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Abstract

Consider two dimensional low Reynolds number flow past a body. In this thesis,

the problems of steady flow past a circular cylinder, steady flow past an elliptical

cylinder, and the motion of a generic tail-like body are investigated. The theoret-

ical treatment by Chadwick (Chadwick, 2013) is detailed and elaborated upon. A

boundary integral representation that matches an outer Oseen flow and inner Stokes

flow is given, and the matching error is shown to be smallest when the outer domain

is as close as possible to the body. Also, it is shown that as the origin of the Green’s

function is approached, the oseenlet becomes the stokeslet to leading order and has

the same order of magnitude error as the matching error. This means that a novel

boundary integral representation in terms of oseenlets is possible. To test this, we

have developed a corresponding boundary element code that uses point collocation

weighting functions, linear shape functions, and two-point Gaussian quadrature with

analytic removal of the Green’s function singularity for the integrations.

First, we compare against various methods for the benchmark problems of flow

past a circular cylinder and also a cylinder with an elliptical cross-section. The other

methods are: representations using stokeslets (that suffer from Stokes’ paradox giv-

ing an unbounded velocity); Lamb’s (Lamb, 1932) treatment; Yano and Kieda’s Os-

een flow treatment (Yano & Kieda, 1980); and the matched asymptotic formulations

of Kaplun (Kaplun & Lagerstrom, 1957) and Proudman and Pearson (Proudman

& Pearson, 1957) which Lee and Leal (Lee & Leal, 1986) later used. In particular

we use the drag coefficient for the comparison. The advantage of this method over

existing ones is that it is accurate, uncomplicated to use, and this is demonstrated

and discussed. Finally, we consider the steady forward motion of a generic tail-like

body and how the frequency varies against body thickness, amplitude, wavelength

and Reynolds number, and then discuss the results.



Chapter 1

Introduction

1.1 Introduction of the Study

Integral equations have been in use for almost two centuries. After their introduction

by Abel in 1823 (Abel, 1823), many engineers, mathematicians and scientists have

found them very useful in solving physical problems associated with differential

equations. To be able to apply an integral equation to a differential equation, it

has to first be reformulated as the convolution of a kernel-which is referred to as

the Green’s function density. When the Green’s function of a particular partial

differential equation is known, then the most efficient method for solving such partial

differential equations is the Boundary Integral Method (BIM), provided the integral

formulation can be established (Hao, Hu, Li, & Song, 2018). The Green’s function

is specific to the differential operator. For instance, the kernel of the Oseen equation

is called oseenlet and similarly the kernel of the Stokes equation is called stokeslet,

a name that was coined by Hancock (Hancock, 1953). It was later realised from the

independent proofs given by Ehrenpreis (Ehrenpreis, 1954, 1955) and Malgrange

(Malgrange, 1956) that only a limited class of differential operators can have a

representation using the Green’s function. This therefore limits integral equations

to only specific differential equations whose integral representation can be found.

With development of quadratures and stable discretisation, evaluation of integrals

becomes more accurate and efficient (Hao et al., 2018).
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Over the past five decades, a numerical method called the Boundary Element

Method (BEM) has been developed to solve integral equations. BEM can be traced

back to the 1960s (Cheng & Cheng, 2005) where its numerical implementation was

made robust with the advent of powerful computers which aid in solving large sets

of equations. BEM becomes very useful for solving partial differential equations

whose integral equations are known and can be evaluated. It can be seen that

BEM performs numerical discretisation on the boundary and so on a reduced spatial

dimension. For example, for problems in three spatial dimensions (that is, a volume),

by application of BEM, the problem will reduce the discretisation to be performed

on the bounding surface only. Also for two spatial dimensions (that is, a surface), by

application of BEM, the problem will reduce to the boundary curve only. It is worth

noting that in the field of fluid mechanics, not all problems can be transformed to

integral form. Those which can be transformed are governed by linear equations,

some of which include irrotational and inviscid potential flow, and creeping flow

such as Stokes flow and Oseen flow.

1.2 Aim and Objectives

1.2.1 Aim of the Study

The aim of this thesis is to provide an accurate and uncomplicated-to-use method

for low Reynolds number flows used in biological fluid dynamics. Currently, the

existing methods are: Stokes flow (Stokes, 1851), Yano and Kieda’s (Yano & Kieda,

1980) Oseen flow (Oseen, 1910), Lamb’s (Lamb, 1932) approximation, the matched

asymptotic procedure of Proudman and Pearson (Proudman & Pearson, 1957) and,

separately, Kaplun and Lagerstrom (Kaplun & Lagerstrom, 1957) and Navier-Stokes

Computational Fluid Dynamics (CFD) solvers. All of these methods have disad-

vantages: Stokes flow suffers from Stokes’ paradox of unbounded velocity; Yano and

Kieda’s approach is unclear in how to extend to complicated geometries; Lamb’s

approximation suffers from lack of accuracy; the matched asymptotic procedures

are complicated to implement and the CFD solvers are highly computer-intensive,
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particularly for exterior domain problems which must be truncated. In contrast,

it will be demonstrated that our method is the most accurate, fastest, and also

uncomplicated to implement and use. This means it shows great promise for mod-

elling complex geometries for low Reynolds number flow in biological fluid dynamics

problems. In particular, this is achieved by developing a novel BEM and testing it

against the following benchmark problems of flow pass a circular cylinder and flow

past an elliptic body.

1.2.2 Objectives of the Study

The objectives that will be achieve by this studies are as follows:

1. Investigate the existing theory and numerical approaches for low Reynolds

number viscous fluid flow

2. Present a matched asymptotic expansion for Stokes flow in the near field and

Oseen flow in the far field for the solution of viscous fluid flow.

3. Use the matched asymptotic expansion formulation and develop a BEM that

will provide solution to a low Reynolds flow in an unbounded domain.

4. Validate the BEM developed using flow past a circular cylinder and flow past

an elliptical cylinder.

5. Model a tail-like body shape for motion in an exterior domain.

1.3 Statement of Problem

In this thesis, an unbounded domain will be considered for a flow past a circular

cylinder in two dimensions, steady flow past an elliptical cylinder, and the motion

of a generic tail-like body using Oseen equations for both the near-field and the

far-field (Hao et al., 2018), (Pozrikidis, 2002, 1992). Studies of slow motion of

viscous fluid flow past a body in an unbounded domain date back to the work
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of Stokes in 1851 (Stokes, 1851). Because of the difficulty in satisfying boundary

conditions both at the cylinder surface and the far-field, Stokes drew a conclusion

that such a solution does not exist(Stokes’ paradox). Several analytical studies began

to emanate, seeking a solution to Stokes’ paradox. This includes the approximation

given by Oseen (Oseen, 1910), further approximated by Lamb (Lamb, 1911, 1932),

and later Imai (Imai, 1954). However, Oseen’s approximation assumes linearisation

of the free stream velocity which breaks down on the body boundary. To overcome

this, the method of matched asymptotic expansions, which combines linearisation

to Stokes flow in the near-field matched to linearisation to Oseen flow in the far-

field region was presented by Proudman and Pearson (Proudman & Pearson, 1957)

and Kaplun and Lagerstrom (Kaplun & Lagerstrom, 1957). Experimental studies

(Tritton, 1959) with different qualitative and quantitative results have also been

presented, in particular for the benchmark problem of steady flow past a circular

cylinder.

Further to the numerical methods discussed above, Yano and Kieda (Yano &

Kieda, 1980) applied a discrete singularity method to solve a two-dimensional flow

by distributing oseenlets, sources, sinks and vortices in the interior of an obsta-

cle with a least square criterion to satisfy the boundary condition. Their result

was benchmarked against the analytic results of Lamb (Lamb, 1932), Kaplun and

Lagerstrom (Kaplun & Lagerstrom, 1957), and the experimental results of Tritton

(Tritton, 1959) for the drag coefficient. It was revealed that when the Reynolds

number is below one (Re < 1) there is good agreement between theory and experi-

ment, but when the Reynolds number is in the range 1 to 4 the analytical results do

not align very closely with experiment, except in the numerical studies presented by

Yano and Kieda (Yano & Kieda, 1980). The analytical results work well for body

surfaces with simple geometries, but as soon as the geometry becomes complicated

numerical approaches provided better basis for analysis. For application to more

complicated geometries, Lee and Leal (Lee & Leal, 1986) considered a matched

asymptotic expansion method that used Green’s integral representations of the ve-

locity. Chadwick (Chadwick, 2013) took this approach and matched Stokes and

Oseen flows within a boundary integral formulation. He found that the error is least

if the matching boundary is on the body itself. It is important to note that this
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approach does not break down on the body boundary because in this formulation

the oseenlet approximates to the stokeslet.

In this thesis, the approach of Chadwick (Chadwick, 2013) is tested by develop-

ing a BEM using point collocation weighting functions, linear shape functions, and

two-point Gaussian quadrature with analytic removal of the Green’s function singu-

larity for the integrations. The purpose is to develop a new numerical technique for

low Reynolds number flows up to Re = 1 that deals with complex geometries and

moving bodies.

1.4 Outline of the Thesis

This thesis will take the following outline

• First chapter present general introduction and background of the studies. The

aim and objectives is stated in this chapter and also the problem statement

will also be giving here.

• Second chapter will present survey of relevant literatures, this will comprise

the basic equation governing fluid flows and in particular the equations for

viscous fluid flow. In this chapter, some examples of models of viscous fluid

flow with applications in biology will also be presented. Stokes paradox and a

comparison between some numerical methods will be presented.

• Third chapter will discuss the general theoretical background, derivation of

equations that will be use in this thesis. Navier-Stokes equation will be de-

rived and Green’s integral representation of Oseen and Stokes velocity will be

presented.

• Fourth chapter is the model formulation, this is where boundary element for-

mulation for Stokes and Oseen equation is detailed with analytic removal of

the Green’s function singularity.

• Fifth chapter is dedicated for validation of the model developed, validation for

flow past a circular cylinder and flow past an elliptic cylinder. Plots for the
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drag coefficient against the Reynolds number will be presented, this is going

to be compare with different other existing results.

• Sixth chapter is where the model is design for flow past a circular cylinder,

elliptical cylinder, and to mimic a moving tail-like body shape in motion. The

data for the tail-like body here is hypothetical, but a sensitivity analysis is

carried out on the data used.

• The last chapter is summary, conclusion, and suggestion for future studies.

1.5 Summary of Chapter

In this chapter, Integral equations and BEM are introduced. The aim of the study

and objectives that will be achieved are also stated in this chapter, followed by

statement of the problem. The motivation is from the fact that at very low Reynolds

number, stokes paradox holds for two dimensional flow. In this studies, a method

that matches the near-field Stokes with the far-fields Oseen will be presented. An

Outline for the thesis is presented at the closing of this chapter.
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Chapter 2

Background of Study and

Literature Reviews

2.1 Fluid Flows and their Classification

Fluid flows can be classified into two different categories. The first category is

referred to as externalflow: this comprises a flow which is of infinite extent, that

is, flow past a body in an exterior domain. One example of such flow includes

problems associated with the motion of self propelled micro-organisms. The second

is referred to as internalflow: this has to do with flows in the confined boundaries

of a container, and so it is of finite extent within an interior domain (Shankar, 2007).

The main focus of this thesis will be on external flows. One feature of such

systems is that the outer boundary conditions usually consist mainly of a decay

condition which eliminates the problem of singularities in the boundary. Two di-

mensional flow past a circular cylinder for low Reynolds number falls under the

category of external flow. In this study, attention will be focused on such external

flows in an unbounded domain.
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2.2 Stokes Paradox

Work on slow flow viscous fluids can be dated as far back as the work of Stokes in

1851 (Stokes, 1851), wherein he was investigating slow motion of fluid around an

infinite cylinder. Stokes considered external flows in an effectively infinite ambient

viscous fluid. While conducting his research, it was difficult for Stokes to be able

to correctly compute boundary conditions that are either near or on the cylinder’s

surface or far away from the cylinder in a two dimensional regime using the Stokes

equation. This caused him to postulate that such solutions did not exist, and this

was later called Stokes’ Paradox (Khalili & Liu, 2017). Stokes’ paradox implies that

there does not exist a bounded solution to the Stokes equation in two-dimensional

flow past a finite body. This is because the velocities tend to grow as the distance

away from the finite body increases, such growth is logarithmic because of the singu-

lar nature of the stokeslet as can be seen in (2.1). In three dimensions, the velocity

does not vary logarithmically, but rather contains a decay property as seen in (2.2):

Two-dimensional stokeslet: u
(j)
i =

Re

4πµ

(
δij ln r − xixj

r2

)
, (2.1)

Three-dimensional stokeslet: u
(j)
i =

Re

8πµ

(
1

r
− xixj

r3

)
, (2.2)

where Re is the Reynolds number, r is the radial distance, µ is viscosity, δij is the

Kronecker delta function such that δij = 1 if i = j and δij = 0 if i 6= j, xi is

a Cartesian coordinate (x1, x2, x3) and u
(i)
j is velocity of the stokeslet, where the

direction i = (1, 2, 3), and j is the order of stokeslet.

Stokes’ paradox prompted many applied mathematicians to start work on a way

to solve the problem of finding a solution to the two-dimensional Stokes equation.

Some useful results that attempt to solve it include the method of matched asymp-

totic expansion used by Proudman and Pearson (Proudman & Pearson, 1957) and

Kaplun and Lagerstrom (Kaplun & Lagerstrom, 1957). In their method, the Stokes

equation provided a solution to the inner boundaries near the finite body, while

far away from the body the Oseen equation for a uniform stream flow at infinity

(which include a convective term) described the flow field. Matching the Stokes and

the Oseen equations using matched asymptotic expansions (Proudman & Pearson,
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1957; Kaplun & Lagerstrom, 1957; Lee & Leal, 1986) yields an approximation to

two dimensional flow past a circular cylinder. The equivalent formulation of this

same problem in three dimensions does not require matched asymptotic expansion,

because it does not posses any non-uniformity (S. H. Smith, 1987).

2.2.1 Flow Past a Circular Cylinder

As discussed above, previous to the work by Proudman and Pearson and Kaplun

and Lagerstrom in 1957 there was no solution to the Stokes equation for flow past a

circular cylinder in two dimensions. Their matched asymptotic expansion approach

prompted other authors to begin work on that area of research. Below is a discussion

of some research into the problem that Stokes encountered in 1851.

Studies of Yano and Kieda : Yano and Kieda (Yano & Kieda, 1980) solve a low-

Reynolds number flow past cylindrical bodies for an incompressible viscous fluid that

is formulated based on the Oseen equation. They proposed a discrete singularity

method inspired by the work of Imai (Imai, 1954) to model an Oseen flow past a

circular cylinder. This method of a discrete singularity for the solution of a poten-

tial flow problem in Yano and Kieda (Kieda & Yano, 1978) was based on a least

square criterion for the boundary conditions to model a two-dimensional potential

flow problem. It was the extension of this method to low Reynolds number flow that

yielded the next paper by the same authors (Yano & Kieda, 1980) for an external

flow in two-dimensions. To establish this method, oseenlets, sources, sinks, and vor-

tices were distributed in the interior of the body surface using least square criterion

for the boundary condition. This method was applied to calculate the drag acting

on a circular cylinder, the forces acting on an inclined elliptic cylinder, the forces

acting on two circular cylinders, and forces acting on an inclined square cylinder.

For a Reynolds number of less than one, the results of Yano and Kieda compared

favourably with the analytical results of Lamb (Lamb, 1932) and Imai (Imai, 1954),

but as the Reynolds number began to increase greater than one (Re > 1), the results

of Yano and Kieda gave a better match with experimental results (Tritton, 1959).

In contrast, Lamb’s result diverges in this limit.

Studies of Proudman and Pearson : In the work of Proudman and Pearson
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(Proudman & Pearson, 1957), they assumed a uniform flow field at infinity with a

velocity of order 1
logRe

, which gives a velocity on the matching boundary between

Stokes flow and the far field of order one, which in turn gives a velocity on the body

of order 1
logRe

. This means that the Stokes flow velocity is bounded on the matching

boundary.

Studies of Kaplun and Lagerstrom : Kaplun and Lagerstrom (Kaplun & Lager-

strom, 1957) used the method of matched asymptotic expansion to solve a flow past

a circular cylinder for an incompressible viscous fluid in two dimensions. In the

matched asymptotic expansion that Kaplun and Lagerstrom presented, it is assumed

that a far-field uniform flow field velocity of order one was assumed. Rescaling, how-

ever, gave a representation equivalent to Proudman and Pearson. Further, Kaplun

and Lagerstrom did not model a near-field Stokes region, unlike Proudman and

Pearson. Hence, they considered a complete expansion valid everywhere in the flow

region both on the body and the far-field.

Studies of Chadwick : Chadwick (Chadwick, 2013) also used matched asymptotic

expansion to match Stokes and Oseen flow within a boundary integral formulation.

He found that the error is least if the matching boundary is on the body itself (this

is because the error in the matching is of order O
(

1

lnReL
∗
L

)
where L∗ is the distance

to the boundary and L is the length of the body. So the error is smallest when the

L∗ is smallest, that is L∗ = L.). It is noted that this approach does not break down

on the body boundary because in the formulation the oseenlet approximates to the

stokeslet.

Studies of Tomotika : In their studies, Tomotika and Aoi (Tomotika & Aoi, 1951)

considered an expansion formula for the drag experienced by a circular cylinder in

motion through a viscous fluid for a low Reynolds number. The expansion formula

was represented in a power series of the Reynolds number for a steady flow. It

was revealed that up to the fourth order, their power series representation correctly

express the approximation with high accuracy as long as the Reynolds number is

not more than four (Re ≤ 4).

Studies of Tritton : Experimental studies for flow past a circular cylinder at

low Reynolds number was carried out by Tritton (Tritton, 1959). The experiment

present description for measurement of drag coefficient experience by a moving body
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at a low Reynolds number in the range 0.5 to 100 (0.5 ≤ Re ≤ 100). The experi-

ment was observed for bending of quartz fibres in a stream flow. Tritton was able

to compare his work with other experimental values and various theoretical results

which shows good agreement.

2.3 The Equation Governing Fluid Flow

Motion of any continuous medium, whether fluid or solid, is governed by the Cauchy

equation given by

ρ
Dui
Dt

=
∂

∂xj
σij + fi (2.3)

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.4)

where ui is the fluid velocity, xi is the Cartesian coordinate in the Einstein tensor

suffix notation, σij is the stress tensor, fi is a body force acting on the fluid (such

as gravity), t is time, ρ is the density of the substance and the material derivative

is given by
Dui
Dt
≡ ∂ui

∂t
+ uj

∂ui
∂xj

. (2.5)

If the fluid is Newtonian, the stress tensor is related to the pressure p, and also to

the rate of deformation tensor by the linear constitutive equation

σij = −pδij + 2µ

(
eij −

1

3
∆δij

)
. (2.6)

Here eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, ∆ = eii, and µ is the dynamic viscosity. The first term

on the right hand side of equation (2.6) is the sum of the isotropic part, −pδij, and

the remaining anisotropic part 2µ
(
eij − 1

3
∆δij

)
that can be termed the deviatoric

stress tensor which contributes to the tangential stresses. Its diagonal elements

sum to zero. This deviatoric term depends on the motion of the fluid. Though

viscosity depends significantly on temperature (and on the presence of temperature

differences), then it can also be regarded as function of position. Nevertheless, in

most cases temperature differences are so small as to be negligible, thus enabling

the viscosity to be regarded as uniform throughout the fluid and therefore con-

sidered constant (Batchelor, 1967). In this approximation, substituting the stress
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tensor back into the Cauchy equation (2.3) yields the Navier-Stokes equation for an

incompressible fluid with constant viscosity:

ρ
Dui
Dt

= fi −
∂p

∂xi
+ µ

(
∂2ui
∂xj∂xj

+
1

3

∂∆

∂xi

)
. (2.7)

If the density is constant as is usually the case with incompressible fluid, the Navier-

Stokes and mass conservation equations become, respectively,

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= fi −
∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(2.8)

and
∂ui
∂xi

= 0. (2.9)

Linearisation of the Navier-Stokes equation results in the Stokes and Oseen equations

(Shankar, 2007). Detailed derivation and further discussion of the above will be

presented in the next Chapter.

Stokes Equation : A linearisation of the Navier-Stokes equation for low Reynolds

number (see section 2.3.2) yields the Stokes equation, which describes the motion of

a slow viscous fluid. Generally, this type of fluid is characterised by the dominance

of viscous forces over inertial forces, rendering its velocity very low as the viscosity

becomes very large (creeping flow). The Stokes equation can be traced back to

the early work of Stokes, with creeping flow first studied to understand lubrication

problems (Stokes, 1851). After that, its application became very popular. A key

property of the Stokes equation includes instantaneity, which is to say that Stokes

flow does not depend on time except through time-dependent boundary conditions.

This instanteinity means that a flow that is generated due to varying time boundary

condition, if the opposite boundary condition is applied in reverse, exactly the same

flow will be obtained, for example when trying to pull something from a sticky

surface. Additionally, and due to being time independent, the Stokes equation is

time reversible. As a result, if one were to solve the time-reversed Stokes equation

they would obtain the same result as solving the original non-time reversed equation.

In practice, this is demonstrated in the difficulty of mixing two different viscous fluids

together. The last property that will be mentioned here is the Stoke’s paradox, a

situation involving the absence of a solution for the Stokes equation considering two-

dimensional flow around an infinitely long circular cylinder. Examples of creeping
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flow where the Stokes equation can be applied include the swimming of micro-

organisms, movement of sperm cells through the convoluted geometry of the fallopian

tube and in industry where creeping flow occurs in paint, MicroElectroMechanical

System (MEMS) devices, and in the flow of viscous polymers. To solve the Stokes

equation, different well-known methods for solving linear differential equations can

be used. To utilise the BIM, the fundamental solution of the Stokes equation is called

stokeslet which is the Green’s function of the Stokes equation (Hancock, 1953) is

employed.

Oseen Equation : The Oseen equation was first proposed by Oseen (Oseen,

1910) as a linearisation of the non-linear convective terms of the Navier-Stokes equa-

tion. By approximating the forces acting on the body at low Reynolds number, a so-

lution for homogenous fluid flow problems can be achieved using the Oseen equation.

However, the Oseen equation is not valid for flows that are very near to the body

surfaces. Because of Stokes’ paradox, Oseen proposed an improvement to Stokes

equation in order to find a solution for two dimensional flows around an infinitely

long cylinder. Oseen flow, just like Stokes flow, describes the flow of incompressible

viscous fluid at low Reynolds number (Oseen, 1910). Oseen’s approach makes an

approximation to the convective acceleration terms of the Navier-Stokes equation in

that the velocity becomes a uniform stream flow far away from the two dimensional

circular cylindrical body. The fundamental solution of the Oseen equation is called

oseenlet. These oseenlets arise due to the singular point force embedded in the Os-

een flow. Applications of the Oseen equation include bio-engineering and blood flow

in small vessels with low Reynolds number.

The fact low Reynolds number flow past a circular cylinder in two dimensions

has no exact solution due to Stokes paradox is the main inspiration behind the

present work. While other authors have found approximate solutions, our approach

provides more rigorous solutions while expanding the potential scope of such research

due to the lower computational complexity of our method. Here, a boundary-only

approach shall be presented and compared against the methods of Lamb (Lamb,

1932), Imai (Imai, 1951) and Kaplun (1957). Most of the existing work focuses

mostly on internal flow, while less attention has been given to external flow in
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two dimensions because for internal flows Stokes paradox is not an issue while for

external flows stokes paradox holds.

2.3.1 Divergence Theorem

The divergence theorem is key in the Boundary Integral Method (BIM). BIM de-

pends on the use of the divergence theorem, which allows the conversion of a volume

integral to a surface integral or a surface integral to a line integral. Let Vc be an

arbitrary volume in a given space bounded by a closed surface D. The divergence

theorem states that the volume integral of the divergence of any differentiable vector

function, F = (fx, fy, fz), over Vc is equal to the flow rate of F across D (Pozrikidis,

2011), that is ∫∫∫

Vc

∇ · FdV =

∫∫

D

F · ndS. (2.10)

2.3.2 Reynolds Number

The Reynolds number (Re) of a fluid is a dimensionless quantity that arises from

scaling the Navier-Stokes equation. It is the ratio of inertial forces to viscous forces.

At low Reynolds number, flow tends to be laminar, while large Reynolds number

corresponds to turbulent flow. Reynolds carried out an experiment entitled ‘an

experimental investigation of the circumstances which determine whether the motion

of water in parallel channels shall be direct or sinuous’.
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Figure 2.1: Experiment by Reynold showing flow at different rates. Original drawing

from (Reynolds, 1883)

The investigation is shown in figure (2.1) (Reynolds, 1883). His methodology

involved injecting dyed water into a clear glass pipe and then allowing it to flow

at different rates. He noticed that the flow could be characterised as laminar or

turbulent based on a critical value of the dimensionless number he called ’R’. In

laminar flow (see figure 2.1 top), the liquid moves in parallel layers: the injected

dye moves in streak lines with the water in the pipe at low flow rates. After a

certain critical number at higher flow rate, however, the flow becomes turbulent

(see figure 2.1 middle). The dye moves in an irregular manner mixing up with

the fluid inside the tube (see figure 2.1 bottom) when the flow was observed with

a stroboscopi light thereby creating those multiple eddies of different scales were

observed. Sommerfeld was the first to call the proposed dimensionless number the

”Reynolds number”, as he added it in his equation called the ”Orr-Sommerfeld

equation” during an international congress of mathematicians in Rome (Sommerfeld,

1908). The Reynolds number is given as

Re =
ρUL

µ
, (2.11)
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or equivalently

Re =
UL

ν
, (2.12)

where ν = µ
ρ

is the kinematic viscosity, L is a characteristic length scale associated

with the body, and U is a characteristic velocity. This determines whether the flow is

laminar or turbulent based on the properties of the fluid including velocity, density,

and viscosity. For a viscous fluid, the Oseen equation describes the flow field far

from the body while the Euler equation describes the flow field in an inviscid flow.

2.4 Application of the Boundary Element Method

in Biology

In biological fluids, numerical methods can be used to model motion in fluid flow.

For instance, cilia and flagella (see figure 2.2) which are hair-like structures on the

free ending of cells are locomotive organelle of micro-organisms. Flagella are very

useful motile organelle for many organisms that navigate in biological fluids, ranging

from the microscopic to some macroscopic organisms (Fawcett, 2014). Beside their

locomotive importance, flagella also help in food gathering and response to environ-

mental changes (Witman, 1990). At a very low Reynolds number, the flow of a fluid

is very slow because of the dominance of viscous forces over inertial forces (Reynolds,

1883). Some common examples of models (among many) that describe such flows

include the motion of micro-organisms in viscous fluid (Montenegro-Johnson, Smith,

Smith, Loghin, & Blake, 2012). One example of this is the movement of mammalian

spermatozoa to reach the fallopian tube where fertilisation will eventually take place

(Fauci & Dillon, 2006).

Studies of the active movement of cells and transport of fluids at the micro-

scopic level have been target problems in the field of theoretical biology. They

attract the interest of many researchers in applied mathematics. Microscopic swim-

ming of biological organisms has been studied by many biologists in detail (Parker,

1905; Gray, 2015; Verworn, 1891). As collaboration between experimentalists and

theoreticians began, it gave meaningful development to this area of research. In
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Figure 2.2: Flagella and cilia demonstrating beat pattern. Original photo on

Wikipedia licensed CC-BY-3.0

return, the collaboration gave way for the development of models of slender body

theory (a model through distribution of force singularities) to study, so-called ”thin

body” swimmers (Hancock, 1953). Different numerical methods have been used to

solve problems regarding fluid motion of micro-swimmers. These include the popu-

lar Finite Element Method (FEM) (Montenegro-Johnson et al., 2012; Zhu, Lauga,

& Brandt, 2012). Using this method to run numerical simulations, Zhu et al., stud-

ied the kinematic changes in swimming microorganism (?, ?; Montenegro-Johnson,

Smith, & Loghin, 2013). They considered two cases: the first was swimming in

Newtonian fluid and the second was swimming in viscoelastic fluid for pusher-type

swimmers and puller-type swimmers. Some of the results revealed show that swim-

ming speed in viscoelastic fluid is less than that in a Newtonian one (Zhu et al.,

2012). In mammals, flagella help in reproduction by propelling the sperm swim to

meet the ovum for fertilisation (Henkel, Bittner, Weber, Hüther, & Miska, 1999;

Nonaka et al., 1998; D. Smith, Gaffney, Blake, & Kirkman-Brown, 2009). D. Smith

et al. also used BEM to carry out a simulation study on the accumulation of human

sperm near surfaces (D. Smith et al., 2009).

On the other hand, plankton (which uses flagella for movement) can also be

modelled using BEM. Plankton are moving organisms living mostly in the sea,

ponds, streams or large rivers. There are many different species of planktons and to
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a large extent they are aquatic and therefore their motion is mostly by swimming

using flagella (Baretta-Bekker, Duursma, & Kuipers, 1992; Suthers & Rissik, 2009).

Different species of plankton come in different sizes ranging from picoplankton with

a size of less than 3µm (Kress, 2019) to megaplankton with size of greater than

20cm. They are of particular interest due to their position in the food chain; their

size and distribution also contribute to their usefulness. Some of them, such as

phytoplankton are primary producers (autotrophs), while others such as bacterio

plankton and zoo plankton are consumers (heterotrophs). Jelly fish and krill also

fall into the latter category (Raymont, 1980; Suthers & Rissik, 2009).

In addition, plankton plays a vital role in the carbon cycle (Falkowski, 2012)

serving as the largest source of food for aquatic animals. Phytoplankton are free-

floating photosynthetic micro-organisms. As a result of their natural life cycle, phy-

toplankton are important contributors to oceanic carbon fixing (Falkowski, 2012;

Weber & Deutsch, 2010). Since the size of the resulting carbon is dependant on

the phytoplankton population (and population density), it is important to un-

derstand their motion (A. Longhurst, Sathyendranath, Platt, & Caverhill, 1995;

A. R. Longhurst & Harrison, 1989).

2.5 Comparison of Some Important Numerical Meth-

ods

Several numerical methods have been developed for solving partial differential equa-

tions. The most popular numerical methods used in fluid mechanics are the Finite

Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method

(FVM), and BEM. Detail of These methods including their advantages and disad-

vantages will be discuss next.
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2.5.1 Finite Difference Method

FDM is a domain method for solving differential equation through discretisation. It

does not however finds solutions at the nodes, but rather it solves the problem by

storing the values of the function only at the grid points. Taylor’s theorems are used

for the approximation of the differential equations in the finite difference method.

The underlying principle of FDM is that the regions over which the independent

variables of the partial differential equation is defined has been replaced by a finite

grid of points at which the dependent variable is approximated (Causon & Mingham,

2010).

Advantages of the Finite Difference Method :

1. The main advantage of FDM is the fact that it is a very exact method. The

solutions obtained from FDM are usually significantly closer to the solution,

as the results obtained from, e.g., weighted residual methods (Rapp, 2017).

2. Finite difference method is computationally efficient if the simulation can be

discretise in a square or rectangular geometry using a regular grid. In such

case FDM is more efficient to easily implement than for finite-element and

finite-volume methods.

3. Finite difference method has a simple code structures that is easy to imple-

ment.

4. The finite-difference method is defined dimension per dimension; this makes

it easy to increase the “element order” to get higher-order accuracy.

Disadvantages of the Finite Difference Method :

1. When geometry becomes complex, FDM does not cope with such complexity

because it requires a known familiar grid structuring like square and rectangle.

2. FDM becomes computationally expensive with complex and multiscale geome-

tries (Rapp, 2017).
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3. With the finite-difference method, defining boundary conditions becomes a

problem particularly when handling curve boundaries and as a result it could

lead to large computational errors.

4. When there is discontinuity on a material, finite difference method is poor in

handling such discontinuity.

5. Unlike in FEM, FDM does not allow for adaptive mesh refinement or local grid

refinement. Grid refinement is necessary when there are corners or complex

shapes that might cause variation in solution.

2.5.2 Finite Element Method

FEM is a domain discretisation method which is a common technique used in finding

the numerical solution to differential equations. The basic underlying principle of

FEM is that it partitions the domain of the differential equation into smaller parts

called elements (Whiteley, 2017) based on an irregular (e.g. triangular) mesh that

can easily resolve complex geometries (Neill & Hashemi, 2018). These elements

then form a mesh that will be used to find the solution to the differential equation

in question using a low-order or high-order polynomial function. The solution on

each of the elements is approximated. So, given any partial differential equation,

the finite element method is regarded as a general method that can be use to find

its approximate solution.

Advantages of Finite Element Method :

1. FEM is the most popular numerical method used for solving differential equa-

tions in engineering. One of the main advantage of the method is that it is

applicable to both linear and non-linear differential equations in two and three

dimensions.

2. Unlike FDM, FEM can model complex and Irregular geometric shapes. Be-

cause the designer is able to model both the interior and exterior, he or she

can determine how critical factors might affect the entire structure and why
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failures might occur.

3. FEM is flexible to adapt certain specifications to enable reduction in the need

to have a physical prototype in the design process. Therefore using FEM

software, the time to spend on designing prototype will be reduced because

computer simulations can do same in far less time than designing a prototype.

4. Physical deformity can make modelling by hand impossible, but a numerical

approximation with FEM can solve any deformity to a high degree of accuracy.

Disadvantages of Finite Element Method :

1. For a body with complex geometry, such as body geometry with corners,

notches, or holes, mesh refinement can be difficult since discretisation is carried

out in the entire domain. Generation of the finite element mesh therefore

becomes laborious and time consuming.

2. When dealing with problems in the exterior domain where the boundary is

infinite, the FEM uses a fictitious closed boundary condition to find a solu-

tion. This then leads to great compromise of the accuracy of the method, and

in some cases yields completely erroneous results. Examples of such infinite

domains include half-spaces or complementary domains to a finite one.

3. Making modifications on the mesh that will accommodate changes in the ge-

ometry of the body becomes difficult and time consuming with the FEM.

4. FEM has computational inefficiency because of domain discretisation and also

it has a complex code structure that is difficult to implement.

2.5.3 Finite Volume Method

This is another numerical method for solving partial differential equations (Rapp,

2017). In FVM, the domain is first discretised into a number of non overlapping

finite volumes or cells. Usually, these finite volumes are triangles (2D) or prisms

(3D). Next, conservation laws are applied to each individual cell to form enough
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algebraic equations, which can be solved to compute the state variables (Neill &

Hashemi, 2018). FVM, like FEM, is based on an unstructured (e.g. triangular)

mesh. Therefore, it is suitable for irregular and complex geometries unlike FDM

that is based on regular grid geometry.

Advantages of the Finite Volume Method : All the advantages of FEM

and FDM also holds for FVM and in addition, the following also add to the advan-

tages.

1. FVM is based on the integral form of the conservation laws, rather than their

differential form. This leads to more accuracy/stability, especially for sharp

gradients (i.e. large derivatives) inside a domain, which is also called shock-

capturing property.

2. A region of the geometry could be resolved at significant higher accuracy while

relaxing the resolution throughout the rest of the region (Rapp, 2017).

3. FVMs have less strict requirements on grid structuring

4. Compared to the finite difference method, one further advantage of the finite-

volume method is that it is very flexible—it can be rather easily implemented

on structured as well as on unstructured grids. This renders the finite-volume

method particularly suitable for the simulation of flows in or around complex

geometries.

5. FVM allows locally adapting the grid to suit the geometry.

6. This leads to another important feature of the approach, namely the ability to

compute weak solutions of the governing equations correctly (Blazek, 2015).

Disadvantages of the Finite Volume Method :

1. The local accuracy of the FVM, such as close to a corner of interest, can be

increased by refining the mesh around that corner, similar to FEM. However,

the functions that approximate the solution when using FVM cannot be easily

made of higher order. This is a disadvantage of the FVM compared to the

finite-element and finite-difference methods.
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2. Finite volume methods work fine in multiple dimensions, but to go higher

than second order for general flow structures, one needs extra face quadrature

points and/or transverse Riemann solves, greatly increasing the cost relative

to FD methods. However, these FV methods can be applied to non-smooth

and unstructured meshes and can use arbitrary Riemann solvers.

3. FVM: Getting high-order schemes is a pain, it is extremely cumbersome.

4. However, in some cases, it is difficult to design schemes which give enough

precision. Indeed, the FEM can be much more precise than FVM when using

higher order polynomials, but it requires an adequate functional framework

which is not always available in industrial problems (Eymard, Gallouët, &

Herbin, 2000).

2.5.4 Boundary Element Method

BEM is not a domain method like FEM, but rather a boundary-only method

(Katsikadelis, 2016). However, BEM uses similar shape functions to FEM for the

distribution of variables over the boundary. Its basis, however, can be traced to the

theory of integral equations (Brebbia, 2017).

The Advantages of the Boundary Element Method :

1. The discretisation of the Boundary Element Method is only over the boundary.

Since this method allows for the reduction of the dimension of the domain by

order one and hence also reducing the number of unknown factors by order

of one, this makes the Boundary Element Method more suited in handling

algebraic equations than the Finite Element Method.

2. With BEM, evaluation of the solution can be done at any point of the domain

and at any instant in time because the integral representation of the solution

is a continuous function whose derivative can be found. Conversely, solutions

found via the FEM can only be obtained at nodal points-therefore, the points

at which the system is evaluated are not arbitrary.
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3. BEM can accurately solve problems with concentrated forces which result from

derivatives of field functions such as stresses and moments.

4. Peculiar geometries, such as cracks, can be handled by BEM, since the dis-

cretization need only be done on the boundary of the crack.

5. When considering an infinite domain, BEM can be used if the problem is

formulated as an exterior problem. This is because the boundary condition

that will be suitable at infinity will satisfy the fundamental solution.

Disadvantages of the Boundary Element Method :

1. When the differential equation is non linear, application of BEM on the integral

representation is not possible.

2. BEM results in a dense matrix which is usually non symmetric. Therefore the

populated matrix can be difficult to solve. Conversely, in FEM, the system

of algebraic linear equations are diagonally dominant which makes it easier to

handle.

3. In the event where singularity is encounter, evaluating such singularity can be

a difficult procedure using BEM.

4. BEM requires fundamental solution to the partial differential equation be

known, otherwise it will be impossible to get a BEM formulation of the PDE

and not all PDE’s fundamental solution are known.

2.6 Summary of Chapter

In this chapter, general literature surveys are carried out for low Reynolds number

flow past a body. It was stated clearly that this study is for two dimensional flow in

an exterior domain for which Stokes’ paradox holds, a match asymptotic expansion

will be used in later chapters. Studies for two dimensional flow past a circular

cylinder from Yano and Kieda ((Yano & Kieda, 1980)), Proudman and Pearson
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((Proudman & Pearson, 1957)), Kaplun and Lagerstrom ((Kaplun & Lagerstrom,

1957)), and Chadwick ((Chadwick, 2013)) has been reviewed in this chapter. Oseen

and Stokes equation has been clearly stated and the Reynolds number with diagram

showing the first experiment carried out by Osborne Reynolds in 1883. Some few

examples of low Reynolds number flow applied in biology are presented and the

chapter ended by comparing four different numerical methods: FDM, FEM, FVM,

and BEM.
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Chapter 3

Theoretical Background and

Governing Equations

3.1 Introduction

In this chapter the classical equations that govern the general fluid flow and partic-

ularly the equations that describe the near-field and the far-field behaviour of fluid

flow shall be discussed. Using mathematical analysis, there will be matching of the

near-field and far-field. In solving problems in fluid mechanics, certain conditions

must be taken into account, such as conservation of mass, and conservation of mo-

mentum. This chapter will begin by deriving equations for the mass conservation

and momentum, from this two all other equations will be deduce from them.
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Control Volume

dx1

dx3

dx2

x2

x3

x1

ρu1dx2dx3

(
ρu1 +

∂
∂x1

(ρu1)dx1

)
dx2dx3

(Outlet)(Inlet)

Figure 3.1: Fixed control volume showing inflow and outflow

3.2 Derivation of Continuity Equation and Navier-

Stokes Equation

3.2.1 Continuity Equation

Conservation of mass m, which is commonly referred to as the continuity equation,

states that the mass of the fluid cannot change in a closed system (White, 2011).

In the following analysis, m is therefore regarded as a constant, that is

dm

dt
= 0, (3.1)

where t is time. Consider a control volume of infinitesimal size (dx1, dx2, dx3) (see

figure 3.1). The flow through each element is balanced, with mass conservation given

as ∫

cv

∂ρ

∂t
dΣ +

∑

i

(ρiAiui)outlet −
∑

i

(ρiAiui)inlet = 0, (3.2)

where cv represents the control volume, ρi is the density, dΣ is an element of volume,

Ai is the cross sectional area, and ui is the velocity. Because equation (3.2) describes

an infinitesimal fluid element, the full volume integral simply reduces to a differential

term ∫

cv

∂ρ

∂t
dΣ ≈ ∂ρ

∂t
dx1dx2dx3. (3.3)

In the x1 direction, the inlet for the mass flow rate is (ρu1)dx2dx3, while for the

outlet, the mass flow rate is
(
ρu1 + ∂

∂x1
(ρu1)dx1

)
dx2dx3. Similar procedures apply
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for the remaining directions, x2 and x3. Substituting all these into (3.2) gives

∂ρ

∂t
dx1dx2dx3 +

∂

∂x1

(ρu1)dx1dx2dx3 +
∂

∂x2

(ρu2)dx1dx2dx3

+
∂

∂x3

(ρu3)dx1dx2dx3 = 0. (3.4)

The volume element dx1dx2dx3, from the equation (3.4) cancels out, hence, the

conservation of mass for an infinitesimal control volume which is the continuity

equation and is given as

∂ρ

∂t
+

∂

∂x1

(ρu1) +
∂

∂x2

(ρu2) +
∂

∂x3

(ρu3) = 0 (3.5)

or it can be written using index notation as

∂ρ

∂t
+

∂

∂xi
(ρui) = 0. (3.6)

Equation (3.6) is called the continuity equation for compressible and unsteady flow,

while for an incompressible and steady flow it is given as

∂ui
∂xi

= 0. (3.7)

3.2.2 Momentum Equation

Using the same control volume shown in figure 3.1, the force balance for the linear

momentum will be (Munson, 2002; White, 2011),

∑

i

F =
∂

∂t

(∫

cv

(uiρ)dΣ

)
+
∑

i

(miui)outlet −
∑

i

(miui)inlet (3.8)

just like when deriving the continuity equation, when it was an infinitesimal volume

been considered, the integral in the above equation will simply be reduced to a

derivative term giving

∂

∂t
(uiρ)dΣ ≈ ∂

∂t
(uiρ)dx1dx2dx3 , (3.9)

considering the momentum fluxes from all the six faces consisting of three inlet

and three outlet (see figure 3.1) (White, 2011). In the x1 direction, the inlet for

the mass flow rate is (ρu1ui)dx2dx3, while for the outlet, the mass flow rate is
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(
ρu1ui + ∂

∂x1
(ρu1ui)dx1

)
dx2dx3. Similar procedures apply for the remaining direc-

tions, x2 and x3. Substituting all these and (3.9) into (3.8) gives

∑
F =

(
∂

∂t
(uiρ) +

∂

∂x1

(uiu1ρ) +
∂

∂x2

(uiu2ρ) +
∂

∂x3

(uiu3ρ)

)
dx1dx2dx3, (3.10)

which is simplified to

∂

∂t
(uiρ) +

∂

∂x1

(uiu1ρ) +
∂

∂x2

(uiu2ρ) +
∂

∂x3

(uiu3ρ) = ui

(
∂ρ

∂t
+

∂

∂xi
(ρui)

)

+ ρ

(
∂ui
∂t

+ u1
∂ui
∂x1

+ u2
∂ui
∂x2

+ u3
∂ui
∂x3

)
,

(3.11)

where the right hand side of (3.11) is simply the continuity equation and the total

acceleration of a particle that instantaneously occupies the control volume, hence

∑
F = ρ

dui
dt
dx1dx2dx3 . (3.12)

dx1

dx3

x2

x3

x1

(
σ11 +

∂σ11

∂x1
dx1

)
dx2dx3

σ21dx1dx3

σ31dx1dx2

dx2

σ11dx2dx3

(
σ21 +

∂σ21

∂x2
dx2

)
dx1dx3

(
σ31 +

∂σ31

∂x3
dx3

)
dx1dx2

Figure 3.2: Control volume for a differential element

Equation (3.12) above shows that the net force must be of differentiable size

on the control volume and proportional to the element volume. Consider figure 3.2,

the net surface forces for only the x1−direction is given by

dF1,surf =

(
∂

∂x1

(σ11) +
∂

∂x2

(σ21) +
∂

∂x3

(σ31)

)
dx1dx2dx3, (3.13)

where F1,surf is the surface force in the x1−direction. Putting the above equation

in terms of pressure and viscous forces gives

dF1

dΣ
= − ∂p

∂x1

+
∂

∂x1

(τ11) +
∂

∂x2

(τ21) +
∂

∂x3

(τ31), (3.14)
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where the stresses are the sum of hydrostatic pressure plus viscous stresses τij that

arise from motion with velocity gradient given as

σij =




−p+ τ11 τ21 τ31

τ12 −p+ τ22 τ32

τ13 τ23 −p+ τ33


 (3.15)

where σij is the stress in j−direction on a face normal to i axis. This now leads us

to the basic differential momentum equation given for an infinitesimal fluid element

with gravitational force (the only body force that will be considered here), given as

ρfi −
∂p

∂xi
+

τij
∂xj

= ρ
∂ui
∂t

+ u1
∂ui
∂x1

+ u2
∂ui
∂x2

+ u3
∂ui
∂x3

, (3.16)

where fi is the gravity force per unit volume, ∂p
∂xi

is the pressure force per unit

volume,
∂τij
∂xj

is the viscous force per unit volume and dui
dt

is the density acceleration

per unit volume. Therefore in the x1, x2 and x3 directions respectively yields

f1 −
∂p

∂x1

+
∂τ11

∂x1

+
∂τ21

∂x2

+
∂τ31

∂x3

= ρ

[
∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

+ u3
∂u1

∂x3

]
, (3.17a)

f2 −
∂p

∂x2

+
∂τ12

∂x1

+
∂τ22

∂x2

+
∂τ32

∂x3

= ρ

[
∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

+ u3
∂u2

∂x3

]
, (3.17b)

f3 −
∂p

∂x3

+
∂τ13

∂x1

+
∂τ23

∂x2

+
∂τ33

∂x3

= ρ

[
∂u3

∂t
+ u1

∂u3

∂x1

+ u2
∂u3

∂x2

+ u3
∂u3

∂x3

]
. (3.17c)

3.2.3 Navier-Stokes Equation

The type of fluid that will be considered here is Newtonian; where the shear stress

is directly proportional to the strain rate for an incompressible flow. Hence, from

(3.17) will give

τ11 = 2µ
∂u1

∂x1

,

τ22 = 2µ
∂u2

∂x2

,

τ33 = 2µ
∂u3

∂x3

,

τ12 = τ21 = µ

(
∂u1

∂x2

+
∂u2

∂x1

)
,

τ13 = τ31 = µ

(
∂u3

∂x1

+
∂u1

∂x3

)
,
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and

τ23 = τ32 = µ

(
∂u2

∂x3

+
∂u3

∂x2

)
.

where µ is the dynamic viscosity. As a result,

f1 −
∂p

∂x1

+ µ

[
∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u1

∂x2
3

]
= ρ

[
∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

+ u3
∂u1

∂x3

]
,

f2 −
∂p

∂x2

+ µ

[
∂2u2

∂x2
1

+
∂2u2

∂x2
2

+
∂2u2

∂x2
3

]
= ρ

[
∂u2

∂t
+ u1

∂u2

∂x1

+ u2
∂u2

∂x2

+ u3
∂u2

∂x3

]
,

f3 −
∂p

∂x3

+ µ

[
∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3

]
= ρ

[
∂u3

∂t
+ u1

∂u3

∂x1

+ u2
∂u3

∂x2

+ u3
∂u3

∂x3

]
,

and putting the above equations into index notation, the Navier-Stokes equation is

obtained as

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi, (3.18)

where the left hand side of (3.18) is the net force density which ρ is the density and

D
Dt

is the material derivative as defined in equation (2.5). Hence,

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi. (3.19)

The above equation (3.19) is the Navier-Stokes equation for Newtonian fluid with

constant density, constant viscosity and for an incompressible fluid.

From (3.19), the time independent Navier Stokes equation is given in dimensional

form as

ρuj
∂ui
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi. (3.20)

Non-dimensionalisation can be carried out in two different approaches: one method

is to use the Bernoulli pressure p = ρU2p∗, and the second is to use Stokes pressure

p = µU
L
p∗ where U is the uniform stream velocity, L is the body length, and p∗ is the

dimensionless pressure. The advantage of using Bernoulli pressure is that it allows

the matching of the far-field to describe Oseen equation, while the Stokes pressure

only describes the near-field behaviour of the fluid flow.

3.2.4 Bernoulli Pressure

To scale the Navier-Stokes equation using the Bernoulli pressure, the dimensionless

variables for the velocity, pressure, force, time, and length scale used are

ui = Uu∗i ,
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p = ρU2p∗,

fi = |fi|f ∗i ,

t = Tt∗,

and

xi = Lx∗i .

Substituting the above dimensionless variables into equation (3.19) and simplifying

yields

ρ
∂(Uu∗i )

∂T t∗
+ ρUu∗j

∂(Uu∗i )

∂Lx∗j
= −∂(ρU2p∗)

∂Lx∗i
+ µ

∂2(Uu∗i )

∂x∗jL∂x
∗
jL

+ |fi|f ∗i , (3.21)

which further simplifies to

ρU

T

∂u∗i
∂t∗

+
ρU2

L
u∗j
∂u∗i
∂x∗j

= −ρU
2

L

∂p∗

∂x∗i
+
µU

L2

∂2u∗i
∂x∗j∂x

∗
j

+ |fi|f ∗i . (3.22)

Multiplying the above through with L2

µU
yields

ρL2

µT

∂u∗i
∂t∗

+
ρUL

µ
u∗j
∂u∗i
∂x∗j

= −ρUL
µ

∂p∗

∂x∗i
+

∂2u∗i
∂x∗j∂x

∗
j

+
ρL2

µU
|fi|f ∗i , (3.23)

to get

β
∂u∗i
∂t∗

+Reu∗j
∂u∗i
∂x∗j

= −Re∂p
∗

∂x∗i
+

∂2u∗i
∂x∗j∂x

∗
j

+
Re

Fr2
f ∗i , (3.24)

where β = ρL2

µT
, Re = ρLU

µ
, and Fr = U√

L|fi|
.

The Froude number Fr, is a non-dimensional term that describes the ratio of inertial

and gravitational forces. Fluid flows in which gravity is important include flow in

an open channel where there is a free surface. External body forces are important

as well as viscous surface forces.

Multiplying the immediate above equation through by 1
Re

to obtained

β

Re

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
+

1

Re

∂2u∗i
∂x∗j∂x

∗
j

+
1

Fr2
f ∗i .

As Re→∞ and Fr →∞ gives the far-field which describes the Euler equation by

making the second order term go to zero. The first two terms become of the same

order to give

u∗j
∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
. (3.25)

Equation (3.25) above is known as the Euler Equation. This result is most often

used in aerodynamics for different kinds of high Reynolds number flow models, but

in this thesis focus will only be on low Reynolds number flow.
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3.3 Stokes Equation

Using the Stokes pressure p = µU
L
p∗, Stokes equation for a low Reynolds number

flow is derive. Assuming that inertial terms are so small that they can be neglected

in the Navier-Stokes equation (3.19) mentioned earlier, viscous forces will dominate

the flow, and therefore the fluid will experience a very slow flow. Examples of fluids

with such properties include honey, mucus, mayonnaise, etc. This kind of flow is

generally referred to as creeping or viscous flow. Creeping flow is characterised with

Reynolds number sufficiently less than unity (Pozrikidis, 2002).

Consider a flow of an incompressible fluid past an arbitrary fixed point in a ref-

erence domain with pressure p and velocity vectors: ui = (u1, u2) for two-dimensions

and ui = (u1, u2, u3) in three dimensions. The Stokes equation can be derived from

the Navier-Stokes equation (3.19). To do so, consider a creeping flow with stream

velocity U , and a body of length L; the pressure cannot be scaled with the ”dy-

namic” or ”inertial” term ρU2, but rather must depend on a viscous scale µU
L

(White,

1991). Thus, the Stokes equation is obtained by non-dimensionalising the Navier-

Stokes equation (3.19). To do so, consider L to be the characteristic length that

represents body size, U to be the characteristic velocity which describes the intensity

of the flow, and T to be the characteristic time. In this formulation, U , L and T

are the scaling terms for the velocity, length, and time respectively.

The following operations can be used for the scaling. Starting with velocity

term,

u∗i ≡
ui
U

(3.26)

⇒ ui = Uu∗i .

The pressure term, and in this case the Stokes pressure,

p∗ ≡ pL

µU
(3.27)

⇒ p =
µU

L
p∗ .

The time and length parameters given by

t∗ ≡ t

T
, (3.28)
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⇒ t = Tt∗ ,

and

x∗i ≡
xi
L
, (3.29)

⇒ xi = Lx∗i ,

while the force is

f ∗i ≡
fi
|fi|

, (3.30)

⇒ fi = |fi|f ∗i ,

respectively. By substituting the above scaled variables into the Navier-Stokes equa-

tion (3.19) and solving for the dimensional variables, yields

ρ

(
∂Uu∗i
∂T t∗

+ Uu∗j
∂Uu∗i
∂Lx∗j

)
= −∂µUp

∗

∂L2x∗i
+ µ

∂2Uu∗i
∂x∗jL∂x

∗
jL

+ |fi|f ∗i , (3.31)

which simplifies to

ρL2

µT

∂u∗i
∂t∗

+
ρLU

µ
u∗j
∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
+

∂2u∗i
∂x∗j∂x

∗
j

+
ρL2

µU
|fi|f ∗i . (3.32)

The first and second terms on the left hand side of the above equation represent

the accelerative and convective terms of the flow. The dimensionless coefficients of

these two terms can be represented by Re · St = ρL2

µT
where the Strouhal number

St = fL
U

, frequency f = 1
T

, and the Reynolds number Re = ρLU
µ

respectively. After

substitution of these quantities, equation (3.32) becomes

Re · St∂u
∗
i

∂t∗
+Reu∗j

∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
+

∂2u∗i
∂x∗j∂x

∗
j

+
Re

Fr2f
∗
i . (3.33)

It can be seen that when there is no external force, the velocity of body motion is

similar to the forward velocity, and so the Strouhal number is of order one (St =

O(1)). This makes the first term on the left hand side of (3.33) become the same as

the Reynold’s number: thus the dimensionless equation of motion (3.33) becomes

Re

(
∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

)
= −∂p

∗

∂x∗i
+

∂2u∗i
∂x∗j∂x

∗
j

+
Re

Fr2f
∗
i . (3.34)

When Re� O(1), the accelerative and convective terms on the left side of (3.34) are

small compared to the terms on the right hand side, and so they can be neglected.
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Reverting to the physical variables, it is seen that the flow is governed by the steady

state Stokes equation (Pozrikidis, 2002) giving by

0 = − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi. (3.35)

Equation (3.35) is called steady Stokes equation, where ui = (u1, u2, u3) are in

the xi = (x1, x2, x3) direction. This is a linear differential equation for which a

representation can be found using Green’s integral theorem.

Suppose on the contrary, that there is an external force. Then, the time param-

eter is not simply equal to the ratio of length and velocity (T 6= L
U

). For Re << 1,

the second term on the left hand side of (3.33) is very small compared to the re-

maining terms, and so it can thus be neglected. The result is the unsteady Stokes

equation:
∂ui
∂t

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi. (3.36)

Physically, equation (3.36) describes flows characterised by sudden acceleration or

deceleration (Pozrikidis, 2002).

It can also be shown that pressure is a harmonic function when the Laplacian

of the Stokes equation is considered together with the continuity equation.

Take the divergence of the Stokes equation

∂

∂xi

(
− ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

)
= 0, (3.37)

∂2p

∂xi∂xi
+ µ

∂2

∂xj∂xj

(
∂ui
∂xi

)
= 0, (3.38)

but it was known from continuity equation that

∂ui
∂xi

= 0, (3.39)

hence the second term in (3.38) vanished to obtain the

∂2p

∂xi∂xi
= 0. (3.40)
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From (3.40), it shows that pressure is a harmonic function. The Stokes equation

(3.35) is linear hence there are different mathematical approaches to solve it. One

which will be considered in this thesis is BIM, which uses Green’s functions, and

thereafter the BEM to discretise it. Again, the Stokes equation is completely re-

versible and the instantaneous structure of the flow depends solely on the present

configuration rather than on the history of the motion.

3.3.1 Green’s Integral Representation of the Stokes Velocity

By representing the velocity in the Stokes equation as a surface integral, (3.35) can

be equated to a surface integral in the far-field obtained for uniform Oseen flow past

a body. Consider a volume V of fluid in Stokes flow (Chadwick, 2014). From Stokes

equation (3.35), ∫

V

(
∂p

∂xi
− µ ∂2ui

∂xj∂xj
+ fi

)
dV = 0. (3.41)

From 3.41, +fi implies force exerted by point x = 0 on fluid, while −fi implies force

exerted by fluid on point x = 0. Let us construct a Green’s integral such that a

result in ui(x) may be found. To this end, consider the variable z = x− y (here x is

the coordinate of point of fluid while y is the point of integration Vy) and the volume

integral dVy = dy1dy2dy3 in order to obtain a term that gives us ui(x). Multiplying

the above integral by ui(y), for the point source solution where f
(k)
i = δikδ(z), where

δ(z) is the Dirac delta function gives

∫

Vy

(
∂p(k)(z)

∂xi
− µ∂

2u
(k)
i (z)

∂xj∂xj
+ f

(k)
i (z)

)
ui(y)dVy = 0. (3.42)

The terms in (3.42) except the force term, give a volume integral, however, we

require a reformulation so we can apply the divergence theorem to obtain a surface

integral. Lets therefore consider including further volume integral terms such that

∫

Vy

[(
∂p(k)(z)

∂xi
− µ∂

2u
(k)
i (z)

∂xj∂xj
+ f

(k)
i (z)

)
ui(y)

−
(
∂p(y)

∂yi
− µ

∂2ui(y)

∂yj∂yj
+ fi(y)

)
u

(k)
i (z)

]
dVy = 0 (3.43)
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However, as stated above, (3.43) can be simplified using the fact that

∂

∂xi
f(z) =

∂zj
∂xi

∂

∂zj
f(z)

= δij
∂

∂zj
f(z)

=
∂

∂zi
f(z), (3.44)

and

∂

∂yi
f(z) =

∂zj
∂yi

∂

∂zj
f(z) (3.45)

= −δij
∂

∂zj
f(z)

= − ∂

∂zi
f(z), (3.46)

that is
∂

∂xi
f(z) = − ∂

∂yi
f(z). (3.47)

to get

∫

Vy

[(
−∂p

(k)(z)

∂yi
− µ∂

2u
(k)
i (z)

∂yj∂yj
+ f

(k)
i (z)

)
ui(y)

−
(
∂p(y)

∂yi
− µ

∂2ui(y)

∂yj∂yj
+ fi(y)

)
u
k)
i (z)

]
dVy = 0 (3.48)

However, simplifying (3.48) with the fact that

∂ui(y)

∂yi
= 0

and

∂

∂yi
u

(k)
i (z) =

∂zj
∂yi

∂u
(k)
i (z)

∂zj
(3.49)

= −δij
∂

∂zj
u

(k)
i (z)

= −∂u
(k)
i (z)

∂zi

= 0.
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Combining these results gives

∫

Vy

[
− ∂

∂yi

(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)
− µ ∂

∂yj

(
∂u

(k)
i (z)

∂yj
ui(y)

)

+ µ
∂u

(k)
i (z)

∂yj

∂ui(y)

∂yj
+ µ

∂

∂yj

(
∂ui
∂yj

u
(k)
i (z)

)
− µ∂ui

∂yj

∂u
(k)
i (z)

∂yj

− f (k)
i (z)ui(y)− fi(y)u

(k)
i (z)

]
dVy = 0. (3.50)

This implies

∫

Vy

[
− ∂

∂yi

(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)
− µ ∂

∂yj

(
∂u

(k)
i (z)

∂yj
ui(y)−

∂ui(y)

∂yj
u

(k)
i (z)

)

+ f
(k)
i (z)ui(y)− fi(y)u

(k)
i (z)

]
dVy = 0.

The point source was defined to be

f
(k)
i (z) = δikδ(z), (3.51)

where δik is Kronecker delta and δ(z) is Dirac delta function, resulting in

∫

Vy

f
(k)
i (z)ui(y)dVy =

∫

Vy

δikδ(z)ui(y)dVy

=

∫

Vy

δ(z)uk(y)dVy.

Since δ(z) 6= 0 for z = 0,

∫

Vy

f
(k)
i (z)ui(y)dVy = uk(x). (3.52)

Continuing with the evaluation as

uk(x) =

∫

Vy

[
∂

∂yi

(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)

+ µ
∂

∂yj

(
∂u

(k)
i (z)

∂yj
ui(y)−

∂ui(y)

∂yj
u

(k)
i (z)

)

+ fi(y)u
(k)
i (z)

]
dVy

=

∫

sy

[(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)
nvi

+ µ

(
∂u

(k)
i (z)

∂yj
ui(y)−

∂ui(y)

∂yj
u

(k)
i (z)

)
nvi

]
dSy

+

∫

Vy

fi(y)u
(k)
i (z)dVy (3.53)
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ni, nv

Vy

ni

nvi

x

z = x− y

y

SB

near-field Stokes

Sy

far-field

S∞

Figure 3.3: A volume representing near-field Stokes region and far-field Oseen region

Consider a volume Vy enclosed by the boundary Sy (see figure 3.3), where Sy includes

both S∞ and SB with

nvi =




ni on S∞

−ni on SB .

Combining these boundary conditions with equation (3.53) yields

uk(x) = −
∫

SB

[(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)
ni

+ µ

(
∂u

(k)
i (z)

∂yj
ui(y)−

∂ui(y)

∂yj
u

(k)
i (z)

)
ni

]
dSy

+

∫

S∞

[(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)
ni (3.54)

+ µ

(
∂u

(k)
i (z)

∂yj
ui(y)−

∂ui(y)

∂yj
u

(k)
i (z)

)
ni

]
dSy

+

∫

Vy

fi(y)u
(k)
i (z)dVy

where the surface integral over S∞ touches the far-field. In the far-field, for uniform

flow U past the body, Oseen flow holds.

Next, it will be shown that this Stokes flow is matched to the far-field integral
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in Oseen flow, which is zero. The two-dimensional unit force solution of Stokes

equation can be obtained from oseenlet solutions in the limit as kr → 0, and k = ρU
2µ

for length dimension r = L with

kr =
ρUL

2µ
(3.55)

=
1

2
Re

where Re is the Reynolds number. As the Reynolds number approaches zero, Re→
0, yields Stokes equation.

To get the drag and lift stokeslet, consider the drag oseenlet given as

u
(1)
i =

1

2πρU

(
∂

∂xi

(
ln r + ekx1K0(kr)

)
− 2kekx1K0(kr)δi1

)
, (3.56)

where K0 is the modified Bessel function of order zero and as kr → 0,

ekx1 = 1 + kx1 +O(r2) (3.57)

where ”O” means ”of order” and

K0(kr) = − ln r +O(r2 ln r) . (3.58)

Therefore,

u
(1)
i =

1

2πρU

(
∂

∂xi
(ln r + (1 + kx1)(− ln r))− 2k(− ln r)δi1

)
[1 +O(r)]

=
1

2πρU

(
xi
r2
− xi
r2
− kδi1 ln r − kx1xi

r2
+ 2k ln rδi1

)
[1 +O(r)]

=
1

2πρU

(
kδi1 ln r − kx1xi

r2

)
[1 +O(r)] . (3.59)

This gives the two dimensional drag oseenlet as

u
(1)
i =

1

4πµ

(
δi1 ln r − x1x1

r2

)
[1 +O(r)] (3.60)

with pressure p(1) as

p(1) = − 1

2π

x1

r2
. (3.61)

Similarly the lift oseenlet is obtained as follows:

u
(2)
i =

1

2πρU
εij3

∂

∂xj

(
ln r + ekx1K0(kr)

)

=
1

2πρU
εij3

(
∂

∂xj
(ln r + (1 + kx1)(− ln r))

)
[1 +O(r)]

=
1

2πρU
εij3

∂

∂xj
(−kx1 ln r) [1 +O(r)]

= − 1

4πµ
εij3

(
δi2 ln r +

x1xj
r2

)
[1 +O(r)] . (3.62)

40



where r is the radius of the two dimensional circular cylinder. Also, εijk = 1

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), εijk = −1 for (i, j, k) = (1, 3, 2), (2, 1, 3),

(3, 2, 1), and εijk = 0 otherwise.

So for i = 1

u
(2)
1 = − 1

4πµ

x1x2

r2
[1 +O(r)] , (3.63)

and for i = 2

u
(2)
2 = − 1

4πµ
(−1)

(
ln r +

x1x1

r2

)
[1 +O(r)] (3.64)

=
1

4πµ

(
ln r − x2x2

r2

)
[1 +O(r)] +

1

4πµ
, (3.65)

so that it yields

u
(2)
i =

1

4πµ

(
δi2 ln r − x1x2

r2

)
[1 +O(r)] + Ci (3.66)

with

p(2) = − 1

2π

x2

r2
. (3.67)

where Ci = δi2
4πµ

and r2 = x1x1 + x2x2: hence the lift oseenlet is given by

u
(m)
i =

1

4πµ

(
δim ln r − xixm

r2

)
[1 +O(r)] + C

(m)
i , (3.68)

and

p(m) = − 1

2π

xm
r2
. (3.69)

Therefore the drag and lift stokeslets are then given as

u
(m)
i =

1

4πµ

(
δim ln r − xixm

r2

)
, (3.70)

with

p(m) = − 1

2π

xm
r2
. (3.71)

It can be shown that the drag and lift stokeslet satisfy Stokes equation (3.35), as

follows:

0 = − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(3.72)

∂u
(m)
i

∂xj
=

1

4πµ

(
δim

xj
r2
− (

r2(xiδmj + δijxm)− xixm2r

r4
)
xj
r

)

=
1

4πµ

(
δim

xj
r2
−
(
xiδmj
r2

+
xmδij
r2
− 2xixjxm

r4

))

=
1

4πµ

(
xjδim
r2
− xiδmj

r2
− xmδij

r2
+

2xixjxm
r4

)
, (3.73)
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∂2u
(m)
i

∂xj∂xj
=

1

4πµ

(
r22δim − xjδim2xj

r4
− r2δmj − xiδmj2xj

r4

− r2δmjδij − xmδij2xj
r4

+
r4 (xi(2xm + xjδmj) + δijxjxm − xixjxm4r3xj/r)

r8

)

=
1

4πµ

[
2δim
r2
− 2δim

r2
− δim

r2
+

2xixm
r4

− δim
r2

+
2xixm
r4

+
1

r4
(2xixm + xixm + xixm)− 1

r8

(
4r2xixmr

2
) ]

=
1

4πµ

(
4xixm
r4

− 2δim
r2

)
. (3.74)

Pressure was earlier given as

p(m) = − 1

2π

xm
r2
, (3.75)

therefore differentiating yields

∂p(m)

∂xi
= − 1

2π

(
r2δim − xm2xi

r4

)

= − 1

2π

(
δim
r2
− 2xixm

r4

)
. (3.76)

Substituting this in the Stokes equation (3.35) yields

−∂p
(m)

∂xi
+ µ

∂2u
(m)
i

∂xj∂xj
= − 1

2π

(
δim
r2
− 2xixm

r4

)
+

1

4πµ

(
4xixm
r4

− 2δim
r2

)
= 0 (3.77)

for r > 0 which satisfies Stokes equation. This shows that the velocity and pressure

chosen for the Oseen equation also satisfy Stokes equation.

The force calculation is similar to that of Oseen, but in this thesis focus will be

on the Oseen equation-hence the need for force calculations in Stokes equation will

be omitted.

3.4 Oseen Equation

Oseen’s equation arises from the fact that the assumptions made for low Reynold’s

number (Re � O(1)) describe a viscous fluid. Recall that Reynold’s number was

define as the ratio of the inertia terms to the viscous terms

Re =
Inertia Terms

V iscous Terms
.
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When Re � O(1), the viscous term will dominate over the inertia term and as a

result, the viscous terms dominate the entire flow. However, Oseen felt it was not

a good approximation to ignore the entire inertia term. He showed that the inertia

terms are first order spatial derivatives while the viscous terms are second order

spatial derivatives. In certain cases, these derivatives are comparable in magnitude

and ignoring the inertia term is not justified (Pozrikidis, 2002). Consider the inertia

term

uj
∂ui
∂xj

=(Uδi1 + u∗j)
∂u∗i
∂xj

=U
∂u∗i
∂x1

+ u∗j
∂u∗i
∂xj

(3.78)

As one gets further and further away from the body, (i.e. as r → ∞), the fluid

velocity tends to the undisturbed free stream velocity U and the term U ∂ui
∂x1

becomes

the dominant term. Using this result, Oseen’s proposal was to include the free stream

velocity term only as he showed that this was the principal inaccuracy of the original

assumption when the inertia term is ignored altogether. Thus, as one gets further

away from the body, the magnitude of term U ∂ui
∂x1

approaches that of the viscous

term.

We have seen that the incompressible Newtonian fluid flow is governed by the

Navier-Stokes equation (3.19) and the continuity equation (3.7). The Oseen equa-

tions are equations of motion for viscous fluids. These equations are valid for a

steady and uniform flow past a fixed body or, equivalently, a body moving with

uniform, steady speed through a fluid that is otherwise undisturbed. Thus, the Os-

een equation is a linearisation of the Navier-Stokes equation in the far-field region

(Oseen, 1927). To derive the Oseen equation, let U to be a uniform flow velocity

which is parallel to the x1−axis with a body of arbitrary shape fixed in the stream.

It is expected that far from the body, the velocity should be nearly the same as the

uniform flow velocity Ux̂1. Oseen therefore decomposes both the velocity and the

pressure as

ui = Uδi1 + u∗i +O(ε2) (3.79)

and

p = po + p∗ +O(ε2), (3.80)
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where U is the free stream velocity, u∗i is the perturbation velocity, and δij is the

Kronecker delta function (Strauss, 1992). In the Oseen approximation, ε � O(1),

so ε = O
(
|u∗
U
|
)
: which is to say the perturbation velocity is small compared to

the free stream velocity, so |u∗
U
| and |p∗

p0
| = O(ε) hold. The perturbation velocity

u∗i and the pressure p∗ depend on position and, in the unsteady case, on time.

Oseen approximation assume that the velocity ui is approximately equal to the

uniform flow velocity U . Thus the Oseen approximation is valid only on the condition

|u∗
U
| � O(1).

The non-linear term in the Navier-Stokes equation can be linearise to get the Oseen

equation. For convenience, the Navier-Stokes equation is restate:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

− fi (3.81)

with
∂ui
∂xi

= 0. (3.82)

The time independent Navier-Stokes equation (where ρ∂u
∂t

= 0) in (3.81) is given by

ρuj
∂ui
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

− fi, (3.83)

with
∂ui
∂xi

= 0. (3.84)

Substituting the Oseen approximation for the velocity (3.79) and pressure (3.80)

gives the following:

ρ
[
Uδi1 + u∗i +O(ε2)

] ∂

∂xj

[
Uδi1 + u∗i +O(ε2)

]
= − ∂

∂xi

[
po + p∗ +O(ε2)

]

+µ
∂2

∂xj∂xj

[
Uδi1 + u∗i +O(ε2)

]
− fi. (3.85)

The brackets on the left hand side become

ρUδi1
∂u∗i
∂xj

= ρU
∂u∗i
∂x1

, (3.86)

and the right hand side becomes

− ∂p∗

∂xi
+ µ

∂2u∗i
∂xj∂xj

− fi, (3.87)
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where

δij =





0 if i 6= j

1 if i = j

.

This is the Oseen equation

ρU
∂u∗i
∂x1

= −∂p
∗

∂xi
+ µ

∂2u∗i
∂xj∂xj

− fi (3.88)

with the continuity equation
∂ui
∂xi

= 0.

Dropping the suffix ”∗” for brevity gives

ρU
∂ui
∂x1

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

− fi (3.89)

with the continuity equation
∂ui
∂xi

= 0 (3.90)

Far from the body, the fluid velocity approaches that of the constant free stream

velocity U , meaning that the perturbation velocity components are indeed much

smaller than the free stream velocity and the Oseen equation is valid. On the other

hand, the Oseen equation is not necessarily physical for the flow close to the body.

The Oseen equation is invalid for a body whose normal vector is almost parallel

to the free stream. Mathematically, it has been shown that if the normal vector is

approximately parallel to the free stream then on applying the no-slip condition for

the viscous fluid flow it is found that the modulus of the velocity vector, |ui|, is of

order U and the Oseen equation does not hold. Physically this means that the body

is such that the perturbation potential is large (Oseen, 1927).

3.4.1 Green’s Integral Representation of the Oseen Velocity

By taking equation (3.89) and representing the velocity with a surface integral, the

Oseen equation can be equated to a surface integral in the near field obtained by

solving the near field flow. Consider a volume of fluid V in Oseen flow (Chadwick,

2014), from the Oseen equation (3.89) above gives

∫

V

(
ρU

∂ui
∂x1

+
∂p

∂xi
− µ ∂2ui

∂xj∂xj
+ fi

)
dV = 0. (3.91)
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We want a term that gives the result ui(x). This may be achieved by setting the

variable z = x− y (here x is the coordinate of point of fluid and y is the coordinate

of point of integration Vy) and the volume integral dVy = dy1dy2dy3 and multiplying

the above integral by ui(y). For the point force solution

f
(j)
i = δijδ(z), (3.92)

where δ(z) is the Dirac delta function, this gives

∫

Vy

(
ρU

∂u
(k)
i (z)

∂x1

+
∂p(k)(z)

∂xi
− µ∂

2u
(k)
i (z)

∂xj∂xj
+ f

(k)
i (z)

)
ui(y)dVy = 0. (3.93)

The terms in (3.93) except the force term, give a volume integral whereas we require

a surface integral. We can obtain the surface integrals using the divergence theorem.

Consider the first term in (3.93)
∫

Vy

ρU
∂u

(k)
i z

∂x1

ui(y)dVy. (3.94)

In order to use the divergence theorem, we require a volume integral of the type
∫

Vy

ρU
∂

∂x1

(
u

(k)
i (z)ui(y)

)
dVy. (3.95)

Therefore let us consider including further volume integral terms such that
∫

Vy

[(
ρU

∂u
(k)
i (z)

∂x1

+
∂p(k)(z)

∂xi
− µ∂

2u
(k)
i (z)

∂xj∂xj
+ f

(k)
i (z)

)
ui(y)

−
(
ρU

∂ui(y)

∂y1

+
∂p(y)

∂yi
− µ

∂2ui(y)

∂yj∂yj
+ fi(y)

)
u

(k)
i (z)

]
dVy = 0. (3.96)

To make the above equation more soluble, the following formulae help in the sim-

plification. It is established that

∂

∂xi
f(z) =

∂zj
∂xi

∂

∂zj
f(z)

= δij
∂

∂zj
f(z)

=
∂

∂zi
f(z), (3.97)

and also that

∂

∂yi
f(z) =

∂zj
∂yi

∂

∂zj
f(z)

= −δij
∂

∂zj
f(z)

= − ∂

∂zi
f(z), (3.98)
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which shows that
∂

∂xi
f(z) = − ∂

∂yi
f(z). (3.99)

Hence, (3.96) becomes

∫

Vy

[(
−ρU ∂u

(k)
i (z)

∂y1

− ∂p(k)(z)

∂yi
− µ∂

2u
(k)
i (z)

∂yj∂yj
+ f

(k)
i (z)

)
ui(y)

+

(
−ρU

∂ui(y)

∂y1

−
∂p(y)

∂yi
+ µ

∂2ui(y)

∂yj∂yj
− fi(y)

)
u

(k)
i (z)

]
dVy = 0 .

(3.100)

equation (3.100) now simplifies because it has now been transformed to have common

coordinate (y − coordinate) to yield

∫

Vy

[
− ρU ∂

∂y1

u
(k)
i (z)ui(y)− ∂

∂yi

(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)

− µ ∂

∂yj

(
u

(k)
i (z)

∂yj
ui(y)

)
+ µ

∂

∂yj

(
∂ui(y)

∂yj
u

(k)
i (z)

)]
dVy

=

∫

Vy

(
−f (k)

i (z)u(y) + fi(y)u
(k)
i (z)

)
dVy. (3.101)

Simplifying the equation above with the fact that

∂ui(y)

∂yi
= 0 (3.102)

and

∂u
(k)
i (z)

∂yi
=
∂u

(k)
i (z)

∂zi
= 0 , (3.103)

the terms

µ
∂u

(k)
i (z)

∂yj

∂ui(y)

∂yj

in equation (3.101) cancel out. On the right hand side,

∫

Vy

f
(k)
i (z)ui(y)dVy =

∫

Vy

δijδ(z)ui(y)dVy = uj(x) (3.104)

and so

uj(x) =

∫

Vy

[
− ρU ∂

∂y1

(
u

(k)
i (z)ui(y)

)
+

∂

∂yi

(
p(k)(z)ui(y) + p(y)u

(k)
i (z)

)

+ µ
∂

∂yj

(
∂

∂yj
u

(k)
i (z)ui(y)

)
− µ ∂

∂yj

(
∂ui(y)

∂yj
u

(k)
i (z)

)]
dVy

+

∫

Vy

fi(y)u
(k)
i (z)dVy , (3.105)
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Using the divergence theorem we can see that we are now left with

uj(x) = −
∫

sm

([
ρUu

(k)
i (z)ui(y)

]
n1 +

[
p(k)(z)ui(y) + p(y)u

(k)
i (z)

]
ni

+

[
µ
∂u

(k)
i (z)

∂yj
ui(y)− µ

∂u
(k)
i (y)

∂yj
u

(k)
i (z)

]
nj

)
dSy

+

∫

Vy

fi(y)u
(k)
i (z)dVy . (3.106)

near−field

far−field

Body

y

x

z

S∞

nv
i

Vy

Sm

ni

nv
i

Figure 3.4: A volume representing far-field Oseen flow with normal pointing outward

and inward to the body.

From figure 3.4 and equation (3.106), we can see that ni is the outward pointing

normal to Sm but the inward pointing normal to Sy. nvi is the outward pointing

normal to Sy = S∞ + Sm, the enclosing volume Vy. On the boundary Sm, we have

that nvi = −ni. To clarify: Representing the velocity by a surface integral at point

x, the velocity is u(x) and the pressure is p(x).

In order to obtain the oseenlet, we distribute Green’s functions u(k)(z), and

p(k)(z) over surface Sy (see figure 3.3). Assuming no body forces in the far-field,

∫

Vy

fi(y)u
(k)
i (z)dVy = 0 . (3.107)

We shall find that integration of S∞ into the near field everywhere such that Sm = 0
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then gives

uj(x) =

∫

Vm

fi(y)u
(k)
i (z)dVy , (3.108)

which is a distribution of volume forces in Vm bounded by the surface Sm.

3.5 Summary of Chapter

In this chapter, equations that govern the fluid flow under consideration are derived.

It began by deriving the Navier-Stokes equation from cauchy equation, the Navier-

Stokes equation was linearised to Stokes equation as the Reynolds number tends

to zero. The Oseen equation is linearised from the Navier-Stokes equation using

the assumption that far from the body surface, the velocity becomes the uniform

stream velocity. Furthermore, the Green’s integral representation for the Stokes and

Oseen velocity are given here, which is what will be use for the matched asymptotic

expansion in the next chapter.
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Chapter 4

Model Formulation With

Boundary Element Method

4.1 Introduction

The numerical method that will be utilised for the simulation in this reseach is BEM.

The mathematical formulation of the Boundary Element Method is presented in this

chapter. This will cover the formulation for the Laplace equation, Stokes equation,

and Oseen equation using BEM. Because of the presence of singularities, we are not

able to integrate around a Green’s function directly. Analytic removal of the Green’s

function singularity is therefore undertaken here. A further discretisation of the

integral equation is obtained for the equations listed above. It is this discretisation

that will be used for the computer program develop for the simulation.

4.2 Boundary Integral Formulation for the Laplace

Equation

We begin by considering the two-dimensional Laplace equation and its derived

Boundary Integral representation. Consider a point xi in a fluid and point yi as
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Σ

yi

zi
xi

∂Σ

Figure 4.1: A point xi in a domain Σ

a point of integration such that zi = xi − yi (see figure 4.1). BEM is subsequently

applied on the integral representation obtained in Chapter 2 through the method

that follows. For notational purposes, we shall use comma ”, ” as subscript for

derivatives with respect to xi and semi colon ”; ” as subscript for derivatives with

respect to yi. Additionally, Σ represents the domain of the fluid and ∂Σ represents

the boundary of said domain Σ.

The Laplace equation and Laplace Green’s function are respectively given by

φ,ii = 0 (4.1)

and

G,ii = δ (4.2)

such that ∫

Σ

δdΣ = a, (4.3)

where a is a fraction of the domain at the origin subtended by angle θ = 2πa (see

figure 4.2) such that if the domain encompasses the origin a = 1, θ = 2π: otherwise

a = 0 and so θ = 0. Evaluating the Green’s function assuming no domain restriction

(that is a = 1) yields ∫

Σ

G,iidΣ =

∫

Σ

δdΣ = 1.
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(0,0)

Σ

θ

Figure 4.2: Angle subtended at the origin showing domain region

∂Σ

∂Σr

Σr

Figure 4.3: Two boundaries enclosing a domain Σr

From divergence theorem,
∫

Σ

G,iidΣ =

∫

∂Σ

G,in
Σ
i d∂Σ = 1.

where nΣr
i is the outward pointing normal to ∂Σr. When the origin is not in Σr (see

figure 4.3) we get
∫

Σr

G,iidΣ =

∫

∂Σ

G,in
Σr
i d∂Σ +

∫

∂Σr

G,in
Σr
i d∂Σ = 0. (4.4)

When ni is outward pointing normal to ∂Σr, then ni = −nΣ
i and the above becomes

∫

Σr

G,iidΣ =

∫

∂Σ

G,in
Σ
i d∂Σ−

∫

∂Σr

G,inid∂Σ, (4.5)

and so
∫

Σ

G,iidΣ =

∫

∂Σ

G,in
Σ
i d∂Σ

=

∫

∂Σr

G,inid∂Σ . (4.6)
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Note that ∂r
∂xi

= xi
r

, ni = xi
r

, xixi = r2, and the Green’s function in 2D is G = 1
2π

ln r

while in 3D Green’s function is G = − 1
4πR2 .

So in two dimensions,

∫ 2π

0

1

2π
(ln r),inirdθ =

1

2π

∫ 2π

0

1

r

xi
r

xi
r
rdθ

=
1

2π
2π

=1.

Similarly in three dimensions

∫

∂ΣR

G,inid∂Σ =

∫∫

SR

−
(

1

4πR

)

,i

nidS

=

∫∫

SR

− 1

4π

(
− 1

R2

)
xi
R

xi
R
dS

=
1

4πR2

∫∫

SR

dS

=
4πR2

4πR2

= 1.

The above formula derives from the fact that ∂R
∂xi

= xi
R

, ni = xi
R

, and the area of a

sphere is 4πR2 that is

∫ 2π

α=0

∫ π

θ=0

R sin θdαRdθ = 2πR2 [− cos θ]π0 = 4πR2 (4.7)

To compute the solution to the Laplace equation (4.1) above in a particular domain

of interest, we need to know either the Dirichlet boundary condition for the unknown

function φ or the Neumann boundary condition, or in some cases a mixture of both

Dirichlet and Neumann boundary conditions in areas of overlapping portions of the

boundaries (Pozrikidis, 2002). The Dirichlet boundary condition specifies the values

that a solution needs to take along the boundary of the domain. The Neumann

boundary condition specifies the values in which the derivative of a solution is applied

within the boundary of the domain (Cheng & Cheng, 2005).
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4.2.1 Construction of Green’s Function for the 2D Laplace

Equation

The Green’s function of a differential equation is the impulse response of an inho-

mogeneous linear differential equation defined on a given domain when boundary

conditions and initial conditions are known. The Green’s function of Laplace’s equa-

tion in 2D constitutes a special class of harmonic functions that are singular at an

arbitrary point x0 = (x0, y0). Hence, the Green’s function satisfies the singularity-

forced Laplace equation

∇2G(x,x0)− δ(x− x0) = 0 (4.8)

where x = (x, y) is a point in the field, x0 = (x0, y0) is the point of integration where

the singular point is located, and δ(x− x0) is the Dirac delta function in 2D.

We then define the Dirac delta function as

∫

Σ

δ(x− x0)dΣ =





1, if x ∈ Σ

0, if x /∈ Σ

1
2
, if x ∈ ∂Σ .

(4.9)

4.2.2 Construction of Green’s Integral

To construct the the Green’s function, it will require applying Green’s second iden-

tity for a non-singular harmonic function (4.1) and the Laplace Green’s function

(4.2). Multiply equation (4.1) by G, equation (4.2) by φ, subtract the two results

together, and then integrate over the domain Σ bounded by the collection of closed

contour, that is ∫

Σ

(φG,ii −Gφ;ii) dΣy =

∫

Σ

(φδ − 0) dΣy. (4.10)

Considering only the left hand side of equation (4.10) and with the fact that sym-

metry holds for the Laplace Green’s function, that is to say G,ii = G;ii, and applying
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divergence theorem gives

∫

Σ

(φG,ii −Gφ;ii) dΣy =

∫

Σ

(φG;ii −Gφ;ii) dΣy

=

∫

Σ

(
(φG;i);i − φ;iG;i − (Gφ;i);i −G;iφ;i

)
dΣy

=

∫

Σ

(
(φG;i);i − (Gφ;i);i

)
dΣy

=

∫

∂Σ

(
φG;i −Gφ;i

)
nΣ
i d∂Σy.

The right hand side of equation (4.10) gives

∫

Σ

(φδ − 0)∂Σy = aφ(x), (4.11)

where, as stated earlier a is a fraction of the domain at the origin subtended by an

angle θ = 2πa. Therefore,

aφ(x) =

∫

∂Σ

(
φG;i −Gφ;i

)
nΣ
i d∂Σy . (4.12)

Equation (4.12) gives the boundary integral representation of a harmonic function.

This integral representation is with respect to the boundary values for the given

domain and also the boundary distribution of the normal derivative of the harmonic

function. Therefore to find the value of φ(x) at any given point in the domain

of reference ∂Σy, it is required that only the right hand side of (4.12) should be

computed.

For the interior problem,

aφ(x) =

∫

∂Σ

(
φG;ini −Gφ;ini

)
d∂Σy, (4.13)

and for the exterior problem (see figure 4.4) we get

aφ(x) =

∫

∂Σo+∂Σ1+∂Σ2+∂Σ∞

(
φG;i −Gφ;i

)
nΣ
i d∂Σy (4.14)

All other terms on the boundary, that is
∫
∂Σ1

= −
∫
∂Σ2

, since nΣ
i on ∂Σ1 is the same

as −nΣ
i on ∂Σ2 therefore it cancel out, and assuming that the infinite part goes to

zero, that is ∫

∂Σ∞

(Gφ;ini − φG;ini) d∂Σy −→ 0,

we obtain

aφ(x) =

∫

∂Σo

(
φG;i −Gφ;i

)
nΣ
i d∂Σy. (4.15)
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nΣ
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∂Σ∞

Σ

∂Σ1

Figure 4.4: Four boundaries enclosing a domain

4.3 Boundary Element Formulation for the Laplace

Equation

4.3.1 Model formulation using the Boundary Element Method

Let F = φ;ini. Substituting this into 4.15 we get,

aφ(x) =

∫

∂Σo

(GF − φG;ini) d∂Σy. (4.16)

If we take Nq as the shape function and Wq as the weighting function, then we can

discretise (4.16) with φ = φqNq, F = fqNq, Wq, and 1 ≤ q, s,m ≤M using Dirichlet

boundary condition. Multiply both sides of equation (4.16) by the weighting function

Wq and integrate both sides over the domain ∂Σy, yielding

∫

∂Σo

Wm(aφqNq)d∂Σx =

∫

∂Σo

Wm

∫

∂Σo

(GfqNq − φqNqG;ini) d∂Σyd∂Σx, (4.17)

aφq

∫

∂Σo

WmNqd∂Σx =fq

∫

∂Σo

Wm

∫

∂Σo

GNqd∂Σyd∂Σx

−φq
∫

∂Σo

Wm

∫

∂Σo

NqG;iniNqd∂Σyd∂Σx, (4.18)
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and

fq

(∫

∂Σo

Wm

∫

∂Σo

GNqd∂Σyd∂Σx

)
=aφq

∫

∂Σo

WmNqd∂Σx

+φq

(∫

∂Σo

Wm

∫

∂Σo

NqG;inid∂Σyd∂Σx

)
,

(4.19)

which in matrix form, becomes

Amqfq = Ym, (4.20)

where

Amq =

∫

∂Σo

Wm

∫

∂Σo

GNqd∂Σyd∂Σx (4.21)

and

Ym = aφq

∫

∂Σo

WmNqd∂Σx + φq

(∫

∂Σo

Wm

∫

∂Σo

NqG;inid∂Σyd∂Σx

)
. (4.22)

On a smooth boundary, a = 1
2
, while in a flow field, a = 1. We want to find

fq = A−1
mqYm . (4.23)

Our next task is to find the unknown fq on a smooth boundary. When this is

done then the flow at any point in the fluid can be determined. To progress, consider

the boundary points xq and weighting function Wm = δ(x − xm+ 1
2
) positioned at

xm+ 1
2

=
xm+1+xm

2
(see figure 4.5).

0

q + 1

q

q − 1

1
Nq

m− 1
m

m + 1
2

m + 1

Figure 4.5: Shape function and positioning of weighting function
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To interpolate the solution for the discrete values we use the linear shape func-

tion giving as

Nq =





|x−xq−1|
|xq−xq−1|





0, if x = xq−1

1, if x = xq

(linear if xq−1 ≤ x ≤ xq)

|x−xq+1|
|xq−xq+1|





0, if x = xq+1

1, if x = xq

(linear if xq ≤ x ≤ xq+1)

0, otherwise .

(4.24)

Making necessary substitutions and simplification from the values defined above, we

find that Amq from equation (4.20) becomes

Amq =

∫

∂Σo

δ
(
x− xm+ 1

2

)(∫

∂Σo

GNqd∂Σx

)
d∂Σy

=

∫

∂Σo

Gm+ 1
2
Nqd∂Σy (4.25)

where Gm+ 1
2

= G
(
xm+ 1

2
− y
)

and

Ym = aφq

∫

∂Σo

δ
(
x− xm+ 1

2

)
Nqd∂Σx + φq

∫

∂Σo

δ
(
x− xm+ 1

2

)∫

∂Σo

NqG;inid∂Σyd∂Σx

= aφqNq(xm+ 1
2
) + φq

∫

∂Σo

Gm+ 1
2

;iniNqd∂Σy

= aφm+ 1
2

+ φq

∫

∂Σo

Gm+ 1
2

;iniNqd∂Σy. (4.26)

Equation (4.26) is the discretised form of the boundary element formulation for

the Laplace equation. Next we shall define the Gaussian points and also remove

singularities that exist as a result of the logarithmic function in the two dimensional

Laplace Green’s function.

4.3.2 Two Point Gaussian Quadrature

Using a quadratic functional f(x) we integrate to get the Gaussian point:

∫ 1

−1

f(x)dx =

∫ 1

−1

(
ao + a1x+ a2x

2
)
dx

= 2a0 +
2a2

3
(4.27)
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with F (−ξ) = a0 − a1ξ + a2ξ
2 and F (ξ) = a0 + a1ξ + a2ξ

2 so that

F (ξ) + F (−ξ) = 2a0 + 2a2ξ
2

= 2a0 +
2a2

3
.

for ξ2 = 1
3

we have ∫ 1

−1

f(x)dx = f

(
− 1√

3

)
+ f

(
1√
3

)

at x∗ = ax, which implies that

∫ a

−a
f

(
x∗

a

)
1

a
dx∗ =

1

a

∫ a

−a
g(x∗)dx∗

=g

(
− a√

3

)
+ g

(
a√
3

)
,

where f
(
x∗

a

)
= g(x∗) and f(x) = g(xa) .

At x = x∗ + a+ b, it becomes

1

a

∫ 2a+b

b

g(x− a− b)dx =
1

a

∫ 2a+b

b

h(x)dx

= h

(
a+ b− a√

3

)
+ h

(
a+ b+

a√
3

)

where h(x) = g(x− a− b) and h(x∗ + a+ b) = g(x∗).

Let c = 2a+ b and a = c−b
2

, so that

1

a

∫ c

b

h(x)dx = h

(
b+ c

2
−

c−b
2√
3

)
+ h

(
b+ c

2
+

c−b
2√
3

)

∫ c

b

h(x)dx = W
(
h
(
xGP1

)
+ h

(
xGP2

))
, (4.28)

where GP1 refers to the Gaussian point one, and so on, W = c−b
2

, and xGP1/GP2 =

b+c
2
±

c−b
2√
3
. To obtain the third and fourth Gaussian points we repeat the same

procedure as above, but this time with ξ = − 1√
3
.

Therefore, the matrix Amq can be written as

Amq =

∫

∂Σo

Gm+ 1
2
Nqd∂Σy

=

∫ q

q−1

Gm+ 1
2
Nqd∂Σy +

∫ q+1

q

Gm+ 1
2
Nqd∂Σy

=
2

lq−

[
G
(
xm+ 1

2
− yGP1

q

)
Nq(y

GP1
q ) +G

(
xm+ 1

2
− yGP2

q

)
Nq(y

GP2
q )

]

+
2

lq+

[
G
(
xm+ 1

2
− yGP3

q

)
Nq(y

GP3
q ) +G

(
xm+ 1

2
− yGP4

q

)
Nq(y

GP4
q )

]
, (4.29)
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where lq− = |yq − yq−1|, lq+ = |yq+1 − yq|,

yGP1/GP2

q
=
y
q−1

+ y
q

2
∓

y
q
+y

q−1

2√
3

,

yGP3/GP4

q
=
y
q+1

+ y
q

2
∓

y
q+1

+y
q

2√
3

,

and

Nq

(
yGP1/GP2

q

)
=

∣∣∣∣

y
q−1

+y
q

2
∓

y
q
+y
q−1

2

− y
q−1

y
q

+ y
q−1

∣∣∣∣

=
1

2

(
1∓ 1√

3

)
.

Similarly, for the remaining Gaussian points

Nq

(
yGP3/GP4

q

)
=

1

2

(
1± 1√

3

)
.

Therefore,

Amq =
lq−

2

[
1

2π
ln r |(GP1)

(
1− 1√

3

2

)
+

1

2π
ln r |(GP2)

(
1 + 1√

3

2

)]

+
lq+

2

[
1

2π
ln r |(GP3)

(
1 + 1√

3

2

)
+

1

2π
ln r |(GP4)

(
1− 1√

3

2

)]
(4.30)

where r |(GP1)= |xm+ 1
2
− yGP1

q
|, and similarly for the remaining Gaussian points.

4.3.3 Analytical Removal of the Green’s Function Singular-

ity

The two points of singularities in the two dimensional Laplace Green’s function are

when m = q − 1 and when m = q .
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For m = q − 1 ,

∫ q

q−1

Gm+ 1
2
Nqd∂Σy =

1

2π

∫ q

q−1

ln rNqd∂Σy

=
1

2π

∫ 1

−1

ln |ξk−|Nqdξ, where 2k− = |y
q
− y

q−1
|

=
k−

2π

∫ 1

−1

ln |ξk−|ξ + 1

2
dξ

=
k−

2π

∫ 1

−1

ln |ξk−|1
2
dξ

=
k−

2π

∫ 1

0

ln ξk−ξdξ

=
k−

2π

[
ξ ln k− + ξ ln ξ − ξ

]1
0

=
k−

2π
(ln k− − 1), where k− =

lq−

2
(4.31)

Thus,

Amq =
lq−

4π
(ln lq− − ln 2− 1) +

2

lq+

[
1

2π
ln r |(GP3)

(
1 + 1√

3

2

)

+
1

2π
ln r |(GP4)

(
1− 1√

3

2

)]
. (4.32)

For m = q,

∫ q+1

q

Gm+ 1
2
Nqd∂Σy =

1

2π

∫ q+1

q

ln rNqd∂Σy

=
1

2π

∫ 1

−1

ln |ξk+|Nqk
+dξ, where 2k+ = |y

q+1
− y

q
|

=
k+

2π

∫ 1

−1

ln |ξk+|
(−ξ + 1

2

)
dξ

=
k+

2π

∫ 1

−1

ln |ξk+|1
2
dξ

=
k+

2π

∫ 1

0

ln ξk+dξ

=
k+

2π
(ln k+ − 1), (4.33)

and so

Amq =
lq+

4π
(ln lq+ − ln 2− 1) +

2

lq−

[
1

2π
ln r |(GP1)

(
1− 1√

3

2

)

+
1

2π
ln r |(GP2)

(
1 + 1√

3

2

)]
. (4.34)
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The equation (4.34) above is the final discretisation for the left hand side of the

equation (4.20) which will be used in the implementation of the computation that

will be used later in this work. Note that removing the singularity at the point

m = q + 1 is not necessary because there is no singularity at that point since the

point of integration is on the left hand side. Also notice that the left hand side

includes single layer potential which does not contain singularity, while the double

layer potential on the right hand side contains singularity.

For the right hand side of (4.20), the following simplification applies:

Ym =aφm+ 1
2

+ φq

∫

∂Σ

Gm+ 1
2

;iniNqd∂Σy

=aφm+ 1
2

+ φq

∫ q

q−1

Gm+ 1
2

;iniNqd∂Σy + φq

∫ q+1

q

Gm+ 1
2

;iniNqd∂Σy

=aφm+ 1
2

+ φq

[
lq−

2

(
G
(
xm+ 1

2
− yGP1

q

)
;i
nGP1
i Nq

(
yGP1

q

)

+G
(
xm+ 1

2
− yGP1

q

)
i
nGP1
i Nq

(
yGP1

q

))
+
lq+

2

(
G
(
xm+ 1

2
− yGP3

q

)
; inGP3

i Nq

(
yGP3

q

)

+G
(
xm+ 1

2
− yGP4

q

)
i
nGP4
i Nq

(
yGP4

q

))]
,

where

G;i =− dG

dzi

=− dG

dr

dr

dzi

=− d

dr

(
1

2π
ln r

)
zi
r

=− 1

2π

(
xi − yi
r2

)
,

so that

G
(
xm+ 1

2
− yGP1

q

)
;i

= − 1

2π

(
xm+ 1

2
i − yGP1

qi

r2 |(GP1)

)
(4.35)

for
(
xm+ 1

2

)
i

= xm+ 1
2
i, (yq)i = yqi, and r |(GP1)= |xm+ 1

2
− yGP1

q
|. A similar procedure

can be done to obtain the remaining Gaussian points, and hence the right hand side
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Figure 4.6: Flow past a boundary of a solid body, given by ∂Σ0

of (4.20) becomes

Ym = aφm+ 1
2

+ φq

[
lq−

2

((
− 1

2π

)(xm+ 1
2
i − yGP1

qi

r2(GP1)

)
nGP1
i

(
1− 1√

3

2

)

+

(
− 1

2π

)(xm+ 1
2
i − yGP2

qi

r2(GP2)

)
nGP2
i

(
1 + 1√

3

2

)

+
lq+

2

((
− 1

2π

)(xm+ 1
2
i − yGP3

qi

r2(GP3)

)
nGP3
i

(
1− 1√

3

2

)

+

(
− 1

2π

)(xm+ 1
2
i − yGP4

qi

r2(GP4)

)
nGP4
i

(
1− 1√

3

2

)]
(4.36)

4.4 Boundary Element Formulation for Exterior

Problems Using the Stokes and Oseen Equa-

tions

Consider a body fixed in a flow field with steady uniform fluid flow (see figure 4.6).

We shall use the Boundary Element Method to model the boundary of the fixed

body in Stokes flow. To discretise the Stokes equation given in (3.35) and using

(4.16) for the boundary integral representation of the Laplace equation we can write

aui =

∫

∂Σ0

fjuijdl
′

=

∫

∂Σ0

Nβfβjuijdl
′

(4.37)
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where Nβ(x
′
) is the shape function, uij(x− x′) is the Green’s function evaluated at

x
′
, x
′

is a position on the domain ∂Σ0, dl
′

is an element of the length integration

variable. 1 ≤ i, j ≤ m, where m is the size of the dimensional space and 1 ≤ β ≤ n

represents the descritisation points.

On the boundary,

∫

∂Σ0

Wαuidl =

∫

∂Σ0

Wα

∫

∂Σ0

Nβfβjuijdl
′
dl

where 1 ≤ α ≤ n, Wα(x) is the weighting function at node α integrated over x

position on Σ element of length dl.

As a result,

uαi = uαβijfβj (4.38)

where

uαi =

∫

∂Σ0

Wαuidl

uαβij =

∫

∂Σ0

Wα

∫

∂Σ0

Nβuijdl
′
dl .

We need to renumber (4.38) so that we can put it into a matrix form in order to

solve it in a matrix solver.

Hence, we renumber to α∗ = α + (i− 1)n, and α = α∗ − (i− 1)n,

with β∗ = β + (j − 1)n, and β = β∗ − (j − 1)n, where 1 ≤ α∗, β∗ ≤ m × n,

i = 1 +
(
α∗

n+1

)
integer division

, and j = 1 +
(
β∗

n+1

)
integer division

.

In renumbered form, (4.38) becomes

uα∗ = uα∗β∗fβ∗ , (4.39)

and the matrix we require is

fβ∗ = u−1
α∗β∗uα∗ . (4.40)

Consider a uniform flow δi1 past a two dimensional (m = 2) circular cylinder of

radius 1 (see figure 4.4), given that the weighting function is the collocation point

and the shape function is a linear two-point Gaussian, we want to evaluate uα∗ [uαi]
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N = 2

Figure 4.7: Uniform flow past a circular cylinder.

xαi xα+1i

∂
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xα+ 1
2 i

Collocation point

Figure 4.8: Collocation points

uαi =

∫

∂Σ0

Wαuidl

=

∫

∂Σ0

δ(xα+ 1
2
)uidl

=ui(xα+ 1
2
)

The last term on the above equation is the mid point shown in figure 4.8 .

For clarity purposes, xα/xαi is a position vector xi of node α and xα+ 1
2
/xα+ 1

2
i is

the position vector xi of the mid-point between nodes α and α + 1. xα+ 1
2
i =

1
2

(xαi + xα+1i) is the mid-point with the boundary condition ui|∂Σ0 = −δi1, which

means that uαi = uα+ 1
2
i = −δi1. We also want to evaluate the Non-degenerative

singularity case, first, for α 6= β − 1, β which gives

uαβij =

∫

∂Σ0

Wα

∫

∂Σ0

Nβuijdl
′
dl

=

∫

∂Σ0

Nβuij(xα+ 1
2
− x)dl

′

=NβIgpwIuij(y), (4.41)

where yi = xα+ 1
2
i − xβiI , NβI is the shape function at Gaussian points I, NβI =(

1
2
− 1

2
√

3
, 1

2
+ 1

2
√

3
, 1

2
+ 1

2
√

3
, 1

2
− 1

2
√

3

)
, gpwI is the Gaussian point weight at point

I with gpwI =
(
l−

2
, l
−

2
, l

+

2
, l

+

2

)
where the length between nodes is given as l− =|

xβi − xβ+1i |, and l+ =| xβ+1i − xβi |. The four different Gaussian points are
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Figure 4.9: Four Gaussian points

illustrated in figure 4.9, xβiI is the position xi of Gaussian point I of node β such

that

xβiI =
xβ−1i + xβi

2
− xβi − xβ−1i

2
√

3
,

xβ−1i + xβi
2

+
xβi − xβ−1i

2
√

3
,

xβ+1i + xβi
2

− xβ+1i − xβi
2
√

3
,

xβ+1i + xβi
2

+
xβ+1i − xβi

2
√

3

uij(y) is the stokeslet given by

uij(y) =
Re

4π

(
δij ln r − yiyj

r2

)
, (4.42)

and where r = +
√
yiyj.

We also wish to evaluate the regenerate case with singularities for i = j, α = β. In

this case, the singularity needs to be removed

uαβij =

∫

∂Σ0

Nβuijdl
′

=

∫

l−
Nβuijdl

′
+

∫

l+
Nβ

(
uij − us

∗

ij

)
dl
′
+

∫

l+
Nβu

s∗

ij dl
′

=Nβ1uij(y)gpw1 +Nβ2uij(y)gpw2 +Nβ3

(
uij − us

∗

ij

)
gpw3

+Nβ4

(
uij − us

∗

ij

)
+

∫

l+
Nβu

s∗

ij dl
′
,

where s∗ denotes a singularity, and when the singularity is solved analytically, it

becomes

uij =
Re

4π
δij ln r. (4.43)
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Thus,

∫

l+
Nβu

s∗

ij dl
′
=
Re

4π

∫

l+
Nβ ln rdl

′

=
Re

4π
δij

(
l+

2

(
ln

(
l+

2

)
− 1

))
, (4.44)

and when i = j and α = β − 1, then

uαβij =

∫

∂Σ0

Nβuijdl
′

=

∫

l−
Nβ

(
uij − us

∗

ij

)
dl
′
+

∫

l−
Nβu

s∗

ij dl
′
+

∫

l+
Nβuijdl

′

=Nβ1

(
uij − us

∗

ij

)
gpw1 +Nβ2

(
uij − us

∗

ij

)
gpw2

+

∫

l−
Nβu

s∗

ij dl
′
+Nβ3uijgpw3 +Nβ4uijgpw4 (4.45)

so that we have

∫

l−
Nβu

s∗

ij dl
′
=
Re

4π
δij

∫

l−
Nβ ln rdl

′

=
Re

4π
δij

(
l−

2

(
ln

(
l−

2

)
− 1

))
. (4.46)

To find the solution to (4.45), we shall find the velocity in the domain, pressure

coefficient on the cylinder, as well as the drag coefficient.

In the fluid, a = 1, and the velocity becomes

ui(x) =

∫

∂Σ0

Nβfβjuijdl
′

≈NβIfβjuij(x− xβI)gpwI . (4.47)

By linear superposition,

p(x) ≈ fβjNβIpj(x− xβI)gpwI (4.48)

where pj is the Stokes pressure given by

pj =
−1

2π

yj
r2

(4.49)

On the cylinder, the pressure at node β is

pβ = −fβjnj|β (4.50)
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where nj|β = xβj.

The force coefficient:

Ci =

∫

∂Σ0

fidl

≈
∫

∂Σ0

Nβfβidl

≈fβiNβigpwI (4.51)

=fβi

(
sβ

(
l+ + l−

2

))

=fβisβL (4.52)

where sβ = 1 is the summation vector and l = l++l−

2
for n nodes. When l− = l+ = l,

then l = 2π
n

, and

Ci =
2π

n
fβisβ

=
2π

n

n∑

β=1

fβi. (4.53)

Where i = 1, equation (4.53) describes the drag coefficient, while for i = 2, it

describes the lift coefficient.

These numerical results must be tested against known analytical solutions. The

analytical solutions are

ui =
8π

Re
ui1 +

2π

Re
ui1,jj

and

p =
8π

Re
p1 +

2π

Re
p1,jj,

so the analytical solution is represented by a drag stokeslet of strength 8π
Re

plus a

quadrupole giving drag, such that

CD =
8π

Re
. (4.54)

Recall that the stokeslet velocity and pressure are given earlier in (3.70) as

uij =
Re

4π

(
δij ln r − yiyj

r2

)
,

pj = − 1

2π

yj
r2
,

and as per equation (3.35) we know that Stokes equation is given by

0 = −p,i +
1

Re
ui,jj
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Therefore, the velocity is shown to be a uniform stream, given by

ui|r=1 =

[
8π

Re
ui1 + 2πp1,i

]

r=1

=

[
8π

Re

(
Re

4π

(
δij ln r − yiyj

r2

))
+ 2π

(
− 1

2π

yj
r2

)

,i

]

r=1

=

[
2δi1 ln r − 2yiy1

r2
− r2δi1 − yi2ryi/r

r4

]

r=1

=

[
2δi1 ln r − 2yiy1

r2
− δi1
r2

+
2yiy1

r4

]

r=1

= −δi1.

4.5 Development of BEM Codes

The Numerical method considered here is for size 2n×2n, where n = 100, and in this

particular problem the CPU timing is about 1.358 seconds for each simulation. The

codes are developed in Fortran 95. Major steps (see flow chat in figure 4.10) for

the numerical implementation of the matched asymptotic expansion using Boundary

Element Method described in chapter 3 are summarised as follows:

Step 1: Read input file

The input file is read at beginning of the programme. These are files that

contain all the initial data, the dimension of the problem is specified at this

stage. All the constant terms to be use, this include values of the Reynolds

number (Re) and pi (π) are given at this stage.

Step 2: Generate data

Go to a function file and generate data for either circular cylinder, elliptical

cylinder, or the tail-like body shape. Define the no slip boundary condition at

this stage.

Step 3: Allocate memory

Allocate memory for all the variables that will be used for the numerical sim-

ulation.

69



Step 4: Build the system of matrix

Generate mesh of model and collocation points. This will result into a system

of equations that will be solved using a linear solver.

Step 5: Check for singularity

Go round and select the collocation points and the integration elements using

the oseenlets.

• If the collocation point is located in the integral element then it is singu-

lar, hence remove the singularities analytically.

• But if the collocation point is not inside the integration element, then it

is not singular.

Step 6: Add all submatrix

Put all matrix together, now the matrix is without any singularity because

they are removed at step 5, this now form the matrix A.

Step 7: Call matrix solver

Call a Gaussian matrix solver, apply boundary condition and calculate the

solution.

Step 8: Calculate drag coefficient

Calculate the drag coefficient for different Reynolds number in the range

0.001 < Re < 4.

Step 9: Postprocess

Postprocess and visualise different results of interest for flow past a circular

cylinder, flow past an elliptical cylinder, and flow past a tail-like body shape.

Step 10: Print results

Print results and End the programme.
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Step 1: Read input file

Step 2: Generate data and

set boundary condition

Step 3: Allocate memory

Check for Singularity

Step 5:

Remove singularity

Step 9: Postprocess

Step 7: Call solver

Step 8: Calculate drag

yes no

Step 6: Combine submatrix

Step 2: Build matrix
A

coefficient CD

Figure 4.10: Flow chart showing code

4.6 Summary of Chapter

This chapter presents Boundary Element Method formulation of the equations that

will be discretised and validated in the subsequent chapter. The chapter introduces

Boundary element formulation for Laplace’s equation and its Green’s integral rep-

resentation. The same procedure has been used for the BEM formulation of Oseen’s

equation. The discretisation procedure for BEM is presented in this chapter, where

we show analytical removal of the Green’s function singularity. This chapter now

sets the path for the computer programme that will be use for the simulation.
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Chapter 5

Validation of New Results and

Matched Asymptotic Integration

5.1 Introduction

We have provided the formulation of BEM for Stokes and Oseen equation. In this

chapter, we shall use the method of matched asymptotic expansion to match the

near-field Stokes flow and far-field Oseen flow. The matched asymptotic expansion

will answer the question that arises from Stokes’ paradox for flow in two dimension,

hence this formulation will not be a problem as the Oseen flow approximates to

the Stokes flow. As a way of validation, this match asymptotic formulation will be

tested against existing experiment for flow past a circular cylinder in two dimension

in an unbounded domain. It will also be compared with some other analytical work

of Lamb, Kaplun, Proudman and Pearson, and the numerical work of Lee and Leal,

Yano and Kieda, and Tamotika.
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5.2 Validation of the Boundary Element Code Us-

ing Stokes equation

The total velocity is the combination of the uniform stream velocity of unit size in

the x1 direction added to the perturbation velocity, resulting in

u†i = δi1 + ui. (5.1)

In this study, the perturbation velocity is the stokeslet. Later when the Oseen

equation will be considered, the perturbation velocity will then take the form of

the oseenlet. These changes will enable comparison between near-field and far-field

studies. The no-slip boundary condition refers to a situation whereby the fluid

assumes a zero velocity at a solid boundary (Day, 1990). With the no-slip boundary

condition and uniform stream velocity in the x1 direction, the total velocity becomes

0 = δi1 + ui,

=⇒ ui = −δi1, (5.2)

that is the perturbation velocity now becomes the uniform stream velocity, which

in the boundary element code developed, is set to unity.

Flow past a circular cylinder has been a benchmark problem in fluid mechanics

for a long time. This will be used to test the BEM developed in Fortran 95 for the

Stokes equation and then modified for for the Oseen equation. For the purpose of

visualisation only, the pressure plots, the vector plots, and the streamlines plots for

both the analytical and the numerical studies are presented here.

5.2.1 Comparison of Analytical and Numerical Results

Analytical results of the Stokes equation are obtained for the velocity distribution,

streamlines distribution, and pressure coefficient as follows. The analytic solution

of the velocity ui = (u1, u2) at the point xi = (x1, x2) is given by

u1 = 1 + 2 ln r − 2x1x1

r2
− 1

r2
+

2x1x1

r2r2
(5.3)
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and

u2 =
−2x2x1

r2
+
x2x1

r2r2
, (5.4)

where r is the distance from the origin.

It should be noted here in (5.3) and (5.4) that the velocity is unbounded in the far-

field which contradicts the far-field boundary condition and is known as the Stokes’

paradox. Figure 5.1 shows the velocity distribution of ui = (u1, u2) at the point

xi = (x1, x2). Figure 5.1a shows the numerical velocity profile for flow past a circular

cylinder in two dimensional space within an unbounded domain. The boundary of

the cylinder is divided into n parts. We truncate the x1 values within the interval

-2 to 7 while the x2 values were truncated to between -2.5 to 2.5. Similarly, figure

5.1b is the analytical velocity profile with the same intervals as in figure 5.1a. The

two subplots in figure 5.1, are similar, which shows that the analytical results agree

well with the computed numerical results.

5.2.2 Streamline plots

The streamlines plot here is not for comparison of analytical and numerical results,

but for illustrative purposes only. Figure 5.2 shows the streamline plots for our

circular cylinder. The time step of the simulation is set to 100 far from the body,

increasing to 200 near the body in order to model rapid changes in the flow. To

obtain a very smooth curve, we divide the cylinder into n discrete regions. At

n = 100 convergence is achieved. Lower values of n can be seen in the velocity

distribution plots in figure 5.1 and the pressure coefficient plot in figure 5.3.

5.2.3 Convergence Studies

The numerical method developed converges and is stable as the number of interpo-

lation points (collocation points) increases. As seen in figure 5.3, when there are

only 10 nodal points, the analytical results do not matched exactly with the numer-

ical results. As the nodal points increase, the numerical results closely match the

analytical results. It is important to note that at n = 100 the convergence is good
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(a) Numerical result of Velocity profile
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(b) Analytical result of Velocity distribution

Figure 5.1: Velocity distribution of flow past a circular cylinder in two dimensions

for low Reynolds number (Re = 0.1).

and the model is stable. The numerical and analytical results match.

The Stokes equation is symmetrical. This can be seen with the results of the

Boundary Element code developed here for the pressure coefficient, velocities vector

and streamlines (see figure 5.3). This results taken together show that the boundary

element code is working as expected.
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(a) Streamlines showing the analytical distribution
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(b) Streamlines showing for the numerical distribution

Figure 5.2: Streamline distribution of flow past circular cylinder in two dimensions

for low Reynold’s number of Re = 0.1
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(a) pressure coefficient for few number of points, n = 10.
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(b) pressure coefficient for a higher number of points, n = 100.

Figure 5.3: Pressure coefficient for analytic and numeric results for low Reynolds

number Re = 0.1

5.2.4 Error Calculation

Calculation of the error size will enable comparison of the accuracy of the boundary

element code developed here. This will further confirm the difference between the

analytical and the numerical results obtained in this study. Often, it is useful to

consider the size of an error relative to the true quantity. This quantity is sometimes

multiplied by 100 and expressed as a percentage. The analytical solution is υext and

the numerical solution computed using BEM is denoted as υapx, (where υext is the
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exact velocity while υapx is the approximate velocity). The relative error (ε) can be

calculated using the idea of infinity norm (‖ ‖∞), defined as

ε =
‖υapx − υext‖
‖υext‖

× 100. (5.5)

To demonstrate the error calculation using 5.5 above, error for the pressure coeffi-

cient is shown in figure 5.4. It can be seen that as the number of node increases

from n = 10 to n = 100, the error decreases significantly as the value of the error

when n = 100 is less than when n = 10.
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(a) pressure error coefficient for n = 10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.5  1  1.5  2

e
rr

o
r 

in
 p

re
s
s
u
re

 c
o
e

�

c
ie

n
t

Angle (�/�)

error in pressure: n=40

(b) pressure error coefficient for n = 40
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(c) pressure error coefficient for n = 70
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Figure 5.4: Pressure error coefficient for analytic and numeric results for low

Reynolds number Re = 0.1
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5.3 Method of Matched Asymptotic Expansion

The work of Chadwick (Chadwick, 2013) matches the near-field region using Stokes

flow with the far-field using Oseen flow. The common boundary, where the matching

takes effect, has L as the length dimension of the matched region and it is seen that

ReL
l

is the error, where l is the body length. The error is therefore reduced by

choosing L = l, and Oseen flow assumed everywhere in the flow field (see section

5.3.1 below).

5.3.1 Green’s Integral Formulation for Outer Region

Consider the space Σ enclosed by the boundary and approaching the point xi. The

body boundary is denoted by lB, and the boundary on the far-field tends to an

infinite distance away l∞, (see figure 5.5). The Green’s integral formulation for the

Oseen flow (Oseen, 1927) can be found by considering the integral stated in (3.100),

restated here:

∫

Σ

(
−ρU ∂u

(m)
i (z)

∂y1

− ∂p(m)(z)

∂yi
− µ∂

2u
(m)
i (z)

∂yj∂yj
+ f

(m)
i (z)

)
ui(y)dΣ

+

∫

Σ

(
−ρU ∂ui(y)

∂y1

− ∂p(y)

∂yi
+ µ

∂2ui(y)

∂yj∂yj
− fi(y)

)
u

(m)
i (z)dΣ = 0,

(5.6)

where yi is a vector position of the exterior domain integrated space Σ (and in

this case an area integral), and zi = xi − yi such that the differential equation for

the Green’s functions satisfies the conjugate Oseen equation, since ∂
∂yj

= − ∂
∂xj

and

f
(m)
i (z) = δ(z)δim, where δ(z) is the Dirac delta function.
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flow
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(b) Green’s integral representation of inner Stokes flow
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(c) Spatial distribution of point sources

Figure 5.5: Green’s integral representation of a body in a near-field and far-field

region.

In the outer region there is no body force, so fi = 0. The point xi is in the

inner region, so there is no contribution f
(m)
i (z) around the point xi. Rearranging
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(5.6) then gives

∫

Σ

−ρU ∂

∂y1

(
u

(m)
i (z)ui(y)

)
dΣ−

∫

Σ

∂

∂yi

(
p(m)(z)ui(y) + p(y)u(m)(z)

)
dΣ

+

∫

Σ

−
(
µ
∂

∂yj

(
∂u

(m)
i (z)

∂yj
ui(y)

)
+ µ

∂

∂yj

(
∂ui(y)

∂yj
u

(m)
i (z)

))
dΣ

=

∫

Σ

(
−f (m)

i (z)ui(y) + f
(m)
i (z)ui(y)

)
dΣ.

(5.7)

From the continuity equation (3.84), it can be seen that µ
∂u

(m)
i

∂yj

∂ui
∂yj

cancel out in (5.7)

on applying the divergence theorem. This then gives the Oseen integral representa-

tion as

um(x) =

∫

lm

(
ρUu

(m)
i (z)ui(y)n1 +

(
p(m)(z)ui(y) + p(y)u

(m)
i (z)

)
ni

)
dl

+

∫

lm

µ

(
∂u

(m)
i (z)

∂yj
ui(y)− ∂ui(y)

∂yj
u

(m)
i (z)

)
njdl,

(5.8)

where lm is the matching boundary. From Fishwick and Chadwick (Fishwick &

Chadwick, 2006), the far field integral bounding the exterior domain Σ in the Oseen

representation is zero where the boundary of the domain in two-dimensions is a

closed curve.

5.3.2 Green’s Integral Formulation for the Inner Region

The same approach used in the preceding section can be applied to find the Green’s

integral representation for the inner Stokes flow over a different domain integral (see

figure 5.5b). Again there is no body force, so fi = 0, but there is a contribution

around the point xi. Evaluating the Green’s function force term in (5.6), which is

same as (3.104), gives

−
∫

Σ

f
(m)
i (z)ui(y)dΣ = −

∫

Σ

δ(z)δimui(y)dΣ = −um(x). (5.9)

Rearranging and simplifying (5.6) then gives

−um(x) =

∫

Σ

−ρU ∂

∂y1

(
u

(m)
i (z)ui(y)

∂

∂yi

(
p(m)(z)ui(y) + p(y)u(m)(z)

))
dΣ

+

∫

Σ

−µ ∂

∂yj

((
∂u

(m)
i (z)

∂yj
ui(y)

)
+

(
∂ui(y)

∂yj
u

(m)
i (z)

))
dΣ. (5.10)
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Finally, applying the divergence theorem to the space in figure 5.5b gives the bound-

ary integral representation

usm(x) = −
∫

lB

(
p(m)s(z)usi (y) + ps(y)u

(m)s
i (z)

)
nidl

−
∫

lB

µ

(
∂u

(m)s
i (z)

∂yj
usi (y)− ∂usi (y)

∂yj
u

(m)s
i (z)

)
njdl

+

∫

lm

(
p(m)s(z)usi (y) + ps(y)u

(m)s
i (z)

)
nidl

+

∫

lm

µ

(
∂u

(m)s
i (z)

∂yj
usi (y)− ∂usi (y)

∂yj
u

(m)s
i (z)

)
njdl.

(5.11)

5.3.3 Matching the Inner and Outer regions

Here, the inner and outer region are matched using equations (5.11) and (5.8). An

error introduced as a result of the matching is identified. In two-dimensions, the

constant term C
(m)
i gives the leading order approximation to the velocity oseenlet

[
1 +O

(
1

ln kr

)]
=

[
1 +O

(
1

lnReL
l

)]

on the matching boundary where r
L

= O(1). Hence, the matching integral in (5.11)

is
∫

lm

(
p(m)s(z)usi (y) + ps(y)u

(m)s
i (z)

)
nidl +

∫

lm

µ

(
∂u

(m)s
i (z)

∂yj
usi (y)− ∂usi (y)

∂yj
u

(m)s
i (z)

)
njdl

×
[

1 +O
(

1

lnReL
l

)]
= −

∫

lm

(
ρUu

(m)
i (z)ui(y)n1 +

(
p(m)(z)ui(y) + p(y)u

(m)
i (z)

)
ni

)
dl

+

∫

lm

µ

(
∂u

(m)
i (z)

∂yj
ui(y)− ∂ui(y)

∂yj
u

(m)
i (z)

)
njdl = 0.

(5.12)

In order, to make the error as small as possible, the matching boundary can be taken

to be of order L = l, where l is the body dimension. The error in the approximations

then becomes O
(

1
lnRe

)
for two dimensional flow. From the mathematical approxi-

mation above matching the outer and inner regions in Oseen flow approximates to

Stokes flow. This explains why Oseen flow can be used throughout the domain for

a low Reynolds number flow since near the body Oseen flow breaks down. Hence,

the Oseen equation approximates to the Stokes equation at the body boundary and

can be use to model low Reynolds number flow.
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5.4 Green’s Integral for the Boundary Element

Method

Now consider the space Σ enclosed by the boundary around the body boundary,

lB, and the boundary on the far-field an infinite distance away l∞. The body is

represented by a distribution of forces fi in the region Σε which is a distance ε away

from the body boundary lB (see figure 5.5). Equation (5.8) then becomes (up to the

error in the matching (5.12))

∫

Σ

(
− f (m)

i (z)ui(y) + fi(y)u
(m)
i (z)

)
dΣ =

∫

Σ

−ρU ∂

∂y1

(
u

(m)
i (z)ui(y)

)
dΣ

−
∫

Σ

∂

∂yi

(
p(m)(z)ui(y) + p(y)u(m)(z)

)
dΣ

−
∫

Σ

(
µ
∂

∂yj

(
∂u(m)(z)

∂yj
ui(y)

)
+ µ

∂

∂yj

(
∂ui(y)

∂yj
u

(m)
i (z)

))
dΣ

=

∫

l∞

(
ρUu

(m)
i (z)ui(y)n1 +

(
p(m)(z)ui(y) + p(y)u

(m)
i (z)

)
ni

)
dl

−
∫

l∞

µ

(
∂u

(m)
i (z)

∂yj
ui(y)− ∂ui(y)

∂yj
u

(m)
i (z)

)
njdl = 0.

(5.13)

We let ∫

Σε

fi(y)u
(m)
i (z)dΣ =

∫

lB

Fi(y)u
(m)
i (z)dl (5.14)

on the body boundary so that as ε→ 0, it gives the force on the body as

Fi(y) = lim
ε→0

∫ ε

0

fi(y)dε . (5.15)

Therefore,

um =

∫

Σ

(
−f (m)

i (z)ui(y) + fi(y)u
(m)
i (z)

)
dΣ

=

∫

Σε

fi(y)u
(m)
i (z)dΣ,

(5.16)

and hence,

um(x) =

∫

lB

Fi(y)u(i)
m dl , (5.17)

because by symmetry, u
(m)
i = u

(i)
m from (see equation (3.56).

To proceed with the numerical method, (5.17) must be discretised in BEM.
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5.5 Boundary Element Method for Low Reynolds

Number Flow

In the preceding section, the oseenlet is derived and given in (5.17) for a two-

dimensional flow satisfying the Oseen equation for the far-field region. It was also

shown above that in the matched region the oseenlet becomes the stokeslet near the

body boundary. Here we shall compute the drag experienced by a circular cylinder

in a steady flow in an unbounded domain. To do this, we shall make reference to

the Boundary Element Method developed in chapter three for the discretisation of

the system of equations (4.20), and so (5.17) will be discretised using the Boundary

Element Method with a point collocation weighting function as seen in figure 5.6a,

where xαi is the position xi of node α. The two nodal points are given by xαi and

xαi+1, while the midpoint between them is the collocation point. We have chosen the

collocation point to not lie on the nodes so that the Green’s function singularity in

the integral is more easily removed, since the singularity then lies wholly within the

element integration rather than divided across two elements. For ease of numerical

formulation, the boundary is approximated by a linear variation rather than a curved

variation, but as the number of nodes are increased the collocation points will move

closer to the boundary and so this is not expected to be a problem.

xαi xα+1iCollocation Point

∂lB

(a) Collocation points

Nβ

β − 1

β

β + 1

I = 2
I = 1

I = 3
I = 4

(b) Diagram showing Gaussian points

Figure 5.6: The nodal points and Gaussian points used for collocation

In figure 5.6b, a two-point Gaussian quadrature is shown with Gaussian points

I = 1, 2 for the integral from node β − 1 to β, and I = 3, 4 for the integral from

node β to β+1. Nβ is the linear shape function at node β and gpwI is the Gaussian

point weight at point I. Hence, from the Boundary Element formulation we made
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in Chapter three for equation (4.37), and (5.17) now becomes

ui(x) =

∫

lB

Nβfβju
(j)
i dl

= fβjNβjuijIgpwI ,

(5.18)

where there are implied summations over 1 ≤ β ≤ n (for n nodes), over 1 ≤ I ≤ 4

for Gaussian points associated with node β (see figure 5.6), and over 1 ≤ j ≤ 2

spatial dimensions. uijI is the value of the oseenlet Green’s function u
(j)
i positioned

at the Gaussian point I of node β, and determined at the node α. Hence, this

collocation point method transforms the integral equation into a linear system of

algebraic equations with a no slip boundary condition in vector form, yielding

Af = Y, (5.19)

where A is a 2n × 2n matrix, f is the force coefficient and Y is an n dimensional

vector given by applying the boundary condition as detailed in chapter three.

5.5.1 Comparison With Existing Methods

We compare the present method against existing methods for the drag coefficient.

The drag coefficient CD from the Boundary Element Method presented in this study

is compared against the analytical results of Lamb (Lamb, 1932) (5.20), Tomotika

(Tomotika & Aoi, 1951) (5.21), Kaplun (Kaplun & Lagerstrom, 1957) (5.22), the

experimental results of Tritton (Tritton, 1959), and the numerical results of Yano

and Kieda (Yano & Kieda, 1980), all for a Reynolds number Re ranging between

0 and 4 (see figure 5.7). The approximation of the drag coefficients for the various

listed results are

Lamb: CD =
4π

ReT1

(5.20)

Tomotika: CD =
4π

ReT1

(1− T2) (5.21)

Kaplun: CD =
4π

ReT1

(
1− 0.87T−2

1

)
(5.22)

where the Reynolds number Re is defined by Re = aU
ν

with a as the cylinder radius,

and ν = µ
ρ

as the kinematic viscosity with µ as the dynamic viscosity of the ambient
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fluid. The parameter T1 =
(

1
2
− γ − log Re

4

)−1
, where γ = 0.577216... is the Euler

constant.
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Figure 5.7: Drag coefficient CD are plotted against the Reynolds number (0 < Re <

4)
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Figure 5.8: Comparing BEM result with Yano and Kieda

Figure 5.8 shows that our results are aligned almost exactly with the discrete
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singularity numerical results of Yano and Kieda (Yano & Kieda, 1980).

In figure 5.7, the drag coefficient is plotted against the Reynolds number.

Lamb’s (Lamb, 1932) and Kaplun’s (Kaplun & Lagerstrom, 1957) vary increasingly

as the Reynolds number is increased beyond 1 (Re > 1) by showing more significant

difference and the present results together with Yano and Kieda (Yano & Kieda,

1980) give the closest match to Tritton’s experiment (Tritton, 1959). Tomotika also

vary from Tritton’s experiment as the Reynolds number increases, but the deviation

is not as faster as those of Lamb’s and Kaplun’s. The Stokes drag shows clearly

that the velocity diverges when considering a 2D flow past a circular cylinder in an

unbounded domain as expected from Stokes paradox. Analytic result of Kaplun and

Lagerstrom actually diverge to a negative value as the Reynolds number increase

above 2.9 (Re > 2.9). On the other hand, when considering the Reynolds number

below 1 (Re < 1), it can be seen that the difference in the results are not significant

(see figure 5.7), they all aligned with experiment at very low Reynolds number. This

means that if we were to consider very low Reynolds number of value like Re < 0.01,

there will not be any significant difference.

Furthermore, the present result is compared with the discrete singularity result

of Yano and Kieda (Yano & Kieda, 1980) at similar range of Reynolds number (see

figure 5.8). In their formulation, Yano and Kieda choose a specific points within a

body surface and distributed oseenlets, sink, and sources within a body. It is unclear

on how to extend the work of Yano and Kieda (Yano & Kieda, 1980) to a general

closed body as their method specifically tailored to the circular cylinder, whereas

the method presented here is straightforward to apply for any closed body.

5.6 Proundman and Pearson Derived from Lamb’s

Result

In the paper presented by Lee and Leal, the drag coefficient used is that of Proud-

man and Pearson. We show below that this drag coefficient is the same as the

drag coefficient presented by Lamb when evaluated at very low Reynolds number.

88



Therefore, what Lee and Leal and Proudman and Pearson did was simply using the

approximation giving by Lamb. We have shown by leading order terms that such

drag is simply Lamb drag.

The drag coefficient given in Lamb is

CD =
−8π

Re

(
1

2
− γ − lnRe+ ln 8

)
(5.23)

=
−8π

Re× lnRe

1(
1−

1
2
−γ+ln 8

lnRe

)

=
−8π

Re× lnRe

(
1 +

1
2
− γ + ln 8

lnRe

)

=
−8π

Re(lnRe)2

(
lnRe+

1

2
− γ + ln 8

)

=
−8π

Re lnRe

(
1 +

1

lnRe

(
1

2
− γ + ln 8

))

=
−4π

Re(lnRe+ ln 2)

(
1 +

1

lnRe+ ln 2

(
1

2
− γ + ln 8

))

=
−4π

Re lnRe

(
1− ln 2

lnRe

)(
1 +

1

lnRe

(
1

2
− γ + ln 8

))

=
−4π

Re lnRe

(
1 +

1

lnRe

(
1

2
− γ + ln 4

))
. (5.24)

Hence, it can be seen from above that the Lamb’s drag coefficient is simplified by

leading order terms to arrived at Lee and Leal’s drag coefficient given as

CD =
−4π

Re lnRe

(
1 +

1

lnRe

(
1

2
− γ + ln 4

))
(5.25)

Drag coefficient of Lee and Leal was denoted by Fx in their paper, if Fx is divided

by the Reynolds number, we will then obtain our present drag coefficient, that is

CD =
Fx
Re

(5.26)

Figure 5.9 agrees with the above proof for Reynolds number between 0.01 and 0.1,

but immediately above that range we see that Lee and Leal’s result diverges. This

is true because their approach is based on Lamb’s approximation.
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number

5.7 Summary of the Chapter

In this chapter, the matched asymptotic expansion has been discussed and it was

followed by validation of BEM developed in this studies. The result was compared to

experiment and some other analytical and numerical results for the drag coefficient

at varying Reynolds number. The comparison shows that our result gives better

approximation than all the other ones, the only result that near the present result is

the one by Yano and Kieda. Despite Yano and Kieda being near to the present result

in comparison, the present result accounts for any body shape while the former is

only for a particular circular cylinder.
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Chapter 6

Two Dimensional Flow Past a

Stationary and Moving Body

6.1 Introduction

In this chapter, different flows past a body will be discussed and results will be

presented for BEM that was developed in chapter 4 of this thesis. Different flows to

be consider here include flow past a circular cylinder, flow past an elliptical cylinder,

and flow past a body in motion. The goal is to end up with a model that can be

used for micro-robotic and microscopic scale swimming in viscous fluid, especially

for flagellated-propelled organisms.

6.2 Flow Past a Circular Cylinder

For illustration purposes, streamlines for flow past a circular cylinder of radius one in

Oseen flow are shown in figures 6.1, 6.2, and 6.3 for the Reynolds number Re = 0.01,

Re = 1, and Re = 4 respectively. When the Reynolds number is increased from 0.01

to 4, it can be seen that eddies begin to form in the wake of the circular cylinder for

Re = 4 (see figure 6.3). On the other hand, when Re = 0.01, the streamlines move

faster over the circular cylinder (see figure 6.1). This implies that the velocity for
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Figure 6.1: Streamlines of steady flow past a circular cylinder at Re = 0.01 in an

unbounded domain
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Figure 6.2: Streamlines of steady flow past a circular cylinder at Re = 1 in an

unbounded domain

flow with Re = 0.01 needs to be faster than for Re = 1. When figures 6.1 and 6.2

are compared to the previous streamlines plotted in the last Chapter (see figure 5.2),

similarities can be seen for flow at different low Reynolds number, even though the

figures presented in this chapter are for Oseen flow while those in previous chapters

are for Stokes flow yet they both give good representation of the flow.

As expected, it can be seen that the results predicted by the present BEM

are very similar to the results of Lamb (Lamb, 1932) at very low Reynolds number

between 0.01 < Re < 0.3 (see figure 6.4). This means that provided the Reynolds

number is very low, the analytical result of Lamb for the drag coefficient is the
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Figure 6.3: Streamlines of steady flow past a circular cylinder at Re = 4 in an

unbounded domain which forms eddies

same with our present result and also the same with Proudman and Pearson as

seen with analysis given in equation (5.23) shown in figure (6.4). These results are

consistent with those of Lee and Leal (Lee & Leal, 1986) and Proudman and Pearson

(Proudman & Pearson, 1957). On the one hand, when the Reynolds number is very

low (about Re = 0.01) the results of Lamb, Lee and Leal, and present result appear

the same for the drag coefficient (figure 6.5). On the other hand, as the Reynolds

number increases (Re > 0.1), Lee and Leal drag coefficient begins to diverge away

from the result of Lamb and the present result of BEM to negative values. This

shows that when the Reynolds number is very low, all the three results are the

same for both the analytic and numerical results, the difference began to show when

Reynolds number increases. So the results of Lee and Leal (Lee & Leal, 1986) which

were obtained through matched asymptotic expansion in terms of 1
logRe

, are only

valid for very small Reynolds number; even when Re = 0.05 the expansion is not

very good because 1
logRe

is about 1/3 (see figure 6.5). This reveals our result gives

better numerical approximation for a flow past a circular cylinder in 2D. As it was

shown in the previous chapter when considering drag force, it can be seen that the

present BEM provides good quality results in comparison to other existing methods.
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Figure 6.4: Comparison of drag coefficient with Reynolds number for 0 ≤ Re ≤ 0.3

for Lamb’s result and those predicted by BEM.

When Re = 0.1 and Re = 1, the result is not going to give an accurate rep-

resentation (see figure 6.5). But if we are able to plot result for Reynolds number

near zero (say Re < 0.025), then we will expect that Lee and Leal’s result which is

Proudman and Pearson will be identical to Lamb’s result, since Lee and Leal was

obtained from Lamb (see equation (5.23)). Hence, as soon as Re increases to a

value of even around 0.1 (see figure 6.5) then the expansion is not valid and Lee and

Leal’s method is significantly different from Lamb’s which is significantly different

from the present results. In comparison to experiment (Tritton, 1959), the present

results are most consistent (see figure 5.7 from previous chapter).
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Figure 6.5: Comparisons of drag coefficient for very low Re in range 0.01 ≤ Re ≤ 0.3

for Lamb, Lee and Leal/Proudman and Pearson, and our BEM

6.3 Flow Past an Elliptical Body

In this section, flow past an elliptical body is considered. Just like in the previous

section (6.2) where for illustration purposes, the streamlines for the flow past a

circular cylinder were presented. The streamlines for the elliptical cylinder will also

first be presented at different angles for illustration with the present BEM, then

it can be compared with other results. The ellipse is inclined to an angle of 45◦

and then to 90◦. The present result for BEM is tested for the elliptical body and

the results are compared to those of Proudman and Pearson (Proudman & Pearson,

1957), and Yano and Kieda (Yano & Kieda, 1980). To obtain results for an elliptical

cylinder, consider carrying out the following rotation by changing the coordinates

x and y to x′ and y′ (see figure 6.6). To rotate the point A around the origin with

angle α, it is seen that x = r and so
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(a) Change of coordinates from point A to new point

A′ via one angle.

β
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A(x, y)
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y

r

(b) Change of coordinates from point A to new point

A′ via two angles.

Figure 6.6: Rotating an angle to change coordinate from point A to point A′.

cosα =
x′

r
(6.1)

and

sinα =
y′

r
(6.2)
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which yields x′ = r cosα = x cosα and y′ = r sinα = x sinα, since r = x. It

can be seen that to rotate point A around the origin to arbitrary angle so that

x′ = r cos(α + β) and y′ = r sin(α + β).

x′ = r cos(α + β)

= r cosα cos β − r sinα sin β

= x cos β − y sin β (6.3)

and

y′ = r sin(α + β)

= r sinα cos β + r cosα sin β

= y cos β + x sin β (6.4)

We now have the coordinate (x, y) rotated to (x′, y′) and the new coordinate system

is given as (6.3) and (6.4), which we can now use and run the simulation for the the

ellipse.

The first case considered here is for the ellipse to be set at an angle 45◦ and then

the Reynolds number is varied to visualise the flow. When the Reynolds number

is set to Re = 1 (see figure 6.7), the flow velocity is high compared to when the

Reynolds number is Re = 0.1 (see figure 6.8)and Re = 0.01 (see figure 6.9). The

lowest Reynolds number has the least flow motion while the higher Reynolds number

has the most flow motion just like in the case of circular cylinder when eddies began

to form for Re = 4. Meanwhile the angle is now set to 90◦ and the Reynolds number

is varied for same values as for when it was set to angle 45◦. Similarly when the

Reynolds number is Re = 1, the flow is faster (see figure 6.10) compared to when

Re = 0.1 (see figure 6.11) and Re = 0.01 (see figure 6.12). Hence from figures 6.7

to 6.12, streamlines for flow past the elliptical body inclined at different angles and

different Reynolds number are shown to represent the flow using the present method

developed.

We know that analytical approximations exist for a circular cylinder and ellip-

tical cylinder (Shintani et al 1983), but as the body geometry becomes complicated,

it becomes difficult to get analytical solutions. However, BEM developed here can
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Figure 6.7: Streamlines past an elliptical cylinder with angle of inclination α = 45◦

and Reynolds number Re = 1.
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Figure 6.8: Streamlines past an elliptical cylinder with angle of inclination α = 45◦

and Reynolds number Re = 0.1.
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Figure 6.9: Streamlines past an elliptical cylinder with angle of inclination α = 45◦

and Reynolds number Re = 0.01.
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Figure 6.10: Streamlines past an elliptical cylinder with angle of inclination α = 90◦

and Reynolds number Re = 1.
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Figure 6.11: Streamlines past an elliptical cylinder with angle of inclination α = 90◦

and Reynolds number Re = 0.1.
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Figure 6.12: Streamlines past an elliptical cylinder with angle of inclination α = 90◦

and Reynolds number Re = 0.01.

100



handle more complicated geometries than the numerical method of Yano and Kieda

((Yano & Kieda, 1980)).

In the following results for figures (6.13) to (6.16), we consider the thickness

ratio of the elliptic cylinder denoted by t, which is the ratio of the minor axis to

major axis of the ellipse. The figures are shown for the drag coefficient against angle

of attack α, varying from 0◦ to 90◦ for the ellipse. In figure (6.13), the Reynolds

number is set to Re = 0.1. When t = 1, it can be seen that the drag coefficient

remains constant irrespective of the angle α, it is true because that gives a circular

cylinder. When t = 0.1 and t = 0.5 it can be seen that the drag coefficient reaches

optimal when the angle is 90◦, this is expected when compared to the results of

Yano and Kieda. In figure 6.14, the Reynolds number is now set to Re = 1 with

the same angle of attack as in figure (6.13), it can be seen that the drag coefficient

here is lower but it also reaches optimal drag values when the angle is 90◦. The

drag coefficient here is lower than when the Reynolds number is Re = 0.1 which is

expected.
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Figure 6.13: Drag coefficient CD for an inclined elliptical cylinder at Reynolds num-

ber Re = 0.1 plotted against angle α for present result
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Figure 6.14: Drag coefficient CD for an inclined elliptical cylinder at Reynolds num-

ber Re = 1 plotted against angle α for present result

Plotting the present results side by side with that of Lee and Leal, it can be seen

from figure 6.15 and figure 6.16 that when the Reynolds number is Re = 0.1, the

present result is closer to the result of Lee and Leal than when the Reynolds number

is Re = 1, where b is the thickness ratio defined by Lee and Leal. Taking a closer look

at our results with those of Lee and Leal and Proudman and Pearson, figure 6.15

and 6.16 give some insight for a flow past an elliptical body for Reynolds number

Re = 0.1 and Re = 1 respectively. Both show an optimal drag coefficient when

the angle reaches 90◦ for different Reynolds number and thickness ratio. Figure 6.15

shows clearly that at higher Reynolds number the difference is much greater. This is

obviously what was expected because from previous results in Yano and Kieda when

the drag coefficient was compared against Reynolds number, it was seen that as the

Reynolds number increases, accuracy is greatly reduced, which is to say we can only

get good comparison when the Reynolds number is very low (below Re < 0.03). It

is good to be reminded that Yano and Kieda’s results are based on an algorithms

that assumes the position of singularities are in a prescribed manner (Yano & Kieda,
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1980), while the present results can take any positioning of the singularities on the

body boundary.
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BEM and Lee and Leal both at Re = 1 plotted against angle α

6.4 Flow Past a Generic Tail-like Body

Referring back to section 3.3, it was seen that the flow is governed by the steady

Stokes equation (3.35) because the time-dependent term is of lower order. In the

far-field this is matched to the steady Oseen flow. Now the final result presented

here is for a body in motion.

104



x2

x1

h = 0.25

d = 0.01

λ = 1

Figure 6.17: A generic tail-like structure with body thickness d, amplitude h and

wavelength λ

6.4.1 Sensitivity Analysis of Parameters

To gain confidence on the model proposed for the generic tail-like body, local sensi-

tivity analysis will be carried out on the parameters that will be use here. Sensitivity

analysis referred to mathematical procedures set up to quantify the effects of vari-

ations in model output as a result of the model input (Link et al., 2018). Hence

in this model, parameters representing the body thickness and amplitude shall be

considered for different Reynolds number.
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(a) The Amplitude of a moving body is compared against frequency

at Reynolds number of Re = 0.1, with wavelength λ = 1 and body

thickness d = 0.01
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(b) The Amplitude of a moving body is compared against frequency at

Reynolds number of Re = 1, with wavelength λ = 1 and body thickness

d = 0.01

Figure 6.18: Local sensitivity analysis on body thickness for Reynolds number Re =

0.1 and Re = 1
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(a) The body thickness of a moving body is compared against frequency

at Reynolds number of Re = 0.1, with wavelength λ = 1 and amplitude

h = 0.25
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(b) The body thickness of a moving body is compared against frequency

at Reynolds number of Re = 1, with wavelength λ = 1 and amplitude

h = 0.25

Figure 6.19: Local sensitivity analysis on amplitude for Reynolds number Re = 0.1

and Re = 1
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Figure 6.20: Varying the body thickness of a moving body compared against fre-

quency at low Reynolds number of Re = 0.01, with wavelength λ = 1 and amplitude

h = 0.25

Local sensitivity analysis for the body thickness (see figure 6.19) for Reynolds

number Re = 0.1 and Re = 1 was carried out. It can be seen that changing the

values of the Reynolds number did not affect values of the body thickness which

is shown in figure 6.19a and 6.19b. The frequency required for a steady forward

motion remains about 3 until the body thickness increases above 0.019. Similarly

when considering the amplitude, by changing values of the Reynolds number it can

be seen from figure 6.18 that there is no difference on the values of the amplitude. All

these were check for wavelength (λ = 1), body thickness of d = 0.01, and amplitude

(h = 0.25). To further verify, the value of the body thickness was increase from

d = 0.01 to d = 0.1 and the difference is quite obvious as seen in figure 6.20. This

shows that using the chosen body dimension, changing the Reynolds number does

not have a significant effect, but as soon as the body thickness was changed the

difference becomes clear.
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6.5 Results of Flow Past a Generic Tail-like Body

Using the parameters stated above, BEM for a low Reynolds number flow is now

tested to mimic a very small body in motion with a steady forward velocity. Con-

sider a tail-like body with a sinusoidal centreline of wavelength λ, tail thickness d,

amplitude h, and length L = 1 (see figure 6.17). We consider the steady forward

motion obtained by changing the parameters h, d, λ, and Re about fixed baseline

values of wavelength λ = 1, beating amplitude h = 0.25 to enable forward motion,

thickness d = 0.01 of the body and Reynolds number Re = 0.01.

Let the sinusoidal wave pass down the body such that the centreline is given by

x2 = h sin(kx1 − ωt), (6.5)

where k = 2π
λ

and ω = 2πf where f is the wave frequency. At time t = 0, the top

surface is given by

x2 = h sin(kx1) +
d

2
(6.6)

and the bottom surface by

x2 = h sin(kx1)− d

2
(6.7)

The velocity given by

u2 =
dx2

dt
= −hω cos(kx1) (6.8)
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Figure 6.21: The Amplitude of a moving body is compared against frequency at low

Reynolds number of Re = 0.01, with wavelength λ = 1 and body thickness d = 0.01

As can be seen that figure 6.21, as the amplitude gets smaller, the moving

body has to beat more quickly in order to gain forward motion. Hence, it can be

seen that once the amplitude reaches a certain optimal value (about h = 0.175),

the beat frequency required to gain forward motion becomes less important as it

approximately becomes constant with amplitude. Below the optimum amplitude, a

higher beat frequency is required, and hence the organism must expend more energy

for locomotion. The goal is to have zero drag force in order to get forward motion.

Hence, the right choice of amplitude will have to be a value not less than h = 0.175

so as to require the least amount of energy for a beat frequency of about 2.
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Figure 6.22: Body thickness d compared against frequency for a body in motion

with low Reynolds number of Re = 0.01, wavelength λ = 1 and amplitude h = 0.25

Meanwhile, another important property to consider is the thickness of the body.

From figure 6.22 it can be seen that when the thickness of the body is small, the

frequency looks stable at about two, until the thickness reaches a critical value of

about d = 1.87×10−2 when we noticed a great increase in the frequency. This shows

that below the critical body thickness forward motion is easily achieved. It can be

noted that energy input is directly related to frequency, and the minimum energy

possible is required to have optimal motion of a body in viscous flow.
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Figure 6.23: Wavelength compared against frequency for a moving body at low

Reynolds number of Re = 0.01, body thickness d = 0.01 and amplitude h = 0.25

Considering the wavelength (Figure 6.23), it can be seen that lowest beat fre-

quency is needed when the wavelength is about the value one. This matches with

the body length of one and thus an optimal is expected at that point.
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Figure 6.24: Reynolds number Re = 1 × 10−2 is varied and compared against fre-

quency, with body thickness d = 0.01, amplitude h = 0.25, wavelength λ = 1 for a

body in motion

In figure 6.24, the Reynolds number is plotted against the frequency. We can

see that as the Reynolds number increases, the frequency also increases. This result

is expected, especially since the model developed is for a steady viscous flow.

From the above illustrations for a body in motion, the effect of the amplitude,

wavelength, Reynolds number and thickness of the body, on the frequency can be

seen. The critical values expected to have a forward steady motion for a body in

viscous flow regime were found. Namely, the amplitude was found to be about

h = 0.175, wavelength λ = 1 and the thickness of the body be d = 1.87 × 10−2

for a Reynolds number of Re = 0.01. With these optimal values we can now take

a real-life organism or a micro-robotic design and be able to model its motion in

viscous fluid flow. One the advantages of this is that only the body boundary is

discretised in an unbounded domain.
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6.6 Summary of the Chapter

Main results for this thesis are discussed in this chapter. The first case that was

considered was for a flow past a circular cylinder. It began with plotting streamlines

for a flow past a circular cylinder for different Reynolds number Re = 0.01, Re = 1,

and Re = 4 using BEM developed in this study. The drag coefficient was was then

plotted against the Reynolds number for the results of Lamb, Lee and Leal and the

present result for low Reynolds number 0 < Re < 0.3 which shows present result and

that of lamb align together while Lee and Leal diverge as Re increases. The second

case considered was for a flow past an elliptical body, streamlines were also plotted

for different values of Reynolds number. The drag coefficient was plotted against

the angle of attack and for each figure, three different thickness ratio of the elliptic

cylinder are considered. It was then compared with the result of Lee and Leal which

shows large variation when the Reynolds number is high. The last case considered

was to model a generic tail-like body shape. We were able to find the optimal values

of body thickness, wavelength, amplitude, frequency, and Reynolds that is required

for the body to have a forward motion. This is to mimic a micro-organism or any

moving body swimming at low Reynolds number.
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Chapter 7

Summary, Conclusions, and

Future Work

7.1 Summary

General overview for this thesis is outlined. In chapter one, Boundary Integral

Method (BIM) and Boundary Element Method (BEM) was introduced. This was

followed by the aim and objectives of this studies, which is to provide accurate and

non-complicated to use method for low Reynolds number. In chapter two, general

literature review of past studies for flow past a circular cylinder was considered.

Terms such as the Reynolds number, Green’s function, and divergence theorem were

defined and the classification of fluid under consideration in this thesis is stated.

Chapter three introduced governing equations that were used, including the Navier-

Stokes equation, continuity equation, Oseen equation, stokes equation, and their

Green’s integral representations. Chapter four introduced BEM for two dimensional

body and a formulation for exterior problems using the Stokes and Oseen equations.

Also in this chapter the analytic removal of the Green’s function singularity was

obtained and the chapter ended by outlining the step by step code implementation

together with the flow chart that runs the numerical simulation. In chapter five,

matched asymptotic expansion was presented for the Stokes flow near the body

and Oseen flow far from the body. The results are validated using the benchmark
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problem of flow past a circular cylinder in two dimensions and compared with other

existing results of two dimensional flow. In chapter six, the model developed for

flow past a circular cylinder is modified to describe flow past an elliptical cylinder

and to also mimic a model of micro-organism in motion.

Studies of low Reynolds number flow for a viscous fluid past a body have been

an active research field from the time of Osborne Reynolds in 1851 until today.

In two dimensions, satisfying the boundary conditions both near the body surface

and far away from the body has been a problem that researchers are still working

to overcome. Review of past studies in that direction was presented here which

included both analytical studies and numerical studies. The main limitation with

all the previous results is that they were developed for a simple body geometry: once

body geometry becomes complicated they become too complex to implement. It was

seen that the different existing approaches presented do not agree with experimental

results, particularly when the Reynolds number increases.

In this thesis, a novel numerical method was developed using BEM for a flow

past a body in two dimensions at low Reynolds number. This novel numerical

method was inspired by the matched asymptotic expansion by Chadwick (Chadwick,

2013). Our approach utilised point collocation weighting function, linear shape

function, and two point Gaussian quadrature with analytic removal of the Greeen’s

function singularity for integration. The Green’s integral representation of oseenlets

is distributed over the boundary surface. The model is developed for an unbounded

domain by matching the near field region with the far-field region by the method

of matched asymptotic expansion used by Chadwick 2013. A computer programme

developed in Fortran 95 was used for testing the model through series of numerical

simulations.

BEM for solving a two-dimensional steady flow past a circular cylinder has been

presented. Our results compare favourably with the experiment of Tritton (Tritton,

1959), the analytical results of Lamb (Lamb, 1932), Kaplun (Kaplun & Lagerstrom,

1957), and Tomotika (Tomotika & Aoi, 1951), and the numerical results of Yano

and Kieda (Yano & Kieda, 1980), Lee and Leal (Lee & Leal, 1986) and Proud-

man and Pearson (Proudman & Pearson, 1957) for the drag coefficient. Hence, our
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method is uncomplicated and computationally efficient, yet robust in solving steady

two-dimensional flow past a circular cylinder in an unbounded domain. Our results

agree with the standard benchmark results and are an improvement upon existing

models in the higher Reynolds number range, up to Re = 4 (other methods began

to fail when Re approaches one). So our representation gives a better description of

the flow field even outside the low-Reynolds number region of Re < 1. In particular,

it gives better results than the matched asymptotic method of Kaplun (Kaplun &

Lagerstrom, 1957). Our method is also able to deal with more complicated geome-

tries. Finally, this method is applied to manoeuvring bodies such as a swimming

organism with possible applications in micro robotics.

7.2 Findings From this Study

This thesis reviews different methods which include the discrete singularity method

by Yano and Kieda (Yano & Kieda, 1980) with their results benchmarked with the

analytic result of Lamb (Lamb, 1932), Kaplun (Kaplun & Lagerstrom, 1957) and the

experiment of Tritton (Tritton, 1959) for the drag coefficient. It was revealed that

when the Reynolds number is below one (Re < 1), there is good agreement, but when

the Reynolds number is in the range 1 to 4 the analytical results do not align very

closely with experiment, except the numerical studies presented by Yano and Kieda

[17]. The analytical results work well for body surfaces with simple geometries,

but as soon as the geometry becomes complicated, numerical approaches provide

better basis for analysis. To apply to more complicated geometries, Lee and Leal

[10] considered a matched asymptotic expansion method that used Green’s integral

representations of the velocity. Chadwick (Chadwick, 2013) takes this approach

and matched Stokes and Oseen flow within a boundary integral formulation. It was

found that the error is least if the matching boundary is on the body itself. Here,

it is noted that this approach does not break down on the body boundary because

in the formulation the oseenlet approximates to the stokeslet.

The boundary element method designed in this thesis is made such that the

collocation point is chosen not to lie on the nodes so that the Green’s function
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singularity in the integral is more easily removed, because the singularity lies wholly

within the element integration rather than divided across two elements. It was

found that as the number of nodes are increased the collocation points will move

closer to the boundary. The near field stokes flow and the far field oseen flow are

matched in asymptotic expansion, this is then discretise using the present boundary

element formulation. Results from this matching is in agreement with benchmarked

results obtained through analytical and experimental studies for flow past a circular

and elliptic cylinder. It was seen that the present formulation gives better results

especially for the Reynolds number range (0.01 < Re < 4).

The last results presented which mimic a tail-like body shows that the variation

of thickness of the body, the length of the body, wavelength of the flagella, and the

Reynolds number of the supporting fluid all have a pronounced effect on the beat

frequency required of the flagella to overcome the viscous forces of the fluid. Critical

values have been identified beyond which the energy requirement to overcome these

forces drastically increases. For example, a fluid with Re = 0.01, these critical values

are h = 0.175, d = 1.87×10−2, and λ = 1. With the ability to calculate these critical

values, mathematical modelling of micro-organisms and micro-machines through a

viscous fluid is made possible using BEM, a key advantage of which is that discreti-

sation is done only on the bounding surface, therefore allowing it to be extended to

model a body of any arbitrary shape.

7.3 Recommendations and Future Studies

Results from this study show that modelling a body of any shape using BEM is

possible. However, to mimic a real-life organism in motion, a three-dimensional

model is required. Notwithstanding, this research provided a strong footing for

advancing to a three dimensional problem. As a future study, this will be extended

to three dimensions, and a specific real-life microorganism, and micro-robotics will

be consider.

Furthermore, the present model can be extended for higher Reynolds number
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above the present value considered in this thesis. Increasing the Reynolds number

to Re > 4 and research on the computational size of the problem, then apply it to

a generic body in motion, this time the research should consider a model of body

in motion that is faster than microscopic level which will find many applications

in environment, industry, and engineering. This can be research for both two and

three dimensional cases.

If the boundary element model developed here can be extended to higher

Reynolds number as mentioned above, then it can model flagellate-propelled micro-

organism like planktons which in turn are very important in climate change by

fixing carbon circle. Therefore understanding the motion of planktons, mathemati-

cal modelling will be useful in making predictions. Since planktons are at the base

of the aquatic food chain, studying their dynamics is important for conservation

of the aquatic ecosystem. Consequently, this interconnection has consequences for

climate change. In industry, flagellate-propelled micro-organisms are used in biofuel

production and the food processing industry, among other uses. Because of the

importance flagella play in organisms, modelling using BEM is important.
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Appendix A

Appendix

A.1 Summary of Publications

A.1.1 Published Work

B.C. Dang, and E.A. Chadwick (2019). BEM for Low Reynolds Num-

ber Flow Past a Steady Circular Cylinder in an Unbounded Domain.

Proceedings of the 12th UK Conference on Boundary Integral Methods UKBIM12.

This paper presents a Boundary Element Method that solves a two–dimensional

flow past a circular cylinder using the Oseen equation. We are able to verify the nu-

merical method by benchmarking it with the standard flow past a circular cylinder.

The method can be extended to a more general body shape.

A.1.2 Unpublished Work

1. Uniform Flow Past a Closed Body at Low Reynolds Number Em-

ploying a Novel Matching in a Boundary Element Formulation.

Under Review.

In this paper, a Boundary Element Method is developed for a flow past a

circular cylinder. This method demonstrates that Oseen equation can be used
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to model flow both near a body surface and far from the body surface. Since

the discretisation is carried out only on the body boundary (as opposed to

throughout the whole domain), modelling of a more generic body shape is

possible.

2. Mathematical Modelling for Motion in Viscous Fluid Flow in an

Exterior Domain. In preparation for publication in a journal.

In this paper, a model for flow past a circular cylinder and flow past an ellipse

is presented and benchmarked against the classical flow past a cylinder. The

method is developed to model a generic tail-like moving body in a viscous

flow. This model can be used for any body shape because the discretisation

is carried out on the boundary only rather than within the domain of the

body. The model has been verified against flow past circular cylinder and flow

past an ellipse. Examples will be presented to mimic microscopic swimming

in viscous fluid, micro-robotics, and plankton that assist in fixing the carbon

circle.
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