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ABSTRACT 

Thermal coating of components with non-Newtonian materials is a rich area of chemical and process 

mechanical engineering. Many different rheological characteristics can be simulated for such coatings with a 

variety of different mathematical models. In this work we study the steady-state coating flow and heat transfer 

of a non-Newtonian liquid (polymer) on an inverted isothermal cone with variable wall temperature. The 

Eringen micropolar and three-parameter Eyring-Powell models are combined to simulate microstructural and 

shear characteristics of the polymer. The governing partial differential conservation equations and wall and free 

stream boundary conditions are rendered into dimensionless form and solved computationally with the Keller-

Box finite difference method (FDM). Validation with earlier Newtonian solutions from the literature is also 

included. Graphical and tabulated results are presented to study the variations of fluid velocity, micro-rotation 

(angular velocity), temperature, skin friction, wall couple stress (micro-rotation gradient) and wall heat transfer 

rate. With increasing values of the first Eyring-Powell parameter temperatures are elevated, micro-rotation is 

suppressed and velocities are enhanced near the cone surface but reduced further into the boundary layer. 

Increasing values of the second Eyring-Powell parameter induce strong flow deceleration, decrease temperatures 

but enhance micro-rotation values. An increase in non-isothermal power law index suppresses velocities, 

temperatures and micro-rotations i.e. all transport characteristics are maximum for the isothermal case (n =0). 

Increasing Eringen vortex viscosity parameter significantly enhances temperatures and also micro-rotations. The 

present numerical simulations find applications in thermal polymer coating operations and industrial deposition 

techniques and provide a useful benchmark for more general computational fluid dynamics (CFD) simulations. 

 

KEYWORDS: Eyring-Powell model; Micropolar fluid; vortex viscosity; wall couple stress; 
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1.INTRODUCTION 

Polymer coating processes often feature heat transfer. Numerous heat sensitive polymeric 

materials are required for deposition on a broad range of substrates and mechanical 

components. They provide important engineering enhancement features in numerous areas of 

technology including corrosion protection [1] and arise in also in adhesion manufacture [2], 

optical fiber enrobing [3], minimization of surface defects [4] and plastic surfacing [5].  

Generally, the polymeric liquids employed in coating exhibit non-Newtonian characteristics 

and different coating techniques are needed for different fluids [6]. Pre-metered coating 

techniques (including slot die technology) contract and expand the fluid whereas roll coating 

divides the coating film as rotational forces interact with surface tension forces. Many 

rheological models have been developed to simulate the diverse characteristics of polymeric 

coatings and are lucidly reviewed by Tanner [7]. They include rheopetic fluids (which show a 

transient variation in viscosity and thicken or solidify when agitated), viscoplastic liquids 

(requiring a yield stress to initiate flow), simple and complex viscoelastic fluids, power-law 

liquids, microstructural liquids etc. Viscoelastic fluids exhibit both viscous behaviour and 

elastic deformation and arise in many coating systems including waterborne acrylic 

polymer/silica nanocomposites [8], heat-dissipating hybrid liquids [9] and rotor blade surface 

finishes [10]. When The hot melt adhesive polymer experiences stresses for a short time, the 

viscoelasticity is considered linear and slow deformations of the molecules occur. A number 

of different rheological models have been implemented to simulate coating heat transfer  

including Phan-Thein-Tanner fluids [11], pseudoplastic/dilatant fluids [12], Casson 

viscoplastic nanofluids [13], second order Reiner-Rivlin elastic-viscous liquids [14] and 

exponential viscosity models [15]. A relatively simple but useful non-Newtonian model is the 

Eyring-Powell model [16] which is derived from the kinetic theory of liquids rather than the 

empirical relations. It allows Newtonian behavior to be extracted as a special case for low and 

high shear stress scenarios. This model is a modification of the Powell model which has also 

been shown (at moderate stresses) to exhibit exponential dependence of the flow velocity on 

the stress, but a linear dependence at higher stresses. This model has been employed 

successfully in simulating stretching sheet coating flows in recent years and relevant studies 

include Khan et al. [17] (on reactive polymer stretching flow) and Ibrahim and Gadisa [18] 

(on finite element simulation of nano-doped Eyring-Powell fluids from extending surfaces). 

Yoon and Ghajar [19] showed that Powell-Eyring fluid is highly sensitive to the small 

variations in the zero-shear rate viscosity and moderately sensitive to the changes in the 

infinite shear rate viscosity. Other studies featuring this model include Alharbi et al. [20] (on 
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magnetic polymer entropy generation), Malik et al. [21] (on mixed convection of magnetized 

Eyring-Powell fluids), Sirohi et al. [22], Rahimi et al. [23], Hina et al. [24] and Khan et al. 

[25]. All these studies have confirmed the deviation of fluid/thermal characteristics of 

Eyring-Powell fluids from Newtonian fluids. While certain features of polymer fluids can be 

captured quite well with the Eyring-Powell model, it does not provide a robust framework for 

micro-structural characteristics associated with suspensions present in many coatings. Many 

polymeric and industrial fluids (propellants, gels, coolants, coatings etc) exist which possess 

a complex micro-structure that effectively contributes strongly to their performance 

characteristics. Eringen [26] developed micro-morphic fluid mechanics as a framework for 

simulating micro-structural rheological effects for suspensions containing deformable 

particles and featuring micro-rotation (spin) and micro-inertia.  Eringen further derived the 

micropolar fluid model [27] as a special case of micro-morphic fluids with non-deformable 

micro-elements. The micropolar model is much simpler than micromorphic fluids since that it 

reduces the original eighteen balance equations to a maximum of six momenta balance 

equations (three for linear and three for angular). Also it allows the extraction of the Navier-

Stokes classical viscous model as a very special case when micro-polar effects are negated.  

Micropolar fluids are therefore a special case of general micromorphic fluids with non-

symmetric stress tensor. Micropolar fluids physically consist of arbitrarily oriented rigid 

particles suspended in viscous medium. In [28] Eringen generalized micropolar fluids to 

consider heat conduction and thermophysics. The elegant formulation provided for 

micropolar fluids has made this model very popular in boundary layer flows which are 

relevant to coating applications. It has been employed in surface tension-driven systems [29], 

anti-fouling bacterial coating flows [30], slip dynamics in magnetic materials processing [31], 

simulation of chemical reactions in polymer extrusion flows [32], thermal convection flows 

from contracting sheets [33] and unsteady micropolar nanoliquid flows containing suspended 

micro-organisms for bio-polymer synthesis.  These studies have all shown that the Eringen 

vortex viscosity and micropolar rheological parameters considerably modify the velocity and 

temperature characteristics in coating systems in addition to furnishing important information 

on the spin characteristics of the microelements. 

 As noted earlier, heat transfer analysis is central to thermal polymer processing. Here 

the wall may be constant temperature (isothermal) or non-isothermal (variable temperature 

from the slit to the downstream location). The latter is more appropriate for real systems [5-7] 

and extensive studies have been conducted to evaluate the impact of non-isothermal wall 

conditions on flow dynamics. Relevant works include Sobhani et al. [35] who used a 
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Galerkin computational method to analyse on non-isothermal rheological extrusion with 

viscous dissipation. Li et al. [36] employed an adaptive coupled finite element (FE) and 

meshfree (MF) approach to examine non-isothermal injection viscoelastic molding processes. 

Debbaut [37] investigated the non-isothermal squeeze flow of viscoelastic fluids, also 

considering boundary layer structures.  Reddy et al. [38] studied the unsteady non-isothermal 

flow and heat transfer with entropy generation in a polymer using the second order Reiner-

Rivlin model and a Crank-Nicholson difference method. Reisfeld and Bankoff [39] 

investigated non-isothermal flow of a viscous liquid film on the surface of a heated or cooled 

cylinder with gravity, capillary, thermocapillary, and intermolecular forces.  Gaffar et al. [40] 

computed the velocity and temperature fields for electrically conducting viscoelastic polymer 

from a non-isothermal wedge with convective boundary conditions. Further studies include 

Cheung [41] (on “freeze coating” on a moving non-isothermal plate), Rashidi et al. [42] (on 

third grade viscoelastic non-isothermal Falkner-Skan flow), Kuruneru et al. [43] (on unsteady 

heat transfer in metal foams), Bég et al. [44] (on surface-tension driven non-isothermal 

magnetic nanopolymer coating flows) and Nepershin [45] (on non-isothermal plastic flow).  

 

In the present study we combine the Eyring-Powell model and Eringen micropolar model to 

study viscoelastic micropolar boundary layer coating flow from a vertical cone with variable 

wall temperature. The governing conservation equations for mass, linear momentum, angular 

momentum and energy (heat) with associated boundary conditions are transformed to non-

dimensional coupled partial differential boundary value problem. The nonlinearity of the 

emerging model does not permit exact solutions and therefore an implicit finite difference 

computational method (Keller’s box method) [46] is utilized. Linear velocity, micro-rotation 

(angular velocity of micro-elements), temperature, skin friction, Nusselt number (wall heat 

transfer rate) and wall couple stress (micro-rotation gradient) are computed for different 

values of the Eyring-Powell rheological parameters, Eringen vortex viscosity parameter, 

Prandtl number, streamwise coordinate and non-isothermal parameter (surface power-law 

exponent). Validation of the Keller box solutions is conducted with earlier Newtonian studies 

[47]. The simulations are relevant to thermal coating systems in chemical engineering.  

 

2.MATHEMATICAL MODEL 

The laminar, steady-state, incompressible, thermal convection flow of an Eyring-

Powell micropolar fluid from an inverted isothermal cone with variable wall temperature 

(non-isothermal) is studied, as illustrated in Fig. 1. Both the fluid and cone are initially 
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maintained at constant temperature. The (x, y) coordinates are measured along and normal to 

the cone surface with the vertex placed at the origin.  

 

 

Fig. 1 Geometric illustration of problem 

 

Further, ( ) sinr x x A=  is the radius of the cone with A being the half angle of the 

cone. The cone surface is non-isothermal i.e. it has variable temperature such that  
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The associated boundary conditions on the cone surface (wall) and in the free stream (edge of 

the boundary layer) are: 

At   

As       (5) 

             
 

Here u and v are the velocity components in the x and y directions respectively,  is the 

kinematic viscosity,  is the density of the fluid, g1 is gravitational acceleration,  k is the 

vortex viscosity,  and C are Eyring-Powell non-Newtonian parameters, β1 is the coefficient 

of thermal expansion, N is the angular velocity, j is the micro-inertia per unit mass, 

 is the gyro-viscosity (shear spin) of micropolar,   is the thermal diffusivity, 

T is the temperature of the fluid, T is the free stream temperature. Eqn. (1) is automatically 

satisfied subject to the velocity components expressed in terms of stream function as 

.  

The following non-dimensional quantities are introduced:  

 

         (6) 

Here  and  are the dimensionless tangential and radial coordinates respectively, Grx is the 

local Grashof number,  is stream function,  is the non-dimensional temperature, Pr is the 

Prandtl number, g is the dimensionless angular velocity (micro-rotation),  is the Eyring-

Powell rheological fluid parameter,  is the local non-Newtonian parameter and K is the 

Eringen vortex viscosity parameter. Eqns. (2)-(5) are thereby rendered into the following 

coupled nonlinear partial differential boundary layer equations: 

Linear Momentum  

                      

(7) 

Angular Momentum (Micro-rotation) 

        (8) 
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Energy  

 

 

                         (9) 

with: 

                   (10) 

Here primes denote the differentiation with respect to  and  is the micro-inertia 

density (micropolar material) parameter. The skin-friction coefficient (Cf) (shear stress at the 

cone surface), Wall Couple Stress (Wcs) and Nusselt number (Nu) (heat transfer rate) are 

defined using the following expressions.  

                               (11) 

                     (12) 

                     (13)  

 

3. KELLER BOX IMPLICIT SCHEME SOLUTIONS AND VALIDATION 

The dimensionless Eqns. (7) – (9) along with boundary conditions, Eqn. (10) is a 7th 

order non-linear coupled boundary value problem requiring a numerical solution. The 

implicit finite difference scheme known as the Keller-Box method (KBM) [46] is 

implemented to solve the system of Eqs. (7) – (10). This technique is very popular and most 

efficient as compared to other numerical techniques. With a second order accuracy, the KBM 

is very stable and rapidly convergent. KBM comprises of the following 4 steps: 

(i)Reduction of Nth order partial differential system to N first order differential equations. 

(ii)Finite difference discretization. 

(iii)Newton quasilinearization of non-linear Keller algebraic equations. 

(iv)Block-Tridiagonal elimination of Keller algebraic equations.  

KBM has been used extensively in recent years in many nonlinear fluid dynamic problems 

including radiative magnetized non-Newtonian coating flow on a cone [48], variable 

viscosity flow on a cylinder [49], tangent hyperbolic fluid coating heat transfer [50], metallic 
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nanofluid stretching sheet flow [51], oxytactic nano-bioconvection fuel cells [52], magnetized 

micropolar buoyancy-driven flow [53] fractional subdiffusion equations in applied mechanics 

[54]. Algebraic discretization details are omitted here for brevity. The reader is referred to 

[46]-[52] for more details. To validate the current KBM code, benchmarking with earlier 

Newtonian simulations has been conducted. Table 1 presents the comparison values of heat 

transfer rate, Nu, for different values of . The present results are compared with the 

Newtonian study of Hossain and Paul [47] and we found an excellent correlation which 

confirms the accuracy of the present Keller box computational method. Increasing 

streamwise coordinate, , clearly leads to a reduction in Nusselt number indicating that with 

further distance from the apex, heat transfer rate is suppressed. The test case for Pr = 0.1 

corresponds to very high thermal conductivity liquid and this inevitably elevates temperatures 

in the boundary layer and reduces heat transfer rate to the cone surface (wall), as noted in 

many studies including Incropera and De Witt [55].  Since non-isothermal flow is also 

considered (n = 0.5) this will also contribute to a depletion in wall heat transfer rates with 

progression along the cone surface from the vertex (=0) to higher values of . 

Table 1: Comparison values of Nu for various values of  with n = 0.5, Pr = 0.1,  = 0.0,  = 

0.0, K = B = 0.0 

 
Nu 

Hossain and Paul [ 47]  KBM 

0.0 0.24584 0.2461 

0.1 0.25089 0.2509 

0.2 0.25601 0.2558 

0.4 0.26630 0.2660 

0.6 0.27662 0.2765 

0.8 0.28694 0.2868 

1.0 0.29731 0.2972 

2.0 0.35131 0.3512 

 

4. NUMERICAL RESULTS AND INTERPRETATION  

The solutions generated with KBM are presented both numerically and graphically. 

Solutions for skin friction (Cf), wall couple stress (Wcs) and heat transfer rate (Nu) at the 
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cone surface are presented in Tables 2 – 3. The default values for the parameters involved in 

this analysis are taken as δ = 0.3 = , Pr = 0.71, ξ = 1.0, n =0.5, B = 1.0 and K = 3.0. 

Further, (,), are independent spatial variables. Table 2 presents the values of Cf, Wcs and 

Nu for different values of surface temperature exponent n, vortex viscosity, K and streamwise 

coordinate, .  

Table 2: Values of Cf , Nu and Wcs for different values of K, n and  (Pr = 0.71,  = 

0.3 = , B = 0.5) 

n K 
 = 0.0  = 1.0  = 2.0 

Cf Nu Wcs Cf Nu Wcs Cf Nu Wcs 

0.0 

3.0 

1.2070 0.3523 -0.0015 0.9026 0.8365 -0.0571 0.6062 1.4726 -0.0952 

0.12 1.1873 0.3653 -0.0014 0.8907 0.8452 -0.0558 0.6025 1.4763 -0.0940 

0.24 1.1692 0.3774 -0.0014 0.8795 0.8532 -0.0547 0.5987 1.4799 -0.0933 

0.35 1.1537 0.3878 -0.0014 0.8700 0.8601 -0.0537 0.5953 1.4832 -0.0928 

0.5 1.1341 0.4010 -0.0013 0.8580 0.8688 -0.0524 0.5915 1.4873 -0.0913 

0.62 1.1195 0.4110 -0.0013 0.8491 0.8751 -0.0513 0.5883 1.4907 -0.0903 

0.5 

0.1 0.6911 0.4996 -0.0002 0.6265 0.9378 -0.0039 0.4799 1.5160 -0.0061 

0.25 0.7309 0.4906 -0.0003 0.6512 0.9312 -0.0105 0.4942 1.5129 -0.0215 

0.5 0.7893 0.4775 -0.0006 0.6864 0.9215 -0.0212 0.5136 1.5085 -0.0470 

0.75 0.8403 0.4661 -0.0006 0.7157 0.9132 -0.0301 0.5288 1.5049 -0.0644 

1.0 0.8855 0.4561 -0.0009 0.7406 0.9060 -0.0369 0.5410 1.5018 -0.0704 

1.5 0.9632 0.4388 -0.0011 0.7806 0.8939 -0.0457 0.5596 1.4969 -0.0890 

 

 

 

 

Table 3: Values of Cf , Nu  and Wcs for different values of ,  and Pr 

(n = 0.5, K = 3.0, B = 0.5)  

  Pr 
 = 0.0  = 1.0  = 2.0 

Cf Nu Wcs Cf Nu Wcs Cf Nu Wcs 

0.0 

0.3 0.71 

1.1941 0.4072 -0.0014 0.9142 0.8735 -0.0546 0.6343 1.4892 -0.0963 

0.18 1.1572 0.4035 -0.0014 0.8796 0.8706 -0.0533 0.6080 1.4880 -0.0931 

0.35 1.1247 0.4000 -0.0013 0.8493 0.8680 -0.0520 0.5849 1.4870 -0.0906 
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0.5 1.0977 0.3971 -0.0013 0.8243 0.8658 -0.0510 0.5661 1.4861 -0.0880 

0.85 1.0574 0.3925 -0.0013 0.7873 0.8625 -0.0494 0.5380 1.4849 -0.0848 

1.0 1.0174 0.3878 -0.0013 0.7509 0.8590 -0.0477 0.5106 1.4836 -0.0811 

0.3 

0 

0.71 

1.1335 0.4010 -0.0013 0.8577 0.8688 -0.0524 0.5914 1.4873 -0.0913 

5 1.1427 0.4015 -0.0014 0.8620 0..8689 -0.0525 0.5929 1.4873 -0.0914 

20 1.1734 0.4029 -0.0014 0.8758 0.8694 -0.0528 0.5982 1.4873 -0.0919 

40 1.2253 0.4051 -0.0014 0.8966 0.8702 -0.0532 0.6038 1.4875 -0.0923 

50 1.2587 0.4063 -0.0014 0.9085 0.8706 -0.0533 0.6071 1.4875 -0.0925 

80 1.4532 0.4113 -0.0014 0.9514 0.8718 -0.0540 0.6180 1.4876 -0.0932 

0.3 0.3 

0.5 0.6113 0.5180 -0.0004 0.5653 0.8146 -0.0197 0.5093 1.1845 -0.0602 

1.0 0.6044 0.5353 -0.0004 0.4785 1.2066 -0.0151 0.3623 2.0916 -0.0359 

2.0 0,5916 0.5675 -0.0004 0.3446 2.1346 -0.0087 0.2101 4.1060 -0.0142 

3.0 0.5800 0.5972 -0.0003 0.2611 3.1472 -0.0052 0.1473 6.1586 -0.0072 

5.0 0.5597 0.6504 -0.0003 0.1801 5.2798 -0.0022 0.1014 10.2617 -0.0027 

7.0 0.5424 0.6970 -0.0003 0.1489 7.2911 -0.0011 0.0901 14.3484 -0.0013 
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An enhancement in surface temperature exponent, n clearly reduces skin friction, Nusselt 

number and wall couple stress i.e. Cf, Nu and Wcs. In Eqn. (5),  and 

clearly with n>0) the wall temperature is elevated. This increases heat transfer from the wall 

to the fluid and naturally suppresses heat transfer from the fluid to the wall. Via coupling 

with the momentum field and micro-rotation field, there is therefore a deceleration in the 

flow (decreasing skin friction)) and stifling of the rotary motions of micro-elements at the 

wall (decreasing wall couple stress i.e. micro-rotation gradient). The implication of using a 

non-isothermal model is therefore that wall quantities are more accurately predicted since the 

isothermal case (n=0) over-predicts them. An elevation in Eringen vortex viscosity parameter 

( ), however enhances skin friction, Cf, and wall couple stress, Wcs whereas it depletes 
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the Nusselt number, Nu.  The flow is therefore accelerated, and rotation of the micro-

elements is boosted with greater vortex viscosity effect. Strongly micropolar polymers 

(K>0.1) significantly benefits the boundary layer flow characteristics for linear and angular 

momentum and is also advantageous in terms of reducing heat transfer rates to the wall i.e. 

cooling the cone surface. This is of significance in temperature regulation in practical 

polymer coating operations since adversely high heat transfer rates at the wall may induce 

defects, thermal damage, de-bonding etc [6]. Increasing streamwise coordinate, , induces a 

substantial retardation in the flow i.e. decreases skin friction. However, with higher 

streamwise coordinate values there is a marked elevation in Nusselt number (heat transfer 

rate to the wall is promoted) and also magnitudes of wall couple stress are enhanced (stronger 

spin in micro-elements is mobilized). The trends concur with other studies including Siddiqa 

et al. [54]. Table 3 depicts the influence of ,  and Pr on Cf, Wcs and Nu in addition to 

streamwise coordinate, . An increase in the first Eyring-Powell fluid parameter, , decreases 

Cf and Nu whereas Wcs is slightly increased.  is inversely proportional to viscosity 

and the rheological parameters,  and C. Modification in these parameters clearly results in a 

significant change in Eyring-Powell fluid parameter, . The reverse trend is induced with an 

increase in .  For greater values of , the Cf and Nu are enhanced whereas Wcs is 

slightly decreased. An increase in Pr, manifests in a suppression in skin friction, Cf at the 

cone surface whereas it considerably increases wall couple stress, Wcs and Nusselt number, 

Nu. Prandtl number expresses the relative rate of momentum diffusion and thermal diffusion. 

If Pr > 1 then momentum diffusion rate exceeds thermal diffusion rate whereas if Pr < 1, the 

thermal diffusion rate exceeds the momentum diffusion rate. Prandtl number is also inversely 

proportional to thermal conductivity of the polymer (for fixed values of dynamic viscosity 

and specific heat capacity). Temperatures in the boundary layer are suppressed with greater 

Prandtl numbers (lower thermal conductivity of the polymer liquid). This enhances thermal 

diffusion to the wall (cone surface) which results in a boost in heat transfer rate to the wall 

i.e. increasing Nusselt numbers.  There are many coupling terms between the temperature and 

the linear velocity, in Eqn. (9). In turn the linear momentum eqn (7) is coupled to the angular 

momentum eqn. (8) via several terms e.g. 

 and this results in an indirect influence of the temperature 
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field on the micro-rotation field and therefore the wall couple stress. Similar observations 

have been made in Shamshuddin et al. [32] and Mishra et al. [33]. 

Fig. 2(a) - 2(c) illustrate the variations of velocity (f’), angular velocity (g) and 

temperature () distributions with increasing Eyring-Powell fluid parameter, . Marked 

decreases in micro-rotation i.e. angular velocity (g) (Fig. 2b) is induced throughout the 

boundary layer transverse to the cone surface (i.e. with transverse coordinate,  = 0) with 

greater values of  since viscosity characteristics are modified in the polymer with this 

parameter. Micro-rotation boundary layer thickness is therefore reduced with greater values 

of Eyring-Powell fluid parameter, . However, the linear velocity (f’) (Fig. 2a) is initially 

enhanced near the cone surface (acceleration) and further from the wall a strong deceleration 

is induced which is sustained into the free stream. Temperatures are weakly increased with 

higher , implying a depletion in thermal boundary layer thickness. As  → 0 and   → 0, the 

Eyring-Powell fluid model retracts to the classical Navier-Stokes (Newtonian) flow model. 

The micropolar parameter in Figs 3a-c, is constrained as K = 3 which implies strong 

concentrations of micro-elements (vortex viscosity is three times the Newtonian viscosity) 

and B = 0.5 implies relative large values of micro-inertia density parameter.  

Fig. 3(a) – 3(c) visualize the impact of the local non-Newtonian parameter,  on 

velocity ( )f  , angular velocity (g) and temperature () distributions in the flow regime. A 

significant deceleration is induced in linear velocity (Fig. 3a) with increasing values of  . 

This response is sustained throughout the boundary layer transverse to the cone surface. 

Hence the momentum boundary layer thickness is substantially increased.  Similarly, a strong 

depression in temperature (Fig. 3b) is induced with increasing local non-Newtonian 

parameter,  . The parameter  appears solely in the linear momentum Eqn. (7), as the term, 

( )
2

'' '''f f −  and this acts as an opposing body force leading to inhibition of momentum 

diffusion (and via coupling with the energy eqn. (9) also impedes thermal diffusion). The 

contrary effect is generated however in the micro-rotation field (Fig. 3c) is instigated with 

increasing values of . The micro-elements are enhanced in their rotary motions (spin) and 

consistently the micro-rotation magnitudes are boosted at all values of transverse coordinate, 

. It is also noteworthy that in all the figures plotted, asymptotically smooth profiles are 

achieved in the free stream (maximum ) confirming the prescription of an adequately large 

infinity boundary condition in the Keller box code.  
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Fig. 4(a) – 4(c) illustrate the evolution in linear velocity ( )f  , angular velocity i.e. 

micro-rotation (g) and temperature ( )  with a variation in surface temperature exponent, n. 

From figs. 4a - 4c, a significant decrease in linear (Fig. 4a) and angular velocity (Fig. 4b) and 

temperature is observed with an increase in the values of n throughout the boundary layer 

regime. The surface temperature exponent, n, simulates nonlinear variation in cone surface 

i.e. wall temperature. For n > 0 (temperature growth), an increase in wall temperature is 

observed along the cone surface and a decrease is induced for n < 0 (temperature decay). 

Attention is restricted to positive values of surface temperature exponent since these are more 

applicable in real thermal coating systems [1-3]. For n = 0 the wall is isothermal.  As noted 

earlier the higher wall temperature achieved with non-isothermal behaviour reduces 

temperatures in the boundary layer (polymer). This decreases thermal boundary layer 

thickness and via coupling also leads to thicker momentum and thinner angular momentum 

boundary layers.  

Fig. 5(a) – 5(c) illustrates the profiles for velocity ( )f  , angular velocity (g) and 

temperature ( )  distributions with a variation in the micropolar vortex viscosity parameter 

(K). For K = 1, the Newtonian fluid viscosity and micropolar vortex viscosity (due to micro-

element spin) are equal. With K = 0, the micropolar effect is neglected and the non-polar 

form (Newtonian) case is retrieved. Inspection of fig. 5(a), shows that a strong acceleration is 

generated near the cone surface in linear velocity with increasing K values. Stronger vortex 

viscosity therefore accelerates the flow near the cone surface. However further from the cone 

surface the opposite effect is then induced and substantial deceleration in the flow is observed 

with greater vortex viscosity parameter.  The agglomeration of micro-elements near the cone 

surface may contribute to the enhancement in linear velocity there. However, this effect will 

decay further from the wall and this may be the cause for the observed deceleration closer to 

the free stream. Temperature magnitudes are consistently enhanced throughout the boundary 

layer (Fig. 5b) with elevation in vortex viscosity values, K. Temperatures are therefore 

minimized for the Newtonian case (K=0) indicating that strongest cooling within the body of 

the polymer liquid corresponds to vanishing micropolar effect. Thermal boundary layer 

thickness is also enhanced with stronger vortex viscosity effect. Fig. 5(c) illustrates that 

significant elevation in micro-rotation is produced with increasing K values. The intensity of 

gyratory motions of micro-elements is clearly boosted with stronger micropolar vortex 

viscosity and this response is maintained throughout the boundary layer for all values of 

transverse coordinate. Angular (microrotation) boundary layer thickness is therefore elevated 
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with higher K values. The computations concur with earlier investigations including Ibrahim 

[31] and Latiff et al. [34]. Evidently the inclusion of micropolar effects yields significant 

deviation from Newtonian models. Neglection of micropolar rheological characteristics in the 

mathematical model developed for conical body polymer thermal coating flow would 

therefore under-predict temperatures and also under-predict linear velocities near the cone 

surface, in addition to completely ignoring micro-rotation characteristics of suspended 

particles in the polymer .  

Fig. 6(a) – 6(c) shows the effects of the streamwise coordinate ξ on velocity (f’), 

angular velocity (g) and temperature () distributions. The parameter ξ also features a local 

Grashof number, Grx and may be viewed in boundary layer simulation as a free convection 

parameter. Fig. 6(a) demonstrates that a considerable deceleration in the boundary layer flow 

is produced with greater values of   i.e. the flow is retarded with progression from the cone 

from the apex along the cone slant surface. The larger streamwise coordinate values 

correspond to a boost in thermal buoyancy forces and these supress the momentum 

momentum diffusion manifesting in polymer flow deceleration and a thicker momentum 

boundary layer. The deceleration is sustained for all values of streamwise coordinate. 

Maximum velocity is associated with the vertex on the cone i.e.  =0. Fig. 6(b) shows that 

with increasing  values, there is a substantial decay in temperatures. Significant cooling is 

generated within the polymer and there is an associated depletion in thermal boundary layer 

thickness. Stronger free convection effect therefore is inhibitive to thermal diffusion in the 

polymer. Generally, a noticeable acceleration is induced in micro-rotation i.e. angular 

velocity (fig. 6(c)) is markedly elevated with larger values of streamwise coordinate, . With 

progression along the cone surface from the vertex to the wider base, i.e. with larger values of 

, the micro-elements are provided with increasing space in which to rotate and this serves to 

elevate angular velocity magnitudes. Micro-rotation values are maximum some distance 

transverse to the cone surface and as expected, in accordance with the boundary conditions 

(10) decay towards the free stream. 

 

5.CONCLUSIONS 

In this article, the Eyring-Powell micropolar fluid boundary layer flow and heat 

transfer on an inverted non-isothermal cone has been studied theoretically as model for 

thermal coating polymer processes. Steady-state and incompressible behaviour are assumed. 

During coating, the polymer molecular chains relax and the deformation is irreversible. Non-
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Newtonian behaviour is critical to coating performance. The governing partial differential 

conservation equations and wall and free stream boundary conditions are transformed from 

an (x,y) coordinate system into a dimensionless boundary value problem in a (, ) 

coordinate system. The second order accurate, implicit Keller-Box finite difference method 

(FDM) is deployed for the numerical solution. Validation with earlier Newtonian non-

isothermal non-polar solutions from the literature is conducted. Graphical and tabulated 

results are presented to study the variations of fluid velocity, micro-rotation (angular 

velocity), temperature, skin friction, wall couple stress and wall heat transfer rate (Nusselt 

number). The computations have shown that: 

(i)With increasing values of the first Eyring-Powell parameter temperatures are 

elevated, micro-rotation is suppressed and velocities are enhanced near the cone surface but 

reduced further into the boundary layer. 

(ii)With greater values of the second Eyring-Powell parameter (local rheological 

parameter) linear velocity is boosted (i.e. momentum boundary layer thickness increased), 

temperature and thermal boundary layer thickness are reduced and micro-rotation (angular 

velocity) values elevated.  

(iii)An increase in non-isothermal power law index (cone surface temperature index) 

depletes velocities, temperatures and micro-rotations i.e. linear momentum boundary layer 

thickness is elevated whereas thermal and angular momentum boundary layer thicknesses are 

reduced.  

(iv) Maximum temperatures, velocities and micro-rotation correspond to the 

isothermal case (vanishing surface temperature exponent).  

(v)Increasing Eringen vortex viscosity parameter significantly enhances temperatures 

and also micro-rotations but only generates linear velocity enhancement near the cone 

surface.  

(vi) With increasing values of streamwise coordinate i.e. free convection parameter, 

i.e. the flow is retarded with progression from the cone from the apex along the cone slant 

surface and momentum boundary layer thickness elevated. Also, temperatures and thermal 

boundary layer thickness is decreased. However strong enhancement in micro-rotation i.e. 

angular velocity is generated with larger values of streamwise coordinate. 

(vii) An enhancement in surface temperature exponent results in a depletion in skin 

friction, Nusselt number and wall couple stress.  
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(viii)An increase in Eringen vortex viscosity parameter elevates skin friction and wall 

couple stress whereas it reduces the Nusselt number. 

(ix) Using isothermal models leads to over-prediction of flow and thermal 

characteristics in polymer thermal processing and non-isothermal models are recommended 

for more accurate estimation of skin friction and heat transfer rates. 

The present numerical simulations have neglected rotation of the cone (of relevance to 

spin-coating) and also mass transfer i.e. species diffusion [56]. These aspects will be explored 

in the future. Furthermore, more sophisticated viscoelastic models (e.g. FENE-P models [57]) 

may be examined and efforts in this direction are underway. 
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