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Abstract 27 

Purpose: To determine the reliability of early force production (50-, 100-, 150-, 200-, 250 ms) 28 

relative to peak force (PF) during an isometric mid-thigh pull (IMTP) and assess the 29 

relationships between these variables. Methods: Male collegiate athletes (n = 29; age: 21.1 ± 30 

2.9 years; height: 1.71 ± 0.07 m; body mass: 71.3 ± 13.6 kg) performed IMTPs during two 31 

separate testing sessions. Net PF and net force produced at each epoch were calculated. Within- 32 

and between-session reliability were determined by using intraclass correlation coefficients 33 

(ICC) and coefficient of variation (CV%). Additionally, Pearson’s correlation coefficients and 34 

coefficient of determination, were calculated to examine the relationships between PF and 35 

time-specific force production. Results: Net PF and time-specific force demonstrated very high 36 

to almost perfect reliability both within- and between-sessions (ICCs 0.82-0.97; CV% 0.35-37 

1.23%). Similarly, time-specific force expressed as a percentage of PF demonstrated very high 38 

to almost perfect reliability both within- and between-sessions (ICCs 0.76-0.86; CV% 0.32-39 

2.51%). Strong to nearly perfect relationships (r = 0.615-0.881) exist between net PF and time-40 

specific net force, with relationships improving over longer epochs. Conclusion: Based on the 41 

smallest detectable difference, a change in force at 50 ms expressed relative to PF >10% and 42 

early force production (100-, 150-, 200- and 250 ms) expressed relative to PF of >2% should 43 

be considered meaningful.  Expressing early force production as a percentage of PF is reliable 44 

and may provide greater insight into the adaptations to the previous training phase than PF 45 

alone.  46 

 47 

 48 

 49 
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Introduction 51 

Maximal strength has been reported to be important for, and strongly associated with, 52 

performance in athletic tasks.1,2 Moreover, increases in strength have been shown to result in 53 

increases in athletic performance.2,3 Researchers have also reported strong associations 54 

between dynamic strength and maximal isometric force production.4,5 In addition to 55 

demonstrating the importance of a high maximal force capacity (i.e. a high maximal force 56 

production), the ability to rapidly produce high levels of force is paramount during athletic 57 

tasks, since there is a limited duration for the application of force during such activities.2,3 For 58 

example, during high velocity sprinting, foot contact times can be much less than 250 ms, with 59 

a progressive decline in contact time as running velocity increases.6,7 60 

Interestingly, there is a strong association between isometric peak force (PF) and isometric rate 61 

of force development (RFD) during single joint knee extension 8,9 and during the isometric 62 

mid-thigh pull (IMTP).10,11 Additionally, these associations are stronger when RFD is 63 

calculated over longer epochs (for example r = 0.57 at 30 ms [from onset of force production] 64 

compared to r = 0.89 at 200 ms).9 Similarly, and as would be expected, force at specific time-65 

points (e.g. 20-, 40-, 60-… 200 ms) are also closely related to PF during single joint knee 66 

extension.9,12 In addition, force at 100-, 150-, 200-, 250 ms has been reported to be associated 67 

with PF during a multi-joint isometric mid-thigh pull,1 with correlations between force at 68 

specific time points (50-, 90-, 250 ms) and jump performance improving with an increase in 69 

duration (later time-points).11  It is important to reliably measure such changes in force 70 

production, to monitor the training status of athletes and inform future programming.  71 

Aagaard et al. 12 expressed isometric RFD across different epochs as a percentage of PF, during 72 

isometric knee extensions, to monitor adaptations to  resistance training. Results revealed 73 

increases in early RFD (the first sixth of the time to PF), with the authors postulating that this 74 
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may have been due to increases in motor neuron recruitment, motor unit firing frequency, 75 

myosin heavy chain isoform composition and sarcoplasmic reticulum calcium kinetics. 76 

Andersen et al. 8 also demonstrated that early RFD (epochs from 0-10 ms up to 0-100 ms), 77 

expressed as a percentage of isometric PF indicates differential adaptations, in response to 78 

heavy resistance training, compared to later stage RFD (>200 ms). Similar observations for 79 

RFD expressed as a percentage of PF were also reported, with greater increases over longer 80 

epochs, although both early and late RFD were associated with isometric PF. The authors 81 

explained that a decrease in type IIx fibres may have negatively affected early RFD. Similar 82 

differential adaptations in early and late RFD were reported by Oliveira et al.,13 with changes 83 

in RFD explained by the increases in isometric PF. Additionally, Blazevich et al. 14 84 

demonstrated that changes in early force production and early RFD are influenced by increases 85 

in fascicle length in response to training, which may partly explain these differential 86 

adaptations in early and late force development.  87 

When comparing RFD normalised to isometric PF between athletes and controls, athletes 88 

demonstrated greater normalised RFD 0-50 ms, but not at other epochs.15 The authors attributed 89 

this to differences in neural activation and contractile properties of the muscle and tendon. As 90 

would be expected, absolute PF and RFD at all epochs were greater in athletes than controls.15 91 

Similarly, Tillin et al. 16 reported increases in force at specific time points (50-, 100-, 150 ms), 92 

in response to four weeks of ‘explosive’ strength training, although, when normalised to 93 

isometric PF, the only increase in force production occurred at 50 ms, possibly due to enhanced 94 

agonist neural drive.  95 

 96 

Isometric force at specific time-points has also been expressed in relation to PF, in an attempt 97 

to explain training adaptations 15,16 and differences between sexes,17 demonstrating that 98 
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differences in early force production between sexes may be explained by differences in 99 

absolute force. While normalization of isometric force at specific time-points to PF during 100 

MVIC has been performed in single joint assessments, to the authors’ knowledge, this approach 101 

has not been used in research using multi-joint isometric assessments of force. This is 102 

somewhat surprising as performance during single joint assessments of force do not appear to 103 

correlate well to athletic tasks.18,19 Multi-joint assessments, such as the IMTP demonstrate 104 

strong correlations with performance in a range of athletic tasks.20 Presenting data in this way 105 

may provide the coach with information explaining whether changes in early force production 106 

are in proportion to changes in PF, therefore identifying if the athlete should emphasize 107 

maximal force production, or the ability to express force rapidly using appropriate training 108 

methods. The aim of this investigation was, therefore, to determine the reliability of force at 109 

specific time-points (50-, 100-, 150-, 200-, 250 ms) expressed relative to PF, assessed during 110 

the IMTP. An additional aim was to identify if force at specific time-points are related to PF 111 

during the IMTP, as has been observed during single-joint assessments.9,21 It was hypothesized 112 

that force at specific time-points normalised to PF would be reliable and that PF and force at 113 

specific time-points would be associated, in line with previous research.1  114 

 115 

Methods 116 

Subjects 117 

Male collegiate athletes from a variety of sports (rowing, field hockey, soccer) volunteered to 118 

participate in this investigation (n = 29, age 21.1 ± 2.9 years; height 1.71 ± 0.07 m; body mass 119 

71.3 ± 13.6 kg; power clean one repetition maximum 1.12 ± 0.09 kg.kg-1). All subjects provided 120 

written informed consent, or parental assent as appropriate, and the study was approved by the 121 

university’s institutional review board, in accordance with the Declaration of Helsinki. Subjects 122 

provided written informed consent and were all experienced in resistance training (resistance 123 
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training age 2.1 ± 0.6 years) and familiar with the testing protocols, from previous performance 124 

of the IMTP used as a monitoring tool. Testing was completed at the start of the season, after 125 

a 4-week block of strength training. 126 

 127 

Design 128 

A repeated measures design was used, to determine the within- and between-session reliability 129 

of force at specific time points (50-, 100-, 150-, 200-, 250 ms) normalised to PF during the 130 

IMTP, and identify relationships between time-specific force production and PF. Subjects were 131 

assessed twice (72 hours apart), to determine the reliability of the dependent variables. All 132 

testing occurred in-season, immediately after a one-week break from resistance training, after 133 

a previous four-week strength mesocycle. Testing was performed at the same time of day, with 134 

subjects asked to maintain their normal dietary intake and avoid strenuous exercise for at least 135 

48 hours prior to testing. 136 

Prior to testing, subjects performed a non-fatiguing standardised warm up consisting of body 137 

weight squats, forward and reverse lunges, and submaximal countermovement jumps. Further 138 

familiarisation and warm up trials were performed prior to the maximal IMTP, as described 139 

below. 140 

 141 

Methodology 142 

Isometric Mid-thigh Pull  143 

Previously described procedures were adopted.20,22 An immovable cold rolled steel bar was 144 

positioned at a height that replicated the start of the second pull phase of the clean on a custom 145 

rack above a force platform. Once the bar height was established, the subjects stood on the 146 

force platform with their hands strapped to the bar, using standard lifting straps.1 Each subject 147 
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adopted the posture that they would use for the start of the second pull phase of the clean, 148 

resulting in knee and hip angles of 139.5 ± 3.3˚ and 145.1 ± 3.4˚ respectively, in line with 149 

previous research.20,22 Individual joint angles were measured using a goniometer, recorded and 150 

standardised between testing sessions, in line with previous suggestions.20  151 

Each participant performed three warm-up trials, one at 50%, one at 75% and one at 90% of 152 

their perceived maximum effort, separated by one minute of rest. Once body position was 153 

stabilized (verified by watching the participant and the force-time record), the participants were 154 

given a countdown of “3, 2, 1, Pull”. Any obvious pre-tension, determined as a force >50 N 155 

above the subjects’ system mass (body mass + bar mass), was not permitted prior to initiation 156 

of the pull. Subjects were instructed to pull against the bar “and push their feet into the ground 157 

as fast and hard as possible”, which has previously been reported to produce optimal testing 158 

results.23 Each IMTP trial was performed for approximately five seconds, after at least one 159 

second of quiet standing in position prior to the start of the pull,20 and all participants were 160 

given strong verbal encouragement during each trial. Participants performed three maximal 161 

IMTP trials interspersed with two minutes of rest between trials. If PF during all trials did not 162 

fall within 250 N of each other, the trial was discounted and repeated after a further two minutes 163 

of rest, in line with previous recommendations.20,22 164 

Vertical ground reaction force data were collected using a portable force platform sampling at 165 

1000 Hz (Kistler Instuments, Winterthur, Switzerland), interfaced with a laptop computer and 166 

specialist software (Bioware 3.1, Kistler Instruments, Winterthur, Switzerland) that allows for 167 

direct measurement of force-time characteristics. Raw unfiltered, force-time data was exported 168 

for subsequent analysis in a bespoke Excel spreadsheet.  169 

 170 

 171 

 172 
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Data Analysis 173 

The onset of force production was defined as an increase in force that was greater than five 174 

standard deviations of force calculated during last 1 second immediately before the pull 175 

commenced.20 Body weight was subtracted from the original force-time curve to give the net 176 

force-time curve to prevent inflation of the associations between PF and time-specific variables 177 

which would occur if gross force was used. Net peak force was reported as the maximum force 178 

across the recorded net force-time curve. Subsequently, net force at 50-, 100-, 150-, 200- and 179 

250 ms was identified. For between-session and correlational comparisons, the mean of the 180 

three trials was used. 181 

  182 

Statistical Analyses 183 

All statistical analyses were conducted in SPSS (version 26, IBM). Normality of all data was 184 

determined via Shapiro-Wilk’s test, with all variables normally distributed (p > 0.05). 185 

Reliability was assessed using two-way mixed model intraclass correlation coefficients (ICC) 186 

and 95% confidence intervals (95% CI), with the 3,1 model used to determine within session 187 

reliability and the 3,k model used between sessions.24 To determine the magnitude of the 188 

ICC, the values were interpreted as poor (<0.50), moderate (0.50-0.74), high (0.75-0.90) and 189 

excellent (>0.90).24 Coefficient of variation percentages (CV%) were also calculated 190 

(standard deviation / mean x 100) to determine the between session variability, with <10% 191 

considered acceptable.25 The smallest detectable difference in change of the early force 192 

production, expressed as a percentage of PF, was also calculated as follows: (1.96 x (√2) x 193 

standard error of the mean [SEM]), with SEM calculated as: (SD [pooled] x √(1-ICC)). In 194 

addition, Hedge’s g effect sizes were calculated to determine if there were any meaningful 195 

differences between testing sessions and classified as trivial (≤0.19), small (0.20 – 0.59), 196 

moderate (0.60 – 1.19), large (1.20 – 1.99), and very large (2.0 – 4.0).26  197 
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Pearson’s correlation coefficients, with 95% CI, and coefficient of determination (R2), were 198 

calculated to determine associations between PF and force at 50-, 100-, 150-, 200- and 250 ms, 199 

with the associated p values adjusted using Bonferroni post-hoc correction for multiple 200 

comparisons, and correlations interpreted as <0.10, 0.10-0.29 0.30-0.49, 0.50-0.69, 0.7-0.89 201 

and ≥0.90 as trivial, small, moderate, large, very large and nearly perfect, respectively.26 202 

 203 

Results 204 

All force variables demonstrated good to excellent reliability both within- and between 205 

sessions, with reliability tending to improve across longer time points. Coefficient of variation 206 

values illustrated minimal variability (<2.0%), while Hedge’s g effect sizes highlighted only 207 

trivial differences between sessions (Table 1).  208 

 209 
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Table 1: Within and between session reliability and variability of absolute isometric mid-thigh pull variables and time specific force variables 210 
expressed as a percentage of peak force 211 

  Session 1 Session 2 Between-Session Statistics 

Variable Mean (SD) ICC (95%CI) Mean (SD) ICC (95%CI) ICC (95%CI) %CV g SDD 

Force 50 ms (N) 1069 (237) 0.827 (0.705-0.910) 1042 (222) 0.849 (0.739-0.922) 0.914 (0.818-0.959) 1.23 0.12 21.6 (6.3%) 
Force 100 ms (N) 1276 (346) 0.914 (0.845-0.957) 1269 (296) 0.861 (0.757-0.929) 0.925 (0.839-0.965) 0.35 0.02 4.0 (0.7%) 
Force 150 ms (N) 1537 (453) 0.938 (0.880-0.967) 1537 (369) 0.849 (0.739-0.992) 0.926 (0.841-0.965) 0.40 0.00 3.8 (0.4%) 
Force 200 ms (N) 1765 (494) 0.933 (0.878-0.967 1745 (407) 0.849 (0.737-0.922) 0.929 (0.849-0.967) 0.44 0.04 9.9 (0.95%) 
Force 250 ms (N) 1865 (502) 0.942 (0.896-0.970) 1840 (447) 0.894 (0.816-0.945) 0.954 (0.903-0.978) 0.70 0.05 11.7 (1.02%) 
Peak Force (N) 2367 (680) 0.978 (0.960-0.989) 2390 (674) 0.965 (0.934-0.983) 0.977 (0.951-0.989) 0.72 0.03 6.9 (0.4%) 
          

Force 50 ms (%) 46.3 (7.4) 0.764 (0.608-0.875) 44.7 (6.8) 0.724 (0.551-0.851) 0.821 (0.622-0.916) 2.51 0.22 0.020 (9.6%) 
Force 100 ms (%) 57.9 (8.9) 0.786 (0.642-0.887) 54.4 (8.9) 0.724 (0.551-0.851) 0.831 (0.639-0.921) 0.68 0.39 0.005 (1.5%) 
Force 150 ms (%) 66.0 (10.9) 0.797 (0.658-0.893) 65.7 (10.8) 0.722 (0.546-0.850) 0.866 (0.713-0.937) 0.32 0.03 0.003 (0.5%) 
Force 200 ms (%) 75.7 (8.7) 0.834 (0.714-0.914) 74.4 (9.8) 0.858 (0.732-0.931) 0.815 (0.607-0.913) 1.19 0.14 0.011 (1.7%) 
Force 250 ms (%) 79.6 (8.2) 0.786 (0.648-0.884) 77.9 (7.7) 0.813 (0.654-0.906) 0.801 (0.581-0.906) 1.53 0.21 0.013 (1.9%) 

SD = Standard Deviation; ICC = Intraclass Correlation Coefficient; CI = Confidence Intervals; CV = Coefficient of Variation; g = Hedge’s g Effect 
Size; SDD = Smallest Detectable Difference 

 212 
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Similarly, time-specific force variables expressed as a percentage of PF demonstrated high to 213 

almost perfect reliability both within and between sessions. Coefficient of variation values 214 

illustrated minimal variability (<3.0%), while Hedge’s g effect sizes highlighted only trivial to  215 

moderate differences between sessions (Table 1).  216 

There were strong, significant correlations between force at each time-point and PF, with 217 

progressive increases in the magnitude of the association from very strong to almost perfect, 218 

as duration increased (50 ms, r = 0.615 [95% CI = 0.321-0.801], R2 = 0.378; 100 ms, r = 0.675 219 

[95% CI = 0.410-0.835], R2 = 0.456; 150 ms, r = 0.720 [95% CI = 0.480-0.860], R2 = 0.518; 220 

200 ms, r = 0.796 [95% CI = 0.606-0.900], R2 = 0.634; 250 ms, r = 0.881 [95% CI = 0.760-221 

0.943], R2 = 0.0.776; p <0.001) (Figure 1). 222 

 223 
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 224 

 225 

Figure 1: Associations between net force at A) 50 ms, B) 150 ms, C) 250 ms and net peak force. The shaded area represents the 95% confidence 226 
intervals 227 
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Discussion  228 

The aim of this investigation was to determine the reliability of net force at specific time-points 229 

(50-, 100-, 150-, 200-, 250 ms) expressed relative to net PF, assessed during the IMTP, with 230 

the results highlighting good to excellent reliability within- and between sessions, with low 231 

variability and minimal differences between session, in line with the hypotheses. In addition, 232 

net force at each time-point was strongly associated with net PF, demonstrating coefficients of 233 

determination percentages of 38-78%, which progressively increased with an increase in the 234 

duration over which net force was assessed. 235 

The normalised time-specific net force values demonstrate lower reliability than the time-236 

specific force values and net PF, as the process of normalizing these values combines the 237 

variability of both the time-specific net force and net PF. The normalised values, however, still 238 

exhibited high reliability both within- and between sessions, with low variability and minimal 239 

differences between sessions. Importantly, the smallest detectable difference of each of the 240 

normalised time-specific force values were <10% and <2% for normalised force from 100-, 241 

250 ms. 242 

When monitoring training adaptations, it would be useful to determine if any changes in early 243 

force production are in proportion to the change in net PF. For example, if an athlete’s net PF 244 

increases and there is a disproportionately low change in early net force production (percentage 245 

of net PF decreases at specific time points), this may indicate that there is a deficit in rapid 246 

force production. In this scenario, the focus of the subsequent mesocycle should emphasize 247 

activities that focus on rapid force production rather than maximal force production.27,28 As 248 

such, this would ensure that the higher force generating capacity, developed during the previous 249 

mesocycle, can be appropriately expressed to enhance performance in sporting activities that 250 

require rapid force production, depending on the requirements of the athlete’s sport. In contrast, 251 
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if changes in early net force production are disproportionately greater than the change in net 252 

PF (percentage of net PF increases at specific time points), it may be advantageous to 253 

emphasize maximal force production during the subsequent mesocycle.27,28 As such, 254 

expressing early net force production as a percentage of net PF should provide practitioners 255 

with additional insight regarding the development of their athlete and assist in the appropriate 256 

periodization of their training program.  257 

It is worth noting however, that if net PF is low, indicating a low strength level, prioritizing 258 

maximal force production may be preferential, as strength development in weak individuals 259 

has been shown to be highly beneficial in terms of rapid force and power production.2,3,29,30 It 260 

is also worth noting, however, that during periods of high-volume training (e.g. hypertrophy) 261 

the associated residual fatigue is likely to result in an impaired ability to rapidly produce force. 262 

Additionally, rapid force production is more responsive to increases in training intensity 263 

compared to increases in volume.31 264 

It is interesting that net PF explains 38-78% of variance in the force at specific time-points, and 265 

somewhat logical that a stronger association was observed as the time-point increased, with 266 

similar correlations previously reported in weightlifters.1 These findings highlight the 267 

importance of PF and therefore strength development, if the aim is to enhance an athlete’s 268 

ability to express high forces rapidly. Such observations are in line with numerous studies using 269 

single joint assessment of force,9,21 the IMTP,1 and observations during dynamic tasks.2,3  270 

Currently, the ideal percentage of net PF at different time points, along with how they relate to 271 

performance in athletic tasks, is yet to be identified. The authors, therefore, suggest that such 272 

thresholds be investigated in the future, along with the identification of the effect of different 273 

training intensities and volumes on the changes in early net force production relative to net PF, 274 

during the IMTP. Aagaard et al. 12 previously postulated that increases in early force production 275 
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are likely as a result of increases in motor neuron recruitment, motor unit firing frequency, 276 

myosin heavy chain isoform composition and sarcoplasmic reticulum calcium kinetics. 277 

Comparisons of changes in early force production and PF, as highlighted in this study, may 278 

permit identification of whether changes are as a result of more efficient force production, or 279 

as a result of increased PF.  280 

 281 

Practical Applications 282 

Coaches should consider changes in the percentage of net PF that can be produced during early 283 

time points (100-, 150-, 200- and 250 ms) of >2% as meaningful, whereas changes in net PF at 284 

50 ms, expressed as a percentage of net PF should be considered meaningful when >10%. 285 

Researchers and practitioners should determine the percentage net PF that can be produced 286 

during early time points, in addition to the absolute values, as this may provide greater insight 287 

into the adaptations to the previous phase of training and equip the practitioner with 288 

information regarding the requirements of the subsequent phase of training. If the percentage 289 

of net PF has increased for a given time point, additional emphasis on maximal force 290 

production (i.e. strength) may be warranted, while a decrease in percentage would indicate that 291 

additional emphasis should be placed on the development of rapid force production (See Haff 292 

and Nimphius32 for more detail regarding the application of such training principles). It is, 293 

however, important for coaches to also understand the effects that each training phase is likely 294 

to have on both PF and temporal aspects of force production, although further research should 295 

be conducted in this area.  296 

 297 

 298 

 299 
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Conclusions 300 

Expressing early net force production (50-, 100-, 150-, 200- and 250 ms) as a percentage of net 301 

PF, during the IMTP, is reliable and may provide additional insight into the temporal aspects 302 

of force production.  303 
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Table and Figure Legends:  386 

Table 1: Within and between session reliability and variability of absolute isometric mid-thigh 387 
pull variables and time specific force variables expressed as a percentage of peak force 388 

 389 
Figure 1: Associations between net force at A) 50 ms, B) 150 ms, C) 250 ms and net peak 390 
force. The shaded area represents the 95% confidence intervals 391 
 392 


