability refers to the repeatability
of the study [13] [33] [34].The exact methods of data collec-
tion, data analysis and interpretation are clearly described in
the paper. A sample of interview questions is included in this
paper.

3) Internal Consistency: Internal consistency indicates
credibility and consistency of finding [13] [33] [34]. Partic-
ipants’ responses are clearly described. Quotes from partici-
pants are also included in the report.

4) Transferability: Transferability describes the applicabil-
ity of the study to other settings [33] [34], and useful theories
can be derived from findings [13]. This criterion may be
relevant in a qualitative study, depending on the inclination
of the research. The study is exploratory. The concern being
an in-depth investigation into the practice presented. We make
no claim to creating a statistically significant survey.

VI. CONCLUSION
DevOps is described as a cultural movement in software

engineering aimed at building, testing and releasing software

faster and more reliably through automation. According to
available literature, benefits derived from DevOps adoption in-
clude faster delivery, improved quality and security, and better
collaboration. However, there are differing descriptions of the
concept. While some studies characterise it as an organisation-
wide culture to foster better collaboration between IT Ops and
development teams, DevOps has also been portrayed as a job
description by others.

To understand its implementation in practice, our paper
presents an exploratory study based on interviews with 11
DevOps practitioners across nine organisations, with data
analysis informed by Grounded Theory. The empirical findings
in this paper provide new understanding of DevOps imple-
mentation, based on the descriptions by the practitioners in
our study. Firstly, this study provides in-depth analysis and
presents a taxonomy of DevOps implementation in practice.
We show four modes of its implementation, categorised as
developers’ interactions with: Ops, Outsourced Ops, DevOps
teams, and DevOps bridge teams. Secondly, the paper presents
a novel mapping of these approaches to cloud and on-premises
deployment environments. Thirdly, we identified the facilita-
tors of DevOps practices in these modes. Finally, further anal-
ysis of the fourth approach exposed three distinct groups of
activities: provisioning and maintenance of physical systems,
function virtualisation and creation of automated pipelines, and
development, deployment and maintenance of applications.
This, we believe, may have given rise to the implementation of
DevOps as teams between developers and operations teams,
as each group of activities require specific skill-sets. Based
on the study, we conclude that DevOps is perceived by
participants as both a culture and a job description, and these
two views are not necessarily mutually exclusive. Also, the
different modes of DevOps implementation seems driven by
other organisational factors beyond its perception. While the
practices appear the same across the modes of implementation,
functions and responsibilities differ. This may be a source of
variation in DevOps value realisation.

REFERENCES

[1] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional, 2015.

[2] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and devops,” in 2015 IEEE/ACM 3rd International Work-
shop on Release Engineering. IEEE, 2015, pp. 3–3.

[3] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook::
How to Create World-Class Agility, Reliability, and Security in Technol-
ogy Organizations. IT Revolution, 2016.

[4] M. Senapathi, J. Buchan, and H. Osman, “Devops capabilities, practices,
and challenges: Insights from a case study,” in Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software
Engineering 2018. ACM, 2018, pp. 57–67.

[5] K. Kuusinen, V. Balakumar, S. C. Jepsen, S. H. Larsen, T. A. Lemqvist,
A. Muric, A. Ø. Nielsen, and O. Vestergaard, “A large agile organization
on its journey towards devops,” in 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2018,
pp. 60–63.

[6] L. Bass, R. Jeffery, H. Wada, I. Weber, and L. Zhu, “Eliciting operations
requirements for applications,” in Proceedings of the 1st International
Workshop on Release Engineering. IEEE Press, 2013, pp. 5–8.

[7] M. Rowe and P. Marshall. The business
case for collaborative devops. [Online]. Available:
https://www.ibm.com/developerworks/community/blogs/

[8] K. Nybom, J. Smeds, and I. Porres, “On the impact of mixing respon-
sibilities between devs and ops,” in International Conference on Agile
Software Development. Springer, 2016, pp. 131–143.

[9] P. Labs. (2014) 2014 state of devops report. [Online]. Available:
http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

[10] B. Glaser and A. Strauss, “Grounded theory: The discovery of grounded
theory,” Sociology the journal of the British sociological association,
vol. 12, no. 1, 1967.

[11] B. Glaser, “Theoretical sensitivity,” Advances in the methodology of
grounded theory, 1978.

[12] R. Hoda, J. Noble, and S. Marshall, “Using grounded theory to study the
human aspects of software engineering,” in Human Aspects of Software
Engineering, 2010, pp. 1–2.

[13] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, pp. 487–513, 2011.

[14] S. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl, “Coordination
challenges in large-scale software development: a case study of planning
misalignment in hybrid settings,” IEEE Transactions on Software Engi-
neering, vol. 44, no. 10, pp. 932–950, 2017.

[15] F. M. Erich, C. Amrit, and M. Daneva, “A qualitative study of devops
usage in practice,” Journal of Software: Evolution and Process, vol. 29,
no. 6, p. e1885, 2017.

[16] L. E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä,
J. Itkonen, P. Kuvaja, T. Mikkonen, M. Oivo, and C. Lassenius, “Devops
in practice: A multiple case study of five companies,” Information and
Software Technology, 2019.

[17] J. Smeds, K. Nybom, and I. Porres, “Devops: a definition and perceived
adoption impediments,” in International Conference on Agile Software
Development. Springer, 2015, pp. 166–177.

[18] T. Clear, “Thinking issues meeting employers expectations of devops
roles: can dispositions be taught?” ACM Inroads, vol. 8, no. 2, 2017.

[19] J. Roche, “Adopting devops practices in quality assurance,” Commun.
ACM, vol. 56, no. 11, 2013.

[20] J. Humble. (2012) There’s no such thing as a devops team. [Online].
Available: https://continuousdelivery.com/2012/10/theres-no-such-thing-
as-a-devops-team/

[21] M. Hüttermann, DevOps for developers. Apress, 2012.
[22] J. Willis. (2010) What devops means to me. [Online]. Available:

https://blog.chef.io/what-devops-means-to-me
[23] J. M. Bass, “Artefacts and agile method tailoring in large-scale offshore

software development programmes,” Information and Software Technol-
ogy, vol. 75, 2016.

[24] A. Q. Gill, A. Loumish, I. Riyat, and S. Han, “Devops for information
management systems,” VINE Journal of Information and Knowledge
Management Systems, 2018.

[25] A. Wahaballa, O. Wahballa, M. Abdellatief, H. Xiong, and Z. Qin, “To-
ward unified devops model,” in 2015 6th IEEE International Conference
on Software Engineering and Service Science (ICSESS). IEEE, 2015,
pp. 211–214.

[26] M. Rembetsy and P. McDonnell, “Continuously deploying culture:
Scaling culture at etsy,” in Velocity Europe. O’Reilly, 2012.

[27] M. Kersten, “Mining the ground truth of enterprise toolchains,” IEEE
Software, no. 3, pp. 12–17, 2018.

[28] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software en-
gineering research: a critical review and guidelines,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). IEEE,
2016, pp. 120–131.

[29] J. M. Bass and R. W. Macarthy. (2020) Interview guide - devops (version
1). [Online]. Available: https://doi.org/10.17866/rd.salford.12349724.v1.

[30] B. J. Oates, Researching information systems and computing. Sage,
2005.

[31] S. Kowal and D. C. O’connell, “5.9 the transcription of conversations,”
A Companion to, p. 248, 2004.

[32] E. G. Guba, Y. S. Lincoln et al., “Competing paradigms in qualitative
research,” Handbook of qualitative research, vol. 2, no. 163-194, p. 105,
1994.

[33] D. G. Cope, “Methods and meanings: credibility and trustworthiness of
qualitative research.” in Oncology nursing forum, vol. 41, no. 1, 2014.

[34] L. Krefting, “Rigor in qualitative research: The assessment of trustwor-
thiness,” American journal of occupational therapy, vol. 45, no. 3, pp.
214–222, 1991.

