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ABSTRACT Railway stations are essential aspects of railway systems, and they play a vital role in public 

daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and 

their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition 

to perform risk management in railway systems in which a convolutional neural network (CNN) is applied 

as a supervised machine learning model to identify risks. However, risk management in railway stations is 

challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry 

associations and researchers to reduce the number of accidents and injuries in this field, such incidents still 

occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it detects 

adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that represent 

high-risk outcomes. The framework of the presented method is generalisable to a wide range of locations and 

to additional types of risks. 

INDEX TERMS Artificial intelligence, Convolutional neural network, Deep learning, Railway station, 

Risk management 

I. INTRODUCTION 

Railway station environments are dynamic, and this 

dynamicity varies according to size and location. A variety 

of passengers transit the station, including families, old and 

disabled individuals and groups. Some stations are crowded 

at peak times because of the limited space, and increases in 

demand due to operational delays, design or layout 

deficiencies or management shortages can increase the risk 

of fall, slip and trip (FST) events. 

FSTs are a leading cause of injury. In particular, falls due to 

slipping are statistically the main cause of accidents on 

crossways in built environments and railway stations [1]. The 

consequences of FSTs are not limited to the individual who 

suffered the accident, who may be seriously injured; FSTs can 

also affect railway operations, causing delay and disturbing 

the flow of people. Platforms which offer access to trains and 

escalators are hazards that form hot spots for FSTs. According 

to the RSSB Annual Report on Public Safety (2015/2016), 

over the last five years, the highest percentage of injuries from 

slips, trips and falls in stations occurred on stairs (38%), with 

platforms holding the second most likely spot (27%) [2]. 

Generally, the magnitude of falls worldwide rises with age: it 

has been reported that the proportion of  32–42% elderly adults 

(aged 70 years or older) fall each year from 5 to 7 

times[3].Some factors previously presented as the most crucial 

in FST events in the station include intoxication, security, 

hurrying, station design, staff skills and training [4]. Other 

challenges, such as weather conditions, congestion, cultural 

differences, insufficient maintenance and unwanted events, 

may cause panic and FSTs [5], [6]. Much of the unsafe 

behaviour exhibited by passengers, employees and the public 

can be described via the theory of behaviour-based safety 

(BBS), which has been demonstrated to be an effective tool 

for promoting safety [7]. The BBS includes three steps: 

observation, feedback and training. However, in railway 
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stations, these observations are based on humans; thus, they 

also involve human error. Moreover, covering all points in the 

organisation is costly, time-consuming, or impossible [8], [9]. 

Worldwide, FSTs are a severe problem that lead to 

substantial numbers of injuries and have endemic societal 

economic consequences that affect people of all ages. That is, 

despite logical, well-conceived attempts to diminish the 

number of casualties, these approaches have had mixed 

success [10]. FSTs are classified as causes of unintentional 

injury in many activities, both occupational and leisure-

related, and their causes include loss of balance, which may 

result in falls to the ground or to lower levels. The factors to 

be considered include footwear, flooring conditions and 

visibility level as well as other external factors, such as 

crowding [11], [12]. Moreover, station design and layout 

factors , including corridors and entrances, egress routes and 

escalators, play an important role in safety and security and in 

preventing FSTs; however, the designs of some older stations 

include narrow areas [13]. Large numbers of people in these 

limited areas may lead to crowding over a wide-range of areas, 

such as in railway stations or entertainment venues (e.g., sports 

matches or music festivals), which raises the risk level of 

FSTs. The flow of people may also be affected by 

obstructions, which can result in pushing, falling or, in the 

worst case, trampling, which may increase the number of 

incidents. The FSTs in crowded situations can have serious 

consequences; historically, many people have died or suffered 

serious injury during events such as religious pilgrimages. 

Such risks increase when the railway industry's growth level 

is inadequate to serve the market demand for train travel. In 

addition, such risks also increase for older passengers, for 

travellers carrying large luggage items and when intoxication 

is considered [14]. FSTs are associated with many aspects of 

accidents, such as human-to-station environment interactions, 

including infrastructure and trains. Many causes are 

attributable to such risks and they lead to many different 

consequences (see Fig. 1). Moreover, the nature and patterns 

of FSTs and their active control measures require more 

research [12]. 

Currently in railway stations, detecting such risks relies on 

CCTV or staff observations; however, this approach has the 

potential for human error and may not result in a timely 

response, which can exacerbate the consequences. 

Furthermore, accurate station area detection includes 

platforms, escalators and tunnels; the images can include the 

full range of the station and thus provide the potential for 

timely responses. Technological growth has helped to extend 

and improve protection, especially CCTV systems. In recent 

years, automated video surveillance has enhanced public 

safety awareness and led to innovative research in a wide 

range of fields, including disaster management, crime 

prevention and security, assistance for people with disabilities, 

productivity enhancements and monitoring critical 

infrastructure [15]. 

In railway stations, CCTV and analogue cameras aid in 

accurately detecting station areas, including platforms, 

escalators and tunnels. However, the human behind the 

screens is the core of the system, which leads to possible 

human errors. In practice, however, a greater number of 

cameras in such areas leads to a loss of the monitors' ability to 

gain an overview of events in real-time. In fact, in accidents, 

the CCTV function primarily as evidence; thus, the process 

involves working with historical records of events more than 

with real-time event detection. Artificial intelligence 

(computer vision-based) techniques have been suggested as a 

possible solution to these issues; at minimum, they could 

function as an important assisting element to overcome some 

of the limitations of the conventional methods of risk 

management at stations and improve the safety system. This 

paper proposes a monitoring method that uses computer vision 

to automatically and rapidly identify risks in stations by 

recognising unsafe actions, providing support for decision-

makers in real-time and reducing the potential consequences 

of unwanted events. 

A vision-based approach can be considered the most 

suitable for crowded critical locations such as railway stations. 

Computer vision technology has demonstrated its potential for 

practical, cost-effective, rapid visual data collection, and 

vision-based approaches have been adopted in many fields, 

such as construction, safety and quality management [16]–

[18] and productivity management [19]–[21]. The railway 

industry has already seen benefits from such methods, 

including railway track-gauge irregularities [22], railway 

maintenance [23] and trespassing detection [24]. Similarly, 

computer-based image recognition has been applied to detect 

and recognise railway infrastructure and changes in the 

surrounding environment [25]. Deep learning techniques have 

also been proposed to evaluate rail quality using track 

geometry [26]. Such research focuses on how to utilise 

technology such as the convolutional neural network (CNN) 

to analyse big data collected by railway systems to build risk-

recognition frameworks—in the case of FSTs—risk in the 

railway stations, Fig. 2. The railway industry creates big data 

that have potential value for improving the system. This 

massive data can be utilised to provide suitable solutions for 

safety and security risks. The goal is to tackle the changing 

risks that face a sector via image data. The data can cover a 

wide variety of aspects and take many forms, such as spatial-

temporal data, videos or images and data fusion. The data used 

for monitoring can be collected at fixed points or be installed 

on moving trains or other vehicles, such as drones [27], [28]. 

Moreover, these data-gathering systems and their 

configuration can integrate with the Internet of Things (IoT), 

which is a framework suitable for big data technology, smart 

stations, smart cities and smart maintenance [29]–[33]. 

This remainder of this paper is organised as follows: Section 

II reviews the related works. Section III provides background 

information about deep learning and risk management in the 

railway industry. Section IV presents the concepts of using 
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deep learning for risk management decision making in railway 

stations. Section V presents the framework of the case study 

model. Section VI discusses the application of the CNN case 

study model in railway stations, Section VII provides a data 

analysis, and finally, a discussion and conclusions are given in 

Section VIII. 

 
FIGURE 1.  The overlap between FSTs and system aspects. 

 
FIGURE 2.  The framework for applying a CNN to big data in the railway system to maintain risks. 
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II. RELATED WORKS 

In this section, we attempt to assign the previous works to 

various subsections; however, their topics are scattered across 

many fields and include a variety of perspectives. CNNs have 

been widely applied in a wide range of visual computing 

applications, including signal processing [34], [35], speech 

recognition [36], medical imaging [37]–[42], object detection 

[43]-[47], face recognition [48]–[51], robot control [52], [53], 

autonomous driving (AD) and control [53]–[55] crash 

detection, risk estimation and traffic monitoring [56], [57]. 

Some models have even been implemented on mobile devices, 

such as Google’s FaceNet [58] and Facebook’s DeepFace 

[59], which are used for face recognition [60], [61]. Other 

studies have different perspectives, such as energy efficiency 

and data availability [62]–[64] and deep learning technologies 

for civil engineering applications, infrastructure monitoring 

and pedestrian detection and tracking [52], [65]–[68]. From an 

occupational safety perspective at a steel plant, images and 

deep learning have been utilised to detect oil spills [69] and to 

augment safety in the construction industry [70]. Furthermore, 

the method used to detect and track humans underwater [71] 

has also been applied to the automatic detection of unsafe 

actions in on-site videos [8] and for transport security using X-

ray security images [72]. 

While the main areas initially involved computer science 

and related technologies, researchers have been applying deep 

learning techniques in their own fields. In the railway industry, 

the main concerns of this research are railway operations and 

safety (risk management). Features generated from CCTV 

images or other cameras in stations are fed into deep learning 

models so that they can learn from passengers’ actions over a 

period of time. The goal is to train the CNN to automatically 

extract feature sequences that represent unsafe acts from 

videos, detect the presence of such sequences, and then initiate 

actions to mitigate the possible risks. Depth sensors such as 

Kinect™ or multiple cameras have been used to detect and 

record unsafe actions by extracting 3D skeletal models of 

humans [73]. Additionally, machine learning techniques 

combined with various processing methods have been applied 

[74]–[77]. The studied technologies include multisensor 

fusion-based approaches [78], accelerometer-based 

approaches [79], [80], smartphone-based approaches [81], 

[82], vision-based approaches [83], [84] and systems based on 

video data. Such systems can assist in detecting falls by 

monitored individuals at their homes [85]. Moreover, a 

previous study aimed at protecting and detecting falls showed 

that several major categories of sensing equipment have been 

used (see Fig. 3) [76], [84], [86]–[94]. 

 
FIGURE 3.  Fall detection and prevention based on sensor class 
perspectives. 

 

The next subsection presents a review of the previous works 

in some fields related to this study, which involves detecting 

proposed risks in the study framework in a railway station by 

applying a CNN. 

A. RELATED WORKS IN THE CONSTRUCTION FIELD 

In construction and other fields, unsafe human behaviour is an 

important root cause of accidents [95], [96]. To identify 

common unsafe actions, stereo cameras were used to collect 

motion data and construct a 3D skeleton model; then, pattern 

recognition was applied to manage worker safety in the 

construction field [8] and to detect problems occurring on the 

site. Several defect management systems based on image 

matching have been suggested [97]. For less operational 

constraints, two smartphones have been used as stereo 

cameras to acquire motion data and extract 3D human 

skeletons to track people working in construction fields [98]. 

Real-time machine learning models with CNN frameworks 

have been proposed to detect whether workers are wearing 

safety equipment, such as hats and vests, from images/videos 

[99] and to detect ground objects [100]. CNNs have also been 

used to detect safety guardrails [101], objects on roof 

construction sites [102], workers who fail to wear hard hats 

[103], [104], falls from heights [105], [106], to maintain safe 

distances among objects for safety to prevent accidents [107] 

and unsafe behaviours [73]. Additionally, to estimate risk and 

reduce accidents, deep learning has been recommended in the 

shipbuilding Industry [108] and for ship bridge-collision 

assessment [109]. CNNs have been utilised for automated 
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detection of employees near heavy equipment at construction 

locations [110], detection of construction vehicles [111], [112] 

and recognition of structural damage [65]. In fact, for 

advanced safety performance, computer vision combined with 

deep learning has been recommended because such 

approaches can automatically classify unsafe behaviour and 

conditions on construction sites [70]. 

B. RELATED WORKS IN CRACK DETECTION 

Crack detection has been classified in previous studies into 

two general method types: image-based crack detection and 

crack detection based on machine learning. An image-based 

crack detection method was suggested to automate crack 

detection for safety and cost-effective bridge maintenance 

[113]. Additionally, the authors proposed automating the 

processes of bridge monitoring and maintenance for safe 

transportation infrastructure and compared the effectiveness 

of four crack-detection algorithms (wavelet, Fourier 

transforms, Sobel, and Canny [114]) for detecting healthy 

concrete surfaces [115], bridge damage [116] and corrosion 

detection [117]. Moreover, with the goal of automating 

concrete bridge decks inspections, a principal component 

analysis (PCA) algorithm was applied to mitigate the 

dimensionality problem of feature vectors to extract 

significant crack features from a database of bridge images 

[118]. In addition, automatic concrete crack detection in 

tunnels using deep fully convolutional networks was proposed 

in [66]. To achieve automated detection and reduce the 

computational cost of detecting large concrete surface cracks, 

a method by percolation-based image processing was 

proposed in [119]. Tunnel crack features extracted based on 

detecting pixel intensity were classified by a support vector 

machine SVM algorithm to determine whether cracks were 

present in pre-processed images [120]. For safety inspection 

and structure health and reliability, an automated method 

based on a backpropagation neural network (BNN) was 

developed for crack detection [121]. For road crack detection, 

to deal with crack intensity inhomogeneity by capturing and 

utilising some unique crack characteristics, an automated 

method was suggested that extracts crack features based on a 

discriminative integral channel and then classifies the features  

C. RELATED WORKS IN RAILWAY SYSTEMS 

Technology such as computer vision will play an essential role 

in railway system networks and provide effective methods to 

solve various problems. The vast distances and long tracks in 

many areas of the world and the growth of complexity pose 

challenges to maintenance and in fulfilling safety, security and 

quality; in addition, there are cost restrictions, time-

consumption and reliability issues. 

using a random forest algorithm [122] to perform crack 

detection on 3D asphalt surfaces [123]. Due to their high 

performance and promising results, convolutional neural 

networks (CNNs) have been utilised in visual computing in 

many studies in the field [124]–[126] and for floor area 

detection [127]. 

Due to their high performance and promising results, 

convolutional neural has led to extreme weather, while 

demand causes the industry to raise capacity and increase the 

number of trains in the system. Nevertheless, learning 

machine algorithms can estimate the exact abnormalities by 

monitoring rail tracks [27] to perform risk assessment of rail 

failure [128], diagnose track circuit faults [129] provide early 

and precise detection methods that are essential for avoiding 

risks [130] and provide information for decision support [131]. 

It has been shown that video camera inspection is a flexible, 

effective and automatic method for monitoring rail tracks. 

Running rolling stock can provide high-resolution images 

from different angles regarding their surroundings, including 

tracks and other assets. This data enhances the machine 

learning and enables high-performance predictions of 

abnormal changes or unwanted events [132], [133]. Moreover, 

the use of vision allows for more frequent infrastructure 

inspections and reduces human errors [134], helping to avoid 

maintenance train collisions [135] and monitoring to ensure 

passenger safety at stations [136]. Using a robot for railway 

tunnel detection reduces worker risk and improves the 

detection efficiency [137], [138]. Additionally, computer 

vision has been analysed for use in autonomous emergency 

train stops [139]. 

Deep learning methods have been suggested for addressing 

many obstacles in the railway industry, such as poor or 

missing data; such methods are expected to improve 

prediction accuracy, optimise timing, reveal the types of 

maintenance that should be performed to rail infrastructure 

[33] and to perform object detection for railway traffic [140]. 

Of the many applications that have been applied to CNN, in 

this subsection, we present those that are specifically related 

to railways. Such studies have been widely reported in the 

recent literature and use many data sources; they cover 

management, maintenance, safety and operations [141]. 

Image-processing approaches for implementing automatic 

detection have been suggested for monitoring railway 

infrastructure [128], rail track maintenance [133], railway 

track inspections and train component inspections [142]–[152] 

such as the rolling bearings of trains [153]. 

CNNs have also been utilised to perform railcar safety 

inspection [154], determine the area of the rails ahead [155] 

detecting objects ahead [156], detect multiple catenary 

systems and support components [157]–[159], tracking joints 

[160] and detecting track defects [161], [162]. 

Sydney trains conducted condition monitoring for 

inspections and prevention of overhead wiring teardowns 

using laser and computer vision technologies [163]. Similarly, 

deep learning has been implemented to conduct traffic signal 

detection [164], [165], predict train delays [166], detect rail 

fastener defects and ballast history [167]–[169], detect cracks 

in and the shape and location of bolts [170], inspect railway 

ties [134], predict safety risks in communication-based train 
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control systems (CBTCs) [171] and to perform subgrade status 

inspections [172]. 

A CNN can be used to estimate crowd density at railway 

stations [173],to detect intrusions in track areas, such as 

pedestrians or large livestock via images captured in railway 

areas [174], to monitor railway construction [152] and for 

intrusion detection at railway crossings [175]. From the 

security side, the method been used for detecting violent 

crowd flows [176], protect the critical infrastructure [177], and 

identifying tools wielding by attackers such as knives, guns 

and Explosives [178]. 

A railway system contains a wealth of data, and visual 

processing technology can play an essential role in the 

industry's future. The most up-to-date applications were 

reviewed in [179]. 

III. DEEP LEARNING AND RISK MANAGEMENT 

As one type of machine learning in AI, deep learning (DL) has 

been suggested as a method for risk management in railway 

stations. Accordingly, in this paper, we address some risks by 

utilising vision data from many points in the system, including 

both still frames and motion video. Currently, face recognition 

plays an important role in computer vision and has many 

applications, such as in autonomous vehicles, human-

computer interactions, video surveillance, robotics, health 

care, medical imaging and homecare technology. 

Improvements in IT have enabled vision sensors to be installed 

in railway environments. For example, CCTV cameras widely 

used and rely on numerous cameras sensors; these cameras are 

intended to avoid and manage safety and accidents in railway 

environments. 

In this study, we explore DL by utilising a convolutional 

neural network (CNN) to detect passenger falls. FTSs are 

common accidents in stations; their causes are sometimes 

related to human factors such as people running or to factors 

such as damage to floors (wet or muddy conditions) or a lack 

of lighting or poor steps design. FTS risks are correlated with 

other risks, such as overcrowding or emergency evacuation. In 

some cases, passenger falls can lead to overcrowding and 

panic; passengers can fall into the gap between the train and 

the platform, onto the track, or even under trains, and such 

incidents may escape notice by the train driver or station 

workers. A team in the platform may not notice a passenger 

trapped in the doors or people who are very close to the train 

or children—who might be at increased risk. CCTV cameras 

in stations can capture a vast amount of data, and such data is 

typically archived for some period before being deleted. The 

recorded data can be utilised by the police as evidence in 

criminal cases, and the system data can be utilised for 

monitoring all station operations; however, the outcomes 

currently depends on employees whose job is to watch video 

screens all the time. However, CCTV management systems (in 

control rooms) are passive: they provide only a limited ability 

to maintain safety in stations. When an emergency situation 

occurs, it is very challenging to identify and manage the 

emergency immediately. 

Human error in such cases can be high, and the locations of 

monitored cameras may not fully cover all station areas. 

Accordingly, it is necessary to systematically observe the risks 

and any related factors relating to passengers in the station and 

raise a notification concerning any potential emergency 

condition in a timely manner. 

 
FIGURE 4.  Map of Utilising CNN in railway stations shows examples of risk sources to be managed. 
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Multiple cameras can cover all station areas, such as 

platforms, tunnels and tracks, while image-processing 

technology can detect real-time risks and then take actions 

such as notifying the train driver, the central control room 

(CCR) and station staff with the information, including the 

location, time and any alarm message. The captured images 

can be input to a smart system, which can be trained to 

recognize any pattern differences and can learn over time. This 

approach reduces the risk of human error and increases the 

reliability of real-time predictions. It is expected that utilising 

a smart method such as a CNN would be able to identify 

passenger falls, running, overcrowding, or any behaviour or 

conditions that look suspicious. Some current techniques are 

effective in detecting suspicious behaviour is in real life, such 

as Hitachi video analysis [180]. Moreover, a thermal camera 

has been used to detect human body temperature and used to 

detect changes in emotion [181]. 

Video surveillance can play many roles in industry security 

and safety by utilising advanced detection algorithms and 

identifying risks in early stages, such as suicide, traffic flow, 

criminal activity, trespassers, smoke and fires. Advanced 

methods can detect objects and conduct video analytics to 

assist emergency responses and support decision-makers. It is 

expected that these detection techniques would aid in 

developing emergency response plans and communications 

schemes, which are critical in reducing risks from emergency 

events in railway stations. Additionally, the new technologies 

can contribute to measures for ensuring passenger egress and 

transit at critical station locations, such as tunnels and access 

points, for emergency responders. Moreover, advanced 

analytical video surveillance can cover a range of risks, such 

as collisions, derailments and intrusions from adjacent areas 

into unauthorised station locations such as a track [182] while 

managing other subsystems in real-time with minimum 

manpower and high efficiency (see Fig. 4). In the literature, it 

has been noted that achievements in deep learning can enable 

vision and video processing, classification, image captioning, 

segmentation, object detection, recognition of human actions 

from the video, picture recovery, security, observation and so 

on [136], [183]–[185]. Applying new technology, including 

image processing, computer vision and machine learning, will 

provide both direct and indirect benefits, such as 

improvements in safety and security, such as detecting 

problems at early stages, resulting in time and cost savings for 

the long term and lead to automatic many processes in the 

railway system. 

IV. DEEP LEARNING FOR DECISION MAKING IN RISK 
MANAGEMENT AT RAILWAY STATIONS 

DL is a subset of machine learning, which depends on 

employing nonlinear algorithms to match data. There are 

many methods that employ this technique, but they 

 
FIGURE 5.  Deep learning structure [188]. 
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generally share some commonalities, such as the way each 

layer receives the output from the former layer as inputs, as 

shown in Fig. 5. Advancements in hardware and increased 

data availability have contributed to the ability to effectively 

train deep CNN networks to identify features not only from 

static images but also from videos [186], [187]. In addition, 

including a set of convolution layers in an NN framework has 

revolutionized image processing. The convolution operation 

can be defined as follows: 

𝑠 (𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎, 

where 𝑥 and 𝑤 is the kernel, which is an adaptive filter that the 

network learns [189]. 

Video identification is challenging role compared to static 

images due to the complexities involved in capturing 

continuous spatial and temporal data [190]. In the past few 

years, DL has gained enormous power for object detection and 

tracking. Some object detection algorithms include the region-

based convolutional neural networks (RCNN), Faster-RCNN, 

the single shot detector (SSD) and you only look once 

(YOLO). Among these, Faster-RCNN and SSD achieve 

higher accuracy, while YOLO offers is more advantageous 

speed is given preference over accuracy [191]. 

Many CNNs are configured to use a graphics processing 

unit (GPU) as a specialised type of electronic circuit, that can 

swiftly manipulate and convert memory to accelerate the 

creation of images in a frame buffer [192]. 

Currently, most machine learning efforts rely on DL 

techniques, which connects the layers of an artificial neural 

network (ANN) to systematically identify patterns in the data 

that affect decision making. DL is a powerful method of 

machine learning; however, it requires large amounts of 

training data to be efficient. Such systems make it possible to 

make decisions without human input; moreover, the system 

can learn continuously. For instance, self-driving cars are able 

to make timely decisions about speed and direction from 

information captured in real-time from their surroundings. 

Offering a decision making algorithm to enhance railway 

station safety and risk management would be a significant 

improvement in the use of CCTV data, passenger 

smartphones, ticketing systems, or other related subsystems in 

stations. In the initial phase of such applications, we can use 

DL to support the decision makers; later, in the more advanced 

phases , we can rely on AI as a highly accurate decision maker. 

In other words, individuals and AI technologies can cooperate 

to manage various decision-making challenges (uncertainty, 

complexity and equivocality) [193], [194]. Based on CCTV 

systems in stations, which can be updated and utilised to 

capture video frames and collect data reflecting human actions 

and motion, the resulting data contain spatial and temporal 

information from many locations in the station, such as 

platforms. Then, unsafe acts can be detected using a deep 

learning method, which is mainly based on a set of algorithms 

that attempt to model high-level abstractions in the data. The 

model is trained from multiple frames and the spatial features 

they contain. For a more comprehensive application, we 

compare the traditional risk management process to a CNN 

model process to present the steps of the two systems in 

parallel (see Fig. 6). 

Both outcomes will support the decision-maker and reduce 

uncertainties to a low level in complex systems. The process 

improvement will support many field activities such as 

maintenance, passenger crowding. System reviews will 

enhance actions, add alternatives and redesign the processes 

regarding predictions and advanced analytics and—

importantly, training the model. The cycle of control, 

continuous improvement and incorporating lessons learned is 

an essential part of a safety system; thus, this innovative 

approach fits well into that process, as shown in see Fig. 7. 

V. MODEL FRAMEWORK 

Railway station monitoring is vital to guarantee that people 

and the rail system are safe and secure. A monitoring failure 

can result not only in significant impacts to train delays and 

maintenance costs but also to passenger safety at the station 

and to society and the economy. 

 
FIGURE 6.  Diagram of the risk management steps process compared to the proposed CNN method. 
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FIGURE 7.  The safety cycle transferred to the approach with new techniques. 

 

FIGURE 8.  Flowchart of the offered approach (Framework). 

In the case model adopted in this paper, the goal is to manage 

the risk of falls by detecting and analysing passengers 

automatically among the enormous amount of data from 

CCTV cameras. The outcomes illustrate the practicality and 

efficiency of the proposed approach. This model relies on 

image-detection methods and introduces a risk management 

framework that uses a CNN to analyse the images or videos to 

detect risks. The proposed framework is depicted in Fig. 8. 

Video images can be used to identify deficiencies, such as 

interruptions to passenger flow that cause falls, which leads to 
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overcrowding. In addition, they can be utilised to discover 

unwanted events that occur in the station. 

VI. THE CNN CASE MODEL 

The goal of the proposed model is to detect falls based on a 

CNN. To implement such a method, the system needs to be 

able to characterise the complex motions of passengers and 

address more than one passenger fall at the same time. When 

a fall is detected, the system should present the significant 

information to railway station control, such as the time and 

location. The difference between a CNN and ordinary neural 

networks is that each neuron in a CNN is locally connected to 

only a few neurons in the previous layer; not to all neurons, as 

is the case in ordinary neural networks. This enables CNNs to 

be used to construct deeper networks and, consequently, learn 

more complex features [195]. Furthermore, CNNs have 

demonstrated high performance and are relatively easy to 

train. A basic CNN can be characterised as having two layers: 

a convolutional base layer that extracts features from an image 

and a classifier (a fully connected layer) to classify the image 

based on the detected features. Each frame undergoes a the 

data acquisition phase that supplies the system with the 

digitized data from such images. These data may include many 

events or statuses and can be acquired from both internal and 

external networks, such as traffic and/or track conditions and 

weather. Then, manipulation or data mining processes such as 

feature selection, extraction and standardisation can be applied 

to process the raw data for analysis. The data can contain many 

layers, including the acquisition time and location. Next, an 

appropriate model and deep learning technique are used to 

perform feature detection and make predictions along with the 

actions and triggers to be activated when a threshold is 

breached. The goal is to create a proactive system that can 

avoid or mitigate unwanted events. The history of events and 

scenarios from many points in the system will improve the 

prediction accuracy, and the model is trained from past 

activities, as shown in Fig. 9. 

CNNs have become the main tool used for recent 

innovations in the comprehension of images [196], videos 

[136], [197] and audio signals [183], [184]. 

In this study, we used the Keras library, which is an open 

source neural network library written in Python that supports 

easy and fast prototyping. Furthermore, it maintains the CNN 

and runs seamlessly on both CPUs and GPUs. Keras is 

compatible with other Python code and can use raw images as 

inputs to the CNN model, which extracts features. A summary 

of the experimental configuration is shown in Table I. 

 

 

 

 

TABLE I 

KERAS LIBRARY PACKAGES EXAMPLE INSTALLED DETAILS RESULTS 

AFTER RUNNING THE MODEL 

Layer (type) Output Shape  Param  # 

Conv2d_1 (conv2D) (None,62,62,64) 1792 

Max_pooling2d_1 
(MaxPooling2) 

(None,31,31,64) 0 

Conv2d_1 (conv2D) (None,29,29,128) 73856 

Max_pooling2d_1 

(MaxPooling2) 

(None,14,14,128) 0 

Flatten_1(Flatten) (None,25088) 0 

Dense_1(Dense) (None,128) 3211392 

Dense_2(Dense) (None,64) 8256 

Dense_3(Dense) (None,32) 2080 

Dropout_1(dropout) (None,32) 0 

Dense_4(Dense) (None,32) 1056 

Dropout_2(dropout) (None,32) 0 

Dense_5(Dense) (None,1) 33 

Total params: 3,298,465 

Trainable params: 3,298,465 
Non-trainable params :0 

 

In this part of the study, we employed available processors to 

execute the framework; however, for large data, employing 

more powerful CPUs and GPUs is recommended. 

We build a model layer by layer using the sequential model 

type was selected, which is the simplest way to build a model 

in Keras. Next, to deal with input images as 2D matrices, we 

selected Conv2D layers with 64 nodes in each layer. A 3 × 3 

filter matrix was used for the convolution kernel (see Fig. 10). 

A CNN structure includes convolutional layers that are the 

major building blocks; these layers learn the features that are 

suitable for differentiating between a ‘falling’ image and a ‘not 

falling’ image. Each convolutional layer employs a set of 

kernels that apply a convolution operation based on the 

outputs of the preceding layers. 
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FIGURE 9.  Architecture of a CNN-based model. 

We adopted the rectified linear unit (ReLU) as an activation 

function because ReLU has previously been shown to work 

well in neural networks. 

For the output layer, we selected a dense layer, which is a 

standard type of layer used in various neural network 

architectures. To connect the convolution and dense layers, a 

flattening layer is preferable. In addition, we used dropout layers 

between the, various layers to avoid data overfitting [197], 

[198], [199]. 

VII. DATA AND ANALYSIS 

A. EXPERIMENTS 

1) DATASETS 

The objective of the CNN in this study is to take input image 

data of passengers in a station and classify each image into one 

of two classes: either ‘falling’ or ‘not falling’. The dataset was 

divided into separate frames with known labels (falling or not 

falling), which were then used as training data for the 

classifier. To construct the dataset, different activities and 

complex falling events from different locations were selected 

from many open source sequences, such as falls on stairs or in 

the gap between the train and platform, as shown in Fig. 11. 

We implemented the proposed method after training to 

predict risk states in a railway system (at the station) and 

evaluated the performance of the model. For all the 

experiments, we used one computer equipped with an Intel 

Core i7 CPU, 64 GB of memory and an NVIDIA GeForce MX 

150 GPU. 

We gathered data consisting of both still frames and videos 

from open sources. Finding such data is challenging both 

because of privacy concerns and lack of availability for many 

reasons, such as that data is deleted from data centres 

periodically and the difficulty of finding and collecting such 

data. 
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FIGURE 10.  An example of a convolutional layer operation. 

 

FIGURE 11.  (a) Sample falling passenger images. (b) Sample passenger does not fall images. 
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The data must clustered, classified and labelled; the images 

show some risky passenger behaviours (see Fig. 12) and the 

collected videos and images cover many countries. The data 

raise significant concerns that should be considered in the 

future station design and in daily operations, for example: 

• People standing in risky positions near the gap between 

the train and the platform and close to moving trains. 

• Some people trespass into the track areas and can be 

found in restricted areas. 

• Some passengers cross the tracks to take shortcuts 

between locations. 

• Some passengers are pressed against the train and their 

clothes become trapped in train doors. 

• Elderly people fall on escalators and other passengers 

misuse the escalators. 

• Children and those susceptible to fainting falling into the 

gap between the train and the platform. 

• Impacts from technology and lifestyles, such as taking 

selfies behind the trains 

• Wheelchairs falling down stairs and escalators. 

• Passengers standing in restricted areas. 

However, the limited data available for each dataset are not 

sufficient for training deep learning models. Thus, we 

augmented the collected data with the Le2i dataset built by 

Charfi et al. [200], which covers many falling positions, and 

our model performs only binary classification: falling or not 

falling. We split the dataset into training and test datasets. 

2) PRE-PROCESSING AND PREDICTIONS 

Despite the data limitations, the data (both images and videos) 

collected from the web require intensive cleaning. The variety 

of sources imposes many constraints, images with poor quality 

and obstructed vision (to the point that the targets cannot be 

seen) must be removed. After being trained, the model is 

applied to a test dataset, in which the images have not been 

seen before, to classify the risk of falling. 

 

 
FIGURE 12.  Examples of clusters of passengers’ behaviours. 

 

Using randomly selected open source images, we divided 

the data into three sets (training, testing and prediction).The 

CNN training outcome of results in an accuracy increase with 

each model training iteration; thus, the model performance 

validation data eventually reach an acceptable level as the 

error decreases, as shown in. After training rule, the prediction 

ability of the model was evaluated on the test sample (see Fig. 

14). 

3) THE EVALUATION 

During the testing process, performance indicators can be 

calculated from the trained model output. We selected 

indicators such as accuracy, precision, recall and F1-score and 
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the receiver operating characteristic curve (ROC) for this 

study. For Predictions, we are focused on identifying the fall 

risk. Hence, we sample data present the fall and the 

behaviour of falling occurrence which cover unsafe people 

positions. For an estimate the risk and to identify the best 

classes, different datasets cases are studied. Falling and not 

(case1), and three categories, fall, not falling (normal or safe 

station) and unsafe behaviour (case 2) see Table 2 and Fig. 

13. 

 
TABLE 2 
DETAILS RESULTS OF THE EXPERIMENTS MODELS 

M
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f classes  

C
lasses 
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els  

A
ccu

racy
 

N
u

m
b
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f 

P
aram

eters  

D
ataset  

CNN-0 3 

 

Fall 

Not fall  
Risky position 

81.90 3,301,635 1782 

CNN-1 Fall 

Not fall  
Risky position 

71.71 3,301,635 1826 

CNN-2 Passenger Fall  

Risky behaviour  

Safe station  

77.90 3,301,635 1781 

CNN-3 2 

  

Fall  

Not fall  

80.77 3,303,681 2820 

CNN-4 82.2 3,298,465 1980 

CNN-5 75.00 3,298,465 2885 

 

FIGURE 13.  Examples of clusters of passengers’ behaviours 
Predictions. 

The prediction model classifies instances of passenger 

behaviour using a two-class prediction (case1) show the high 

results. When the prediction is positive and the ground-truth 

value is also positive, the prediction is called a true positive 

(TP). Similarly, false positive (FP), true negative (TN) and 

false negative (FN) values can be calculated [141]. These four 

values can be presented as a 2×2 contingency table, called 

confusion matrix, as depicted in Fig. 15. 

The ROC is a metric that reflects both the sensitivity and 

specificity of continuous variables and reveals the relationship 

between them. The ROC curve of the case study results is 

shown in Fig. 16. 

From the perspective of the ROC curve, the model performs 

effectively in making falling predictions. 

The lack of risk-class images in accident cases at stations 

means that an uneven number of pictures exists between the 

risk and non-risk groups. Thus, the data make it challenging to 

model safety vs. risk when training a deep learning model 

utilising the available images. In this study, we used 80% of 

the dataset for training, 10% for validation and the remaining 

10% for model testing. 
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VIII. DISCUSSION AND CONCLUSIONS 

In this study, we proposed a process for moving from 

conventional risk management to applying innovative 

technology to risk management; such an approach can 

improve safety and security throughout the entire railway 

industry paradigm. Many benefits can be gained from deep 

learning in risk management, such as the following. 

• A real-time ability can be gained to help avoid risks 

FIGURE 14.  The trained model's accuracy and the model loss. 
 

 

 
FIGURE 15.  The classification performance evaluation results shown 
as a confusion matrix. 
 

• Many subsystems in the field can be integrated, including 

maintenance, security, traffic and passenger models, to 

form actions that consider multiple aspects. 

• Lessons and experience can be integrated into the 

learning process and automated effectively via machine 

learning, which is critical for safety systems. 

• The effectiveness of operations in stations and other areas 

linked to railway activities can be improved. 

• Time and costs can be saved while improving accuracy to 

enable long-term quality improvements 

• Both passenger and workforce experiences can be 

improved, which reflect on the overall market image. 

• Data gathering can be enhanced to more fully utilise 

effective connections between assets and people.
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FIGURE 16.  ROC curve of the model. 

 

We propose an efficient railway system technique framework 

based on a CNN and applied DL algorithms to foster detection 

of unwanted events in railway stations. We adopted a CNN to 

extract events such as passenger falls, which may occur on 

stairs, escalators, or platforms. Different scenarios were 

anticipated, such as suicide or falling under moving or stopped 

trains. The fall event detection process can alert the station 

control centre and then action can be taken to better clarify the 

situation, which might be an attack, crime, or intoxicated 

passenger incident. Timely detection will mitigate the risks to 

other passengers, lead to more rapid responses in emergency 

or evacuation situations and decrease the potential 

hospitalisation time. We presented datasets from open 

sources; however, compiling additional datasets containing 

training examples would improve the accuracy and cover a 

wider range of station risks. CNN-based methods require a 

large pool of labelled training data, and collecting and 

labelling such data is a complex task. Nevertheless, automatic 

detection can help with timely maintenance and risk control, 

and the results can be used as feedback to train the model to 

obtain improved accuracy. The results with the proposed 

model confirm that increasing the depth of a deep network can 

lead to better performances in terms of accuracy. Finding 

accident data (such as falls in stations) is challenging for many 

reasons, such as the lack of available data and passenger 

privacy concerns. Using methods such as computer vision 

techniques will improve timely risk management, detection 

and safety and ultimately affect risk management in railway 

systems. The proposed method could be generalised to detect 

other risks, such as people running, overcrowding, suspicious 

item detection or other complex activities in addition to fall 

patterns in stations. The CNN approach provides real-time, 

accurate visual monitoring of the risks in railway stations to 

assist safety or risk management operations, which are 

reflected in passenger services. The method is more suitable 

for real world conditions and is cost-effective (enabling, for 

example, 24-hour monitoring of CCTV cameras with the 

intention of identifying potential acts of vandalism). Image 

processing has been shown to be a promising technology that 

has the ability to improve station safety, manage risks, reduce 

dwell times and reduce the number of operators at stations. 

Moreover, image processing techniques are useful for 

detecting congestion, assessing flow, accessing dangerous 

zones, identifying people moving in forbidden areas and 

notifying train drivers about foreign objects ahead [19], [20]. 

Our results demonstrate that the proposed CNN model can 

automatically extract and classify risky behaviours (i.e., 

falling on the platform) with a high level of accuracy. The 

method carries high confidence that all the objects in a data 

sequence are detected and recognized. Nevertheless, this CNN 

model should be improved and implemented to automatically 

detect risk actions related to human behaviour or asset 

conditions both during normal operations and in any 

unanticipated conditions. Such models can lead to intervention 

by management or execute high-level automated actions; 

these can directly modify behaviours and mitigate risks or 

reduce the consequences of accidents. Moreover, the results 

can be used to provide designers, operators and decision-

makers with direct visual outcomes and to allow them to learn 

how to deliver operations more safely. Additionally, the 

results indicate that the process can achieve efficient railway 

system detection under numerous conditions, including 

aspects such as: 

• Safety and security 

• Infrastructure and assets 

• Maintenance and traffic management operations 

• Quality and reliability 
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• Operations, passengers, train drivers, workforce 

management and so on, 

The development of specialized algorithms for the model 

can overcome errors and improve response time. By 

capitalizing of existing CCTV systems, the costs are expected 

to be reduced over the long term and improve system 

efficiency by considering the locations and coverage of the 

cameras. The model offers other benefits to stations that are 

worth further research, such as predictive maintenance, 

emergency plans, people counting, train positioning and 

security. However, the data availability and quality remain a 

challenge because this technology depend heavily on large 

amounts of high-quality data. Finally, it is time to invest in AI 

to benefit railway systems, making them safer for staff, 

customers and the public. 
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