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ABSTRACT: In the present communication, laminar, incompressible, hydromagnetic flow of 

an electrically conducting non-Newtonian (Sisko) fluid over a bi-directional stretching sheet in 

a porous medium is studied theoretically. Thermal radiation flux, homogeneous-heterogeneous 

chemical reactions and convective wall heating are included in the model. Darcy’s model is 

employed for the porous medium and Rosseland’s model for radiation heat transfer. The 

governing partial differential equations for mass, momentum, energy and concentration are 

reduced into ordinary differential equations via similarity transformations. The resultant 

nonlinear ordinary differential equations with transformed boundary conditions are then solved 

via the semi-analytical Adomain decomposition method (ADM). Validation with earlier studies 

is included for the non-radiative case. Extensive visualization of velocity, temperature and 

species concentration distributions for various emerging parameters is included. Increasing 

magnetic field and inverse permeability parameter are observed to decelerate both the primary 

and secondary velocity magnitudes whereas they increase temperatures in the regime. 

Increasing sheet stretching ratio weakly accelerates the primary flow throughout the boundary 

layer whereas it more dramatically accelerates the secondary flow near sheet surface. 

Temperature is consistently reduced with increasing stretching sheet ratio whereas it is strongly 

enhanced with greater radiative parameter. With greater Sisko non-Newtonian power-law 

index the primary velocity and temperature are decreased whereas the secondary velocity is 

increased.  Increasing both homogenous and heterogenous chemical reaction parameters is 

found to weakly and more strongly, respectively, deplete concentration magnitudes whereas 

greater Schmidt number enhances them. Primary and secondary skin friction and Nusselt 

number profiles are also computed. The study is relevant to electro-conductive (magnetic 

polymer) materials processing operations.     

 

KEYWORDS: Sisko fluid, homogeneous-heterogenous reactions, porous medium, thermal 

radiation, ADM, bi-axial stretching, thermal magnetic polymer processing. 

1.INTRODUCTION  

Magnetic polymers are being increasingly deployed in modern engineering applications. Such 

materials combine magnetohydrodynamic and rheological properties and can be customized 

for different systems including power-generation [1], smart coating technologies [2,3], 
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supercapacitor electrodes [4] and solar collector receiver surface enhancement [5]. The use of 

advanced multi-physical fluid dynamics models can significantly improve fabrication 

processes for such materials and leads to an optimization of quality control, in particular for 

heat and mass transfer. With judicious use of an applied magnetic field the polymer constitution 

and performance can be manipulated. Since magnetic polymers exhibit non-Newtonian 

properties it is essential to utilize appropriate constitutive models which correctly characterize 

the rheology of such fluids. Conventional Newtonian models are inadequate. Engineers have 

therefore explored many different rheological models to predict more closely the shear-stress 

strain behavior of magnetic polymers. Examples of models employed include fractional 

Burgers viscoelastic models [6], Eringen micropolar models [7] and couple stress nanofluid 

models [8]. The Sisko model [9] is a relatively simple non-Newtonian model which provides 

robust predictions for high shear rate flows and is a modification of the power-law model. 

Originally introduced for lubricants, the Sisko model has been adopted in a wide spectrum of 

applications including materials processing, biomechanics and thermal engineering systems. 

These applications include heat and mass transfer and employ a number of numerical 

approaches to solve nonlinear boundary value problems.  Malik et al. [10] used a Runge-Kutta-

Fehlberg method to compute thermal conductivity effects on velocity and temperature 

characteristics in Sisko fluid dissipative boundary layer flow from a stretching cylindrical body. 

Khan et al. [11] studied the hydromagnetic Sisko flow in a pipe annulus considering both shear-

thinning and thickening behavior. Khan et al. [12] deployed both homotopy and finite 

difference methods to simulate thermal transport in Sisko fluids in an annulus. El-Dabe et al. 

[13] studied the magnetic pumping of Sisko fluid in a porous conduit under peristaltic wave 

motion. Zaman et al. [14] computed the time-dependent blood flow in a cylindrical vessel using 

the Sisko model. Khan et al. [15] used the homotopy analysis method (HAM) to compute the 

influence of rheological power-law index, Sisko material parameter and stretching parameter 

on the radially stretching flow of a Sisko liquid. Munir et al. [16] examined the impact of forced 

convection on stretching sheet flow of a Sisko fluid.  

In many materials processing operations (including magnetic polymer synthesis), chemical 

reactions arise. There are two major classifications of chemical reactions, namely 

homogeneous and heterogeneous. Chemical changes occurring with liquids or gases depend on 

the type of interactions of these chemical substances. Homogeneous reactions occur in one 

phase only whereas heterogeneous reactions occur in two or more phases. Chemically reactive 

materials processing often features purely heterogeneous chemical reactions (catalytic 
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techniques) and also homogeneous-heterogeneous reactions (magnetic materials, corrosive 

processes, ceramics, polymers etc). Recently a number of investigators have addressed 

chemically reactive non-Newtonian and magnetized flows. Shamshuddin et al. [17] used a 

finite element code to simulate double-diffusive convection in reactive micropolar flow. Rajesh 

et al. [18] studied homogenous reaction effects on oscillating magnetic boundary layer flow 

from a curved surface. Doh et al. [19] employed a homotopy method to study the impact of 

homogeneous and heterogeneous reactions on hydromagnetic silver-water nanofluid Von 

Karman swirling flow, heat and mass transfer. Nadeem et al. [20] analysed ferrofluid 

rheological flow from a stretching cylinder with magnetization and homogeneous and 

heterogeneous reactions. Further studies of non-Newtonian reactive flows include Ravi Kiran 

et al. [21] (who employed a micropolar model), Alshomrani and Ullah [22] (who considered 

carbon nanotube reactive fluid flow from a bi-directional stretching sheet) and Abbas and 

Sheikh [23] (who studied stagnation ferrofluid flow with homogeneous–heterogeneous 

reactions). These studies have generally shown that there is a considerable deviation between 

solutions for higher order chemical effects compared with lower order chemical reaction 

models.  

In high-temperature fabrication of polymers [24, 25], radiative heat transfer arises in addition 

to thermal conduction and thermal convection. To simulate radiative flux many approaches are 

available. The most general is the solution of the integro-differential equation of radiative heat 

transfer. This furnishes detailed information on radiative behavior at different spectra and 

wavelengths. However, it is very challenging computationally. When other effects are present 

e.g. rheology, magnetohydrodynamics etc, simpler approaches are more pragmatic and these 

usually feature an algebraic flux approximation which may be (in progressively increasing 

complexity) of the Rosseland type, Milne-Eddington type, Schuster-Schwartzchild type, 

Traugott P1 flux model, Hamaker six flux model etc. In multi-physical coating flows, the 

Rosseland model has been shown to be reasonably accurate for high optical thicknesses.  

Although it does not allow optical thickness or spectral effects to be simulated, it does provide 

a mechanism for evaluating the relative role of thermal conduction and thermal radiation flux. 

Several researchers have studied radiative heat transfer in materials processing including Lu et 

al. [26] (magnetic non-Newtonian reactive polymer flows), Kumpaty and Roux [27] (glass 

synthesis), Rozzi et al. [28] (laser-processing of ceramics) and Bég et al. [29] (dissipative 

magnetic coating flows). 
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In the present article, motivated by providing more comprehensive insight into magnetic 

polymer processing at high temperature, a mathematical model is developed for radiative 

magnetohydrodynamic Sisko fluid flow from a bidirectional stretching embedded in a Darcian 

porous medium with homogeneous and heterogeneous reactions. This model extends the earlier 

study of Hayat et al. [30] to consider radiative heat transfer and also porous medium drag 

effects. The partial differential boundary value problem is converted to a nonlinear 

dimensionless ordinary differential boundary value problem with appropriate similarity 

transformations. A robust solution is obtained with the semi-analytical Adomain 

decomposition method (ADM) [31] and validation with the non-radiative case [30] is included. 

A detailed parametric study of the influence of magnetic, Darcy (permeability), stretching sheet 

ratio, Sisko non-Newtonian power-law index, Schmidt number and homogenous and 

heterogenous chemical reaction parameters on velocity, temperature and species concentration 

distributions is conducted with graphical visualization of results. included. Primary and 

secondary skin friction and Nusselt number profiles are also computed. The computations may 

be beneficial in further understanding the complex interplay between chemical reactions, 

magnetic field and rheology in materials processing operations.     

 

2. MATHEMATICAL REACTIVE MAGNETIC POLYMER STRETCHING FLOW MODEL 

Consider the flow of an incompressible electrically conducting polymeric Sisko fluid with heat 

and mass transfer from a bi-directional stretching sheet under a transverse (vertical) magnetic 

field of strength 0B adjacent to a porous medium. Hall and electric field effects are ignored. 

The porous medium is assumed to isotropic and homogenous and Darcy’s model is employed 

for viscous-dominated low Reynolds number transport. We consider a Cartesian coordinate 

system such that the sheet coincides with the xy −plane and fluid occupies the space 0z   as 

illustrated in Figure.1. Let ( )wU x c x=  and ( )wV x d y= denote the surface stretching 

velocities along the x , y directions and , 0c d  . The temperature at the sheet is governed by 

a convective heating process which is described by a heat transfer coefficient fh and 

temperature of the hot fluid fT below the sheet. Viscous dissipation effects are ignored. The 

corresponding equations, under the above assumptions, describing the three-dimensional Sisko 

fluid motion are given by extending the model of Hayat et al. [30] with Darcian drag force and 

radiative heat flux terms, leading to: 
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Figure 1: Schematic physical model for bi-directional stretching flow of a Sisko fluid  

2 2
0

2
,

n
u u u ua b Bu

u v w u u
z zx y z z k

 

  

 
  
 

     
+ + = − − − −

    
                                           (2) 

12 2
0

2
,

n
v v v v va b Bu

u v w v v
z zx y z z z k

 

  

−
 
  
 

     
+ + = + − − −

     
                                    (3) 

2

2
,

1

p

qT T T T ru v w m
x y z z C z




   
+ + = −

    
                                                                        (4) 

2

1

2

1 1 1 1
,12A c

a a a a
u v w D k a b

x y z z

   
+ + = −

   
                                                                       (5) 

2

1

2

1 1 1 1
,12B c

b b b b
u v w D k a b

x y z z
+

   
+ + =

   
                                                                         (6) 

 

The appropriate boundary conditions for the regime are: 

( ) 1 1
,1 1
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  (7) 

A simple model of heterogeneous-homogeneous reactions is adopted in Eqns. (5) and (6) [32]  

1 2 22 3 ,A A A+ →  rate 
2

1 1ck a b=                                                                                             (8) 

Here the catalyst surface heterogeneous reaction is defined as follows: 

1 2 ,A A→  rate 1sk a=                                                                                                                 (9) 

 

Radiative flux, qr 

Porous Medium  
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Here the chemical species 1A  and 2A have concentrations 1a and 1b respectively. ck and sk are 

the rate constants. In Eqns. (1)-(7)  u , v and w designate the velocity components,  denotes 

base fluid density,
AD and

BD are the respective diffusion species coefficients, 0a is the positive 

dimensionless constant,T denotes the surface fluid temperature, /m pC  = represents 

thermal diffusivity,  the thermal conductivity of the magnetic polymer (Sisko fluid),  pC  

heat capacity of fluid, a and b  denote material parameters of the Sisko fluid and n is the Sisko 

power-law rheological index ( 0n  characterizes the non-Newtonian features of the fluid). rq

signifies radiative heat flux which is assumed from [33] and is denoted in the Rosseland model 

[29] as 
316

3

rq T
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. It should be noted that unlike classical cases, the nonlinear 

form of thermal radiation is considered here. Furthermore, the nonlinear thermal radiation 

effect in the linearized Rosseland approximation is a simple rescaling of the Prandtl number by 

a factor involving the radiation parameter. The solution of the radiation problem in the 

linearized Rosseland approximation does not require any additional numerical or analytical 

efforts. It is seen that the energy equation in case of nonlinear radiation is strongly nonlinear 

and contains an additional temperature parameter which is the ratio of wall and ambient 

temperature. To facilitate a numerical solution of the boundary value problem, it is judicious 

to introduce the following dimensionless variables [34-35]: 
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Implementing Eqn. (10) in Eqns. (2)-(7) produces the following dimensionless similarity 

equations in which equation (1) is automatically satisfied:  
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The dimensionless flow parameters featured in Eqns. (11)-(16) are defined illustrated as below: 
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Here A  signifies the Sisko rheological fluid material parameter, Rea  and Reb  are local 

Reynolds numbers, K indicates inverse permeability parameter, M indicates the magnetic 

body force parameter,  designates the stretching sheet ratio parameter, 1k and 2k  define the 

intensity (strength) of the homogenous and heterogeneous reactions respectively, Pr denotes 

Prandtl number, R denotes thermal radiation parameter, Sc denotes Schmidt number, 1

represents the diffusion coefficient ratio,  denotes generalized Biot number. It is noted that an 

additional temperature ratio parameter w  arises and due to this reason the energy equation will 

be more nonlinear; by using 
316

3
r

T
q T

k z

 




= −


 in Eqn. (4) leads to the more appropriate form 

i.e. Eqn.  (13). The similarity solutions are possible only in the case n = 1 (for viscous fluid) 

and the parameters 0A= and   are independent of x, i.e.   is constant. Herein local similar 

solutions are developed since in general the parameters in the derived model are functions of 

the independent variable x ([36-37]. The coefficients of diffusion of chemical species 1A and 

2A may be taken to be the same so that the diffusion coefficients AD  and BD are identical i.e. 

1 1 =  and thus  the following relation will be obtained: 
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Eqns. (14) and (15) may therefore be combined to yield the following single concentration 

equation [30]:  
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The associated concentration boundary conditions:  
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The final transformed coupled ordinary differential equations with boundary conditions emerge 

as follows: 
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Here skin friction coefficient along x, y directions and local Nusselt number, which are 

important engineering design quantities in materials processing, take the form: 
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It is noted that the dimensionless mass flux denoted by Sherwood number xSh is now identically 

zero. 

 

3.ADM SOLUTION 

The system of coupled ordinary differential equations (21)-(24) with associated boundary 

conditions (25) constitute a 10th order, nonlinear, multi-degree boundary value problem. 

Numerous methods are available to solve such systems including shooting methods, finite 

element methods, homotopy methods etc. Here a semi-analytical/numerical method called the 

Adomain Decomposition Method (ADM) is employed. In ADM, the analytic approximate 

solutions to a nonlinear equation are obtained without linearization and discretization yielding 

more accurate results. Therefore, ADM has been deployed recently in many sophisticated 
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multi-physical fluid dynamic problems including magnetic bio-lubrication [38], 

hydromagnetic cilia propulsion [39] and swirling bioconvection nanofluid flows [40]. Adomain 

[31] deployed an infinite series solution for the unknown functions, utilized recursive relations 

and also produced an alternative approach for polynomial expansions to achieve faster 

convergence. Applying the standard procedure of ADM with standard notation i.e.,  

( ) ( ) ( ) ( )L u y R u y N u y Q y+ + =                    (29) 

which is derived from the form { )} ( )D u Q y= . Here D  signifies differential operator of linear 

term  { }L R+ with L being the highest ordered derivative which is easily invertible and R is 

the remaining linear part.  The nonlinear part is ( )N u y . It follows that the standard form can 

be written as follows:  

1 1 1( ) { ( )} { ( )} { ( )}u y L Q y L R u y L N u y− − −= − −                 (30) 

Next we introduce 
3

1 3
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1
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and 
2

1

0 0

( ) ( )L d d

 

 − =   . Thus, arranging all the Eqns. (21)-(24) and by writing them as infinite 

series using recursive relations with initial guesses, the approximate analytical solutions can be 

obtained for the variables (primary velocity, f  , secondary velocity g  , temperature  , 

concentration  ). The ADM power series expansions are listed in the Appendix. 

 

4.RESULTS AND DISCUSSION  

The influence of selected parameters on primary and secondary velocity components, 

temperature and concentration distributions is visualized in Figs. 2-17. Moreover, computed 

values of the primary and secondary skin friction ( (0)f − , (0)g− ) and Nusselt number (

(0) − ) are displayed in Table 2. Validation of the ADM solutions is provided for the primary 

and secondary skin friction coefficients with different stretching sheet ratio parameter () in 

Table 1 for comparison with the ND Solve shooting quadrature Mathematica solutions of 

Hayat et al. [30] A=M=K=R =0 i.e. in the absence of Sisko non-Newtonian, magnetic, porous 

medium and radiative effects. Reasonable agreement is achieved and confidence in the present 

ADM solutions is therefore high. 
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Table 1: Comparison of skin friction coefficients for different values of   when A=M=K=R 

= 0.  

  ( )0f −  

Hayat et al., [30] 

( )0f −  

ADM results 

( )0g−  

Hayat et al., [30] 

( )0g−  

ADM results 

0.3 1.055234 0.9475 0.234632 0.2500 

0.5 1.090504 0.9828 0.458035 0.4527 

0.8 1.149069 1.0413 0.859627 1.1684 

1.0 1.172897 1.0651 1.698852 1.6936 

 

 
Figure 2: Influence of magnetic parameter on velocity component in x-direction for 

1 20.3, 0.5, 1.0,Pr 4.0, 0.3, 0.5K A n Sc R k k = = = = = = = = = =  

 

 
Figure 3: Influence of magnetic parameter on velocity component in y-direction for 

1 20.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5K A n Sc R k k = = = = = = = = = =  
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Figure 4: Influence of magnetic parameter on temperature for 

1 20.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5K A n Sc R k k = = = = = = = = = =  

 

 

 
Figure 5: Influence of permeability parameter on velocity component in x-direction for 

1 20.3, 0.3, 1.0, 0.3,Pr 4.0, 0.5M A n Sc R k k = = = = = = = = = =  
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Figure 6: Influence of permeability parameter on velocity component in y-direction for 

1 20.3, 0.3, 1.0, 0.3,Pr 4.0, 0.5M A n Sc R k k = = = = = = = = = =  

 

 

 

 
Figure 7: Influence of permeability parameter on temperature for 

1 20.3, 0.3, 1.0, 0.3,Pr 4.0, 0.5M A n Sc R k k = = = = = = = = = =  
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Figure 8: Influence of ratio parameter on velocity component in x-direction for 

1 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A n Sc R k k = = = = = = = = = =  

 

 

 

 
Figure 9: Influence of ratio parameter on velocity component in y-direction for 

1 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A n Sc R k k = = = = = = = = = =  
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Figure 10: Influence of ratio parameter on temperature for 

1 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A n Sc R k k = = = = = = = = = =  

 

 

 
Figure 11: Influence of thermal radiation parameter on temperature for 

1 20.3, 0.3, 0.5, 1.0,Pr 4.0, 0.5M K A n Sc k k = = = = = = = = = =  

 

 



15 
 

 
Figure 12: Influence of material parameter on velocity component in x-direction for 

1 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A Sc R k k = = = = = = = = = =  

 

 

 

 

 
Figure 13: Influence of material parameter on velocity component in y-direction for 

1 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A Sc R k k = = = = = = = = = =  
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Figure 14: Influence of material parameter on temperature for 

1 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A Sc R k k = = = = = = = = = =  

 

 

 

 
Figure 15: Influence of strength of homogenous chemical reaction parameter on 

concentration for 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A n Sc R k = = = = = = = = = =  
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Figure 16: Influence of strength of heterogenous chemical reaction parameter on 

concentration for 10.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A n Sc R k = = = = = = = = = =  

 

 
Figure 17: Influence of Schmidt number on concentration for 

1 20.3, 0.3, 0.5, 1.0, 0.3,Pr 4.0, 0.5M K A n R k k = = = = = = = = = =  
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Table 2: Values of (0)f − , (0)g− and (0) − for different values of , , , ,A M K n and R  

A  M  K    n  R  (0)f −  (0)g−  (0) −  

0.0 0.0 0.0 0.3 1.0 0.2 0.9475 0.25 0.0923 

0.5      0.7761 0.2045 0.0925 

1.0      0.6751 0.1778 0.0926 

 0.5     0.7597 0.2049 0.0925 

 1.0     0.9743 0.2731 0.0923 

 1.5     1.2546 0.361 0.0918 

  0.5    0.8369 0.2295 0.0924 

  1.0    0.9743 0.2731 0.0923 

  1.5    1.095 0.3111 0.0921 

   0.1   0.699 0.049 0.0918 

   0.2   0.6751 0.1778 0.0926 

   0.5   0.654 0.3391 0.0932 

    1.0  0.6751 0.1778 0.0926 

    1.5  0.9914 0.0599 0.1275 

    2.0  0.7245 0.1211 0.0936 

     1.0 0.7597 0.2049 0.0826 

     2.0 0.7597 0.2049 0.0671 

     3.0 0.7597 0.2049 0.0551 

 

In the model Eqns. (21)-(24) with boundary conditions (25), 12 parameters arise and the 

default values set in the ADM computations are as follows: A  (Sisko material parameter) = 

1.0, n  (Sisko power-law index) = 1.0, K  (permeability parameter) = 1.0, M (magnetic 

parameter) = 1.0,   (bidirectional sheet stretching ratio) =1.0, w (temperature ratio parameter 

) = 0.1, 1k (homogenous reaction strength) =0.5, 2k  (heterogeneous reaction strength) =0.5, Pr

(Prandtl number) = 4.0, R (radiative parameter) = 1.0, Sc (Schmidt number) = 1.0,  (thermal 

Biot number) = 0.3.  

Figs. 2-4 illustrate the influence of magnetic body force parameter on the primary (x-direction) 

and secondary (y-direction) velocity components and temperature. There is a significant 

reduction in the primary velocity (velocity component in x-direction) with greater magnetic 

field, as observed in Fig. 2. The Lorentz body force associated with the vertical magnetic field 

has components in both the x- and y-directions, which appear as the terms
2M f −  and 

2M g−  

in eqns. (21) and (22), respectively. This is a retarding force and impedes the motion of the 

sheet. Clearly maximum primary velocity is achieved in the absence of a magnetic field i.e. 

M=0 (electrically non-conducting case) and the minimum primary velocity corresponds to the 

strongest magnetic field case of 1.5M = . Fig. 3 demonstrates that while a similar reduction 

in secondary velocity is induced with increasing magnetic parameter, the magnitudes of the 
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secondary velocity are significantly lower than the primary velocity. In both Figs 2 and 3 

asymptotically smooth profiles in velocity components from the sheet surface (wall) to the 

edge of the boundary layer (free stream) are observed indicating that a sufficiently high 

infinity boundary condition has been prescribed in the ADM computations. In fig. 3 the 

increase in magnetic parameter is seen to enhance temperatures throughout the flow domain. 

Although magnetic terms do not arise in the energy conservation Eqn. (23), the coupling of 

the temperature () Eqn. with the primary and secondary momentum equations via for 

example the terms, 
2

Pr , Pr
1

n
f g

n
 

 
  

+ 
implies that there is an indirect influence of the 

magnetic field on the temperature. The supplementary work done in dragging the Sisko fluid 

against the action of the transverse magnetic field is expended as heat i.e. thermal energy. This 

energizes the Sisko fluid and leads to an elevation in temperatures with greater magnetic 

parameter, M. Clearly the regime is cooled in the absence of a magnetic field and heated 

substantially with strong vertical magnetic field strength. This also concurs with the findings 

of Hayat et al. [30]. 

Figs. 5-7 illustrate the impact of the inverse permeability parameter, K, on primary (x-

direction) and secondary (y-direction) velocity components and temperature. As in the case of 

the magnetic body force, the impedance due to the porous medium also results in a Darcian 

drag force component in both primary and secondary momentum equations. These 

components are linear in nature i.e. K f − and K g−  clearly resistive. The parameter K is 

infact inversely related to the actual permeability of the porous medium, k, as defined in Eqn. 

(17). As K is increased, k is decreased implying that there is greater solid fiber resistance to the 

percolating flow since the permeability is lower. This manifests in an increase in Darcian drag 

force components in both primary and secondary momentum equations and leads to significant 

deceleration in both primary and secondary flows, as observed in Figs. 5 and 6.  Conversely 

with increasing K parameter (decreasing permeability, k, of the medium) there is a boost in 

temperatures, as observed in Fig. 7. This is attributable to the enhanced thermal conduction 

present in the porous medium with greater concentration of solid fibers at lower permeabilities. 

Evidently therefore cooling of the regime is achieved with purely fluid regimes i.e. the 

vanishing porous medium case (K = 0 implying k →).  

Figs. 8-10 depict the variations in primary (x-direction) and secondary (y-direction) velocity 

components and temperature with sheet stretching ratio (= d/c). When = 0 the sheet is 

stagnant i.e. no stretching occurs and two-dimensional flow is achieved. For  =1, 
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axisymmetric stretching is produced i.e. equal stretching rates in both x and y directions. A 

weak acceleration is induced in the primary flow with increasing sheet stretching ratio,  (fig. 

8); a much stronger enhancement in secondary velocity is induced in Fig. 9, and the effect is 

greater at the wall and progressively diminishes into the free stream. Again, asymptotically 

smooth profiles are achieved in both Figs. 8 and 9 in the free stream confirming the 

implementation of adequately large infinity boundary conditions in the ADM solution. A 

notable depletion in temperature accompanies a rise in stretching ratio parameter (Fig. 10) and 

again this is largely concentrated in the near-wall region. 

Fig. 11 illustrates the distribution in temperature with various radiation parameter (R) values. 

This parameter feature sin the augmented diffusion term in the energy conservation Eqn. (23) 

i.e. [{1 + 𝑅(1 + (𝜃𝑤 − 1)𝜃)3}𝜃 ′]′. R=
16 𝜎∗

3 𝑘𝑘∗
𝑇3

 and embodies the relative contribution of 

thermal radiation heat transfer to thermal conduction heat transfer. For R = 0 radiative flux 

vanishes. As R increases the Sisko fluid regime is progressively energized via radiation and 

temperatures are strongly boosted. The most dramatic impact is nearer the wall although the 

temperature elevation is sustained some distance from the wall. Evidently in mathematical 

models of high-temperature materials processing of magnetic polymers, the neglection of 

radiative heat transfer will significantly under-predict temperatures. It is important to include 

radiative effects albeit with simple algebraic flux models and in this regard the Rosseland 

model does capture the modification in temperatures quite reasonably. Similar observations 

have been made in Lu et al. [26] and Bég et al. [29]. 

Figs. 12-14 depict the evolution in primary (x-direction) and secondary (y-direction) velocity 

components and temperature with Sisko rheological power-law index (material parameter), n. 

there is a significant reduction in primary velocity, f/(), with greater n values. Higher values 

of this parameter imply a significant escalation in polymer viscosity and increasingly shear-

shickening (dilatant) this results in a deceleration in the primary flow of the bi-directional 

stretching sheet (Fig. 12). Conversely the momentum lost in the primary flow is re-distributed 

in the secondary flow and this leads to an elevation in secondary flow velocities (Fig. 13). 

Secondary flow is therefore accelerated for the strong dilatant polymer whereas primary flow 

is decelerated. The shear-thinning case (0<n<1) has been considered elsewhere [30] and is not 

studied here. A strong decrease in temperatures is also generated with increasing dilatant 

behavior (n>1) as observed in Fig. 14.  

Figs. 15-16 depict the impact of 1k (homogenous reaction strength) and 2k  (heterogeneous 

reaction strength), respectively, on concentration distribution, ().There is a weak decrease 
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in concentration with increasing 1k values i.e. homogenous destructive reaction depletes the 

concentration of the original species due to conversion to another, as observed in Fig. 15. The 

1k parameter arises in the reduced diffusion Eqn. (24), whereas 2k  (heterogeneous reaction 

strength) features in the concentration wall boundary condition (25) i.e. 
′(0) = 𝑘2 (0). A 

much stronger depletion in the concentration magnitudes is induced with increasing k2 values. 

Maximum concentration is achieved in the absence of heterogenous reaction (k2 = 0) as seen 

in Fig. 16. 

Fig. 17 the response in concentration () with Schmidt number, Sc.  Schmidt number provides 

a quantification of the relative rate of momentum diffusion to species diffusion. When Sc = 1 

both rates of diffusion are the same. Sc <1 is representative of for example oxygen diffusion in 

low-weight polymers and Sc > 1 corresponds to diffusion of gases in higher density polymers. 

A marked enhancement in concentration magnitudes is generated with increasing Schmidt 

number and there is also a morphing in profiles from the approximately linear case (Sc = 0.22) 

to the strongly parabolic case (Sc =2.0). 

Table 2 shows the variation in (0)f −  i.e. primary skin friction, (0)g− i.e. secondary skin 

friction and (0) − i.e. Nusselt number with several selected parameters i.e. , , , ,A M K n and 

R . Again, default values for the other parameters are as noted earlier. Primary skin friction is 

strongly reduced with increasing A values (Sisko material parameter) whereas secondary skin 

friction is weakly reduced and Nusselt number is slightly increased. With increasing magnetic 

parameter, M, the primary skin friction and secondary skin friction are elevated whereas the 

Nusselt number is weakly reduced. An increase in inverse permeability parameter, K, also 

enhances primary and secondary skin friction whereas it reduces Nusselt number. Increasing 

stretching ratio parameter () weakly reduces primary skin friction but strongly elevates 

secondary skin friction and slightly boosts the Nusselt number at the wall. Increasing Sisko 

power-law index (n) i.e. greater dilatant behavior is found to elevate primary skin friction and 

reduce secondary skin friction whereas it initially increases and thereafter reduces Nusselt 

number. Finally, increasing radiative parameter, R, exerts no tangible influence on either 

primary or secondary friction but strongly reduces the Nusselt number (since heat is transferred 

away from the wall into the body of the bi-directional stretching sheet flow leading to greater 

temperatures in the boundary layer). 
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5.CONCLUSIONS 

A mathematical model has been presented for steady-state, laminar, incompressible, 

magnetohydrodynamic flow of an electrically conducting polymeric non-Newtonian (Sisko) 

fluid from a bidirectional stretching sheet in a porous medium is studied theoretically. Thermal 

radiation flux and homogeneous-heterogeneous chemical reactions are included. Darcy’s 

model is employed for the porous medium and Rosseland’s diffusion flux model for radiation 

heat transfer. Convective heating conditions at the wall are also considered. The transformed 

dimensionless nonlinear ordinary differential equation boundary value problem with 

transformed boundary conditions has been solved with the semi-analytical Adomain 

decomposition method (ADM). Validation with earlier studies has been included. A parametric 

study of the impact of selected parameters on transport characteristics has been conducted. The 

simulations have shown that:  

• Increasing sheet stretching ratio weakly accelerates the primary flow throughout the 

boundary layer whereas it more dramatically accelerates the secondary flow near sheet 

surface. 

• Increasing magnetic field and inverse permeability parameter decrease both the primary 

and secondary velocity magnitudes and also the primary and secondary friction values, 

whereas they increase temperatures in the regime and reduce Nusselt number. 

• Temperature is consistently reduced with increasing stretching sheet ratio whereas Nusselt 

number at the wall is enhanced. 

• Temperature is strongly enhanced with greater radiative parameter whereas Nusselt number 

is reduced and there is no noticeable effect on either primary or secondary friction. 

• With greater Sisko non-Newtonian power-law index the primary velocity and temperature 

are decreased whereas the secondary velocity is increased. 

• Increasing both homogenous and heterogenous chemical reaction parameters is found to 

weakly and more strongly, respectively, reduce concentration magnitudes whereas greater 

Schmidt number enhances the concentration values in the bi-directional sheet. 

• Primary skin friction is strongly reduced with increasing A values (Sisko material 

parameter) whereas secondary skin friction is weakly reduced and Nusselt number is 

slightly increased. 

• Increasing Sisko power-law index i.e. greater dilatant non-Newtonian behavior is found to 

elevate primary skin friction and reduce secondary skin friction whereas it initially 

increases and thereafter reduces Nusselt number. 
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The present study has shown that ADM is a powerful approach for studying multi-physical 

high-temperature bi-axial stretching reactive materials processing flows of electro-conductive 

(magnetic) polymers. Future studies will explore alternative radiative flux models and also 

unsteady effects and will be communicated imminently. 
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APPENDIX:  

 
The ADM power series expansions are 
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The values of the notations ' ,iT s  1 45i = −  are presented below: 
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