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Abstract

Falls can have severe consequences for older adults, such as bone fractures and long periods
unable to get up from the ground, known as a long-lie. The capability to automatically
detect falls would reduce long-lies through ensuring prompt arrival of assistance and would
be valuable in fall risk assessment and fall prevention research. This research aimed
to identify why existing wearable fall detection technology has not achieved acceptable

performance and where further development should focus.

There have been a plethora of attempts at fall detection; real-world testing is in an
embryonic stage, nevertheless, it is clear performance has been poor. The focus has been
on the testing of complete system performance, most commonly with acted falls, and it has
been unclear how to improve performance. A new framework for the development of fall
detection is proposed which promotes targeted investigation of how real-world performance
can be improved. An improved method to quantify real-world performance is also proposed
based on a systematic review of previous approaches. To prepare for the analysis of a
real-world dataset, a pilot study was conducted which focused on the development and

testing of posture classification algorithms.

One of the world’s largest datasets of real-world falls and activities of daily living was
collected over 2 years in collaboration with 17 care homes across Scotland and the north of
England. Twenty fall signals were extracted from 1,919 days of thigh-worn accelerometer
recordings collected with 42 participants. Analysis of the data focused on falls from an
upright to a sedentary (sitting or lying) posture, 16 falls met this criterion and were
included in the analysis. To allow the data to be thoroughly checked for quality, the dataset
was reduced to 104 days, from which 4,293 upright to sedentary transitions were extracted

(including the 16 falls).

xii



ABSTRACT xiii

This study was the first to: discern that falls may be too diverse to classify as a single
group and focus on a subtype of fall, use posture transitions to select events for analysis,
assess the importance of peak jerk and vertical velocity for fall detection, and investigate
the occurrence of multiple impacts during falls. The results demonstrated that the core
features used previously do not yield sufficient separation of the falls to allow detection
without high rates of false positives. For the first time, it was shown that (1) a rapid
increase in deceleration may be more indicative of a fall than the peak deceleration, and

(2) multiple impacts occur frequently in falls but not other movements.



Chapter 1

Introduction

Falls in older adults present a major healthcare challenge that is set to grow in the coming
years due to population ageing [1]. Falls have severe consequences for the individual, their
family, and society as a whole, as they often lead to a decline in the individual’s health.
Those who fall often struggle to get up unaided, therefore where assistance is not close
by, falls can result in a long-lie [2,3]. A long-lie is an unintentional, extended period spent
on the ground and has been associated with a decline in health from which individuals
often do not recover [4-6]. Reliable detection of falls as part of an alarm system is crucial
to minimise the consequences of falls and long-lies. In addition to applications in alarm
systems, the ability to accurately detect falls and log their occurrence has the potential to

revolutionise fall risk assessment and fall prevention research.

There has been a great deal of research into fall detection technology with over 200 published
articles since 1998 [7-12]. The vast majority of tests of fall detection technology have used
data from falls acted out in a laboratory by healthy, young adults [7—10,13,14]. The use
of so-called “simulated falls” allows a relatively large number of falls to be collected in a
short period, which has made it an attractive approach, particularly in the early stages
of development. However, research has shown that there are differences between these
simulated falls and real falls and that the results of tests on simulated falls do not transfer
to the real-world [15-18]. Approaches which detected over ninety percent of simulated falls
detected less than half the falls in a set of real-world data [17-19]. In addition, when tested
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on real-world data the rate of false positives has been much higher than expected based on

the performance reported from tests on simulated falls [17-20].

The use of real-world data for fall detection research has been limited due to challenges in
recording real falls [17]. Where real-world data has been used, the focus has been on testing
prototype fall detection systems and algorithms. Consequently, little has been learned
about how real falls can be detected robustly, no tangible improvements in real-world
performance have been made and performance remains poor. Using one of the largest
studies of fall detection technology as an example, Lipsitz et al. [21] tested a pendant-based
fall alarm produced by Royal Philips (Amsterdam, Netherlands) and found that only
nineteen percent of falls were detected and that only thirteen percent of the alarms raised
corresponded to an actual fall. It was evident that a new approach was needed if significant
improvements in performance were to be found and the use of real-world data to test

systems, while important, was not sufficient.

The central aim of the research which underpins this thesis was to identify why existing
wearable fall detection technology has not achieved acceptable performance and where
further development should focus. There were five sub-aims: (1) to formulate a new
framework for the development of fall detection technology, (2) to identify how fall detection
performance should be quantified, (3) to test the activPAL3 device as an instrument to
record fall signals, (4) to collect a real-world dataset of falls and activities of daily living
comparable in size to the largest used in previous studies, and (5) to analyse real-world

fall data in line with the proposed framework such that the main aim is achieved.

To understand why existing approaches have not achieved acceptable performance it was
important to evaluate how fall detection research has been conducted; after all, if the
methods used to develop the technology are not appropriate then one cannot expect to
make progress. There are two key stages of development, the first is the design, the second
is how the performance is evaluated; this is a cyclic process so the evaluation needs to
inform future design. Sub-aim one addresses the process of identifying how to improve the
design of fall detection technology following an evaluation. The second sub-aim is concerned
with the quantification of performance, how can one know if a tweak in the design leads
to an improvement or if one approach is better than another. The third sub-aim deals
with the research needed to understand the limitations of a thigh-worn activPAL3 and to
determine whether the main aim can be achieved through analysis of data collected with

this device. The fourth and fifth aims combined serve to address the limited evidence on
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which to base further research and development by closing the feedback loop which has

been lacking following previous real-world tests of wearable fall detection performance.

Chapter 2 focusses on why fall detection is needed and the contribution this technology
could make. Chapter 3 focusses on the previous approaches to fall detection and culminates
in a statement on the current state-of-the-art and a proposal for how fall detection research
should be conducted. Therefore, through a review of the literature, Chapter 3 addresses
the first sub-aim: to formulate a new framework for the development of fall detection
technology. The review identified that there has been a focus on testing fall detection
performance and a lack of analysis to understand how performance could be improved.
Therefore, to break away from an approach of trial and error, the proposed framework closes
the feedback loop so that each test informs further research and development. Accordingly,
the fifth sub-aim becomes: to conduct an analysis of real-world fall data to (1) develop
an understanding of why existing wearable fall detection technology has not achieved an
acceptable level of performance, and (2) to identify characteristics which are unique to falls

and could be used to improve performance.

Chapter 4 addresses the second sub-aim through a systematic review of the methods used
to evaluate fall detection performance using real-world data. This was the first-ever review
of how fall detection performance can be quantified and a more robust approach was
proposed based on the findings. The key findings were: (1) the approaches to quantifying
performance were inconsistent and many studies used measures which provided limited
representation of performance and (2) the sample of falls was generally small and the study
populations were diverse, making a comparison between the datasets, and thus results,
difficult. Based on this review it did not appear plausible to systematically compare the
performance of existing approaches to fall detection and to identify which is best. To
address the key issues, it was proposed that larger, shared datasets are needed and that

performance is quantified in terms of sensitivity and precision.

It was clear, from the review of previous approaches (Chapter 3), that the focus must
be on the real-world and thus, a real-world dataset of falls and activities of daily living
would be required to achieve the main aim. It was also clear that the collection of such a
dataset represented a substantial challenge and preparatory work was required to ensure
the maximum value could be gained from the data. The device selected to collect the
real-world dataset was a thigh-worn activPAL3™ due to its common use in studies which

have monitored the activity of older adults twenty-four seven. However, there were two
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unknowns, firstly, fall-related posture classification with a thigh-worn device had never
been investigated before and so it was unknown whether the postures before and after a
fall could be classified, and secondly, it was unknown if the sensor’s range of +£2 g was
sufficient. Hence, a pilot study (Chapter 5) was conducted to test the activPAL3 device as
an instrument to record fall signals (sub-aim three). The objective of the pilot study was
to record posture and simulated fall data so that: (1) algorithms for the classification of
posture before and after a fall could be developed and tested, and (2) the occurrence of

clipping in signals recorded by an activPAL3 during a fall could be assessed.

Following the pilot study it was deemed that, on balance, the activPAL3 device was suitable
for the collection of a real-world fall dataset. Accordingly, Chapter 6 provides details of a
project to record real-world falls and activities of daily living from residents of care homes
in the UK using the activPAL3 device. This project addresses the fourth sub-aim, to
record a real-world dataset comparable to the largest used in previous studies. Over two
years a total of 1,919 days of recordings were collected with forty-two participants across
seventeen care homes. Chapter six also details, and provides full results of, the process by
which twenty fall signals were identified within the recorded data based on the fall reports

provided by the care homes.

Chapter 7 addresses the fifth sub-aim through the most comprehensive analysis of real-world
falls to date. The research presented in this chapter utilises the posture classification
algorithms developed in Chapter 5 and the data collected in Chapter 6. This study includes
many world firsts, including, but not limited to, (1) the extraction and comparison of a
specific subgroup of falls and ADL using posture analysis, (2) analysis of the interaction
between features of fall and ADL signals, and (3) the investigation of multiple impacts for
fall detection. In addition, this study includes an analysis of features common to previous
wearable fall detection approaches and provides valuable insight into why these have not

yielded acceptable performance.

The final chapter (8) provides a summary of the research presented in this thesis, highlights

the key findings and makes recommendations for further research.



Chapter 2

Why Fall Detection Is Needed

2.1 Falls: A Global Healthcare Challenge

Falls in older adults pose a significant challenge to healthcare and wider society; they have
previously been described as one of the ‘geriatric giants’, the main ailments associated
with ageing [22]. The scale and cost of falls is substantial [23] and expected to grow in the
coming decades due to population ageing [24]. Without intervention, the costs associated

with falls will rise, with an ever-increasing impact on healthcare [1].

This section aims to: (1) describe what constitutes a fall through a review of definitions,
(2) discuss the incidence of falls and the associated costs to society, and (3) examine the

physical and psychological consequences of falls.

2.1.1 Fall Definitions

Many definitions of falls exist in the literature. The Kellogg International Work Group

provided an early definition of a fall as:

“An event which results in a person coming to rest inadvertently on the ground
or other lower level and other than as a consequence of the following: sustaining
a violent blow, loss of consciousness, sudden onset of paralysis, as in a stroke,

an epileptic seizure” [25].
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This is a suitable definition for studying falls due to sensorimotor impairment and loss
of balance but discounts those due to cardiovascular health i.e. syncope [4]; therefore
a broader definition is needed. More recently the FARSEEING consortium, a group of

experts from a range of fall-related professions, provided a consensus definition of a fall as:

“An unexpected event in which the person comes to rest on the ground, floor

or lower level” [26].

This definition encompasses all types of falls, with no restrictions on the cause and is,

therefore, better suited to studying all types of fall.

2.1.2 Fall Incidence

Gauging the true frequency at which older adults fall is challenging given that falls are
often not reported, especially when no injury occurs. Estimates suggest that about thirty
percent of persons over the age of sixty-five fall at least once each year [27-30] and the
proportion rises to around forty-five percent for those over eighty [27]. The risk of falls
is higher for older adults living in long-term care (LTC) due to their frailty and other
predisposing factors. Estimates suggest the rate of falls is two to three times higher in
LTC compared to community settings [31,32]. In hospitals, the incidence of falls varies
across departments. In geriatric rehabilitation wards, the incidence is estimated to be 3.4
falls per bed annually and in psychogeriatric wards, the incidence is estimated to be 6.2

falls per bed annually [33].

The main issue is not the high incidence of falls alone, but the combination of high incidence
and elevated risk of injury. Indeed, it has been found that the risk of sustaining a fall-related
injury increases exponentially with age [34]. This is due to age-related decline (e.g. balance
impairment and slowed reflexes) [35] and higher prevalence of other medical conditions
(e.g. osteoporosis and sarcopenia) [36]. Of those who fall, an estimated twenty percent
will sustain serious injuries requiring medical attention, half of which will include a bone

fracture [27,28].

Without intervention, both the frequency of falls and the total number of fall-related
injuries is set to increase due to population ageing. Population ageing is a phenomenon
taking place throughout the world, whereby older persons are becoming a proportionally

larger share of the total population [37]. By 2050, the number of people aged sixty years or
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over is expected to reach two billion; more than double the number in 2013. The number
of people aged eighty or over is growing even faster, expected to more than triple by 2050

[24].

2.1.3 Consequences for the Individual

2.1.3.1 Physical Consequences

Both the incidence and severity of consequences from falls increase with age [34]. Recovery
following a fall is highly correlated with physical capability prior to the fall [38]. Therefore,
when the oldest and most frail fall the chances of a full recovery are slim and the impact
on their health is likely to be long-lasting, if not permanent. Indeed, research has shown

that falling is the leading cause of death in people over seventy-five years of age [39].

Falls which result in a fragility fracture, defined as “a fracture caused by forces equivalent
to a fall from standing height or less”, are of particular concern [23]. Fragility fractures
account for almost sixty percent of fall-related injuries, superficial injuries account for
twenty-one percent and head injuries nine percent [40]. The most frequent fragility fractures
are to the hip (twenty-eight percent) and the wrist (twenty percent). Due to protective
responses, wrist fractures are the most common in fallers under the age of seventy-five,
however, in fallers over seventy-five hip fractures become more common as their reactions
slow [41]. Of those who suffer a hip fracture, up to ninety percent never regain their
previous level of mobility and independence [42]. There is also a strong association between
fragility fractures and decreased life expectancy; following a fragility fracture of the hip,

about one in ten die within a month and one in three die within one year [23].

Even when a fall does not directly cause injury, the health of the faller can be negatively
impacted. Tinetti et al. [2] found that forty-seven percent of uninjured fallers were unable
to get up without help, for injured fallers the proportion will be higher. In fallers over the
age of ninety, eighty percent cannot get up after a fall and thirty percent remain on the
)

floor for over an hour [3]. If help is not available, the inability to get up leads to a ‘long-lie

where the faller remains on the ground for an extended period.

In twenty percent of fall-related hospital admissions, long-lies are reported [43]. Long-lies
are most common and most severe for falls suffered by independent, community-dwelling

older adults. In hospitals and LTC, long-lies are not expected to be common due to frequent
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monitoring. The time spent isolated on the floor often leads to dehydration, pressure sores,
pneumonia, hypothermia and a fear of falling [4-6]. The impact of a long-lie on a faller’s
health can be severe and many older adults do not fully recover following a long-lie. Wild
et al. [44] found that half of those who lie on the floor for more than one hour die within

six months.

2.1.3.2 Psychological Consequences

Falls can have severe consequences even when no serious injury occurs. In older adults who
have fallen the fear of falling and post-fall anxiety result in a loss of self-confidence and
self-imposed restriction of activities [45,46]. A fear of falling does not only occur following
a fall, even those who have not had an injurious fall may still be fearful [46]. Estimates
suggest that between twenty-five and fifty percent of older adults are fearful of falling and

half of these will limit their activities as a result [47,48].

The fear of falling could be more detrimental to an older adult’s quality of life than a fall
or fracture, and this is largely due to a restriction of activity leading to a reduction in
physical ability [49]. Severe activity restriction induced by a fear of falling is an independent
predictor of accelerated decline in physical ability and can increase the risk of falling [46,50].
It has been reported that self-imposed activity restrictions often contribute to nursing
home admission [51,52]. These findings suggest that although moving less may initially
reduce the risk of falling, the detrimental effects on mobility may outweigh any benefit and

might lead to increased falls in the future.

In addition to the effect on mobility, the fear of falling and the associated activity restriction
can affect mental health. Avoidance behaviours and fear-related anxiety can result in social
isolation and subsequently lead to depression [53]. It could also be that depression leads to
activity restriction since depression is an independent predictor of fall risk [54,55]. The
relationship between the fear of falling, mental health, activity restriction and fall risk is
complex and causality has not been demonstrated. However, a fear of falling is detrimental

to both the physical and mental health of older adults [46].
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2.1.4 Financial Costs

Calculating the total cost to society of falls is challenging due to the number of factors
which need to be considered. Many older adults are engaged in activities which benefit
society such as volunteering in their community, caring for their spouse or providing family
childcare. Those who suffer an injurious fall will need to take a break from their usual
activities and may never regain the mobility needed to resume them. It is comparatively
straightforward to estimate the direct healthcare costs, however, one cannot easily calculate
the cost of a lost contribution to society. Due to a lack of research into the wider costs to
society, the following sections discuss only the healthcare costs associated with falls in the

UK and worldwide.

2.1.4.1 United Kingdom

In 2003, Scuffham et al. [56] published a report on the cost of falls in the UK, to the
author’s knowledge this is the most recent published study of its kind. Scuffham found
that in 1999 falls cost the NHS and social services £981 million. Of these costs, sixty-six
percent were due to falls in those over seventy-five years of age. Most of the costs were
for care, forty-nine percent of costs were for hospital inpatient admissions and forty-one
percent for long term care. The number of fall-related A&E attendances and hospital

admissions were 647,721 and 204,424 respectively.

Current costs are expected to be significantly higher given inflation and population growth.
According to the office for national statistics prices have increased by forty-five percent
between 1999 and 2017 [57] and the number of people over sixty-five has risen by twenty-
eight percent [58]. Based on inflation alone the cost of falls in 2017 would be approximately
£1.43 billion; when accounting for population growth the cost rises to approximately £1.82
billion. It should be noted that estimating the increase in costs based on population growth
and inflation is not robust, therefore the approximation of £1.82 billion is a very rough
estimate; without a new study, it is not possible to get an accurate estimate of costs. Given
the last comprehensive analysis of the cost of falls in the UK was conducted two decades
ago, there is a clear lack of up to date information and a need for an update to the work

carried out by Scuffham et al. [56].
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2.1.4.2 Worldwide

There have been two systematic reviews on the cost of older adult falls and their findings
remain the leading source for worldwide estimates of fall-related healthcare costs. Davis
et al. [59] found that the mean cost was US$3,476 per faller, US$10,749 per injurious
fall and US$26,483 per fall requiring hospitalization (at 2008 prices). Heinrich et al. [60]
found that between 0.85 and 1.5 percent of total healthcare spending was fall-related. This
equated to between 0.07 and 0.20 percent of gross domestic product and between US$113
and US$547 per citizen annually at 2006 prices. Heinrich et al. [60] further found that the
mean cost per faller ranged from US$2,044 to US$25,955, the mean cost per fall ranged
from US$1,059 to US$10,913 and the mean cost per fall-related hospitalisation ranged from
US$5,654 to US$42,840 (at 2006 prices). More studies have been conducted into the cost
of falls in the USA than other nations [59,60]. The most recent estimate places the cost of
falls to healthcare providers in the USA during 2015 alone at US$50 billion [61].

2.2 Circumstances and Causes of Falls

Falls are hugely variable and occur as the result of a host of contributing factors. These
factors can be categorised as internal or external. Internal factors include anything specific
to the faller such as reduced balance or visual impairment. External factors include anything
circumstantial such as a wet floor or a distraction causing someone to turn suddenly. The
interplay between these factors creates the specific circumstances for a fall to occur and

therefore provides a useful understanding for preventing further falls.

An understanding of the circumstances and causes of falls is crucial to understand how to
manage them (Section 2.3) and it is in the management of falls where fall detection can
contribute. Accordingly, this section aims to provide an overview of the circumstances and
causes of falls. This section first reviews the internal factors which contribute to elevated
fall risk and risk of injury in the event of a fall. Next, the challenges in identifying the
circumstances of falls are discussed and a summary of the common circumstances in which

falls occur is presented.
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2.2.1 Internal Factors Which Increase Fall Risk

The causes of falls are complex and there are many factors which are associated with
an increased risk of falling. In a systematic review of falls in nursing homes, Rubenstein
et al. [31] identified that the most common causes of falls were gait and balance disorders,
muscle weakness, dizziness, confusion, visual impairment, postural hypotension and the
use of sedating and psychoactive medications. Deandrea et al. [62,63] conducted two
systematic reviews and meta-analyses, one focused on community-dwelling older adults
and one on residents of nursing homes and hospital patients. They found that the factors
most strongly associated with falls were a history of falls, gait problems, walking aid use,
vertigo or dizziness, Parkinson’s disease, the use of antiepileptic medications, cognitive
impairment and visual impairment. The findings of Rubenstein et al. [31] and Deandrea
et al. [62,63] are broadly similar and the main factors are interlinked, for example, gait

problems could be a symptom of poor balance, muscle weakness or impaired motor control.

It should be noted that many of the factors identified are symptoms of underlying conditions.
Although these factors are useful in understanding why older adults fall, fall prevention
interventions should consider the underlying conditions rather than their symptoms. There
are a host of factors which can cause gait and balance problems [64]. Neurological
conditions such as Parkinson’s disease and stroke can affect motor control and other
long-term conditions such as arthritis can restrict movement and cause pain [64]. Tt is
likely that not all gait and balance problems are equally detrimental and therefore more

work is needed to identify the specific problems which increase fall risk.

Factors such as confusion or cognitive impairment are also very broad categories, and
there are many causes of cognitive impairment such as a stroke or dementia. In addition,
the label cognitive impairment does not in itself reveal any detail about the nature of
the condition. A cognitive impairment could present as impaired memory, judgement or
visual-spatial perception [31,65]. It is currently unclear how the individual sub-factors of

cognitive impairment effect fall risk [65].

There is evidence that psychotropic medications increase the risk of falls and the risk
increases further if more than one psychotropic medication is taken [66,67]. Further,
falls have been associated with the following subclasses of psychotropics: neuroleptics,
antidepressants, benzodiazepines and sedatives [66,67]. Olazaran et al. [67] found that the

highest risk of falls was associated with the combination of long half-life benzodiazepines,
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neuroleptics, and other psychotropics. No strong associations have been found between
cardiac or analgesic medications and increased fall risk [68]. However, slight associations

have been found with digoxin, type IA antiarrhythmic, and diuretic medications [68,69].

There is good evidence that muscle weakness elevates the risk of falling. Moreland et al. [70]
conducted a meta-analysis using data from thirteen previously published studies which
assessed the relationship between muscle strength and falls. They found that muscle
strength was strongly associated with falls and the association was stronger for lower
body strength than upper body strength. The muscle weakness which occurs with ageing
has been attributed to both a loss of muscle mass and muscle quality and these have
also been linked to increased fall risk [71]. There is also considerable evidence that some
cardiovascular conditions are associated with falls. Jansen et al. [72] systematically reviewed
the literature and found low blood pressure, heart failure, and cardiac arrhythmia increased

the risk of falling.

Recent meta-analyses found, rather counter-intuitively, that walking aid use was strongly
associated with falls both in nursing homes and community settings [62,63]. It is unlikely
that walking aids themselves cause falls if used properly, as they are designed to improve
stability by increasing the number of points in contact with the ground. The association
between walking aid use and fall risk is in part due to those most at risk of falling being
more likely to use a walking aid. Research has also found that the majority of walking
aid users who fall do not use their walking aid at the time of the fall [73]. Perhaps this
association could also be suggestive of poor walking aid use at the time of the fall, however,
instrumentation to study stability when using walking aids has only recently been developed

and this is an active area of research [74].

It is important to consider more than just factors which increase the risk of falling;
ultimately it is the injuries which occur as a result of falls that present the issue. Therefore,
one could argue that the factors which increase the risk of injury in the event of a fall
are the most important. It has long been known that comorbidities such as osteoporosis
can make a fall dangerous which would otherwise be benign [36]. The combination of
slowed reflexes and muscle weakness reduce the ability of older adults to break the fall and
may, therefore, lead to higher peak forces [75]. It is difficult to isolate factors beyond the
conditions which are known to increase the risk of bone fractures or soft tissue injuries;

this is due to the methods used to identify factors associated with falls.



CHAPTER 2. WHY FALL DETECTION IS NEEDED 13

At present, the understanding of the factors which affect fall risk comes from studies which
correlate observations with the occurrence of falls or fall-related injuries. Therefore, only
an association and not causation can be established. Further, one cannot easily separate
factors which contribute to the occurrence of falls from factors which contribute to injuries.
Studies have demonstrated an association between falls and numerous broad themes such
as gait and balance issues or cognitive impairment. However, the understanding at a deeper
level of what specific issues and impairments contribute to falls and how they interact is
limited. More research is needed before we truly understand the factors which contribute

to older adults’ fall risk and risk of fall-related injuries.

2.2.2 Challenges Determining the Circumstances of Falls

The majority of research into the circumstances of falls has relied upon interviews and
incident reports [76]. These methods rely on the accuracy of faller and witness accounts
which are subject to recall problems, social report bias and recall bias [26,77,78]. In many
cases, falls are not witnessed and we are reliant on the recall of the faller themselves [78].
This presents an issue as the recollection of the faller, and therefore the fall report can
be inaccurate [79]. These issues are exacerbated when recording falls in patients with

cognitive impairment, where recall problems may be even more severe [80].

The challenges associated with using interviews and incident reports to identify the
circumstances of falls limits the reliability of the findings from studies which used them.
Video analysis of falls is the gold standard as it allows multiple experts to assess each
fall in detail, which is not possible with other methods. However, there has been very
limited research which has used video footage to identify the circumstances of falls. To
the author’s knowledge, only two research groups have conducted such work [81,82]. Both

studies faced the same limitation, cameras were not placed in private areas.

Estimates suggest that seventy-five percent of falls occur in private areas [76]; however
privacy concerns prevent cameras being placed in these areas. Despite the lack of video
footage of falls in private areas, studies which have analysed video footage of falls provide
invaluable insights into the circumstances of falls. To gain the fullest understanding one
must review both the detailed and reliable descriptions of falls based on video and the large

scale studies which relied on fall reports. The following sections first discuss the findings
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from the analysis of fall reports and then the findings of studies which have used video

analysis.

2.2.3 Analysis of Reports on the Circumstances of Falls

The literature suggests that for community-dwelling older adults the majority of falls occur
in the home; with the living room, bedroom and bathroom reported as the most common
locations [83,84]. Outside the home falls most commonly occurred in green spaces (gardens,
woods, etc.) followed by steps or stairs [84]. The most common causes of falls were reported

to be loss of balance, tripping and slipping [83,84].

Rapp et al. [76] conducted the largest analysis of fall reports to date, they included over
70,000 falls from Bavarian nursing homes. They found that around sixty percent of falls
occurred in resident’s rooms, thirteen percent occurred in the adjoining bathrooms and
twenty percent in communal areas. Of the falls recorded, forty-one percent occurred
during transfer (e.g. to or from a chair), thirty-six percent occurred during walking and
twenty-three percent were classified as other (either unclassifiable or during another activity
such as sitting). Perhaps unsurprisingly, the findings showed that as care need increased

fewer falls from walking and more falls during transfers were recorded.

In hospitals, the vast majority of falls occur in patient’s rooms (seventy-five percent), and
bathrooms are the next most common locations (fifteen percent) [85,86]. Similar to nursing
homes, the majority of falls in hospitals occur during walking and transfers [85,86]. A high
proportion of falls occur during toileting related activities such as walking to the toilet or
reaching for toilet tissue [85]. It has also been found that fallers in hospital who usually
use a walking aid, often do not at the time when they fall [85]. This supports the earlier
suggestions that a lack of walking aid use at the time of a fall may be a reason for their

use being associated with increased fall risk.

2.2.4 Video Analysis of the Circumstances of Falls

In 1990, Holliday et al. [81] analysed video footage of twenty-five falls recorded over fifteen
months in the communal areas of a long-term care (LTC) facility. They found that the
majority (sixty-eight percent) of falls occurred during walking and falls also occurred

during standing (twelve percent), during rising (eight percent), while sitting (eight percent)
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and while bending over (four percent). The most common points of impact were the
hip, the buttocks and the knee (each twenty percent). Other points of impact were the
hand (twelve percent), the shoulder (four percent) and the side of the thigh (four percent).
Responses to a loss of balance were identified in twenty-two of the falls, the responses
included: protective arm extension (fifty-six percent), stepping (forty percent), change in

walking pace (twelve percent), grabbing (eight percent) and no response (eight percent).

Holliday et al. [81] also studied the events which followed the fall. In forty percent of the
falls, the faller came to rest in a sitting position, in twenty percent the faller was supine,
in twelve percent they were on their side, in eight percent they were on their knees and
in four percent they were prone. The resting position could not be determined in sixteen
percent of the falls. In eighty-two percent of the falls, assistance was needed to help the
faller from the floor. The findings of Holliday et al. [81] show that those who fall mostly
exhibit a response to try and regain balance and that most falls occur during walking. The
identification of impact sites and protective responses could be useful for injury prevention

research.

Only recently has further work been conducted which used video footage to objectively
assess the sequence of events that leads to a fall [82,87]. Robinovitch et al. [82] used existing
CCTYV systems to capture video footage of falls from two Canadian LTC facilities over
three years. CCTV was available in common areas e.g. dining rooms, lounges and hallways.
A total of 227 falls were captured during the study and analysed to identify the cause of
imbalance and the activity leading to the fall. The cause of imbalance was categorised
as one of the following: incorrect transfer or shift of body weight, trip or stumble, hit or
bump, loss of support with an external object, collapse or loss of consciousness, slip, or
could not tell. The activity at the time of the fall was categorised as one of the following:
walking forward, standing quietly, sitting down or lowering, initiation of walking, getting
up or rising, walking backwards or sideways, walking and turning, standing and turning,

seated or wheeling in wheelchair, standing and reaching, or could not tell.

The results showed that incorrect shifting of body weight was the most common cause
(forty-one percent of falls recorded), with trips and stumbles the second most common
(twenty-one percent). Most falls occurred during walking (forty-five percent), standing
(twenty-four percent) and sitting down (thirteen percent). Using the same dataset, Yang
et al. [87] found only a forty-five percent agreement between the incident report and video

footage for the cause of imbalance and the activity at the time of falling. This highlights
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the importance of using objective measures to assess the causes of falls. These studies
provide much-needed insight, however, they were limited to three LTC facilities in Canada
and only cover falls in the communal areas. There is still more research needed to fill the

gaps in the understanding of the circumstances and causes of falls.

2.2.5 Summary

Many factors have been associated with a risk of falling and a risk of sustaining a fall-related
injury. However, there are challenges establishing causation and so the understanding of
the direct causes of falls is limited. There are also challenges identifying the circumstances
of falls. Fall reports can be inaccurate and video analysis, while more accurate, is limited
to certain areas due to privacy concerns [87]. New approaches are needed to objectively

and reliably assess the circumstances and causes of falls across all locations.

2.3 The Role of Fall Detection in the Management of
Falls

The management of falls is critical to lessen their burden on society and ultimately managing
falls means preventing them, and where they have occurred, detecting them promptly.
Since resources are finite fall prevention efforts must be focussed on those who will benefit
and should target their specific risk factors. Assessments of older adults’ fall risk are hence
crucial to identify those who would benefit from intervention and which interventions are
suitable. Even with accurate fall risk assessments and targeted interventions, falls will still
occur. To minimise the consequences of these falls, assistance must be received quickly so
that long-lies can be prevented. Therefore, fall alarm systems have an important role to

play in the management of falls.

Fall alarm systems are the first area where automatic detection of falls can provide benefit,
this is discussed in Section 2.3.1. The automated detection of falls as part of an alarm
system removes the need for the user to acknowledge the need for assistance and manually
trigger an alarm. The second area where fall detection can contribute to the management of
falls is as a tool for fall risk assessment, this is discussed in Section 2.3.2. A third area where
fall detection technology could be used is in research into the efficacy of fall risk assessments

and fall prevention interventions. The ability to accurately log the occurrence of falls is
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vital to such research as the occurrence of falls is their main outcome measure. Therefore,
if proven to be reliable, fall detection systems could be a more accurate alternative to

self-report and care staff reports on the occurrence of falls.

2.3.1 Fall Alarm Systems

Unfortunately, not all falls can be prevented and it is, therefore, important that efforts are
made to reduce the consequences of falls. One way in which the severity of the consequences
following a fall can be reduced is to ensure assistance is received quickly and long-lies are
prevented (see Section 2.1.3.2). Research has shown that the earlier a fall is reported the
lower the rate of morbidity and mortality [44,88]. Alarm systems are an obvious way in

which family or carers can be alerted to a fall.

Personal Emergency Response Systems (PERS) is a term used to describe a category of
alarms which the user activates in an emergency. PERS come in a variety of forms and
have been commercially available for many years. The most common types of PERS are
pull-cords, fixed (e.g. wall-mounted) push-buttons and wearable push-buttons. PERS can
be used for any kind of emergency and most are not designed specifically for falls. A faller’s
movement may be restricted after a fall, preventing them from getting to a push-button,
emergency cord or phone. Therefore, PERS aimed specifically at those with a high risk
of falls commonly use a wearable push-button, often in the form of a pendant. In care
facilities, PERS usually include an audible alarm to notify staff. In the community, PERS
usually include a base station connected to a phone line, so that alerts can be sent to either

a service provider, family members or carers.

The UK Department of Health conducted the world’s largest study of telemonitoring in
the Whole System Demonstration Project [89]. The results showed that if implemented
effectively, telemonitoring services can reduce mortality, hospital admissions and time spent
in hospital. The use of PERS increases the safety of community-dwelling older adults,
allowing them to remain independent and live in their own home for longer [90]. In addition,
PERS can also reduce the fear of falling through the knowledge that users can get help if
needed [90,91].

Though PERS have a clear benefit to their users, push-button systems are limited by the
need for user interaction. Therefore, they can only be effective if the user acknowledges

an emergency and has the physical and cognitive capacity to press the button [92]. A
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further concern is that alarms are not always triggered even when the user can do so [3,93].
Fleming and Brayne [3] found that eighty percent of those who fell when alone and could
not get up did not activate their PERS; neither did ninety-seven percent of those who
remained on the floor for over an hour. Similarly, Heinbiichner et al. [93] found that
eighty-three percent of participants who fell when alone and lay for more than five minutes
did not activate their PERS. This may be a result of a false assessment of their condition

or simply a reluctance to disturb a service operator [92].

To address the limitations of push-button systems, a second generation of PERS devices
have been developed. These newer devices contain sensor technology that automatically
detects when a fall occurs. However, the precision of fall detection has not been good
enough and adoption has been low [94]. The automatic detection of falls is an active area
of research, with a focus on the development of an alarm system (see Chapter 3 for a
review of automatic fall detection research). Fall alarms could be viewed as a stepping
stone to the use of fall detection and activity monitoring technology in fall prevention
research. There is substantial overlap between the technology of fall detection and activity
monitoring; after all, a fall is essentially just another activity. Therefore, an automatic fall
alarm system will be capable of tracking other movements, this combination would provide

a rich dataset for research while providing a valuable service for users.

2.3.2 Fall Risk Assessment

One of the major risk factors for falls is a history of falling (Section 2.2.1), therefore, it
is important to be able to reliably record the occurrence of falls. Fall incident reports
and interviews are the current methods used to assess a person’s fall history, however,
these are subject to recall problems and biases (Section 2.2.2). In cases where a fall is not
witnessed, no injury occurs and the faller can get up from the floor, there is a high risk that
the incident would not be recorded, leading to inaccuracies in a person’s fall history. For
those who live in the community, the sole method for assessing fall history is self-report,
except where a long-lie or injury requiring medical care occurs. These non-injurious falls
may seem relatively minor, but knowledge of their occurrence and early intervention could

prevent a serious fall.

The ability to detect falls using sensor technology could improve fall risk assessment through

the provision of an accurate record of fall history. If this technology could be integrated
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into wearable activity monitors, such as those which have become popular in recent years,
then the automatic recording of falls could become ubiquitous. The data generated by
such devices could also be highly valuable for research into fall risk factors and the efficacy
of fall prevention interventions. At a basic level, activity monitoring could be used to
identify changes in daily activity levels over prolonged periods, which might indicate a
decline in mobility and an increased fall risk or vice versa. A long-term record of daily
activity and falls would allow any such risk factors to be identified, and potentially allow

fall risk assessment using activity monitors.

Activity monitoring technology could also be used to assess specific movements to identify
known risk factors such as gait or balance problems. The ability to monitor free-living
behaviour could give far greater insights into fall risk than a set of tasks carried out in a
clinical setting [95]. A fall risk assessment carried out in a clinical setting only considers
one point in time, when typically the person being assessed will try to perform their best.
Conversely, activity monitoring allows free-living activity to be tracked over time and can
provide insights into movement both when a person is at their best and when they are
tired or ill, when fall-risk may be at its highest. In addition, the analysis of sensor data
can be automated, therefore clinical expertise is primarily needed to design, rather than to
carry out, each assessment, thereby allowing a greater number of assessments to be carried

out [95,96].

There are two ways such approaches to fall risk assessment could work in practice: (1)
as an assessment prescribed by a clinician, and (2) as a product available to the public.
Clinicians could ask patients to wear a device for a short period, for example, a week, to
collect a series of measures to support assessment. This approach would be similar to any
other assessment such as scans or blood tests. As ever more sensors enter daily life, such
as in smartwatches and smartphones, fall detection and fall risk assessment could work in
a similar way to how fitness trackers are used currently. Those who are concerned about
their risk of falling could simply download an application to add such features to their
device. Unlike many older adults today, future generations would already be used to such

technology.

Research into the use of sensor technology to assess fall risk has already been carried out,
however, there have been issues with the way studies have been conducted. In a review
of wearable inertial sensor-based fall risk assessments, Howcroft et al. [95] found issues

with the methods of testing. Around one-third of studies compared their tool to existing
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clinical tests which are known to have limited accuracy (see Appendix A for a review), a
further third used a retrospective analysis and so tested the ability to identify those who
previously fell rather than those at risk of future falls. Only fifteen percent of studies used
a prospective design, which is the recommended method for testing risk assessment tools.
The ability to automatically detect falls could facilitate this research by allowing a reliable

record of the occurrence of falls to be collected.

Despite the limitations of tests of wearable fall risk assessment tools, the potential of the
technology is clear [95]. In early trials, assessments using a waist-worn accelerometer in
the laboratory have outperformed common methods of fall risk assessment (see Appendix
A for an overview of common fall risk assessments). For example, Marschollek et al. [97]
used an accelerometer to assess movement during a timed up and go test and extracted
a range of parameters from the signals, including step duration, step length and pelvic
sway. The time taken to complete the timed up and go test predicted a fall in the following
year with an accuracy of 0.5 (where 1 is perfect accuracy), for the St. Thomas’s Risk
Assessment Tool in Falling Elderly Inpatients the accuracy was 0.48 and the assessment
of a multidisciplinary geriatric care team had an accuracy of 0.55. In comparison, the
sensor-based test had an accuracy of 0.7 showing that a comprehensive analysis, using
an accelerometer, of a person’s ability to stand from a chair, walk and sit back down can

assess fall risk more accurately than current methods.

2.3.2.1 Summary

The ability to accurately log the occurrence of falls could provide a great deal of benefit
both as a tool for fall risk assessment and as a tool to assess the accuracy of other forms
of risk assessment. Current evidence suggests that the use of sensors to assess fall risk is
more accurate than the existing methods used. Fall detection combined with the ability to
monitor other activities has the potential to revolutionise the assessment of fall risk. The
ability to assess fall risk continuously during everyday activities rather than in a clinical
setting could provide a more accurate assessment of fall risk. As a history of falls is a major
risk factor for further falls, the ability to detect falls using sensors could be an important

part of future fall-risk assessment technology.
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2.4 Conclusions on Why Fall Detection Is Needed

Falls in older adults represent a global healthcare challenge which needs to be addressed.
Falls can result in serious injuries, lead to a decline in health and even death; in the UK
alone falls are estimated to cost the NHS £1.82 billion each year. Fall detection has a clear
role to play in the management of falls. The ability to automatically detect falls as part
of an alarm system would ensure help is received promptly and minimise the occurrence
of long-lies. A history of falls is one of the main risk factors for future falls, hence fall

detection technology could also be used in the assessment of fall risk.

The combination of activity monitoring technology, fall detection and an alarm system
could be valuable for those at risk of falling, their healthcare team and research. The
alarm system would ensure assistance is received should a fall occur. Such a system could
also identify fall risk factors and inform on changes to fall risk, both of which could be
useful to clinical staff. Finally, the data gathered by such a device would be useful to those
testing new methods of fall risk assessment or fall prevention interventions; such studies
rely on an accurate record of falls. It is clear that if accurate fall detection technology can

be developed, it would make a valuable contribution to the management of falls.



Chapter 3

Previous Approaches to Fall

Detection

The ability to automatically detect falls would be beneficial, as such, a great deal of research
has been done on the topic. Continued advances in technology have resulted in a wide
range of hardware which could be used for healthcare applications such as fall detection.
Consequently, a wide range of approaches to fall detection have been proposed in the
literature. This chapter introduces the methodology that has been used to develop and
test fall detection technology, discusses the issues in the field and provides an overview
of previously proposed system designs. Lastly, this chapter presents a statement on the
current state-of-the-art of fall detection and proposes a new framework for the development
of fall detection technology. Thus, through a review of the literature, this chapter addresses
the first sub-aim of the research for this thesis, to formulate a new framework for the

development of fall detection technology.

3.1 Fall Phase Models

When trying to detect a fall, it is useful to use a model of the phases which make up a fall
to characterise what it is that one is trying to detect. Several fall phase models have been

presented in the literature [26,98-101]; an example is shown in Figure 3.1. Each model is

22



CHAPTER 3. PREVIOUS APPROACHES TO FALL DETECTION 23

based on three simple phases: pre-fall, fall and post-fall. The various models divide these
phases in different ways and use different terms to name phases which are essentially the

same.

impact

to t, ot t, t, tme
pre-fall phase falling phase resting phase recovery phase

Figure 3.1: The FARSEEING five phase fall model (adapted from: Becker et al. [26]).

In 1993, Hayes et al. [98] proposed that a fall has four distinct phases: instability that
results in a loss of balance, descent, impact and post-impact. The separation of the ‘fall’
phase into descent and impact phases has also been included in most subsequent models.
Srinivasan et al. [101] proposed a similar model although it disregards the post-impact
phase, only including dynamic changes in gait preceding a fall, free fall and impact. This
model does not include anything post-impact, therefore disregards potentially important
information such as how much time was spent on the floor and whether the faller was able
to stand up unaided. Kangas et al. [99] designed a model for automatic detection of falls
using a wearable sensor which used four phases: start of the fall, falling, fall impact, and

posture after the fall.

The models discussed so far have only expanded on the fall phase, grouping everything
pre and post-fall into single phases. The pre-fall phase is difficult to separate as this is
essentially the cause or trigger of the fall. However, it is useful to look closer at what
happens post-fall, which often will be the longest phase. Noury et al. [100] was the first to
do this with their four-phase model: pre-fall, critical, post-fall and recovery. This model
omits the descent and impact phases included in previous models, if these are added in
place of Noury’s critical phase it gives a five-phase model. The FARSEEING consortium
did just that when they proposed a five-phase fall model consisting of pre-fall, falling,
impact, resting, and recovery phases (Figure 3.1)[26]. This model was produced by a group
of experts from a range of relevant professions and is currently the preeminent fall phase

model.
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3.2 Fall Detection as a Classification Problem

Fall detection can be viewed as a classification problem and this has been the basis for the
methods which have been used for the development and testing of the technology. As a
classification problem, the detection of falls is a case of classifying human movement using
signals captured through sensors. In the most basic case where falls are the only movement
of interest, fall detection is a form of binary classification; each movement is either a fall or
not a fall (for a discussion on the challenge in defining a movement see Section 4.4.2). In
the wider context of activity monitoring, falls are just one of many movements to classify
such as stepping, standing up and sitting down. Fall detection can, therefore, be treated

either as binary or multi-class classification, depending on the aim.

Fall detection research has focused on the binary classification case with the aim of
developing fall alarms. The fall detection software has, therefore, been designed to process
and classify the signals from one or more sensors with near to real-time speed (an alarm
raised within a few minutes of a fall occurring). Given that software is used to process the
signals, invariably they are digital and thus, a series of readings or samples at a set time
interval. Since motion cannot be captured with a single sample, multiple samples are used

for fall detection; the number of samples can either be fixed or variable.

Fixed length windows are perhaps the simplest method of processing the sensor signal
but also the most artificial. Fixed length windows turn continuous signals into discrete
blocks from which features (e.g. peak value) can be extracted and used for classification.
Feature extraction is a process of reducing the signal down to a set of meaningful values,
thereby simplifying the classifier. Each window is usually processed in the same way making
processing time relatively predictable. However, human movements are not of fixed length
and so fixed length windows can result in a disconnect between the underlying movement

and the signal processing.

An alternative approach to the use of windowing to segment the data followed by rule-based
classification of each window, is the continuous analysis of data based on a sequence of
threshold-based rules and time-outs or time delays [e.g. 102]. This approach aims to identify
key points or phases associated with a fall without the need to pre-define discrete blocks of
data. In this approach, the first rule in the sequence is continually applied to the signal; if
the threshold is crossed then the next rule is applied either continually with a time limit

for crossing the threshold or a time delay and then a single check. If any threshold in the
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sequence is not crossed, then it is deemed a fall has not occurred and the sequence restarts.
Through the identification of key phases of a movement, this method can identify when a

fall occurred with greater precision than the windowed approach.

Any approach to fall detection requires knowledge of how fall signals differ from those of
other movements. Therefore, data are needed for both falls and activities of daily living
(ADL) so that the signals can be compared. Statistical analysis can then be used to develop
the rules used to classify the signal as either representative of a fall or another movement.
Additional data would be needed for testing, as the same data should not be used to both

develop and test a system.

To test fall detection performance a system’s predictions as to when falls occurred must
be compared with an independent record, such as fall incident reports. There are several
measures which can be used to report performance in such tests. Sensitivity and specificity
are the most commonly reported in the literature; sensitivity is the proportion of falls
which are correctly detected and specificity is the proportion of non-fall events which are
correctly ignored. Precision is another important measure, it is the proportion of alarms
which are true falls. There are also measures which give an overall score, such as F-measure,
the harmonic mean of sensitivity and precision. A full discussion of performance measures

can be found in Section 4.3.6 as part of a review on methods of real-world testing.

3.3 Approaches to Data Collection

Data are needed to guide the development of, and to evaluate, fall detection technology.
The data required can be divided into two types, namely falls and activities of daily
living (ADL). There are two broad approaches to the collection of data for fall detection
research, one is lab-based simulations and the other is real-world observation. In lab-based
simulations, a predetermined set of activities (e.g. falling, sitting down, walking) are carried
out a set number of times in a controlled environment. In real-world observation sensors
are used to simply observe participants as they follow their usual daily routine; there is no
prescription of activities. Lab-based simulations provide the control needed to record a set
number of activities in a short and predictable time scale, whereas the relative rarity of

falls during an observation study necessitates long data collections.
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Estimates suggest that, due to the rarity of falls, approximately 100,000 days of observation
would be needed to capture 100 falls [17]. This estimate was based on the widely reported
statistic that a third of older adults fall at least once each year (see Section 2.1.2). Even
when only participants identified as having a high fall risk have been included in studies,
the number of days of observation that would have been required to capture 100 falls was
still in the tens of thousands [19,20]. Another challenge with real-world observation is
identifying all the falls which occur so that the data can be accurately labelled (recording
which data samples correspond to which activities). The challenges are the same as those
for determining the circumstances of falls (see Section 2.2.2), namely, not all falls may
be reported and some falls may be reported inaccurately, preventing them from being

identified.

The control afforded by a lab study and a set protocol makes it relatively simple to keep
track of the falls carried out and label the data. Therefore, the datasets in lab-based studies
could be viewed as a more reliable test since there is no risk of falls being mislabelled
as ADL, thereby affecting the results. However, if simulated falls are to be used, it is
important to consider the validity of this approach and to compare real and simulated falls

to understand their differences.

3.4 The Issues with Simulated Falls

Falls are naturally an unexpected and uncontrolled movement and this presents a challenge
in recording them. As discussed above, recording real falls is very time-consuming, therefore
expensive, and as a result, simulated falls have been far more commonly used [7-10].
However, while easier to record, the signals from simulated falls do not necessarily reflect
those of real falls. If a set of simulated falls does not reflect the variation which occurs
in real falls, then the results of experiments using the simulated falls will not have high
external validity. External validity is the extent to which findings can be generalised to

other contexts.

Unlike most human movements, falls are inherently accidental and therefore uncontrolled.
Falls are also highly variable, the exact motion depends on the unique set of circumstances,
the environment and the reactions of the faller. It is the accidental nature of falls which
makes them harder to simulate than other movements. A true simulation of a fall must take

control away from the participant, as a deliberate fall is a misnomer given the definition of
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a fall (see Section 2.1.1). One could imagine developing instruments to artificially initiate
specific types of falls, for example, trips, however, doing so for all types of falls could be a
burden equal to or greater than recording real falls. Ultimately, real falls would still be
required to validate any method for simulating falls, something which would be difficult to

do due to the challenges in recording real falls.

3.4.1 Acted Falls

Almost every study which has used simulated falls for fall detection research has relied
solely on participants acting falls rather than instrumented methods [9]. In these studies,
participants acted falls in a variety of directions, many also asked participants to simulate
specific types such as trips, slips and syncope [7,9,10]. Details of the steps taken to maximise
the realism are often severely lacking in publications and many studies do not provide
any such details. One method which has been employed to improve realism was showing
participants videos of real falls [e.g. 103]. However, this method has not been validated and

S0 it remains unknown how it affects the quality of acted falls and if it improves realism.

A major challenge in simulating falls is ensuring the safety of participants; falls can cause
serious injuries and subjecting participants to such risks is unethical. For this reason,
simulated falls are usually carried out onto a crash mat in an area free from obstacles [7,9,10];
such an environment is different from that in which most real falls occur [76,82]. Be it a
corridor, dining room, bedroom or bathroom, there is typically a wall or furniture nearby.
A fall could occur as a direct result of interaction with the environment, for example, a
trip caused by catching a foot on a piece of furniture or overbalancing when rising from a
chair. The motion of the fall could also be influenced by the environment, for example,
falling against a wall or reaching for a table to help recover balance. These types of falls
are not included in the vast majority of protocols which limits the ecological validity
of the simulated fall datasets; ecological validity meaning the degree to which methods

approximate the real world.

The safety concerns rule out those most likely to need a fall detector, namely frail older
adults, from participating in fall simulations. One factor to consider is that the reactions
of older adults are slowed and their muscles weaker compared to younger adults and this
affects their response to, and movement during, a fall [104,105]. Compared to an older

adult, a young or middle-aged adult would be more able to break a fall, however, the forces
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required to make them fall, rather than stumble, would also be higher. Only two studies
comparing the signals recorded from simulated and real falls have been identified [15,16],

and therefore the understanding of the similarities and differences is limited.

Klenk et al. [15] compared signals recorded with a lumbar-worn accelerometer from five
real and thirty-six simulated backward falls. Two different methods of simulation were
used, in eighteen of the simulated falls participants were asked to fall back as if they were
a frail older person, in the other eighteen simulated falls participants tried not to fall when
released from a backward lean. Both sets of simulations used a crash mat for safety and
were performed by untrained young adults. Klenk et al. [15] found lower variability of the
acceleration signal and reduced maximum jerk (the rate of change of acceleration) when
acting out a fall as compared to experiencing a real fall. Conversely, when released from a

backward lean the maximum jerk was higher than observed in the real falls.

Kangas et al. [16] compared signals recorded with a waist-worn accelerometer from five
real and 238 simulated falls; both the real and simulated falls were of various types. Of the
five real falls, two were in a forward direction, one was sideways, one was backward and
one was a fall out of bed. The simulated falls were acted out by middle-aged participants
using a crash mat. Forty samples of each of the following types were recorded: syncope,
trip, sit on empty air (simulation of missing a chair), slip, lateral fall and roll out of bed;
two of the signals were discarded due to no impact being observable. Kangas et al. [16]
found that not all of the real falls had a high pre-impact velocity that they observed in the
simulations, this was thought to be due to protective responses in the real falls. A further
observation was that there were multiple impacts in the two forward real falls which were

not present in the simulations.

These two studies which have compared signals from real and simulated falls both found
differences, however, the evidence is severely limited with only ten real falls between the
two studies. The findings suggest that results from studies which have tested fall detection
technology using simulated falls may be significantly limited in their validity, although the
extent of this will be heavily dependant on the features of the signal used. It is, therefore,
unlikely that any performance shift between simulated and real falls will be consistent
across systems. The lack of research in this area is indicative of the challenge in recording
real falls, however, if simulated falls are to be used in fall detection research, then validating

the method is required.
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Bagala et al. [17] retested thirteen previously published algorithms which had been designed
to detect falls in signals recorded with an accelerometer attached to the torso (waist or
sternum) and tested using simulated falls and ADL. Twenty-nine real-world fall signals and
three days of free-living activity recorded with a lumbar-worn accelerometer were used for
the retesting of these algorithms. Bagala et al. [17] found the performance was much lower
than had been reported in the tests with simulated falls. Of the algorithms tested the
best was originally published by Bourke et al. [106]. The results from simulated falls were
a sensitivity of one, a specificity of one, and in a test with fifty-two hours of real-world
data, false positives occurred at a rate of 0.6 per day. On the real falls, the sensitivity and
specificity were 0.83 and 0.97 respectively with five false positives per day, an unacceptably

high rate of false positives which would highly likely be viewed a nuisance by users.

Based on the results presented by Bagala et al. [17], it would appear that it is not possible to
predict the drop in classifier performance between simulated and real falls as the drop was
highly variable. The worst performance drops were observed in algorithms first published by
Bourke et al. [107] and Kangas et al. [102]. In the original publication, Bourke et al. [107]
reported a sensitivity of one and a specificity of 0.91, Bagala et al. [17] found with real
falls the algorithm had a sensitivity of one, a specificity of 0.11 and a false positive rate of
sixty-four per day. Kangas et al. [102] reported a sensitivity and specificity of 0.97 and one
respectively; when Bagala et al. [17] retested the algorithm the sensitivity and specificity
dropped to 0.14 and 0.92 respectively with a false positive rate of five per day. This highly
variable drop in performance between simulated and real falls is indicative of poor external
validity and makes it very difficult to establish whether an approach shows potential based

on results from tests with simulations.

3.4.2 Artificially Initiated Falls

Only two research group have been identified which used apparatus to artificially initiate
falls to develop and test fall detection technology. Nyan et al. [108] included two types
of falls in their study: slips and fainting. A pneumatically actuated moveable platform
was used to simulate a slip, participants stood on the platform which then rapidly moved
forward and caused a backwards fall onto a crash mat. No research has been published
which validated this method of initiating trips or which compared the results of testing with
this method to the results of testing with real falls. To simulate fainting, Nyan et al. [108]
relied on the acting approach, they asked participants to relax their body and drop onto
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the crash mat; fainting is one example of a fall which would be especially challenging to
initiate artificially in an ethical manner as the cause is not mechanical, as is the case for

other fall types.

Aziz et al. [103] tested a series of fall detection algorithms using signals recorded with
an array of wearable accelerometers during simulations which included both acted falls
(n=120) and artificially initiated falls (n=90). Slips were initiated by rapidly translating a
carpet on which participants were standing, trips were initiated by pulling taut a tether
attached to participants’ ankle as they walked, and “hit or bump” type falls were initiated
via the investigator applying a sideways force to participants’ torso. Not all falls could
be artificially initiated, so other fall types simulated were simply acted by participants,
these included falls due to a misstep, when rising from a chair, due to incorrect shifting of
body weight and due to loss of consciousness. To improve the realism of the acted falls,

participants were shown videos of real falls and instructed to fall in a similar manner.

As part of the study, Aziz et al. [103] retested a set of five previously published algorithms,
all of which were also tested by Bagala et al. [17]. All algorithms retested showed a drop
in performance compared to the original results, as was found by Bagala et al. [17]. The
algorithm first published by Bourke et al. [106] showed the greatest drop in sensitivity, a
surprising finding given it was the best performing in the tests by Bagala et al. [17]. The
performance dropped from a sensitivity and specificity of one in the original test, to a
sensitivity of 0.7 and specificity of 0.99 when tested by Aziz et al. [103]. The greatest drop
in sensitivity was observed in the acted falls (0.59) rather than the artificially initiated falls
(0.83), suggesting an issue with repeatability rather than an effect of artificially initiating
falls.

The best performing of the retested algorithms was first published by Kangas et al. [102],
conversely, this algorithm was one of the poorest performers in the tests by Bagala et al. [17].
The original results were a sensitivity and specificity of 0.76 and one respectively, Bagala
et al. [17] reported 0.31 and 0.97 respectively and Aziz et al. [103] reported 0.94 and 0.94
respectively. The results of Aziz et al. [103] did not reveal any difference in performance
between the acted and artificially initiated falls (sensitivity of 0.93 and 0.94 respectively).
These findings suggest there may be a serious issue with repeatability; in addition to a lack
of transfer to the real-world, there is a lack of transfer between simulated fall datasets. The
difference in results between the original publications and the work by Aziz et al. [103] is

up to thirty percent, more than enough to mask real differences in performance. It should
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be noted, however, that although the available evidence points to issues with repeatability

the research on this is limited to five algorithms retested twice and further work is needed.

As part of their study, Aziz et al. [103] tested a series of machine learning algorithms,
the best of which, a Support Vector Machine (SVM), was then tested using a set of real
falls [109]. While not the focus of their research, comparison of the results allows one to
assess the transfer of performance between their unique method of simulating falls and real
falls. In the first study, the model was trained on half of the simulated dataset (falls and
ADL) and tested on the other half, whereas in the second study the model was trained on
all the simulated data and tested on the real-world data. When tested on the simulated
data the SVM achieved both a sensitivity and specificity of 0.96, on the real data it achieved
a sensitivity of 0.8 and a specificity of 0.99, equating to 2.2 false positives per day. The
high specificity presented by Aziz et al. [109] can be explained by the method used to
divide the non-fall data; each hour of recording was divided into 2.5 second windows with
a 1.5 second overlap, giving approximately 86,400 events per day, the majority of which
would be signals from sitting or lying and highly unlikely to look like a fall. As was found
by Bagala et al. [17], there is a substantial drop in sensitivity between the simulated and

real datasets suggesting poor external validity.

3.4.3 Summary

There has been a lack of research assessing the validity of simulated falls for the development
and evaluation of fall detection technology. The research to date suggests there are
substantial differences between the signals from a set of simulated falls and a set of real
falls. Due to this, performance results do not transfer from simulation studies to the
real-world data. In addition to the lack of transfer between simulations and the real-world,
the limited evidence available suggests issues with repeatability of simulated falls, as when
algorithms were retested on new data the results were significantly different. Due to the
intricacies of how systems identify fall signals and the lack of research in the area, the shift
in performance is unpredictable and it is therefore challenging to evaluate performance

based on tests with simulations.

Even though a wide range of sensors have been used in fall detection research with simulated
falls, only the validity of simulated falls for accelerometer data has been studied. It is,

therefore unknown if the use of simulated falls is a valid approach to test systems using
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other sensors; repeatability and the transfer to the real-world remain unquantified. Given
the findings of the studies using accelerometers, one could reasonably assume that issues
are likely. The gaps in the research make it practically impossible to interpret the results
from tests of systems and to make predictions of real-world performance. Based on the
major issues with simulated falls which have been found, studies using real-world data
should be the focus of efforts to understand the current state-of-the-art and to gather

evidence to guide further development.

3.5 Overview of System Design

Given the discussions above, this section is limited to a description of the fall detection
approaches which have been presented in the literature, rather than a discussion of which
perform best, and where further development should be focused. Fall detection systems
can be categorised into wearable and non-wearable based on their design. The sub-sections
which follow first provide an overview of the classifier design, then provide an overview of

wearable and non-wearable system designs.

3.5.1 Classification Techniques

A classification technique is a method of assembling a set of rules which can derive a
classification for input data. The input data usually consists of a set of features extracted
from the raw data gathered from the sensory hardware. Features are quantifiable properties
which can be either: (1) real values e.g. the velocity of an object, (2) integer values e.g. the
number of impacts, (3) ordinal e.g. fast, medium or slow walking speed or (4) categorical
e.g. posture classification output from another classifier. The extraction of these features
requires a stage of pre-processing, specific to the collected data and the features to be
extracted from it. This section aims to provide an overview of methods to create a classifier
based on a set of suitable features, the sections which follow provide an overview of the

features which have been extracted from the signals of the commonly used sensors.

The development of a classifier requires expert knowledge of the problem to engineer a
set of features which can be used for classification. The combination of features creates a
multidimensional feature space and each data sample fits somewhere within this. The job

of a classifier is to map areas of the feature space to the output classifications and there
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are many ways in which this can be done. There are two main approaches to classification
which have been used in fall detection, the first is simple combinations of thresholds, the

second is supervised machine learning.

Many of the previous approaches to fall detection, especially those presented in earlier
publications, have been based on simple combinations of thresholds to classify the sensor
signals as either representative of a fall or not a fall [e.g. 17,102,106]. Thresholds are a
method of deriving a binary value from a real, integer or ordinal value and are therefore a
form of feature engineering. If all features are binary i.e. threshold-based, then a classifier
can be written using the boolean operators AND, OR and NOT. The most common method
of combining thresholds is the AND operator, where the output is “fall” if all thresholds
are crossed, thus each additional threshold acts to exclude an area of the feature space.
A typical example of a classifier which uses a simple combination of thresholds is “fall =
high velocity AND high impact AND horizontal posture”, where thresholds on the sensor
signals are used to determine whether the velocity and impact are high and the posture is

horizontal [106].

Statistical techniques can be used to develop more sophisticated classifiers based on
patterns in the underlying data; the use of statistical models and algorithms for tasks
such as classification is known as machine learning. The aspect of machine learning most
relevant to fall detection is supervised learning; in this form, example labelled data are
used to train the classifier. There are many algorithms which can be used for supervised
learning, each of which has parameters that can be used to tweak the learning process. An
example which has been commonly used is the Support Vector Machine (SVM) [12,13], an
SVM uses one or more hyperplanes to divide the feature space and each section is assigned
a classification. Hyperplanes are located such that the distance to the nearest training
sample on each side (which are of different classifications) is maximised. Discussion of the

specifics of each machine learning algorithm is beyond the scope of this chapter.

3.5.2 Wearable Systems

Advancements in microelectromechanical systems have led to very small, low-cost sensors
which have allowed the development of wearable devices suitable for unobtrusive monitoring
over extended periods. As wearable devices move with the user, there is only one restriction

as to where they can be used, namely, some form of wireless connection is required to send
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an alert in the event of a fall. Currently, the portability of devices introduces reliance on
battery power and the associated requirement to recharge; current devices cannot recharge
whilst in use, leading to gaps in the monitoring period. However, technological development
is likely to increase the time between charges, reduce recharging time and potentially could

allow charging from movement or body heat whilst in use.

The greatest issue with wearable devices is that the user must both want and remember
to wear the device. As users interact directly with wearable devices, their views on the
design need to be considered. However, the desires of users must be balanced with the
accuracy of fall detection. Without satisfactory sensitivity and false alarm rates, users
would be unlikely to trust the device and may cease to use it. In addition, without both
high sensitivity and high precision, applications in research such as tracking the occurrence
of falls to assess a fall prevention intervention, would be severely limited. To this end, the
majority of research on wearable fall detection technology has focused on the development
of prototypes and testing of performance rather than establishing users’ views so that the

design can be fine-tuned.

The need to remember to wear the device makes wearable devices most suitable for those
without cognitive impairment. The ability to provide monitoring wherever the wearer goes
makes wearable devices particularity suited to those with good mobility and who can live
independently. Such individuals may present a lower risk of falls and, therefore, one may
assume reduced benefit from monitoring. However, tracking falls and other physical activity
in these individuals could yield a critical understanding of how fall risk and injury progress
over time and how both can be minimised. Thus, wearable devices have an important role
to play in fall detection and fall prevention research. Further, technological developments

may reduce or remove their current limitations.

By far the most common sensors used are accelerometers, with gyroscopes a distant
second, typically used in combination with accelerometers [8]. Due to both the common
use of accelerometers for fall detection and that research on fall detection began with
accelerometers, more detail is provided on them in this section than any other sensor.
Accelerometers measure linear acceleration and provide data on the orientation of the
device with respect to gravity and its movement through space. Gyroscopes measure
angular velocity and can be used to estimate changes in orientation. Triaxial devices (those
which record in three directions) are most common, generally uniaxial or biaxial devices

were only used in early research [8]. The sections which follow provide an overview of the
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signal processing and feature extraction techniques used for fall detection with wearable

SEensors.

3.5.2.1 Accelerometers

Accelerometers measure acceleration which can be reported in units of g (multiples of the
acceleration due to gravity) or meters per second squared. In the design of an accelerometer-
based device, there are two aspects which affect the signal, these are the sampling frequency
and the measurement range. There is a trade-off between sampling frequency and power
consumption as well as data storage capacity and data processing requirements [110];
thus low sampling frequencies are preferable if fall detection accuracy is not impaired.
Studies have used accelerometers with sample frequencies between 6 Hz and 1000 Hz and
measurement ranges between £2 g and £16 g [8]. The optimal sample frequency and range

have not been determined and will depend heavily on the signal features used.

Impact and Free-Fall

A typical example of a fall signal is shown in Figure 3.2, this signal is the resultant
acceleration vector (a,) from an acted fall. The resultant acceleration can be calculated
using Equation 3.1 from the signals recorded with a triaxial accelerometer (ag,a,,a.).
The majority of previous development has been based on the detection of a spike in the
signal which is indicative of an impact [7,8,10]. The trough in the resultant signal which
precedes the impact spike is associated with free-fall; detection of this feature has often
been used in combination with impact [7,8,10]. It should be noted that unlike an object
falling, when a person falls there is typically contact with the ground, furniture or a wall
and therefore, a period of true free-fall is rare. Impact and free-fall are both undoubtedly
associated with the occurrence of a fall and are, perhaps, the most intuitive features to
identify in the signal. For this reason, these features were promoted in early publications

[e.g. 107] and they have remained prominent.

Resultant Acceleration (a,) = /a;? + a,? + a.? (3.1)

Early studies found that the observed peak in the resultant signals recorded with ac-

celerometers attached to the waist, thigh and head were typically much higher in acted
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Figure 3.2: Example accelerometer signal recorded during an acted fall (adapted from
Kangas et al. [102]). The plot shows the resultant acceleration (a,) of the signals recorded
by a triaxial accelerometer during the fall. Data were collected using a device attached to
the waist, the sensor had a range of +12 g and a sampling frequency of 400 Hz.

falls compared to activities of daily living (ADL) (one to three g for ADL versus two to ten
g for falls) [107,111-113]. Based on their findings it was proposed that simple thresholds
could be used to distinguish the impact associated with falls from the signals of other
activities. However, there was overlap between falls and ADL in the peak resultant values
observed. Therefore, impact assessment alone could not fully distinguish between falls and
ADL, and so other features were examined in search of a combination which could better

differentiate falls and ADL.

Bourke et al. [107] proposed the minimum resultant value as a method to detect the
presence of the trough in the signal. Alone, the minimum resultant value was less able to
separate falls from ADL compared to the peak value, however, the combination provides
an expanded characterisation of the signal which may help classify the fall signals. The
combination of thresholds for the minimum and peak resultant values has been used
in a number of studies [e.g. 16,99,106,114,115], typically with other features to improve
classification. These features have been used to generate further features, for example,
Kangas et al. [113] proposed the measurement of time between the start of the fall and
impact, where the start was the nadir (minimum value) of the trough in the resultant

acceleration and impact was the peak.

Accelerometer Orientation

When static a triaxial accelerometer measures the three components of the effect of gravity

acting on its measurement mass, which allows the orientation of the sensor relative to
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the gravity vector to be calculated. However, when in motion the total set of inertial
and gravitational forces acting on the measurement mass is unknown, therefore some
assumptions are made to estimate orientation. For example, the signal is typically low-pass
filtered or averaged in an attempt to remove the part of the signal due to motion. The
orientation of an accelerometer, and thus the orientation of the body-part to which it is
attached, can be used to infer posture. One would expect posture to change during a fall,
for example from standing to lying, where both the torso and thigh would go from upright
to horizontal. For calculations of orientation, the axes labels are important, Figure 3.3

shows the labels used for the equations in this section.

A

A

Figure 3.3: Orientation of accelerometer axes relative to the wearer when standing.

Chen et al. [111] and Brown [116] were the first to propose the use of orientation in fall
detection, both calculated the orientation of a waist-worn accelerometer. Chen et al. [111]
calculated the change in angle between one second before and two seconds after impact
using Equation 3.2. To isolate the gravity component of the signal, Chen et al. [111]
averaged the signals over one second (1.5 - 0.5 s pre and 1.5 - 2.5 s post-impact) and used
the average values in the calculation. Brown [116] calculated the angle with respect to
gravity twelve seconds after impact using Equation 3.3; a Butterworth second-order low-
pass filter was applied prior to calculation of orientation. Sensor orientation based on these
equations has continued to be used with torso worn accelerometers [e.g. 20,99,106,117,118];
the orientation of the torso is particularly suited to the detection of lying, a common
posture following a fall. To the author’s knowledge, the use of accelerometer orientation

with other body locations has not been attempted.

Orientation Change () = cos™" (aw(tl) “Ga(2) + Oy() - Ay(2) T Az 'az(t2)> (3.2)

Qr(t1) * Ap(t2)

a
Orientation with respect to gravity (6) = cos™! <y> (3.3)
a,
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Vertical Acceleration

Kangas et al. [113] were the first to propose the use of vertical acceleration for the detection
of falls. To calculate vertical acceleration, Kangas et al. [113] used Equation 3.4, where G
is the magnitude of the acceleration due to gravity (one g) and @, pynamic) is the resultant
of the dynamic component of the triaxial accelerometer signals. @,(gynamic)y was calculated
using Equation 3.1 with high-pass filtered triaxial accelerometer signals; a second-order
Butterworth filter with a 0.25 Hz cut-off frequency was used to filter the signals. Kangas
et al. [113] did not provide justification for, or validation of, their equation; the equation
does not take orientation into account and it would appear to only be valid if the direction
of the resultant acceleration is directly towards the ground. Vertical acceleration has been
used in further work by the same research group [16,20,99], but has not been adopted by
the wider field. In their systems, Kangas et al. used the peak vertical acceleration as a

feature to distinguish falls from ADL.

a'rz —a, namsic 2— G2
Vertical Acceleration (a,) = (D;G ) (3.4)

Velocity

Calculation of velocity from accelerometer data is, arguably, the most challenging transfor-
mation of those which have been used in fall detection systems. Acceleration is the rate of
change of velocity, thus, change in velocity can be calculated through integration of an
acceleration signal. However, in practice, the calculation of velocity from accelerometer
signals is far more complex. The first issue is that any error or noise in the accelerometer
measurement is amplified in the calculated velocity and causes substantial drift over time.
Absolute velocity is the sum of the initial velocity and the integrated acceleration, thus the

further from the initial known velocity the greater the margin of error.

The second issue is the separation of the constant acceleration due to gravity and the
effects of inertial forces. The magnitude of the acceleration due to gravity is known, but
the relative orientation of the accelerometer is unknown, therefore one cannot simply
subtract the gravitational component from each axis. One must either: (1) high-pass filter
the signals to remove an estimation of the gravitational component for each axis, or (2)
subtract the gravitational component from the resultant acceleration. Neither option is

ideal, option one will introduce a potentially very large margin of error due to imperfect
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removal of the gravitational component. Option two is based on the assumption that the
resultant acceleration is towards the ground, the greater the angle from vertical, the greater

the error in the velocity estimation [112].

The third issue is the effect of acceleration due to angular rotation, something which
is likely to occur during a fall. Rapid rotation of an accelerometer causes acceleration
outwards from the centre of rotation (due to the centrifugal force), but not necessarily
outward movement since in the context of fall detection the device is secured to the
wearer. Therefore, rotation of the accelerometer introduces error in the velocity estimate.
Since accelerometers do not measure rotation, accounting for it is not possible without
additional sensors e.g. gyroscopes. Despite the challenges, several research groups have

devised approaches to calculate velocity for accelerometer-based fall detection systems.

The use of velocity in fall detection was first proposed by Degen et al. [112] for use
with a wrist-worn device. Degen et al. [112] proposed two equations to estimate velocity
(Equations 3.5, 3.6), in the first, the gravitational component is subtracted from the
resultant acceleration prior to integration of the signal, in the second, each accelerometer
axis is integrated separately and the integral of the gravitation component subtracted
from their root sum of squares. Equation 3.5 is less affected by changes in orientation
and rotation of the accelerometer, Equation 3.6 produces a better estimation providing
the accelerometer is not rotated during the fall [112]. The likelihood of rotation during a
fall limits the value of Equation 3.6, and as a result, Equation 3.5 has been the preferred
choice in subsequent research [10]. The calculation of velocity is typically used to establish
the peak velocity within a period of time, usually between the point at which the resultant

acceleration drops below one g and the following impact spike [e.g. 20,99,106,113,119].

Velocity Change (Avy) = /ar —Gdt (3.5)

Velocity Change (Avs) = \/</ as dt>2 + </ a, dt>2 + </ a. dt)2 - /Gdt (3.6)
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3.5.2.2 Gyroscopes

Gyroscopes measure angular velocity (w), commonly reported in degrees per second.
Gyroscopes have a much higher power consumption than accelerometers and therefore are
limited in their application by battery life. Hwang et al. [120] was the first to propose
the use of gyroscopes for fall detection; they combined an accelerometer and gyroscope in
a sternum worn sensor, however, they did not provide details of how these signals were
processed. The first gyroscope signal feature presented in the fall detection literature was
peak angular velocity, which is indicative of a rapid rotation from a vertical to horizontal
posture. Nyan et al. [108] used thresholds on peak angular velocity from three uniaxial
gyroscopes for pre-impact fall detection, the sensors were located at the sternum, waist
and underarm. Peak angular velocity has continued to be used, albeit with slightly altered
signal processing, for example, Bourke and Lyons [119] used the peak of the resultant

angular velocity across the frontal and sagittal planes using a biaxial gyroscope.

Angular acceleration can be calculated through differentiation of angular velocity and the
change in angle can be calculated through integration. Resultant angular velocity can be
calculated using Equation 3.7 where w,, w, and w, are the three axes of the gyroscope
(pitch, roll and yaw respectively). The peak resultant angular acceleration has been used
in several studies [e.g. 121,122]. The resultant change in angle can be calculated using
Equation 3.8, thresholds for angle change have been common in systems which include

gyroscopes [e.g. 122,123].

dw, 2 dw, \ 2 dw, \?
Resultant Angular Acceleration (o) = (dtp) + < dtr> + (dty> (3.7)

2

Resultant Angle Change (Af,) — \/ ( / w, dt>2 4 ( / W, dt) 4 ( / @ dt)2 (3.8)

The combination of a triaxial gyroscope and triaxial accelerometer results in a device with
six degrees of freedom (three linear and three angular). An accelerometer can measure
orientation when static, but not accurately when in motion, a gyroscope can measure
a change in orientation, through the integration of angular velocity, but not absolute

orientation. When combined these two sensor types can be used to far better estimate
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orientation relative to the ground than either can individually. Quaternion filters have been
used to estimate orientation and acceleration relative to an inertial reference frame [122,124].
Vertical velocity can then be calculated through the integration of the vertical acceleration
signal, this method provides greater precision than calculation from the untransformed

accelerometer signals [122,124].

3.5.2.3 Magnetometers

Magnetometers measure the strength of magnetic fields and therefore can be used as an
electronic compass. Using the earth’s magnetic field, which points north, as a reference,
magnetometers can be used to determine orientation in the plane orthogonal to gravity.
However, the earth’s magnetic field is weak in comparison to magnetic fields generated by
other local sources and so the determination of orientation using magnetometers is prone
to error. Magnetometers can be combined with accelerometers and gyroscopes to provide a
more accurate estimate of orientation than either can individually and this is why they have
been used in fall detection systems. The estimation of change in orientation and vertical
motion have been common features in wearable fall detection and a magnetometer can
increase the accuracy of these estimations, albeit at the expense of power consumption and
therefore, battery life; more sensors means greater power draw. The process for combining
magnetometer signals with those from accelerometers and gyroscopes is largely the same
as for combining just accelerometer and gyroscope signals; the use of a quaternion filter

has been a common approach [e.g. 125,126].

3.5.2.4 Atmospheric Pressure Sensors

When one falls their centre of mass moves downwards, therefore, the ability to measure the
change in height or altitude could prove useful in fall detection. Air pressure decreases with
altitude and so its measurement can be used to estimate the drop associated with a fall.
Bianchi et al. [117] pioneered the use of atmospheric air pressure sensors (barometers) for
fall detection, their proposed system combined the pressure sensor and an accelerometer in
a waist-worn device. The pressure sensor had a resolution of equivalent to approximately
ten centimetres at sea level, just enough to determine if the wearer had fallen to the ground.
Bianchi et al. [117] calculated change in pressure over four seconds and then normalised by

the wearer’s height.
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3.5.2.5 Hardware Design

The design of fall detection systems is an active area of research and so, naturally, most
systems presented in the literature are prototypes and user’s perspective on their design
has not been established. The priority first and foremost has been on developing a solution
with suitable performance, rather than packaging the hardware into a desirable device.
There are two aspects which are largely fixed at the prototype stage, these are the number

and location of sensors.

The vast majority of proposed systems have used only a single device, as this is thought to
be more acceptable to users [8-10]. A system which relies upon multiple devices would
be less usable; if the user were to forget to wear one of the devices the systems would not
function properly. Fall detection systems must be simple and unobtrusive to facilitate
continuous wear; the use of a single, preferably small, device is integral to achieving this.
There have been studies which have used multiple sensors, however, these typically aim to

identify the location which maximises performance [e.g. 113].

By far the most common choice of location is the waist, the upper torso has also been a
common choice [8-10]. The waist is popular for two reasons, (1) it is close to the centre of
mass which is thought to be optimal for detecting a movement of the body towards the
ground, and (2) the ability to attach a device to a belt is convenient. A wrist-worn device
is potentially preferable to users due to familiarity with wrist-worn watches, however, the
wrist moves around a great deal during daily activities and is prone to knocks which could
be mistaken for an impact due to a fall; the wrist, therefore, presents additional challenges
and has been a less common choice [8-10]. The upper torso has been used as it is thought

to be a good location for measuring angular velocities and the detection of lying postures.

The commercially available fall detection systems mainly use an accelerometer either worn
as a pendant, on the waist or wrist [10]. The devices are typically lightweight (<100 g),
less than 100 millimetres in length, 50 millimetres in width and 20 millimetres in-depth
and have a battery life ranging from one day to two years. Push buttons are common on
commercial devices to allow the user to request assistance for non-fall related reasons or in
the event of an undetected fall. A further use of the push-button is to allow the user to

cancel an alert in the event of a false positive fall alert.
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3.5.2.6 Summary

Since 1998 there have been over 200 published articles on wearable fall detection systems
[7-12]. A wide range of approaches have been proposed in the literature, however the central
themes of impact, postural change and vertical motion run throughout the field of research.
This section has provided an overview of the main sensor types along with the processing of
their signals. The vast number of combinations of sensors and signal processing techniques
presented in the literature prohibit a complete rundown of approaches, however, the core
of the research has been characterised. Through the combination of techniques described
in this section, it is possible to arrive at almost any of the previous approaches to wearable

fall detection presented in the literature.

3.5.3 Non-Wearable Systems

Non-wearable systems are those which do not travel on one’s person, usually, non-wearable
systems are installed in fixed positions around the home or a care facility. To be effective
non-wearable systems are reliant on the user being inside their measurement range, for
example, they cannot monitor a user when out shopping. For this reason, it could be
argued that non-wearable fall detectors are most suitable for those who do not frequently
go out unaccompanied. Furniture could also block the sensor’s view unless their position is
carefully considered or multiple sensors are used. Research has suggested that a limited
capture area may lead users to feel confined to the known capture space, thereby affecting

their daily activities [127], therefore full coverage of a user’s living space is highly desirable.

A fixed position is simultaneously the biggest advantage and disadvantage of non-wearable
devices; while a fixed position limits the area a system can cover, it also removes the
need for user interaction. Naturally, with non-wearable devices the user does not have
to remember to wear a device, thereby reducing, if not removing, the problems with user
compliance that can occur with wearable sensors. Non-wearable devices can be larger than
wearable ones, use wired connections for communication and use mains power, removing the
need for charging and reducing the risk of connection problems. Finally, due to monitoring
a space rather than a single wearer, non-wearable devices can monitor multiple people,
although this also increases the complexity of software required as each person needs to
be tracked individually. However, the ability to monitor multiple users with each device

could mitigate some of the added cost of the multiple devices required to cover a space,
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particularly in care facilities. The sub-sections which follow provide an overview of common

non-wearable sensors and the associated signal processing.

3.5.3.1 Computer Vision

Computer vision is an active field of research concerned with automatic extraction of
information from images or sequences of images (video) to allow computers to understand a
scene; this includes three-dimensional analysis using images from multiple sensors. Vision-
based systems have been the most common type of non-wearable system, historically video
cameras have been the most common choice of sensor [7,9,10]. The Kinect™ device has
been a common choice in recent fall detection studies [12], the device combines two cameras,
one standard visible light video camera and one infra-red depth-sensing camera. Since 2014,
camera-based systems have received less attention in the academic literature, featuring in
only two of the twenty most cited articles on fall detection published between 2014 and

2018, conversely, the Kinect device featured in nine of the articles [12].

One potential advantage of camera-based solutions is the possibility of utilising existing
camera networks installed in care facilities. However, as discussed in section 2.2.2, there
are privacy concerns associated with installing cameras in private areas such as bedrooms
and bathrooms, where a high proportion of falls occur. Unless the privacy concerns can be
addressed, camera-based systems are likely to miss a large proportion of falls. Since for
computer vision applications the images are processed without human interaction, it is
possible to preserve privacy, however, appropriate protections will be needed to prevent
misuse. To raise an alarm, a fall detection system must have a connection to the outside

world, thus it could be hacked and private images stolen.

The processing required for computer vision is arguably the most complex of all the
approaches to fall detection. Firstly, a video stream contains more data than other
sensor signals such as accelerometers; a triaxial accelerometer produces three signals, by
comparison, a video feed typically contains hundreds of thousands, if not millions, of
pixels. Secondly, in a normal living space, the observed scene will contain many items and
potentially multiple people which may cause interference, for example, occlusion of the
user. The identification of a person falling or who has fallen within a busy scene, and to
do so independent of lighting conditions, is far from a simple task and there have been
a variety of approaches presented in the literature. A full discussion of the intricacies of

the feature engineering for each approach is beyond the scope of this section, however, an
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introduction to two common approaches, namely bounding boxes and measurement of the

distance from the floor, are provided below as representative examples.

Shape Tracking via Bounding Boxes

Typically the first step in fall detection using cameras is to identify the people in the
scene so that they can be tracked, this is often referred to as foreground extraction.
People and their movements account for the vast majority of change in a scene, therefore
the static parts make up the background, whereas the parts which change make up the
foreground. One option is to record a series of images of the scene with no people present
to capture the background and then subtract this from each subsequent image to reveal
the foreground [e.g. 128]. While this simple method works in a laboratory test, in the real
world background objects get moved as part of daily life, thus a method to continually
update the stored background is needed. Motion segmentation techniques can be used
to identify the moving parts of the scene so that the background and foreground can be
separated [e.g. 129-131]. Further image processing can be used to remove shadows, the
effect of changes in illumination and other noise so that only the silhouettes of moving

objects remain, which are assumed to be people.

A postural change is a characteristic common to almost all falls, the notable exception being
a fall out of bed which may be from lying to lying. Therefore, just as within the field of
wearable fall detection, the analysis of posture has been important in computer vision-based
fall detection [13,132]. Once people in the scene are identified their movements can be
tracked using a bounding box, the smallest box which can contain their entire silhouette.
The bounding box provides a simpler, more robust and computationally efficient framework
for feature engineering compared to tracking the precise shape of a silhouette [129]; an
ellipse can be used as an alternative to a box [e.g. 133]. Limits can be placed on the
size of bounding boxes to exclude objects which are just residual noise from imperfect
identification of people [e.g. 128]. Features extracted from bounding boxes are typically
height, width, aspect ratio and orientation, it is the changes in these parameters over a

series of images which are used to identify falls [e.g. 128,129,131].

Measurement of Vertical Motion

Based on the definition of a fall (see Section 2.1.1), there must be a descent of the centre

of mass, therefore the ability to measure vertical movement of the body is valuable in



CHAPTER 3. PREVIOUS APPROACHES TO FALL DETECTION 46

fall detection. Early work on computer vision approaches to tracking motion towards the
floor used calibrated video cameras [e.g. 134], however, depth cameras such as the Kinect
have become far more common as their availability has increased [12,132]. Uncalibrated
two-dimensional cameras cannot be used to measure motion as movements appear larger
when close to the camera, calibration allows three-dimensional position to be estimated
using normal video cameras [134]. The extra information provided by depth cameras allows
motion to be tracked with only a single device and also better separation of the foreground
from the background, thereby making person identification more accurate [135]. Following
person identification, the distance of their central point from the ground can be measured
and from this, vertical displacement and velocity calculated. Systems have been designed
to detect falls using combinations of thresholds for vertical displacement, vertical velocity

and distance from the floor [134-138].

3.5.3.2 Sound and Vibration

Sound and vibration-based fall detection systems aim to detect falls via impact detection,
based on the kinetic energy of a faller being transferred to vibrations in the floor and air
(sound) upon impact. Vibrations travelling through the floor have been recorded, for fall
detection, with both piezoelectric sensors and accelerometers, sound has been recorded
with microphones [139]. Spectral analysis has been the predominant basis for feature
engineering of sound and vibration-based fall detection systems [139]. The main challenge
for this type of system is that sound and vibration is heavily influenced by the construction
of the floor [140], thus it is difficult to produce a system which performs in all spaces.
Another challenge is filtering other sources of noise and vibration, such as that produced
by a television or radio; noisy environments may mask the signal from a fall and may cause
false alarms. There are some privacy concerns with the use of microphones as personal
conversations could be recorded, therefore appropriate safeguards need to be included in

the design of these systems.

3.5.3.3 Radar

The use of radar systems for fall detection is a comparatively new area of research which
aims to develop non-wearable fall detection which is not subject to the privacy concerns
present with other non-wearable approaches [12]. Radar systems use radio waves to

determine the distance and velocity of objects; they emit electromagnetic waves which
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reflect off objects and are then picked up by a receiver. The most common type of radar
used is the Doppler radar, these emit a wave with a set frequency and use the shift in
frequency of the reflection to measure the velocity of an object [12,139,141]. Radars are
most sensitive to motion in the direction of the emitted waves and least sensitive to
perpendicular motion [139], therefore placement is critical. Ceiling mounted Doppler radars

have been used to measure vertical motion for fall detection [e.g. 142,143].

3.5.3.4 Summary

There are both benefits and disadvantages of non-wearable approaches to fall detection
compared to wearable ones. Their main advantage is that users do not have to remember
to wear or charge a device, which makes them particularly suitable for those with cognitive
impairment. The main disadvantage of non-wearable approaches is their limited capture
area and inability to function wherever the user goes. The complexity of signal processing
required for non-wearable approaches has typically been greater than that for wearable
approaches, this has made them less viable as a real-time fall detection solution. Continued
improvements in computing power and sensor technology have increased their viability and
the increase in the volume of research on non-wearable fall detection in recent years reflects
this [12]. Historically non-wearable approaches have been affected by privacy concerns
surrounding the placement of cameras in private areas, however new approaches such as

the use of radar present considerably less risk to privacy.

3.6 Current State-of-the-Art of Fall Detection

Over the last two decades, there has been a great deal of research conducted into fall
detection systems and a wide range of sensors and signal processing methods have been
tested. The vast majority of testing has used laboratory-based simulations of falls (primarily
acting), an approach which the limited evidence available suggests suffers from poor external
validity (Section 3.4). Results of tests using simulated falls have been shown not to transfer
to real-world contexts, severely limiting the insight which can be gained from this research;
when systems perform perfectly in controlled tests but badly in the real-world, further
development is hampered. There has been a lack of research into methods of simulating
falls which provide higher validity and this has resulted in little improvement in testing

methods. Instead, the focus has begun to shift towards real-world data, however, due to
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the challenges associated with recording real falls this shift has been slow, many groups
are still reliant on simulation data and the real-world datasets which have been collected

are small [144].

Due to the poor validity of simulated fall studies, understanding of the current state-of-the-
art performance can only be gained from the real-world studies. However, there is value
in knowledge of the previously proposed approaches when planning further work, even if
their true performance remains unknown. Therefore, the following subsections provide a
summary of previous approaches to fall detection and a discussion of the available results

from real-world testing.

3.6.1 Wearable Versus Non-Wearable

There are a set of common themes which have arisen in the review of previous approaches
and apply to both wearable and non-wearable sensors; these common themes are impact,
vertical motion and posture change. Although each sensor type may be more suited to the
detection of aspects which fall under certain themes, all approaches make measurements
which fall into at least one of these themes. The emergence of these themes is perhaps
unsurprising given that a fall is an accidental downward movement resulting in a collision
with the floor or another surface. Nevertheless, the emergence of these themes highlights
the common ground shared across the field of fall detection. To guide future research and
development it is important to develop an understanding of how falls and other movements

differ and establish the relative importance of each of these themes.

An understanding of the differences between falls and other movements is critical to the
development of fall detection technology. While one may have an understanding of what a
fall is, this is not enough to be able to isolate them from the vast array of other movements
made in everyday life; only through observation of real-life motion and routines can the
isolating factors be established. Research in the area could be conducted with any of the
sensors used in fall detection; in fact, consideration of evidence produced from studies using
different approaches is important to ensure conclusions are valid. With an understanding
of how falls are unique, further development can be evidence-based. Without an evidence
base on which to make design decisions, trial and error is the only option. Given the
current state of the field, sensor choice, be it wearable or non-wearable, and the type of

classification algorithm used to combine signal features are both far less important than
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the identification of features which can effectively discriminate between falls and other

movements.

3.6.2 Results of Real-World Evaluation

Research into fall detection using real-world data is at an embryonic stage and there are
variations in the methods used to test systems which limit the ability to make robust
comparisons between the results. Nevertheless, the studies using real-world data to test
fall detection systems provide the only evidence to establish the current state of the art in
terms of system performance. Due to the use of different datasets and variations in methods
(see Chapter 4), it is not possible to establish which systems are the best performing; one
can only establish the range in performance which has been reported as an estimate of the
current state of the art. The results presented below were extracted from articles identified
through a systematic search of real-world fall detection technology tests (Chapter 4; for
details of the search see Table 4.1 and for details of the studies reviewed see Table 4.2).

Reported sensitivities of wearable devices range from 0.14 [17] to 1.0 [17,145-147], precision
has ranged from 0.01 [17,18,20,148] to 0.89 [122]. The reported sensitivity of non-wearable
systems ranged between 0.19 [149] and 1.0 [142], precision ranged between 0.003 [149] and
0.37 [150]. Generally, those which achieved high sensitivity had a low precision and vice
versa, the exception was Bourke et al. [122] who tested twelve variations of combinations of
features, the best of which achieved a sensitivity of 0.88 and a precision of 0.87. However,
the generalisability of the results presented by Bourke et al. [122] is highly questionable,
they used a synthetic oversampling technique to boost the fall samples from 89 to 367 and
then used ten-fold cross-validation to train and test decision tree classifiers. Therefore,
the test data was not independent of the training data, so the classifier may be overfitted
to the training data, as without independent training and testing overfitting cannot be

detected.

Two studies tested wearable devices developed by commercial companies, these studies
provide insight into the performance of the systems available commercially. Lipsitz et al. [21]
tested a pendant fall detection device produced by Royal Philips (Amsterdam, Netherlands);
the device used an accelerometer and proprietary signal processing. The study used data
collected with sixty-two participants over 9,300 days which contained eighty-nine falls; it is

to date the largest real-world study of a wearable fall detection device. Of the eighty-nine
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falls, seventeen were detected by the device (sensitivity = 0.19), a total of 128 events were
detected as falls (precision = 0.13), the F-measure score was 0.16. Chaudhuri et al. [18]
conducted a test of an unnamed proprietary wearable fall alarm which contained an
accelerometer, gyroscope and magnetometer. A total of 4 falls occurred during the 1,452
days the device was used, one fall was detected (sensitivity = 0.25) and eighty-four alarms
were raised (precision = 0.01), the F-measure score was 0.03. Further details of these studies
can be found in Table 4.2. Neither of these studies made it clear whether these devices
were commercially available or prototypes, however, they are the only real-world studies of
devices produced by commercial companies. The results of the studies suggest that the
performance of commercially available devices is extremely poor, with both studies finding
that the devices failed to detect the majority of falls and made many more false-positive

detections than fall detections.

3.6.3 Conclusions

In real-world tests the performance of fall detection technology has been poor, systems
have achieved either high sensitivity or high precision, but not both. With only limited
independent testing of commercial devices, one cannot be certain of the current level of
performance for commercially available systems, however, there is no evidence to suggest
that they perform reliably. With low sensitivity, users cannot trust the system to raise an
alarm when needed and may discontinue use of the system. With low precision it is more
likely that an alarm is a false positive rather than a real fall, this is likely to lead to alarm
fatigue in those responding. Alarm fatigue is a desensitisation to alarms leading to slow
or no response, it is caused by a high number of false alarms; in medical contexts patient
deaths have been attributed to a failure to respond as a result of alarm fatigue [151,152].
For research into the occurrence and causes of falls the current systems remain unusable,

their performance is far too poor.

3.7 Proposed Framework for Further Development of
Fall Detection Technology

The prevailing approach to developing fall detection technology has been to use simulated

falls and then, where possible, to test performance on real-world data [e.g. 19,20,109].
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The evidence has shown that simulated data is a poor substitute for real-world data
(Section 3.4); we have been able to robustly detect simulated falls for over a decade, but
during this time improvements in real-world fall detection have been limited. Due to
the challenges in collecting real-world fall data (Section 3.3), relatively few systems have
been tested on real-world data (see Chapter 4). Typically, studies have focused on testing
classifiers which are in some way novel; only a small minority have presented an analysis of
features extracted from the signals to assess if there is a difference between falls and ADL
for those features [e.g. 113,114]. Therefore, the approach of the field as a whole could be
characterised as trial and error, where complete systems or classifiers are tested as a single

unit and it is not clear how performance can be improved following each test.

Due to the challenges in collecting real-world data, its supply has been limited and going
forward this is likely to be the main factor which limits progress on fall detection. Therefore,
real-world data is highly valuable and one must ensure the maximum knowledge is gained
from the data available. Simply testing a novel system design does not extract a great
deal of knowledge from the data, only how well that system performs in comparison to
others (although even this is often troublesome, see Chapter 4 for details). Assuming test
results are comparable, only the performance change introduced by the sum of all the
differences is quantified. Thus, where there is more than one difference between systems,
one cannot ascertain which were beneficial, detrimental or had no effect. To test every
potential combination of features in turn and compare the performance is unrealistic,
testing needs to be highly targeted and this requires a greater knowledge of real-world falls

than currently exists.

To identify how performance can be improved, one must examine the components of the
system; for fall detection the critical components are the features extracted from the sensor
signals and used for classification. If there is not a good distinction between falls and ADL
for the features used, then no method of combining them in a classifier will yield good
performance. If no features can be found that yield good separation, then the hardware
setup used to record the signals must be changed, ideally based on knowledge gained
from the prior analysis. It is important to note that providing the features are based on
physical characteristics of motion, the results of studies on new features have the potential
to provide insights relevant to many fall detection approaches, be they computer vision,
thigh-worn or torso-worn accelerometer, or any other approach. In addition, the more
knowledge gathered on the characteristics of falls the more likely it is that new, better

methods of simulating falls can be developed. For example, if a study using a thigh-worn
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accelerometer found falls to have multiple impacts, but these were rare for ADL, this would

benefit more than just those aiming to detect falls with a thigh-worn accelerometer.

The proposed approach to developing fall detection technology is, conversely, to not focus
per se, on building classifiers or fall detection systems. Instead, the focus should be on
the study of the characteristics of falls and how they are different from other movements.
There is a need to test systems to measure progress in fall detection performance, however,
such testing should follow a series of studies of real-world fall and ADL signals to gather
evidence which can inform the new design. In addition, following a performance test, it
is important to go back and study why false positives and negatives occurred, and to
identify where the next stage of development should focus. Thus, it is proposed that the
development of fall detection technology should be an iterative process; Figure 3.4 shows a

diagram of a proposed iterative development process.

Develop New

/’_' Classifier \‘
Test If New Test
Features Are Performance
Useful _\
Develop New Understand
Feature Why Detection
Extraction Errors
Techniques Occurred

Figure 3.4: Flow diagram of iterative development for fall detection using real-world data.

The critical aspects for improving performance are the feedback from a test of performance
through to the development and testing of new features. It is these aspects which have
been lacking in the fall detection literature, hence the aim of the research for this thesis
was to identify why existing wearable fall detection technology had not achieved acceptable
performance and where further development should focus. The identification of these
missing elements in the fall detection research, and the recommendation of a new framework
for the development of fall detection technology, fulfils the first sub-aim of this research: to

formulate a new framework for the development of fall detection technology.



Chapter 4

Methods for the Real-World
Evaluation of Fall Detection

Technology

Given the previously highlighted issues with simulations of falls (Section 3.4), real-world
data is potentially the only source of reliable results for the performance of fall detection
technology. Thus, it is crucial to understand the methods used for testing fall detection
technology using real-world data so that results can be properly interpreted. The study
presented in this chapter aimed to identify how fall detection performance should be
quantified, which was the second sub-aim of the research for this thesis. During the time
of PhD candidature, the author published a review on the methods for the real-world
evaluation of fall detection technology [144], the publication makes up the entirety of this

chapter.

4.1 Introduction

Falls in older adults and their related consequences pose a major healthcare challenge that
is set to grow over the coming decades [1]. Approximately thirty percent of those over the

age of sixty-five experience one or more falls each year, which rises to around forty-five

53



CHAPTER 4. METHODS FOR REAL-WORLD EVALUATION 54

percent in those over eighty [27]. Roughly six percent of older adult falls result in fractured
bones [153,154]. Falls are estimated to cost the UK over one billion pounds each year, with

fractures being the most costly fall related injury [60].

Even when the injuries are not so serious, fallers often struggle to get up unaided [3,155],
sometimes leading to a ‘long-lie’ where the faller remains trapped on the floor for an
extended period of time. Long-lies can lead to dehydration, pressure sores, pneumonia,
hypothermia and death [4-6,44]. Further to the physical consequences, the fear of falling
can impact on older adults’ quality of life. A fear of falling is associated with a decline in
physical and mental health, and an increased risk of falling [46]. Estimates suggest that
between twenty-five and fifty percent of older adults are fearful of falling and half of these

will limit their activities as a result [47,48].

One method used to address the severe consequences associated with falling is the use of a
push button alarm system, which can ensure help is received quickly, and reduce the risk
of a long-lie. However, studies have shown that eighty percent of fallers do not or cannot
activate their alarm following a fall, meaning an alternative approach is needed [3,93]. As
a result, there has been extensive research into automatic detection of falls and a broad

range of approaches have been developed.

In order to understand the efficacy of the automated fall detection systems, it is important
to have a robust method of testing performance. Key to the assessment of these systems
is the evaluation of reproducibility and experimental validity [156]. There are two types
of experimental validity: internal and external. Internal validity is the extent to which
the results truly reflect the capability of the tested system, and were not influenced by
other confounding factors or systematic errors. External validity is the extent to which the

results can be generalised across people and environments.

External validity has been a central issue in tests of fall detection systems. The poor
external validity has been caused by the use of laboratory simulated falls conducted by
young healthy adults. The accidental, unexpected and uncontrolled nature of a fall makes
it challenging to simulate. When a person simulates a fall the movement is expected,
deliberate and carried out in a safe space where injury is highly unlikely. Therefore, reflexes
to prevent or lessen the severity of the fall are likely to be suppressed leading to a different
pattern of movement. When thirteen previously published approaches were tested using

real-world fall data, the performance was found to be considerably worse (mean sensitivity
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and specificity of 0.57 and 0.83, respectively) than had originally been reported from testing

using simulations (mean sensitivity and specificity of 0.91 and 0.99, respectively) [17].

Despite the challenge associated with simulating falls, the vast majority of studies have
used simulated fall data (for recent reviews see [8,9]). The use of laboratory simulated falls
has been an accepted approach due to the challenge associated with recording real-world
falls. The rarity of falls means that recording them is both costly and time consuming.
Bagala et al. [17] estimated that to collect 100 falls, 100,000 days of activity would need to
be recorded, assuming a fall incidence of one fall per person every three years. Despite this
challenge, the focus is now moving to real-world fall data due to the external validity issues
inherent in simulated fall based testing. Real-world data, by its very nature provides high

ecological validity and therefore contributes to higher external validity.

The use of real-world data, while a significant step forward, does not make the test robust.
Other factors such as cohort selection and size are important for external validity. In
addition, the use of real-world data does not increase the internal validity, in fact, the
level of variation and abundance of confounding factors creates a greater risk of systematic
errors. Therefore, careful consideration and planning of both the data collection and test

procedure is vital to ensure the validity of results.

All methods of testing fall detection systems share the same basic framework which shapes
the whole method from data collection through to data processing. Therefore, a basic
understanding of this framework is needed to understand the best method to evaluate fall
detector performance. Fall detection is a case of binary classification; each movement is
classified as either a fall (positive case) or non-fall (negative case). For each movement

there are four possible outcomes:

o True Positive (TP) — Correctly detected fall
o True Negative (TN) — Non-fall movement not detected as a fall
o False Positive (FP) — Classified as a fall when none occurred

o False Negative (FN) — A fall which was not detected

These four values can be represented as a table comparing the actual data with the system’s
predictions, this is known as a confusion matrix (Figure 4.1). All further measures can be
calculated from either a complete confusion matrix or a subset of one. Therefore, studies
should aim to collect data and process it in such a way that as many of these four values

as possible can be calculated.
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Predicted
Fall Non-Fall
True False No. Actual
Fall Positives Negatives Falls
(TP) (FN) (P)
Actual

False True No. Actual
Non-Fall Positives Negatives Non-Falls

(FP) (TN) (N)

Figure 4.1: Example confusion matrix.

The aim of this review is to identify the methods which have previously been used to
evaluate fall detector performance using real-world data and investigate how the differences
in these methods of evaluation effect the results. The review covers the methods of data
collection and processing as well as the performance measures which have been used for
evaluation. In this review, we aim to identify the strengths and limitations of current

approaches and propose a more robust approach of evaluation based on the findings.

4.2 Methods

A systematic search was conducted in August 2017 and repeated in March 2018, using
the following on-line literature databases: Medline, Cinahl, Pubmed, Web of Science and
IEEE Xplore. The search aimed to find all records where a fall detection technology
(hardware or software) had been tested using real-world falls. The search strategy used is
shown in Table 4.1. Papers were excluded where no fall detection technology was tested,
where tests used fall simulations, or the technology was not aimed at older adults. Only

articles available in English were included.

The studies which met the inclusion criteria were assessed with regard to the method used
to test the fall detection system. The focus was to assess the robustness of these tests
and we therefore did not assess the systems’ design or performance. For a comparison
of wearable systems see [17] and for a comparison of non-wearable systems see [143]. All

included studies tested fall detection technology using real-world fall data. Where studies
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reported on both tests using simulated data and tests using real-world data, only the

methods used for the real-world portion of the data were considered.

Table 4.1: Example Search Strategy for PubMed.

fall*-detect*|Title/ Abstract] OR fall*-sensor*[Title/Abstract] OR
fall*-alarm*|Title/abstract]

AND real-world[Title/Abstract] OR real-life[Title/Abstract] OR
free-living[Title/Abstract] OR community-dwelling[Title/ Abstract] OR

home-dwelling[Title/ Abstract] OR domestic-environment[Title/Abstract] OR
long-term-care[Title/Abstract] OR care-home[Title/Abstract] OR
nursing-home[Title/ Abstract] OR hospital[Title/ Abstract]

First we reviewed the information studies provided about their participants, how they
collected data and the volume of data collected. Next, we examined the methods used to
identify fall events and to process the data. Finally, we evaluated the use of each applicable

performance measure.

4.3 Results

The systematic search returned 259 unique records. Following application of the selection
criteria, twenty-two papers were identified for analysis. The full breakdown of the literature
identification process, including the reasons for exclusion, is shown in Figure 4.2. Table 4.2
provides a breakdown of the twenty-two included papers with regard to participant groups,
devices used, participant numbers, numbers of recorded falls, the quantity and processing
of non-fall data and finally, the performance measures reported. The following sections

provide further detail to complement Table 4.2.

4.3.1 Participant Descriptions

The level of detail provided about participants varied considerably. All but three [145-147]
of the articles stated whether participants were community dwelling, in long-term care or
hospital patients. Five articles did not provide any additional descriptive information on

the participants [18,122,142,147,157]. The other eighteen articles describe participant’s
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Figure 4.2: Flow diagram of the systematic search.

age, twelve also provide gender information and six provide details of height and weight
or BMI [17,19,21,145,158,159]. Four articles provided information on specific medical
conditions, three recruited participants with Progressive Supranuclear Palsy [17,109,148]
and one included a single older adult with Parkinson’s disease [145]. Lipsitz et al. [21]
provided the most in-depth description with a breakdown of the proportion of participants
with a range of twenty-one comorbidities. Eight articles reported results of mobility
assessments [19,20,109,145,146,149,160,161], three articles provided information on walking
aid use [143,149,160] and three articles additionally reported results of cognitive assessments
[19,20,161]. None of the other fifteen articles reported standardised measures of cognitive

or mobility status.



Table 4.2: Summary of papers evaluating fall detection systems using real-world falls.

Quantity of Non-Fall

Author Participant Group Addltlon.al Device Type Nur{lt')er of  Number Data and Method of Performance
Information Participants  of Falls . Measures
Preparation
Aziz Residents of a Age, mobility  Accelerometer 9 1 214 h  Data were Sensitivity,
[109] long-term care assessment divided into Specificity,
facility who had 2.5 s time FPRT, TP,
experienced at least windows FP, FN
one fall in the with a 1.5 s
previous year overlap. The
30 s of dat
Patients at a hospital Age Accelerometer 10 9 178 h P 5 o cata
L ollowing a
geriatrics department
. i fall event
with Progressive
Supranuclear Pals were
up Y ignored.
Bagala Patients with Age, gender, Accelerometer 9 29 A total of 168 h from Sensitivity,
[17] Progressive height, weight the seven of the participants. Specificity,
g g g Yy
Supranuclear Palsy number Recordings were divided FPRT,
. . from each into 60 s windows and Precision,
Community dwelling None Accelerometer 1 .
group only the 1170 windows NPV,
older adult
was not where Accuracy
provided max(RSS) —min(RSS) >

1.01 g were included
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Table 4.2: Cont.

Quantity of Non-Fall

Author Participant Group Addltlon.al Device Type Nur{lt')er of Number Data and Method of Performance
Information Participants  of Falls P . Measures
reparation
Bloch Patients at a Age Working alarm 10 8 A total of 196 days. Sensitivity,
[162] geriatric composed Data was processed Specificity,
rehabilitation ward of an on-line and the analysis Precision,
with an identified accelerometer compared the alarm NPV, TP
risk of falling and infrared times to reported fall
sensor times. Assumed 30 fall
like events per day to
estimate of the number
of non-fall events.
Bourke Patients at a None Accelerometer 42 89 A total of 3466 events Sensitivity,
[122] geriatric and gyroscope extracted using a Specificity,
rehabilitation unit dynamic detection Accuracy,
algorithm and further ROC AUC

reduced to 367 events
where: max(RSS) > 1.05
g Total length of
recorded data was not
given.
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Table 4.2: Cont.

Quantity of Non-Fall

Author Participant Group Addltlorfal Device Type Nur{lt')er of Number Data and Method of Performance
Information Participants  of Falls P . Measures
reparation
Chaudhuri Community dwelling None Working alarm 18 4 A total of 1452.6 days. Sensitivity,
[18] older adults consisting Details of data Specificity,
of an preparation not given. Precision,
accelerometer, NPV,
magnetometer, Confusion
and gyroscope Matrix
Chen Community dwelling Age, gender,  Accelerometer 22 22 A total of 22 events. Sensitivity,
[158] older adults living in  height, weight Only data from a 1200 s FPR,
geriatric window around the falls Accuracy,
rehabilitation centres was used, data up to 1 s Confusion
before each fall were matrix
used as non-fall events.
Debard Older adults Age Camera 4 25 A total of 14,000 h. Sensitivity,
[150] Only data for the 20 min Specificity,
up to and including the Precision,
falls were used, this was Confusion
divided into 2 min matrix

windows.
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Table 4.2: Cont.

Quantity of Non-Fall

Author Participant Group Addltlorfal Device Type Nur{lt')er of Number Data and Method of Performance
Information Participants  of Falls P . Measures
reparation
Debard Older persons Age, mobility 7 29 Over 21,000 h recorded. Sensitivity,
[149] (two community assessment, Only data from the 24 h Precision,
dwelling, one in a walking aid prior to each fall were PR Curve,
nursing home and use used which was divided PR AUC, TP,
four in assisted into 1 s windows. FP, FN
living), two of which
did not fall and were
excluded
Debard Older persons Age, mobility 7 29 Over 21,000 h recorded. Sensitivity,
[160] (two community assessment, Only data from the 24 h Precision,
dwelling, one in a walking aid prior to each fall were PR Curve,
nursing home and use used which was divided PR AUC,
four in assisted into 1 s windows. TP, FP, FN,
living), two of which FPRT
did not fall and were
excluded
Feldwieser ~Community dwelling Age, height, Accelerometer 28 12 A total of 1225.7 days TP, FP,
[19] older adults weight, (average daily user wear FPRT
mobility time 8.1 & 4.8 h).
assessments, Details of data
cognitive preparation not given.
assessments
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Table 4.2: Cont.

Quantity of Non-Fall

Author Participant Group Addltlorfal Device Type Nur{lt')er of Number Data and Method of Performance
Information Participants  of Falls P . Measures
reparation
Gietzelt Older adults with Age, gender, Accelerometer 3 4 A total of 10 days. TP, FPRT
[161] recurrent falls mobility and camera Details of data
assessments, preparation not given.
cognitive
assessments
Godfrey Older adult with Age, BMI, Accelerometer 1 1 A total of 7 days. No TP, FPRT
[145] Parkinson’s disease balance preparatory steps.
assessment
Hu [159] Community dwelling Age, gender, Accelerometer 5 20 A total of 70 days, Sensitivity,
older adults with a height, weight  and Gyroscope divided into sliding Specificity
history of falls windows. Window size
was varied from 5 to 30
min.
Kangas Residents of elderly Age, gender, Accelerometer 16 15 A total of 1105 days Sensitivity,
[20] care units mobility (average daily user wear FPRT, TP,
assessments, time 14.2 + 6.3 h). Data FP
cognitive processed on line, 14 s
assessments raw acceleration data

where recorded when
acceleration of all three
axes fell below 0.75 g.
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Table 4.2: Cont.

Quantity of Non-Fall

Author Participant Group Addltlorfal Device Type Nur{lt')er of  Number Data and Method of Performance
Information Participants  of Falls . Measures
Preparation
Lipsitz Residents of a Age, gender,  Working alarm 62 89 A total of 9300 days. Sensitivity,
[21] long-term care height, weight, system using Working alarm, raw Precision, TP,
facility who had at BMI, an sensor data not stored, FP, FN
least once in the prevalence accelerometer analysis compared the
previous 12 months of 21 alarm times to reported
comorbidities fall times.
Liu [142] Older adult None Doppler radar 1 6 A total of 7 days. No TP, FPRT
preparatory steps.
Palmerini  Patients with Age, gender Accelerometer 1 12 A total of 168 h from Sensitivity,
[148] Progressive four of the participants. Specificity,
Supranuclear Palsy Recordings were divided FPR, FPRT,
staying in a geriatric into 60 s windows and Informedness,
rehabilitation unit only the 1170 windows ROC Curve,
Community dwelling Age, gender Accelerometer 6 16 where . ROC AUC,
. : max(RSS) —min(RSS) > FP
patients with .
p . 1.01 g were included
rogressive
Supranuclear Palsy
Community dwelling Age, gender Accelerometer 1 1

older adult
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Table 4.2: Cont.

Quantity of Non-Fall

Author Participant Group Addltlon.al Device Type Nur{lt')er of  Number Data and Method of Performance
Information Participants  of Falls P . Measures
reparation
Rezaee Nursing home None Camera Not given 48 A total of 163 normal Sensitivity,
[157] residents movements extracted Accuracy,
from video sequences FPR,
totalling 57,425 frames. Confusion
Details of identification matrix
not given.
Skubic Residents of an older Age, gender Doppler radar 1 13 10 days  Details of Sensitivity,
[143] adult independent data FPRT, TP, FP
living facility preparation
Residents of an older Age, gender Kinect 16 9 3,339 days not given for
. any of the
adult independent ]
living facility datasets.
Resident of an older Age, gender, Kinect 1 142 601 days
adult independent mobility
living facility device use
Residents of assisted Gender Kinect 67 67 10,707 days

living apartments
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Table 4.2: Cont.

Quantity of Non-Fall

Author Participant Group Addltlorfal Device Type Nur{lt')er of Number Data and Method of Performance
Information Participants  of Falls P . Measures
reparation
Soaz Older adult Age, gender Accelerometer 1 1 3.5h No Sensitivity,
[146] preparatory FPRT, FP
steps.
Older adults Age, gender Accelerometer 14 0 996 h P
Stone Residents of an older Age, gender Kinect 16 9 A total of 3339 days. Sensitivity,
[163] adult independent Device only stored data FPRT
living facility for periods where motion
was detected.
Yu [147] FARSEEING data None Accelerometer 22 22 A total of 2618 normal Sensitivity,
used previously activities extracted as 1 Precision,
in [17,122] no further s windows from the 2 Specificity

details provided

min surrounding the fall
signals.

Notes: Performance measures reported in the articles abstract are shown in bold. Where a working alarm system was tested this is stated in the
Device Type column, otherwise the test was carried out off-line, using the collected dataset. Soaz [146] focused on estimating the false alarm rate,
however one real fall was recorded by chance and was included. RSS = Root Sum of Squares; FPRT = False Positive Rate Over Time; NPV = Negative
Predictive Value; ROC Curve = Receiver Operating Characteristic Curve; ROC AUC = Area Under ROC Curve; PR Curve = Precision Recall Curve;
PR AUC = Area Under Precision Recall Curve; TP = True Positives; FP = False Positives; FN = False Negatives; TN = True Negatives.

NOILLVATVAH ATHOMTVHY HOA SAOHLHN ¥ HALdVHD

99



CHAPTER 4. METHODS FOR REAL-WORLD EVALUATION 67

4.3.2 Method of Data Collection

All studies used the same general approach of monitoring participants with one or more
sensor devices. Studies can be classified into two main categories, those using wearable
technology (e.g. accelerometers or gyroscopes) and those using non-wearable technology
(e.g. fixed cameras or Kinect sensors). Both approaches have advantages and disadvantages
with regard to fall detection. For example, wearable devices are always with the user,
however they may forget to wear the device. In contrast, non-wearable devices have a
limited capture area but the user can safely forget about them. For a full discussion on

the advantages and disadvantages of different sensor types refer to recent reviews [9,14].

Fifteen studies used wearable technology and ten used non-wearable, Table 4.2 shows full
details of the devices used in each study. Accelerometers are the most common choice of
sensor and have been used in fifteen of the studies [17-21,109,122,145-148,158,159,161,162].
Eight studies tested some form of optical sensor [143,149,150,157,160-163], making them
the most common choice of non-wearable devices. One additional study deployed an optical
sensor as part of their system, but this did not record any falls so they could not test

it [19].

Studies can be further classified based on whether the device used was capable of processing
data on-line and raising an alarm when it detected a fall. Three studies deployed functioning
wearable alarm systems [18,20,21], one study deployed a system combining wearable and
non-wearable devices [162], no studies deployed an alarm system solely using non-wearable
devices. Two of the studies which tested working alarm systems did not store the raw
sensor data, only recording when the alarm went off [21,162], one article did not state if the
raw sensor data was stored [18]. The raw sensor data can be used for future development

and testing, and therefore the favoured approach is to store this data.

The availability of the collected data is important for future work and the direct comparison
of approaches. None of the studies used publicly available datasets nor made their real-world
fall data publicly available. Two studies [147,158] made use of a subset of the FARSEEING
repository, which is available on request. The FARSEEING project is a real-world fall
repository project funded by the European Union. Four studies [17,109,122,148] were
conducted by members of the FARSEEING project or in collaboration with members, and
also used data from the FARSEEING repository. No other studies provide any information

on the availability of their datasets.
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4.3.3 Number of Participants and Falls, and the Volume of
Non-Fall Data

There is a large range in the number of participants included, with most studies using small
cohorts. One article did not provide any information on the number of participants [157].
Three studies had just a single participant [142,145,146] and one study [143] used data
from only one participant in parts of their analysis. The maximum number of participants

was sixty-two [21] and the median was nine (IQR four to eighteen).

There was an equally large range in the number of fall events recorded. Two studies included
just a single real fall [145,146] and in one of the two datasets used by Aziz et al. [109] only
one fall was recorded. The maximum number of falls was eighty-nine, which was achieved
in two separate studies [21,122]. The median number of falls contained in the datasets

used was 17.5 (IQR 8.25 to 29).

Where reported, the length of the monitoring period varied considerably and comparison
is made difficult by the inconsistent choice of reported metrics. Thirteen articles provided
the total length of the recorded data, but did not provide details of the proportion where the
system was recording participant’s movement (participant in the capture area or wearing
the device) [18,21,109,142,143,146,149,150,159-163]. The median length of total recorded
data, from studies which provided it, was 592 days (IQR 21 to 1,474). Only three articles
provided information on device wear time, in these studies, the mean wear times were
8.1 [19], 14.2 [20] and twenty-four [145], hours per day, respectively. None of the articles
on non-wearable devices provided information on the proportion of time during which

participants were in the capture area.

Six articles did not clearly state the time period over which participants were monitored
or the amount of data captured, instead they provided the number of extracted non-fall
events [17,122,147,148,157,158]. The number of non-fall events used in these studies ranged
from twenty-two [158] to 3,466 [122].

4.3.4 Method of Fall Identification and Validation

One of the main challenges in recording real-world falls is ensuring every fall that occurs
is identified accurately. How fall events are identified is influenced by both the choice of

device and whether the system is capable of raising alarms in real-time. The device used
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determines the type and detail of information available for retrospective verification of fall
times and types. A camera, for example, provides a greater level of information compared
to an accelerometer; assuming the video footage is not highly pre-processed, for privacy
reasons, before being stored. Where working alarm systems are deployed, all detected falls
can be quickly verified, providing additional robustness over a single reporting method

such as staff incident reports.

Four studies [18,20,21,162] deployed a functioning wearable alarm system. As the alarm
systems were being validated, a second reporting system was still needed to identify
falls which did not trigger an alarm. Three of the studies used staff incident reports in
addition to the alarm system [20,21,162]. It was unclear what secondary method of fall
identification was used in one of the studies [18]. Of the eighteen studies which analysed
the data retrospectively, three identified falls using staff reports [17,109,163], five used
participant self-report [19,145,146,159,161] and ten did not state how falls were identified
[122,142,143,147-150,157,158,160].

Where self-report of falls is used it is important to consider the cognitive ability of
participants, especially their memory. Only two of the five studies which used self-report
provide results of assessments of cognitive ability [19,161]. Both of these studies used a
Mini Mental State Exam [164]. Feldwieser et al. [19] found no signs of cognitive impairment
and Gietzelt et al. [161] found that one of their three participants had cognitive impairment,

but does not report how they accounted for this.

It is important to consider that reported fall times might not be accurate and that some falls
may not be reported, or may be reported by more than one member of staff with different
timestamps. This could, for example, be due to delays in completing the report, delays in
the faller being discovered, participant recall problems or staff naturally prioritising helping
the faller over checking and reporting the time. Only three articles describe methods
to check reported fall times [17,109,159]. Two of these [17,109] used datasets from the
FARSEEING repository where expert analysis of the sensor signals in combination with fall
reports was used to pinpoint the fall signal. Hu et al. [159] reported correlating self-reported

fall times with the signals, but provided no details on how this was carried out.
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4.3.5 Methods of Data Processing

There are two approaches for testing real-world fall detection systems, the key difference
is how the data is prepared. The first approach is based on simply identifying when falls
occur in continuous user movement or a stream of sensor data, we call this the continuous
data approach. The second approach is based on a fall detector classifying events as either
a fall or not a fall, we call this the event based approach. The following sections explain
each of these approaches and review their use. In five studies it was unclear which approach

was used [18,19,143,161,163].

4.3.5.1 Continuous Data Approach

The continuous data approach mirrors real-world usage of fall alarm systems where user
movement is the input and fall times or alarms are the output. This approach is therefore
the primary way of testing deployed fall alarm systems but can also be used for retrospective
testing using existing data. The fall detection systems sensors convert movement into a
stream of raw data which is then processed by the software component of the system. In
this approach all aspects of data processing are part of the fall detection software and are
tested as a single unit. To test performance the systems predictions are compared to the
actual verified fall times. This comparison allows quantification of the number of true
positives (actual and predicted timestamps match), false positives (predicted fall with no

actual fall) and false negatives (fall occurred but none was predicted).

True negatives can be quantified if the times when non-falls occurred were recorded,
however, non-falls are not defined. In the strictest sense non-falls are everything which is
not a fall, but that does not enable their occurrence to be quantified. It is not possible
to count when a fall doesn’t occur without arbitrarily dividing the time-series data into
events, and counting the events where no fall occurred. Such a method of dividing the
data would fall under the event based testing approach. In the continuous data approach
any segmenting of the data for processing purposes is part of the fall detection system, not

the test procedure.

Six studies used the continuous data approach [20,21,142,145,146,162]. Bloch et al. [162]
processed the data using the continuous data approach, and then used an assumption of

thirty ‘fall-like’ events per day to calculate a number of true negatives (thirty times number
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the of days the sensor was in use). The other five studies did not attempt to quantify true

negatives.

4.3.5.2 Event Based Approach

The event based approach has its roots in tests using laboratory based simulation datasets.
When data is collected in the laboratory a predefined set of movements or events is
simulated, the times of these events is known and therefore they can be easily extracted.
To test performance all the events must first be labelled as either a fall or not a fall using
the record of event times. For each event the label is compared to the software’s predictions

allowing a complete confusion matrix to be generated.

In real-world data, events are less clearly defined than in simulated data since there is
no complete record of the movements which occurred. The creation of events from real-
world data has been based on arbitrary rules rather than identification of the underlying
movements of the users. The events are labelled using reported fall times, where no fall
occurred the event is considered a non-fall. As this method always yields non-fall events,

true negatives can be quantified, unlike in the continuous approach.

Eleven studies used the event based approach [17,109,122,147-150,157-160]. The predomi-
nant method to create events was based on time windows, where the data is sliced using
constant time intervals, for example each sixty seconds of data is one event. However,
there is no consensus on what constitutes an event and in practice, a method of reducing
the volume of data is often used, for example, to exclude data where no movement was
recorded. The time windows can overlap allowing the same data to be processed multiple

times, although the rationale for this is not clear.

To create events, one study used 2.5 second windows with a 1.5 second overlap and kept
all the events [109]. Two studies divided the data into sixty second windows and used
a movement detection algorithm to select events [17,148]. Bourke et al. [122] also used
a movement detection algorithm to select events but does not describe the windowing
technique. Two studies used the same dataset where the twenty-four hours prior to each
fall was divided into one second windows [149,160]. One study used self-reported wear
time to reduce the dataset prior to dividing into windows, but does not provide any details

about the windowing technique [159].
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Three studies used only a limited section of data from around each fall. Debard et al. [150]
divided up the twenty minutes of data prior to a fall into two minute windows. Chen
et al. [158] only used data from twenty minutes surrounding each fall and used the section
of data up to one second prior to impact as non-fall events. Yu et al. [147] divided the two
minutes around each fall into one second windows, removed the one second window where

the fall occurred and used the remaining windows as non-fall events.

4.3.6 Definition of Performance Measures and Review of Their

Use

4.3.6.1 Sensitivity

Sensitivity (also known as recall and true positive rate) is the proportion of falls which are
correctly detected (Equation 4.1). The inverse of sensitivity is miss rate (false negative
rate) which quantifies the proportion of falls not detected (Equation 4.2). Sensitivity is by
far the most commonly reported statistic; it was reported in eighteen of the articles [17,18,
20,21,109,122,143,146-150,157-160,162,163] and could be calculated from the information
given in the other four [19,142,145,161].

TP TP
SenSlthIty = m = ? (41)
FN FN
Miss Rate = = 1 — Sensitivity (4.2)

FN+TP P

4.3.6.2 Specificity

Specificity (also known as true negative rate) is the proportion of non-fall events which
are correctly detected (Equation 4.3). It quantifies the ability to avoid false positives
(false alarms). The inverse of specificity is false positive rate, which is the proportion of
non-fall events mistakenly detected as falls (Equation 4.4). Nine articles reported specificity
[17,18,109,122,147,148,150,159,162] and two reported false positive rate [148,157]. It is
unclear whether Chen et al. [158] reported specificity or false positive rate, as the reported

number of TN and FP suggest that what they report as specificity is in fact false positive
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rate. Specificity could be calculated from the information provided in a further two of the

studies [149,160].

TN TN

FP FP

False Positive Rate = m = -

= 1 — Specificity (4.4)

4.3.6.3 False Positive Rate over Time

False Positive Rate over Time (FPRT) has become a popular measure in real-world tests of
fall detection. This measure provides information on the frequency of false alarms. Twelve
articles report the number of false positives either per hour or per day [17,19,20,109,142,
143,145,146,148,160,161,163] and it could be calculated from the information provided in
seven others [18,21,149,150,157-159].

4.3.6.4 Precision

Precision (also known as positive predictive value) is the proportion of alarms which are
true falls (Equation 4.5). It therefore provides the probability that an alarm will be an
actual fall and not a false alarm. For example, a precision of 0.5 means that half of alarms
will be actual falls, and half will be false alarms (one false positive for every detected fall).
Eight articles reported precision [17,18,21,147,149,150,160,162] and it could be calculated

from the information provided in all of the other articles.

TP
Precision = W (45)

4.3.6.5 Negative Predictive Value

Negative Predictive Value (NPV) is the proportion of events classified as non-falls which
are true non-fall events (Equation 4.6). NPV therefore provides information about the
ability to correctly classify non-fall events. NPV will be high if a system correctly ignores
many times more non-fall events than the number of falls it fails to detect. Therefore,

for false negatives to have any notable effect, the number of falls and non-falls must be
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approximately equal. However, in real-world fall data falls are usually much less frequent
than non-fall events, which limits the insights yielded from NPV as systems typically score
over 0.99 out of one [17,18,162]. Three articles reported NPV in their results [17,18,162].
NPV could also be calculated from the information provided in eleven of the other articles

[21,109,122,147-150,157-160].

TN

Negative Predictive Value = TN L FN

(4.6)

4.3.6.6 Accuracy

Accuracy is the proportion of predictions which were correct (Equation 4.7). Accuracy is a
measure which summarises the whole confusion matrix in a single value. Accuracy’s major
limitation is the inability to handle imbalanced datasets, for example, in real-world fall
data where there are many more non-fall events than falls. Similar to NPV, accuracy is
dominated by the larger group and the effect is proportional to the size of the imbalance.
Therefore, in real-world fall detection studies, accuracy is skewed towards the correct
detection of non-fall events over the correct detection of falls. For example, in eight of the
algorithms tested by Bagala et al. [17] the accuracies were greater than 0.9 with sensitivities
below 0.6, in one case an accuracy of 0.96 with a sensitivity of 0.14. Four articles reported
accuracy [17,122,157,158] and it could be calculated from the results provided in seven of
the other articles [18,109,147-150,160].

TP+TN

Accuracy = PIN

(4.7)

4.3.6.7 F-Measure

F-measure (also known as F-score) is the harmonic mean of sensitivity and precision
(Equation 4.8). F-measure, therefore, considers all outcomes except true negatives (non-
falls). In fall detection, the priorities are detected falls (TP), missed falls (FN) and false
alarms (FP). F-measure considers all of these outcomes and therefore provides a good
overview of performance. No articles report a value for F-measure, however it could be

easily calculated from their results as eight articles [17,18,21,147,149,150,160,162] reported
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both sensitivity and precision and all but two [159,163] reported enough information to

calculate both sensitivity and precision.

Precision x Sensitivity
F-measure = 2 x

4.8
Precision + Sensitivity (48)

4.3.6.8 Informedness

Informedness (also known as Youden’s J Statistics or Youden’s Index) is a statistic which
combines sensitivity and specificity (Equation 4.9). It is the probability that predictions are
informed versus a pure guess. Informedness is linked to the proportion of cases classified
correctly. However, unlike accuracy, it is robust to an imbalance in the number of fall and
non-fall events. This is achieved through equal weighting of sensitivity and specificity which
are in turn the proportions of falls detected and non-falls correctly ignored. The value
ranges from negative one to positive one. Zero indicates predictions are no better than
guessing, positive one indicates perfect predictions and negative one indicates all predictions
are the opposite of the true value. In cases where the value is negative, the output classes
can simply be swapped over. One study reported informedness [148], however, twelve other
articles reported both sensitivity and specificity or false positive rate, or the information
necessary to calculate them [17,18,109,122,147,149,150,157,158,160,162], so informedness

could be calculated from their results.

Informedness = Sensitivity 4+ Specificity — 1 (4.9)

4.3.6.9 Markedness

Markedness is a statistic which combines precision and NPV (Equation 4.10). Markedness
is linked with the proportion of predictions which are correct. It combines the proportion
of correct positive and negative predictions with equal weighting and is therefore unaffected
by imbalance in the number of positive and negative predictions. As with informedness, the

result is a value between negative and positive one. No articles reported markedness, but
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twelve did report enough information for markedness to be calculated [17,18,109,122,147—
150,157,158,160,162].

Markedness = Precision + NPV — 1 (4.10)

4.3.6.10 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is the geometric mean of informedness and
markedness (Equations 4.11, 4.12). It should be noted that Equation 4.11 only works if
informedness and markedness are both positive, Equation 4.12 works in all cases. MCC
considers both the proportion of events classified correctly and the proportion of correct
predictions and is therefore robust to imbalanced datasets. The result is a value between
negative and positive one as with both informedness and markedness. None of the articles
reported MCC, enough information to calculate MCC was given in fourteen articles

[17,18,21,109,122,147-150,157-160,162].

MCC = VInformedness x Markedness (4.11)

MCC — TP xTN —-FPxFN (4.12)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

4.3.6.11 Receiver Operating Characteristic Curve

A Receiver Operating Characteristic (ROC) Curve is a plot of sensitivity versus false positive
rate as the primary threshold of the classifier is adjusted. ROC curves can therefore be
used to understand the trade-off between sensitivity and false positive rate and optimise
a primary threshold. There could be debate as to which balance of sensitivity and false
positives is optimal, therefore a ROC curve provides useful insight. However, it is difficult
to compare systems robustly based on a curve. Consequently, it is in the optimisation
where ROC curves are best used, rather than final results, as only the optimised version

will be deployed.

ROC curves can be reduced to a single number by calculating the area under the curve

(AUC). AUC has been found to be a poor measure for comparing classifiers, particularly
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where the sample size is small [165-167]. Two studies have used ROC analysis and reported
AUC [122,148].

4.3.6.12 Precision-Recall Curve

A precision-recall (PR) curve is similar to a ROC curve, the difference is that precision is
used instead of false positive rate and the term recall is used in place of sensitivity. PR
curves are preferred over ROC curves when there is a large imbalance in the data [168].
Calculating AUC for PR curves is more challenging than for ROC curves as precision
does not increase linearly, meaning linear interpolation yields incorrect results [168]. Two
studies reported PR AUC [149,160], although it is unclear how PR AUC was calculated in

these studies.

4.4 Discussion

This is the first review to be conducted on the methods used to evaluate real-world
performance of fall detection systems. Ensuring a sound method is critical for meaningful
results, therefore reflecting on the way studies are conducted and seeking improvements
to the method is vital in emerging areas of research where no consensus has yet been
reached. The real-world testing of fall detection systems is currently in its infancy and
this is reflected in our findings. The method is highly variable across studies, which makes
comparing the results difficult if not impossible. The following three sections discuss the

key issues and make recommendations for future studies.

4.4.1 Data Collection and Preparation

One major aspect which leads to variation between studies is the participant groups and the
differences in the movements and behaviours captured by the sensor systems. If insufficient
detail is gathered about participants it is challenging to reproduce the findings as differing
results could be due to differing participant characteristics. In addition, one may want to
collect new data comparable to that used in a previous study for the purpose of comparing
the performance of a new system using different sensors with previously tested systems.
Information gathered about participants was both inconsistent and insufficient to allow

the data collection to be reproduced.
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A comprehensive consensus process has previously been carried out by the FARSEEING
consortium [169]. As part of the consensus process the group identified a minimum set of
clinical measures which they deemed essential for the interpretation of real-world fall data.
The measures included age, height, weight, gender, fall history, assistive device use as well
as assessments of mobility, cognitive impairments and visual impairments. None of the

reported studies have implemented these recommendations.

Cognitive and mobility tests provide useful information about fall risk and the likelihood
of false positives caused by events such as ‘falling into a chair’ or improper use of the
device. Compared to standard metrics such as age, height and weight, assessments of
mobility and cognition provide a much deeper insight into participant’s fall risk and
movement characteristics. Therefore, standardised cognitive and mobility assessments
should be prioritised. Deeper insights into participant’s movements could be achieved
though continuous profiling using activity monitoring software to process the recorded
dataset. However, development and validation of activity monitoring software may be a
barrier unless an existing activity monitoring system is used for the data collection. Where

such profiling is possible details should be reported to enhance the interpretation of results.

Another critical aspect of the test is the size of the dataset. Currently, the datasets used
are generally small, have been collected with a low number of participants and contain
only a few falls. Small datasets reduce the validity of the test and hinder reproducibility.
Where the dataset is small either due to few participants, a low incidence of falls or both,
it is possible that only a limited subset of movements and fall types were captured. In such
cases comparisons of results to tests of other systems is difficult as the dataset may be the
main cause of differences in reported performance. Further, the generalisability of results
is questionable where the sample size is small. The small datasets are one factor which
makes it difficult to understand which systems perform the best and therefore where future
development should focus. The other main factors are the different populations recruited
for studies and the limited insights into how this affects the fundamental aspect of the

data, the movements captured.

Due to the known challenges in recording fall signals, the only feasible way for most
researchers to gain access to a large number of fall signals is through collaboration. In
addition, if systems are tested using the same data, the results are directly comparable.
Therefore, large shared test datasets are needed to allow the performance of fall detection

software to be compared. To facilitate the sharing of datasets, the FARSEEING consortium
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have established a data repository which currently contains over 300 fall signals [170].
However, more studies are needed to generate datasets that can be added to the repository

and used for robust testing of devices and development of improved software.

Even with shared data, there is still an issue of how to ensure all fall signals are accurately
identified. We have identified that the method used to identify the fall signals is poorly
described in published studies, leaving a large gap in our understanding of how the dataset
was prepared. The current prevailing method to identify fall signals is expert signal analysis
to verify participant or staff reported fall times. There is a risk that not all falls are
reported, leading to real falls being included as non-fall data. Expert signal analysis
cannot overcome the issue of under reporting, but does at least give greater confidence

that inaccurate reported times were corrected and all included fall signals were real falls.

Expert signal analysis, while clearly better than no verification, could lead to bias. Currently
there is an insufficient understanding of fall signals due to a limited number of recorded
falls and a lack of research into the profile of the signals. Our limited understanding could
lead to atypical falls not being verified and thus excluded. There is a risk that systems are
designed to detect certain signal profiles as falls and only these profiles are being verified as

falls. Therefore the results could be artificially improved through restricting the test data.

Unless a gold standard fall reporting system is used, such as video analysis, studies will
be limited in their ability to verify fall signals, under reporting of falls will remain a
concern and there is a risk of bias in the verification process needed to compensate for the
inaccuracies of the ‘silver standard’ reporting system. The current lack of standardised
method or gold standard, and the lack of reporting how fall signals were identified and
verified, inhibits understanding of results. A consensus is needed on the process for fall

signal identification and studies should clearly report their methods.

4.4.2 Data Processing

Two approaches were identified for preparing sensor signals for fall detection system testing
and we named these the continuous data approach and the event based approach. Both
approaches have issues surrounding what constitutes a non-fall. In the continuous data
approach the issue is centred around the definition and identification of non-falls. In

the event based approach non-fall events can be defined as any event which is not a fall.
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However, events could be defined as anything which is either a fall event or non-fall event,

and since falls are defined, the issue returns to what constitutes a non-fall.

The strictest definition of non-falls as everything which is not a fall is not particularly
useful. This definition does not allow non-falls to be quantified in the continuous data
approach and provides no indication of how the data should be divided into events for the
event based approach. A more helpful concept is that of fall-like movements, a subset of
non-falls which share characteristics with falls. The FARSEEING consortium defined a fall
as “an unexpected event in which the person comes to rest on the ground, floor or lower
level” [26]. A fall-like movement could therefore, by removing the unexpected clause, be

defined as “any event in which the person comes to rest on the ground, floor or lower level”.

With a definition for fall-like events these could be recorded, at least theoretically, in the
same manner as falls and therefore, allow true negatives to be quantified robustly. In reality
it is not feasible for a researcher to record the times of all fall-like movements in the same
way that falls are recorded, due to the vast quantity which would occur. An automated
system would be more practical, although it is unlikely to be easier to develop automated
fall-like detection than automated fall detection systems. Consequently, researchers must
consider if the development of fall-like movement detection systems is worth the investment,
simply to extend the testing of fall-detection systems. Given that a robust evaluation
of fall detection systems can be achieved without the need for true negatives, and hence
non-fall or fall-like movements, we suggest that automated fall-like movement detection is

unlikely to bring benefits which outweigh the required investment.

4.4.3 Performance Measures

It is challenging to compare results across studies or determine the current state-of-the-art
due to disparity in the choice of measures reported and challenges calculating unreported
measures. The measures used to report and interpret performance vary widely across
studies and not all studies report the basic results from which all measures can be calculated
(TP, FP, FN and TN). Where TP, FP, FN and TN are not reported these can only be
estimated, due to rounding of the reported results. Using one of the tests reported by
Bourke et al. [122] as an example, the number of FP could be any value between eighteen
and fifty-one based on the reported specificity of 0.99 with 3,466 total non-falls. To facilitate
the calculation of additional measures, future studies should report TP, FP, FN and TN if
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these can be calculated robustly and are used in the calculation of the reported performance

measures.

In addition to reporting enough information to allow further measures to be calculated, it is
important that the headline measures give a true reflection of performance and allow robust
comparisons to be made with other systems. Sensitivity has been a mainstay in previous
studies, it is an important aspect of system performance. Sensitivity only quantifies the
ability to detect falls, it does not consider false positives. The question is therefore which
measure to pair sensitivity with to provide understanding of the ability to avoid false
positives. In addition, a single combined measure which considers both aspects is important

in order to understand the overall level of performance.

Specificity has been the most common choice of measure to quantify the ability to avoid
false alarms in laboratory based testing [9] and it has remained a common choice in
real-world tests. Specificity considers how well non-fall events are classified, it could
therefore be considered sensitivity’s natural counterpart. The weakness of specificity in the
context of real-world fall detection is the reliance on non-falls, which are poorly defined

and troublesome to identify.

The need for researchers to design or select methods for non-fall identification opens up a
considerable possibility of bias. A method could be used which suits the specific system
and dataset causing distortion of the results and hindering comparisons with other systems.
In the case of specificity, the difficulty of the test is very much determined by the definition
of a non-fall; the more inclusive the definition, the more non-fall events and therefore the
higher the score for the same number of false positives. This effect can be seen in the
study of Bourke et al. [122], where tests were conducted twice using different definitions of
non-falls. With the most restrictive definition of non-falls, specificity ranged from 0.83 to
0.91. With the more open definition, specificity was consistently 0.98 or greater. Expanding
the definition includes more movements which are less fall-like, thus it creates an easier

test.

It is hard to prevent bias in selecting a definition of non-falls as it is likely unintentional.
One solution is to remove the need to select a method on a study by study basis, however,
standardising the method is challenging. Since there is currently no clear way to standardise
non-fall identification, the best option may simply be to avoid them altogether. A solution

might be standard publicly available datasets, with an agreed method to identify non-fall
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events. In such a case, the results are comparable to each other, but not to other studies

using other datasets or methods.

Using standard data is challenging due to the vast array of sensors which could be used
and the huge number of combinations. It is simply not possible to have a single dataset
used to test all systems. Furthermore, it seems impossible to identify all types of relevant
non-fall movements needed for a universal standard dataset. Any measures which rely on
non-falls (specificity, NPV, accuracy, informedness, markedness, MCC and ROC AUC) are
subject to the above problems and therefore should not be used as a primary measure.
Where measures reliant on non-falls are used the methods should be described in detail

and their limitations should be made clear to avoid confusion and misinterpretation.

The issues surrounding non-falls substantially reduces the options for quantifying the ability
to avoid false positives and gauge overall performance. There are four possible measures

which do not rely on non-falls, these are FPRT, precision, F-measure and PR AUC.

FPRT is a useful measure to understand the frequency of false alarms, however differences
in the datasets affect the calculation. Wear time or time in the capture area must be
considered, as false positives will, most likely, be far lower when the device is not in use.
Another consideration is which hours of the day the device is in use; false positive rate
during night time hours would be very different to day time hours. Reporting of times
when the device was monitoring participants was found to be inadequate. Of the eleven
articles which reported FPRT only two clearly reported wear time or time in the capture
area [19,20] and none reported any details on the distribution of this time throughout

the day.

Our findings suggest that there is a lack of an agreed and clearly defined method to
calculate FPRT. Only one study clearly states that FPRT was calculated using solely
the time a participant was being monitored by the device [20]. None of the other studies
appear to have taken usage time into account when calculating FPRT. If usage time is not
considered or reported it is unclear what extent device usage, or lack thereof affected the
result. An unused system is unlikely to produce false positives. The issues in identifying
wear time or time in the capture area could make FPRT an unreliable measure to compare
across studies. Although users and clinicians may find the rate of false positives over time

useful, it might be better to use a rate of something other than time.
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Precision is an alternative to specificity and FPRT, it quantifies the false positives (FP) in
relation to detected falls (TP). TP and FP should, for any reasonable level of performance,
be in the same order of magnitude, therefore precision is resilient to the imbalance in the
data. Further, the ratio between TP and FP is unlikely to be notably affected by usage
time, if a device is used half of the time, TP and FP would be expected to be half compared
to full device usage. Therefore, compared to FPRT, precision is far less affected by device
usage, or lack thereof. The proportion of fall predictions which were true falls could be
more useful than FPRT since frequent false positives may be acceptable to a frequent faller,
assuming the falls are detected. Precision should be the primary measure of the ability to

avoid false positives.

Sensitivity and precision together quantify the ability to detect falls and avoid false alarms,
therefore providing a complete portrayal of performance. In addition to sensitivity and
precision it is important to have a single measure which can quantify the trade-off between
them. PR AUC is one possible option, however it considers the performance of multiple
sub-optimum versions of the system as the system’s parameters are adjusted. Since only
the optimised system can be deployed, it is the optimised version which should be the
focal point of the evaluation. F-measure, the harmonic mean of sensitivity and precision,
appears to be the most suitable single measure for objective comparison. This trio of
measures has two major advantages in robustness: (1) it does not rely on non-falls and (2)
it is resistant to issues surrounding wear time and time in the capture area. Future studies
should report sensitivity, precision and F-measure, and F-measure should be used as the

standard for comparing systems.

4.5 Summary and Conclusions

As focus in fall detection performance evaluation shifts from simulated to real-world fall
data, one must consider if the approach used for evaluating on simulations is optimum for
real-world data. Through examining the published articles on evaluation of real-world fall

detection, two issues have become apparent:

1. The approaches to quantifying performance are inconsistent and many studies use
measures which provide limited representation of performance.
2. The number of falls is generally small and study populations are diverse, making

comparison between the datasets and results difficult.
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It is critical that a consensus is reached on the most appropriate method to evaluate

real-world performance of fall detection systems.

To address the issues with the datasets there needs to be greater collaboration and sharing
of data. The FARSEEING consortium have made substantial steps to facilitate data sharing
and have recorded over 300 falls through collaboration between six institutions [170]. Six
of the twenty-two studies published to date have used parts of this data to develop or test
approaches to fall detection [17,109,122,147,148,158], highlighting the importance of this
data. However, further work is still needed to grow the volume of available data, record
more falls, improve standardisation and further develop fall detection technology. Only
through collaboration will the collection of a dataset large enough for robust development

and testing become possible.

To address the issues surrounding how performance is quantified studies should avoid
the need for non-falls. The concept is poorly defined and standardisation seems to be
extremely problematic. The concept of non-falls is only needed to allow the calculation of
measures such as specificity and accuracy, both of which are common in simulation based
studies [9]. However, quantification of the difference in false alarm rate between simulated
and real-world tests is not possible due to the disparity of the data. Therefore, traditional
measures such as specificity and accuracy are of little value. Continued use of these
traditional measures may lead to confusion and improper interpretation of performance.
Measures which do not depend on non-falls should be used instead of these traditional
measures. Sensitivity and precision should be the cornerstones of the evaluation with

F-measure used for the objective comparison of systems.



Chapter 5

Pilot Study

5.1 Introduction

Previous approaches to automatic fall detection have not performed well in real-world tests
and the reports on their design and evaluation provide insufficient insights into how to
improve them (Sections 3.6, 3.7). There is a need for research into how falls differ from
other movements, however, this requires a real-world dataset which captures both ADL
and falls (Section 3.7); this is challenging and time-consuming to collect (Section 3.3).
Given the investment required to collect real-world fall data, the methods of collection
and processing needed to be first tested under controlled conditions to reduce the chance
of issues occurring and to maximise the quality of the collected data. For this reason, a
pilot study was conducted in which data were collected using simulated falls to test the
data collection and planned analysis processes. Simulated falls were deemed appropriate to
test that the methods of recording falls were suitable and to test data handling and signal

processing software as the first step towards a study of real-world falls monitoring.

5.1.1 Choice of Sensor

The choice of sensor was the most important aspect of the study design and was crucial
in shaping the study protocol. The primary aim of this study was to prepare for further

research into which features of real-falls best distinguish them from other movements.
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Therefore, the choice of sensor was heavily influenced by the practicalities of real-world
data collection. This section explains the decisions made on whether to use wearable or
non-wearable devices, which sensors to use, how many devices to use and where to place

devices.

Video cameras provide possibly the richest set of data as they can capture the movement
of the entire body in a high level of detail. However, as discussed earlier, in real-world
contexts the privacy concerns could result in a lack of coverage in private areas and a
high risk of missed falls. In addition, with video cameras, or indeed any non-wearable
sensor, there are ethical concerns surrounding the collection of data on those who have not
provided consent to participate. Since non-wearable devices monitor a space rather than an
individual it is not possible to avoid capturing data on non-participants. The inability to
selectively capture data may present a problem for data collection in care facilities, where
there are many communal areas. Finally, the use of non-wearable devices for the recording
of real falls requires a system to be retrofitted into the buildings where participants reside.
This need to retrofit systems not only incurs substantial cost but may also be a barrier to

collaboration with third-parties who are vital for participant access.

Wearable devices only monitor the wearer and hence avoid the issues raised above. The
relatively simple setup associated with wearable devices reduces the investment in each
site compared to the use of non-wearable devices. Thus, wearable devices facilitate the
inclusion of sites with a lower number of potential participants and could allow for a wider
pool from which to recruit participants. The simple setup afforded by wearable devices
provides much greater freedom in collaboration with third parties for access to participants
and could aid in the collection of a suitably large dataset. The disadvantages of wearable
devices are their limited battery life and the need for the user to remember to wear the
device (or for someone to ensure they are), however, these can be minimised by careful

device selection.

With the current technology, the advantages of wearable devices outweigh their disad-
vantages and they appear to be the most suitable method to study real-world falls. Of
the sensors previously used in wearable devices for fall detection research, accelerometers
appeared to be the most promising. Accelerometers have formed the basis of nearly all
the fall detection systems proposed in the literature; other sensors have most commonly
been used to provide supplementary data (Section 3.5.2). Accelerometers can be used for

the detection of impact, to infer posture, estimate vertical motion and estimate velocity
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(Section 3.5.2.1). The combination of gyroscopes and magnetometers with accelerometers
facilitates a more accurate estimation of orientation and therefore estimation of vertical
acceleration and velocity. However, each additional sensor adds to the power consumption
which either reduces battery life or requires a larger device to house a larger battery, neither

of which is desirable.

To record a relatively large set of real falls comparable in size to the largest datasets used
in published studies (approximately 100, see Chapter 4), it is estimated that between
10,000 and 100,000 days of recording would be needed [17,19-21]. Therefore, a balance
must be struck between participant numbers and the length of the monitoring period for
each participant. Based on the estimated occurrence of falls, to record 100 falls with 100
participants, each participant would need to be monitored for between ten and 100 days.
If participants are to wear a monitoring device for close to twenty-four hours per day over
a relatively long period, it must be comfortable to wear and unobtrusive. Consequentially,
a small and lightweight device is preferable to large or heavy one and long battery life is

important to minimise inconvenience associated with swapping devices or recharging.

Wearable devices attached to multiple body segments provide greater insight into the
movement and posture of the body than a single device. However, each additional device
adds inconvenience to participants and thus may both hinder participant recruitment and
lead to higher withdrawal rates. Each additional device also adds complexity to the study
as one must keep track of which device was worn on each part of the body. If participants
inadvertently mix up the devices or there is any confusion over which body part a device
was worn on, the data will not be usable. There are clear drawbacks in the use of multiple
wearable devices which must be weighed against the benefits. Given research recording

real-falls is in its infancy, the simplicity of a single device is preferable.

If only a single device is to be used, then the placement of that device is critical. In previous
research a lumbar placement has been common; due to proximity to the centre of mass, it is
a good location for estimation of whole-body motion [8,9]. The ability to estimate posture
post-fall could be a useful feature in fall detection, however, a lumbar-worn accelerometer
cannot be used to robustly distinguish sitting from standing as the torso angle is similar, it
can only distinguish lying postures from standing and sitting. A fall may not necessarily
result in a lying posture; if a fall occurs near furniture or a wall, the faller may come to
rest in a seated posture with the furniture or wall providing support. Therefore, the ability

to distinguish sitting from standing could be important for fall research.
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The torso and thigh are the best locations for identification of the three major postures
(standing, sitting and lying), although distinguishing all three robustly from either location
is problematic. Other locations, such as the wrist, may provide benefit in terms of ease
of wear and comfort but do not provide such usable posture information. A thigh-worn
accelerometer can robustly distinguish standing and sitting using the angle of the thigh with
respect to gravity, however, distinguishing sitting from lying is challenging. An algorithm
has been developed to detect long periods of lying based on the rotation of the thigh about
the longitudinal axis of the body; the reported sensitivity and specificity were 0.97 and
0.93 respectively [171].

The algorithm developed by Lyden et al. [171] was designed primarily to detect periods
of lying in bed, where rolling onto the side is common. It worked based on classification
of possible sitting or lying (sedentary) periods as lying if rotation of the thigh occurred,
otherwise the whole period was classified as sitting. A pair of thresholds at £0.9 g on the
device’s Y-axis (which when worn aligns with the transverse axis of the body) were used to
detect lying. Therefore, the algorithm would only classify a sedentary period as lying if the
wearer rolled onto their side during the period where they were sedentary. The approach
proposed by Lyden et al. [171] may not be suitable for research on falls, where a period of
lying may only be short and sufficient rotation of the thigh to cross the thresholds they
derived may not occur. However, their algorithm does provide a strong foundation for

further development.

In light of the recent work on a method to distinguish sitting and lying [171], the placement
of an accelerometer on the thigh appears to provide the most detailed postural information.
The thigh is also relatively close to the centre of mass and so is suitable for estimation of
whole-body motion. Therefore, for research into falls, the thigh is the optimal location for

the placement of a single accelerometer device.

The use of an existing tried and tested device is important to ensure robust and reliable
collection of data, especially for twenty-four seven monitoring. The activPAL3™ device
(PAL Technologies, Glasgow, Scotland) contains a triaxial accelerometer and is designed to
be worn on the midline of the anterior aspect of the thigh. The marketed purpose of the
activPAL device is activity tracking in research, it has been widely used and there are over
2,500 published articles which feature activPAL [172]. In addition to providing activity

data, the raw accelerometer signals can be retrieved from the device for custom analysis.
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The raw data is sampled at twenty hertz with a range of plus or minus two times earth’s

gravity (£19.62 ms=2).

PAL Technologies produce two variants of the activPAL3, the original activPAL3 devices
measure fifty-two by thirty-five by seven millimetres and weigh twenty grams, the later
activPAL3 micro devices provide the same features in a smaller package which measures
forty-three by twenty-three by five millimetres and weighs ten grams. The activPAL device
is capable of up to fourteen days of continuous recording on a single charge, making it
suitable for long-term monitoring. It has been used in many studies of older adults which
between them have included thousands of participants [173,174]. Typically, activPAL
devices have been used for continuous monitoring over seven day periods [173,174], however
continuous use over fourteen days has been reported in the literature [175]. The activPAL3
device is small, lightweight, provides relatively long recording periods and has been used
successfully in many studies with older adults; it therefore met the requirements and was

selected for use in this research.

5.1.2 Study Design

The study aimed to pilot test the use of a thigh-worn activPAL3 accelerometer for the
collection of a dataset on activities of daily living and falls, with a view to research features
capable of reliably distinguishing fall events from the other data. Based on previous
research it was reasonable to assume that a fall detection system might need to be able to
capture data associated with vertical motion, impact, and posture change (Section 3.6.1),
all of which have been used in previous work [e.g. 20,106]. Methods to measure impact
and vertical motion with a body-worn accelerometer have been commonly used in previous
fall detection studies (Section 3.5.2.1); these methods could be used with the activPAL3
device. By contrast, research on the use of a thigh-worn accelerometer to capture posture
before, during and after falls is limited; to the author’s knowledge, no studies have been
published. Therefore, this study aimed to develop and test algorithms for the classification

of posture, using a thigh-worn accelerometer, before and after a fall.

A proprietary algorithm is provided by the manufacturer to allow the activPAL3 device to
classify upright and sedentary (sitting or lying) postures. However, due to being proprietary,
the workings of this algorithm are unknown and it is difficult to integrate into custom

analysis software. There is a need to develop an open algorithm to carry out the upright
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and sedentary classification so that it can be tailored to the needs of this research. Lyden
et al. [171] developed an algorithm to further classify sedentary periods into sitting or
lying, however, further development was needed to ensure post-fall lying periods could be
detected. Thus, as part of this study, triaxial accelerometer signals were recorded during
standing, sitting and lying postures to develop, optimise and test posture classification
techniques. In addition, triaxial accelerometer signals were recorded during simulated
falls to provide test data separate from that used to build the algorithms, so that their
performance in detecting pre and post-fall posture could be validated. The second purpose
was to assess the occurrence of signal clipping during a fall and thus the suitability of the

activPAL3 device’s £2 g range for recording fall signals.

5.2 Lab Simulations of Postures and Falls

5.2.1 Participant Recruitment

The study protocol was approved by the University of Salford research ethics committee
(reference HSCR14/72, see appendix B). Participants were recruited via emails sent to
university staff and students (see appendix C.1). Written information detailing the study
(see appendix C.2) was given to participants at least twenty-four hours before taking
part in the study. Upon arriving at the laboratory, participants were prompted to ask
any remaining questions they may have, before providing written consent including a
confirmation that none of the exclusion criteria applied to them (see appendix C.3).

Participants were excluded from the study if they were:

o Taking medication that might affect their ability to participate

e Advised to only do physical activity recommended by a doctor

o Receiving treatment from a doctor or other medical professional (e.g. physiotherapist)

o Suffering from any of the following (or similar): diabetes, epilepsy, seizures, osteo-
porosis, arthritis, any cardiovascular or respiratory disorder

o Recently suffered a bone fracture (within the previous twenty-four months)

e Currently suffering from any musculoskeletal injuries

e Previously suffered a concussion or other head injury

o Potentially pregnant or had recently given birth (within three months)

o Currently feeling unwell
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5.2.2 Protocol

Participants attended the laboratory on a single occasion. Data were collected using
an activPAL3C™ device (PAL Technologies Ltd, Glasgow, Scotland), a small triaxial
accelerometer-based activity monitor. The device was attached directly to the skin on
the midline of the anterior aspect of the right thigh (see Figure 5.1) using a PALsticky
(double-sided hydrogel adhesive pad). The triaxial accelerometer data were downloaded

from the activPAL device and stored for later analysis.

Figure 5.1: Placement of the activPAL3C device on the thigh.

Participants were guided through the protocol using a custom-written JavaScript application
projected onto a screen in the laboratory. The application was developed as a cross-platform
application, which could run in any modern web browser, allowing reliable performance on
multiple devices in the lab with minimal setup. Four main functions were built into the
design: (1) to provide a standard set of instructions to participants, (2) to control the time
spent in and between each activity, (3) to record the start and end time of each activity
and (4) to display a clock used to synchronise video footage with the accelerometer data.

The behaviour of the application was similar to a slide show, but with added capabilities.

A diagrammatic overview of the protocol is shown in Figure 5.2. In brief, participants
performed eighteen on-the-floor postures, nine activities of daily living (Section 5.2.3) and
eighteen simulated falls (Section 5.2.4). Before each activity participants were shown an

instruction slide (details of these are provided in sections Section 5.2.3 and Section 5.2.4).

Participants stood for a minimum of fifteen seconds to read the instructions, this ensured
there was a clear separation between each activity in the accelerometer data. Once
participants were standing in the matted area, the experimenter advanced the slide to the
instructions for the next activity which started a fifteen-second timer; a red square was

displayed below the instructions during the fifteen seconds, after fifteen seconds passed
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the square turned green. When the participant started the activity, the experimenter
advanced the slide, which triggered the time to be recorded and a fifteen-second on-screen
countdown to begin. When the fifteen seconds ended a beep sounded and participants were
asked to stand up in their own time. As the participant transitioned to a standing posture,
the experimenter advanced the slide to show the next instruction which simultaneously

triggered the time to be recorded and a fifteen-second timer to start.

L e :

| Repeat for 6 on-the-floor postures
Walk to matted ‘

area

Sitting
(min 15 seconds)

Walk back to chair

Read instructions
while standing
(min 15 seconds)

Perform on-the-
1 floor posture
(15 seconds)

Repeat for 9 simulated falls

Perform the fall
and then remain | :
on floor !

Read instructions

(min 15 seconds) (15 seconds)

i while standing >

Figure 5.2: Overview of the pilot study protocol.

The protocol was filmed using a single tripod-mounted camera using standard definition
(640 x 480 pixels) at thirty frames per second. The video footage was transferred to an
encrypted drive and stored for later analysis. The clock projected as part of the JavaScript
application was in view of the camera throughout the protocol and was used to verify
the start and end time of each activity. The video footage was used for the analysis
of each simulated fall in conjunction with the accelerometer data to provide a greater

understanding of the signals.

The protocol was carried out on a matted area to ensure the safety of participants. The
majority of previous studies have simulated falls onto crash mats [e.g. 102,106,107,115,119].
Crash mats deform upon impact providing a cushioned landing, however, in doing so the
landing posture is altered. Since posture analysis formed a key part of this study a new

approach was developed.

A preliminary trial was conducted to find an alternative type of mat, firm enough not to

dramatically affect posture but with sufficient impact absorption to protect participants.



CHAPTER 5. PILOT STUDY 93

Three members of the research team trialled simulated falls onto different types of gym-
nastics and aerobics mats in a variety of layered arrangements. The best combination
was a stack consisting of a thirty-two-millimetre thick gymnastics mat with three fifteen
millimetre thick aerobics mats layered on top. These mats provided a soft landing surface
without dramatically affecting the landing posture. A matted area 2.5 metres wide and
four metres long was constructed in the centre of the laboratory, with a two-metre area

around the mats free from furniture and other equipment.

5.2.3 On-the-floor Postures and ADL

Participants were guided through the set of activities shown in Table 5.1 using the JavaScript
application. The majority of these activities are self-explanatory and no further information
was given beyond the name shown in Table 5.1. For “Lying on Back (Thigh Inverted)”
participants were asked to lie on their back and bring their feet towards them so their knees
were raised off of the ground. For the “On Hands and Knees” posture participants were
asked to position themselves so that their hands, knees and toes were the only points in

contact with the ground, this positioned them so that the thigh was within approximately

forty-five degrees of vertical and the torso was horizontal.

The activities were organised in three identical blocks where each activity was performed
once in each block (each activity shown in Table 5.1 was carried out three times by each
participant). Each block started with the participant sitting on a chair for fifteen seconds,
before walking over to the matted area to carry out the on-the-floor postures. Before
carrying out each on-the-floor posture, participants were shown a simple description of the
posture while standing. Each posture was held for fifteen seconds, after which participants
returned to a standing posture and read the instruction for the next on-the-floor-posture.

At the end of each block, participants walked back to the chair and sat down.

The timestamps which marked the start and end of each activity were exported from the
JavaScript application and stored for later analysis. Timestamps were verified using the
timings extracted from the video footage. Custom written Python3 code was used to load
the activPAL data files and extract sections of the raw triaxial accelerometer data for each
activity. In this way, the middle five seconds of data from the fifteen seconds total recorded
for each activity were extracted and stored in separate data files for later analysis. Each

file was labelled according to the activity performed and the participant ID.



CHAPTER 5. PILOT STUDY 94

Table 5.1: The included on-the-floor postures and ADL.

Category Activity

6 X On-the-floor Postures Lying on Left Side
Lying on Right Side
Lying on Front
Lying Flat on Back
Lying on Back (Thigh Inverted)
On Hands and Knees

3 x ADL Stepping
Standing
Sitting

5.2.4 Simulated Falls

Participants were asked to simulate the nine falls shown in Table 5.2 in two nearly identical
blocks (eighteen falls in total per participant), the only difference was the direction of lateral
falls was reversed. The set of falls was based on the video analysis of the circumstances
of falls in older adults conducted by Robinovitch et al. [82]. The most prevalent causes
were found to be loss of balance, trips, stumbles, hits, bumps, loss of support with external
objects and collapses. Hits, bumps and other falls involving external objects are difficult to
safely simulate without increased risk of injury to participants, therefore these were not
included. The most common activities leading to a fall were walking, initiating walking,
standing and changing posture e.g. standing up or standing and reaching. Therefore, these
activities were combined with the causes to produce the set of falls shown in Table 5.2.
To allow clear identification of falls in the accelerometer data, participants were asked to
stand for fifteen seconds between each fall and remain still on the floor for fifteen seconds

after each fall.

For each fall, participants were shown an instruction slide using the JavaScript application,
this consisted of a brief sentence describing the fall and, for all but the collapse type falls,
a stick figure animation (an example stick figure animation is shown in Figure 5.3). Each

stick figure animation was custom developed using TISFAT:Zero animation software [176].
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The primary reason for the use of stick figures was to provide enough information for
participants without enabling them to simply copy as they might if shown a video. The aim
was to increase the variability in the simulations and make the tests of algorithms based
on the data more robust. The two collapse type falls did not use stick figure animations,
instead, participants were given free choice over how they collapsed, for example, the
direction in which they fell. This was a further method used to increase variability in the

data.

Table 5.2: The nine types of simulated fall with direction and landing posture.

Fall Type Direction Expected Landing Posture
Walking Forward LOB Forward Front-Lying

Trip On Initiating Walking Forward Front-Lying

Walking Trip With Rotation Forward Side / Front-Lying

Walking Lateral LOB Lateral Side-Lying

Standing Lateral LOB Lateral Side-Lying

Standing Reaching LOB Lateral Side-Lying

Stumble Backward Trip Backwards Lying on Back

Walking Collapse - -
Standing Collapse - -

Note: No direction or landing posture was specified for either of the collapses, participants were
given a choice in order to add a random element, increase variability and make the test more
robust. LOB = Loss of Balance.

=T

Frame: 1 |20 30 40 50 60

Figure 5.3: Example stick figure animation. Six stills of key frames from the ‘standing
lateral loss of balance’ animation.

Timestamps for each fall and recovery (standing up) were exported from the JavaScript
application and verified using the video footage. These were then used to extract a section

of raw accelerometer data for each simulated fall starting ten seconds before impact and
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lasting thirty-five seconds. Each section of extracted data was labelled according to the

participant ID and the type of fall before being stored for later analysis.

5.3 Posture Classification Algorithm Design

A posture classification algorithm was designed to identify periods of upright (standing
or walking), sitting and lying. The posture classifier was designed as a decision tree (see
Figure 5.4), building upon previous work in the field [177,178]. The first stage of the
algorithm determined whether the posture was upright or sedentary, sedentary postures
were then sub-classified as either sitting or lying. Orientation was used to make the decision
at each node of the decision tree, the orientation of the activPAL3 axes relative to the body
are shown in Figure 5.5. A one-second moving average filter was used to smooth the signal

and isolate the gravitational component of the signals prior to analysis of orientation.

Posture
Upright Sedentary
Sitting Lying

Figure 5.4: Posture classification decision tree.

X

Z
Y

Figure 5.5: Orientation of activPAL axes relative to the body.

5.3.1 Upright versus Sedentary Classifier

A classifier was designed to distinguish between upright and sedentary postures using the

tilt angle of the thigh as measured using the X-axis (Figure 5.6). When upright, the thigh
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is close to vertical (~ -1 g) and when sedentary the thigh is close to horizontal (~ 0 g) or
possibly inverted (> 0 g). Therefore thresholds placed between negative one and zero g can
be used to distinguish between upright and sedentary postures. Dual thresholds were used
to prevent rapid changes in classification when close to the threshold. The zone between
thresholds acts as a buffer, increasing the change in angle required to swap back to the

previous state. The thresholds were optimised based on analysis of the data.

No No Posture = last
classified posture

Yes Yes

Posture = upright Posture = sedentary

Figure 5.6: Upright versus sedentary posture classification using dual thresholds. u is the
upright threshold, s is the sedentary threshold and x is the moving average filtered X-axis
acceleration.

5.3.2 Sitting versus Lying Classifier

A classifier has recently been developed to sub-classify sedentary postures into sitting and
lying using thigh-worn triaxial accelerometer data [171]. The classifier was designed to
identify long periods of lying such as time sleeping in bed and is not optimised for detecting
lying post-fall. As such, the classifier used a fairly extreme threshold on the Y-axis for
thigh rotation (£65° with 0° inclination). The threshold of £65° was calculated using an
inverse sine function on the acceleration data, the true threshold is 0.906 g (sine 65°). The
angle of rotation this equates to will vary depending on the inclination of the thigh in the
X-axis. The angle of rotation required for the acceleration due to gravity in the Y-axis (6)

to reach 0.906 g can be calculated for any given inclination angle (¢) using the following

6 =sin~! <0‘906) (5.1)

cos @

equation:

Using this equation we can calculate that for inclination angles (¢) greater than +25° the
threshold thigh rotation angle is greater than +£90° and therefore it becomes impossible to

cross the threshold.
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In addition to the potential lack of sensitivity of Lydens’s algorithm in detecting side-lying,
it is also important to consider that a faller may not roll onto their side, might fall straight
onto their front or into other non-side lying postures. Therefore, Lyden’s approach was
adapted and extended with the aim of more sensitive and holistic detection of lying. For
the new lying classifier, the thigh rotation threshold was kept and two new thresholds
were added for the detection of lying on the front and postures where the knee is raised
above the hip, respectively. No threshold was devised for lying flat on the back, which is

particularly difficult to distinguish from sitting as the orientation is identical.

The first threshold was on the Z-axis to identify forward lean. When the Z-axis value is
zero this indicates the thigh is not tilted either forwards or backwards when at a value of
negative one g the front of the thigh is facing the ground. Therefore, a threshold between
zero and negative one g enables the detection of forward lean and front-side-lying. The
second threshold was for the identification of negative thigh inclination. When the X-axis
value is between zero and one g this indicates that the thigh is inverted i.e. the knee is
raised above the hip. Therefore, a threshold for the X-axis between zero and one g enables
identification of postures where the knee is raised above the hip such as lying on the back
with the legs bent at the knee. The three thresholds were optimised based on analysis of
the data.

5.4 Optimisation and Evaluation of Posture Classifier

Performance

Leave-one-participant-out cross-validation with the on-the-floor postures and ADL dataset
was used to optimise and evaluate both the upright versus sedentary and the lying classifier.
In each round of the cross-validation, a different participant’s data were set aside for testing,
with the remaining data used to set the thresholds. Through the separation of the dataset
by participant, the independence between the training and testing data was maximised.
The use of cross-validation allowed a more accurate estimation of the trained classifier’s
performance on unseen data compared to a single train-test split, because all the data,

rather than a subset, was used to test the classifier.

All posture thresholds were set at either the minimum value minus ten percent of the

interquartile range or the maximum value plus ten percent, depending on which was
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appropriate for the specific class. To set the thresholds, data from multiple postures were
grouped. The upright group contained stepping, standing and hands & knees, the sedentary
group contained all remaining postures except lying on back with the thigh inverted, where
the X-axis values differed greatly from other sedentary postures. A side-lying group was
created by combining rectified values for left and right side-lying. The forward lean and
thigh inclination thresholds were found using the lying on front and lying on back with the

thigh inverted posture respectively.

For comparison of lying classification results, an implementation of the classifier designed
by Lyden et al. [171] was also tested. There were two changes in this implementation,
compared to that of the original. In the current implementation, the upright and sedentary
classifications were generated using the classifier described above (with thresholds optimised
using the simulated posture dataset) instead of using the activPAL software. The twenty-
second moving average filter was changed to a one-second moving average filter. The
change to the filter was necessary due to the shorter periods spent in each posture during
the lab-based data collection compared to free-living behaviour. This was expected to
have minimal effect on the results as participants were instructed to remain still for fifteen

seconds in each posture, reducing the need for filtering.

5.5 Evaluation of Pre and Post Fall Posture Detection

The ability to detect an upright posture pre-fall and a lying posture post-fall was evaluated
using the simulated falls data; all falls in this dataset were from an upright to a lying
posture. The pre-fall period was taken as the period between three and two seconds prior
to the start of the fall and the post-fall period was taken as the period between two and
three seconds after the fall. The fall event was taken as half a second before until half a
second after the recorded fall time. These timings ensured participants were at rest during

the periods used for posture classification.

First, the ability of the newly developed upright versus sedentary classifier to detect an
upright posture pre-fall and a sedentary posture post-fall was tested. Second, three different
sitting versus lying classifiers were tested to assess their capability to detect the lying
period following each of the simulated falls. The first algorithm tested was the new classifier
developed using the on-the-floor posture and ADL (New), the second was the algorithm
developed by Lyden et al. [171] (Lyden), and the third was the newly developed classifier
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but using the thigh rotation thresholds from Lyden et al. [171] (Hybrid). To allow the
results to be compared for each type of lying, the recorded video footage was used to label
each fall signal with the post-fall posture. Post-fall posture was categorised based on the
side of the body on which the participant was lying; the categories were: front, right, left,
back or between two of these e.g. back-right.

5.6 Evaluation of Signal Clipping

To assess the suitability of the activPAL3’s +2 g range, the collected fall signals were
analysed for clipping within 2.5 seconds of the recorded fall time. Clipping of the signals
was defined as a true acceleration value outside the range which the device can record.
Clipping was characterised as either a clear clipped peak (flat top) where consecutive
samples were equal to +2 g or a potentially clipped peak where a single sample had a

recorded value of £2 g.

5.7 Results

5.7.1 Participants

Eight healthy volunteers (five female, three male) completed the study. Participants’ age
ranged from twenty-two to thirty-seven years (mean 27.8 4+ SD 4.6 years), height from 1.60
to 1.83 m (1.71 4+ 0.07 m) and body mass fifty-six to eighty-three kg (66.5 £ 10.3 kg).

5.7.2 Posture Classification

5.7.2.1 Classifier Optimisation and Evaluation on the Posture Dataset

Examination of the video footage revealed that in one trial of lying on the back with thigh
inverted, the leg to which the activPAL was attached remained straight, this trial was
relabelled as lying flat on the back. Therefore, the on-the-floor postures dataset contained
twenty-five examples of lying flat on the back, twenty-three examples of lying on the back

with thigh inverted and twenty-four examples of the other postures.
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Across the eight rounds of cross validation on the on-the-floor postures and ADL dataset
the mean (£ SD) threshold to become upright was -0.812 g (£ 0.014) and to become
sedentary was -0.516 g (£ 0.006). The mean thigh rotation, forward lean and thigh
inclination thresholds were 0.509 g (40.090), -0.808 g (+ 0.063) and 0.544 g (£ 0.01)
respectively. Figure 5.7 shows a confusion matrix for the posture classification performance.
The classifier was able to distinguish upright from sedentary with a sensitivity of one and
specificity of one. Lying was distinguished from non-lying with a sensitivity of 0.742 and
a specificity of one. When the implementation of Lyden’s lying classifier was run on the
on-the-floor postures and ADL dataset, the results were a sensitivity of 0.242 and specificity

of one.
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Figure 5.7: Posture detection confusion matrix.

The spread of the data for each posture and thresholds derived from the complete dataset
are shown in Figure 5.8; it is these thresholds which were used in the evaluation of the
algorithm on the simulated fall dataset. The plot also highlights the difficulty distinguishing
standing from hands & knees, and sitting from lying flat on the back, based on thigh

orientation.

5.7.2.2 Classifier Evaluation on the Simulated Fall Dataset

The developed upright versus sedentary posture classifier correctly classified the pre-fall
posture as upright and the post-fall posture as sedentary for all of the simulated falls. The
results of the evaluation of the ability to detect lying post-fall are shown in Table 5.3. The
newly developed classifier performed the best, correctly detecting lying post-fall for 130 out
of the 144 falls. The classifier developed by Lyden et al. [171] only detected lying for fifty-six
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Figure 5.8: Boxplots showing A) the spread of X-axis values for upright versus sedentary
and B) all three axes for standing, hands & knees, sitting and different types of lying.
Thresholds are marked using dashed orange lines.

of the falls, all of which were side-lying. The hybrid classifier was able to additionally
detect lying for the forty-two front-lying post-fall postures and three of the seventeen back
lying post-fall postures (101 of the 144 total). For the three back lying postures detected by
both the new and hybrid classifiers, the knee was raised which triggered the thigh inversion

threshold, none of the cases where the thigh was flat on the ground were classified as lying.

Table 5.3: Number of simulated falls where lying was correctly detected post-fall for the
three lying classifiers.

Post-Fall Lying Catagory n Falls New Lyden Hybrid

Back 17 3 0 3
Back-Right 2 2 0 0
Back-Left 1 1 0 0
Right 38 38 36 36
Left 36 36 20 20
Front-Right 6 6 0 0
Front-Left 2 2 0 0

Front 42 42 0 42
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5.7.3 Signal Clipping

In forty-one out of the 144 fall signals there were clear clipped peaks, in a further 100 of the
signals there were peaks of +2 g, suggesting potential clipping of the signal. In all instances

of clipping the length of the clipped signal was less than 0.1 seconds consecutively.

5.8 Discussion

The primary aim of the study was to evaluate the suitability of the activPAL3 device
for research on fall detection. Previous work on fall detection has centred on three key
areas: vertical motion, impact and posture change. Methods to measure vertical motion
and impact with a triaxial accelerometer have been developed previously [e.g. 99,106], and
these can be applied to activPAL data. Therefore, this study focused on the classification

of pre and post-fall posture using a thigh-worn activPAL3 accelerometer.

5.8.1 Posture Classification

A posture classification algorithm was developed which showed a good level of performance
in comparison to the previous state of the art. The algorithm was designed as a decision
tree and consisted of two sub-classifiers, one for upright versus sedentary and one to further
classify sedentary periods as either sitting or lying. The algorithm was able to distinguish
all recorded examples of sedentary postures from upright postures, except for the hands
and knees posture where the thigh was upright. When one is kneeling with the thigh in a
vertical alignment, orientation cannot be used to distinguish this posture from other true
upright postures (standing and walking). The only potential method to classify on the
hands and knees separately from other upright postures would be to identify and analyse
the transition. Analysis of posture transitions was beyond the scope of this study as a
controlled transition from standing to on hands and knees is likely to be different from a

fall onto one’s hands and knees.

The algorithm developed by Lyden et al. [171] to detect lying in bed, showed poor
performance in distinguishing short periods of sitting from lying with a sensitivity of just
0.242 on the collected dataset. Further analysis revealed that Lyden’s algorithm could not

correctly classify as lying any of the example signals for lying on the front, lying on the
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back or lying with an inverted thigh. Through adjustment to the thigh rotation threshold
and the addition of thresholds for forward lean and thigh inversion, the sensitivity of lying

classification was increased to 0.742.

The thigh rotation threshold derived from the data collected during this study appears to
lead to an under-sensitive classifier as twenty-six percent of lying was detected as sitting.
However, this was due to an inability to distinguish lying flat on the back and sitting, the
classifier was sensitive to other lying postures. Given that there is overlap between lying and
sitting, in terms of thigh orientation, perfect classification is not achievable. The method
used to set the thresholds was designed to ensure high sensitivity of lying classification, and
the sensitivity was increased compared to the algorithm by Lyden et al. [171]. However,
the distinction between sitting and lying flat on the back remains a challenge, as shown in
Figure 5.8 the orientation of the thigh is identical in these two postures. If the thresholds
were to be adjusted to increase the sensitivity to lying, then some sitting would be detected

as lying.

When the lying classifiers were tested on the simulated fall data, the results were similar
to the cross-validated results with the on-the-floor posture data. The newly developed
classifier was able to detect all forms of lying except flat on the back, the classifier by
Lyden et al. [171] could only detect three-quarters of the lying on the side and none of the
other lying subtypes. The thresholds developed by Lyden et al. [171] resulted in a different
sensitivity for left and right-side-lying, where the sensitivity to lying on the right side (the
thigh on which the activPAL device was attached) was greater than for lying on the left
side. This was likely due to the incline of the thigh furthest from the floor; when the knee
rests on the floor the upper thigh is at an incline which increases the rotation required to
trigger the threshold on the Y-axis (see Figure 5.9). Where the incline of the thigh with
respect to the floor is greater than twenty-five degrees (0.42 g) it is not possible for the
acceleration due to gravity to exceed the threshold on the Y-axis of 0.906 g.

The new, more sensitive, thigh rotation thresholds devised based on the on-the-floor
posture data allowed all side-lying to be classified and in the limited testing did not lead to
misclassification of sitting as lying. However, in this study all participants sat on the same
chair with their feet on the floor, therefore only a subset of the possible sitting postures
were tested. In the real-world misclassification of sitting as lying is likely as the threshold
of £0.51 g, which equates to thirty degrees thigh rotation when the thigh is parallel to

the ground, could feasibly be exceeded when sitting. In addition, in the real-world the
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Figure 5.9: Lying on the left side post-fall. The incline of the thigh with respect to the
floor results in a lower acceleration due to gravity on the activPAL’s Y-axis compared to if
the thigh had been parallel to the floor. Despite the participant being fully rotated onto
their left side, the acceleration due to gravity on the activPAL’s Y-axis is less than the
threshold devised by Lyden et al. [171] (Y > 0.906) and so lying was not detected when
their threshold was used.

device may be less precisely aligned with the midline of the anterior aspect of the thigh,
effectively reducing the thigh rotation required to cross the threshold. Over a period of a
few days wear, the attachment of the activPAL device to the thigh may loosen slightly and
allow the device to slip; due to the curvature of the thigh, a small shift in placement could

have a significant effect on the accuracy of sitting versus lying classification.

The algorithm developed by Lyden et al. [171] worked for long periods of lying because if
the thigh rotation threshold was crossed at any point during a sedentary period, the whole
period was classified as lying. This allowed a relatively extreme threshold to be used to
maximise specificity without substantially limiting the sensitivity. However, their algorithm
did not achieve perfect classification of “in bed” lying periods, the sensitivity was 0.97 and
the specificity was 0.93. To detect short periods of lying, the approach proposed by Lyden
et al. [171] cannot be used as the wearer of the device may not roll fully onto their side.
Instead, the thresholds must be adjusted to reduce the amount of rotation required to be

detected as lying, however, doing so would reduce the specificity.

The results showed that the only type of lying that simple thresholds can be used to
robustly detect is lying on the front. Lying flat on the back could not be distinguished from
sitting as the thigh orientation is the same. Lying on the side could only be consistently
detected with the use of a thigh rotation threshold of 0.52 g, which is likely to lead to
misclassification of sitting as lying; when the rotation threshold was increased, side-lying
was misclassified as sitting. Hence, it does not appear possible to robustly distinguish
between short periods of sitting and lying based on simple thresholds for the orientation

of the thigh. Since fall detection, rather than lying detection, is the focus of this thesis,
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further development of lying detection will not be conducted and lying classification will

not be used in the study which follows.

There is a clear trade-off, in terms of posture classification, between placement on the thigh
and the torso. The torso has been the more popular choice for fall detection [8], in part due
to its proximity to the centre of mass and partly as a torso-worn accelerometer can be used
to robustly detect lying postures. The detection of a change in torso orientation, indicating
a transition from upright to lying, has been used to reduce false positives [e.g. 102,106].
However, since it is possible to fall into a sitting posture, this approach may also lead to
missed falls. Conversely, a thigh worn device can robustly detect sedentary postures, but

not robustly distinguish between sitting or lying.

The ability to detect lying may be a useful feature for fall detection, but the findings of
this study indicate that lying post-fall cannot yet be detected reliably enough for use in
fall detection with a thigh-worn device. The upright versus sedentary posture classifier had
a sensitivity and specificity of one in detecting an upright posture pre-fall and a sedentary
posture post-fall. Therefore, transitions from an upright to a sedentary posture can be
detect