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Abstract

Falls can have severe consequences for older adults, such as bone fractures and long periods

unable to get up from the ground, known as a long-lie. The capability to automatically

detect falls would reduce long-lies through ensuring prompt arrival of assistance and would

be valuable in fall risk assessment and fall prevention research. This research aimed

to identify why existing wearable fall detection technology has not achieved acceptable

performance and where further development should focus.

There have been a plethora of attempts at fall detection; real-world testing is in an

embryonic stage, nevertheless, it is clear performance has been poor. The focus has been

on the testing of complete system performance, most commonly with acted falls, and it has

been unclear how to improve performance. A new framework for the development of fall

detection is proposed which promotes targeted investigation of how real-world performance

can be improved. An improved method to quantify real-world performance is also proposed

based on a systematic review of previous approaches. To prepare for the analysis of a

real-world dataset, a pilot study was conducted which focused on the development and

testing of posture classification algorithms.

One of the world’s largest datasets of real-world falls and activities of daily living was

collected over 2 years in collaboration with 17 care homes across Scotland and the north of

England. Twenty fall signals were extracted from 1,919 days of thigh-worn accelerometer

recordings collected with 42 participants. Analysis of the data focused on falls from an

upright to a sedentary (sitting or lying) posture, 16 falls met this criterion and were

included in the analysis. To allow the data to be thoroughly checked for quality, the dataset

was reduced to 104 days, from which 4,293 upright to sedentary transitions were extracted

(including the 16 falls).
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ABSTRACT xiii

This study was the first to: discern that falls may be too diverse to classify as a single

group and focus on a subtype of fall, use posture transitions to select events for analysis,

assess the importance of peak jerk and vertical velocity for fall detection, and investigate

the occurrence of multiple impacts during falls. The results demonstrated that the core

features used previously do not yield sufficient separation of the falls to allow detection

without high rates of false positives. For the first time, it was shown that (1) a rapid

increase in deceleration may be more indicative of a fall than the peak deceleration, and

(2) multiple impacts occur frequently in falls but not other movements.



Chapter 1

Introduction

Falls in older adults present a major healthcare challenge that is set to grow in the coming

years due to population ageing [1]. Falls have severe consequences for the individual, their

family, and society as a whole, as they often lead to a decline in the individual’s health.

Those who fall often struggle to get up unaided, therefore where assistance is not close

by, falls can result in a long-lie [2,3]. A long-lie is an unintentional, extended period spent

on the ground and has been associated with a decline in health from which individuals

often do not recover [4–6]. Reliable detection of falls as part of an alarm system is crucial

to minimise the consequences of falls and long-lies. In addition to applications in alarm

systems, the ability to accurately detect falls and log their occurrence has the potential to

revolutionise fall risk assessment and fall prevention research.

There has been a great deal of research into fall detection technology with over 200 published

articles since 1998 [7–12]. The vast majority of tests of fall detection technology have used

data from falls acted out in a laboratory by healthy, young adults [7–10,13,14]. The use

of so-called “simulated falls” allows a relatively large number of falls to be collected in a

short period, which has made it an attractive approach, particularly in the early stages

of development. However, research has shown that there are differences between these

simulated falls and real falls and that the results of tests on simulated falls do not transfer

to the real-world [15–18]. Approaches which detected over ninety percent of simulated falls

detected less than half the falls in a set of real-world data [17–19]. In addition, when tested
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on real-world data the rate of false positives has been much higher than expected based on

the performance reported from tests on simulated falls [17–20].

The use of real-world data for fall detection research has been limited due to challenges in

recording real falls [17]. Where real-world data has been used, the focus has been on testing

prototype fall detection systems and algorithms. Consequently, little has been learned

about how real falls can be detected robustly, no tangible improvements in real-world

performance have been made and performance remains poor. Using one of the largest

studies of fall detection technology as an example, Lipsitz et al. [21] tested a pendant-based

fall alarm produced by Royal Philips (Amsterdam, Netherlands) and found that only

nineteen percent of falls were detected and that only thirteen percent of the alarms raised

corresponded to an actual fall. It was evident that a new approach was needed if significant

improvements in performance were to be found and the use of real-world data to test

systems, while important, was not sufficient.

The central aim of the research which underpins this thesis was to identify why existing

wearable fall detection technology has not achieved acceptable performance and where

further development should focus. There were five sub-aims: (1) to formulate a new

framework for the development of fall detection technology, (2) to identify how fall detection

performance should be quantified, (3) to test the activPAL3 device as an instrument to

record fall signals, (4) to collect a real-world dataset of falls and activities of daily living

comparable in size to the largest used in previous studies, and (5) to analyse real-world

fall data in line with the proposed framework such that the main aim is achieved.

To understand why existing approaches have not achieved acceptable performance it was

important to evaluate how fall detection research has been conducted; after all, if the

methods used to develop the technology are not appropriate then one cannot expect to

make progress. There are two key stages of development, the first is the design, the second

is how the performance is evaluated; this is a cyclic process so the evaluation needs to

inform future design. Sub-aim one addresses the process of identifying how to improve the

design of fall detection technology following an evaluation. The second sub-aim is concerned

with the quantification of performance, how can one know if a tweak in the design leads

to an improvement or if one approach is better than another. The third sub-aim deals

with the research needed to understand the limitations of a thigh-worn activPAL3 and to

determine whether the main aim can be achieved through analysis of data collected with

this device. The fourth and fifth aims combined serve to address the limited evidence on
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which to base further research and development by closing the feedback loop which has

been lacking following previous real-world tests of wearable fall detection performance.

Chapter 2 focusses on why fall detection is needed and the contribution this technology

could make. Chapter 3 focusses on the previous approaches to fall detection and culminates

in a statement on the current state-of-the-art and a proposal for how fall detection research

should be conducted. Therefore, through a review of the literature, Chapter 3 addresses

the first sub-aim: to formulate a new framework for the development of fall detection

technology. The review identified that there has been a focus on testing fall detection

performance and a lack of analysis to understand how performance could be improved.

Therefore, to break away from an approach of trial and error, the proposed framework closes

the feedback loop so that each test informs further research and development. Accordingly,

the fifth sub-aim becomes: to conduct an analysis of real-world fall data to (1) develop

an understanding of why existing wearable fall detection technology has not achieved an

acceptable level of performance, and (2) to identify characteristics which are unique to falls

and could be used to improve performance.

Chapter 4 addresses the second sub-aim through a systematic review of the methods used

to evaluate fall detection performance using real-world data. This was the first-ever review

of how fall detection performance can be quantified and a more robust approach was

proposed based on the findings. The key findings were: (1) the approaches to quantifying

performance were inconsistent and many studies used measures which provided limited

representation of performance and (2) the sample of falls was generally small and the study

populations were diverse, making a comparison between the datasets, and thus results,

difficult. Based on this review it did not appear plausible to systematically compare the

performance of existing approaches to fall detection and to identify which is best. To

address the key issues, it was proposed that larger, shared datasets are needed and that

performance is quantified in terms of sensitivity and precision.

It was clear, from the review of previous approaches (Chapter 3), that the focus must

be on the real-world and thus, a real-world dataset of falls and activities of daily living

would be required to achieve the main aim. It was also clear that the collection of such a

dataset represented a substantial challenge and preparatory work was required to ensure

the maximum value could be gained from the data. The device selected to collect the

real-world dataset was a thigh-worn activPAL3™ due to its common use in studies which

have monitored the activity of older adults twenty-four seven. However, there were two
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unknowns, firstly, fall-related posture classification with a thigh-worn device had never

been investigated before and so it was unknown whether the postures before and after a

fall could be classified, and secondly, it was unknown if the sensor’s range of ±2 g was

sufficient. Hence, a pilot study (Chapter 5) was conducted to test the activPAL3 device as

an instrument to record fall signals (sub-aim three). The objective of the pilot study was

to record posture and simulated fall data so that: (1) algorithms for the classification of

posture before and after a fall could be developed and tested, and (2) the occurrence of

clipping in signals recorded by an activPAL3 during a fall could be assessed.

Following the pilot study it was deemed that, on balance, the activPAL3 device was suitable

for the collection of a real-world fall dataset. Accordingly, Chapter 6 provides details of a

project to record real-world falls and activities of daily living from residents of care homes

in the UK using the activPAL3 device. This project addresses the fourth sub-aim, to

record a real-world dataset comparable to the largest used in previous studies. Over two

years a total of 1,919 days of recordings were collected with forty-two participants across

seventeen care homes. Chapter six also details, and provides full results of, the process by

which twenty fall signals were identified within the recorded data based on the fall reports

provided by the care homes.

Chapter 7 addresses the fifth sub-aim through the most comprehensive analysis of real-world

falls to date. The research presented in this chapter utilises the posture classification

algorithms developed in Chapter 5 and the data collected in Chapter 6. This study includes

many world firsts, including, but not limited to, (1) the extraction and comparison of a

specific subgroup of falls and ADL using posture analysis, (2) analysis of the interaction

between features of fall and ADL signals, and (3) the investigation of multiple impacts for

fall detection. In addition, this study includes an analysis of features common to previous

wearable fall detection approaches and provides valuable insight into why these have not

yielded acceptable performance.

The final chapter (8) provides a summary of the research presented in this thesis, highlights

the key findings and makes recommendations for further research.



Chapter 2

Why Fall Detection Is Needed

2.1 Falls: A Global Healthcare Challenge

Falls in older adults pose a significant challenge to healthcare and wider society; they have

previously been described as one of the ‘geriatric giants’, the main ailments associated

with ageing [22]. The scale and cost of falls is substantial [23] and expected to grow in the

coming decades due to population ageing [24]. Without intervention, the costs associated

with falls will rise, with an ever-increasing impact on healthcare [1].

This section aims to: (1) describe what constitutes a fall through a review of definitions,

(2) discuss the incidence of falls and the associated costs to society, and (3) examine the

physical and psychological consequences of falls.

2.1.1 Fall Definitions

Many definitions of falls exist in the literature. The Kellogg International Work Group

provided an early definition of a fall as:

“An event which results in a person coming to rest inadvertently on the ground

or other lower level and other than as a consequence of the following: sustaining

a violent blow, loss of consciousness, sudden onset of paralysis, as in a stroke,

an epileptic seizure” [25].
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This is a suitable definition for studying falls due to sensorimotor impairment and loss

of balance but discounts those due to cardiovascular health i.e. syncope [4]; therefore

a broader definition is needed. More recently the FARSEEING consortium, a group of

experts from a range of fall-related professions, provided a consensus definition of a fall as:

“An unexpected event in which the person comes to rest on the ground, floor

or lower level” [26].

This definition encompasses all types of falls, with no restrictions on the cause and is,

therefore, better suited to studying all types of fall.

2.1.2 Fall Incidence

Gauging the true frequency at which older adults fall is challenging given that falls are

often not reported, especially when no injury occurs. Estimates suggest that about thirty

percent of persons over the age of sixty-five fall at least once each year [27–30] and the

proportion rises to around forty-five percent for those over eighty [27]. The risk of falls

is higher for older adults living in long-term care (LTC) due to their frailty and other

predisposing factors. Estimates suggest the rate of falls is two to three times higher in

LTC compared to community settings [31,32]. In hospitals, the incidence of falls varies

across departments. In geriatric rehabilitation wards, the incidence is estimated to be 3.4

falls per bed annually and in psychogeriatric wards, the incidence is estimated to be 6.2

falls per bed annually [33].

The main issue is not the high incidence of falls alone, but the combination of high incidence

and elevated risk of injury. Indeed, it has been found that the risk of sustaining a fall-related

injury increases exponentially with age [34]. This is due to age-related decline (e.g. balance

impairment and slowed reflexes) [35] and higher prevalence of other medical conditions

(e.g. osteoporosis and sarcopenia) [36]. Of those who fall, an estimated twenty percent

will sustain serious injuries requiring medical attention, half of which will include a bone

fracture [27,28].

Without intervention, both the frequency of falls and the total number of fall-related

injuries is set to increase due to population ageing. Population ageing is a phenomenon

taking place throughout the world, whereby older persons are becoming a proportionally

larger share of the total population [37]. By 2050, the number of people aged sixty years or
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over is expected to reach two billion; more than double the number in 2013. The number

of people aged eighty or over is growing even faster, expected to more than triple by 2050

[24].

2.1.3 Consequences for the Individual

2.1.3.1 Physical Consequences

Both the incidence and severity of consequences from falls increase with age [34]. Recovery

following a fall is highly correlated with physical capability prior to the fall [38]. Therefore,

when the oldest and most frail fall the chances of a full recovery are slim and the impact

on their health is likely to be long-lasting, if not permanent. Indeed, research has shown

that falling is the leading cause of death in people over seventy-five years of age [39].

Falls which result in a fragility fracture, defined as “a fracture caused by forces equivalent

to a fall from standing height or less”, are of particular concern [23]. Fragility fractures

account for almost sixty percent of fall-related injuries, superficial injuries account for

twenty-one percent and head injuries nine percent [40]. The most frequent fragility fractures

are to the hip (twenty-eight percent) and the wrist (twenty percent). Due to protective

responses, wrist fractures are the most common in fallers under the age of seventy-five,

however, in fallers over seventy-five hip fractures become more common as their reactions

slow [41]. Of those who suffer a hip fracture, up to ninety percent never regain their

previous level of mobility and independence [42]. There is also a strong association between

fragility fractures and decreased life expectancy; following a fragility fracture of the hip,

about one in ten die within a month and one in three die within one year [23].

Even when a fall does not directly cause injury, the health of the faller can be negatively

impacted. Tinetti et al. [2] found that forty-seven percent of uninjured fallers were unable

to get up without help, for injured fallers the proportion will be higher. In fallers over the

age of ninety, eighty percent cannot get up after a fall and thirty percent remain on the

floor for over an hour [3]. If help is not available, the inability to get up leads to a ‘long-lie’

where the faller remains on the ground for an extended period.

In twenty percent of fall-related hospital admissions, long-lies are reported [43]. Long-lies

are most common and most severe for falls suffered by independent, community-dwelling

older adults. In hospitals and LTC, long-lies are not expected to be common due to frequent
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monitoring. The time spent isolated on the floor often leads to dehydration, pressure sores,

pneumonia, hypothermia and a fear of falling [4–6]. The impact of a long-lie on a faller’s

health can be severe and many older adults do not fully recover following a long-lie. Wild

et al. [44] found that half of those who lie on the floor for more than one hour die within

six months.

2.1.3.2 Psychological Consequences

Falls can have severe consequences even when no serious injury occurs. In older adults who

have fallen the fear of falling and post-fall anxiety result in a loss of self-confidence and

self-imposed restriction of activities [45,46]. A fear of falling does not only occur following

a fall, even those who have not had an injurious fall may still be fearful [46]. Estimates

suggest that between twenty-five and fifty percent of older adults are fearful of falling and

half of these will limit their activities as a result [47,48].

The fear of falling could be more detrimental to an older adult’s quality of life than a fall

or fracture, and this is largely due to a restriction of activity leading to a reduction in

physical ability [49]. Severe activity restriction induced by a fear of falling is an independent

predictor of accelerated decline in physical ability and can increase the risk of falling [46,50].

It has been reported that self-imposed activity restrictions often contribute to nursing

home admission [51,52]. These findings suggest that although moving less may initially

reduce the risk of falling, the detrimental effects on mobility may outweigh any benefit and

might lead to increased falls in the future.

In addition to the effect on mobility, the fear of falling and the associated activity restriction

can affect mental health. Avoidance behaviours and fear-related anxiety can result in social

isolation and subsequently lead to depression [53]. It could also be that depression leads to

activity restriction since depression is an independent predictor of fall risk [54,55]. The

relationship between the fear of falling, mental health, activity restriction and fall risk is

complex and causality has not been demonstrated. However, a fear of falling is detrimental

to both the physical and mental health of older adults [46].
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2.1.4 Financial Costs

Calculating the total cost to society of falls is challenging due to the number of factors

which need to be considered. Many older adults are engaged in activities which benefit

society such as volunteering in their community, caring for their spouse or providing family

childcare. Those who suffer an injurious fall will need to take a break from their usual

activities and may never regain the mobility needed to resume them. It is comparatively

straightforward to estimate the direct healthcare costs, however, one cannot easily calculate

the cost of a lost contribution to society. Due to a lack of research into the wider costs to

society, the following sections discuss only the healthcare costs associated with falls in the

UK and worldwide.

2.1.4.1 United Kingdom

In 2003, Scuffham et al. [56] published a report on the cost of falls in the UK, to the

author’s knowledge this is the most recent published study of its kind. Scuffham found

that in 1999 falls cost the NHS and social services £981 million. Of these costs, sixty-six

percent were due to falls in those over seventy-five years of age. Most of the costs were

for care, forty-nine percent of costs were for hospital inpatient admissions and forty-one

percent for long term care. The number of fall-related A&E attendances and hospital

admissions were 647,721 and 204,424 respectively.

Current costs are expected to be significantly higher given inflation and population growth.

According to the office for national statistics prices have increased by forty-five percent

between 1999 and 2017 [57] and the number of people over sixty-five has risen by twenty-

eight percent [58]. Based on inflation alone the cost of falls in 2017 would be approximately

£1.43 billion; when accounting for population growth the cost rises to approximately £1.82

billion. It should be noted that estimating the increase in costs based on population growth

and inflation is not robust, therefore the approximation of £1.82 billion is a very rough

estimate; without a new study, it is not possible to get an accurate estimate of costs. Given

the last comprehensive analysis of the cost of falls in the UK was conducted two decades

ago, there is a clear lack of up to date information and a need for an update to the work

carried out by Scuffham et al. [56].
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2.1.4.2 Worldwide

There have been two systematic reviews on the cost of older adult falls and their findings

remain the leading source for worldwide estimates of fall-related healthcare costs. Davis

et al. [59] found that the mean cost was US$3,476 per faller, US$10,749 per injurious

fall and US$26,483 per fall requiring hospitalization (at 2008 prices). Heinrich et al. [60]

found that between 0.85 and 1.5 percent of total healthcare spending was fall-related. This

equated to between 0.07 and 0.20 percent of gross domestic product and between US$113

and US$547 per citizen annually at 2006 prices. Heinrich et al. [60] further found that the

mean cost per faller ranged from US$2,044 to US$25,955, the mean cost per fall ranged

from US$1,059 to US$10,913 and the mean cost per fall-related hospitalisation ranged from

US$5,654 to US$42,840 (at 2006 prices). More studies have been conducted into the cost

of falls in the USA than other nations [59,60]. The most recent estimate places the cost of

falls to healthcare providers in the USA during 2015 alone at US$50 billion [61].

2.2 Circumstances and Causes of Falls

Falls are hugely variable and occur as the result of a host of contributing factors. These

factors can be categorised as internal or external. Internal factors include anything specific

to the faller such as reduced balance or visual impairment. External factors include anything

circumstantial such as a wet floor or a distraction causing someone to turn suddenly. The

interplay between these factors creates the specific circumstances for a fall to occur and

therefore provides a useful understanding for preventing further falls.

An understanding of the circumstances and causes of falls is crucial to understand how to

manage them (Section 2.3) and it is in the management of falls where fall detection can

contribute. Accordingly, this section aims to provide an overview of the circumstances and

causes of falls. This section first reviews the internal factors which contribute to elevated

fall risk and risk of injury in the event of a fall. Next, the challenges in identifying the

circumstances of falls are discussed and a summary of the common circumstances in which

falls occur is presented.
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2.2.1 Internal Factors Which Increase Fall Risk

The causes of falls are complex and there are many factors which are associated with

an increased risk of falling. In a systematic review of falls in nursing homes, Rubenstein

et al. [31] identified that the most common causes of falls were gait and balance disorders,

muscle weakness, dizziness, confusion, visual impairment, postural hypotension and the

use of sedating and psychoactive medications. Deandrea et al. [62,63] conducted two

systematic reviews and meta-analyses, one focused on community-dwelling older adults

and one on residents of nursing homes and hospital patients. They found that the factors

most strongly associated with falls were a history of falls, gait problems, walking aid use,

vertigo or dizziness, Parkinson’s disease, the use of antiepileptic medications, cognitive

impairment and visual impairment. The findings of Rubenstein et al. [31] and Deandrea

et al. [62,63] are broadly similar and the main factors are interlinked, for example, gait

problems could be a symptom of poor balance, muscle weakness or impaired motor control.

It should be noted that many of the factors identified are symptoms of underlying conditions.

Although these factors are useful in understanding why older adults fall, fall prevention

interventions should consider the underlying conditions rather than their symptoms. There

are a host of factors which can cause gait and balance problems [64]. Neurological

conditions such as Parkinson’s disease and stroke can affect motor control and other

long-term conditions such as arthritis can restrict movement and cause pain [64]. It is

likely that not all gait and balance problems are equally detrimental and therefore more

work is needed to identify the specific problems which increase fall risk.

Factors such as confusion or cognitive impairment are also very broad categories, and

there are many causes of cognitive impairment such as a stroke or dementia. In addition,

the label cognitive impairment does not in itself reveal any detail about the nature of

the condition. A cognitive impairment could present as impaired memory, judgement or

visual-spatial perception [31,65]. It is currently unclear how the individual sub-factors of

cognitive impairment effect fall risk [65].

There is evidence that psychotropic medications increase the risk of falls and the risk

increases further if more than one psychotropic medication is taken [66,67]. Further,

falls have been associated with the following subclasses of psychotropics: neuroleptics,

antidepressants, benzodiazepines and sedatives [66,67]. Olazarán et al. [67] found that the

highest risk of falls was associated with the combination of long half-life benzodiazepines,
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neuroleptics, and other psychotropics. No strong associations have been found between

cardiac or analgesic medications and increased fall risk [68]. However, slight associations

have been found with digoxin, type IA antiarrhythmic, and diuretic medications [68,69].

There is good evidence that muscle weakness elevates the risk of falling. Moreland et al. [70]

conducted a meta-analysis using data from thirteen previously published studies which

assessed the relationship between muscle strength and falls. They found that muscle

strength was strongly associated with falls and the association was stronger for lower

body strength than upper body strength. The muscle weakness which occurs with ageing

has been attributed to both a loss of muscle mass and muscle quality and these have

also been linked to increased fall risk [71]. There is also considerable evidence that some

cardiovascular conditions are associated with falls. Jansen et al. [72] systematically reviewed

the literature and found low blood pressure, heart failure, and cardiac arrhythmia increased

the risk of falling.

Recent meta-analyses found, rather counter-intuitively, that walking aid use was strongly

associated with falls both in nursing homes and community settings [62,63]. It is unlikely

that walking aids themselves cause falls if used properly, as they are designed to improve

stability by increasing the number of points in contact with the ground. The association

between walking aid use and fall risk is in part due to those most at risk of falling being

more likely to use a walking aid. Research has also found that the majority of walking

aid users who fall do not use their walking aid at the time of the fall [73]. Perhaps this

association could also be suggestive of poor walking aid use at the time of the fall, however,

instrumentation to study stability when using walking aids has only recently been developed

and this is an active area of research [74].

It is important to consider more than just factors which increase the risk of falling;

ultimately it is the injuries which occur as a result of falls that present the issue. Therefore,

one could argue that the factors which increase the risk of injury in the event of a fall

are the most important. It has long been known that comorbidities such as osteoporosis

can make a fall dangerous which would otherwise be benign [36]. The combination of

slowed reflexes and muscle weakness reduce the ability of older adults to break the fall and

may, therefore, lead to higher peak forces [75]. It is difficult to isolate factors beyond the

conditions which are known to increase the risk of bone fractures or soft tissue injuries;

this is due to the methods used to identify factors associated with falls.
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At present, the understanding of the factors which affect fall risk comes from studies which

correlate observations with the occurrence of falls or fall-related injuries. Therefore, only

an association and not causation can be established. Further, one cannot easily separate

factors which contribute to the occurrence of falls from factors which contribute to injuries.

Studies have demonstrated an association between falls and numerous broad themes such

as gait and balance issues or cognitive impairment. However, the understanding at a deeper

level of what specific issues and impairments contribute to falls and how they interact is

limited. More research is needed before we truly understand the factors which contribute

to older adults’ fall risk and risk of fall-related injuries.

2.2.2 Challenges Determining the Circumstances of Falls

The majority of research into the circumstances of falls has relied upon interviews and

incident reports [76]. These methods rely on the accuracy of faller and witness accounts

which are subject to recall problems, social report bias and recall bias [26,77,78]. In many

cases, falls are not witnessed and we are reliant on the recall of the faller themselves [78].

This presents an issue as the recollection of the faller, and therefore the fall report can

be inaccurate [79]. These issues are exacerbated when recording falls in patients with

cognitive impairment, where recall problems may be even more severe [80].

The challenges associated with using interviews and incident reports to identify the

circumstances of falls limits the reliability of the findings from studies which used them.

Video analysis of falls is the gold standard as it allows multiple experts to assess each

fall in detail, which is not possible with other methods. However, there has been very

limited research which has used video footage to identify the circumstances of falls. To

the author’s knowledge, only two research groups have conducted such work [81,82]. Both

studies faced the same limitation, cameras were not placed in private areas.

Estimates suggest that seventy-five percent of falls occur in private areas [76]; however

privacy concerns prevent cameras being placed in these areas. Despite the lack of video

footage of falls in private areas, studies which have analysed video footage of falls provide

invaluable insights into the circumstances of falls. To gain the fullest understanding one

must review both the detailed and reliable descriptions of falls based on video and the large

scale studies which relied on fall reports. The following sections first discuss the findings
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from the analysis of fall reports and then the findings of studies which have used video

analysis.

2.2.3 Analysis of Reports on the Circumstances of Falls

The literature suggests that for community-dwelling older adults the majority of falls occur

in the home; with the living room, bedroom and bathroom reported as the most common

locations [83,84]. Outside the home falls most commonly occurred in green spaces (gardens,

woods, etc.) followed by steps or stairs [84]. The most common causes of falls were reported

to be loss of balance, tripping and slipping [83,84].

Rapp et al. [76] conducted the largest analysis of fall reports to date, they included over

70,000 falls from Bavarian nursing homes. They found that around sixty percent of falls

occurred in resident’s rooms, thirteen percent occurred in the adjoining bathrooms and

twenty percent in communal areas. Of the falls recorded, forty-one percent occurred

during transfer (e.g. to or from a chair), thirty-six percent occurred during walking and

twenty-three percent were classified as other (either unclassifiable or during another activity

such as sitting). Perhaps unsurprisingly, the findings showed that as care need increased

fewer falls from walking and more falls during transfers were recorded.

In hospitals, the vast majority of falls occur in patient’s rooms (seventy-five percent), and

bathrooms are the next most common locations (fifteen percent) [85,86]. Similar to nursing

homes, the majority of falls in hospitals occur during walking and transfers [85,86]. A high

proportion of falls occur during toileting related activities such as walking to the toilet or

reaching for toilet tissue [85]. It has also been found that fallers in hospital who usually

use a walking aid, often do not at the time when they fall [85]. This supports the earlier

suggestions that a lack of walking aid use at the time of a fall may be a reason for their

use being associated with increased fall risk.

2.2.4 Video Analysis of the Circumstances of Falls

In 1990, Holliday et al. [81] analysed video footage of twenty-five falls recorded over fifteen

months in the communal areas of a long-term care (LTC) facility. They found that the

majority (sixty-eight percent) of falls occurred during walking and falls also occurred

during standing (twelve percent), during rising (eight percent), while sitting (eight percent)
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and while bending over (four percent). The most common points of impact were the

hip, the buttocks and the knee (each twenty percent). Other points of impact were the

hand (twelve percent), the shoulder (four percent) and the side of the thigh (four percent).

Responses to a loss of balance were identified in twenty-two of the falls, the responses

included: protective arm extension (fifty-six percent), stepping (forty percent), change in

walking pace (twelve percent), grabbing (eight percent) and no response (eight percent).

Holliday et al. [81] also studied the events which followed the fall. In forty percent of the

falls, the faller came to rest in a sitting position, in twenty percent the faller was supine,

in twelve percent they were on their side, in eight percent they were on their knees and

in four percent they were prone. The resting position could not be determined in sixteen

percent of the falls. In eighty-two percent of the falls, assistance was needed to help the

faller from the floor. The findings of Holliday et al. [81] show that those who fall mostly

exhibit a response to try and regain balance and that most falls occur during walking. The

identification of impact sites and protective responses could be useful for injury prevention

research.

Only recently has further work been conducted which used video footage to objectively

assess the sequence of events that leads to a fall [82,87]. Robinovitch et al. [82] used existing

CCTV systems to capture video footage of falls from two Canadian LTC facilities over

three years. CCTV was available in common areas e.g. dining rooms, lounges and hallways.

A total of 227 falls were captured during the study and analysed to identify the cause of

imbalance and the activity leading to the fall. The cause of imbalance was categorised

as one of the following: incorrect transfer or shift of body weight, trip or stumble, hit or

bump, loss of support with an external object, collapse or loss of consciousness, slip, or

could not tell. The activity at the time of the fall was categorised as one of the following:

walking forward, standing quietly, sitting down or lowering, initiation of walking, getting

up or rising, walking backwards or sideways, walking and turning, standing and turning,

seated or wheeling in wheelchair, standing and reaching, or could not tell.

The results showed that incorrect shifting of body weight was the most common cause

(forty-one percent of falls recorded), with trips and stumbles the second most common

(twenty-one percent). Most falls occurred during walking (forty-five percent), standing

(twenty-four percent) and sitting down (thirteen percent). Using the same dataset, Yang

et al. [87] found only a forty-five percent agreement between the incident report and video

footage for the cause of imbalance and the activity at the time of falling. This highlights
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the importance of using objective measures to assess the causes of falls. These studies

provide much-needed insight, however, they were limited to three LTC facilities in Canada

and only cover falls in the communal areas. There is still more research needed to fill the

gaps in the understanding of the circumstances and causes of falls.

2.2.5 Summary

Many factors have been associated with a risk of falling and a risk of sustaining a fall-related

injury. However, there are challenges establishing causation and so the understanding of

the direct causes of falls is limited. There are also challenges identifying the circumstances

of falls. Fall reports can be inaccurate and video analysis, while more accurate, is limited

to certain areas due to privacy concerns [87]. New approaches are needed to objectively

and reliably assess the circumstances and causes of falls across all locations.

2.3 The Role of Fall Detection in the Management of

Falls

The management of falls is critical to lessen their burden on society and ultimately managing

falls means preventing them, and where they have occurred, detecting them promptly.

Since resources are finite fall prevention efforts must be focussed on those who will benefit

and should target their specific risk factors. Assessments of older adults’ fall risk are hence

crucial to identify those who would benefit from intervention and which interventions are

suitable. Even with accurate fall risk assessments and targeted interventions, falls will still

occur. To minimise the consequences of these falls, assistance must be received quickly so

that long-lies can be prevented. Therefore, fall alarm systems have an important role to

play in the management of falls.

Fall alarm systems are the first area where automatic detection of falls can provide benefit,

this is discussed in Section 2.3.1. The automated detection of falls as part of an alarm

system removes the need for the user to acknowledge the need for assistance and manually

trigger an alarm. The second area where fall detection can contribute to the management of

falls is as a tool for fall risk assessment, this is discussed in Section 2.3.2. A third area where

fall detection technology could be used is in research into the efficacy of fall risk assessments

and fall prevention interventions. The ability to accurately log the occurrence of falls is
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vital to such research as the occurrence of falls is their main outcome measure. Therefore,

if proven to be reliable, fall detection systems could be a more accurate alternative to

self-report and care staff reports on the occurrence of falls.

2.3.1 Fall Alarm Systems

Unfortunately, not all falls can be prevented and it is, therefore, important that efforts are

made to reduce the consequences of falls. One way in which the severity of the consequences

following a fall can be reduced is to ensure assistance is received quickly and long-lies are

prevented (see Section 2.1.3.2). Research has shown that the earlier a fall is reported the

lower the rate of morbidity and mortality [44,88]. Alarm systems are an obvious way in

which family or carers can be alerted to a fall.

Personal Emergency Response Systems (PERS) is a term used to describe a category of

alarms which the user activates in an emergency. PERS come in a variety of forms and

have been commercially available for many years. The most common types of PERS are

pull-cords, fixed (e.g. wall-mounted) push-buttons and wearable push-buttons. PERS can

be used for any kind of emergency and most are not designed specifically for falls. A faller’s

movement may be restricted after a fall, preventing them from getting to a push-button,

emergency cord or phone. Therefore, PERS aimed specifically at those with a high risk

of falls commonly use a wearable push-button, often in the form of a pendant. In care

facilities, PERS usually include an audible alarm to notify staff. In the community, PERS

usually include a base station connected to a phone line, so that alerts can be sent to either

a service provider, family members or carers.

The UK Department of Health conducted the world’s largest study of telemonitoring in

the Whole System Demonstration Project [89]. The results showed that if implemented

effectively, telemonitoring services can reduce mortality, hospital admissions and time spent

in hospital. The use of PERS increases the safety of community-dwelling older adults,

allowing them to remain independent and live in their own home for longer [90]. In addition,

PERS can also reduce the fear of falling through the knowledge that users can get help if

needed [90,91].

Though PERS have a clear benefit to their users, push-button systems are limited by the

need for user interaction. Therefore, they can only be effective if the user acknowledges

an emergency and has the physical and cognitive capacity to press the button [92]. A
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further concern is that alarms are not always triggered even when the user can do so [3,93].

Fleming and Brayne [3] found that eighty percent of those who fell when alone and could

not get up did not activate their PERS; neither did ninety-seven percent of those who

remained on the floor for over an hour. Similarly, Heinbüchner et al. [93] found that

eighty-three percent of participants who fell when alone and lay for more than five minutes

did not activate their PERS. This may be a result of a false assessment of their condition

or simply a reluctance to disturb a service operator [92].

To address the limitations of push-button systems, a second generation of PERS devices

have been developed. These newer devices contain sensor technology that automatically

detects when a fall occurs. However, the precision of fall detection has not been good

enough and adoption has been low [94]. The automatic detection of falls is an active area

of research, with a focus on the development of an alarm system (see Chapter 3 for a

review of automatic fall detection research). Fall alarms could be viewed as a stepping

stone to the use of fall detection and activity monitoring technology in fall prevention

research. There is substantial overlap between the technology of fall detection and activity

monitoring; after all, a fall is essentially just another activity. Therefore, an automatic fall

alarm system will be capable of tracking other movements, this combination would provide

a rich dataset for research while providing a valuable service for users.

2.3.2 Fall Risk Assessment

One of the major risk factors for falls is a history of falling (Section 2.2.1), therefore, it

is important to be able to reliably record the occurrence of falls. Fall incident reports

and interviews are the current methods used to assess a person’s fall history, however,

these are subject to recall problems and biases (Section 2.2.2). In cases where a fall is not

witnessed, no injury occurs and the faller can get up from the floor, there is a high risk that

the incident would not be recorded, leading to inaccuracies in a person’s fall history. For

those who live in the community, the sole method for assessing fall history is self-report,

except where a long-lie or injury requiring medical care occurs. These non-injurious falls

may seem relatively minor, but knowledge of their occurrence and early intervention could

prevent a serious fall.

The ability to detect falls using sensor technology could improve fall risk assessment through

the provision of an accurate record of fall history. If this technology could be integrated
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into wearable activity monitors, such as those which have become popular in recent years,

then the automatic recording of falls could become ubiquitous. The data generated by

such devices could also be highly valuable for research into fall risk factors and the efficacy

of fall prevention interventions. At a basic level, activity monitoring could be used to

identify changes in daily activity levels over prolonged periods, which might indicate a

decline in mobility and an increased fall risk or vice versa. A long-term record of daily

activity and falls would allow any such risk factors to be identified, and potentially allow

fall risk assessment using activity monitors.

Activity monitoring technology could also be used to assess specific movements to identify

known risk factors such as gait or balance problems. The ability to monitor free-living

behaviour could give far greater insights into fall risk than a set of tasks carried out in a

clinical setting [95]. A fall risk assessment carried out in a clinical setting only considers

one point in time, when typically the person being assessed will try to perform their best.

Conversely, activity monitoring allows free-living activity to be tracked over time and can

provide insights into movement both when a person is at their best and when they are

tired or ill, when fall-risk may be at its highest. In addition, the analysis of sensor data

can be automated, therefore clinical expertise is primarily needed to design, rather than to

carry out, each assessment, thereby allowing a greater number of assessments to be carried

out [95,96].

There are two ways such approaches to fall risk assessment could work in practice: (1)

as an assessment prescribed by a clinician, and (2) as a product available to the public.

Clinicians could ask patients to wear a device for a short period, for example, a week, to

collect a series of measures to support assessment. This approach would be similar to any

other assessment such as scans or blood tests. As ever more sensors enter daily life, such

as in smartwatches and smartphones, fall detection and fall risk assessment could work in

a similar way to how fitness trackers are used currently. Those who are concerned about

their risk of falling could simply download an application to add such features to their

device. Unlike many older adults today, future generations would already be used to such

technology.

Research into the use of sensor technology to assess fall risk has already been carried out,

however, there have been issues with the way studies have been conducted. In a review

of wearable inertial sensor-based fall risk assessments, Howcroft et al. [95] found issues

with the methods of testing. Around one-third of studies compared their tool to existing
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clinical tests which are known to have limited accuracy (see Appendix A for a review), a

further third used a retrospective analysis and so tested the ability to identify those who

previously fell rather than those at risk of future falls. Only fifteen percent of studies used

a prospective design, which is the recommended method for testing risk assessment tools.

The ability to automatically detect falls could facilitate this research by allowing a reliable

record of the occurrence of falls to be collected.

Despite the limitations of tests of wearable fall risk assessment tools, the potential of the

technology is clear [95]. In early trials, assessments using a waist-worn accelerometer in

the laboratory have outperformed common methods of fall risk assessment (see Appendix

A for an overview of common fall risk assessments). For example, Marschollek et al. [97]

used an accelerometer to assess movement during a timed up and go test and extracted

a range of parameters from the signals, including step duration, step length and pelvic

sway. The time taken to complete the timed up and go test predicted a fall in the following

year with an accuracy of 0.5 (where 1 is perfect accuracy), for the St. Thomas’s Risk

Assessment Tool in Falling Elderly Inpatients the accuracy was 0.48 and the assessment

of a multidisciplinary geriatric care team had an accuracy of 0.55. In comparison, the

sensor-based test had an accuracy of 0.7 showing that a comprehensive analysis, using

an accelerometer, of a person’s ability to stand from a chair, walk and sit back down can

assess fall risk more accurately than current methods.

2.3.2.1 Summary

The ability to accurately log the occurrence of falls could provide a great deal of benefit

both as a tool for fall risk assessment and as a tool to assess the accuracy of other forms

of risk assessment. Current evidence suggests that the use of sensors to assess fall risk is

more accurate than the existing methods used. Fall detection combined with the ability to

monitor other activities has the potential to revolutionise the assessment of fall risk. The

ability to assess fall risk continuously during everyday activities rather than in a clinical

setting could provide a more accurate assessment of fall risk. As a history of falls is a major

risk factor for further falls, the ability to detect falls using sensors could be an important

part of future fall-risk assessment technology.
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2.4 Conclusions on Why Fall Detection Is Needed

Falls in older adults represent a global healthcare challenge which needs to be addressed.

Falls can result in serious injuries, lead to a decline in health and even death; in the UK

alone falls are estimated to cost the NHS £1.82 billion each year. Fall detection has a clear

role to play in the management of falls. The ability to automatically detect falls as part

of an alarm system would ensure help is received promptly and minimise the occurrence

of long-lies. A history of falls is one of the main risk factors for future falls, hence fall

detection technology could also be used in the assessment of fall risk.

The combination of activity monitoring technology, fall detection and an alarm system

could be valuable for those at risk of falling, their healthcare team and research. The

alarm system would ensure assistance is received should a fall occur. Such a system could

also identify fall risk factors and inform on changes to fall risk, both of which could be

useful to clinical staff. Finally, the data gathered by such a device would be useful to those

testing new methods of fall risk assessment or fall prevention interventions; such studies

rely on an accurate record of falls. It is clear that if accurate fall detection technology can

be developed, it would make a valuable contribution to the management of falls.



Chapter 3

Previous Approaches to Fall

Detection

The ability to automatically detect falls would be beneficial, as such, a great deal of research

has been done on the topic. Continued advances in technology have resulted in a wide

range of hardware which could be used for healthcare applications such as fall detection.

Consequently, a wide range of approaches to fall detection have been proposed in the

literature. This chapter introduces the methodology that has been used to develop and

test fall detection technology, discusses the issues in the field and provides an overview

of previously proposed system designs. Lastly, this chapter presents a statement on the

current state-of-the-art of fall detection and proposes a new framework for the development

of fall detection technology. Thus, through a review of the literature, this chapter addresses

the first sub-aim of the research for this thesis, to formulate a new framework for the

development of fall detection technology.

3.1 Fall Phase Models

When trying to detect a fall, it is useful to use a model of the phases which make up a fall

to characterise what it is that one is trying to detect. Several fall phase models have been

presented in the literature [26,98–101]; an example is shown in Figure 3.1. Each model is

22
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based on three simple phases: pre-fall, fall and post-fall. The various models divide these

phases in different ways and use different terms to name phases which are essentially the

same.

Figure 3.1: The FARSEEING five phase fall model (adapted from: Becker et al. [26]).

In 1993, Hayes et al. [98] proposed that a fall has four distinct phases: instability that

results in a loss of balance, descent, impact and post-impact. The separation of the ‘fall’

phase into descent and impact phases has also been included in most subsequent models.

Srinivasan et al. [101] proposed a similar model although it disregards the post-impact

phase, only including dynamic changes in gait preceding a fall, free fall and impact. This

model does not include anything post-impact, therefore disregards potentially important

information such as how much time was spent on the floor and whether the faller was able

to stand up unaided. Kangas et al. [99] designed a model for automatic detection of falls

using a wearable sensor which used four phases: start of the fall, falling, fall impact, and

posture after the fall.

The models discussed so far have only expanded on the fall phase, grouping everything

pre and post-fall into single phases. The pre-fall phase is difficult to separate as this is

essentially the cause or trigger of the fall. However, it is useful to look closer at what

happens post-fall, which often will be the longest phase. Noury et al. [100] was the first to

do this with their four-phase model: pre-fall, critical, post-fall and recovery. This model

omits the descent and impact phases included in previous models, if these are added in

place of Noury’s critical phase it gives a five-phase model. The FARSEEING consortium

did just that when they proposed a five-phase fall model consisting of pre-fall, falling,

impact, resting, and recovery phases (Figure 3.1)[26]. This model was produced by a group

of experts from a range of relevant professions and is currently the preeminent fall phase

model.
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3.2 Fall Detection as a Classification Problem

Fall detection can be viewed as a classification problem and this has been the basis for the

methods which have been used for the development and testing of the technology. As a

classification problem, the detection of falls is a case of classifying human movement using

signals captured through sensors. In the most basic case where falls are the only movement

of interest, fall detection is a form of binary classification; each movement is either a fall or

not a fall (for a discussion on the challenge in defining a movement see Section 4.4.2). In

the wider context of activity monitoring, falls are just one of many movements to classify

such as stepping, standing up and sitting down. Fall detection can, therefore, be treated

either as binary or multi-class classification, depending on the aim.

Fall detection research has focused on the binary classification case with the aim of

developing fall alarms. The fall detection software has, therefore, been designed to process

and classify the signals from one or more sensors with near to real-time speed (an alarm

raised within a few minutes of a fall occurring). Given that software is used to process the

signals, invariably they are digital and thus, a series of readings or samples at a set time

interval. Since motion cannot be captured with a single sample, multiple samples are used

for fall detection; the number of samples can either be fixed or variable.

Fixed length windows are perhaps the simplest method of processing the sensor signal

but also the most artificial. Fixed length windows turn continuous signals into discrete

blocks from which features (e.g. peak value) can be extracted and used for classification.

Feature extraction is a process of reducing the signal down to a set of meaningful values,

thereby simplifying the classifier. Each window is usually processed in the same way making

processing time relatively predictable. However, human movements are not of fixed length

and so fixed length windows can result in a disconnect between the underlying movement

and the signal processing.

An alternative approach to the use of windowing to segment the data followed by rule-based

classification of each window, is the continuous analysis of data based on a sequence of

threshold-based rules and time-outs or time delays [e.g. 102]. This approach aims to identify

key points or phases associated with a fall without the need to pre-define discrete blocks of

data. In this approach, the first rule in the sequence is continually applied to the signal; if

the threshold is crossed then the next rule is applied either continually with a time limit

for crossing the threshold or a time delay and then a single check. If any threshold in the
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sequence is not crossed, then it is deemed a fall has not occurred and the sequence restarts.

Through the identification of key phases of a movement, this method can identify when a

fall occurred with greater precision than the windowed approach.

Any approach to fall detection requires knowledge of how fall signals differ from those of

other movements. Therefore, data are needed for both falls and activities of daily living

(ADL) so that the signals can be compared. Statistical analysis can then be used to develop

the rules used to classify the signal as either representative of a fall or another movement.

Additional data would be needed for testing, as the same data should not be used to both

develop and test a system.

To test fall detection performance a system’s predictions as to when falls occurred must

be compared with an independent record, such as fall incident reports. There are several

measures which can be used to report performance in such tests. Sensitivity and specificity

are the most commonly reported in the literature; sensitivity is the proportion of falls

which are correctly detected and specificity is the proportion of non-fall events which are

correctly ignored. Precision is another important measure, it is the proportion of alarms

which are true falls. There are also measures which give an overall score, such as F-measure,

the harmonic mean of sensitivity and precision. A full discussion of performance measures

can be found in Section 4.3.6 as part of a review on methods of real-world testing.

3.3 Approaches to Data Collection

Data are needed to guide the development of, and to evaluate, fall detection technology.

The data required can be divided into two types, namely falls and activities of daily

living (ADL). There are two broad approaches to the collection of data for fall detection

research, one is lab-based simulations and the other is real-world observation. In lab-based

simulations, a predetermined set of activities (e.g. falling, sitting down, walking) are carried

out a set number of times in a controlled environment. In real-world observation sensors

are used to simply observe participants as they follow their usual daily routine; there is no

prescription of activities. Lab-based simulations provide the control needed to record a set

number of activities in a short and predictable time scale, whereas the relative rarity of

falls during an observation study necessitates long data collections.
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Estimates suggest that, due to the rarity of falls, approximately 100,000 days of observation

would be needed to capture 100 falls [17]. This estimate was based on the widely reported

statistic that a third of older adults fall at least once each year (see Section 2.1.2). Even

when only participants identified as having a high fall risk have been included in studies,

the number of days of observation that would have been required to capture 100 falls was

still in the tens of thousands [19,20]. Another challenge with real-world observation is

identifying all the falls which occur so that the data can be accurately labelled (recording

which data samples correspond to which activities). The challenges are the same as those

for determining the circumstances of falls (see Section 2.2.2), namely, not all falls may

be reported and some falls may be reported inaccurately, preventing them from being

identified.

The control afforded by a lab study and a set protocol makes it relatively simple to keep

track of the falls carried out and label the data. Therefore, the datasets in lab-based studies

could be viewed as a more reliable test since there is no risk of falls being mislabelled

as ADL, thereby affecting the results. However, if simulated falls are to be used, it is

important to consider the validity of this approach and to compare real and simulated falls

to understand their differences.

3.4 The Issues with Simulated Falls

Falls are naturally an unexpected and uncontrolled movement and this presents a challenge

in recording them. As discussed above, recording real falls is very time-consuming, therefore

expensive, and as a result, simulated falls have been far more commonly used [7–10].

However, while easier to record, the signals from simulated falls do not necessarily reflect

those of real falls. If a set of simulated falls does not reflect the variation which occurs

in real falls, then the results of experiments using the simulated falls will not have high

external validity. External validity is the extent to which findings can be generalised to

other contexts.

Unlike most human movements, falls are inherently accidental and therefore uncontrolled.

Falls are also highly variable, the exact motion depends on the unique set of circumstances,

the environment and the reactions of the faller. It is the accidental nature of falls which

makes them harder to simulate than other movements. A true simulation of a fall must take

control away from the participant, as a deliberate fall is a misnomer given the definition of
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a fall (see Section 2.1.1). One could imagine developing instruments to artificially initiate

specific types of falls, for example, trips, however, doing so for all types of falls could be a

burden equal to or greater than recording real falls. Ultimately, real falls would still be

required to validate any method for simulating falls, something which would be difficult to

do due to the challenges in recording real falls.

3.4.1 Acted Falls

Almost every study which has used simulated falls for fall detection research has relied

solely on participants acting falls rather than instrumented methods [9]. In these studies,

participants acted falls in a variety of directions, many also asked participants to simulate

specific types such as trips, slips and syncope [7,9,10]. Details of the steps taken to maximise

the realism are often severely lacking in publications and many studies do not provide

any such details. One method which has been employed to improve realism was showing

participants videos of real falls [e.g. 103]. However, this method has not been validated and

so it remains unknown how it affects the quality of acted falls and if it improves realism.

A major challenge in simulating falls is ensuring the safety of participants; falls can cause

serious injuries and subjecting participants to such risks is unethical. For this reason,

simulated falls are usually carried out onto a crash mat in an area free from obstacles [7,9,10];

such an environment is different from that in which most real falls occur [76,82]. Be it a

corridor, dining room, bedroom or bathroom, there is typically a wall or furniture nearby.

A fall could occur as a direct result of interaction with the environment, for example, a

trip caused by catching a foot on a piece of furniture or overbalancing when rising from a

chair. The motion of the fall could also be influenced by the environment, for example,

falling against a wall or reaching for a table to help recover balance. These types of falls

are not included in the vast majority of protocols which limits the ecological validity

of the simulated fall datasets; ecological validity meaning the degree to which methods

approximate the real world.

The safety concerns rule out those most likely to need a fall detector, namely frail older

adults, from participating in fall simulations. One factor to consider is that the reactions

of older adults are slowed and their muscles weaker compared to younger adults and this

affects their response to, and movement during, a fall [104,105]. Compared to an older

adult, a young or middle-aged adult would be more able to break a fall, however, the forces
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required to make them fall, rather than stumble, would also be higher. Only two studies

comparing the signals recorded from simulated and real falls have been identified [15,16],

and therefore the understanding of the similarities and differences is limited.

Klenk et al. [15] compared signals recorded with a lumbar-worn accelerometer from five

real and thirty-six simulated backward falls. Two different methods of simulation were

used, in eighteen of the simulated falls participants were asked to fall back as if they were

a frail older person, in the other eighteen simulated falls participants tried not to fall when

released from a backward lean. Both sets of simulations used a crash mat for safety and

were performed by untrained young adults. Klenk et al. [15] found lower variability of the

acceleration signal and reduced maximum jerk (the rate of change of acceleration) when

acting out a fall as compared to experiencing a real fall. Conversely, when released from a

backward lean the maximum jerk was higher than observed in the real falls.

Kangas et al. [16] compared signals recorded with a waist-worn accelerometer from five

real and 238 simulated falls; both the real and simulated falls were of various types. Of the

five real falls, two were in a forward direction, one was sideways, one was backward and

one was a fall out of bed. The simulated falls were acted out by middle-aged participants

using a crash mat. Forty samples of each of the following types were recorded: syncope,

trip, sit on empty air (simulation of missing a chair), slip, lateral fall and roll out of bed;

two of the signals were discarded due to no impact being observable. Kangas et al. [16]

found that not all of the real falls had a high pre-impact velocity that they observed in the

simulations, this was thought to be due to protective responses in the real falls. A further

observation was that there were multiple impacts in the two forward real falls which were

not present in the simulations.

These two studies which have compared signals from real and simulated falls both found

differences, however, the evidence is severely limited with only ten real falls between the

two studies. The findings suggest that results from studies which have tested fall detection

technology using simulated falls may be significantly limited in their validity, although the

extent of this will be heavily dependant on the features of the signal used. It is, therefore,

unlikely that any performance shift between simulated and real falls will be consistent

across systems. The lack of research in this area is indicative of the challenge in recording

real falls, however, if simulated falls are to be used in fall detection research, then validating

the method is required.
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Bagala et al. [17] retested thirteen previously published algorithms which had been designed

to detect falls in signals recorded with an accelerometer attached to the torso (waist or

sternum) and tested using simulated falls and ADL. Twenty-nine real-world fall signals and

three days of free-living activity recorded with a lumbar-worn accelerometer were used for

the retesting of these algorithms. Bagala et al. [17] found the performance was much lower

than had been reported in the tests with simulated falls. Of the algorithms tested the

best was originally published by Bourke et al. [106]. The results from simulated falls were

a sensitivity of one, a specificity of one, and in a test with fifty-two hours of real-world

data, false positives occurred at a rate of 0.6 per day. On the real falls, the sensitivity and

specificity were 0.83 and 0.97 respectively with five false positives per day, an unacceptably

high rate of false positives which would highly likely be viewed a nuisance by users.

Based on the results presented by Bagala et al. [17], it would appear that it is not possible to

predict the drop in classifier performance between simulated and real falls as the drop was

highly variable. The worst performance drops were observed in algorithms first published by

Bourke et al. [107] and Kangas et al. [102]. In the original publication, Bourke et al. [107]

reported a sensitivity of one and a specificity of 0.91, Bagala et al. [17] found with real

falls the algorithm had a sensitivity of one, a specificity of 0.11 and a false positive rate of

sixty-four per day. Kangas et al. [102] reported a sensitivity and specificity of 0.97 and one

respectively; when Bagala et al. [17] retested the algorithm the sensitivity and specificity

dropped to 0.14 and 0.92 respectively with a false positive rate of five per day. This highly

variable drop in performance between simulated and real falls is indicative of poor external

validity and makes it very difficult to establish whether an approach shows potential based

on results from tests with simulations.

3.4.2 Artificially Initiated Falls

Only two research group have been identified which used apparatus to artificially initiate

falls to develop and test fall detection technology. Nyan et al. [108] included two types

of falls in their study: slips and fainting. A pneumatically actuated moveable platform

was used to simulate a slip, participants stood on the platform which then rapidly moved

forward and caused a backwards fall onto a crash mat. No research has been published

which validated this method of initiating trips or which compared the results of testing with

this method to the results of testing with real falls. To simulate fainting, Nyan et al. [108]

relied on the acting approach, they asked participants to relax their body and drop onto
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the crash mat; fainting is one example of a fall which would be especially challenging to

initiate artificially in an ethical manner as the cause is not mechanical, as is the case for

other fall types.

Aziz et al. [103] tested a series of fall detection algorithms using signals recorded with

an array of wearable accelerometers during simulations which included both acted falls

(n=120) and artificially initiated falls (n=90). Slips were initiated by rapidly translating a

carpet on which participants were standing, trips were initiated by pulling taut a tether

attached to participants’ ankle as they walked, and “hit or bump” type falls were initiated

via the investigator applying a sideways force to participants’ torso. Not all falls could

be artificially initiated, so other fall types simulated were simply acted by participants,

these included falls due to a misstep, when rising from a chair, due to incorrect shifting of

body weight and due to loss of consciousness. To improve the realism of the acted falls,

participants were shown videos of real falls and instructed to fall in a similar manner.

As part of the study, Aziz et al. [103] retested a set of five previously published algorithms,

all of which were also tested by Bagala et al. [17]. All algorithms retested showed a drop

in performance compared to the original results, as was found by Bagala et al. [17]. The

algorithm first published by Bourke et al. [106] showed the greatest drop in sensitivity, a

surprising finding given it was the best performing in the tests by Bagala et al. [17]. The

performance dropped from a sensitivity and specificity of one in the original test, to a

sensitivity of 0.7 and specificity of 0.99 when tested by Aziz et al. [103]. The greatest drop

in sensitivity was observed in the acted falls (0.59) rather than the artificially initiated falls

(0.83), suggesting an issue with repeatability rather than an effect of artificially initiating

falls.

The best performing of the retested algorithms was first published by Kangas et al. [102],

conversely, this algorithm was one of the poorest performers in the tests by Bagala et al. [17].

The original results were a sensitivity and specificity of 0.76 and one respectively, Bagala

et al. [17] reported 0.31 and 0.97 respectively and Aziz et al. [103] reported 0.94 and 0.94

respectively. The results of Aziz et al. [103] did not reveal any difference in performance

between the acted and artificially initiated falls (sensitivity of 0.93 and 0.94 respectively).

These findings suggest there may be a serious issue with repeatability; in addition to a lack

of transfer to the real-world, there is a lack of transfer between simulated fall datasets. The

difference in results between the original publications and the work by Aziz et al. [103] is

up to thirty percent, more than enough to mask real differences in performance. It should
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be noted, however, that although the available evidence points to issues with repeatability

the research on this is limited to five algorithms retested twice and further work is needed.

As part of their study, Aziz et al. [103] tested a series of machine learning algorithms,

the best of which, a Support Vector Machine (SVM), was then tested using a set of real

falls [109]. While not the focus of their research, comparison of the results allows one to

assess the transfer of performance between their unique method of simulating falls and real

falls. In the first study, the model was trained on half of the simulated dataset (falls and

ADL) and tested on the other half, whereas in the second study the model was trained on

all the simulated data and tested on the real-world data. When tested on the simulated

data the SVM achieved both a sensitivity and specificity of 0.96, on the real data it achieved

a sensitivity of 0.8 and a specificity of 0.99, equating to 2.2 false positives per day. The

high specificity presented by Aziz et al. [109] can be explained by the method used to

divide the non-fall data; each hour of recording was divided into 2.5 second windows with

a 1.5 second overlap, giving approximately 86,400 events per day, the majority of which

would be signals from sitting or lying and highly unlikely to look like a fall. As was found

by Bagala et al. [17], there is a substantial drop in sensitivity between the simulated and

real datasets suggesting poor external validity.

3.4.3 Summary

There has been a lack of research assessing the validity of simulated falls for the development

and evaluation of fall detection technology. The research to date suggests there are

substantial differences between the signals from a set of simulated falls and a set of real

falls. Due to this, performance results do not transfer from simulation studies to the

real-world data. In addition to the lack of transfer between simulations and the real-world,

the limited evidence available suggests issues with repeatability of simulated falls, as when

algorithms were retested on new data the results were significantly different. Due to the

intricacies of how systems identify fall signals and the lack of research in the area, the shift

in performance is unpredictable and it is therefore challenging to evaluate performance

based on tests with simulations.

Even though a wide range of sensors have been used in fall detection research with simulated

falls, only the validity of simulated falls for accelerometer data has been studied. It is,

therefore unknown if the use of simulated falls is a valid approach to test systems using
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other sensors; repeatability and the transfer to the real-world remain unquantified. Given

the findings of the studies using accelerometers, one could reasonably assume that issues

are likely. The gaps in the research make it practically impossible to interpret the results

from tests of systems and to make predictions of real-world performance. Based on the

major issues with simulated falls which have been found, studies using real-world data

should be the focus of efforts to understand the current state-of-the-art and to gather

evidence to guide further development.

3.5 Overview of System Design

Given the discussions above, this section is limited to a description of the fall detection

approaches which have been presented in the literature, rather than a discussion of which

perform best, and where further development should be focused. Fall detection systems

can be categorised into wearable and non-wearable based on their design. The sub-sections

which follow first provide an overview of the classifier design, then provide an overview of

wearable and non-wearable system designs.

3.5.1 Classification Techniques

A classification technique is a method of assembling a set of rules which can derive a

classification for input data. The input data usually consists of a set of features extracted

from the raw data gathered from the sensory hardware. Features are quantifiable properties

which can be either: (1) real values e.g. the velocity of an object, (2) integer values e.g. the

number of impacts, (3) ordinal e.g. fast, medium or slow walking speed or (4) categorical

e.g. posture classification output from another classifier. The extraction of these features

requires a stage of pre-processing, specific to the collected data and the features to be

extracted from it. This section aims to provide an overview of methods to create a classifier

based on a set of suitable features, the sections which follow provide an overview of the

features which have been extracted from the signals of the commonly used sensors.

The development of a classifier requires expert knowledge of the problem to engineer a

set of features which can be used for classification. The combination of features creates a

multidimensional feature space and each data sample fits somewhere within this. The job

of a classifier is to map areas of the feature space to the output classifications and there
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are many ways in which this can be done. There are two main approaches to classification

which have been used in fall detection, the first is simple combinations of thresholds, the

second is supervised machine learning.

Many of the previous approaches to fall detection, especially those presented in earlier

publications, have been based on simple combinations of thresholds to classify the sensor

signals as either representative of a fall or not a fall [e.g. 17,102,106]. Thresholds are a

method of deriving a binary value from a real, integer or ordinal value and are therefore a

form of feature engineering. If all features are binary i.e. threshold-based, then a classifier

can be written using the boolean operators AND, OR and NOT. The most common method

of combining thresholds is the AND operator, where the output is “fall” if all thresholds

are crossed, thus each additional threshold acts to exclude an area of the feature space.

A typical example of a classifier which uses a simple combination of thresholds is “fall =

high velocity AND high impact AND horizontal posture”, where thresholds on the sensor

signals are used to determine whether the velocity and impact are high and the posture is

horizontal [106].

Statistical techniques can be used to develop more sophisticated classifiers based on

patterns in the underlying data; the use of statistical models and algorithms for tasks

such as classification is known as machine learning. The aspect of machine learning most

relevant to fall detection is supervised learning; in this form, example labelled data are

used to train the classifier. There are many algorithms which can be used for supervised

learning, each of which has parameters that can be used to tweak the learning process. An

example which has been commonly used is the Support Vector Machine (SVM) [12,13], an

SVM uses one or more hyperplanes to divide the feature space and each section is assigned

a classification. Hyperplanes are located such that the distance to the nearest training

sample on each side (which are of different classifications) is maximised. Discussion of the

specifics of each machine learning algorithm is beyond the scope of this chapter.

3.5.2 Wearable Systems

Advancements in microelectromechanical systems have led to very small, low-cost sensors

which have allowed the development of wearable devices suitable for unobtrusive monitoring

over extended periods. As wearable devices move with the user, there is only one restriction

as to where they can be used, namely, some form of wireless connection is required to send
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an alert in the event of a fall. Currently, the portability of devices introduces reliance on

battery power and the associated requirement to recharge; current devices cannot recharge

whilst in use, leading to gaps in the monitoring period. However, technological development

is likely to increase the time between charges, reduce recharging time and potentially could

allow charging from movement or body heat whilst in use.

The greatest issue with wearable devices is that the user must both want and remember

to wear the device. As users interact directly with wearable devices, their views on the

design need to be considered. However, the desires of users must be balanced with the

accuracy of fall detection. Without satisfactory sensitivity and false alarm rates, users

would be unlikely to trust the device and may cease to use it. In addition, without both

high sensitivity and high precision, applications in research such as tracking the occurrence

of falls to assess a fall prevention intervention, would be severely limited. To this end, the

majority of research on wearable fall detection technology has focused on the development

of prototypes and testing of performance rather than establishing users’ views so that the

design can be fine-tuned.

The need to remember to wear the device makes wearable devices most suitable for those

without cognitive impairment. The ability to provide monitoring wherever the wearer goes

makes wearable devices particularity suited to those with good mobility and who can live

independently. Such individuals may present a lower risk of falls and, therefore, one may

assume reduced benefit from monitoring. However, tracking falls and other physical activity

in these individuals could yield a critical understanding of how fall risk and injury progress

over time and how both can be minimised. Thus, wearable devices have an important role

to play in fall detection and fall prevention research. Further, technological developments

may reduce or remove their current limitations.

By far the most common sensors used are accelerometers, with gyroscopes a distant

second, typically used in combination with accelerometers [8]. Due to both the common

use of accelerometers for fall detection and that research on fall detection began with

accelerometers, more detail is provided on them in this section than any other sensor.

Accelerometers measure linear acceleration and provide data on the orientation of the

device with respect to gravity and its movement through space. Gyroscopes measure

angular velocity and can be used to estimate changes in orientation. Triaxial devices (those

which record in three directions) are most common, generally uniaxial or biaxial devices

were only used in early research [8]. The sections which follow provide an overview of the
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signal processing and feature extraction techniques used for fall detection with wearable

sensors.

3.5.2.1 Accelerometers

Accelerometers measure acceleration which can be reported in units of g (multiples of the

acceleration due to gravity) or meters per second squared. In the design of an accelerometer-

based device, there are two aspects which affect the signal, these are the sampling frequency

and the measurement range. There is a trade-off between sampling frequency and power

consumption as well as data storage capacity and data processing requirements [110];

thus low sampling frequencies are preferable if fall detection accuracy is not impaired.

Studies have used accelerometers with sample frequencies between 6 Hz and 1000 Hz and

measurement ranges between ±2 g and ±16 g [8]. The optimal sample frequency and range

have not been determined and will depend heavily on the signal features used.

Impact and Free-Fall

A typical example of a fall signal is shown in Figure 3.2, this signal is the resultant

acceleration vector (ar) from an acted fall. The resultant acceleration can be calculated

using Equation 3.1 from the signals recorded with a triaxial accelerometer (ax, ay, az).

The majority of previous development has been based on the detection of a spike in the

signal which is indicative of an impact [7,8,10]. The trough in the resultant signal which

precedes the impact spike is associated with free-fall; detection of this feature has often

been used in combination with impact [7,8,10]. It should be noted that unlike an object

falling, when a person falls there is typically contact with the ground, furniture or a wall

and therefore, a period of true free-fall is rare. Impact and free-fall are both undoubtedly

associated with the occurrence of a fall and are, perhaps, the most intuitive features to

identify in the signal. For this reason, these features were promoted in early publications

[e.g. 107] and they have remained prominent.

Resultant Acceleration (ar) =
√

ax
2 + ay

2 + az
2 (3.1)

Early studies found that the observed peak in the resultant signals recorded with ac-

celerometers attached to the waist, thigh and head were typically much higher in acted
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Figure 3.2: Example accelerometer signal recorded during an acted fall (adapted from
Kangas et al. [102]). The plot shows the resultant acceleration (ar) of the signals recorded
by a triaxial accelerometer during the fall. Data were collected using a device attached to
the waist, the sensor had a range of ±12 g and a sampling frequency of 400 Hz.

falls compared to activities of daily living (ADL) (one to three g for ADL versus two to ten

g for falls) [107,111–113]. Based on their findings it was proposed that simple thresholds

could be used to distinguish the impact associated with falls from the signals of other

activities. However, there was overlap between falls and ADL in the peak resultant values

observed. Therefore, impact assessment alone could not fully distinguish between falls and

ADL, and so other features were examined in search of a combination which could better

differentiate falls and ADL.

Bourke et al. [107] proposed the minimum resultant value as a method to detect the

presence of the trough in the signal. Alone, the minimum resultant value was less able to

separate falls from ADL compared to the peak value, however, the combination provides

an expanded characterisation of the signal which may help classify the fall signals. The

combination of thresholds for the minimum and peak resultant values has been used

in a number of studies [e.g. 16,99,106,114,115], typically with other features to improve

classification. These features have been used to generate further features, for example,

Kangas et al. [113] proposed the measurement of time between the start of the fall and

impact, where the start was the nadir (minimum value) of the trough in the resultant

acceleration and impact was the peak.

Accelerometer Orientation

When static a triaxial accelerometer measures the three components of the effect of gravity

acting on its measurement mass, which allows the orientation of the sensor relative to
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the gravity vector to be calculated. However, when in motion the total set of inertial

and gravitational forces acting on the measurement mass is unknown, therefore some

assumptions are made to estimate orientation. For example, the signal is typically low-pass

filtered or averaged in an attempt to remove the part of the signal due to motion. The

orientation of an accelerometer, and thus the orientation of the body-part to which it is

attached, can be used to infer posture. One would expect posture to change during a fall,

for example from standing to lying, where both the torso and thigh would go from upright

to horizontal. For calculations of orientation, the axes labels are important, Figure 3.3

shows the labels used for the equations in this section.

A

Figure 3.3: Orientation of accelerometer axes relative to the wearer when standing.

Chen et al. [111] and Brown [116] were the first to propose the use of orientation in fall

detection, both calculated the orientation of a waist-worn accelerometer. Chen et al. [111]

calculated the change in angle between one second before and two seconds after impact

using Equation 3.2. To isolate the gravity component of the signal, Chen et al. [111]

averaged the signals over one second (1.5 - 0.5 s pre and 1.5 - 2.5 s post-impact) and used

the average values in the calculation. Brown [116] calculated the angle with respect to

gravity twelve seconds after impact using Equation 3.3; a Butterworth second-order low-

pass filter was applied prior to calculation of orientation. Sensor orientation based on these

equations has continued to be used with torso worn accelerometers [e.g. 20,99,106,117,118];

the orientation of the torso is particularly suited to the detection of lying, a common

posture following a fall. To the author’s knowledge, the use of accelerometer orientation

with other body locations has not been attempted.

Orientation Change (θ) = cos−1
(

ax(t1) · ax(t2) + ay(t1) · ay(t2) + az(t1) · az(t2)

ar(t1) · ar(t2)

)
(3.2)

Orientation with respect to gravity (θ) = cos−1
(

ay

ar

)
(3.3)
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Vertical Acceleration

Kangas et al. [113] were the first to propose the use of vertical acceleration for the detection

of falls. To calculate vertical acceleration, Kangas et al. [113] used Equation 3.4, where G

is the magnitude of the acceleration due to gravity (one g) and ar(Dynamic) is the resultant

of the dynamic component of the triaxial accelerometer signals. ar(dynamic) was calculated

using Equation 3.1 with high-pass filtered triaxial accelerometer signals; a second-order

Butterworth filter with a 0.25 Hz cut-off frequency was used to filter the signals. Kangas

et al. [113] did not provide justification for, or validation of, their equation; the equation

does not take orientation into account and it would appear to only be valid if the direction

of the resultant acceleration is directly towards the ground. Vertical acceleration has been

used in further work by the same research group [16,20,99], but has not been adopted by

the wider field. In their systems, Kangas et al. used the peak vertical acceleration as a

feature to distinguish falls from ADL.

Vertical Acceleration (av) =
ar

2 − ar(Dynamic)
2 − G2

2G
(3.4)

Velocity

Calculation of velocity from accelerometer data is, arguably, the most challenging transfor-

mation of those which have been used in fall detection systems. Acceleration is the rate of

change of velocity, thus, change in velocity can be calculated through integration of an

acceleration signal. However, in practice, the calculation of velocity from accelerometer

signals is far more complex. The first issue is that any error or noise in the accelerometer

measurement is amplified in the calculated velocity and causes substantial drift over time.

Absolute velocity is the sum of the initial velocity and the integrated acceleration, thus the

further from the initial known velocity the greater the margin of error.

The second issue is the separation of the constant acceleration due to gravity and the

effects of inertial forces. The magnitude of the acceleration due to gravity is known, but

the relative orientation of the accelerometer is unknown, therefore one cannot simply

subtract the gravitational component from each axis. One must either: (1) high-pass filter

the signals to remove an estimation of the gravitational component for each axis, or (2)

subtract the gravitational component from the resultant acceleration. Neither option is

ideal, option one will introduce a potentially very large margin of error due to imperfect
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removal of the gravitational component. Option two is based on the assumption that the

resultant acceleration is towards the ground, the greater the angle from vertical, the greater

the error in the velocity estimation [112].

The third issue is the effect of acceleration due to angular rotation, something which

is likely to occur during a fall. Rapid rotation of an accelerometer causes acceleration

outwards from the centre of rotation (due to the centrifugal force), but not necessarily

outward movement since in the context of fall detection the device is secured to the

wearer. Therefore, rotation of the accelerometer introduces error in the velocity estimate.

Since accelerometers do not measure rotation, accounting for it is not possible without

additional sensors e.g. gyroscopes. Despite the challenges, several research groups have

devised approaches to calculate velocity for accelerometer-based fall detection systems.

The use of velocity in fall detection was first proposed by Degen et al. [112] for use

with a wrist-worn device. Degen et al. [112] proposed two equations to estimate velocity

(Equations 3.5, 3.6), in the first, the gravitational component is subtracted from the

resultant acceleration prior to integration of the signal, in the second, each accelerometer

axis is integrated separately and the integral of the gravitation component subtracted

from their root sum of squares. Equation 3.5 is less affected by changes in orientation

and rotation of the accelerometer, Equation 3.6 produces a better estimation providing

the accelerometer is not rotated during the fall [112]. The likelihood of rotation during a

fall limits the value of Equation 3.6, and as a result, Equation 3.5 has been the preferred

choice in subsequent research [10]. The calculation of velocity is typically used to establish

the peak velocity within a period of time, usually between the point at which the resultant

acceleration drops below one g and the following impact spike [e.g. 20,99,106,113,119].

Velocity Change (∆v1) =
∫

ar − G dt (3.5)

Velocity Change (∆v2) =

√(∫
ax dt

)2
+

(∫
ay dt

)2
+

(∫
az dt

)2
−

∫
G dt (3.6)
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3.5.2.2 Gyroscopes

Gyroscopes measure angular velocity (ω), commonly reported in degrees per second.

Gyroscopes have a much higher power consumption than accelerometers and therefore are

limited in their application by battery life. Hwang et al. [120] was the first to propose

the use of gyroscopes for fall detection; they combined an accelerometer and gyroscope in

a sternum worn sensor, however, they did not provide details of how these signals were

processed. The first gyroscope signal feature presented in the fall detection literature was

peak angular velocity, which is indicative of a rapid rotation from a vertical to horizontal

posture. Nyan et al. [108] used thresholds on peak angular velocity from three uniaxial

gyroscopes for pre-impact fall detection, the sensors were located at the sternum, waist

and underarm. Peak angular velocity has continued to be used, albeit with slightly altered

signal processing, for example, Bourke and Lyons [119] used the peak of the resultant

angular velocity across the frontal and sagittal planes using a biaxial gyroscope.

Angular acceleration can be calculated through differentiation of angular velocity and the

change in angle can be calculated through integration. Resultant angular velocity can be

calculated using Equation 3.7 where ωp, ωr and ωy are the three axes of the gyroscope

(pitch, roll and yaw respectively). The peak resultant angular acceleration has been used

in several studies [e.g. 121,122]. The resultant change in angle can be calculated using

Equation 3.8, thresholds for angle change have been common in systems which include

gyroscopes [e.g. 122,123].

Resultant Angular Acceleration (αr) =

√(
dωp

dt

)2
+

(
dωr

dt

)2
+

(
dωy

dt

)2
(3.7)

Resultant Angle Change (∆θr) =

√(∫
ωp dt

)2
+

(∫
ωp dt

)2
+

(∫
ωp dt

)2
(3.8)

The combination of a triaxial gyroscope and triaxial accelerometer results in a device with

six degrees of freedom (three linear and three angular). An accelerometer can measure

orientation when static, but not accurately when in motion, a gyroscope can measure

a change in orientation, through the integration of angular velocity, but not absolute

orientation. When combined these two sensor types can be used to far better estimate
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orientation relative to the ground than either can individually. Quaternion filters have been

used to estimate orientation and acceleration relative to an inertial reference frame [122,124].

Vertical velocity can then be calculated through the integration of the vertical acceleration

signal, this method provides greater precision than calculation from the untransformed

accelerometer signals [122,124].

3.5.2.3 Magnetometers

Magnetometers measure the strength of magnetic fields and therefore can be used as an

electronic compass. Using the earth’s magnetic field, which points north, as a reference,

magnetometers can be used to determine orientation in the plane orthogonal to gravity.

However, the earth’s magnetic field is weak in comparison to magnetic fields generated by

other local sources and so the determination of orientation using magnetometers is prone

to error. Magnetometers can be combined with accelerometers and gyroscopes to provide a

more accurate estimate of orientation than either can individually and this is why they have

been used in fall detection systems. The estimation of change in orientation and vertical

motion have been common features in wearable fall detection and a magnetometer can

increase the accuracy of these estimations, albeit at the expense of power consumption and

therefore, battery life; more sensors means greater power draw. The process for combining

magnetometer signals with those from accelerometers and gyroscopes is largely the same

as for combining just accelerometer and gyroscope signals; the use of a quaternion filter

has been a common approach [e.g. 125,126].

3.5.2.4 Atmospheric Pressure Sensors

When one falls their centre of mass moves downwards, therefore, the ability to measure the

change in height or altitude could prove useful in fall detection. Air pressure decreases with

altitude and so its measurement can be used to estimate the drop associated with a fall.

Bianchi et al. [117] pioneered the use of atmospheric air pressure sensors (barometers) for

fall detection, their proposed system combined the pressure sensor and an accelerometer in

a waist-worn device. The pressure sensor had a resolution of equivalent to approximately

ten centimetres at sea level, just enough to determine if the wearer had fallen to the ground.

Bianchi et al. [117] calculated change in pressure over four seconds and then normalised by

the wearer’s height.
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3.5.2.5 Hardware Design

The design of fall detection systems is an active area of research and so, naturally, most

systems presented in the literature are prototypes and user’s perspective on their design

has not been established. The priority first and foremost has been on developing a solution

with suitable performance, rather than packaging the hardware into a desirable device.

There are two aspects which are largely fixed at the prototype stage, these are the number

and location of sensors.

The vast majority of proposed systems have used only a single device, as this is thought to

be more acceptable to users [8–10]. A system which relies upon multiple devices would

be less usable; if the user were to forget to wear one of the devices the systems would not

function properly. Fall detection systems must be simple and unobtrusive to facilitate

continuous wear; the use of a single, preferably small, device is integral to achieving this.

There have been studies which have used multiple sensors, however, these typically aim to

identify the location which maximises performance [e.g. 113].

By far the most common choice of location is the waist, the upper torso has also been a

common choice [8–10]. The waist is popular for two reasons, (1) it is close to the centre of

mass which is thought to be optimal for detecting a movement of the body towards the

ground, and (2) the ability to attach a device to a belt is convenient. A wrist-worn device

is potentially preferable to users due to familiarity with wrist-worn watches, however, the

wrist moves around a great deal during daily activities and is prone to knocks which could

be mistaken for an impact due to a fall; the wrist, therefore, presents additional challenges

and has been a less common choice [8–10]. The upper torso has been used as it is thought

to be a good location for measuring angular velocities and the detection of lying postures.

The commercially available fall detection systems mainly use an accelerometer either worn

as a pendant, on the waist or wrist [10]. The devices are typically lightweight (<100 g),

less than 100 millimetres in length, 50 millimetres in width and 20 millimetres in-depth

and have a battery life ranging from one day to two years. Push buttons are common on

commercial devices to allow the user to request assistance for non-fall related reasons or in

the event of an undetected fall. A further use of the push-button is to allow the user to

cancel an alert in the event of a false positive fall alert.
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3.5.2.6 Summary

Since 1998 there have been over 200 published articles on wearable fall detection systems

[7–12]. A wide range of approaches have been proposed in the literature, however the central

themes of impact, postural change and vertical motion run throughout the field of research.

This section has provided an overview of the main sensor types along with the processing of

their signals. The vast number of combinations of sensors and signal processing techniques

presented in the literature prohibit a complete rundown of approaches, however, the core

of the research has been characterised. Through the combination of techniques described

in this section, it is possible to arrive at almost any of the previous approaches to wearable

fall detection presented in the literature.

3.5.3 Non-Wearable Systems

Non-wearable systems are those which do not travel on one’s person, usually, non-wearable

systems are installed in fixed positions around the home or a care facility. To be effective

non-wearable systems are reliant on the user being inside their measurement range, for

example, they cannot monitor a user when out shopping. For this reason, it could be

argued that non-wearable fall detectors are most suitable for those who do not frequently

go out unaccompanied. Furniture could also block the sensor’s view unless their position is

carefully considered or multiple sensors are used. Research has suggested that a limited

capture area may lead users to feel confined to the known capture space, thereby affecting

their daily activities [127], therefore full coverage of a user’s living space is highly desirable.

A fixed position is simultaneously the biggest advantage and disadvantage of non-wearable

devices; while a fixed position limits the area a system can cover, it also removes the

need for user interaction. Naturally, with non-wearable devices the user does not have

to remember to wear a device, thereby reducing, if not removing, the problems with user

compliance that can occur with wearable sensors. Non-wearable devices can be larger than

wearable ones, use wired connections for communication and use mains power, removing the

need for charging and reducing the risk of connection problems. Finally, due to monitoring

a space rather than a single wearer, non-wearable devices can monitor multiple people,

although this also increases the complexity of software required as each person needs to

be tracked individually. However, the ability to monitor multiple users with each device

could mitigate some of the added cost of the multiple devices required to cover a space,
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particularly in care facilities. The sub-sections which follow provide an overview of common

non-wearable sensors and the associated signal processing.

3.5.3.1 Computer Vision

Computer vision is an active field of research concerned with automatic extraction of

information from images or sequences of images (video) to allow computers to understand a

scene; this includes three-dimensional analysis using images from multiple sensors. Vision-

based systems have been the most common type of non-wearable system, historically video

cameras have been the most common choice of sensor [7,9,10]. The Kinect™ device has

been a common choice in recent fall detection studies [12], the device combines two cameras,

one standard visible light video camera and one infra-red depth-sensing camera. Since 2014,

camera-based systems have received less attention in the academic literature, featuring in

only two of the twenty most cited articles on fall detection published between 2014 and

2018, conversely, the Kinect device featured in nine of the articles [12].

One potential advantage of camera-based solutions is the possibility of utilising existing

camera networks installed in care facilities. However, as discussed in section 2.2.2, there

are privacy concerns associated with installing cameras in private areas such as bedrooms

and bathrooms, where a high proportion of falls occur. Unless the privacy concerns can be

addressed, camera-based systems are likely to miss a large proportion of falls. Since for

computer vision applications the images are processed without human interaction, it is

possible to preserve privacy, however, appropriate protections will be needed to prevent

misuse. To raise an alarm, a fall detection system must have a connection to the outside

world, thus it could be hacked and private images stolen.

The processing required for computer vision is arguably the most complex of all the

approaches to fall detection. Firstly, a video stream contains more data than other

sensor signals such as accelerometers; a triaxial accelerometer produces three signals, by

comparison, a video feed typically contains hundreds of thousands, if not millions, of

pixels. Secondly, in a normal living space, the observed scene will contain many items and

potentially multiple people which may cause interference, for example, occlusion of the

user. The identification of a person falling or who has fallen within a busy scene, and to

do so independent of lighting conditions, is far from a simple task and there have been

a variety of approaches presented in the literature. A full discussion of the intricacies of

the feature engineering for each approach is beyond the scope of this section, however, an
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introduction to two common approaches, namely bounding boxes and measurement of the

distance from the floor, are provided below as representative examples.

Shape Tracking via Bounding Boxes

Typically the first step in fall detection using cameras is to identify the people in the

scene so that they can be tracked, this is often referred to as foreground extraction.

People and their movements account for the vast majority of change in a scene, therefore

the static parts make up the background, whereas the parts which change make up the

foreground. One option is to record a series of images of the scene with no people present

to capture the background and then subtract this from each subsequent image to reveal

the foreground [e.g. 128]. While this simple method works in a laboratory test, in the real

world background objects get moved as part of daily life, thus a method to continually

update the stored background is needed. Motion segmentation techniques can be used

to identify the moving parts of the scene so that the background and foreground can be

separated [e.g. 129–131]. Further image processing can be used to remove shadows, the

effect of changes in illumination and other noise so that only the silhouettes of moving

objects remain, which are assumed to be people.

A postural change is a characteristic common to almost all falls, the notable exception being

a fall out of bed which may be from lying to lying. Therefore, just as within the field of

wearable fall detection, the analysis of posture has been important in computer vision-based

fall detection [13,132]. Once people in the scene are identified their movements can be

tracked using a bounding box, the smallest box which can contain their entire silhouette.

The bounding box provides a simpler, more robust and computationally efficient framework

for feature engineering compared to tracking the precise shape of a silhouette [129]; an

ellipse can be used as an alternative to a box [e.g. 133]. Limits can be placed on the

size of bounding boxes to exclude objects which are just residual noise from imperfect

identification of people [e.g. 128]. Features extracted from bounding boxes are typically

height, width, aspect ratio and orientation, it is the changes in these parameters over a

series of images which are used to identify falls [e.g. 128,129,131].

Measurement of Vertical Motion

Based on the definition of a fall (see Section 2.1.1), there must be a descent of the centre

of mass, therefore the ability to measure vertical movement of the body is valuable in
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fall detection. Early work on computer vision approaches to tracking motion towards the

floor used calibrated video cameras [e.g. 134], however, depth cameras such as the Kinect

have become far more common as their availability has increased [12,132]. Uncalibrated

two-dimensional cameras cannot be used to measure motion as movements appear larger

when close to the camera, calibration allows three-dimensional position to be estimated

using normal video cameras [134]. The extra information provided by depth cameras allows

motion to be tracked with only a single device and also better separation of the foreground

from the background, thereby making person identification more accurate [135]. Following

person identification, the distance of their central point from the ground can be measured

and from this, vertical displacement and velocity calculated. Systems have been designed

to detect falls using combinations of thresholds for vertical displacement, vertical velocity

and distance from the floor [134–138].

3.5.3.2 Sound and Vibration

Sound and vibration-based fall detection systems aim to detect falls via impact detection,

based on the kinetic energy of a faller being transferred to vibrations in the floor and air

(sound) upon impact. Vibrations travelling through the floor have been recorded, for fall

detection, with both piezoelectric sensors and accelerometers, sound has been recorded

with microphones [139]. Spectral analysis has been the predominant basis for feature

engineering of sound and vibration-based fall detection systems [139]. The main challenge

for this type of system is that sound and vibration is heavily influenced by the construction

of the floor [140], thus it is difficult to produce a system which performs in all spaces.

Another challenge is filtering other sources of noise and vibration, such as that produced

by a television or radio; noisy environments may mask the signal from a fall and may cause

false alarms. There are some privacy concerns with the use of microphones as personal

conversations could be recorded, therefore appropriate safeguards need to be included in

the design of these systems.

3.5.3.3 Radar

The use of radar systems for fall detection is a comparatively new area of research which

aims to develop non-wearable fall detection which is not subject to the privacy concerns

present with other non-wearable approaches [12]. Radar systems use radio waves to

determine the distance and velocity of objects; they emit electromagnetic waves which
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reflect off objects and are then picked up by a receiver. The most common type of radar

used is the Doppler radar, these emit a wave with a set frequency and use the shift in

frequency of the reflection to measure the velocity of an object [12,139,141]. Radars are

most sensitive to motion in the direction of the emitted waves and least sensitive to

perpendicular motion [139], therefore placement is critical. Ceiling mounted Doppler radars

have been used to measure vertical motion for fall detection [e.g. 142,143].

3.5.3.4 Summary

There are both benefits and disadvantages of non-wearable approaches to fall detection

compared to wearable ones. Their main advantage is that users do not have to remember

to wear or charge a device, which makes them particularly suitable for those with cognitive

impairment. The main disadvantage of non-wearable approaches is their limited capture

area and inability to function wherever the user goes. The complexity of signal processing

required for non-wearable approaches has typically been greater than that for wearable

approaches, this has made them less viable as a real-time fall detection solution. Continued

improvements in computing power and sensor technology have increased their viability and

the increase in the volume of research on non-wearable fall detection in recent years reflects

this [12]. Historically non-wearable approaches have been affected by privacy concerns

surrounding the placement of cameras in private areas, however new approaches such as

the use of radar present considerably less risk to privacy.

3.6 Current State-of-the-Art of Fall Detection

Over the last two decades, there has been a great deal of research conducted into fall

detection systems and a wide range of sensors and signal processing methods have been

tested. The vast majority of testing has used laboratory-based simulations of falls (primarily

acting), an approach which the limited evidence available suggests suffers from poor external

validity (Section 3.4). Results of tests using simulated falls have been shown not to transfer

to real-world contexts, severely limiting the insight which can be gained from this research;

when systems perform perfectly in controlled tests but badly in the real-world, further

development is hampered. There has been a lack of research into methods of simulating

falls which provide higher validity and this has resulted in little improvement in testing

methods. Instead, the focus has begun to shift towards real-world data, however, due to
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the challenges associated with recording real falls this shift has been slow, many groups

are still reliant on simulation data and the real-world datasets which have been collected

are small [144].

Due to the poor validity of simulated fall studies, understanding of the current state-of-the-

art performance can only be gained from the real-world studies. However, there is value

in knowledge of the previously proposed approaches when planning further work, even if

their true performance remains unknown. Therefore, the following subsections provide a

summary of previous approaches to fall detection and a discussion of the available results

from real-world testing.

3.6.1 Wearable Versus Non-Wearable

There are a set of common themes which have arisen in the review of previous approaches

and apply to both wearable and non-wearable sensors; these common themes are impact,

vertical motion and posture change. Although each sensor type may be more suited to the

detection of aspects which fall under certain themes, all approaches make measurements

which fall into at least one of these themes. The emergence of these themes is perhaps

unsurprising given that a fall is an accidental downward movement resulting in a collision

with the floor or another surface. Nevertheless, the emergence of these themes highlights

the common ground shared across the field of fall detection. To guide future research and

development it is important to develop an understanding of how falls and other movements

differ and establish the relative importance of each of these themes.

An understanding of the differences between falls and other movements is critical to the

development of fall detection technology. While one may have an understanding of what a

fall is, this is not enough to be able to isolate them from the vast array of other movements

made in everyday life; only through observation of real-life motion and routines can the

isolating factors be established. Research in the area could be conducted with any of the

sensors used in fall detection; in fact, consideration of evidence produced from studies using

different approaches is important to ensure conclusions are valid. With an understanding

of how falls are unique, further development can be evidence-based. Without an evidence

base on which to make design decisions, trial and error is the only option. Given the

current state of the field, sensor choice, be it wearable or non-wearable, and the type of

classification algorithm used to combine signal features are both far less important than
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the identification of features which can effectively discriminate between falls and other

movements.

3.6.2 Results of Real-World Evaluation

Research into fall detection using real-world data is at an embryonic stage and there are

variations in the methods used to test systems which limit the ability to make robust

comparisons between the results. Nevertheless, the studies using real-world data to test

fall detection systems provide the only evidence to establish the current state of the art in

terms of system performance. Due to the use of different datasets and variations in methods

(see Chapter 4), it is not possible to establish which systems are the best performing; one

can only establish the range in performance which has been reported as an estimate of the

current state of the art. The results presented below were extracted from articles identified

through a systematic search of real-world fall detection technology tests (Chapter 4; for

details of the search see Table 4.1 and for details of the studies reviewed see Table 4.2).

Reported sensitivities of wearable devices range from 0.14 [17] to 1.0 [17,145–147], precision

has ranged from 0.01 [17,18,20,148] to 0.89 [122]. The reported sensitivity of non-wearable

systems ranged between 0.19 [149] and 1.0 [142], precision ranged between 0.003 [149] and

0.37 [150]. Generally, those which achieved high sensitivity had a low precision and vice

versa, the exception was Bourke et al. [122] who tested twelve variations of combinations of

features, the best of which achieved a sensitivity of 0.88 and a precision of 0.87. However,

the generalisability of the results presented by Bourke et al. [122] is highly questionable,

they used a synthetic oversampling technique to boost the fall samples from 89 to 367 and

then used ten-fold cross-validation to train and test decision tree classifiers. Therefore,

the test data was not independent of the training data, so the classifier may be overfitted

to the training data, as without independent training and testing overfitting cannot be

detected.

Two studies tested wearable devices developed by commercial companies, these studies

provide insight into the performance of the systems available commercially. Lipsitz et al. [21]

tested a pendant fall detection device produced by Royal Philips (Amsterdam, Netherlands);

the device used an accelerometer and proprietary signal processing. The study used data

collected with sixty-two participants over 9,300 days which contained eighty-nine falls; it is

to date the largest real-world study of a wearable fall detection device. Of the eighty-nine
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falls, seventeen were detected by the device (sensitivity = 0.19), a total of 128 events were

detected as falls (precision = 0.13), the F-measure score was 0.16. Chaudhuri et al. [18]

conducted a test of an unnamed proprietary wearable fall alarm which contained an

accelerometer, gyroscope and magnetometer. A total of 4 falls occurred during the 1,452

days the device was used, one fall was detected (sensitivity = 0.25) and eighty-four alarms

were raised (precision = 0.01), the F-measure score was 0.03. Further details of these studies

can be found in Table 4.2. Neither of these studies made it clear whether these devices

were commercially available or prototypes, however, they are the only real-world studies of

devices produced by commercial companies. The results of the studies suggest that the

performance of commercially available devices is extremely poor, with both studies finding

that the devices failed to detect the majority of falls and made many more false-positive

detections than fall detections.

3.6.3 Conclusions

In real-world tests the performance of fall detection technology has been poor, systems

have achieved either high sensitivity or high precision, but not both. With only limited

independent testing of commercial devices, one cannot be certain of the current level of

performance for commercially available systems, however, there is no evidence to suggest

that they perform reliably. With low sensitivity, users cannot trust the system to raise an

alarm when needed and may discontinue use of the system. With low precision it is more

likely that an alarm is a false positive rather than a real fall, this is likely to lead to alarm

fatigue in those responding. Alarm fatigue is a desensitisation to alarms leading to slow

or no response, it is caused by a high number of false alarms; in medical contexts patient

deaths have been attributed to a failure to respond as a result of alarm fatigue [151,152].

For research into the occurrence and causes of falls the current systems remain unusable,

their performance is far too poor.

3.7 Proposed Framework for Further Development of

Fall Detection Technology

The prevailing approach to developing fall detection technology has been to use simulated

falls and then, where possible, to test performance on real-world data [e.g. 19,20,109].
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The evidence has shown that simulated data is a poor substitute for real-world data

(Section 3.4); we have been able to robustly detect simulated falls for over a decade, but

during this time improvements in real-world fall detection have been limited. Due to

the challenges in collecting real-world fall data (Section 3.3), relatively few systems have

been tested on real-world data (see Chapter 4). Typically, studies have focused on testing

classifiers which are in some way novel; only a small minority have presented an analysis of

features extracted from the signals to assess if there is a difference between falls and ADL

for those features [e.g. 113,114]. Therefore, the approach of the field as a whole could be

characterised as trial and error, where complete systems or classifiers are tested as a single

unit and it is not clear how performance can be improved following each test.

Due to the challenges in collecting real-world data, its supply has been limited and going

forward this is likely to be the main factor which limits progress on fall detection. Therefore,

real-world data is highly valuable and one must ensure the maximum knowledge is gained

from the data available. Simply testing a novel system design does not extract a great

deal of knowledge from the data, only how well that system performs in comparison to

others (although even this is often troublesome, see Chapter 4 for details). Assuming test

results are comparable, only the performance change introduced by the sum of all the

differences is quantified. Thus, where there is more than one difference between systems,

one cannot ascertain which were beneficial, detrimental or had no effect. To test every

potential combination of features in turn and compare the performance is unrealistic,

testing needs to be highly targeted and this requires a greater knowledge of real-world falls

than currently exists.

To identify how performance can be improved, one must examine the components of the

system; for fall detection the critical components are the features extracted from the sensor

signals and used for classification. If there is not a good distinction between falls and ADL

for the features used, then no method of combining them in a classifier will yield good

performance. If no features can be found that yield good separation, then the hardware

setup used to record the signals must be changed, ideally based on knowledge gained

from the prior analysis. It is important to note that providing the features are based on

physical characteristics of motion, the results of studies on new features have the potential

to provide insights relevant to many fall detection approaches, be they computer vision,

thigh-worn or torso-worn accelerometer, or any other approach. In addition, the more

knowledge gathered on the characteristics of falls the more likely it is that new, better

methods of simulating falls can be developed. For example, if a study using a thigh-worn
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accelerometer found falls to have multiple impacts, but these were rare for ADL, this would

benefit more than just those aiming to detect falls with a thigh-worn accelerometer.

The proposed approach to developing fall detection technology is, conversely, to not focus

per se, on building classifiers or fall detection systems. Instead, the focus should be on

the study of the characteristics of falls and how they are different from other movements.

There is a need to test systems to measure progress in fall detection performance, however,

such testing should follow a series of studies of real-world fall and ADL signals to gather

evidence which can inform the new design. In addition, following a performance test, it

is important to go back and study why false positives and negatives occurred, and to

identify where the next stage of development should focus. Thus, it is proposed that the

development of fall detection technology should be an iterative process; Figure 3.4 shows a

diagram of a proposed iterative development process.

Figure 3.4: Flow diagram of iterative development for fall detection using real-world data.

The critical aspects for improving performance are the feedback from a test of performance

through to the development and testing of new features. It is these aspects which have

been lacking in the fall detection literature, hence the aim of the research for this thesis

was to identify why existing wearable fall detection technology had not achieved acceptable

performance and where further development should focus. The identification of these

missing elements in the fall detection research, and the recommendation of a new framework

for the development of fall detection technology, fulfils the first sub-aim of this research: to

formulate a new framework for the development of fall detection technology.



Chapter 4

Methods for the Real-World

Evaluation of Fall Detection

Technology

Given the previously highlighted issues with simulations of falls (Section 3.4), real-world

data is potentially the only source of reliable results for the performance of fall detection

technology. Thus, it is crucial to understand the methods used for testing fall detection

technology using real-world data so that results can be properly interpreted. The study

presented in this chapter aimed to identify how fall detection performance should be

quantified, which was the second sub-aim of the research for this thesis. During the time

of PhD candidature, the author published a review on the methods for the real-world

evaluation of fall detection technology [144], the publication makes up the entirety of this

chapter.

4.1 Introduction

Falls in older adults and their related consequences pose a major healthcare challenge that

is set to grow over the coming decades [1]. Approximately thirty percent of those over the

age of sixty-five experience one or more falls each year, which rises to around forty-five

53
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percent in those over eighty [27]. Roughly six percent of older adult falls result in fractured

bones [153,154]. Falls are estimated to cost the UK over one billion pounds each year, with

fractures being the most costly fall related injury [60].

Even when the injuries are not so serious, fallers often struggle to get up unaided [3,155],

sometimes leading to a ‘long-lie’ where the faller remains trapped on the floor for an

extended period of time. Long-lies can lead to dehydration, pressure sores, pneumonia,

hypothermia and death [4–6,44]. Further to the physical consequences, the fear of falling

can impact on older adults’ quality of life. A fear of falling is associated with a decline in

physical and mental health, and an increased risk of falling [46]. Estimates suggest that

between twenty-five and fifty percent of older adults are fearful of falling and half of these

will limit their activities as a result [47,48].

One method used to address the severe consequences associated with falling is the use of a

push button alarm system, which can ensure help is received quickly, and reduce the risk

of a long-lie. However, studies have shown that eighty percent of fallers do not or cannot

activate their alarm following a fall, meaning an alternative approach is needed [3,93]. As

a result, there has been extensive research into automatic detection of falls and a broad

range of approaches have been developed.

In order to understand the efficacy of the automated fall detection systems, it is important

to have a robust method of testing performance. Key to the assessment of these systems

is the evaluation of reproducibility and experimental validity [156]. There are two types

of experimental validity: internal and external. Internal validity is the extent to which

the results truly reflect the capability of the tested system, and were not influenced by

other confounding factors or systematic errors. External validity is the extent to which the

results can be generalised across people and environments.

External validity has been a central issue in tests of fall detection systems. The poor

external validity has been caused by the use of laboratory simulated falls conducted by

young healthy adults. The accidental, unexpected and uncontrolled nature of a fall makes

it challenging to simulate. When a person simulates a fall the movement is expected,

deliberate and carried out in a safe space where injury is highly unlikely. Therefore, reflexes

to prevent or lessen the severity of the fall are likely to be suppressed leading to a different

pattern of movement. When thirteen previously published approaches were tested using

real-world fall data, the performance was found to be considerably worse (mean sensitivity
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and specificity of 0.57 and 0.83, respectively) than had originally been reported from testing

using simulations (mean sensitivity and specificity of 0.91 and 0.99, respectively) [17].

Despite the challenge associated with simulating falls, the vast majority of studies have

used simulated fall data (for recent reviews see [8,9]). The use of laboratory simulated falls

has been an accepted approach due to the challenge associated with recording real-world

falls. The rarity of falls means that recording them is both costly and time consuming.

Bagala et al. [17] estimated that to collect 100 falls, 100,000 days of activity would need to

be recorded, assuming a fall incidence of one fall per person every three years. Despite this

challenge, the focus is now moving to real-world fall data due to the external validity issues

inherent in simulated fall based testing. Real-world data, by its very nature provides high

ecological validity and therefore contributes to higher external validity.

The use of real-world data, while a significant step forward, does not make the test robust.

Other factors such as cohort selection and size are important for external validity. In

addition, the use of real-world data does not increase the internal validity, in fact, the

level of variation and abundance of confounding factors creates a greater risk of systematic

errors. Therefore, careful consideration and planning of both the data collection and test

procedure is vital to ensure the validity of results.

All methods of testing fall detection systems share the same basic framework which shapes

the whole method from data collection through to data processing. Therefore, a basic

understanding of this framework is needed to understand the best method to evaluate fall

detector performance. Fall detection is a case of binary classification; each movement is

classified as either a fall (positive case) or non-fall (negative case). For each movement

there are four possible outcomes:

• True Positive (TP) – Correctly detected fall

• True Negative (TN) – Non-fall movement not detected as a fall

• False Positive (FP) – Classified as a fall when none occurred

• False Negative (FN) – A fall which was not detected

These four values can be represented as a table comparing the actual data with the system’s

predictions, this is known as a confusion matrix (Figure 4.1). All further measures can be

calculated from either a complete confusion matrix or a subset of one. Therefore, studies

should aim to collect data and process it in such a way that as many of these four values

as possible can be calculated.
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Figure 4.1: Example confusion matrix.

The aim of this review is to identify the methods which have previously been used to

evaluate fall detector performance using real-world data and investigate how the differences

in these methods of evaluation effect the results. The review covers the methods of data

collection and processing as well as the performance measures which have been used for

evaluation. In this review, we aim to identify the strengths and limitations of current

approaches and propose a more robust approach of evaluation based on the findings.

4.2 Methods

A systematic search was conducted in August 2017 and repeated in March 2018, using

the following on-line literature databases: Medline, Cinahl, Pubmed, Web of Science and

IEEE Xplore. The search aimed to find all records where a fall detection technology

(hardware or software) had been tested using real-world falls. The search strategy used is

shown in Table 4.1. Papers were excluded where no fall detection technology was tested,

where tests used fall simulations, or the technology was not aimed at older adults. Only

articles available in English were included.

The studies which met the inclusion criteria were assessed with regard to the method used

to test the fall detection system. The focus was to assess the robustness of these tests

and we therefore did not assess the systems’ design or performance. For a comparison

of wearable systems see [17] and for a comparison of non-wearable systems see [143]. All

included studies tested fall detection technology using real-world fall data. Where studies
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reported on both tests using simulated data and tests using real-world data, only the

methods used for the real-world portion of the data were considered.

Table 4.1: Example Search Strategy for PubMed.

fall*-detect*[Title/Abstract] OR fall*-sensor*[Title/Abstract] OR

fall*-alarm*[Title/abstract]

AND real-world[Title/Abstract] OR real-life[Title/Abstract] OR

free-living[Title/Abstract] OR community-dwelling[Title/Abstract] OR

home-dwelling[Title/Abstract] OR domestic-environment[Title/Abstract] OR

long-term-care[Title/Abstract] OR care-home[Title/Abstract] OR

nursing-home[Title/Abstract] OR hospital[Title/Abstract]

First we reviewed the information studies provided about their participants, how they

collected data and the volume of data collected. Next, we examined the methods used to

identify fall events and to process the data. Finally, we evaluated the use of each applicable

performance measure.

4.3 Results

The systematic search returned 259 unique records. Following application of the selection

criteria, twenty-two papers were identified for analysis. The full breakdown of the literature

identification process, including the reasons for exclusion, is shown in Figure 4.2. Table 4.2

provides a breakdown of the twenty-two included papers with regard to participant groups,

devices used, participant numbers, numbers of recorded falls, the quantity and processing

of non-fall data and finally, the performance measures reported. The following sections

provide further detail to complement Table 4.2.

4.3.1 Participant Descriptions

The level of detail provided about participants varied considerably. All but three [145–147]

of the articles stated whether participants were community dwelling, in long-term care or

hospital patients. Five articles did not provide any additional descriptive information on

the participants [18,122,142,147,157]. The other eighteen articles describe participant’s
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Figure 4.2: Flow diagram of the systematic search.

age, twelve also provide gender information and six provide details of height and weight

or BMI [17,19,21,145,158,159]. Four articles provided information on specific medical

conditions, three recruited participants with Progressive Supranuclear Palsy [17,109,148]

and one included a single older adult with Parkinson’s disease [145]. Lipsitz et al. [21]

provided the most in-depth description with a breakdown of the proportion of participants

with a range of twenty-one comorbidities. Eight articles reported results of mobility

assessments [19,20,109,145,146,149,160,161], three articles provided information on walking

aid use [143,149,160] and three articles additionally reported results of cognitive assessments

[19,20,161]. None of the other fifteen articles reported standardised measures of cognitive

or mobility status.



C
H

A
PT

ER
4.

M
ET

H
O

D
S

FO
R

R
EA

L-W
O

R
LD

EVA
LU

AT
IO

N
59

Table 4.2: Summary of papers evaluating fall detection systems using real-world falls.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Aziz
[109]

Residents of a
long-term care
facility who had
experienced at least
one fall in the
previous year

Age, mobility
assessment

Accelerometer 9 1 214 h Data were
divided into
2.5 s time
windows
with a 1.5 s
overlap. The
30 s of data
following a
fall event
were
ignored.

Sensitivity,
Specificity,

FPRT, TP,
FP, FN

Patients at a hospital
geriatrics department
with Progressive
Supranuclear Palsy

Age Accelerometer 10 9 178 h

Bagala
[17]

Patients with
Progressive
Supranuclear Palsy

Age, gender,
height, weight

Accelerometer 9 29
the

number
from each

group
was not
provided

A total of 168 h from
seven of the participants.
Recordings were divided
into 60 s windows and
only the 1170 windows
where
max(RSS)−min(RSS) >
1.01 g were included

Sensitivity,
Specificity,

FPRT,
Precision,

NPV,
Accuracy

Community dwelling
older adult

None Accelerometer 1
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Table 4.2: Cont.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Bloch
[162]

Patients at a
geriatric
rehabilitation ward
with an identified
risk of falling

Age Working alarm
composed

of an
accelerometer
and infrared

sensor

10 8 A total of 196 days.
Data was processed
on-line and the analysis
compared the alarm
times to reported fall
times. Assumed 30 fall
like events per day to
estimate of the number
of non-fall events.

Sensitivity,
Specificity,

Precision,
NPV, TP

Bourke
[122]

Patients at a
geriatric
rehabilitation unit

None Accelerometer
and gyroscope

42 89 A total of 3466 events
extracted using a
dynamic detection
algorithm and further
reduced to 367 events
where: max(RSS) > 1.05
g Total length of
recorded data was not
given.

Sensitivity,
Specificity,

Accuracy,
ROC AUC
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Table 4.2: Cont.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Chaudhuri
[18]

Community dwelling
older adults

None Working alarm
consisting

of an
accelerometer,
magnetometer,
and gyroscope

18 4 A total of 1452.6 days.
Details of data
preparation not given.

Sensitivity,
Specificity,
Precision,

NPV,
Confusion
Matrix

Chen
[158]

Community dwelling
older adults living in
geriatric
rehabilitation centres

Age, gender,
height, weight

Accelerometer 22 22 A total of 22 events.
Only data from a 1200 s
window around the falls
was used, data up to 1 s
before each fall were
used as non-fall events.

Sensitivity,
FPR,

Accuracy,
Confusion

matrix

Debard
[150]

Older adults Age Camera 4 25 A total of 14,000 h.
Only data for the 20 min
up to and including the
falls were used, this was
divided into 2 min
windows.

Sensitivity,
Specificity,
Precision,
Confusion

matrix
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Table 4.2: Cont.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Debard
[149]

Older persons
(two community
dwelling, one in a
nursing home and
four in assisted
living), two of which
did not fall and were
excluded

Age, mobility
assessment,
walking aid

use

Camera 7 29 Over 21,000 h recorded.
Only data from the 24 h
prior to each fall were
used which was divided
into 1 s windows.

Sensitivity,
Precision,
PR Curve,

PR AUC, TP,
FP, FN

Debard
[160]

Older persons
(two community
dwelling, one in a
nursing home and
four in assisted
living), two of which
did not fall and were
excluded

Age, mobility
assessment,
walking aid

use

Camera 7 29 Over 21,000 h recorded.
Only data from the 24 h
prior to each fall were
used which was divided
into 1 s windows.

Sensitivity,
Precision,
PR Curve,
PR AUC,

TP, FP, FN,
FPRT

Feldwieser
[19]

Community dwelling
older adults

Age, height,
weight,

mobility
assessments,

cognitive
assessments

Accelerometer 28 12 A total of 1225.7 days
(average daily user wear
time 8.1 ± 4.8 h).
Details of data
preparation not given.

TP, FP,
FPRT
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Table 4.2: Cont.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Gietzelt
[161]

Older adults with
recurrent falls

Age, gender,
mobility

assessments,
cognitive

assessments

Accelerometer
and camera

3 4 A total of 10 days.
Details of data
preparation not given.

TP, FPRT

Godfrey
[145]

Older adult with
Parkinson’s disease

Age, BMI,
balance

assessment

Accelerometer 1 1 A total of 7 days. No
preparatory steps.

TP, FPRT

Hu [159] Community dwelling
older adults with a
history of falls

Age, gender,
height, weight

Accelerometer
and Gyroscope

5 20 A total of 70 days,
divided into sliding
windows. Window size
was varied from 5 to 30
min.

Sensitivity,
Specificity

Kangas
[20]

Residents of elderly
care units

Age, gender,
mobility

assessments,
cognitive

assessments

Accelerometer 16 15 A total of 1105 days
(average daily user wear
time 14.2 ± 6.3 h). Data
processed on line, 14 s
raw acceleration data
where recorded when
acceleration of all three
axes fell below 0.75 g.

Sensitivity,
FPRT, TP,

FP



C
H

A
PT

ER
4.

M
ET

H
O

D
S

FO
R

R
EA

L-W
O

R
LD

EVA
LU

AT
IO

N
64

Table 4.2: Cont.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Lipsitz
[21]

Residents of a
long-term care
facility who had at
least once in the
previous 12 months

Age, gender,
height, weight,

BMI,
prevalence

of 21
comorbidities

Working alarm
system using

an
accelerometer

62 89 A total of 9300 days.
Working alarm, raw
sensor data not stored,
analysis compared the
alarm times to reported
fall times.

Sensitivity,
Precision, TP,

FP, FN

Liu [142] Older adult None Doppler radar 1 6 A total of 7 days. No
preparatory steps.

TP, FPRT

Palmerini
[148]

Patients with
Progressive
Supranuclear Palsy
staying in a geriatric
rehabilitation unit

Age, gender Accelerometer 1 12 A total of 168 h from
four of the participants.
Recordings were divided
into 60 s windows and
only the 1170 windows
where
max(RSS)−min(RSS) >
1.01 g were included

Sensitivity,
Specificity,

FPR, FPRT,
Informedness,
ROC Curve,
ROC AUC,

FP
Community dwelling
patients with
Progressive
Supranuclear Palsy

Age, gender Accelerometer 6 16

Community dwelling
older adult

Age, gender Accelerometer 1 1
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Table 4.2: Cont.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Rezaee
[157]

Nursing home
residents

None Camera Not given 48 A total of 163 normal
movements extracted
from video sequences
totalling 57,425 frames.
Details of identification
not given.

Sensitivity,
Accuracy,

FPR,
Confusion

matrix

Skubic
[143]

Residents of an older
adult independent
living facility

Age, gender Doppler radar 1 13 10 days Details of
data
preparation
not given for
any of the
datasets.

Sensitivity,
FPRT, TP, FP

Residents of an older
adult independent
living facility

Age, gender Kinect 16 9 3,339 days

Resident of an older
adult independent
living facility

Age, gender,
mobility

device use

Kinect 1 142 601 days

Residents of assisted
living apartments

Gender Kinect 67 67 10,707 days
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Table 4.2: Cont.

Author Participant Group Additional
Information

Device Type Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation
Performance

Measures

Soaz
[146]

Older adult Age, gender Accelerometer 1 1 3.5 h No
preparatory
steps.

Sensitivity,
FPRT, FP

Older adults Age, gender Accelerometer 14 0 996 h

Stone
[163]

Residents of an older
adult independent
living facility

Age, gender Kinect 16 9 A total of 3339 days.
Device only stored data
for periods where motion
was detected.

Sensitivity,
FPRT

Yu [147] FARSEEING data
used previously
in [17,122] no further
details provided

None Accelerometer 22 22 A total of 2618 normal
activities extracted as 1
s windows from the 2
min surrounding the fall
signals.

Sensitivity,
Precision,
Specificity

Notes: Performance measures reported in the articles abstract are shown in bold. Where a working alarm system was tested this is stated in the
Device Type column, otherwise the test was carried out off-line, using the collected dataset. Soaz [146] focused on estimating the false alarm rate,
however one real fall was recorded by chance and was included. RSS = Root Sum of Squares; FPRT = False Positive Rate Over Time; NPV = Negative
Predictive Value; ROC Curve = Receiver Operating Characteristic Curve; ROC AUC = Area Under ROC Curve; PR Curve = Precision Recall Curve;
PR AUC = Area Under Precision Recall Curve; TP = True Positives; FP = False Positives; FN = False Negatives; TN = True Negatives.
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4.3.2 Method of Data Collection

All studies used the same general approach of monitoring participants with one or more

sensor devices. Studies can be classified into two main categories, those using wearable

technology (e.g. accelerometers or gyroscopes) and those using non-wearable technology

(e.g. fixed cameras or Kinect sensors). Both approaches have advantages and disadvantages

with regard to fall detection. For example, wearable devices are always with the user,

however they may forget to wear the device. In contrast, non-wearable devices have a

limited capture area but the user can safely forget about them. For a full discussion on

the advantages and disadvantages of different sensor types refer to recent reviews [9,14].

Fifteen studies used wearable technology and ten used non-wearable, Table 4.2 shows full

details of the devices used in each study. Accelerometers are the most common choice of

sensor and have been used in fifteen of the studies [17–21,109,122,145–148,158,159,161,162].

Eight studies tested some form of optical sensor [143,149,150,157,160–163], making them

the most common choice of non-wearable devices. One additional study deployed an optical

sensor as part of their system, but this did not record any falls so they could not test

it [19].

Studies can be further classified based on whether the device used was capable of processing

data on-line and raising an alarm when it detected a fall. Three studies deployed functioning

wearable alarm systems [18,20,21], one study deployed a system combining wearable and

non-wearable devices [162], no studies deployed an alarm system solely using non-wearable

devices. Two of the studies which tested working alarm systems did not store the raw

sensor data, only recording when the alarm went off [21,162], one article did not state if the

raw sensor data was stored [18]. The raw sensor data can be used for future development

and testing, and therefore the favoured approach is to store this data.

The availability of the collected data is important for future work and the direct comparison

of approaches. None of the studies used publicly available datasets nor made their real-world

fall data publicly available. Two studies [147,158] made use of a subset of the FARSEEING

repository, which is available on request. The FARSEEING project is a real-world fall

repository project funded by the European Union. Four studies [17,109,122,148] were

conducted by members of the FARSEEING project or in collaboration with members, and

also used data from the FARSEEING repository. No other studies provide any information

on the availability of their datasets.
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4.3.3 Number of Participants and Falls, and the Volume of

Non-Fall Data

There is a large range in the number of participants included, with most studies using small

cohorts. One article did not provide any information on the number of participants [157].

Three studies had just a single participant [142,145,146] and one study [143] used data

from only one participant in parts of their analysis. The maximum number of participants

was sixty-two [21] and the median was nine (IQR four to eighteen).

There was an equally large range in the number of fall events recorded. Two studies included

just a single real fall [145,146] and in one of the two datasets used by Aziz et al. [109] only

one fall was recorded. The maximum number of falls was eighty-nine, which was achieved

in two separate studies [21,122]. The median number of falls contained in the datasets

used was 17.5 (IQR 8.25 to 29).

Where reported, the length of the monitoring period varied considerably and comparison

is made difficult by the inconsistent choice of reported metrics. Thirteen articles provided

the total length of the recorded data, but did not provide details of the proportion where the

system was recording participant’s movement (participant in the capture area or wearing

the device) [18,21,109,142,143,146,149,150,159–163]. The median length of total recorded

data, from studies which provided it, was 592 days (IQR 21 to 1,474). Only three articles

provided information on device wear time, in these studies, the mean wear times were

8.1 [19], 14.2 [20] and twenty-four [145], hours per day, respectively. None of the articles

on non-wearable devices provided information on the proportion of time during which

participants were in the capture area.

Six articles did not clearly state the time period over which participants were monitored

or the amount of data captured, instead they provided the number of extracted non-fall

events [17,122,147,148,157,158]. The number of non-fall events used in these studies ranged

from twenty-two [158] to 3,466 [122].

4.3.4 Method of Fall Identification and Validation

One of the main challenges in recording real-world falls is ensuring every fall that occurs

is identified accurately. How fall events are identified is influenced by both the choice of

device and whether the system is capable of raising alarms in real-time. The device used
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determines the type and detail of information available for retrospective verification of fall

times and types. A camera, for example, provides a greater level of information compared

to an accelerometer; assuming the video footage is not highly pre-processed, for privacy

reasons, before being stored. Where working alarm systems are deployed, all detected falls

can be quickly verified, providing additional robustness over a single reporting method

such as staff incident reports.

Four studies [18,20,21,162] deployed a functioning wearable alarm system. As the alarm

systems were being validated, a second reporting system was still needed to identify

falls which did not trigger an alarm. Three of the studies used staff incident reports in

addition to the alarm system [20,21,162]. It was unclear what secondary method of fall

identification was used in one of the studies [18]. Of the eighteen studies which analysed

the data retrospectively, three identified falls using staff reports [17,109,163], five used

participant self-report [19,145,146,159,161] and ten did not state how falls were identified

[122,142,143,147–150,157,158,160].

Where self-report of falls is used it is important to consider the cognitive ability of

participants, especially their memory. Only two of the five studies which used self-report

provide results of assessments of cognitive ability [19,161]. Both of these studies used a

Mini Mental State Exam [164]. Feldwieser et al. [19] found no signs of cognitive impairment

and Gietzelt et al. [161] found that one of their three participants had cognitive impairment,

but does not report how they accounted for this.

It is important to consider that reported fall times might not be accurate and that some falls

may not be reported, or may be reported by more than one member of staff with different

timestamps. This could, for example, be due to delays in completing the report, delays in

the faller being discovered, participant recall problems or staff naturally prioritising helping

the faller over checking and reporting the time. Only three articles describe methods

to check reported fall times [17,109,159]. Two of these [17,109] used datasets from the

FARSEEING repository where expert analysis of the sensor signals in combination with fall

reports was used to pinpoint the fall signal. Hu et al. [159] reported correlating self-reported

fall times with the signals, but provided no details on how this was carried out.
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4.3.5 Methods of Data Processing

There are two approaches for testing real-world fall detection systems, the key difference

is how the data is prepared. The first approach is based on simply identifying when falls

occur in continuous user movement or a stream of sensor data, we call this the continuous

data approach. The second approach is based on a fall detector classifying events as either

a fall or not a fall, we call this the event based approach. The following sections explain

each of these approaches and review their use. In five studies it was unclear which approach

was used [18,19,143,161,163].

4.3.5.1 Continuous Data Approach

The continuous data approach mirrors real-world usage of fall alarm systems where user

movement is the input and fall times or alarms are the output. This approach is therefore

the primary way of testing deployed fall alarm systems but can also be used for retrospective

testing using existing data. The fall detection systems sensors convert movement into a

stream of raw data which is then processed by the software component of the system. In

this approach all aspects of data processing are part of the fall detection software and are

tested as a single unit. To test performance the systems predictions are compared to the

actual verified fall times. This comparison allows quantification of the number of true

positives (actual and predicted timestamps match), false positives (predicted fall with no

actual fall) and false negatives (fall occurred but none was predicted).

True negatives can be quantified if the times when non-falls occurred were recorded,

however, non-falls are not defined. In the strictest sense non-falls are everything which is

not a fall, but that does not enable their occurrence to be quantified. It is not possible

to count when a fall doesn’t occur without arbitrarily dividing the time-series data into

events, and counting the events where no fall occurred. Such a method of dividing the

data would fall under the event based testing approach. In the continuous data approach

any segmenting of the data for processing purposes is part of the fall detection system, not

the test procedure.

Six studies used the continuous data approach [20,21,142,145,146,162]. Bloch et al. [162]

processed the data using the continuous data approach, and then used an assumption of

thirty ‘fall-like’ events per day to calculate a number of true negatives (thirty times number
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the of days the sensor was in use). The other five studies did not attempt to quantify true

negatives.

4.3.5.2 Event Based Approach

The event based approach has its roots in tests using laboratory based simulation datasets.

When data is collected in the laboratory a predefined set of movements or events is

simulated, the times of these events is known and therefore they can be easily extracted.

To test performance all the events must first be labelled as either a fall or not a fall using

the record of event times. For each event the label is compared to the software’s predictions

allowing a complete confusion matrix to be generated.

In real-world data, events are less clearly defined than in simulated data since there is

no complete record of the movements which occurred. The creation of events from real-

world data has been based on arbitrary rules rather than identification of the underlying

movements of the users. The events are labelled using reported fall times, where no fall

occurred the event is considered a non-fall. As this method always yields non-fall events,

true negatives can be quantified, unlike in the continuous approach.

Eleven studies used the event based approach [17,109,122,147–150,157–160]. The predomi-

nant method to create events was based on time windows, where the data is sliced using

constant time intervals, for example each sixty seconds of data is one event. However,

there is no consensus on what constitutes an event and in practice, a method of reducing

the volume of data is often used, for example, to exclude data where no movement was

recorded. The time windows can overlap allowing the same data to be processed multiple

times, although the rationale for this is not clear.

To create events, one study used 2.5 second windows with a 1.5 second overlap and kept

all the events [109]. Two studies divided the data into sixty second windows and used

a movement detection algorithm to select events [17,148]. Bourke et al. [122] also used

a movement detection algorithm to select events but does not describe the windowing

technique. Two studies used the same dataset where the twenty-four hours prior to each

fall was divided into one second windows [149,160]. One study used self-reported wear

time to reduce the dataset prior to dividing into windows, but does not provide any details

about the windowing technique [159].
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Three studies used only a limited section of data from around each fall. Debard et al. [150]

divided up the twenty minutes of data prior to a fall into two minute windows. Chen

et al. [158] only used data from twenty minutes surrounding each fall and used the section

of data up to one second prior to impact as non-fall events. Yu et al. [147] divided the two

minutes around each fall into one second windows, removed the one second window where

the fall occurred and used the remaining windows as non-fall events.

4.3.6 Definition of Performance Measures and Review of Their

Use

4.3.6.1 Sensitivity

Sensitivity (also known as recall and true positive rate) is the proportion of falls which are

correctly detected (Equation 4.1). The inverse of sensitivity is miss rate (false negative

rate) which quantifies the proportion of falls not detected (Equation 4.2). Sensitivity is by

far the most commonly reported statistic; it was reported in eighteen of the articles [17,18,

20,21,109,122,143,146–150,157–160,162,163] and could be calculated from the information

given in the other four [19,142,145,161].

Sensitivity = TP

TP + FN
= TP

P
(4.1)

Miss Rate = FN

FN + TP
= FN

P
= 1 − Sensitivity (4.2)

4.3.6.2 Specificity

Specificity (also known as true negative rate) is the proportion of non-fall events which

are correctly detected (Equation 4.3). It quantifies the ability to avoid false positives

(false alarms). The inverse of specificity is false positive rate, which is the proportion of

non-fall events mistakenly detected as falls (Equation 4.4). Nine articles reported specificity

[17,18,109,122,147,148,150,159,162] and two reported false positive rate [148,157]. It is

unclear whether Chen et al. [158] reported specificity or false positive rate, as the reported

number of TN and FP suggest that what they report as specificity is in fact false positive
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rate. Specificity could be calculated from the information provided in a further two of the

studies [149,160].

Specificity = TN

TN + FP
= TN

N
(4.3)

False Positive Rate = FP

FP + TN
= FP

N
= 1 − Specificity (4.4)

4.3.6.3 False Positive Rate over Time

False Positive Rate over Time (FPRT) has become a popular measure in real-world tests of

fall detection. This measure provides information on the frequency of false alarms. Twelve

articles report the number of false positives either per hour or per day [17,19,20,109,142,

143,145,146,148,160,161,163] and it could be calculated from the information provided in

seven others [18,21,149,150,157–159].

4.3.6.4 Precision

Precision (also known as positive predictive value) is the proportion of alarms which are

true falls (Equation 4.5). It therefore provides the probability that an alarm will be an

actual fall and not a false alarm. For example, a precision of 0.5 means that half of alarms

will be actual falls, and half will be false alarms (one false positive for every detected fall).

Eight articles reported precision [17,18,21,147,149,150,160,162] and it could be calculated

from the information provided in all of the other articles.

Precision = TP

TP + FP
(4.5)

4.3.6.5 Negative Predictive Value

Negative Predictive Value (NPV) is the proportion of events classified as non-falls which

are true non-fall events (Equation 4.6). NPV therefore provides information about the

ability to correctly classify non-fall events. NPV will be high if a system correctly ignores

many times more non-fall events than the number of falls it fails to detect. Therefore,

for false negatives to have any notable effect, the number of falls and non-falls must be
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approximately equal. However, in real-world fall data falls are usually much less frequent

than non-fall events, which limits the insights yielded from NPV as systems typically score

over 0.99 out of one [17,18,162]. Three articles reported NPV in their results [17,18,162].

NPV could also be calculated from the information provided in eleven of the other articles

[21,109,122,147–150,157–160].

Negative Predictive Value = TN

TN + FN
(4.6)

4.3.6.6 Accuracy

Accuracy is the proportion of predictions which were correct (Equation 4.7). Accuracy is a

measure which summarises the whole confusion matrix in a single value. Accuracy’s major

limitation is the inability to handle imbalanced datasets, for example, in real-world fall

data where there are many more non-fall events than falls. Similar to NPV, accuracy is

dominated by the larger group and the effect is proportional to the size of the imbalance.

Therefore, in real-world fall detection studies, accuracy is skewed towards the correct

detection of non-fall events over the correct detection of falls. For example, in eight of the

algorithms tested by Bagala et al. [17] the accuracies were greater than 0.9 with sensitivities

below 0.6, in one case an accuracy of 0.96 with a sensitivity of 0.14. Four articles reported

accuracy [17,122,157,158] and it could be calculated from the results provided in seven of

the other articles [18,109,147–150,160].

Accuracy = TP + TN

P + N
(4.7)

4.3.6.7 F-Measure

F-measure (also known as F-score) is the harmonic mean of sensitivity and precision

(Equation 4.8). F-measure, therefore, considers all outcomes except true negatives (non-

falls). In fall detection, the priorities are detected falls (TP), missed falls (FN) and false

alarms (FP). F-measure considers all of these outcomes and therefore provides a good

overview of performance. No articles report a value for F-measure, however it could be

easily calculated from their results as eight articles [17,18,21,147,149,150,160,162] reported
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both sensitivity and precision and all but two [159,163] reported enough information to

calculate both sensitivity and precision.

F-measure = 2 × Precision × Sensitivity
Precision + Sensitivity (4.8)

4.3.6.8 Informedness

Informedness (also known as Youden’s J Statistics or Youden’s Index) is a statistic which

combines sensitivity and specificity (Equation 4.9). It is the probability that predictions are

informed versus a pure guess. Informedness is linked to the proportion of cases classified

correctly. However, unlike accuracy, it is robust to an imbalance in the number of fall and

non-fall events. This is achieved through equal weighting of sensitivity and specificity which

are in turn the proportions of falls detected and non-falls correctly ignored. The value

ranges from negative one to positive one. Zero indicates predictions are no better than

guessing, positive one indicates perfect predictions and negative one indicates all predictions

are the opposite of the true value. In cases where the value is negative, the output classes

can simply be swapped over. One study reported informedness [148], however, twelve other

articles reported both sensitivity and specificity or false positive rate, or the information

necessary to calculate them [17,18,109,122,147,149,150,157,158,160,162], so informedness

could be calculated from their results.

Informedness = Sensitivity + Specificity − 1 (4.9)

4.3.6.9 Markedness

Markedness is a statistic which combines precision and NPV (Equation 4.10). Markedness

is linked with the proportion of predictions which are correct. It combines the proportion

of correct positive and negative predictions with equal weighting and is therefore unaffected

by imbalance in the number of positive and negative predictions. As with informedness, the

result is a value between negative and positive one. No articles reported markedness, but
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twelve did report enough information for markedness to be calculated [17,18,109,122,147–

150,157,158,160,162].

Markedness = Precision + NPV − 1 (4.10)

4.3.6.10 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is the geometric mean of informedness and

markedness (Equations 4.11, 4.12). It should be noted that Equation 4.11 only works if

informedness and markedness are both positive, Equation 4.12 works in all cases. MCC

considers both the proportion of events classified correctly and the proportion of correct

predictions and is therefore robust to imbalanced datasets. The result is a value between

negative and positive one as with both informedness and markedness. None of the articles

reported MCC, enough information to calculate MCC was given in fourteen articles

[17,18,21,109,122,147–150,157–160,162].

MCC =
√

Informedness × Markedness (4.11)

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.12)

4.3.6.11 Receiver Operating Characteristic Curve

A Receiver Operating Characteristic (ROC) Curve is a plot of sensitivity versus false positive

rate as the primary threshold of the classifier is adjusted. ROC curves can therefore be

used to understand the trade-off between sensitivity and false positive rate and optimise

a primary threshold. There could be debate as to which balance of sensitivity and false

positives is optimal, therefore a ROC curve provides useful insight. However, it is difficult

to compare systems robustly based on a curve. Consequently, it is in the optimisation

where ROC curves are best used, rather than final results, as only the optimised version

will be deployed.

ROC curves can be reduced to a single number by calculating the area under the curve

(AUC). AUC has been found to be a poor measure for comparing classifiers, particularly
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where the sample size is small [165–167]. Two studies have used ROC analysis and reported

AUC [122,148].

4.3.6.12 Precision-Recall Curve

A precision-recall (PR) curve is similar to a ROC curve, the difference is that precision is

used instead of false positive rate and the term recall is used in place of sensitivity. PR

curves are preferred over ROC curves when there is a large imbalance in the data [168].

Calculating AUC for PR curves is more challenging than for ROC curves as precision

does not increase linearly, meaning linear interpolation yields incorrect results [168]. Two

studies reported PR AUC [149,160], although it is unclear how PR AUC was calculated in

these studies.

4.4 Discussion

This is the first review to be conducted on the methods used to evaluate real-world

performance of fall detection systems. Ensuring a sound method is critical for meaningful

results, therefore reflecting on the way studies are conducted and seeking improvements

to the method is vital in emerging areas of research where no consensus has yet been

reached. The real-world testing of fall detection systems is currently in its infancy and

this is reflected in our findings. The method is highly variable across studies, which makes

comparing the results difficult if not impossible. The following three sections discuss the

key issues and make recommendations for future studies.

4.4.1 Data Collection and Preparation

One major aspect which leads to variation between studies is the participant groups and the

differences in the movements and behaviours captured by the sensor systems. If insufficient

detail is gathered about participants it is challenging to reproduce the findings as differing

results could be due to differing participant characteristics. In addition, one may want to

collect new data comparable to that used in a previous study for the purpose of comparing

the performance of a new system using different sensors with previously tested systems.

Information gathered about participants was both inconsistent and insufficient to allow

the data collection to be reproduced.
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A comprehensive consensus process has previously been carried out by the FARSEEING

consortium [169]. As part of the consensus process the group identified a minimum set of

clinical measures which they deemed essential for the interpretation of real-world fall data.

The measures included age, height, weight, gender, fall history, assistive device use as well

as assessments of mobility, cognitive impairments and visual impairments. None of the

reported studies have implemented these recommendations.

Cognitive and mobility tests provide useful information about fall risk and the likelihood

of false positives caused by events such as ‘falling into a chair’ or improper use of the

device. Compared to standard metrics such as age, height and weight, assessments of

mobility and cognition provide a much deeper insight into participant’s fall risk and

movement characteristics. Therefore, standardised cognitive and mobility assessments

should be prioritised. Deeper insights into participant’s movements could be achieved

though continuous profiling using activity monitoring software to process the recorded

dataset. However, development and validation of activity monitoring software may be a

barrier unless an existing activity monitoring system is used for the data collection. Where

such profiling is possible details should be reported to enhance the interpretation of results.

Another critical aspect of the test is the size of the dataset. Currently, the datasets used

are generally small, have been collected with a low number of participants and contain

only a few falls. Small datasets reduce the validity of the test and hinder reproducibility.

Where the dataset is small either due to few participants, a low incidence of falls or both,

it is possible that only a limited subset of movements and fall types were captured. In such

cases comparisons of results to tests of other systems is difficult as the dataset may be the

main cause of differences in reported performance. Further, the generalisability of results

is questionable where the sample size is small. The small datasets are one factor which

makes it difficult to understand which systems perform the best and therefore where future

development should focus. The other main factors are the different populations recruited

for studies and the limited insights into how this affects the fundamental aspect of the

data, the movements captured.

Due to the known challenges in recording fall signals, the only feasible way for most

researchers to gain access to a large number of fall signals is through collaboration. In

addition, if systems are tested using the same data, the results are directly comparable.

Therefore, large shared test datasets are needed to allow the performance of fall detection

software to be compared. To facilitate the sharing of datasets, the FARSEEING consortium
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have established a data repository which currently contains over 300 fall signals [170].

However, more studies are needed to generate datasets that can be added to the repository

and used for robust testing of devices and development of improved software.

Even with shared data, there is still an issue of how to ensure all fall signals are accurately

identified. We have identified that the method used to identify the fall signals is poorly

described in published studies, leaving a large gap in our understanding of how the dataset

was prepared. The current prevailing method to identify fall signals is expert signal analysis

to verify participant or staff reported fall times. There is a risk that not all falls are

reported, leading to real falls being included as non-fall data. Expert signal analysis

cannot overcome the issue of under reporting, but does at least give greater confidence

that inaccurate reported times were corrected and all included fall signals were real falls.

Expert signal analysis, while clearly better than no verification, could lead to bias. Currently

there is an insufficient understanding of fall signals due to a limited number of recorded

falls and a lack of research into the profile of the signals. Our limited understanding could

lead to atypical falls not being verified and thus excluded. There is a risk that systems are

designed to detect certain signal profiles as falls and only these profiles are being verified as

falls. Therefore the results could be artificially improved through restricting the test data.

Unless a gold standard fall reporting system is used, such as video analysis, studies will

be limited in their ability to verify fall signals, under reporting of falls will remain a

concern and there is a risk of bias in the verification process needed to compensate for the

inaccuracies of the ‘silver standard’ reporting system. The current lack of standardised

method or gold standard, and the lack of reporting how fall signals were identified and

verified, inhibits understanding of results. A consensus is needed on the process for fall

signal identification and studies should clearly report their methods.

4.4.2 Data Processing

Two approaches were identified for preparing sensor signals for fall detection system testing

and we named these the continuous data approach and the event based approach. Both

approaches have issues surrounding what constitutes a non-fall. In the continuous data

approach the issue is centred around the definition and identification of non-falls. In

the event based approach non-fall events can be defined as any event which is not a fall.
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However, events could be defined as anything which is either a fall event or non-fall event,

and since falls are defined, the issue returns to what constitutes a non-fall.

The strictest definition of non-falls as everything which is not a fall is not particularly

useful. This definition does not allow non-falls to be quantified in the continuous data

approach and provides no indication of how the data should be divided into events for the

event based approach. A more helpful concept is that of fall-like movements, a subset of

non-falls which share characteristics with falls. The FARSEEING consortium defined a fall

as “an unexpected event in which the person comes to rest on the ground, floor or lower

level” [26]. A fall-like movement could therefore, by removing the unexpected clause, be

defined as “any event in which the person comes to rest on the ground, floor or lower level”.

With a definition for fall-like events these could be recorded, at least theoretically, in the

same manner as falls and therefore, allow true negatives to be quantified robustly. In reality

it is not feasible for a researcher to record the times of all fall-like movements in the same

way that falls are recorded, due to the vast quantity which would occur. An automated

system would be more practical, although it is unlikely to be easier to develop automated

fall-like detection than automated fall detection systems. Consequently, researchers must

consider if the development of fall-like movement detection systems is worth the investment,

simply to extend the testing of fall-detection systems. Given that a robust evaluation

of fall detection systems can be achieved without the need for true negatives, and hence

non-fall or fall-like movements, we suggest that automated fall-like movement detection is

unlikely to bring benefits which outweigh the required investment.

4.4.3 Performance Measures

It is challenging to compare results across studies or determine the current state-of-the-art

due to disparity in the choice of measures reported and challenges calculating unreported

measures. The measures used to report and interpret performance vary widely across

studies and not all studies report the basic results from which all measures can be calculated

(TP, FP, FN and TN). Where TP, FP, FN and TN are not reported these can only be

estimated, due to rounding of the reported results. Using one of the tests reported by

Bourke et al. [122] as an example, the number of FP could be any value between eighteen

and fifty-one based on the reported specificity of 0.99 with 3,466 total non-falls. To facilitate

the calculation of additional measures, future studies should report TP, FP, FN and TN if
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these can be calculated robustly and are used in the calculation of the reported performance

measures.

In addition to reporting enough information to allow further measures to be calculated, it is

important that the headline measures give a true reflection of performance and allow robust

comparisons to be made with other systems. Sensitivity has been a mainstay in previous

studies, it is an important aspect of system performance. Sensitivity only quantifies the

ability to detect falls, it does not consider false positives. The question is therefore which

measure to pair sensitivity with to provide understanding of the ability to avoid false

positives. In addition, a single combined measure which considers both aspects is important

in order to understand the overall level of performance.

Specificity has been the most common choice of measure to quantify the ability to avoid

false alarms in laboratory based testing [9] and it has remained a common choice in

real-world tests. Specificity considers how well non-fall events are classified, it could

therefore be considered sensitivity’s natural counterpart. The weakness of specificity in the

context of real-world fall detection is the reliance on non-falls, which are poorly defined

and troublesome to identify.

The need for researchers to design or select methods for non-fall identification opens up a

considerable possibility of bias. A method could be used which suits the specific system

and dataset causing distortion of the results and hindering comparisons with other systems.

In the case of specificity, the difficulty of the test is very much determined by the definition

of a non-fall; the more inclusive the definition, the more non-fall events and therefore the

higher the score for the same number of false positives. This effect can be seen in the

study of Bourke et al. [122], where tests were conducted twice using different definitions of

non-falls. With the most restrictive definition of non-falls, specificity ranged from 0.83 to

0.91. With the more open definition, specificity was consistently 0.98 or greater. Expanding

the definition includes more movements which are less fall-like, thus it creates an easier

test.

It is hard to prevent bias in selecting a definition of non-falls as it is likely unintentional.

One solution is to remove the need to select a method on a study by study basis, however,

standardising the method is challenging. Since there is currently no clear way to standardise

non-fall identification, the best option may simply be to avoid them altogether. A solution

might be standard publicly available datasets, with an agreed method to identify non-fall
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events. In such a case, the results are comparable to each other, but not to other studies

using other datasets or methods.

Using standard data is challenging due to the vast array of sensors which could be used

and the huge number of combinations. It is simply not possible to have a single dataset

used to test all systems. Furthermore, it seems impossible to identify all types of relevant

non-fall movements needed for a universal standard dataset. Any measures which rely on

non-falls (specificity, NPV, accuracy, informedness, markedness, MCC and ROC AUC) are

subject to the above problems and therefore should not be used as a primary measure.

Where measures reliant on non-falls are used the methods should be described in detail

and their limitations should be made clear to avoid confusion and misinterpretation.

The issues surrounding non-falls substantially reduces the options for quantifying the ability

to avoid false positives and gauge overall performance. There are four possible measures

which do not rely on non-falls, these are FPRT, precision, F-measure and PR AUC.

FPRT is a useful measure to understand the frequency of false alarms, however differences

in the datasets affect the calculation. Wear time or time in the capture area must be

considered, as false positives will, most likely, be far lower when the device is not in use.

Another consideration is which hours of the day the device is in use; false positive rate

during night time hours would be very different to day time hours. Reporting of times

when the device was monitoring participants was found to be inadequate. Of the eleven

articles which reported FPRT only two clearly reported wear time or time in the capture

area [19,20] and none reported any details on the distribution of this time throughout

the day.

Our findings suggest that there is a lack of an agreed and clearly defined method to

calculate FPRT. Only one study clearly states that FPRT was calculated using solely

the time a participant was being monitored by the device [20]. None of the other studies

appear to have taken usage time into account when calculating FPRT. If usage time is not

considered or reported it is unclear what extent device usage, or lack thereof affected the

result. An unused system is unlikely to produce false positives. The issues in identifying

wear time or time in the capture area could make FPRT an unreliable measure to compare

across studies. Although users and clinicians may find the rate of false positives over time

useful, it might be better to use a rate of something other than time.
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Precision is an alternative to specificity and FPRT, it quantifies the false positives (FP) in

relation to detected falls (TP). TP and FP should, for any reasonable level of performance,

be in the same order of magnitude, therefore precision is resilient to the imbalance in the

data. Further, the ratio between TP and FP is unlikely to be notably affected by usage

time, if a device is used half of the time, TP and FP would be expected to be half compared

to full device usage. Therefore, compared to FPRT, precision is far less affected by device

usage, or lack thereof. The proportion of fall predictions which were true falls could be

more useful than FPRT since frequent false positives may be acceptable to a frequent faller,

assuming the falls are detected. Precision should be the primary measure of the ability to

avoid false positives.

Sensitivity and precision together quantify the ability to detect falls and avoid false alarms,

therefore providing a complete portrayal of performance. In addition to sensitivity and

precision it is important to have a single measure which can quantify the trade-off between

them. PR AUC is one possible option, however it considers the performance of multiple

sub-optimum versions of the system as the system’s parameters are adjusted. Since only

the optimised system can be deployed, it is the optimised version which should be the

focal point of the evaluation. F-measure, the harmonic mean of sensitivity and precision,

appears to be the most suitable single measure for objective comparison. This trio of

measures has two major advantages in robustness: (1) it does not rely on non-falls and (2)

it is resistant to issues surrounding wear time and time in the capture area. Future studies

should report sensitivity, precision and F-measure, and F-measure should be used as the

standard for comparing systems.

4.5 Summary and Conclusions

As focus in fall detection performance evaluation shifts from simulated to real-world fall

data, one must consider if the approach used for evaluating on simulations is optimum for

real-world data. Through examining the published articles on evaluation of real-world fall

detection, two issues have become apparent:

1. The approaches to quantifying performance are inconsistent and many studies use

measures which provide limited representation of performance.

2. The number of falls is generally small and study populations are diverse, making

comparison between the datasets and results difficult.
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It is critical that a consensus is reached on the most appropriate method to evaluate

real-world performance of fall detection systems.

To address the issues with the datasets there needs to be greater collaboration and sharing

of data. The FARSEEING consortium have made substantial steps to facilitate data sharing

and have recorded over 300 falls through collaboration between six institutions [170]. Six

of the twenty-two studies published to date have used parts of this data to develop or test

approaches to fall detection [17,109,122,147,148,158], highlighting the importance of this

data. However, further work is still needed to grow the volume of available data, record

more falls, improve standardisation and further develop fall detection technology. Only

through collaboration will the collection of a dataset large enough for robust development

and testing become possible.

To address the issues surrounding how performance is quantified studies should avoid

the need for non-falls. The concept is poorly defined and standardisation seems to be

extremely problematic. The concept of non-falls is only needed to allow the calculation of

measures such as specificity and accuracy, both of which are common in simulation based

studies [9]. However, quantification of the difference in false alarm rate between simulated

and real-world tests is not possible due to the disparity of the data. Therefore, traditional

measures such as specificity and accuracy are of little value. Continued use of these

traditional measures may lead to confusion and improper interpretation of performance.

Measures which do not depend on non-falls should be used instead of these traditional

measures. Sensitivity and precision should be the cornerstones of the evaluation with

F-measure used for the objective comparison of systems.



Chapter 5

Pilot Study

5.1 Introduction

Previous approaches to automatic fall detection have not performed well in real-world tests

and the reports on their design and evaluation provide insufficient insights into how to

improve them (Sections 3.6, 3.7). There is a need for research into how falls differ from

other movements, however, this requires a real-world dataset which captures both ADL

and falls (Section 3.7); this is challenging and time-consuming to collect (Section 3.3).

Given the investment required to collect real-world fall data, the methods of collection

and processing needed to be first tested under controlled conditions to reduce the chance

of issues occurring and to maximise the quality of the collected data. For this reason, a

pilot study was conducted in which data were collected using simulated falls to test the

data collection and planned analysis processes. Simulated falls were deemed appropriate to

test that the methods of recording falls were suitable and to test data handling and signal

processing software as the first step towards a study of real-world falls monitoring.

5.1.1 Choice of Sensor

The choice of sensor was the most important aspect of the study design and was crucial

in shaping the study protocol. The primary aim of this study was to prepare for further

research into which features of real-falls best distinguish them from other movements.

85
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Therefore, the choice of sensor was heavily influenced by the practicalities of real-world

data collection. This section explains the decisions made on whether to use wearable or

non-wearable devices, which sensors to use, how many devices to use and where to place

devices.

Video cameras provide possibly the richest set of data as they can capture the movement

of the entire body in a high level of detail. However, as discussed earlier, in real-world

contexts the privacy concerns could result in a lack of coverage in private areas and a

high risk of missed falls. In addition, with video cameras, or indeed any non-wearable

sensor, there are ethical concerns surrounding the collection of data on those who have not

provided consent to participate. Since non-wearable devices monitor a space rather than an

individual it is not possible to avoid capturing data on non-participants. The inability to

selectively capture data may present a problem for data collection in care facilities, where

there are many communal areas. Finally, the use of non-wearable devices for the recording

of real falls requires a system to be retrofitted into the buildings where participants reside.

This need to retrofit systems not only incurs substantial cost but may also be a barrier to

collaboration with third-parties who are vital for participant access.

Wearable devices only monitor the wearer and hence avoid the issues raised above. The

relatively simple setup associated with wearable devices reduces the investment in each

site compared to the use of non-wearable devices. Thus, wearable devices facilitate the

inclusion of sites with a lower number of potential participants and could allow for a wider

pool from which to recruit participants. The simple setup afforded by wearable devices

provides much greater freedom in collaboration with third parties for access to participants

and could aid in the collection of a suitably large dataset. The disadvantages of wearable

devices are their limited battery life and the need for the user to remember to wear the

device (or for someone to ensure they are), however, these can be minimised by careful

device selection.

With the current technology, the advantages of wearable devices outweigh their disad-

vantages and they appear to be the most suitable method to study real-world falls. Of

the sensors previously used in wearable devices for fall detection research, accelerometers

appeared to be the most promising. Accelerometers have formed the basis of nearly all

the fall detection systems proposed in the literature; other sensors have most commonly

been used to provide supplementary data (Section 3.5.2). Accelerometers can be used for

the detection of impact, to infer posture, estimate vertical motion and estimate velocity
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(Section 3.5.2.1). The combination of gyroscopes and magnetometers with accelerometers

facilitates a more accurate estimation of orientation and therefore estimation of vertical

acceleration and velocity. However, each additional sensor adds to the power consumption

which either reduces battery life or requires a larger device to house a larger battery, neither

of which is desirable.

To record a relatively large set of real falls comparable in size to the largest datasets used

in published studies (approximately 100, see Chapter 4), it is estimated that between

10,000 and 100,000 days of recording would be needed [17,19–21]. Therefore, a balance

must be struck between participant numbers and the length of the monitoring period for

each participant. Based on the estimated occurrence of falls, to record 100 falls with 100

participants, each participant would need to be monitored for between ten and 100 days.

If participants are to wear a monitoring device for close to twenty-four hours per day over

a relatively long period, it must be comfortable to wear and unobtrusive. Consequentially,

a small and lightweight device is preferable to large or heavy one and long battery life is

important to minimise inconvenience associated with swapping devices or recharging.

Wearable devices attached to multiple body segments provide greater insight into the

movement and posture of the body than a single device. However, each additional device

adds inconvenience to participants and thus may both hinder participant recruitment and

lead to higher withdrawal rates. Each additional device also adds complexity to the study

as one must keep track of which device was worn on each part of the body. If participants

inadvertently mix up the devices or there is any confusion over which body part a device

was worn on, the data will not be usable. There are clear drawbacks in the use of multiple

wearable devices which must be weighed against the benefits. Given research recording

real-falls is in its infancy, the simplicity of a single device is preferable.

If only a single device is to be used, then the placement of that device is critical. In previous

research a lumbar placement has been common; due to proximity to the centre of mass, it is

a good location for estimation of whole-body motion [8,9]. The ability to estimate posture

post-fall could be a useful feature in fall detection, however, a lumbar-worn accelerometer

cannot be used to robustly distinguish sitting from standing as the torso angle is similar, it

can only distinguish lying postures from standing and sitting. A fall may not necessarily

result in a lying posture; if a fall occurs near furniture or a wall, the faller may come to

rest in a seated posture with the furniture or wall providing support. Therefore, the ability

to distinguish sitting from standing could be important for fall research.
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The torso and thigh are the best locations for identification of the three major postures

(standing, sitting and lying), although distinguishing all three robustly from either location

is problematic. Other locations, such as the wrist, may provide benefit in terms of ease

of wear and comfort but do not provide such usable posture information. A thigh-worn

accelerometer can robustly distinguish standing and sitting using the angle of the thigh with

respect to gravity, however, distinguishing sitting from lying is challenging. An algorithm

has been developed to detect long periods of lying based on the rotation of the thigh about

the longitudinal axis of the body; the reported sensitivity and specificity were 0.97 and

0.93 respectively [171].

The algorithm developed by Lyden et al. [171] was designed primarily to detect periods

of lying in bed, where rolling onto the side is common. It worked based on classification

of possible sitting or lying (sedentary) periods as lying if rotation of the thigh occurred,

otherwise the whole period was classified as sitting. A pair of thresholds at ±0.9 g on the

device’s Y-axis (which when worn aligns with the transverse axis of the body) were used to

detect lying. Therefore, the algorithm would only classify a sedentary period as lying if the

wearer rolled onto their side during the period where they were sedentary. The approach

proposed by Lyden et al. [171] may not be suitable for research on falls, where a period of

lying may only be short and sufficient rotation of the thigh to cross the thresholds they

derived may not occur. However, their algorithm does provide a strong foundation for

further development.

In light of the recent work on a method to distinguish sitting and lying [171], the placement

of an accelerometer on the thigh appears to provide the most detailed postural information.

The thigh is also relatively close to the centre of mass and so is suitable for estimation of

whole-body motion. Therefore, for research into falls, the thigh is the optimal location for

the placement of a single accelerometer device.

The use of an existing tried and tested device is important to ensure robust and reliable

collection of data, especially for twenty-four seven monitoring. The activPAL3™ device

(PAL Technologies, Glasgow, Scotland) contains a triaxial accelerometer and is designed to

be worn on the midline of the anterior aspect of the thigh. The marketed purpose of the

activPAL device is activity tracking in research, it has been widely used and there are over

2,500 published articles which feature activPAL [172]. In addition to providing activity

data, the raw accelerometer signals can be retrieved from the device for custom analysis.
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The raw data is sampled at twenty hertz with a range of plus or minus two times earth’s

gravity (±19.62 ms−2).

PAL Technologies produce two variants of the activPAL3, the original activPAL3 devices

measure fifty-two by thirty-five by seven millimetres and weigh twenty grams, the later

activPAL3 micro devices provide the same features in a smaller package which measures

forty-three by twenty-three by five millimetres and weighs ten grams. The activPAL device

is capable of up to fourteen days of continuous recording on a single charge, making it

suitable for long-term monitoring. It has been used in many studies of older adults which

between them have included thousands of participants [173,174]. Typically, activPAL

devices have been used for continuous monitoring over seven day periods [173,174], however

continuous use over fourteen days has been reported in the literature [175]. The activPAL3

device is small, lightweight, provides relatively long recording periods and has been used

successfully in many studies with older adults; it therefore met the requirements and was

selected for use in this research.

5.1.2 Study Design

The study aimed to pilot test the use of a thigh-worn activPAL3 accelerometer for the

collection of a dataset on activities of daily living and falls, with a view to research features

capable of reliably distinguishing fall events from the other data. Based on previous

research it was reasonable to assume that a fall detection system might need to be able to

capture data associated with vertical motion, impact, and posture change (Section 3.6.1),

all of which have been used in previous work [e.g. 20,106]. Methods to measure impact

and vertical motion with a body-worn accelerometer have been commonly used in previous

fall detection studies (Section 3.5.2.1); these methods could be used with the activPAL3

device. By contrast, research on the use of a thigh-worn accelerometer to capture posture

before, during and after falls is limited; to the author’s knowledge, no studies have been

published. Therefore, this study aimed to develop and test algorithms for the classification

of posture, using a thigh-worn accelerometer, before and after a fall.

A proprietary algorithm is provided by the manufacturer to allow the activPAL3 device to

classify upright and sedentary (sitting or lying) postures. However, due to being proprietary,

the workings of this algorithm are unknown and it is difficult to integrate into custom

analysis software. There is a need to develop an open algorithm to carry out the upright
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and sedentary classification so that it can be tailored to the needs of this research. Lyden

et al. [171] developed an algorithm to further classify sedentary periods into sitting or

lying, however, further development was needed to ensure post-fall lying periods could be

detected. Thus, as part of this study, triaxial accelerometer signals were recorded during

standing, sitting and lying postures to develop, optimise and test posture classification

techniques. In addition, triaxial accelerometer signals were recorded during simulated

falls to provide test data separate from that used to build the algorithms, so that their

performance in detecting pre and post-fall posture could be validated. The second purpose

was to assess the occurrence of signal clipping during a fall and thus the suitability of the

activPAL3 device’s ±2 g range for recording fall signals.

5.2 Lab Simulations of Postures and Falls

5.2.1 Participant Recruitment

The study protocol was approved by the University of Salford research ethics committee

(reference HSCR14/72, see appendix B). Participants were recruited via emails sent to

university staff and students (see appendix C.1). Written information detailing the study

(see appendix C.2) was given to participants at least twenty-four hours before taking

part in the study. Upon arriving at the laboratory, participants were prompted to ask

any remaining questions they may have, before providing written consent including a

confirmation that none of the exclusion criteria applied to them (see appendix C.3).

Participants were excluded from the study if they were:

• Taking medication that might affect their ability to participate

• Advised to only do physical activity recommended by a doctor

• Receiving treatment from a doctor or other medical professional (e.g. physiotherapist)

• Suffering from any of the following (or similar): diabetes, epilepsy, seizures, osteo-

porosis, arthritis, any cardiovascular or respiratory disorder

• Recently suffered a bone fracture (within the previous twenty-four months)

• Currently suffering from any musculoskeletal injuries

• Previously suffered a concussion or other head injury

• Potentially pregnant or had recently given birth (within three months)

• Currently feeling unwell



CHAPTER 5. PILOT STUDY 91

5.2.2 Protocol

Participants attended the laboratory on a single occasion. Data were collected using

an activPAL3C™ device (PAL Technologies Ltd, Glasgow, Scotland), a small triaxial

accelerometer-based activity monitor. The device was attached directly to the skin on

the midline of the anterior aspect of the right thigh (see Figure 5.1) using a PALsticky

(double-sided hydrogel adhesive pad). The triaxial accelerometer data were downloaded

from the activPAL device and stored for later analysis.

Figure 5.1: Placement of the activPAL3C device on the thigh.

Participants were guided through the protocol using a custom-written JavaScript application

projected onto a screen in the laboratory. The application was developed as a cross-platform

application, which could run in any modern web browser, allowing reliable performance on

multiple devices in the lab with minimal setup. Four main functions were built into the

design: (1) to provide a standard set of instructions to participants, (2) to control the time

spent in and between each activity, (3) to record the start and end time of each activity

and (4) to display a clock used to synchronise video footage with the accelerometer data.

The behaviour of the application was similar to a slide show, but with added capabilities.

A diagrammatic overview of the protocol is shown in Figure 5.2. In brief, participants

performed eighteen on-the-floor postures, nine activities of daily living (Section 5.2.3) and

eighteen simulated falls (Section 5.2.4). Before each activity participants were shown an

instruction slide (details of these are provided in sections Section 5.2.3 and Section 5.2.4).

Participants stood for a minimum of fifteen seconds to read the instructions, this ensured

there was a clear separation between each activity in the accelerometer data. Once

participants were standing in the matted area, the experimenter advanced the slide to the

instructions for the next activity which started a fifteen-second timer; a red square was

displayed below the instructions during the fifteen seconds, after fifteen seconds passed



CHAPTER 5. PILOT STUDY 92

the square turned green. When the participant started the activity, the experimenter

advanced the slide, which triggered the time to be recorded and a fifteen-second on-screen

countdown to begin. When the fifteen seconds ended a beep sounded and participants were

asked to stand up in their own time. As the participant transitioned to a standing posture,

the experimenter advanced the slide to show the next instruction which simultaneously

triggered the time to be recorded and a fifteen-second timer to start.

Read instructions 
while standing

(min 15 seconds)

Perform on-the-
floor posture
(15 seconds)

Posture data collection (repeat for 3 rounds)

Read instructions 
while standing

(min 15 seconds)

Perform the fall 
and then remain 

on floor
(15 seconds)

Rest period

Simulated falls (repeat for 2 rounds)

Repeat for 9 simulated falls

Sitting
(min 15 seconds)

Walk to matted 
area

Repeat for 6 on-the-floor postures

Walk back to chair

Figure 5.2: Overview of the pilot study protocol.

The protocol was filmed using a single tripod-mounted camera using standard definition

(640 × 480 pixels) at thirty frames per second. The video footage was transferred to an

encrypted drive and stored for later analysis. The clock projected as part of the JavaScript

application was in view of the camera throughout the protocol and was used to verify

the start and end time of each activity. The video footage was used for the analysis

of each simulated fall in conjunction with the accelerometer data to provide a greater

understanding of the signals.

The protocol was carried out on a matted area to ensure the safety of participants. The

majority of previous studies have simulated falls onto crash mats [e.g. 102,106,107,115,119].

Crash mats deform upon impact providing a cushioned landing, however, in doing so the

landing posture is altered. Since posture analysis formed a key part of this study a new

approach was developed.

A preliminary trial was conducted to find an alternative type of mat, firm enough not to

dramatically affect posture but with sufficient impact absorption to protect participants.
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Three members of the research team trialled simulated falls onto different types of gym-

nastics and aerobics mats in a variety of layered arrangements. The best combination

was a stack consisting of a thirty-two-millimetre thick gymnastics mat with three fifteen

millimetre thick aerobics mats layered on top. These mats provided a soft landing surface

without dramatically affecting the landing posture. A matted area 2.5 metres wide and

four metres long was constructed in the centre of the laboratory, with a two-metre area

around the mats free from furniture and other equipment.

5.2.3 On-the-floor Postures and ADL

Participants were guided through the set of activities shown in Table 5.1 using the JavaScript

application. The majority of these activities are self-explanatory and no further information

was given beyond the name shown in Table 5.1. For “Lying on Back (Thigh Inverted)”

participants were asked to lie on their back and bring their feet towards them so their knees

were raised off of the ground. For the “On Hands and Knees” posture participants were

asked to position themselves so that their hands, knees and toes were the only points in

contact with the ground, this positioned them so that the thigh was within approximately

forty-five degrees of vertical and the torso was horizontal.

The activities were organised in three identical blocks where each activity was performed

once in each block (each activity shown in Table 5.1 was carried out three times by each

participant). Each block started with the participant sitting on a chair for fifteen seconds,

before walking over to the matted area to carry out the on-the-floor postures. Before

carrying out each on-the-floor posture, participants were shown a simple description of the

posture while standing. Each posture was held for fifteen seconds, after which participants

returned to a standing posture and read the instruction for the next on-the-floor-posture.

At the end of each block, participants walked back to the chair and sat down.

The timestamps which marked the start and end of each activity were exported from the

JavaScript application and stored for later analysis. Timestamps were verified using the

timings extracted from the video footage. Custom written Python3 code was used to load

the activPAL data files and extract sections of the raw triaxial accelerometer data for each

activity. In this way, the middle five seconds of data from the fifteen seconds total recorded

for each activity were extracted and stored in separate data files for later analysis. Each

file was labelled according to the activity performed and the participant ID.
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Table 5.1: The included on-the-floor postures and ADL.

Category Activity

6 × On-the-floor Postures Lying on Left Side

Lying on Right Side

Lying on Front

Lying Flat on Back

Lying on Back (Thigh Inverted)

On Hands and Knees

____________________________________________________________

3 × ADL Stepping

Standing

Sitting

5.2.4 Simulated Falls

Participants were asked to simulate the nine falls shown in Table 5.2 in two nearly identical

blocks (eighteen falls in total per participant), the only difference was the direction of lateral

falls was reversed. The set of falls was based on the video analysis of the circumstances

of falls in older adults conducted by Robinovitch et al. [82]. The most prevalent causes

were found to be loss of balance, trips, stumbles, hits, bumps, loss of support with external

objects and collapses. Hits, bumps and other falls involving external objects are difficult to

safely simulate without increased risk of injury to participants, therefore these were not

included. The most common activities leading to a fall were walking, initiating walking,

standing and changing posture e.g. standing up or standing and reaching. Therefore, these

activities were combined with the causes to produce the set of falls shown in Table 5.2.

To allow clear identification of falls in the accelerometer data, participants were asked to

stand for fifteen seconds between each fall and remain still on the floor for fifteen seconds

after each fall.

For each fall, participants were shown an instruction slide using the JavaScript application,

this consisted of a brief sentence describing the fall and, for all but the collapse type falls,

a stick figure animation (an example stick figure animation is shown in Figure 5.3). Each

stick figure animation was custom developed using TISFAT:Zero animation software [176].
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The primary reason for the use of stick figures was to provide enough information for

participants without enabling them to simply copy as they might if shown a video. The aim

was to increase the variability in the simulations and make the tests of algorithms based

on the data more robust. The two collapse type falls did not use stick figure animations,

instead, participants were given free choice over how they collapsed, for example, the

direction in which they fell. This was a further method used to increase variability in the

data.

Table 5.2: The nine types of simulated fall with direction and landing posture.

Fall Type Direction Expected Landing Posture

Walking Forward LOB Forward Front-Lying

Trip On Initiating Walking Forward Front-Lying

Walking Trip With Rotation Forward Side / Front-Lying

Walking Lateral LOB Lateral Side-Lying

Standing Lateral LOB Lateral Side-Lying

Standing Reaching LOB Lateral Side-Lying

Stumble Backward Trip Backwards Lying on Back

Walking Collapse - -

Standing Collapse - -

Note: No direction or landing posture was specified for either of the collapses, participants were
given a choice in order to add a random element, increase variability and make the test more
robust. LOB = Loss of Balance.

Figure 5.3: Example stick figure animation. Six stills of key frames from the ‘standing
lateral loss of balance’ animation.

Timestamps for each fall and recovery (standing up) were exported from the JavaScript

application and verified using the video footage. These were then used to extract a section

of raw accelerometer data for each simulated fall starting ten seconds before impact and
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lasting thirty-five seconds. Each section of extracted data was labelled according to the

participant ID and the type of fall before being stored for later analysis.

5.3 Posture Classification Algorithm Design

A posture classification algorithm was designed to identify periods of upright (standing

or walking), sitting and lying. The posture classifier was designed as a decision tree (see

Figure 5.4), building upon previous work in the field [177,178]. The first stage of the

algorithm determined whether the posture was upright or sedentary, sedentary postures

were then sub-classified as either sitting or lying. Orientation was used to make the decision

at each node of the decision tree, the orientation of the activPAL3 axes relative to the body

are shown in Figure 5.5. A one-second moving average filter was used to smooth the signal

and isolate the gravitational component of the signals prior to analysis of orientation.

Figure 5.4: Posture classification decision tree.

Figure 5.5: Orientation of activPAL axes relative to the body.

5.3.1 Upright versus Sedentary Classifier

A classifier was designed to distinguish between upright and sedentary postures using the

tilt angle of the thigh as measured using the X-axis (Figure 5.6). When upright, the thigh
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is close to vertical (≃ -1 g) and when sedentary the thigh is close to horizontal (≃ 0 g) or

possibly inverted (> 0 g). Therefore thresholds placed between negative one and zero g can

be used to distinguish between upright and sedentary postures. Dual thresholds were used

to prevent rapid changes in classification when close to the threshold. The zone between

thresholds acts as a buffer, increasing the change in angle required to swap back to the

previous state. The thresholds were optimised based on analysis of the data.

x < u x > s Posture = last 
classified posture

Posture = upright Posture = sedentary

No

       Yes        Yes

No

Figure 5.6: Upright versus sedentary posture classification using dual thresholds. u is the
upright threshold, s is the sedentary threshold and x is the moving average filtered X-axis
acceleration.

5.3.2 Sitting versus Lying Classifier

A classifier has recently been developed to sub-classify sedentary postures into sitting and

lying using thigh-worn triaxial accelerometer data [171]. The classifier was designed to

identify long periods of lying such as time sleeping in bed and is not optimised for detecting

lying post-fall. As such, the classifier used a fairly extreme threshold on the Y-axis for

thigh rotation (±65° with 0° inclination). The threshold of ±65° was calculated using an

inverse sine function on the acceleration data, the true threshold is 0.906 g (sine 65°). The

angle of rotation this equates to will vary depending on the inclination of the thigh in the

X-axis. The angle of rotation required for the acceleration due to gravity in the Y-axis (θ)

to reach 0.906 g can be calculated for any given inclination angle (ϕ) using the following

equation:

θ = sin−1
(

0.906
cos ϕ

)
(5.1)

Using this equation we can calculate that for inclination angles (ϕ) greater than ±25° the

threshold thigh rotation angle is greater than ±90° and therefore it becomes impossible to

cross the threshold.
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In addition to the potential lack of sensitivity of Lydens’s algorithm in detecting side-lying,

it is also important to consider that a faller may not roll onto their side, might fall straight

onto their front or into other non-side lying postures. Therefore, Lyden’s approach was

adapted and extended with the aim of more sensitive and holistic detection of lying. For

the new lying classifier, the thigh rotation threshold was kept and two new thresholds

were added for the detection of lying on the front and postures where the knee is raised

above the hip, respectively. No threshold was devised for lying flat on the back, which is

particularly difficult to distinguish from sitting as the orientation is identical.

The first threshold was on the Z-axis to identify forward lean. When the Z-axis value is

zero this indicates the thigh is not tilted either forwards or backwards when at a value of

negative one g the front of the thigh is facing the ground. Therefore, a threshold between

zero and negative one g enables the detection of forward lean and front-side-lying. The

second threshold was for the identification of negative thigh inclination. When the X-axis

value is between zero and one g this indicates that the thigh is inverted i.e. the knee is

raised above the hip. Therefore, a threshold for the X-axis between zero and one g enables

identification of postures where the knee is raised above the hip such as lying on the back

with the legs bent at the knee. The three thresholds were optimised based on analysis of

the data.

5.4 Optimisation and Evaluation of Posture Classifier

Performance

Leave-one-participant-out cross-validation with the on-the-floor postures and ADL dataset

was used to optimise and evaluate both the upright versus sedentary and the lying classifier.

In each round of the cross-validation, a different participant’s data were set aside for testing,

with the remaining data used to set the thresholds. Through the separation of the dataset

by participant, the independence between the training and testing data was maximised.

The use of cross-validation allowed a more accurate estimation of the trained classifier’s

performance on unseen data compared to a single train-test split, because all the data,

rather than a subset, was used to test the classifier.

All posture thresholds were set at either the minimum value minus ten percent of the

interquartile range or the maximum value plus ten percent, depending on which was
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appropriate for the specific class. To set the thresholds, data from multiple postures were

grouped. The upright group contained stepping, standing and hands & knees, the sedentary

group contained all remaining postures except lying on back with the thigh inverted, where

the X-axis values differed greatly from other sedentary postures. A side-lying group was

created by combining rectified values for left and right side-lying. The forward lean and

thigh inclination thresholds were found using the lying on front and lying on back with the

thigh inverted posture respectively.

For comparison of lying classification results, an implementation of the classifier designed

by Lyden et al. [171] was also tested. There were two changes in this implementation,

compared to that of the original. In the current implementation, the upright and sedentary

classifications were generated using the classifier described above (with thresholds optimised

using the simulated posture dataset) instead of using the activPAL software. The twenty-

second moving average filter was changed to a one-second moving average filter. The

change to the filter was necessary due to the shorter periods spent in each posture during

the lab-based data collection compared to free-living behaviour. This was expected to

have minimal effect on the results as participants were instructed to remain still for fifteen

seconds in each posture, reducing the need for filtering.

5.5 Evaluation of Pre and Post Fall Posture Detection

The ability to detect an upright posture pre-fall and a lying posture post-fall was evaluated

using the simulated falls data; all falls in this dataset were from an upright to a lying

posture. The pre-fall period was taken as the period between three and two seconds prior

to the start of the fall and the post-fall period was taken as the period between two and

three seconds after the fall. The fall event was taken as half a second before until half a

second after the recorded fall time. These timings ensured participants were at rest during

the periods used for posture classification.

First, the ability of the newly developed upright versus sedentary classifier to detect an

upright posture pre-fall and a sedentary posture post-fall was tested. Second, three different

sitting versus lying classifiers were tested to assess their capability to detect the lying

period following each of the simulated falls. The first algorithm tested was the new classifier

developed using the on-the-floor posture and ADL (New), the second was the algorithm

developed by Lyden et al. [171] (Lyden), and the third was the newly developed classifier
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but using the thigh rotation thresholds from Lyden et al. [171] (Hybrid). To allow the

results to be compared for each type of lying, the recorded video footage was used to label

each fall signal with the post-fall posture. Post-fall posture was categorised based on the

side of the body on which the participant was lying; the categories were: front, right, left,

back or between two of these e.g. back-right.

5.6 Evaluation of Signal Clipping

To assess the suitability of the activPAL3’s ±2 g range, the collected fall signals were

analysed for clipping within 2.5 seconds of the recorded fall time. Clipping of the signals

was defined as a true acceleration value outside the range which the device can record.

Clipping was characterised as either a clear clipped peak (flat top) where consecutive

samples were equal to ±2 g or a potentially clipped peak where a single sample had a

recorded value of ±2 g.

5.7 Results

5.7.1 Participants

Eight healthy volunteers (five female, three male) completed the study. Participants’ age

ranged from twenty-two to thirty-seven years (mean 27.8 ± SD 4.6 years), height from 1.60

to 1.83 m (1.71 ± 0.07 m) and body mass fifty-six to eighty-three kg (66.5 ± 10.3 kg).

5.7.2 Posture Classification

5.7.2.1 Classifier Optimisation and Evaluation on the Posture Dataset

Examination of the video footage revealed that in one trial of lying on the back with thigh

inverted, the leg to which the activPAL was attached remained straight, this trial was

relabelled as lying flat on the back. Therefore, the on-the-floor postures dataset contained

twenty-five examples of lying flat on the back, twenty-three examples of lying on the back

with thigh inverted and twenty-four examples of the other postures.
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Across the eight rounds of cross validation on the on-the-floor postures and ADL dataset

the mean (± SD) threshold to become upright was -0.812 g (± 0.014) and to become

sedentary was -0.516 g (± 0.006). The mean thigh rotation, forward lean and thigh

inclination thresholds were 0.509 g (±0.090), -0.808 g (± 0.063) and 0.544 g (± 0.01)

respectively. Figure 5.7 shows a confusion matrix for the posture classification performance.

The classifier was able to distinguish upright from sedentary with a sensitivity of one and

specificity of one. Lying was distinguished from non-lying with a sensitivity of 0.742 and

a specificity of one. When the implementation of Lyden’s lying classifier was run on the

on-the-floor postures and ADL dataset, the results were a sensitivity of 0.242 and specificity

of one.
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Figure 5.7: Posture detection confusion matrix.

The spread of the data for each posture and thresholds derived from the complete dataset

are shown in Figure 5.8; it is these thresholds which were used in the evaluation of the

algorithm on the simulated fall dataset. The plot also highlights the difficulty distinguishing

standing from hands & knees, and sitting from lying flat on the back, based on thigh

orientation.

5.7.2.2 Classifier Evaluation on the Simulated Fall Dataset

The developed upright versus sedentary posture classifier correctly classified the pre-fall

posture as upright and the post-fall posture as sedentary for all of the simulated falls. The

results of the evaluation of the ability to detect lying post-fall are shown in Table 5.3. The

newly developed classifier performed the best, correctly detecting lying post-fall for 130 out

of the 144 falls. The classifier developed by Lyden et al. [171] only detected lying for fifty-six
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Figure 5.8: Boxplots showing A) the spread of X-axis values for upright versus sedentary
and B) all three axes for standing, hands & knees, sitting and different types of lying.
Thresholds are marked using dashed orange lines.

of the falls, all of which were side-lying. The hybrid classifier was able to additionally

detect lying for the forty-two front-lying post-fall postures and three of the seventeen back

lying post-fall postures (101 of the 144 total). For the three back lying postures detected by

both the new and hybrid classifiers, the knee was raised which triggered the thigh inversion

threshold, none of the cases where the thigh was flat on the ground were classified as lying.

Table 5.3: Number of simulated falls where lying was correctly detected post-fall for the
three lying classifiers.

Post-Fall Lying Catagory n Falls New Lyden Hybrid

Back 17 3 0 3

Back-Right 2 2 0 0

Back-Left 1 1 0 0

Right 38 38 36 36

Left 36 36 20 20

Front-Right 6 6 0 0

Front-Left 2 2 0 0

Front 42 42 0 42
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5.7.3 Signal Clipping

In forty-one out of the 144 fall signals there were clear clipped peaks, in a further 100 of the

signals there were peaks of ±2 g, suggesting potential clipping of the signal. In all instances

of clipping the length of the clipped signal was less than 0.1 seconds consecutively.

5.8 Discussion

The primary aim of the study was to evaluate the suitability of the activPAL3 device

for research on fall detection. Previous work on fall detection has centred on three key

areas: vertical motion, impact and posture change. Methods to measure vertical motion

and impact with a triaxial accelerometer have been developed previously [e.g. 99,106], and

these can be applied to activPAL data. Therefore, this study focused on the classification

of pre and post-fall posture using a thigh-worn activPAL3 accelerometer.

5.8.1 Posture Classification

A posture classification algorithm was developed which showed a good level of performance

in comparison to the previous state of the art. The algorithm was designed as a decision

tree and consisted of two sub-classifiers, one for upright versus sedentary and one to further

classify sedentary periods as either sitting or lying. The algorithm was able to distinguish

all recorded examples of sedentary postures from upright postures, except for the hands

and knees posture where the thigh was upright. When one is kneeling with the thigh in a

vertical alignment, orientation cannot be used to distinguish this posture from other true

upright postures (standing and walking). The only potential method to classify on the

hands and knees separately from other upright postures would be to identify and analyse

the transition. Analysis of posture transitions was beyond the scope of this study as a

controlled transition from standing to on hands and knees is likely to be different from a

fall onto one’s hands and knees.

The algorithm developed by Lyden et al. [171] to detect lying in bed, showed poor

performance in distinguishing short periods of sitting from lying with a sensitivity of just

0.242 on the collected dataset. Further analysis revealed that Lyden’s algorithm could not

correctly classify as lying any of the example signals for lying on the front, lying on the
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back or lying with an inverted thigh. Through adjustment to the thigh rotation threshold

and the addition of thresholds for forward lean and thigh inversion, the sensitivity of lying

classification was increased to 0.742.

The thigh rotation threshold derived from the data collected during this study appears to

lead to an under-sensitive classifier as twenty-six percent of lying was detected as sitting.

However, this was due to an inability to distinguish lying flat on the back and sitting, the

classifier was sensitive to other lying postures. Given that there is overlap between lying and

sitting, in terms of thigh orientation, perfect classification is not achievable. The method

used to set the thresholds was designed to ensure high sensitivity of lying classification, and

the sensitivity was increased compared to the algorithm by Lyden et al. [171]. However,

the distinction between sitting and lying flat on the back remains a challenge, as shown in

Figure 5.8 the orientation of the thigh is identical in these two postures. If the thresholds

were to be adjusted to increase the sensitivity to lying, then some sitting would be detected

as lying.

When the lying classifiers were tested on the simulated fall data, the results were similar

to the cross-validated results with the on-the-floor posture data. The newly developed

classifier was able to detect all forms of lying except flat on the back, the classifier by

Lyden et al. [171] could only detect three-quarters of the lying on the side and none of the

other lying subtypes. The thresholds developed by Lyden et al. [171] resulted in a different

sensitivity for left and right-side-lying, where the sensitivity to lying on the right side (the

thigh on which the activPAL device was attached) was greater than for lying on the left

side. This was likely due to the incline of the thigh furthest from the floor; when the knee

rests on the floor the upper thigh is at an incline which increases the rotation required to

trigger the threshold on the Y-axis (see Figure 5.9). Where the incline of the thigh with

respect to the floor is greater than twenty-five degrees (0.42 g) it is not possible for the

acceleration due to gravity to exceed the threshold on the Y-axis of 0.906 g.

The new, more sensitive, thigh rotation thresholds devised based on the on-the-floor

posture data allowed all side-lying to be classified and in the limited testing did not lead to

misclassification of sitting as lying. However, in this study all participants sat on the same

chair with their feet on the floor, therefore only a subset of the possible sitting postures

were tested. In the real-world misclassification of sitting as lying is likely as the threshold

of ±0.51 g, which equates to thirty degrees thigh rotation when the thigh is parallel to

the ground, could feasibly be exceeded when sitting. In addition, in the real-world the
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Figure 5.9: Lying on the left side post-fall. The incline of the thigh with respect to the
floor results in a lower acceleration due to gravity on the activPAL’s Y-axis compared to if
the thigh had been parallel to the floor. Despite the participant being fully rotated onto
their left side, the acceleration due to gravity on the activPAL’s Y-axis is less than the
threshold devised by Lyden et al. [171] (Y > 0.906) and so lying was not detected when
their threshold was used.

device may be less precisely aligned with the midline of the anterior aspect of the thigh,

effectively reducing the thigh rotation required to cross the threshold. Over a period of a

few days wear, the attachment of the activPAL device to the thigh may loosen slightly and

allow the device to slip; due to the curvature of the thigh, a small shift in placement could

have a significant effect on the accuracy of sitting versus lying classification.

The algorithm developed by Lyden et al. [171] worked for long periods of lying because if

the thigh rotation threshold was crossed at any point during a sedentary period, the whole

period was classified as lying. This allowed a relatively extreme threshold to be used to

maximise specificity without substantially limiting the sensitivity. However, their algorithm

did not achieve perfect classification of “in bed” lying periods, the sensitivity was 0.97 and

the specificity was 0.93. To detect short periods of lying, the approach proposed by Lyden

et al. [171] cannot be used as the wearer of the device may not roll fully onto their side.

Instead, the thresholds must be adjusted to reduce the amount of rotation required to be

detected as lying, however, doing so would reduce the specificity.

The results showed that the only type of lying that simple thresholds can be used to

robustly detect is lying on the front. Lying flat on the back could not be distinguished from

sitting as the thigh orientation is the same. Lying on the side could only be consistently

detected with the use of a thigh rotation threshold of 0.52 g, which is likely to lead to

misclassification of sitting as lying; when the rotation threshold was increased, side-lying

was misclassified as sitting. Hence, it does not appear possible to robustly distinguish

between short periods of sitting and lying based on simple thresholds for the orientation

of the thigh. Since fall detection, rather than lying detection, is the focus of this thesis,
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further development of lying detection will not be conducted and lying classification will

not be used in the study which follows.

There is a clear trade-off, in terms of posture classification, between placement on the thigh

and the torso. The torso has been the more popular choice for fall detection [8], in part due

to its proximity to the centre of mass and partly as a torso-worn accelerometer can be used

to robustly detect lying postures. The detection of a change in torso orientation, indicating

a transition from upright to lying, has been used to reduce false positives [e.g. 102,106].

However, since it is possible to fall into a sitting posture, this approach may also lead to

missed falls. Conversely, a thigh worn device can robustly detect sedentary postures, but

not robustly distinguish between sitting or lying.

The ability to detect lying may be a useful feature for fall detection, but the findings of

this study indicate that lying post-fall cannot yet be detected reliably enough for use in

fall detection with a thigh-worn device. The upright versus sedentary posture classifier had

a sensitivity and specificity of one in detecting an upright posture pre-fall and a sedentary

posture post-fall. Therefore, transitions from an upright to a sedentary posture can be

detected reliably with a thigh-worn accelerometer and could be used as part of a fall

detection classifier.

The resting posture following a fall could be either sitting or lying, but will certainly be

some form of sedentary posture. Analysis of video recordings of falls suggests that eighty

percent of falls occur from an upright posture and that in forty percent the faller comes

to rest in a sitting position [81,82]. Therefore, a classifier that only detects a fall when

lying is identified would miss a significant proportion of falls. These findings indicate that

the ability to distinguish upright and sedentary postures is of greater importance than the

sub-classification of the sedentary class. Since the distinction of upright and sedentary

postures is a strength of a thigh-worn device, these may be more suitable for detecting

fall-related posture changes than a torso-worn device.

5.8.2 Suitability of the activPAL3 Device

The activPAL3 device was able to record acceleration signals during the simulated falls

without any reported discomfort from participants. The method of attachment of the

device to the thigh using PALstickies allowed the device to be removed easily due to the

relatively low adhesion to the skin. The ability to remove the device easily is desirable
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when used with older adults who may have fragile skin with an increased risk of damage

when the device is removed. However, the device became loose from one participant’s leg

during data collection, therefore PALstickies may not be suitable for long-term monitoring

as there is a risk of the device falling off, causing inconvenience and potentially a loss of

data. Alternative methods of attaching the monitor to the thigh need to be considered

before the start of real-world data collection.

The majority of recorded signals from simulated falls showed potential clipping of the

signal. Clipping of the signal prevents analysis of the magnitude of the impact peak due to

the true acceleration values not being recorded. Therefore, a range of greater than ±2 g

is needed for comprehensive analysis of the impact peak. For future research, it must be

considered whether a different device is more suitable for the study of falls or whether the

advantages of the activPAL3 outweigh its limitations.

The occurrence of clipping in real-falls remains unknown but may be less common due to the

faller trying to save themselves from falling and minimise injury rather than deliberately

falling, as in the simulations. Natural reactions to falling combined with a furnished

environment may potentially result in multiple smaller impacts or slower, lower impact

falls as a result of grabbing onto furniture. However, analysis of real falls is needed to

establish if this is the case.

The activPAL3 device was initially selected due to its small size, good battery life and

because it had a proven track record in monitoring movement of older adults. While the

limited sensor range may place constraints on the analysis of recorded fall signals, on

balance it remained the preferred device. The advantages of the activPAL3 as outlined

above should facilitate monitoring over extended periods and the collection of enough

data for research into the characteristics which make falls unique. At the time of data

collection (2015) there was no known device which fulfilled all criteria; one with a greater

sensor range but reduced battery life or larger size, may impact participant comfort and

result in reduced participation, higher withdrawal and ultimately fewer data. Technology

continually evolves and therefore, the most suitable device continually changes. Future

studies should carefully consider which device to use.
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5.9 Conclusion

In this study, a significant step forward has been made in the classification of lying postures

using a thigh worn accelerometer. Through analysis of thigh orientation during a series of

on-the-floor postures, understanding has been gained of the likely position of the thigh

following a fall. While the sensitivity of lying detection was improved compared to the

algorithm developed by Lyden et al. [171], in real-world use this is likely to be at the

cost of specificity. The detection of short periods lying appears to be more challenging

than expected based on the simplicity of Lyden’s algorithm and their positive results for

identifying lying in bed. There are clear challenges in detecting short periods of lying, such

as those which may occur post-fall, and further research is needed in this area before the

detection of lying with a thigh-worn accelerometer can be used in fall detection. However,

the algorithm developed to classify posture as upright or sedentary was shown to be robust

and could be used in fall detection.

Despite the limitations of the activPAL3’s ±2 g range, on balance, the device is suitable

for the recording and study of real fall signals due to its track record in continuously

monitoring the movement of older adults. To record falls a large volume of real-world

monitoring is required, for this to be possible the device used needs to be comfortable to

wear and have good battery life. The activPAL device has been shown through its use in

twenty-four seven monitoring of older adults in previous studies to meet these requirements.

The limitations of the activPAL3 were deemed not to outweigh its benefits.



Chapter 6

Collection of Real-World Fall

Data

6.1 Introduction

Real-world data is critical for fall detection research as laboratory simulations of falls have

been shown not to be representative of the real-world (Section 3.4). Real-world data is,

therefore, essential to identify new ways to detect falls and only tests of fall detection

technology using real-world data can give realistic estimations of performance. However,

there has been a lack of research in the field of fall detection which has used real, naturally

occurring falls (Chapter 4). The studies which have been conducted have typically used an

extremely small number of falls. The review of methods to test fall detection technology

with real-world data found that only twenty-two studies had been conducted (Chapter 4).

In addition, the number of falls included was small with seventy-five percent of studies

using less than thirty fall samples.

Where real-world data has been used, the focus has been on tests of fall detection technology

and performance has been poor (Section 3.6). There is a need for research to identify new

methods to distinguish between falls and other movements so that an acceptable level of

performance can be achieved (Section 3.7). However, only one study has been conducted

which has compared features of real fall signals to those of other movements [114], and

109
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this study did not find any features which could yield performance beyond the current

state-of-the-art. There is a need to carry out further research to compare fall signals to other

movements so that the reasons why previous fall detection technology has not performed

at an acceptable level can be understood and new methods to improve performance can

be identified. To do this requires a real-world dataset and so a project was carried out to

collect a real-world dataset of falls and activities of daily living comparable in size to the

largest used in previous studies.

To record a sizeable real-world dataset, it was critical to partner with an organisation

who worked with fall-risk older adults and who were willing to assist with recruitment.

To this end, a collaborative partnership was established with Four Seasons Health Care

(FSHC), an independent health care provider which runs over 250 care homes across the

UK and provides care for over 13,000 people. Participants in this study were recruited

from, and all data were collected in, FSHC’s care homes situated across the north of

England and Scotland. The project was designed by the University of Salford researchers,

however, participant recruitment and data collection were managed, under the guidance of

researchers, by each participating care home.

The project aimed to recruit 250 participants for two months of data collection and record

100 fall signals. A total of 100 recorded fall signals would be in line with the largest datasets

used in previous studies [21,114,122] and would allow an extensive set of features to be

tested, without excessive risk of type I errors. The two month monitoring period was chosen

to maximise the chance of recording 100 falls while still keeping the participant recruitment

target feasible. Assuming a similar fall rate to previous studies of approximately 100 days

per fall [19–21], the combination of 250 participants and a two-month monitoring period

would be sufficient to yield 150 falls. Therefore, there was allowance for a slightly lower

rate of falls than predicted, participants withdrawing before the end of the two months or

lower than expected participant recruitment.

6.1.1 Study Design

The study was designed as an observational study in order to maximise ecological validity.

Two months of accelerometer data were collected for each participant using a wearable

device attached to the thigh of participants. Participants were free to follow their usual

daily routines, no activities were prescribed as part of the study. Fall signals were recorded
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as and when participants naturally fell and were wearing the device, records of when falls

occurred were retrieved from the existing incident reporting system used by the homes. The

only change to the daily routines of participants and their care staff was the attachment

and replacement of the accelerometer device which was routinely replaced weekly and

temporarily removed for bathing.

6.2 Collection of Real-World Fall Signals

The study was approved by both the University of Salford’s College of Health and Social

Care Research Ethics panel (reference HSCR 15-109) and the UK Social Care Research

Ethics Committee (reference 17/IEC08/0019) (see Appendix D). To ensure that the care

home residents’ confidential records were protected, data shared with the university were

limited to only that which was deemed essential. The data shared consisted of identification

numbers for participants, fall records for participants during their participation and dates

and reasons for withdrawal where appropriate. All data were anonymised prior to the

university gaining access, each participant was known only by their identification number

and no personal information such as name, date of birth or gender were shared. The

sections which follow provide details of participant recruitment and the protocol for data

collection.

6.2.1 Selection of Participating Care Homes and Identification

of Potential Participants

Selection of homes to take part in the study was primarily the responsibility of FSHC,

however, the criteria for selection were agreed following discussions with the University of

Salford. Care homes from the North West of England, North East of England and Scotland

were considered for participation. The criteria for the selection of homes were designed

to maximise the potential number of participants and the likelihood of capturing falls

given the available resources. Only a handful of homes could participate simultaneously as

each added a significant workload to the management of the study. Staff at each home

needed to be trained and each home needed to be contacted regularly during the study

to ensure any issues were raised and dealt with promptly. Therefore, the homes which

had high numbers of recent fallers were prioritised. To minimise the chance of unreported
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or inaccurately reported falls, only homes which FSHC identified as consistently good at

completing incident reports for falls were included.

A number of tools to assess fall risk have been presented in the literature (Section 2.3.2).

It would be impractical to screen all residents with any of these tools, therefore existing

data from the FSHC system was used to identify residents with elevated fall risk. Research

has shown that a history of falls is the strongest predictor of future falls [62,63,179], thus

recent fall history was used as a method to identify potential participants. Based on the

two-month duration of data collection, the cut-off for inclusion was set at two falls within

the previous three months. If falls occurred at that rate or higher during data collection,

then one would expect participants to fall at least once during the study on average.

The FSHC incident database was queried by their data manager for recent recurrent

fallers. A shortlist of homes to approach was agreed following discussion between the data

manager, the regional management and the University of Salford researchers. The regional

management provided guidance on the suitability of homes to take part in the study and

had the final say on which were included.

The care homes were first introduced to the project by the regional management and

FSHC’s head of care projects. Next, the study was explained to the home manager during

a conference call with both a University of Salford researcher and FSHC’s head of care

projects. Ahead of the call, the home manager was sent the document pack which contained

the information documents and forms needed during the recruitment (Table 6.1). During

the conference call, the background to the study and what it involved were explained

to the home manager and training was provided on the recruitment process. Once the

home manager had received training on participant recruitment, they were sent the list of

identified recent recurrent fallers and began the recruitment process. The home managers

were responsible for disseminating information about the project and providing training

on the recruitment process for their staff. Home managers were given contact details of

both researchers at the University of Salford and those within FSHC who could answer

any queries.

6.2.2 Participant Recruitment

Recruitment of participants was managed by the participating care homes, under the

guidance of researchers from the University of Salford. Before recruitment could begin,
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the home managers, with the support of their staff, decided which of the identified recent

recurrent fallers were suitable to participate. The decision of suitability to participate was

based on the exclusion criteria and their knowledge of the individual’s health status. The

primary reasons for exclusion were: (1) existing skin conditions (e.g. psoriasis or eczema)

which could be affected by the dressing used to secure the accelerometer device and (2) the

inability to walk (dependant on a wheelchair). Those who could not walk were excluded as

the focus of the research was falls from upright rather than sedentary postures.

Pathways and supporting documents for the recruitment of participants were developed in

collaboration with FSHC. Central to the recruitment process were the issues surrounding

participants’ mental capacity to provide informed consent. The recruitment process used

during this study was aligned to FSHC’s existing policies on the assessment of mental

capacity and decisions on behalf of those without capacity. In accordance with the Mental

Capacity Act, 2005 potential participants were presumed to have capacity unless it could

be proven otherwise. Before a decision was made potential participants were given all

appropriate help to understand what was asked of them.

There were two pathways: pathway A was used where potential participants had the mental

capacity to understand the study and provide consent; pathway B was used where care

home staff had reason to doubt mental capacity. In the first stage of recruitment care

staff discussed the study with potential participants and made an assessment as to which

recruitment pathway to follow based on the potential participant’s ability to understand

the study. If during the recruitment process staff deemed that a potential participant

should be on the other pathway, they were free to swap pathways. Figure 6.1 shows the

process followed in the recruitment of participants, which includes both paths. An overview

of the supporting documents is presented in Table 6.1 and copies of the documents can be

found in Appendix E.

6.2.2.1 Pathway A

Following a discussion about the project with a potential participant, if staff had no

reason to doubt a potential participant’s capacity, written information about the study

was provided (Appendix E.2). Potential participants were given at least one day before

being asked to decide whether to participate. If they wanted to participate in the study

care staff provided an informed consent form for completion (Appendix E.6).
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Resident Recruitment
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 02a - resident information 
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complete:
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Figure 6.1: Overview of the recruitment process for care home residents.
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Table 6.1: Documents used during recruitment of participants.

Document Description

Project Information Overview of the project and content of the document

pack. Explained each step in the recruitment process.

Staff / Participant /

Consultee Information

Explanation of the study and what participation

involved, how the data will be used, procedures for

withdrawal and complaints. The three versions differed

on the cover letter and the wording used to refer to

participants, all information on the main document was

identical.

Assessment of Capacity Form used to record assessments of mental capacity

concerning understanding the study and making a

decision on whether to participate.

Determination of Best

Interests

Form used to record the process of reaching a decision

as to whether participation was in the interests of an

individual.

Participant Consent Form Form used to record participant consent to take part.

Consultee Declaration Form Form used to record consultee consent on behalf of a

person who lacked the capacity to make the decision.

Training on Mental Capacity

Video

A video which explained why capacity assessments were

needed, when they should be carried out and the

procedure for carrying out the assessments.

Note: These documents were developed for this project in collaboration with FSHC. Copies of
these documents can be found in Appendix E.

6.2.2.2 Pathway B

Where staff had reason to doubt a potential participant’s capacity a consultee was identified

and staff discussed the study with them and provided them with an information document.

The consultee could be one or more of the following: anyone previously named by the

potential participant, known carers, close friends and relatives, or the legal power of attorney.

If following discussion with the potential participant and their consultee, there was interest

in participating, a formal assessment of capacity was carried out and documented (Appendix



CHAPTER 6. COLLECTION OF REAL-WORLD FALL DATA 116

E.4). If the assessment of mental capacity showed the potential participant had the capacity

to provide informed consent, they were transferred to pathway A. If a potential participant

was deemed not to have capacity an assessment was carried out to determine if participation

was in their best interests (Appendix E.5). The decision of whether participation was in a

potential participant’s best interests was based on several factors including: (1) whether

they, or someone similar to them in future, would benefit from the research, (2) the views

of appropriate persons following consultation. Where participation was deemed to be in

the potential participant’s best interests, their consultee then provided informed assent

(Appendix E.7).

The forms to record assessments of capacity and determination of the best interest of

potential participants were adapted from those routinely used by FSHC. The staff who

conducted these assessments were trained to do so by FSHC and were familiar with the

process, having previously carried out these assessments for other purposes. To provide

additional support, FSHC produced a video which explained the process and why it was

needed for the study (the video is available at youtube.com/watch?v=2BV6KjofPhg).

6.2.3 Protocol

Participants’ movements were recorded using a wearable accelerometer for a total of two

months in blocks of seven to ten days. The length of recording was dictated by the battery

life of the monitoring device and the breaks between recordings were due to the retrieval of

devices from the care homes and the delivery of replacements. Staff were asked to record

the date and time whenever the device was attached or removed using a form provided

(Appendix E.9). Before data collection began within each home a researcher from the

University of Salford visited the care home to train staff. During training, staff were shown

how to attach the device to the thigh and how the device needed to be positioned. The

training also covered the recording of when the device was attached and removed, safeguards

for those with cognitive impairment, the withdrawal procedure and the importance of

accurately recording falls.

6.2.3.1 The Monitoring Device

As in the previous study (Chapter 5), participants’ movement was recorded using an

accelerometer attached to the thigh. The device used in this study was the activPAL3

https://www.youtube.com/watch?v=2BV6KjofPhg
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Micro™, a smaller and lighter, but otherwise functionally identical, version of the activ-

PAL3C™ used in the pilot study (Chapter 5). The smaller device was selected to maximise

participant comfort; due to the lighter weight (approximately 10g), the micro model is

less noticeable during daily activities. To provide water resistance and increase hygiene, a

disposable nitrile cover was used, Tegaderm™ medical dressing was then used to attach

the device to the thigh of participants. Figure 6.2 shows how the activPAL3 was attached

to the thigh of the participants.

The Tegaderm dressing provided additional waterproofing and in combination with the

nitrile cover allowed participants to shower without removing the device, however, the

device needed to be removed if the thigh was to be submerged. Care staff were asked to

check the dressing every two days and replace it if coming loose, otherwise the dressing

was changed after five days. To minimise the risk of irritation caused by prolonged wearing

of the device, every five days the device was moved to the opposite leg.

Figure 6.2: The attachment of activPAL3 Micro accelerometer to the thigh using Tegaderm
dressing. The device was covered with a nitrile sleeve and attached on the midline anterior
aspect of the upper thigh. The participant ID and indicators of the correct orientation
were written on the front of the nitrile sleeve. The instructions given to care staff on how
to attach the device can be found in Appendix E.8

The devices were sent to care homes using a next day delivery postal service along with a

supply of Tegaderm and a pre-addressed return envelope. A device for each participant in

the home was programmed with their ID number, a recording start time and recording

duration. Prior to dispatch, the nitrile sleeve was placed over the device and sealed with

surgical tape, the participant ID number was then written on the front. Devices were

typically set to start recording the day after dispatch at five o’clock in the afternoon as they

should have been received by midday. After the devices had finished recording the homes

were asked to return them; only once the devices had been received were replacements
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sent. This delay in sending replacement devices gave participants at least forty-eight hours

break between recordings and ensured data could be inspected for issues before further

data were collected.

6.2.3.2 Fall Reporting

Falls were recorded using FSHC’s existing incident reporting system as was standard

practice in the homes. Periodically throughout the study, FSHC’s data manager queried

the system for records of participants’ falls which had occurred during the study. All fall

records were anonymised before being sent to the University of Salford, with participants

only identifiable by ID number. The fall reports contained the following information:

• Incident date and time

• The room in which the fall occurred (e.g. bedroom or corridor)

• The subcategory (one of: fall from standing, fall from a chair, fall out of bed, found

on the floor)

• The level of harm caused (one of: no harm, minor, moderate, major)

• Injury code (one of: none, cut, abrasion, bruise, shock)

• The body part injured

• Description of the fall

6.2.3.3 Safeguards for those with Cognitive Impairment

Care staff were asked to closely monitor participants who had cognitive impairment and

ensure any signs of discomfort or rejection of the device were recorded using the provided

form (Appendix E.10). Signs of discomfort could, for example, include: removing the

device, fiddling with the device, reluctance for the device to be attached to their thigh,

any expression of discomfort when the device was removed. Signs of discomfort could

be highly individual, so care staff were asked to use their professional judgement rather

than follow prescribed criteria. The home managers were responsible for following up with

care staff and liaising with researchers to identify appropriate action. Participants could

be withdrawn by the home manager if they believed participation was having a negative

impact on well-being.
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6.3 Data Management and Processing

To handle the relatively large and complex set of data generated during the study, data

were managed and processed using custom software developed using Python3 combined

with additional open-source packages. The sections which follow describe how the data

were managed and processed and how custom software facilitated this.

6.3.1 Data Management

The activPAL recordings were stored on an encrypted drive along with an SQLite3 database

which contained the metadata, Table 6.2 provides a description of the tables contained

in the database. Using relationships between tables all recordings and falls were linked

to participants which in turn were linked to locations. Data were added to, and retrieved

from, the database using custom software written using Python3 with the SQLAlchemy

package.

Table 6.2: Tables contained in the database.

Table Description

Locations The name and contact details of each care home.

Participants The participant information (e.g. location ID, start and

end dates of participation, reason for withdrawal).

Recordings Contained metadata (e.g. start date-time, stop

date-time, participant ID) for the activPAL device

recordings and the file location.

Falls Contained the details of the falls retrieved from the fall

reports.

Location and participant information were read from tabular data provided by FSHC and,

following a check by a researcher, added to the database using a custom software module.

Accelerometer recording metadata were ingested by scanning the files and extracting data

from their header, the SHA1 hash (a fixed-length identifier) was calculated from the

contents of each recording and used as the recording ID. A check that the file had not

already been ingested was performed by comparing the SHA1 hash of the data with those
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already in the database. Each recording’s header contained the participant ID as this

was entered when the device was programmed, therefore each recording was automatically

linked to a participant record in the database at the point of ingestion. The fall reports

were exported in tabular form from the care home’s data management system by their

data manager (see Table 6.3 for an example). A software module was written to read the

received data and populate the database.

Table 6.3: Example fall report.

Participant ID 12

Setting DINGRM (Dining Room)

Fall Subcategory Fall from Standing

Level Incident without harm

Incident Date 18/11/2016

Incident Time 2200

Injury Code NULL

Body Part Code NULL

Description Resident got up from the chair they were sitting in, lost their

balance and fell.

6.3.2 Fall Signal Identification

To allow recorded accelerometer data to be used to assess fall detection performance, the

falls within it needed to be identified accurately. The only information available to do

this was the incident reports retrieved from the care homes’ incident reporting system,

however, these reported fall times might not be accurate. There are several reasons for a

discrepancy between the reported times and the timestamp of the accelerometer data for

the fall, these include:

• Delay in completing the incident report, due to prioritisation of resident care, leading

to recall error and approximation in the reported time

• Unwitnessed falls where reported time was reliant on the faller’s recall, which could

be inaccurate due to cognitive impairment, and therefore the time could only be

estimated

• Synchronisation of the activPAL device clock and the reporter’s clock
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To ensure that the data labelled as a fall signal was a recording of a fall, it was important

to verify the reported fall times. The only method that could be used to do this was a

visual inspection of the raw accelerometer signals, as no other data were available. To

carry out such analysis it was necessary to know what a real-fall signal recorded using

an accelerometer looked like. However, very little analysis of accelerometer signals from

real-falls had been carried out previously. The literature provided no clear method to

carry out this analysis as previous studies had not clearly described their processes and no

consensus had been established on the best approach (see Section 4.3.4).

The approach used in the current study was based on that used in the FARSEEING

project [170]. The FARSEEING project’s method was identified as the most suitable

approach on the grounds that the consortium which devised it included many of the leading

researchers in the field. However, details of the FARSEEING project’s approach were not

published until October 2016, by which point the current project had been running for

ten months. The degree to which the FARSEEING fall signal processing method could be

followed was therefore limited and alterations were made to account for the resources and

data available. The method described below is the same as that used in the FARSEEING

project, except where explicitly stated.

Two experts independently examined the sensor signals and the fall reports to identify each

fall signal. The fall time was identified as the point of impact, which presented as a rapid

increase and decrease in the resultant acceleration. Where no impact signal was observed,

the point at which posture changed was taken as the fall time. In recognition that one

cannot be certain of the location of the falls, each researcher also recorded their confidence,

on a ten-point scale, that the identified signal was the fall described in the report.

The FARSEEING project used a four-point scale, based on whether the reported pre-fall

activity and post-fall orientation matched the signal and how close the identified time

was to the reported time. The FARSEEING project included information gathered from

interviews with the fallers which allowed any information missing in the original report

to be collected. Such interviews were not possible during the current collection, due to

the resources available. As a result, the level of detail varied and often the activity at the

time of the fall and post-fall orientation were not recorded, especially for unwitnessed falls.

Hence, in the current project, a subjective scale was used on account of the varying level

of information available.
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In the FARSEEING project, where the two experts disagreed on the fall signal, a panel of

experts examined and discussed the signals and tried to reach a consensus. In the current

study, only two researchers had the expertise to identify the fall signal. Therefore, in cases

where there was disagreement, they met to discuss the fall signal and attempted to reach a

consensus, in place of the panel meeting. In the absence of a consensus the fall was marked

as unverified. Where the researchers independently identified the same signal as the fall,

the confidence in the identified signal was reassessed in the consensus meeting.

To guide researchers through the fall identification process and to provide access to the

information required at each stage, custom software was developed. The software was

designed to provide an interface between the user and the data, to prevent accidental

changes and hide all but the required information needed for the current task. The

information presented to researchers by the software is summarised in Table 6.4. Data

were fetched directly from the SQLite database described in section Section 6.3.1 and all

results were written back to the database by the software. Further information on the fall

signal identification software can be found in Appendix F.

Table 6.4: Information presented to researchers during fall time verification.

From Fall Report From Accelerometer

Time X, Y, Z-Axis Signals

Description Resultant Acceleration

Injuries

Location

Each researcher was assigned an ID which they entered each time the software was loaded,

all results were linked to this ID so that work was traceable. The ID also allowed the

software to query the database for falls which the current user had not yet verified and

which had not been verified by two researchers. The software randomly selected one of

the returned fall IDs and fetched the raw signal data and information from the fall report.

Aided by the software, researchers followed the process shown in Figure 6.3.

During the first phases where researchers worked individually, the software hid all existing

results from researchers. During phase two where researchers met to resolve any disagree-

ment, the software showed the previous results to facilitate the discussion. However, to

minimise bias no information about which point was marked by which researcher was
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available during the meeting. During the meeting, the researchers followed the same

process as in phase one (Figure 6.3). If researchers could not agree the fall was recorded as

unverifiable. Where researchers had agreed on the fall time in phase one, the confidence

was updated following discussion in the phase two meeting.

Figure 6.3: Fall verification process flow chart.

6.4 Results

Forty-five residents of FSHC homes provided consent and took part in the study. Partici-

pants were recruited from seventeen care homes with a mean and standard deviation of 2.65

± 2.57 participants from each home. Fifteen participants completed the two-month study

and thirty withdrew or were withdrawn; the reasons for withdrawal are shown in Table 6.5.

Where multiple activPAL monitors assigned to a participant were lost, and following

consultation with care staff, participants were withdrawn. The reason for withdrawal

in these cases was to prevent further loss of hardware and because the loss of multiple
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monitors was a potential sign that the monitor was causing discomfort and the participant

was removing it.

Table 6.5: Reasons for participation ending.

Reason for the End of Participation N Participants

Completed the two-months 15

Deceased 2

Discharged from home 7

Did not want to continue to wear monitor 4

Multiple monitors lost 7

No reason given 10

Note: Data were collected from forty-five particpants, thirty withdrew from the study before
two-months of data collection had been completed and fifteen completed the two months.

Due to technical issues, the fall records for three participants could not be retrieved and so

their data could not be used for fall detection research, thus data from forty-two participants

were usable for fall detection research. A total of 218 recordings were collected from the

forty-two participants with a total duration of 1,919 days. Ninety percent of recordings

were between seven and ten days in duration with a mean of 8.80 ± 1.67 days. The median

total length of recordings per participant was thirty-three days with an interquartile range

of 17.94 to 54.42 days.

Staff were asked to record dates and times when the device was attached and removed from

the participants’ thighs. However, care staff reported that participants sometimes removed

the device and the staff did not know when. Due to a high workload staff reported that

they did not always record the time immediately and so were unsure of the accuracy of the

reported times. In addition, not all forms were completed and some were lost in the care

homes and not returned. Thus, the records of wear time may be inaccurate and incomplete

and cannot be relied upon in the removal of non-wear accelerometer signals.

A total of forty-seven falls from twenty-three participants were reported during the study,

nineteen of the participants did not fall. Thirty-two of the reported falls occurred during

periods where the device was recording and fifteen occurred during periods when the

device was being exchanged through the post. Table 6.6 shows the full results of the fall

identification process. Of the thirty-two reported falls which were potentially captured, four

were deemed invalid. In each of the reports deemed not to be a valid fall, an intervention
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by care staff to assist the participant to the floor was clearly described, they were therefore

not a natural fall (see Table 6.7).

Eight out of the thirty-two falls could not be identified in the accelerometer signals by the

consensus of two expert researchers. In six cases the fall occurred in a period identified

as non-wear as the device was not moving and in two cases no signal which matched

the description could be found. In one of the falls where no signal which matched the

description could be identified, the participant was found on their knees by care staff, a

posture which is hard, if not impossible, to distinguish from standing in the accelerometer

signals. For the other fall where no matching signal could be identified, the participant

attempted to get out of the chair by climbing over the hand rest, as a fall from sedentary

the posture transition would be less distinct in the signals compared to a fall from an

upright posture. For six of the falls, both researchers independently concluded they could

not be identified. For two of the falls, one of the researchers marked a fall during the

independent assessment and the decision that the fall could not be identified was reached

following a consensus meeting.

The twenty falls which were identified in the data are summarised in Table 6.8. Figure 6.4

and Figure 6.5 show example fall signals with the identified point of the fall marked. Of

the identified falls ten occurred in bedrooms, three in bathrooms, three in corridors, two in

day rooms and two in dining rooms. Eleven of the falls were reported to be from standing,

one from a chair and in eight cases staff reported the participant was found on the floor

and the circumstances could not be established.

For seven out of the twenty falls which could be identified, both researchers independently

marked the same sample in the signal as the fall-related impact (see Table 6.6). For a

further five of the falls, the points marked were within five seconds of each other, the

median difference between researchers was 0.62 seconds with an interquartile range of

zero to fifty-four seconds. The median difference between the final marked point and

the reported times for the twenty identified falls was six minutes and 25 seconds with an

interquartile range of 2:47 to 14:23 (minutes:seconds). All but one of the points marked

during the consensus meeting were within one second of one of the originally marked points.

The confidence in the signals identified as the falls following the consensus meeting ranged

from three to ten out of ten with a mean and standard deviation of 7.65 ± 2.08.
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Table 6.6: Results of fall signal identification.

Fall ID Round Valid Identified Unidentified Reason Identified � Confidence Reported �

1

Researcher 1 True True - 07:19:19 4

07:00Researcher 2 True True - 07:19:19 6

Final Decision True True - 07:19:19 8

2

Researcher 1 False - - - -

10:25Researcher 2 False - - - -

Final Decision False - - - -

3

Researcher 1 True True - 22:10:28 6

01:30Researcher 2 True True - 01:26:06 4

Final Decision True True - 22:10:28 6

4

Researcher 1 True True - 20:11:12 6

20:20Researcher 2 True True - 20:11:12 3

Final Decision True True - 20:11:12 3

5

Researcher 1 True False Non-Wear - -

02:05Researcher 2 True False Non-Wear - -

Final Decision True False Non-Wear - -
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Table 6.6: Cont.

Fall ID Round Valid Identified Unidentified Reason Identified � Confidence Reported �

6

Researcher 1 True True - 08:37:07 5

08:45Researcher 2 True False No Signal Matches Description - -

Final Decision True True - 08:31:03 6

7

Researcher 1 True False Non-Wear - -

20:30Researcher 2 True False Non-Wear - -

Final Decision True False Non-Wear - -

8

Researcher 1 True False Non-Wear - -

10:00Researcher 2 True False Non-Wear - -

Final Decision True False Non-Wear - -

9

Researcher 1 True False Non-Wear - -

06:10Researcher 2 True False Non-Wear - -

Final Decision True False Non-Wear - -

10

Researcher 1 True True - 06:42:23 3

06:50Researcher 2 True True - 06:41:16 8

Final Decision True True - 06:42:23 7
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Table 6.6: Cont.

Fall ID Round Valid Identified Unidentified Reason Identified � Confidence Reported �

11

Researcher 1 True True - 22:51:40 8

23:00Researcher 2 True True - 22:51:40 5

Final Decision True True - 22:51:40 8

12

Researcher 1 True True - 21:53:53 8

22:00Researcher 2 True True - 22:06:32 8

Final Decision True True - 21:53:53 6

13

Researcher 1 True True - 20:17:58 5

21:00Researcher 2 True False No Signal Matches Description - -

Final Decision True True - 20:17:58 10

14

Researcher 1 True True - 16:46:06 3

16:54Researcher 2 True True - 16:56:55 5

Final Decision True True - 16:56:55 4

15

Researcher 1 True False No Signal Matches Description - -

16:50Researcher 2 True False No Signal Matches Description - -

Final Decision True False No Signal Matches Description - -
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Table 6.6: Cont.

Fall ID Round Valid Identified Unidentified Reason Identified � Confidence Reported �

16

Researcher 1 True True - 18:59:46 7

18:45Researcher 2 True False No Signal Matches Description - -

Final Decision True False No Signal Matches Description - -

17

Researcher 1 True True - 13:38:43 7

13:40Researcher 2 True True - 13:38:43 7

Final Decision True True - 13:38:43 7

18

Researcher 1 True True - 06:17:43 8

06:20Researcher 2 True True - 06:17:43 6

Final Decision True True - 06:17:43 10

19

Researcher 1 True True - 20:46:50 8

20:50Researcher 2 True True - 20:46:51 10

Final Decision True True - 20:46:51 10

20

Researcher 1 False - - - -

12:45Researcher 2 False - - - -

Final Decision False - - - -
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Table 6.6: Cont.

Fall ID Round Valid Identified Unidentified Reason Identified � Confidence Reported �

21

Researcher 1 False - - - -

23:30Researcher 2 False - - - -

Final Decision False - - - -

22

Researcher 1 False - - - -

21:45Researcher 2 False - - - -

Final Decision False - - - -

23

Researcher 1 True True - 03:14:17 6

03:30Researcher 2 True True - 03:14:01 8

Final Decision True True - 03:14:17 7

24

Researcher 1 True True - 10:41:54 7

11:15Researcher 2 True True - 10:41:53 9

Final Decision True True - 10:41:54 10

25

Researcher 1 True False Non-Wear - -

14:40Researcher 2 True True - 14:12:00 2

Final Decision True False Non-Wear - -
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Table 6.6: Cont.

Fall ID Round Valid Identified Unidentified Reason Identified � Confidence Reported �

26

Researcher 1 True True - 16:38:37 9

16:45Researcher 2 True True - 16:43:41 4

Final Decision True True - 16:38:37 10

27

Researcher 1 True False Non-Wear - -

07:30Researcher 2 True False No Signal Matches Description - -

Final Decision True False Non-Wear - -

28

Researcher 1 True True - 12:36:50 8

12:40Researcher 2 True True - 12:36:50 8

Final Decision True True - 12:36:50 8

29

Researcher 1 True True - 15:02:16 5

15:00Researcher 2 True True - 15:02:12 9

Final Decision True True - 15:02:16 9

30

Researcher 1 True True - 10:12:38 5

10:15Researcher 2 True True - 10:12:38 3

Final Decision True True - 10:12:38 8
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Table 6.6: Cont.

Fall ID Round Valid Identified Unidentified Reason Identified � Confidence Reported �

31

Researcher 1 True True - 22:30:49 3

22:30Researcher 2 True True - 22:30:49 10

Final Decision True True - 22:30:49 10

32

Researcher 1 True True - 14:48:15 6

14:52Researcher 2 True True - 14:48:15 6

Final Decision True True - 14:48:15 6

Note: For Fall ID 3 the fall time identified by researcher 1 and in the consensus meeting are the day before the reported time.
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Table 6.7: Details of the reported falls which were deemed invalid.

Fall ID Faller Location Fall Type Severity Description Reported �

2 2 Bedroom From

Standing

No harm Resident was being supported to transfer from chair to chair.

During the transfer the resident started to sit down when the

chair wasn’t close. The resident was slowly assisted to the

ground.

10:25

20 14 Bedroom From

Standing

No harm Resident was being encouraged to mobilise to bedroom doorway

when they felt their legs giving way and was assisted to the

floor by care staff.

12:45

21 14 Bedroom From

Standing

No harm Resident lost their balance, while staff assisting them to the

toilet. Staff assisted the resident to sit on the floor.

23:30

22 14 Bedroom From

Standing

No harm Resident was being assisted by two members of staff with

transfer. Resident’s legs gave way when transfering and had a

controlled descent to the floor, no impact taken.

21:45
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Table 6.8: Details extracted from the fall reports for the falls identified in the accelerometer signals.

ID Faller Location Fall Type Severity Description Reported � Identified � Confidence

1 1 Corridor Found on

Floor

Minor

harm

Resident had unwitnessed fall in main foyer,

heard to be shouting for help by staff who

immediately attended. Resident checked

over physically and graze / bruise noted to

top of head.

07:00 07:19:19 8

3 3 Bedroom Found on

Floor

No harm Resident was found on the floor half sitting

leaning against the wall on their right side

in their bedroom toilet. Conscious and alert

with no injury noted at the time.

01:30 22:10:28

(previous day)

6

4 4 Bedroom From

Standing

No harm Unwitnessed fall, sensor mat alerted staff.

Resident was found sitting on their bed-

room floor beside the toilet door, they said

they tripped on way to the toilet.

20:20 20:11:11 3

6 6 Day

Room

Found on

Floor

No harm Resident was found on the floor in the

lounge. No falls details known.

08:45 08:31:03 6
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Table 6.8: Cont.

ID Faller Location Fall Type Severity Description Reported � Identified � Confidence

10 8 Bedroom From

Standing

Minor

harm

Found on the floor by staff after their alert

mat went off. Resident appeared more

confused than usual due to chest infection.

Abrasion on arm noted.

06:50 06:42:23 7

11 8 Bedroom From

Standing

No harm Found on the floor in their bedroom. Resi-

dents’s alert mat had alerted staff to attend,

but on arrival resident was already on the

floor. Resident was trying to get something

out of their drawer.

23:00 22:51:40 8

12 8 Dining

Room

From

Standing

No harm Resident got up from the chair they were

sitting in, lost their balance and fell.

22:00 21:53:53 6

13 8 Dining

Room

From

Standing

No harm As staff were supervising resident to sit in

the chair they over balanced, resulting in

them sliding to the floor.

21:00 20:17:58 10

14 9 Bedroom Found on

Floor

No harm Resident was cleaning up a spill from their

floor and tipped onto their bottom.

16:54 16:56:55 4
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Table 6.8: Cont.

ID Faller Location Fall Type Severity Description Reported � Identified � Confidence

17 12 Corridor From

Standing

No harm Resident was mobilising with wheeled zim-

mer frame, with wheelchair behind. As

they were passing their bedroom door they

realised that they were going to pass their

room, panicked and dropped to their knees.

13:40 13:38:43 7

18 12 Bedroom From

Standing

No harm Resident was found sitting on the floor.

They were trying to use the commode un-

aided and unsupervised. They told staff

that they lost balance while trying to get

into bed, after using the commode.

06:20 06:17:43 10

19 14 Bedroom From

Standing

No harm Resident was lying on the floor near their

bed. They said they lost their balance,

while trying to reach the wardrobe.

20:50 20:46:51 10
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Table 6.8: Cont.

ID Faller Location Fall Type Severity Description Reported � Identified � Confidence

23 15 Bedroom Found on

Floor

No harm Resident was found lying on the floor by

staff. Staff reported that the resident was in

bed when they did the routine night check

about 10 min before. Resident didn’t know

how they ended up on the floor. They were

not sure whether they hit head or not.

03:30 03:14:17 7

24 16 Bathroom From

Standing

Minor

harm

Resident found on the floor in the bathroom

after calling for help.

11:15 10:41:54 10

26 17 Corridor From

Standing

No harm Resident was walking for their tea, mis-

judged their footing and fell to the ground.

Staff and another resident witnessed fall.

16:45 16:38:37 10

28 21 Bedroom Found on

Floor

No harm Resident was found on their bedroom floor. 12:40 12:36:50 8

29 22 Day

Room

Found on

Floor

No harm Resident had an unwitnessed fall whilst in

the conservatory.

15:00 15:02:16 9



C
H

A
PT

ER
6.

C
O

LLEC
T

IO
N

O
F

R
EA

L-W
O

R
LD

FA
LL

D
ATA

138

Table 6.8: Cont.

ID Faller Location Fall Type Severity Description Reported � Identified � Confidence

31 23 Bathroom From

Chair

Minor

harm

Resident buzzed as they had lost their bal-

ance trying to get on to the toilet. Abrasion

on back noted.

22:30 22:30:49 10

30 23 Bathroom Found on

Floor

No harm Resident was found on their bathroom floor

10:15, Resident stated they had fallen while

trying to get from their wheelchair onto the

toilet.

10:15 10:12:38 8

32 23 Bedroom From

Standing

No harm Resident was found sitting on their bed-

room floor, they stated that as they went

to stand their left leg gave way.

14:52 14:48:15 6

Note: The identified time and confidence refer to the identified signal following the consensus meeting.
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Figure 6.4: Example fall signal A. The point identified as the fall is marked with a dotted
line. For the 3D acceleration red=X, green=Y and blue=Z activPAL axes. The top plot
shows the 20 minutes around the fall, the bottom plot shows the 10 seconds around the fall.
Fall description: Resident had unwitnessed fall in the main foyer, heard to be shouting for
help by staff who immediately attended.
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Figure 6.5: Example fall signal B. The point identified as the fall is marked with a dotted
line. For the 3D acceleration red=X, green=Y and blue=Z activPAL axes. The top plot
shows the 20 minutes around the fall, the bottom plot shows the 10 seconds around the
fall. Fall description: Resident was walking for their tea, misjudged their footing and fell
to the ground.
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6.5 Discussion

6.5.1 Collection of a Real-World Fall Dataset

In collaboration with Four Seasons Health Care, a project was conducted to collect real-

world fall data which could be used to research new approaches to fall detection. As a

result of this collaborative project, a dataset of 1,919 days of recording was collected from

which twenty falls were extracted. The original objective to recruit 250 participants and

record 100 falls was not achieved, however, the collected dataset of twenty falls and 1,919

days of recordings is one of the largest real-world fall datasets which has been collected.

The median number of falls used in previous studies was 17.5 (IQR 8.25 to 29 falls) and the

median total length of recorded data was 592 days (IQR 21 to 1474 days) (Section 4.3.3).

Only four datasets containing substantially more falls have been collected (see Table 4.2);

the highest number of falls used in published studies is 218 recorded with a Kinect™

sensor [143] and 100 recorded with an accelerometer [122].

The size of the dataset was limited by fewer participants than anticipated and a higher rate

of participant withdrawal, rather than a low occurrence of falls. The care homes reported

that the majority of potential participants had some form of cognitive impairment and

that gaining assent for those who lacked mental capacity was challenging. The need to

contact relatives (for consultation on participation) was the primary challenge, relatives

were most commonly working age and not necessarily local. This meant visits were often

infrequent and outside of normal working hours which made contact challenging and heavily

restricted the opportunity to provide information about the study and to go through the

recruitment pathway. The care homes reported that there was often a reluctance to provide

consent or assent as those being asked did not see how the research would benefit those

involved. Given this feedback, people may be more willing to participate in studies where

a functioning (prototype) alarm is used; this was not possible at such an early stage of

development.

Given the duration of the study, it was not expected that all participants would complete

the study and wear the device for the full two months. However, the withdrawal rate

was higher than anticipated; only fifteen participants completed the two months of data

collection. Fifty percent of participants wore the device for less than one month and

twenty-five percent for less than two and a half weeks. Twenty percent did not complete as
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they were discharged from the home or deceased; future studies should account for this

when planning participant numbers. Twenty-four percent did not complete because they

did not want to wear the monitor or lost multiple monitors, highlighting the challenges

in recording data with a wearable device over extended periods. Further, these findings

suggest a fall detector worn in a similar way to the device used in this study may not

be acceptable to users; additional research is needed before an investment is made in a

thigh-worn fall alarm sensor.

Falls were captured during the current study at a very similar rate to that predicted based

on previous studies. Previous studies had recorded falls at a rate of approximately 100

to 1,000 days per fall depending on the fall risk of participants. Given that those with a

history of falls were recruited for the current study, one would expect the fall rate to be at

the lower end of this range. In this study, falls were captured at a mean rate of 96 days

per fall, in line with previous studies.

Given the high rates of withdrawal, an increase in the duration of data collection for each

participant would have been unlikely to result in substantially more data or falls being

recorded, as few participants would have continued to wear the activPAL device. If the

target of 250 participants had been reached then, all else being equal, around 100 falls

would have been recorded. Therefore, the lower than anticipated participant recruitment

was the primary factor which limited the size of the dataset.

Participants were recruited from seventeen care homes and around fifty people were directly

involved in participant recruitment, none of which had prior experience supporting research

such as this. In addition, the care home company had many layers of management between

the senior managers who were the partners on the project and the care staff who recruited

participants. Consequently, it was difficult to ensure all those involved in the recruitment

of participants understood the value of the project and were able to convey the benefits of

the research to potential participants. The priority of the care homes was delivering quality

care to their residents and this project was an extra responsibility with no funding for staff

time provided. As a result, only a limited amount of time could be spent on participant

recruitment and this is likely the main factor which limited participation. Future studies

where recruitment is carried out by a partner organisation should carefully consider the

level of support needed to ensure recruitment targets are met.

There were also challenges in ensuring that all processes during the data collection were

followed. The requirements were kept to a minimum of checking the device attachment
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regularly, recording when it was worn, monitoring participant comfort and ensuring their

normal fall reports were accurate. However, the record of when the device was worn was

not always completed and around twenty activPAL devices were lost during the project.

This could be explained by challenges in providing training to all those who provided care

for participants and the high workload of those staff.

Over 250 staff across seventeen care homes were directly involved in providing care to

residents who participated and given staff turnover and varied shift patterns it was not

possible to provide all staff with face-to-face training. Visits were made to each home

before data collection began and senior staff were all given training and instructed to

disseminate the information to their staff; written documentation was provided to assist

with this process. Similar to participant recruitment, the data collection was not the

priority of care staff, and given their high workload it is perhaps unsurprising that some

record-keeping was overlooked. Future studies should ensure they have the resources to

either make frequent visits to each site and provide support or have a researcher working

on-site to oversee the recruitment and data collection.

6.5.2 Fall Signal Identification

The accurate identification of the fall events in the recorded accelerometer signals was a

critical first step in preparing the dataset for analysis. Many previous studies have not

published details of how they identified the fall signals (for a review see Section 4.3.4). Only

the FARSEEING consortium have published an approach to fall signal identification and

their approach was used here. To maximise the robustness of the fall signal identification

process two researchers independently analysed the signals and identified the falls based

on the fall reports received from the care homes. Where the researchers agreed it gives

confidence in the result, where they disagree it highlights that there is uncertainty as to

when the fall occurred.

There was a good level of agreement in the identified fall signals; half of the falls could be

identified independently to within one second. In each of these cases, the same movement

was identified as the fall, even if a different sample was marked as the point of impact. For

the other ten falls, the consensus meeting provided a forum to re-analyse and discuss the

signals until a unanimous decision could be reached, increasing the likelihood of identifying

the correct point in the signals for the more challenging falls.
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As a reflection of the fact that one cannot be certain the correct signal had been identified

the confidence that the correct signal had been identified was recorded. Following the

consensus meeting, the scores for confidence in the signals which had been identified as

the falls were high (mean 7.65 ± 2.08). There was no correlation between the confidence

in the marked point and agreement, in fact for the fall with the lowest confidence both

researchers marked the same sample. The robust method used maximised the likelihood

that the correct signals were labelled as falls, while the independent agreement on half of

the falls and high confidence scores following the consensus meeting provide further trust

in the results. The method used here is based on the FARSEEING approach which was

devised by experts in the field and is the most robust method which has been used for fall

signal identification.

6.5.3 Challenges in the Analysis of Real-World Fall Data

Due to only being able to extract twenty falls the analysis which can be carried out is

limited. There is not enough data for a study of the fall signals and then a test of a new

algorithm developed based on the findings. A test of an algorithm requires data which is

independent from that used to develop the algorithm, splitting the twenty falls between

these two applications would be counterproductive; there are not enough fall samples to

train a robust classifier and properly evaluate performance. Twenty examples may not be

enough to fully characterise falls, given that they are highly variable. However, given that

previous analysis of real fall signals has been limited, even analysis of twenty examples

provides a valuable contribution to the field. Further data collection will be needed to

check if any findings generalise and to test any new fall detection technology based on said

findings.

The limited size of the dataset is not the only factor which must be considered in the

analysis. Due to the study being observational and over an extended period, very little is

known about the movements recorded and this makes it difficult to assess the quality of

the data. For one fall it was identified that the device was worn upside-down only because

of a period of walking before the fall where the X-axis was inverted. However, generally

it is hard to verify that the device was worn correctly, the period around the fall was

only spotted because the fall signals were carefully examined. Walking is generally the

only activity which is recognisable even if the device is not orientated correctly; the cyclic

pattern of steps and spikes due to impact are both recognisable and unique. Finally, to
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check device orientation based on periods of walking requires a fine-grained examination of

the data at a level where individual steps are distinguishable, to do this for almost 2,000

days of data is extremely onerous.

Similar to checks of orientation, checking for periods where the device was not worn is

a challenging task. Due to participants sometimes removing the device themselves the

wear-time reports received from the care homes were incomplete and the accuracy of the

times cannot be relied upon. Therefore, these reports can only be used as a guide, manual

analysis of the recorded signals is required to increase the accuracy in the extraction of

periods where the device was worn. As with checking device orientation, examining the

data to check for periods of non-wear is onerous. Where the device is not worn for an

hour or more, this can be identified relatively easily due to the complete lack of movement

However, identification of when the device was removed from the thigh and when it was

reattached is complicated by movement when the device is not worn. The device is rarely

set down as soon as it is removed, staff may carry the device in their pocket, for example.

There are several potential issues which must be considered when working with these

real-world fall data. Due to the length of the study and its observational nature, it was not

possible to fully track when the device was worn and if it was worn correctly. It is possible

to improve the accuracy of wear-time records and identify some periods where the device

was not orientated correctly, however, due to the volume of data this process is extremely

onerous. It is not uncommon for only a subset of the data to be analysed [e.g. 149] and this

is something which needs to be considered for the analysis of this dataset. While reducing

the volume of non-fall data included is not ideal, it will allow the quality of the data to be

checked and any necessary corrections or exclusions to be applied, thereby increasing the

reliability of the findings.

6.5.4 Conclusion

This project aimed to collect a real-world dataset of falls and activities of daily living

comparable in size to the largest used in previous studies. Real-world movement data

totalling 1,919 days were collected across seventeen care homes over two years and twenty fall

signals were extracted. There was a good level of agreement in which signals corresponded

to the falls and the confidence that the correct signal was identified was generally high.

This is one of the larger real-world fall datasets to have been collected and represents a
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significant contribution to the field. There are several challenges to overcome in analysing

the collected data; this is the nature of a real-world study where control is limited. However,

there is huge value in the analysis of the fall signals and comparison to other movements

and such analysis must be carried out to identify how wearable fall detection technology

can be improved.



Chapter 7

Analysis of Real-World Fall

Signals Recorded With a

Thigh-Worn Accelerometer

7.1 Introduction

Through a review of the literature (Chapter 3), it was identified that there is a need for

research into how falls differ from other movements to produce a base of evidence on which

improved fall detection technology can be designed. In Section 3.7, a new framework for the

development of fall detection technology was proposed. Previously, testing the performance

of fall detection technology had been the focus of the research, in the new framework

this plays a relatively small part. Instead, the framework emphasises research to build an

evidence base and inform future design iterations, something which has been lacking in the

literature. This study aimed to use the collected real-world dataset (Chapter 6) to address

this gap in knowledge and to begin the work of developing new fall detection technology in

line with the proposed framework.

147
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7.1.1 Background

Current fall detection technology has not performed adequately on real-world data (Sec-

tion 3.6) and it is not clear how performance can be improved. Early in the development of

fall detection technology, efforts were made to define a fall (Section 2.1.1) and to propose

a fixed sequence of phases which make up a fall (Section 3.1). However, while this put

some structure on the problem area it did not properly address the wide variety of ways

people fall and hence offered little in terms of the ability to discriminate real falls from

other activities.

A series of studies to compare features of simulated falls to activities of daily living (ADL)

carried out in a laboratory environment were conducted over a decade ago [107,113,119]. In

these studies, data were recorded with wearable sensors as young, healthy adults performed

a series of falls and older adults performed a scripted set of ADL (e.g. sitting on and

standing from a chair, walking, getting into and out of bed, etc.). Between them, these

studies analysed the magnitude of impact, peak vertical acceleration and peak torso angular

velocity (further details of these features can be found in Section 3.5.2). The results showed

that for falls the values were typically higher compared to other activities, although an

overlap between the falls and ADL was found. This work has been highly influential

within the field, with a total of over 1,500 citations between the three articles (according to

Google Scholar in October 2019), and has formed the basis for the wearable fall detection

approaches which have since been proposed.

There is a growing body of evidence that simulated falls are not the same as real-world

falls and because of this, approaches to fall detection which perform well in the laboratory

generally perform poorly in the real-world (Section 3.4). In light of this, it is important

to conduct studies to compare real-world falls and ADL to provide a more accurate

understanding of how falls differ from other movements. Only one study has been published

which has analysed real-world data to identify features of falls which make them unique [114].

Consequently, there is little understanding of why fall detection technology has performed

poorly in the real world or how it can be improved. Further studies to compare features of

real-world falls and ADL should, therefore, be prioritised over the testing of prototype fall

detection technology.

Bourke et al. [114] used data collected as part of the European Union funded FARSEEING

project. The project’s data were collected over a period of four years by six institutions,
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who between them recorded activity data from over 2,000 participants. Bourke et al. [114]

extracted and compared three temporal and three kinematic features of 100 falls and 1,908

ADL recorded with a lumbar-worn triaxial accelerometer. ADL were extracted from an

undisclosed volume of data using a previously developed motion detection algorithm [180]

and a threshold for the peak in the resultant acceleration of greater than 1.05 g. From

the signals Bourke et al. [114] extracted the following kinematic features: (1) maximum

resultant acceleration (impact magnitude), (2) minimum resultant acceleration and (3)

the maximum torso angle. The temporal features extracted from the signals were: (1) the

time between the minimum and maximum resultant acceleration (lead-time), (2) the time

relative to the point of peak resultant acceleration at which the peak torso angle occurred

and (3) the time relative to the peak resultant acceleration when lying began, based on a

torso angle threshold.

Through the use of T-tests, and Mann–Whitney U tests where data were not normally

distributed, Bourke et al. [114] reported significant differences (p < 0.001) between the

falls and ADL for the maximum resultant acceleration, the minimum resultant acceleration

and the maximum torso angle. However, plots of the data (boxplots and histograms, see

Figure 7.1 for an example) revealed substantial overlap between the falls and ADL groups

for all features. Bourke et al. [114] did not quantify the overlap between groups, however,

as can be seen in Figure 7.1 there are a substantial number of ADL with maximum and

minimum resultant accelerations within the range observed for the falls. The overlap for

other features analysed by Bourke et al. [114] was similar to those shown in Figure 7.1; see

the original article for full results.

For some classification problems, a combination of features with overlapping distributions

such as those found by Bourke et al. [114] may yield acceptable results with an optimised

classifier. However, fall detection is an extreme case due to the relative rarity of falls

and the potential consequences of false negatives (failure to detect a fall). Fall detection

requires both high sensitivity and precision to ensure that the system can be relied upon

to detect falls, without inducing alarm-fatigue. Since falls are rare, correct detections are

rare and so even a small proportion of ADL events being mistaken for a fall would lead

to substantially more erroneous detections than correct ones. If the frequency of errors

significantly exceeds the frequency of correctly detected falls, trust in the system could be

eroded which may contribute to alarm-fatigue.
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Figure 7.1: Example of the overlap between falls and ADL observed in previous studies
(adapted from Bourke et al. [114]).

There is a need to explore new features, as those which have been used previously have not

yielded acceptable fall detection performance. Differences in peak jerk (rate of change in

acceleration) have been found between real and simulated falls [15], however, the use of peak

jerk to detect falls has not been tested. Another area which could be explored is the number

of impacts, there is no evidence that falls have a single large impact, although previous

approaches to wearable fall detection appear to have been based on this assumption. If falls

are found to commonly have multiple impacts and this is not the case for other movements,

then further analysis of these impacts could be useful for fall detection and would, therefore,

warrant further investigation.

In addition to analysis of features which have not been used previously, it is also important

to study features which have been common, but were not included by Bourke et al. [114],

namely vertical velocity, to understand if it is useful in fall detection or superfluous.

Another area which has yet to be studied is the interaction between features. It is currently

unknown whether the combination of impact magnitude and vertical velocity, for example,

allows greater distinction between falls and other movements, compared to either feature

individually. Since classification typically requires multiple features, understanding how

they interact is important to guide the selection of features and avoid increasing complexity

unnecessarily with features which add little or no value.

It may be that falls are too diverse to be categorised as a single group for classification.

Instead, it may be better to divide falls into subcategories and develop separate classifiers
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for each subgroup. One method to divide falls is based on the type of posture transition, for

example, standing to sedentary or walking to sedentary. This approach could potentially

allow greater distinction between falls and other movements but since no research has been

conducted on this, the benefit remains unknown. Identification of transition type could

also allow features specific to each type to be extracted. As an example, features associated

with steps could be extracted for a transition from walking, but the same approaches may

give unpredictable results for falls from quiet standing.

To divide the falls into subgroups would require a large dataset so that each group contained

sufficient data for robust analysis. As part of the research for this thesis, a dataset of twenty

falls were collected from care homes in the UK. This was not considered a sufficiently large

sample for division into multiple subgroups. Preliminary analysis, in the form of visual

inspection of the signals, revealed that sixteen of the falls were transitions from an upright

to a sedentary (sitting or lying) posture. Therefore, the focus of this study was to explore

the characteristics of upright to sedentary falls and posture transitions.

7.1.2 Aims and Objectives

This study aimed to analyse features of both falls and normal upright to sedentary

transitions to identify which features are suitable for fall detection. In addition, this

study aimed to analyse interactions between features for the first time and provide an

understanding of which combinations provide the greatest separation between falls and

normal transitions. A final objective in conducting this analysis was to enhance the

understanding of why existing fall detection technology has not achieved an acceptable

level of performance.

7.2 Data Pre-Processing

Pre-processing of the data was carried out to ensure that the data included in the study

were only from periods where the device was worn and that any periods where the device

was worn incorrectly were corrected or removed if a correction was not possible. As noted

in Section 6.5.3, to carry out such work for the entire dataset (1,919 days of recordings)

would present a significant burden. Therefore, to allow the data to be checked and periods

of wear identified, only the recordings which contained falls from upright to sitting or
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lying were included in the current study (as identified by an upright to sedentary detection

algorithm, see Section 7.3). There were fifteen recordings which contained such falls and

were included in the study; the total length of these recordings was 138.8 days and they

contained sixteen falls.

For each included recording the signals were visually inspected to identify and mark periods

where the device was worn and also to note where the device was not correctly orientated on

the thigh. The device wear times reported by the care homes were used to guide the visual

inspection. For each point which marked either the start or end of a period of wear, the

confidence that the selected time was correct was recorded subjectively using a ten-point

scale. Where the precise time for the start of a period of wear could not be identified,

the first point at which the researcher was confident the device was worn was recorded,

similarly, for the end of a period of wear, the last point where there was confidence the

device was worn was recorded. Thus, the chance of periods of non-wear being included in

the analysis was minimised, but some valid data near the start or end of a period of wear

may have been excluded.

Where inspection of the signals suggested that the device had been worn rotated by 180°

about one of its axes, this was corrected by inverting the signals for the other two axes; for

example, if upside-down (rotated 180° about the Z-axis) the values for the X and Y-axes

were inverted to correct the orientation. It was not possible to identify and correct small

errors in orientation, to do so would have required some form of calibration each time the

device was attached to participants’ thighs. Such calibration was not carried out during

the data collection as no method could be identified which was suitable; any method would

need to have been quick and easy to perform, required only simple equipment and been

suitable for all levels of mobility. Therefore, the set of features which were extracted from

the data (Section 7.4) were designed to be robust to small differences in device orientation.

To carry out the visual inspection of the signals, a software application (the raw_marker

module) contained in the uos_activpal python package [181] was used. The uos_activpal

package contains the core elements of software developed for the research in this thesis and

provides a base for custom data processing software. The raw_marker module used here

was the basis on which the fall signal identification application (Appendix F) was built, it

appeared and functioned in the same way, the only difference being that it was generic

and not tailored to fall identification. The software allowed: (1) activPAL data files to

be selected, loaded and plotted, (2) a marker to be placed and (3) information about the
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marker (file name, sample number, date and time, what was marked and a comment) to be

added to a CSV file. The resulting data were added to a new “wear” table in the database

which stored all the metadata for the real-world dataset (details of this database are given

in Section 6.3.1). The wear table contained all details of the start and end of each period

of wear as well as any transformations needed to correct for issues with the orientation of

the device on the thigh. Each period of wear was loaded and any orientation corrections

were applied prior to analysis.

7.3 Event Selection

The focus of this study was falls from upright to sedentary postures and how they differ

from normal (non-fall) upright to sedentary posture transitions. Therefore, only transitions

from upright to sedentary were of interest and only these events were selected for anal-

ysis. An algorithm to classify upright and sedentary postures was developed and tested

previously (see Section 5.3 and Section 5.7.2 for the design and performance respectively).

The gravitational component of the signal for the X-axis was estimated using a one-second

moving-average filter and a state-based algorithm with two thresholds was used for classifi-

cation; X < -0.81 g for the state to become upright and X > -0.52 g for the state to become

sedentary. This algorithm formed the basis of the event selection used in the current study.

The thresholds for the previous algorithm were set based on data collected in the laboratory

of young adults standing, sitting and lying. The data only covered young adults standing

fully upright, and so (1) the algorithm was not optimised for older adults, and (2) the

algorithm may not detect a valid upright posture if a fall occurred during standing up

from a sedentary position. For the current study perfect classification was not the focus,

instead, the objective was to simply identify that a transition from an upright (or near

upright) posture to a sedentary one had occurred. Therefore, the thresholds were adjusted

to reduce the upright threshold to -0.75 g and the sedentary threshold was rounded to

-0.5 g, these correspond to forty-nine degrees and thirty degrees (rounded to the nearest

degree) from horizontal respectively, as shown in Figure 7.2. These changes reduce the

angle required to enter the upright state by five degrees while maintaining a buffer between

the thresholds to prevent posture transitions being identified where there is fluctuation

around a single point, as could occur with only a single threshold.
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Figure 7.2: The thresholds for upright and sedentary postures. When X < -0.75 g the
state becomes upright, when X > -0.5 g the state becomes sedentary. The stick figures
show the thigh angles for transitions to or from a seated posture, a rotation of the thigh
forward or tilt laterally would be equally valid.

The term “event” is used here to refer to the whole period of interest for the purpose of

analysis, this includes the upright to sedentary transition and the first few seconds spent

sedentary; in the case of a fall, this would be the fall and the first seconds spent on the floor.

The start of each event was taken as 0.5 seconds before the upright threshold was crossed

(X ≥ -0.75 g), an approximation of the start of the upright to sedentary posture transition.

The end of each event was taken as either: (1) five seconds after the sedentary threshold

was crossed (X ≥ -0.5 g), (2) the point where the state reverted to upright (X < -0.75 g)

or (3) the end of the period of wear, whichever came first. Figure 7.3 shows the process

of event extraction for an example fall signal. Events, where the time between crossing

the upright threshold and the sedentary threshold was greater than thirty seconds, were

excluded; this was done because such slow transitions would be highly unlikely to be a

fall and so were of no interest. The database was queried for the details of the previously

identified falls and the events were labelled accordingly.
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Figure 7.3: Example extraction of an upright to sedentary posture transition for a recorded
fall signal. The start of the event was taken as 0.5 seconds before the upright threshold was
crossed and the end of the event was taken as five seconds after the sedentary threshold
was crossed. On the lower plot the darker lines are the moving average filtered data and
the lighter lines are the raw accelerometer signal.

7.4 Feature Extraction

Kinematic and temporal variables (features) were extracted from the signals of each upright

to sedentary transition, this section describes the methods used to extract these features

from the accelerometer signals. The methods used in this study are based on those

commonly used in previously developed fall detection algorithms, an overview of common

features extracted from accelerometer signals can be found in Section 3.5.2.1. Custom

written Python software was used to process and extract features from the signals with

the SciPy package [182] used to provide key functions including: filters, interpolation,

integration and peak identification.

As part of the feature extraction procedure, a series of signal processing steps were carried

out to calculate the resultant acceleration and to isolate components of the acceleration

signals. The resultant acceleration (ar) was calculated by taking the root-sum-of-squares

of the signals from the three axes of the accelerometer (Equation 7.1). The resultant

acceleration was high-pass filtered using a digital second-order Butterworth filter with a

cutoff of 0.25 Hz to remove drift in the signal. The cutoff frequency was selected based
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on previous studies which had also used 0.25 Hz [e.g. 20,113]. For the orientation-based

calculations, a one-second moving-average filter was used to estimate the gravitational

component of the signals, as was done for the identification of upright to sedentary

transitions.

Resultant Acceleration (ar) =
√

ax
2 + ay

2 + az
2 (7.1)

7.4.1 Impact

Impact was characterised in four ways, (1) the peak deceleration (impact magnitude), (2)

the time of the main impact peak relative to where the upright threshold was crossed, (3) a

count of peaks in the acceleration signal, and (4) peak jerk (rate of change of acceleration).

The magnitude of the impact was calculated as the height of the largest peak in the

high-pass filtered resultant acceleration, as shown in Figure 7.4. As multiple impacts may

occur during a fall, a count of the peaks with a height greater than 0.5 g was taken using

the find peaks function provided by SciPy [182]. Since no previous fall detection studies

had included a count of impacts, the threshold for peak height was arbitrarily chosen with

the intention that only peaks which could potentially be a result of significant impact were

included and not peaks due to general movement of the thigh. The counted peaks for an

example fall signal are shown in Figure 7.4. To provide an estimate of the duration of the

fall, the time between the upright threshold being crossed and the main impact peak was

also recorded. To assess the prevalence of clipping, a count was taken of the number of

axes which recorded a maximum value of ±2 g at the impact peak for each event.

For comparison between falls and other upright to sedentary transitions, the peak jerk

between the time of the pre-impact nadir (the method used to identify this point is

explained in Section 7.4.2) and the main impact peak was extracted. Jerk is the rate of

change in acceleration and was therefore calculated by taking the gradient of the resultant

acceleration signal. Since the impact peak is a result of high deceleration, the peak jerk

immediately prior is the peak rate of deceleration. Jerk was calculated using Equation 7.2,

where i refers to any sample in the window of interest.

Jerk (j) =
ar(i) − ar(i−1)

∆t
(7.2)
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Figure 7.4: Example extraction of impact-related features for a recorded fall signal. The
impact magnitude was taken as the highest peak with the period shown in the plot and the
count of impacts was taken for the same period. The time of the main impact was taken
relative to the point where the sedentary threshold was crossed. Peak jerk was calculated
as the maximum gradient of the signal between the pre-impact nadir and the main impact
peak.
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Jerk has not been common in previous fall detection research, however, Klenk et al. [15]

found differences in peak jerk between real and simulated falls. Previously the main impact

peak has been characterised solely by the height, a feature which has been shown does

not fully distinguish falls from other movements [114]. One would expect the peak due to

deceleration upon impact to be relatively narrow, and therefore, the steepness of the slope

may be more indicative of a fall, especially ones which do not have an exceptionally high

peak. This approach may also be better where the range of the sensor is limited, as with

the activPAL3 used in this study.

7.4.2 Vertical Motion

The period of vertical motion was characterised in two ways, (1) an estimation of peak

vertical acceleration, and (2) an estimation of vertical velocity. Peak acceleration towards

the ground was estimated as the nadir in the high-pass filtered resultant acceleration up to

two seconds before the main impact peak, as shown in Figure 7.5. Where the main impact

peak occurred within the two seconds of the event start, the event start was used as the

start of the search window. This reduced the possibility that signals from any ambulation

before the upright to sedentary transition would be erroneously included in the vertical

motion analysis. In instances where the lowest acceleration in the search window was the

first sample, the search for the nadir was extended backwards to find the turning point

(local minima). To allow comparison to the results of Bourke et al. [114], the time between

the pre-impact nadir and the impact peak (lead-time) was also extracted.

An estimate of vertical velocity at the point of impact was obtained through integration

of the high-pass filtered resultant acceleration around the pre-impact nadir, where the

signal was less than zero, as shown in Figure 7.5. To improve the accuracy of the velocity

estimate, interpolation via a cubic spline was used to estimate the time points where the

signal crossed zero which were used as the limits for the integration. Simpson’s rule was

used to perform the integration of the recorded signal and integration of the cubic spline

was used between the first and last recorded negative values and the interpolated zero

points, as shown in Figure 7.6. These values for the areas under each section of the curve

were summed to produce the vertical velocity estimate.
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Figure 7.5: Example extraction of vertical motion related features for a recorded fall signal.
The peak acceleration towards the ground was taken as the lowest point in the 2 seconds
before the main impact. Vertical velocity was estimated as the area highlighted in orange.
The lead-time was taken as the time between the pre-impact nadir and the main impact
peak.
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Figure 7.6: Example estimation of vertical velocity for a recorded fall signal. The integral
of the recorded signal was estimated using Simpson’s rule. A cubic spline was used to
interpolate where the signal crossed zero and to estimate the integral of the signal between
the recorded samples and the interpolated zero-crossing points.
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7.4.3 Change in Orientation

The change in the direction of the resultant acceleration was calculated using Equation 7.3,

where t1 was the point where the upright threshold was crossed in the transition to a

sedentary posture and t2 was two seconds after the main impact peak. For the calculation

of change in orientation all signals (ax, ay, az, ar) were filtered using a one-second moving

average to estimate the gravitational component of the signals.

Orientation Change (θ) = cos−1
(

ax(t1) · ax(t2) + ay(t1) · ay(t2) + az(t1) · az(t2)

ar(t1) · ar(t2)

)
(7.3)

7.5 Analysis of Features

To show the challenge in distinguishing between falls and normal upright to sedentary

posture transitions, plots of each fall along with a similar normal transition were produced.

The values for the eight extracted features were standardised as z-scores and similarity was

calculated as the mean absolute difference in z-scores between each fall and the normal

transitions. For each fall, the similarity scores were used to short-list the ten normal

transitions with the lowest mean difference and then each short-listed transition was

visually inspected to select the posture transition to plot.

Given the small sample size for the fall group (n=16) it was not possible to establish if the

data were normally distributed [183], and therefore, the assumptions of parametric tests

such as the T-test could not be tested. In addition, results from previous studies, both

lab-based and real-world, indicate features such as impact magnitude are not normally

distributed and that outliers are common [106,113,114]. Given this, the Mann-Whitney U

test was chosen to test for significant differences between the falls and the normal upright to

sedentary transitions. Due to the use of multiple tests (one for each feature) the probability

of type I errors was increased; to correct for this, p-values were adjusted using a Bonferroni

correction. The Bonferroni correction is a conservative method, however, given the small

sample of falls, it was preferable to take a conservative approach and minimise the risk of

type I errors.
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The Mann-Whitney U test gives a U score which indicates the overlap between the groups.

U has a maximum value of n1 × n2 where n1 and n2 are the sample sizes for each group, to

make the result easier to interpret the ρ statistic was calculated as ρ = U ÷ (n1 × n2). ρ is

the probability that the value for one group will be larger than for the other group when

comparing random samples from each group; a ρ of 0.5 indicates total overlap, a ρ of zero

or one indicates total separation in opposite directions. U, and therefore ρ, are calculated

for each group, and typically the smaller score is reported, however, in this study, the

results for the fall group are reported to highlight whether the falls measured higher or

lower than the normal transitions.

Violin plots were used to visualise the distributions for each group and feature. Violin

plots are similar to, and based upon, box and whisker plots, but the width of the box is

proportional to a density estimate; these plots, therefore, provide greater insight into the

distribution of the data. An in-depth discussion of violin plots has been written by Hintze

and Nelson [184]. To explore interactions between the features where significant differences

between groups were found, scatter and density plots were produced showing one feature

against another. Data visualisations were produced using the Python package seaborn

[185].

To assess the correlations between features, Pearson’s product-moment correlation coefficient

was calculated for each pairing of features which individually were found to be significantly

different for the two groups. The correlation coefficient was calculated separately for both

the falls and the normal upright to sedentary transitions. Where both groups showed a

strong correlation and the scatter plot indicated no clear difference in the direction, little

or no information could be gained from the use of both features over just one of them.

Where there was a difference in the correlation between groups, the separation between

groups was likely greater with both features compared to either individually.

7.6 Results

Following the process of manually screening the data, a total of 34.8 days of data were

identified as non-wear and were subsequently removed, leaving 104 days for analysis.

Twenty-one periods of wear were identified in the fifteen recordings, the median length of

wear period was five days (IQR from three to seven days). The mean confidence in the

identified starts and ends of periods of wear was 8.6 out of ten, with a standard deviation
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of 2.6. One period of wear, lasting two days was identified as having incorrect device

orientation and the signals for the X and Z-axes were inverted to correct for this (see

Figure 7.7).

The upright to sedentary posture transition algorithm identified a total of 4,293 transitions,

sixteen falls and 4,277 normal (not known to be a fall) posture transitions. Figures 7.8 to

7.23 each show a plot of a fall and a similar normal upright to sedentary posture transition

with the values for the eight features extracted from the signals. The fall ID in the caption

of each figure can be cross-referenced with Table 6.8 for more information about each fall.

Table 7.1 shows the results of statistical analysis on the continuous features (all except

peak count which is ordinal) extracted from all 4,277 normal transitions and sixteen falls.

The Mann-Whitney U test showed impact magnitude and peak jerk were significantly

higher for the falls and that there was a slightly greater separation between groups for

peak jerk compared to impact magnitude (ρ=0.96 and 0.93, respectively). There was no

significant difference between the groups for impact time (p=0.62). The results of the

Mann-Whitney U test for peak count showed that there were significantly fewer peaks in

the normal transitions compared to the falls (U=64191, ρ=0.94, p<0.001). Figure 7.24

shows (1) violin plots for impact magnitude, peak jerk and the impact time, and (2) a

bar chart of the peak counts for the two groups. The plots highlight that while there

are significant differences between the two groups for impact magnitude, peak jerk and

peak count, there are also substantial overlaps in their distributions which could hinder

classification. Figure 7.25 shows the percentage of events where the main impact peak was

clipped for both normal transitions and falls.

Peak acceleration towards the ground, velocity and orientation change were significantly

(p<0.001) higher for the falls compared to the normal transitions. Lead-time was sig-

nificantly lower for the fall compared to the normal transitions (p<0.05) although the

overlap between the groups was substantially greater for lead-time compared to other

features (ρ=0.3). Figure 7.26 shows violin plots for peak acceleration towards the ground,

velocity, lead-time and orientation change. The violin plots support the results of the

Mann-Whitney U tests; they show that there is a separation between groups for peak

acceleration towards the ground, vertical velocity and orientation change. Although there

is overlap in the distributions the middle fifty percent of samples for each group occupy

separate spaces. For lead-time, the majority of samples from both groups lie in the same

range and there is no indication that this feature is useful for classification.
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Figure 7.7: The wear period for which the device was worn incorrectly. A shows the entire
wear period and B shows an extracted posture transition which is typical of those in this
period of wear. For the majority of the time, the Z-axis (blue) is centred on -1 g (see A),
when the device is worn correctly this indicates the wearer is lying on their front. Lying on
the front for most of the day and night would be highly unusual, it is more likely that the
wearer was either sitting (during the day) or lying on their back (at night). Therefore, the
most likely explanation is that the device was rotated 180 degrees about the X-axis. When
standing or walking the X-axis (red) should be approximately -1 g, when approximately
+1 g the knee is above the hip. Therefore, one would normally expect to see periods where
the X-axis is centred on -1 g, but not +1 g as in this period of wear. In addition, periodic
spikes in the signal, such as those in B are indicative of walking and so the occurrence of
these, when the X-axis is centred on +1 g, is highly unusual. The most likely explanation
is that the device was rotated about the Z-axis in addition to the X-axis.
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Figure 7.8: Fall versus normal posture transition 1 (fall ID 3). A shows a fall described in
the incident report as: “Resident was found on the floor half sitting leaning against the
wall on their right side in their bedroom toilet. Conscious and alert with no injury noted
at the time.”. B shows a normal upright to sedentary transition which is similar to the fall.
On the 3D acceleration plots the darker lines are the moving average filtered signals and
the lighter lines are the raw accelerometer signals.
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Figure 7.9: Fall versus normal posture transition 2 (fall ID 4). A shows a fall described in
the incident report as: “Unwitnessed fall, sensor mat alerted staff. Resident was found
sitting on their bedroom floor beside the toilet door, they said they tripped on way to the
toilet.”. B shows a normal upright to sedentary transition which is similar to the fall. On
the 3D acceleration plots the darker lines are the moving average filtered signals and the
lighter lines are the raw accelerometer signals.
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Figure 7.10: Fall versus normal posture transition 3 (fall ID 6). A shows a fall described
in the incident report as: “Resident was found on the floor in the lounge. No falls details
known.”. B shows a normal upright to sedentary transition which is similar to the fall. On
the 3D acceleration plots the darker lines are the moving average filtered signals and the
lighter lines are the raw accelerometer signals.
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Figure 7.11: Fall versus normal posture transition 4 (fall ID 10). A shows a fall described in
the incident report as: “Found on the floor by staff after their alert mat went off. Resident
appeared more confused than usual due to chest infection. Abrasion on arm noted.”. B
shows a normal upright to sedentary transition which is similar to the fall. On the 3D
acceleration plots the darker lines are the moving average filtered signals and the lighter
lines are the raw accelerometer signals.
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Figure 7.12: Fall versus normal posture transition 5 (fall ID 11). A shows a fall described
in the incident report as: “Found on the floor in their bedroom. Resident’s alert mat had
alerted staff to attend, but on arrival, the resident was already on the floor. Resident
was trying to get something out of their drawer.”. B shows a normal upright to sedentary
transition which is similar to the fall. On the 3D acceleration plots the darker lines are the
moving average filtered signals and the lighter lines are the raw accelerometer signals.
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Figure 7.13: Fall versus normal posture transition 6 (fall ID 12). A shows a fall described
in the incident report as: “Resident got up from the chair they were sitting in, lost their
balance and fell.”. B shows a normal upright to sedentary transition which is similar to the
fall. On the 3D acceleration plots the darker lines are the moving average filtered signals
and the lighter lines are the raw accelerometer signals.
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Figure 7.14: Fall versus normal posture transition 7 (fall ID 13). A shows a fall described
in the incident report as: “As staff were supervising resident to sit in the chair they
overbalanced, resulting in them sliding to the floor.”. B shows a normal upright to
sedentary transition which is similar to the fall. On the 3D acceleration plots the darker
lines are the moving average filtered signals and the lighter lines are the raw accelerometer
signals.
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Figure 7.15: Fall versus normal posture transition 8 (fall ID 14). A shows a fall described
in the incident report as: “Resident was cleaning up a spill from their floor and tipped
onto their bottom.”. B shows a normal upright to sedentary transition which is similar
to the fall. On the 3D acceleration plots the darker lines are the moving average filtered
signals and the lighter lines are the raw accelerometer signals.
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Figure 7.16: Fall versus normal posture transition 9 (fall ID 19). A shows a fall described
in the incident report as: “Resident was lying on the floor near their bed. They said
they lost their balance while trying to reach the wardrobe.”. B shows a normal upright to
sedentary transition which is similar to the fall. On the 3D acceleration plots the darker
lines are the moving average filtered signals and the lighter lines are the raw accelerometer
signals.
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Figure 7.17: Fall versus normal posture transition 10 (fall ID 23). A shows a fall described
in the incident report as: “Resident was found lying on the floor by staff. Staff reported
that the resident was in bed when they did the routine night check about 10 min before.
Resident didn’t know how they ended up on the floor. They were not sure whether they
hit their head or not.”. B shows a normal upright to sedentary transition which is similar
to the fall. On the 3D acceleration plots the darker lines are the moving average filtered
signals and the lighter lines are the raw accelerometer signals.



CHAPTER 7. ANALYSIS OF REAL-WORLD FALL SIGNALS 174

Impact Magnitude (g) 1.95 Impact Time (s) 13.0

Peak Count 3 Peak Acceleration Towards the Ground (g) -0.48

Lead-Time (s) 0.25 Vertical Velocity (m/s) -0.61

Orientation Change (°) 85.16 Peak Jerk (m/s³) 46.00

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
su

lt
a
n
t 

A
cc

e
le

ra
ti

o
n
 (

g
)

Extracted Event

15 10 5 0 5 10 15
Time (s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

3
D

 A
cc

e
le

ra
ti

o
n
 (

g
)

A

Impact Magnitude (g) 2.05 Impact Time (s) 5.90

Peak Count 2 Peak Acceleration Towards the Ground (g) -0.49

Lead-Time (s) 0.30 Vertical Velocity (m/s) -0.79

Orientation Change (°) 27.99 Peak Jerk (m/s³) 47.09

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
su

lt
a
n
t 

A
cc

e
le

ra
ti

o
n
 (

g
)

Extracted Event

15 10 5 0 5 10 15
Time (s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

3
D

 A
cc

e
le

ra
ti

o
n
 (

g
)

B

Figure 7.18: Fall versus normal posture transition 11 (fall ID 24). A shows a fall described
in the incident report as: “Resident found on the floor in the bathroom after calling for
help.”. B shows a normal upright to sedentary transition which is similar to the fall. On
the 3D acceleration plots the darker lines are the moving average filtered signals and the
lighter lines are the raw accelerometer signals.
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Figure 7.19: Fall versus normal posture transition 12 (fall ID 26). A shows a fall described
in the incident report as: “Resident was walking for their tea, misjudged their footing and
fell to the ground. Staff and another resident witnessed fall.”. B shows a normal upright to
sedentary transition which is similar to the fall. On the 3D acceleration plots the darker
lines are the moving average filtered signals and the lighter lines are the raw accelerometer
signals.



CHAPTER 7. ANALYSIS OF REAL-WORLD FALL SIGNALS 176

Impact Magnitude (g) 1.59 Impact Time (s) 0.65

Peak Count 6 Peak Acceleration Towards the Ground (g) -0.80

Lead-Time (s) 0.15 Vertical Velocity (m/s) -1.47

Orientation Change (°) 79.82 Peak Jerk (m/s³) 48.03

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
su

lt
a
n
t 

A
cc

e
le

ra
ti

o
n
 (

g
)

Extracted Event

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time (s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

3
D

 A
cc

e
le

ra
ti

o
n
 (

g
)

A

Impact Magnitude (g) 1.92 Impact Time (s) 0.50

Peak Count 4 Peak Acceleration Towards the Ground (g) -0.62

Lead-Time (s) 0.25 Vertical Velocity (m/s) -1.55

Orientation Change (°) 102.18 Peak Jerk (m/s³) 40.34

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
su

lt
a
n
t 

A
cc

e
le

ra
ti

o
n
 (

g
)

Extracted Event

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time (s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

3
D

 A
cc

e
le

ra
ti

o
n
 (

g
)

B

Figure 7.20: Fall versus normal posture transition 13 (fall ID 28). A shows a fall described
in the incident report as: “Resident was found on their bedroom floor.”. B shows a normal
upright to sedentary transition which is similar to the fall. On the 3D acceleration plots
the darker lines are the moving average filtered signals and the lighter lines are the raw
accelerometer signals.
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Figure 7.21: Fall versus normal posture transition 14 (fall ID 29). A shows a fall described
in the incident report as: “Resident had an unwitnessed fall whilst in the conservatory.”.
B shows a normal upright to sedentary transition which is similar to the fall. On the 3D
acceleration plots the darker lines are the moving average filtered signals and the lighter
lines are the raw accelerometer signals.
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Figure 7.22: Fall versus normal posture transition 15 (fall ID 31). A shows a fall described
in the incident report as: “Resident buzzed as they had lost their balance trying to get on
to the toilet.”. B shows a normal upright to sedentary transition which is similar to the
fall. On the 3D acceleration plots the darker lines are the moving average filtered signals
and the lighter lines are the raw accelerometer signals.
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Figure 7.23: Fall versus normal posture transition 16 (fall ID 32). A shows a fall described
in the incident report as: “Resident was found sitting on their bedroom floor, they stated
that as they went to stand their left leg gave way.”. B shows a normal upright to sedentary
transition which is similar to the fall. On the 3D acceleration plots the darker lines are the
moving average filtered signals and the lighter lines are the raw accelerometer signals.
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Table 7.1: Characteristics of falls and normal upright to sedentary posture transitions.

Min LQ Median UQ Max Mann-Whitney U
U ρ p-value

Impact Magnitude (g)
Fall 0.07 0.84 1.48 1.70 2.29 63601 0.93 <0.001Normal 0.01 0.13 0.24 0.40 2.05

Peak Jerk (m/s3)
Fall 7.27 16.71 26.05 41.56 54.81 65918 0.96 <0.001Normal 0.00 2.30 4.14 7.10 47.09

Impact Time (s)
Fall -0.30 0.55 0.72 1.29 13.00 41242 0.60 0.62Normal -0.45 0.35 0.55 1.10 31.10

Peak Acceleration Towards the Ground (g)
Fall 0.12 0.30 0.53 0.62 0.80 64818 0.95 <0.001Normal 0.00 0.06 0.09 0.15 0.89

Vertical Velocity (m/s)
Fall 0.13 0.28 0.69 0.96 1.61 61744 0.90 <0.001Normal 0.00 0.06 0.12 0.21 1.55

Lead-Time (s)
Fall 0.05 0.14 0.15 0.25 0.25 20435 0.30 <0.05Normal 0.05 0.15 0.25 0.60 4.20

Orientation Change (°)
Fall 24.44 61.75 71.65 84.57 103.98 59899 0.88 <0.001Normal 3.32 33.45 40.23 47.68 151.95

Note: N = 16 falls and 4,277 normal transitions. LQ = Lower Quartile, UQ = Upper Quartile. ρ

is the U score normalised to between 0 and 1 by dividing U by its maximum value (N falls × N
Normal transitions), it is a measure of overlap between the two distributions. A ρ of 0 indicates all
the samples in the fall group where lower than those in the normal group, 0.5 indicates complete
overlap and 1 indicates all the samples in the fall group were higher than those in the normal
group.
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Figure 7.24: Distributions for impact-related features. For the violin plots, the dashed
lines show the median, the dotted lines show the lower and upper quartiles and the head
and tail of the violin denote the minimum and maximum values. The area of each violin is
normalised by sample size for each group.
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Figure 7.25: The percentage of events where none, one, two or three of the axes were
clipped at the main impact peak for both normal transitions and falls. Ninety-three of the
normal upright to sedentary posture transitions and eleven of the falls had a clipped signal
on one or more axes.

Figure 7.27 and Figure 7.28 both show the interactions between features; Figure 7.27

shows the distribution for each group for each pair of features and Figure 7.28 shows the

Pearson product-moment correlation coefficients for each pair of features. There were

similar correlations for both groups between impact magnitude, peak jerk, peak acceleration

towards the ground, vertical velocity and peak count. The correlation between impact

magnitude and peak jerk was the strongest of all the pairings. Orientation change was the

only feature for which there were correlations for the falls but not the normal transitions;

correlations between orientation change and all other features were observed only for the

fall group. There are four fall samples (fall ID: 3, 4, 14 and 23) which occupy a space

close to the densest area of normal transitions, these would present a major challenge for

classification.

7.7 Discussion

This study aimed to identify characteristics which are unique to falls and understand why

existing wearable fall detection technology has not achieved an acceptable balance between

sensitivity and precision. To achieve this aim, the most comprehensive analysis to-date of

real-world fall signals was conducted. This was the first study to use posture classification

as a method to select periods of interest for analysis as a possible fall or fall-like motion.

This was also the first study to analyse the interaction between features extracted from the

signals and gain an understanding of which combinations were most valuable in separating

falls from normal movements.
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Figure 7.26: Distributions of peak acceleration towards the ground, vertical velocity, lead
time and orientation change. The dashed lines show the median, the dotted lines show the
lower and upper quartiles and the head and tail of the violin denote the minimum and
maximum values. The area of each violin is normalised by sample size for each group.
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Figure 7.27: Interactions between features where a significant difference between groups
was found. The diagonal axes show histograms for each feature, the top-right axes show
scatter plots for every pairing of the features and the bottom-left axes show a scatter plot
for the fall group overlaid on a density map for the normal transition group. The area of
the histograms is normalised by sample size for each group.
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Figure 7.28: Pearson product-moment correlation coefficients for each pairing of features
for both falls and normal upright to sedentary transitions. Only features for which there
was a significant difference between groups are included. Strong correlations indicate that
little information is gained by using both features over just one of them.

Features were extracted from 4,277 upright to sedentary transition signals and sixteen fall

signals recorded with a thigh-worn triaxial accelerometer. Eight features were extracted

from the signals and the ability to distinguish falls from normal upright to sedentary

transitions based on each feature was evaluated. Significant differences between the two

groups were found for seven out of eight features, however, the analysis also revealed that

the distributions overlap for all of the features extracted in this study. The sections which

follow discuss the results for each feature, what the findings reveal about the performance

of previously developed wearable fall detection and the implications for future research.

7.7.1 Interpretation of Results

The results of the current study are similar to those of Bourke et al. [114] for the following

features which were common to both studies: impact magnitude, peak acceleration towards

the ground and lead-time. The current study focused on upright to sedentary posture

transitions whereas Bourke et al. [114] included all types of motion which may affect the

results. However, since approximately three-quarters of falls appear to be from an upright



CHAPTER 7. ANALYSIS OF REAL-WORLD FALL SIGNALS 186

to a sedentary posture, one would expect the results to be similar. Bourke et al. [114] had

a larger number of falls (n = 100) than the current study (n = 16) but less ADL samples

despite the less restrictive method of event selection (n = 1,908 and 4,277 respectively).

The data used by Bourke et al. [114] were collected in a hospital geriatric rehabilitation

unit rather than care homes, which may explain the difference in fall to ADL ratio. The

rate of falls over time cannot be compared as Bourke et al. [114] did not provide this.

Bourke et al. [114] found some falls with higher impact magnitude, which would be expected

given (1) that all the data in the current study and only an undisclosed portion of their

data were collected with sensors limited to ±2 g, and (2) that the impact peak was clipped

in eleven of the falls in the current study. The current study included a fall (fall ID 3)

with a much lower impact magnitude than any included in the study by Bourke et al. [114]

(minimum of 0.07 g and 0.62 g respectively, once adjusted to account for differing methods).

This low impact fall occupies the space where there is the densest grouping of normal

upright to sedentary transitions for all features, making it hard to detect as a fall without

an extremely high number of false positives. This type of fall could be viewed as rare, given

Bourke et al. [114] did not find any falls with such low impact. However, both studies have

found falls with relatively low impacts which are hard to distinguish from other movements

based on the common methods of vertical motion and impact analysis.

From the analysis of Bourke et al. [114], it is not possible to determine if the low impact falls

could be distinguished from other movements based on the remaining features. However, it

is unlikely that a low impact fall would have a high peak acceleration towards the ground,

vertical velocity or peak jerk and the distributions for the other two features common to

both studies, peak acceleration towards the ground and lead-time, were similar in both

studies. For peak acceleration towards the ground, the results were comparable, although

the peak acceleration towards the ground for the falls group tended to be lower in the

current study (0.3 - 0.53 - 0.62 g versus 0.51 - 0.66 - 0.8 g for lower quartiles, medians and

upper quartiles respectively). For lead-time, Bourke et al. [114] found a greater difference

between groups, as the median lead-time for their ADL group was higher compared to the

normal upright to sedentary transition group in the current study (1.08 s versus 0.25 s

respectively), but there was substantial overlap between groups for both studies. Some

long lead-times (up to 4.2 s) were found in the current study, which Bourke et al. [114] did

not find due to their hard limit of two seconds between the pre-impact nadir and main

impact peak, without the flexibility to extend the two-second window to ensure the true

nadir was found, as in the current study.
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This study was the first to compare vertical velocity at the point of impact for falls and

normal upright to sedentary transitions using real-world data. The results showed vertical

velocity was significantly higher for the falls compared to normal upright to sedentary

transitions. Since vertical velocity is the combination of vertical acceleration and time, it

is related to peak acceleration towards the ground and the results showed a correlation

between the two. Peak acceleration towards the ground appears to be better for fall

detection as there was a greater separation between groups (ρ = 0.9 and 0.95 for vertical

velocity and peak acceleration towards the ground respectively).

Peak jerk had previously been used to compare simulated and real backwards falls, and

significant differences were found [15], however, no study had previously investigated

whether peak jerk could be used to detect falls. The results of the current study showed

that peak jerk was the best feature to distinguish falls from normal upright to sedentary

transitions (ρ = 0.96). Peak jerk was strongly correlated with impact magnitude (r = 0.9

and 0.86 for the normal and fall groups, respectively). This correlation was likely due to a

combination of high impacts giving greater potential for a high jerk, the sample rate not

being high enough to fully capture the shape of the impact peak and the limited range of

the sensor (±2 g) leading to clipped peaks for eleven of the falls. It is possible that the

true peak occurred between samples or was clipped due to the limited range of the sensor,

the true peak could, therefore, be both higher and have a steeper leading edge than that

which the sensor captured.

There is a phenomenon known as the curse of dimensionality whereby the amount of

data required to train a robust model often grows exponentially with dimensionality. The

phenomenon occurs because as dimensionality increases the volume of the feature space

increases and the data become sparse, this makes it relatively easy to fit a model which

divides the space for classification, however, there is a high risk that the model may be

over-fitted and not generalise to unseen data [186]. Since there has consistently been

extremely limited real-world fall data available for the development of fall detection, the

number of features needs to be controlled to avoid the curse of dimensionality. If the

finding of a high correlation between impact magnitude and peak jerk is supported by

future studies, developers should consider only using one of these. In addition to the

correlation between impact magnitude and peak jerk, there were correlations, albeit weaker

ones, between all of the following features: impact magnitude, peak jerk, peak count, peak

acceleration towards the ground and vertical velocity. As research yields new features
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which can be used for fall detection, developers should consider only using a subset of these

features which characterise vertical motion and impact.

This study is the first to devise a method to count impacts and assess the use of impact

count as a feature to distinguish falls from other movements. The results showed that

multiple impacts are rare in normal upright to sedentary transitions (n = 109 or 2.5 percent),

but present in almost seventy percent (n = 11) of falls (Figure 7.24). Therefore, the use

of an impact count for fall detection shows promise and warrants further investigation in

future studies. The method used in this study was relatively simple and used an arbitrary

peak height threshold of 0.5 g for a peak to be counted as an impact. There is, therefore,

considerable scope to refine the method of selecting peaks to count as an impact which

may improve the separation between falls and normal upright to sedentary transitions.

In addition to simply counting impacts, there is the potential to engineer features to

characterise any secondary or tertiary impacts, or engineer features which combine impacts

into single features, for example, total impact magnitude as the sum of all impact peak

magnitudes. The analysis of secondary and tertiary impacts could not be added to the

current study without increasing the risk of type I errors due to a high number of tests on

a small sample of falls. However, impact count was shown to be a useful feature, although

109 (2.5 percent) normal posture transitions had multiple impacts. Analysis of secondary

or tertiary impacts may reveal features which are necessary to distinguish between the

normal transitions with multiple impacts and the falls. Hence, such analysis combined with

refinements to the identification of impacts has great potential to improve fall detection

performance.

This was the first study to analyse differences in the change in orientation of the thigh

between falls and normal upright to sedentary transitions. The results showed that the

orientation change in the recorded falls was significantly greater (p<0.001) compared to

the normal upright to sedentary transitions. The findings for thigh orientation change in

the current study were similar to those of Bourke et al. [114]. For the maximum torso

angle from vertical, Bourke et al. [114] also found that falls had a significantly greater

maximum angle, and in both studies the fall group showed a positive skew and the other

group showed a negative skew with overlapping distributions. Direct comparison between

studies is not possible due to the different sensor locations.

The data showed a correlation between orientation change and impact magnitude, peak

jerk, peak acceleration towards the ground and vertical velocity only for the falls and
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not the normal upright to sedentary transitions. The difference in correlation between

groups for orientation change, combined with the significant differences between groups

for these aforementioned features, suggests that the combination of orientation change

with characteristics of vertical motion and impact should lead to relatively good separation

between groups, compared to other combinations of features where the correlation for

both groups was similar. Indeed, analysis of how orientation change interacts with other

features revealed that the combination of a high orientation change combined with a high

impact magnitude, peak jerk, peak acceleration towards the ground or vertical velocity is

rare for normal transitions but relatively common for falls. These combinations appear to

give the greatest separation between groups (see Figure 7.27), although only eight of the

falls sit clearly separate, except for a pair of outliers, from the normal upright to sedentary

transitions.

7.7.2 Insights into the Performance of Previously Developed

Wearable Fall Detection

The findings of this study provide insight into the performance of fall detection which

has been developed previously and tested with real-world data. For example, Kangas

et al. [20] tested an algorithm which used a logical AND to combine simple thresholds for

peak acceleration towards the ground, impact magnitude and orientation relative to gravity.

The algorithm was tested using a waist-worn accelerometer and achieved a sensitivity of

0.8 and precision of 0.03 in a test with fifteen falls recorded over a total 1,105 days from

sixteen participants. It is the ratio of thirty-three false alarms for every fall detected which

is the biggest issue and from the results of the current study is not unsurprising. It does

not appear to be possible to separate eighty percent of falls based on peak acceleration

towards the ground, impact magnitude and orientation without a comparatively large

number of false alarms.

Bagala et al. [17] tested thirteen previously published algorithms using a set of twenty-nine

falls and 1,170 sixty second non-fall periods extracted from 168 hours of accelerometer

recordings using an activity detection algorithm. To collect the data, a lumbar-worn device

was worn by nine participants with progressive supra-nuclear palsy and one community-

dwelling older adult. All of the algorithms tested were based on thresholds for two or

more of the following combined with a logical AND, impact magnitude, peak acceleration

towards the ground, velocity and orientation. The performance of the algorithms was
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(mean ± SD) a sensitivity of 0.57 ± 0.27 and a precision of 0.19 ± 0.1, with the best

performance being an algorithm which used all of the above features to achieve a sensitivity

of 0.83 and a precision of 0.38. From the results of the current study, it would appear

unlikely that markedly better performance could be achieved using these features and that

the performance of the best algorithm is unlikely to be reproducible with the dataset used

here.

Based on the results of this study, approximately twenty-five percent of falls cannot

be distinguished from normal upright to sedentary transitions using the features tested,

without exceptionally high rates of false positives (these were fall ID 3, 4, 14 and 23). This

is because these falls had low acceleration towards the ground, vertical velocity, impact

and orientation change and occupied the region of this feature space where there was the

densest grouping of normal transitions (see: Figure 7.27). Only around fifty percent of falls

occupy a space which is distinct, baring outliers, from the normal upright to sedentary

transitions and could be detected with relatively high precision. The remaining twenty-five

percent of falls occupy a space distinct from the densest area of normal upright to sedentary

transitions, but which is still occupied by many more normal transitions than falls.

7.7.3 Implications for Future Research

There is a clear need to find new approaches if significant gains in fall detection performance

are to be found. Lead-time (the time between the pre-impact nadir and the impact peak)

is a feature which appears to have potential to reduce false positives due to the tight

grouping of the falls, however, the majority of normal transitions have a low lead-time and

occupy the same space as the falls. Therefore, the use of lead-time is unlikely to keep false

positives to an acceptable level if a classifier was designed to detect the most troublesome

falls, which based on current methods cannot be separated from normal transitions.

The prevailing approach to wearable fall detection could be characterised as based on a

model of a falling object, which once falling continues until it strikes the ground. In contrast

to an object, people can influence their motion through interaction with the floor, walls

and surrounding objects such as furniture. People also have a natural reaction to try and

stop themselves falling, or at least lessen the impact, which could include grabbing onto

furniture, reaching for a wall to provide support or breaking the fall with their arm. These

reactions could lead to a somewhat controlled descent and multiple relatively small impacts
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rather than one large one. The results of this study showed that almost seventy percent of

falls had multiple impacts, compared to less than five percent of normal transitions and

that there was overlap between falls and normal transitions for the features based on peak

vertical motion and impact. Therefore, falls with multiple impacts, where the largest is no

greater than those which occur in normal transitions, appear common.

Based on the findings of this study, it would appear that features which assess secondary

and tertiary impacts have the potential to unlock fall detection performance which has

previously been unattainable. In this study, the elementary approach of simply counting

impacts was used to explore, for the first time, how the number of impacts differed between

falls and normal transitions. The analysis showed that a count of peaks as a proxy for

impacts could achieve a good separation (ρ = 0.94) between falls and normal transitions.

Future studies could expand on this approach in several ways, for example, by improving the

method of identifying impacts through analysis of the shape of the peak, by characterising

the magnitude of all impacts or by characterising the motion before subsequent impacts

in the same manner as has been done for the main impact. In addition, the direction of

motion before impact could also be analysed to identify any difference between the small

proportion of normal transitions with multiple impacts and falls.

Another potential area which could be further explored is the use of activity monitoring

and posture classification to identify types of falls and the use of different classifiers for

each type. This study is the first to use posture analysis to identify periods of interest for

analysis as a potential fall. Previously studies have sliced their entire set of recordings

into fixed-length windows and either used all the windows [e.g. 109] or used an activity

detection algorithm to select windows [e.g. 114]. Upright to sedentary posture transitions

were the focus of this study because this was the only activity class for which enough fall

data were available; only four of the falls recorded were not from upright to sedentary and

subdividing the sixteen upright to sedentary falls would have led to too few fall samples in

each category and increase the risk that findings will not generalise. None of the features

or pairs of features analysed were able to fully separate falls from the normal transitions,

however, this has also been the case in all real-world fall detection research. It may be

that grouping all upright to sedentary transitions together results in too broad a category,

and further subdivision may be beneficial where enough data is available to facilitate this.

The grouping of upright to sedentary posture transitions encompasses transitions to

sedentary from walking, from quiet standing and upon standing from a sedentary posture.
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For each of these subgroups, there is the potential to extract features specific to the group.

For example, in a transition from walking to sedentary the walking period could be analysed

to identify signs of imbalance such as a dramatic change in cadence. Where there is a

return to sedentary upon standing, the orientation of the thigh could be assessed before

and after the attempt to stand to assess if there was a return to the original position

(i.e. sitting back in a chair) or a new position (i.e. on the floor following a fall). By first

identifying the type of transition, features can be extracted which are specific to the pre

and post-fall activities, without this context one is limited to only generic features which

make sense in any context. Where future studies have enough data to divide their dataset

according to the context of the fall, it is recommended that this approach is used so that

new context-specific features can be investigated. This approach of combining activity

monitoring with fall detection could also allow each fall to be automatically classified by

type, something which could be highly valuable in falls research.

The findings of this study primarily have implications for research into wearable fall

detection, however, the knowledge gained on the mechanics of falls is also useful for non-

wearable approaches. Given that there was substantial overlap between the falls and normal

transitions for impact magnitude, approaches based on sensing vibration are unlikely to

achieve a high level of performance. The results indicated that profiling vertical motion

and change in orientation is not sufficient for reliable detection of falls without high rates

of false positives. However, systems which can directly measure displacement, such as

computer vision or Doppler radar, may find differences which cannot be detected with an

accelerometer due to difficulty accurately estimating displacement. The approach of using

activity monitoring to identify periods of interest and analysing pre posture transition

activities could be applied to computer vision approaches to utilise the rich set of data

these systems can collect.

7.7.4 Limitations

This study was limited by the small sample of falls, an issue which has been common in

the majority of fall detection studies which have used real-world data (see Table 4.2). In

the review of real-world fall detection studies (Chapter 4), the median number of falls used

was 17.5 (IQR 8.25 to 29 falls), in line with the number of fall samples used in the current

study. Where features were common, the findings agree with that of Bourke et al. [114],

which is the only other study to analyse features rather than test fall detection technology.
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The findings also fall in line with what would be expected based on the performance of fall

detection technology which has used the features analysed here [e.g. 17,20]. This agreement

with other studies gives reassurance that, despite the small sample of falls, the findings are

valid and likely to generalise.

The limited range of the activPAL3 sensor of ±2 g and the low sample rate of twenty hertz

were also both limiting factors. High impact magnitudes were missed due to the limited

range in eleven of the falls, and even for lower magnitude falls the true peak may have

occurred between samples and therefore been missed. Similarly, peak jerk may have been

underestimated due to the limitations of the sensor preventing the shape of the peak to be

accurately captured. These limitations are not unique to this study, Bourke et al. [114]

also used the activPAL3 device to capture some of their data and therefore had the same

limitations. Future studies should use a device which is capable of greater than ±2 g range

and has a higher sample rate such as fifty hertz if this is achievable without reducing

participant comfort due to a larger device or increasing inconvenience as a result of a need

for frequent recharging.

7.7.5 Conclusion

This study was the first to analyse real-world fall signals recorded with a thigh-worn

triaxial accelerometer and to integrate posture classification to identify periods of interest

for analysis. The results showed that features which have been commonly used in previous

wearable fall detection were not able to separate the falls from normal upright to sedentary

posture transitions with acceptable precision. The analysis of secondary and tertiary

impacts emerged as a promising area for further research as almost seventy percent of falls

had multiple impacts compared to less than five percent of normal transitions. The use of

posture classification as the first step in fall detection has greater potential than could be

explored in this study due to the small sample of falls. Where enough data is available,

future studies should consider further categorisation and extraction of features specific

to the pre and post-transition activities such as analysis of steps during walking periods.

The most promising areas for further research appear to be the characteristics of multiple

impacts and the extraction of features specific to pre and post-fall activities.
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Summary, Recommendations

and Conclusions

8.1 Summary

There are two areas where fall detection can contribute to the problem of falls: (1) as an

alarm system and (2) in falls research to accurately track the occurrence of falls. Research

has shown that when provided with a push-button alarm, over eighty percent of fallers do

not activate their alarm even when they cannot get up without assistance (Section 2.3.1).

The automatic detection of falls would remove the need for the faller to acknowledge the

need for assistance and reduce the occurrence of long-lies and their associated consequences.

Accurate records of fall occurrence are vital in fall risk assessment and fall prevention

research. The ability to detect falls would also remove the need for research to rely on

self-report or reports by care staff, which are known to be unreliable, to track the occurrence

of falls (Section 2.3.2). In addition, the technology used to automatically detect falls could

also be used to gather information about the falls which occur as well as monitor activities

and behaviours in the lead up to a fall. Such technology could revolutionise fall prevention

research and lead to a reduction in the occurrence of serious falls.

The overarching aim of the research presented in this thesis was: to identify why existing

wearable fall detection technology has not achieved acceptable performance and where

194
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further development should focus. The main aim was divided into the following five sub-

aims: (1) to formulate a new framework for the development of fall detection technology, (2)

to identify how fall detection performance should be quantified, (3) to test the activPAL3

device as an instrument to record fall signals, (4) to collect a real-world dataset of falls

and activities of daily living comparable in size to the largest used in previous studies, and

(5) to analyse real-world fall data in line with the proposed framework such that the main

aim is achieved.

8.1.1 A Framework for the Development of Fall Detection

Chapter 3 presented a review of the literature on previous approaches to fall detection and

based on the findings a new framework for the development of fall detection technology

was proposed. The majority of research on fall detection had used simulated (acted) falls

and ADL, however, the evidence showed that these were a poor substitute for real-world

data. Where fall detection technology had been tested on both simulated and real-world

data, the performance was substantially worse in the real-world. Hence, the conclusion

that real-world data was needed to identify how performance could be improved beyond

the current state-of-the-art.

The studies that had used real-world data had focused on testing performance (as had the

majority of studies which used simulations); as a result, there was a lack of understanding

as to how performance could be improved. Therefore, a new framework for iterative

development of fall detection technology was proposed. The framework emphasised a

feedback loop between each test of performance where the following research is carried

out: (1) analysis to understand the detection errors which occurred, (2) development and

testing of new feature extraction techniques, and (3) testing of how useful the new features

are for fall detection. The critical component, which has been missing in the literature, is

the study of how well features distinguish falls from ADL and how features interact. It

is through such analysis that evidence is accumulated to steer the path of development

and to support design decisions; without this research, one cannot hope to make efficient

progress.
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8.1.2 How Fall Detection Performance Should Be Quantified

Through a systematic review of the methods used to evaluate fall detection performance

using real-world data (Chapter 4), the strengths and weakness of the various methods used

previously were identified and a new approach was proposed. This was the first-ever study

to look into how the performance of fall detection technology can be robustly assessed and

several important issues were identified. For certain measures of performance commonly

used, such as specificity and accuracy, there is a need for a count of true negatives which

are segments of data that contain no fall signal and were correctly classified as not a

fall. The main issue the review identified was a lack of consistency in how non-fall events

were defined or identified and that the method used was likely to influence the results for

measures of performance which rely upon true negatives more than the actual technology

being tested. As a result, it was recommended that measures which rely on a true negative

count be avoided and that sensitivity be used to assess the ability to detect falls, precision

be used to assess the ability to avoid false alarms and F-measure be used as an overall

measure to compare systems.

8.1.3 Suitability of the activPAL3 for Fall Detection Research

A pilot study was conducted (Chapter 5) to record posture and simulated fall data so that:

(1) algorithms for the classification of posture before and after a fall could be developed

and tested, and (2) the occurrence of clipping in signals recorded by an activPAL3 during a

fall could be assessed. This was the first study to investigate if a thigh-worn accelerometer

could be used to classify pre and post-fall posture. Data were recorded for common ADL,

on-the-floor postures and simulated falls, all of which were conducted by young healthy

adults. The developed algorithms could robustly distinguish upright and sedentary (sitting

or lying) postures, but not sitting from lying. A threshold was devised which, the results

showed, could identify lying flat on the front robustly; however, this was the only form of

lying which could robustly be identified. When lying flat on the back, the orientation of

the thigh is the same as sitting and this presents a substantial challenge for which there

was no clear solution.

Rotation of the thigh about the longitudinal axis had been used previously to detect lying

in bed [171]. This approach worked because people typically lie fully on their side at some

point during a period of sleep. However, the same assumption could not be made for the
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moments which follow a fall, hence a more sensitive algorithm was developed. The results

showed that to classify all of the recorded side-lying periods as lying required a threshold

of just thirty degrees thigh rotation. It was deemed that such a threshold would result in

substantial misclassification of sitting as lying in real-world use.

The analysis revealed that clipping occurred in the majority of the simulated fall recordings.

The activPAL3 device was initially selected due to its small size, good battery life and

because it had a proven track record in monitoring movement of older adults. While

clipping of the signals was not desirable, on balance, it was deemed that the activPAL3

was a suitable device to record real-world fall and ADL signals. Due to continued advances

in technology, the most suitable device continually changes. Therefore, future studies must

reassess which device is most suitable for this work and should consider both wearable and

non-wearable devices.

8.1.4 The Collection of a Real-World Dataset

Following the pilot study, a collaborative project with Four Seasons Health Care was

launched to monitor care home residents using the activPAL3 and record a real-world

dataset of falls and ADL (Chapter 6). The project ran for two years and a total of 1,919

days of recordings were collected with forty-two participants recruited from seventeen care

homes. To establish which signal corresponded to the falls, two researchers independently

analysed the signals in conjunction with the fall reports provided by the care homes. Where

there was initial disagreement, a final decision was reached through collaboration. A

total of thirty-two falls were reported during periods where accelerometer recordings were

available. Twenty of the falls were identified in the accelerometer signals, four were deemed

not valid, six occurred when the accelerometer was not worn and for two of the falls, no

signal could be identified which matched the provided description.

The collected real-world fall dataset is one of the largest to date and represents a significant

contribution to the field (see Table 4.2 for details of datasets used in previous studies). The

only larger dataset collected with wearable sensors is a repository of 300 falls from the EU

funded FARSEEING project which had substantially more resources, was a collaboration

between six institutions and ran for four years, twice the duration of the data collection

for this thesis. Eighty-nine falls did occur in the study by Lipsitz et al. [21], however,

they tested a proprietary wearable fall alarm and the data were not stored, so analysis
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of the signals and tests of alternative classifiers are not possible. Twenty falls is a small

sample and is not enough to both develop and test a robust fall detector, however, given

the challenges in recording real-world falls the collection of a dataset of this size is a

considerable accomplishment.

The main limiting factor in the size of the dataset was participant recruitment. Participant

recruitment was carried out by the care staff in each of the homes involved; their priority

was providing quality care and could only spend limited time on recruitment. Due to their

existing relationship with the residents, care staff were best placed to carry out participant

recruitment, especially where there were doubts over mental capacity. Therefore, the

provision of funding to cover staff time spent on recruitment, in addition to their normal

working hours, may be the most effective approach to increase participant numbers. Future

studies should carefully consider the level of support required by any partner organisations

involved in the recruitment of participants.

8.1.5 Insights into Why Previous Wearable Fall Detection Has

Not Achieved Acceptable Performance and Where Further

Development Should Focus

A comprehensive analysis of the real-world data was conducted to identify features of the

signals which could be used to reliably detect falls (Chapter 7). A total of 4,277 normal

upright to sedentary posture transitions were extracted and compared to the sixteen falls

which were also transitions from an upright to a sedentary posture. The comparison

consisted of eight features based on impact, vertical motion and orientation, four of which

were the most commonly used in previous approaches to wearable fall detection. The

study included a number of firsts in the field of real-world fall detection: it was the first

to discern that falls may be too diverse to classify as a single group and focus on a single

subtype of fall, it was the first to use posture transitions to select events for analysis, it

was the first to assess the importance of vertical velocity at the point of impact for fall

detection, it was the first to assess the importance of peak jerk for fall detection and it

was the first to investigate the occurrence of multiple impacts during falls.

The results showed that the core features used in wearable fall detection (impact magnitude,

peak acceleration towards the ground, vertical velocity and orientation change) do not

yield sufficient separation of the falls to allow them to be detected without high rates
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of false positives. Peak jerk was found to give the greatest separation between falls and

normal transitions of all the features tested. This finding indicates that a rapid increase

in deceleration is more indicative of a fall than the peak deceleration. Peak jerk was also

found to be highly correlated with impact magnitude; if future studies reproduce these

findings then peak jerk should be used instead of impact magnitude. Combining both

impact magnitude and peak jerk would provide little benefit to performance but would

increase the complexity and the risk of over-fitting.

The analysis revealed that multiple impacts occur frequently in falls, but not in normal

posture transitions. However, due to the rarity of falls, there were still almost ten times as

many upright to sedentary posture transitions than falls with multiple impacts. There is,

therefore, a need to find new features which can be used to distinguish between the falls

and normal transitions where multiple impacts occur. Future research should investigate

the extraction of features, similar to those used for the main impact and the preceding

motion, from the secondary and tertiary impacts, where these occur. Since these impacts

may be the result of lateral, rather than vertical, motion there is a need to develop methods

to characterise any lateral motion which precedes an impact.

8.2 Recommendations for Further Research

The vast majority of published articles on wearable fall detection have simply tested some

aspect of fall detection technology, primarily this has focussed on the classifier (software)

[e.g. 17], but tests of complete systems have also been conducted [e.g. 21]. Through such

tests, one learns only how that specific approach performs, yet very little can be learned

from the results about why the performance was better or worse than other approaches.

When looking at the field as a whole, the approach to fall detection could be characterised

as trial and error. Given the lack of studies into how falls are unique, there is little evidence

on which to base new approaches or to support adjustments to previous ones and these

appear not to have been based on empirical evidence. Only through analysis such as that

detailed in Chapter 7, can one gain insight into how performance can be improved.

There is a need for the focus of research to shift away from testing classifiers and to

instead focus on feature generation, the process of identifying new features which are

useful for classification. Therefore, future research should be planned in accordance with

the framework proposed in Section 3.7, as was the case for the research presented in this
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thesis. The results presented in Chapter 7 showed that the main features used previously in

wearable fall detection (impact magnitude, peak acceleration towards the ground, vertical

velocity and orientation change) do not yield sufficient separation between falls and ADL.

The analysis indicated that the current level of performance is likely to be the maximum

possible through a combination of these features. Therefore, new features are needed to

realise any substantial improvement in performance beyond the current state-of-the-art.

One new feature which should be explored further is impact count. The method used

in Chapter 7 to count impacts was a basic peak height threshold arbitrarily set at 0.5 g.

There is considerable scope for research into methods of identifying impacts and to assess

if these produce a greater separation between falls and ADL. In addition, there is potential

to research which characteristics of secondary and tertiary impacts, and of the motion

which precedes them, are different between falls and ADL.

The use of activity monitoring algorithms in fall detection is another area where further

research is worthwhile. The study presented in Chapter 7 was the first to use posture

analysis as a method to identify potential falls. Due to having only a small sample of fall

signals, only falls from upright to sedentary were investigated and this limited the analysis

which could be conducted. Where larger samples are collected in future, studies should

separately investigate falls from walking, falls from quiet standing and falls upon standing

from a sedentary posture. Such separation would allow investigation of features specific

to each pre-fall activity, this could include, for example, development of algorithms to

characterise stability in standing up, in walking and changes in walking stability in the

lead up to the transition to a sedentary posture.

The main limiting factor in the research for this thesis was the volume of real-world fall

data collected; the small sample limited the scope of the analysis which could be conducted.

It has long been established that the collection of real-world fall data is challenging due to

their rarity and the lack of real-world data has been the main hindrance to progress in the

field as a whole. One issue is that the collection of even a small sample of falls requires

a large scale project and therefore a considerable investment. A potential approach to

increase the return on this investment is to combine fall data collection with other activity

monitoring studies. Where activity monitoring studies are conducted on those with a high

fall risk there is the potential to additionally collect fall reports so that the data can be

used for fall detection research. This approach of collecting fall reports as part of other

studies is likely to be the most effective approach to collecting real-world fall data.
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8.3 Conclusions

This thesis includes the first investigation of how fall detection research has been conducted.

It was identified that the focus had been on testing complete systems rather than developing

an understanding of which characteristics are unique to falls and building an evidence base

to underpin new approaches. A new iterative framework was proposed which outlined the

steps needed to ensure efficient progress on fall detection performance. This thesis also

included the first look into how fall detection technology should be tested using real-world

data. It was established that sensitivity and precision are the most informative measures

of performance and the harmonic mean of these, F-measure, is the most suitable measure

to compare approaches.

This thesis presented the most comprehensive analysis of real-world falls to have been con-

ducted. The analysis demonstrated that rapid vertical motion and high impact magnitude

are not unique to falls and not all falls exhibit these features. This finding is critical since

the prevailing approach to wearable fall detection has been the identification of a single

high magnitude impact, rapid vertical motion and change in orientation. It is now clear

that while there is value in impact magnitude, vertical motion and change in orientation,

they are not sufficient for high-performance fall detection.

For the first time falls were shown to commonly have multiple impacts but these were rare

in normal posture transitions. Therefore, a count of impacts could improve fall detection

performance. Additionally, characterisation of secondary and tertiary impacts warrants

further investigation to identify any differences between the falls and ADL with multiple

impacts.

This was the first research to explore the use of posture transitions to restrict the type

of movement and was only limited to upright to sedentary transitions due to the small

sample of falls. There is considerable scope to further investigate the use of posture and

activity classification in fall detection. The extraction of features specific to the activity

prior to a descent towards the ground and the characterisation of multiple impacts are the

main areas where there is potential to find performance improvement beyond the current

state-of-the-art.

These findings represent a significant contribution to the field of fall detection through

(1) identifying the limitations in the way fall detection research has been conducted and
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proposing a new framework, (2) identifying the most informative measures of real-world

fall detection performance, (3) furthering the understanding of how to detect falls, and (4)

identifying promising areas for further research which had previously not been considered.
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A Overview of Fall Risk Assessment & Prevention

A.1 Fall Risk Assessment

In the UK, the guidelines indicate that a fall risk assessment should look for factors which

may cause a fall such as gait, balance, mobility or muscle problems, home hazards, visual

impairment and cardiovascular health [187]. The UK National Institute for Health and

Care Excellence (NICE) advocate that persons with gait or balance abnormalities or who

have fallen should be given a multifactorial risk assessment [187]. NICE recommend that

assessments look at factors, such as osteoporosis, which may make injuries from a fall more

severe. NICE also suggest assessments consider other factors which have been linked to

falls, such as urinary incontinence, cognitive impairment, perceived functional ability and

fear of falling.

A vast array of fall risk assessment tools have been reported in the literature, often these

have only gone through limited testing and are therefore not ready for widespread adoption

[188–190]. Most assessments fit into one of two categories, assessments of physical function

or multifactorial assessments which encompass a range of factors [189]. Multifactorial assess-

ments are most commonly used in LTC and hospital settings whereas assessments of physical

function are most commonly used to assess community-dwelling older adults [188,191].

Multifactorial assessments can be further categorised as either comprehensive multidisci-

plinary assessments or screening tools, commonly either a questionnaire or form filled out

by a nurse or general practitioner.

A.1.1 Comprehensive Multidisciplinary Assessments

Comprehensive multidisciplinary assessments comprise examination by a range of specialists

and may form part of an overall geriatric assessment or be carried out as a standalone

assessment following a fall [188]. The expert opinion of multiple specialists makes this

the most rigorous form of assessment and most likely to identify suitable interventions.

However, due to requiring multiple specialists to carry out detailed assessments, they

are time-consuming, expensive and cannot be widely adopted [188]. Comprehensive

multidisciplinary assessments can be very specific to the patient, however while flexibility
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may be good for the patient, it makes it challenging to assess their effectiveness. Although

with multiple specialists making assessments these are likely to be effective.

A.1.2 Multifactorial Assessment Tools

Multifactorial assessment tools assess a set of factors known to be associated with fall risk

such as cognitive function, mobility, medications and fall history [188,189]. Most of these

tools are used in face-to-face meetings, however, some can be conducted over the phone or

completed independently by the patient [189]. The complexity of assessments varies widely

and they can take anywhere from a few minutes to over an hour to complete [188,189].

The more simple multifactorial tools solely use yes/no or multiple-choice questions and

can, therefore, be scored easily, whereas more complex assessments include open questions,

which can be subjective and require clinical expertise to interpret [188].

Wagner et al. [190] studied the fall risk assessment tools used in nursing homes and found

a wide variety of approaches, the majority of which had not been validated. The findings

of Wagner et al. [190] are perhaps unsurprising given the lack of clarity in the literature.

Currently, it is challenging to determine which assessment tool is most appropriate for a

given circumstance due to a limited evidence base. No multifactorial assessment tools have

been shown to be accurate in multiple settings and therefore different tools should be used

for assessments in the community, LTC and hospitals [189,191]. Many of these tools have

only been through limited testing and where testing has been more extensive, results have

been highly variable [189,191].

One of the most extensively tested tools is the St. Thomas’s Risk Assessment Tool in

Falling Elderly Inpatients (STRATIFY), which is commonly used in hospital settings [189].

STRATIFY provides a good illustration of the current performance of multifactoral

assessment tools; its reported performance is broadly similar to that of other tools and it is

one of the most tested [189,191,192]. The reported sensitivity and specificity of STRATIFY

ranges from 0.66 to 0.93 and 0.34 to 0.68, respectively [191,193–200]. These sensitivity and

specificity scores show that STRATIFY does not accurately classify fall risk. Indeed, when

compared to the clinical judgement of nursing staff, STRATIFY has been found to be no

more accurate [192,193].
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A.1.3 Physical Function Assessment Tools

Physical function assessment tools focus on identifying physical limitations in mobility,

gait and balance [188]. Since many physical limitations have been associated with fall risk

(Section 2.2), a number of physical function assessment tools have been tested for this

purpose. Physical function assessment tools vary widely in terms of complexity and the

time required to complete them. Some of these tools assess physical function on a single

task and may take only one minute to complete whereas others include multiple tasks and

may take twenty minutes [188,189].

A commonly used and well-tested example of a quick and simple assessment of physical

function is the Timed Up and Go test (TUG) [189,191]. TUG is recommended for routine

screening by both the American Geriatric Society and the British Geriatric Society [201].

TUG measures the time taken to stand from a chair, walk three metres, turn around,

return to the chair and sit down. In a recent meta-analysis, TUG was found to identify

high fall risk persons with a sensitivity of 0.76 and specificity of 0.49 [191]. However, the

reported performance of TUG varies widely between studies, sensitivity ranges from 0.67

to 0.83 and specificity ranges from 0.19 to 0.89 [191]. There is a large body of evidence

which shows that TUG is a poor predictor of fall risk [191,202,203].

The Berg Balance Scale (BBS) is an example of a more comprehensive physical function

assessment tool. BBS consists of fourteen balance-related tasks including variations of

standing, sitting, transfers and turning [204]. A recent meta-analysis found BBS identified

those at risk of falling with a sensitivity and specificity of 0.73 (range 0.50 to 0.92) and

0.90 (range 0.82 to 0.94), respectively [191]. It is clear that although more accurate

than TUG, the BBS predicts fall risk with less than desirable accuracy. The reported

performance of other physical function assessment tools is broadly similar to that of TUG

and BBS and there are currently none which predict falls with a high degree of accuracy

[188,189,191,205].

A.1.4 Fall Risk Assessment Summary

The evidence suggests that a team of clinicians can identify risk factors and suitable

interventions, however, the cost of such assessments is likely to prevent their widespread

adoption. By contrast, there is limited evidence to support less time-consuming assessment

tools which could be carried out by a general practitioner or community nurse during a
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routine appointment. Current fall risk assessment tools provide insufficient accuracy and

there is limited evidence to support their use over clinical judgement [189,191,193,206,207].

A.2 Fall Prevention

Evidence suggests that tailored interventions which address the individual risk factors are the

best approach to prevent falls [28,208]. In the UK the National Institute for Health and Care

Excellence (NICE) recommend strength and balance training combined with interventions

to mitigate home hazards, visual impairments and the effects of medication [187]. The

following sections provide an overview of the efficacy of these types of interventions.

A.2.1 Exercise Interventions

In community-dwelling groups exercise has been shown to significantly reduce the risk of

falling [28,209]. Numerous studies have shown that exercise which contains strength and

balance components reduces both the rate and risk of falls, independent of whether it was

carried out in a group or at home [for reviews see 28,209]. Conversely, it is unclear if exercise

interventions reduce the rate or risk of falls in care facilities or hospitals, due to insufficient

quality evidence [208,209]. There is good evidence to support exercise interventions for

those with cognitive impairment [209,210] and Parkinson’s [209]. However, further research

is needed on the effect of exercise on fall risk in other clinical groups [209].

A.2.2 Medication Adjustments and Dietary Supplements

For those on medications which are known to increase the risk of falling, gradual withdrawal

has been shown to reduce the rate of falls for those in the community but not those in

care facilities [28,208]. Within fall prevention research Vitamin D is the main supplement

which has been tested [28,208]. The rationale is that Vitamin D supplementation may help

maintain or improve muscle and bone strength [211]. However, the two latest Cochrane

reviews found Vitamin D did not reduce the rate of falls or risk of falling, except where

Vitamin D levels were low [28,208]. High levels of vitamin D supplementation may increase

the risk of falls and is not recommended [212].
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A.2.3 Hazard Assessment and Mitigation

Solutions to mitigate fall-related hazards can be put in place following an assessment.

Hazard mitigation may, for example, include environmental adaptations or the provision

of mobility aids. Such interventions have been shown to be particularly effective in those

with high fall risk or visual impairment [28]. For those with very high fall risk due to poor

mobility and cognitive impairment, chair and bed presence sensors can be used to alert

care staff. However, evidence demonstrating their effectiveness in reducing falls is limited

[208].

A.2.4 Fall Prevention Summary

Exercise-based interventions have the strongest evidence base, however, further research is

needed to assess the efficacy in clinical settings [28,208,209]. The evidence to support fall

prevention interventions is stronger in community-dwelling groups compared to clinical

settings [28,208]. The quality of studies in clinical settings is low and no interventions

have been shown to be highly effective [208]. More research is needed to identify effective

interventions and which specific groups each intervention is most appropriate for.
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B Pilot Study Ethical Approval



Email to healthy participants, Version 4 (15-01-2015)

“Research volunteers required to help develop a novel falls detection monitor”

Falls and their related injuries among older people are common and have serious impacts on the
individual,  their family,  the health service and the economy. The focus for this proposal  is  the
development of a novel wearable system for falls detection. This approach shows promise, but
current  systems are  greatly  limited by poor  specificity,  and/or  the acceptability  in the case of
systems based on numerous sensors.
 
We are seeking healthy participants  aged between 18-60, who would be willing to come to the
human physiology lab (Mary Seacole, University of Salford) to simulate a range of on-the-floor
postures, daily activities (such as sitting and walking) and falls. The falls will be simulated on a
gymnastics mat. With the various posture and falls data we will be able to design a falls detection
system which will be significantly more robust than what is currently available.  
You will not be eligible to participate in this study if you:

 have had a previous fracture, 

 have been diagnosed with osteoporosis

 have been diagnosed with any heart condition requiring medication

If you agree to take part in the study, you will be required to visit the human physiology laboratory
at the University of Salford on one occasion. The total time for the visit is 1-1/2 hours. The visit will
involve:

 Attachment of the thigh worn device 

 Simulation of on-the-floor postures e.g lying on front/back

 Simulation of daily activities e.g walking, sitting

 Simulation of falls onto a gymnastics mat

 
Anyone interested in the taking part should email Robert Broadley at: 
R.Broadley@edu.salford.ac.uk.
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C Pilot Study Recruitment Documents

C.1 Pilot Study Recruitment Email



 

1 
 

 

GMAHSN - Development of a novel fall detection monitor 

Participant Information Document Version 3.4 (14-01-15) 

 

INFORMATION ABOUT THIS DOCUMENT 

You are being invited to take part in a research study to help us develop a new device which will 

detect falls. Before you decide, it is important for you to understand why the research is being 

done and what it will involve. This document gives you important information about the purpose, 

risks, and benefits of participating in the study. Please take time to read the following information 

carefully. If you have any questions then feel free to contact the researcher whose details are 

given at the end of the document. Take time to decide whether or not you wish to take part.  

PROJECT TITLE: 

DEVELOPMENT OF A NOVEL THIGH WORN FALL 
DETECTION MONITOR 

BACKGROUND TO THE STUDY 

Falls and their related injuries among older people are common and have serious impacts on the 

individual, their family, the health service and the economy. Around 40% of over the 65s living at 

home are estimated to fall at least once a year and both the incidence of falls and the severity of 

the consequences increases rapidly with age. In clinical practice there are three main types of fall 

detection systems, video-based, novel approaches to instrumenting flooring, and systems based 

on wearable movement sensors. Video-based approaches raise ethical issues and clearly cannot 

be used outside of the house/care home. Instrumenting flooring approaches are early in their 

development. The focus for this proposal is the development of a novel wearable system for falls 

detection. This approach shows promise, but current systems are greatly limited by poor 

specificity, and/or the acceptability in the case of systems based on numerous sensors. 

The proposed novel solution is that by classifying body postures, from an accelerometer based 

device attached to the thigh, one would be able to robustly detect that a fall has occurred. A fall 

would be characterised by a change from a normal body posture to an unexpected body posture. 

WHAT WILL HAPPEN TO ME IF I PARTICIPATE IN THIS STUDY? 

How long will it take? 

If you agree to take part in the study, you will be required to visit the human performance 

laboratory at Salford University on one occasion. The total time for each visit is 1.5 hours.  

What will you do?  

1. Consent and medical screening.  

2. After informed consent has been taken, the thigh-worn device will be attached to the anterior 

aspect of the thigh with a hydrogel pad (PAL Technologies Ltd. Glasgow, UK).  
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C.2 Pilot Study Participant Information Document



 

2 
 

 

GMAHSN - Development of a novel fall detection monitor 

Participant Information Document Version 3.4 (14-01-15) 

 

3. You will then be asked to simulate a number of on-floor-postures which represent the posture 

a person may find themselves in after a fall. This will be completed on a mat and the 

investigator will provide guidance. You will be filmed while simulating these postures so there 

is a record of your body position which can be used to check the data from the thigh-worn 

device. These postures will be: 

a. Lying on front 

b. Lying on back with legs straight 

c. Lying on back with knees up 

d. Lying on both sides 

e. Hands and knees 

4. In between each of the on-floor-postures data will be collected for a number of everyday 

activities such as walking. These are needed for the device to distinguish between a fall 

posture and normal everyday tasks. 

5. You will then be asked to simulate a number of falls. These are needed to test the accuracy of 

fall detection. The falls will be simulated onto gymnastics mats. You will be filmed while 

simulating these falls so there is a record of your body motion which can be used to check the 

data from the thigh-worn device. Example falls are: 

a. Fall from standing (simulating a faint) 

b. Fall from standing (simulating a trip or loss of balance) 

c. Fall while walking (simulating a faint) 

d. Fall while walking (simulating a trip or loss of balance) 

Am I able to participate? 

To participate you need to be age 18 years or older and must not:  

 Currently take medication that might affect your ability to participate in the research as 

outlined. 

 Have been advised by your doctor that you should only do physical activity recommended 

by a doctor. 

 Currently be receiving treatment from a doctor or other medical professional (e.g. 

physiotherapist). 

 Suffer from any of the following (or similar): diabetes, epilepsy, seizures, osteoporosis, 

arthritis, any cardiovascular or respiratory disorder. 

 Currently suffer from a musculoskeletal injuries e.g. ankle sprain/strain, tendonitis, etc. 

 Have recently suffered a bone fracture (within the previous 24 months). 

 Have previously suffered a concussion or other head injury. 

 Currently be pregnant or have recently given birth (within 3 months). 
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GMAHSN - Development of a novel fall detection monitor 

Participant Information Document Version 3.4 (14-01-15) 

 

RISKS & POTENTIAL BENEFITS OF THE STUDY 

What risks are involved in participating in the study?  

This is a very simple, straight forward study with negligible risks. The simulation of falls has been 

completed in a number of previous studies using the same method.  

If I participate in this study, can I also participate in other studies? 

As the testing for the project only requires one visit and there is no on-going treatment or 

assessment taking part should not affect any other studies that you are involved in. However, if 

you are already taking part in other research, or would like to do so, please discuss this with the 

researcher (Robert Broadley).  

What benefits are involved in participating in the study?  

You will not benefit directly from taking part in the study. However, the results will improve the 

current fall detection device. By reducing false positives there would be an increased reliance on a 

fall detection system by caregivers. For patient care the main aspect of being able to detect a fall 

reliably would give the wearer the confidence that in the event of a fall an appropriate response 

will be made.  

What if something goes wrong? 

The university has insurance to cover against harm to you which may occur whilst you are taking 

part in these tests. However, if you decide to take legal action, you may have to pay for this. If you 

wish to complain, or have any concerns about any aspect of the way you have been approached or 

treated during the course of this study, you can approach the University of Salford. Previous 

studies using this procedure have not reported any injuries. 

ENDING THE STUDY 

What if I want to leave the study early?  

You can withdraw from this study at any time without loss of any non-study related benefits to 

which you would have been entitled before participating in the study. There is no danger to you if 

you leave the study early. If you want to withdraw you may do so by notifying the study 

representative listed in the “Contact Information” section below. 

FINANCIAL INFORMATION 

Who is organizing and funding the research?  

The Greater Manchester Academic Health Science Network is funding this research. 

www.gmahsn.org/ 
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GMAHSN - Development of a novel fall detection monitor 

Participant Information Document Version 3.4 (14-01-15) 

 

Will I be paid for participating? 

Unfortunately financial reward will not come from taking part in this research. However, you will 

be participating in a study with a novel idea and it could have a positive impact on the care of the 

elderly. 

CONFIDENTIALITY OF SUBJECT RECORDS 

Will my taking part in this study be kept confidential?  

All information which is collected about you during the course of the research will be kept strictly 

confidential. Any information about you which leaves the University of Salford will have your 

name and address and any other identifying features removed so that you cannot be recognized 

from it.  

What will happen to the results of the research study?  

A summary of the research findings will be sent to everyone who participates in the experiments. 

Significant findings may be published in clinical and engineering journals. 

CONTACT INFORMATION 

If you require more information about the study, want to participate, or if you are already 

participating and want to withdraw, please contact: 

Robert Broadley 

Email:   R.Broadley@edu.salford.ac.uk 

Address: School of Health Sciences 

Brian Blatchford Building,  

University of Salford,  

Frederick Rd Campus,  

Salford, M6 6PU. 

RECORD OF INFORMATION PROVIDED 

Your will receive a copy of the information sheet and a signed consent form to keep for your 

personal records. 

 

Thank you very much for taking time to read this document! 

We appreciate your interest in this study and hope to welcome you at the School of Health 
Sciences, University of Salford. 
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GMAHSN - Development of a novel fall detection monitor
Consent form Version 3.1 (14-01-15)

Study Number: HSCR14/72
Participant Identification Number:

CONSENT FORM

Title of Project: 
GMAHSN - Development of a novel fall detection monitor

Name of Researcher:
Robert Broadley, PhD Student, School of Healthy Science, University of Salford, Salford, M6 6PU.

(Delete as appropriate)

1. I confirm that I have read and understood the Participant Information Sheet for
the above study and have had the opportunity to ask questions.

Yes No

2. I understand that my participation is voluntary and that I am free to withdraw at
any time, without  giving any reason,  without my medical  care or legal  rights
being affected.

Yes No

3. I agree to video footage being taken during the research exercises. Yes No

4. I  understand  that  the  data  collected  during  the  study,  may  be  looked at  by
named  researchers  from  the  University  of  Salford.  These  individuals  will  be
Professor M Granat, Professor L Kenney, Dr S Thies, Dr S Preece and R Broadley. I
give permission for these individuals to have access to my records.

Yes No

5. I agree to take part in the above study. Yes No

Page 1of 2
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GMAHSN - Development of a novel fall detection monitor
Consent form Version 3.1 (14-01-15)

For your own safety you must not take part in this research if any of the following are true:

 You are currently taking medication that might affect your ability to participate in the 

research as outlined

 Your doctor has advised that you should only do physical activity recommended by a 

doctor

 You are currently receiving treatment from a doctor or other medical professional (e.g.

physiotherapist)

 You suffer from any of the following (or similar): diabetes, epilepsy, seizures, 

osteoporosis, arthritis, any cardiovascular or respiratory disorder

 You have recently suffered a bone fracture (within the previous 24 months)

 You are currently suffering from a musculoskeletal injuries e.g. ankle sprain/strain, 

tendonitis, etc.

 You have previously suffered a concussion or other head injury

 These is potential that you may be pregnant or have recently given birth (within 3 

months)

 You are currently feeling unwell

6. I confirm that none of the above statements are true and am not aware of any
other reason why I should not participate in this research as outlined. 

Yes No

Name of participant: ……………………………………………………………………………

Signature: …………………………………………………………………………….

Date: ……………………………….

Name of researcher taking consent: ……………………………………………………………

Researcher’s e-mail address: ……………………………………………………………

Page 2of 2
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3 March 2016 

 

 

 

 

Dear Chris, 

 

 

RE: ETHICS APPLICATION HSCR 15-109 – A Novel body-worn falls detection system: development 

and evaluation in an older care home population 

 

Based on the information you provided, I am pleased to inform you that your request to amend 

application HSCR15-109 has been approved.  

 

If there are any changes to the project and/ or its methodology, please inform the Panel as soon as 

possible by contacting Health-ResearchEthics@salford.ac.uk  

 

 

Yours sincerely, 

 

 

 

 

 

 

Sue McAndrew 

Chair of the Research Ethics Panel   

 Research, Innovation and Academic 
Engagement Ethical Approval Panel 

 

   
 Research Centres Support Team  

 G0.3 Joule House  

 University of Salford  

 M5 4WT  

   
 T +44(0)161 295 2280 

 
 

 www.salford.ac.uk/  
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D Real-World Study Ethical Approval



 

A Research Ethics Committee established by the Health Research Authority 

 

 
Social Care REC 

Ground Floor 
Skipton House 

80 London Road 
London 

SE1 6LH 
 

Telephone: 0207 972 2568 
  

 
 
06 June 2017 

 
Prof Malcolm Granat 
Professor of Health and Rehabilitation Sciences  
University of Salford 
P028a, Brian Blatchford Building 
University of Salford 
Manchester 
M5 4WT  
 
 
Dear Professor Granat 
 
Study title: A novel body-worn falls monitor system: development 

and evaluation in the frail elderly population 
REC reference: 17/IEC08/0019 

Protocol number: N/A 
IRAS project ID: 225139 
 

Thank you for your letter of 20 March and 23 May 2017, responding to the Committee’s request 
for further information on the above research and submitting revised documentation. 

 

The further information has been considered on behalf of the Committee by the Chair. 
 
We plan to publish your research summary wording for the above study on the HRA website, 
together with your contact details. Publication will be no earlier than three months from the date 
of this opinion letter.  Should you wish to provide a substitute contact point, require further 
information, or wish to make a request to postpone publication, please contact 
hra.studyregistration@nhs.net outlining the reasons for your request. 

Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above 
research on the basis described in the application form, protocol and supporting documentation 
as revised subject to the conditions specified below. 
 
Mental Capacity Act 2005 
 

I confirm that the committee has approved this research project for the purposes of the Mental 
Capacity Act 2005. The committee is satisfied that the requirements of section 31 of the Act will 
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00 – Peel Trust Falls Project 

Introduction 
Falls are one of the serious and common health related problems amongst the older adult population. 

Over 40,000 falls have been recorded in the past year in Four Seasons Health Care homes alone. 'Long 

lies' or inability to get up following a fall has a greater adverse risk to an individual causing pressure 

sores, carpet burns, dehydration, hypothermia, and even death. Therefore, accurate detection of falls 

and immediate help would greatly minimise the adversities following a fall. However, current fall 

detection systems suffer from a high rate of false alarms. We aim to develop a new approach that 

minimises the false alarms.  

We are currently running a research project as a collaboration between the University of Salford and 

Four Seasons Health Care. The project aims to collect data from 250 participants, each wearing a small 

movement monitoring device on their thigh for two months, during which we anticipate a number of 

falls will be recorded. We will use this data to research and develop new fall detection systems.  

This document outlines the two major components of the project: 1. recruiting residents for the study 

and 2. collecting the data. The following documents (included in this pack) are needed for recruitment 

(documents 01 – 05 and video 01) and during data collection (documents 06 and 07). The purpose of 

each document and when they are required is explained in the sections that follow.  

01.  Staff Information 

02a.  Participant Information 

02b.  Consultee Information 

03.  Formal Assessment of Mental Capacity 

04.  Resident Best Interests Assessment 

05a.  Participant Consent Form 

05b.  Consultee Declaration Form 

06.  Device Monitoring Sheet 

07.  Device Comfort Form 

Appendix01. activPAL Monitor Information 

Video01. Training on mental capacity (https://youtu.be/2BV6KjofPhg) 

1. Resident Recruitment 
Approval has been granted and a pathway developed to recruit residents with or without the capacity 

to understand the study and what is required to participate. Where residents cannot themselves 

understand the study and therefore cannot provide informed consent, a consultee must be identified 

who can provide informed assent on the resident’s behalf. 

Page 4 shows a flow diagram which outlines the pathway. 
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1.1 Who should be recruited? 

FSHC management will work with the University to identify residents suitable to participate in the 

study. Homes will be provided with this list of residents and asked to recruit only the residents listed. 

It is important to remember the residents do not have to take part, however they or their consultee 

must be provided with all the information necessary to make a decision. Wherever possible the 

recruitment pathway for residents should be completed within seven days and the outcome sent to 

the nominated link person (details can be found at the end of this document).  

1.2 Reason to Doubt Mental Capacity? 

The first step is to identify a member of staff who knows the resident well enough to be able to make 

a decision on whether the resident could understand the study. The identified member of staff should 

be given document 01 – staff information to aid them in making the decision. Document 01 describes 

why the research is being done and what it will involve, it is very similar to the information which will 

be given to the resident or their consultee. Appendix 01 in the document pack contains images and 

extra information about the activPAL monitor, this may be useful to understand what is asked of 

residents.  

The outcome of this decision should be recorded on the list of residents provided.   

1.3 No Reason to Doubt Mental Capacity (Path A) 

If there is no reason to doubt the resident’s capacity to make a decision then give the resident a copy 

of document 02a – resident information. Document 02a describes why the research is being done and 

what it will involve. The resident should be given time to read the information and encouraged to ask 

any questions. Any questions staff cannot answer should be passed on to the University of Salford 

using the contact details provided at the end of this document. If needed, staff should explain the 

study in simple language to help the resident understand what is involved. Appendix 01 in the 

document pack contains images and extra information about the activPAL monitor, this should be 

used if residents ask questions about the monitor.  

If the resident wishes to take part they should complete document 05a – resident consent form, which 

must be witnessed and signed by a member of staff. Please take the time to ensure document 05a is 

fully completed as this is a critical document. If the resident provides informed consent there will be 

approximately one week before data collection starts.  

Whether the resident provides consent or not should be recorded on the provided list of residents. If 

the resident provides informed consent a copy of the completed consent form (document 5a) should 

be sent to the project link person (contact details can be found at the end of this document).  

1.4 Reason to Doubt Mental Capacity (Path B) 

If there is reason to doubt mental capacity a consultee must be identified. A consultee is someone 

who knows the resident well and is willing and able to offer an opinion as to what that resident’s 

wishes would have been if they were able to make the decision. Please ensure records are checked to 

identify if a consultee has previously been nominated. The consultee could be the resident's partner, 

other relative, friend or member of their care team (care home staff, GP or other health professional).  
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Once the consultee has been identified they should be provided with a copy and given time to read 

document 02b – consultee information. Document 02b provides information about what the research 

involves and why it is being carried out. Appendix 01 in the document pack contains images and extra 

information about the activPAL monitor, this should be used if the consultee wants to know more 

about the monitor.  If the consultee is interested in the resident taking part document 03 – formal 

assessment of capacity should be completed by a member of trained staff with support from the 

consultee. A training video for the assessment of capacity has been made available at: 

https://youtu.be/2BV6KjofPhg. Please ensure appropriate staff receive this training prior to 

approaching the consultee. The outcome of the capacity assessment should be recorded on the 

provided list of residents. 

If the resident is found to have the mental capacity to make the decision for themselves then the 

steps detailed above in the section “1.3 No Reason to Doubt Mental Capacity (Path A)” should be 

followed.  

If the resident is found to not have the metal capacity to make the decision then document 04 – 

resident's best interest assessment should be completed by a trained staff member with support from 

the consultee. Training on completing document 04 is included in video 01 which is available at: 

https://youtu.be/2BV6KjofPhg. The same member of staff who completed document 03 formal 

assessment of capacity should also complete document 04 - resident's best interest assessment. 

The outcome of the resident's best interest assessment should be recorded on the provided list of 

residents. If it is agreed that taking part would be in the interests of the resident then the consultee 

and a staff member should complete document 05b – consultee declaration. Please take the time to 

ensure document 05b is fully completed as this is a critical document. If the consultee provides 

informed assent there will be approximately one week before data collection starts. 

Whether or not the consultee provides informed assent should be recorded on the provided list of 

residents. If assent is given a copy of the completed declaration form (document 5a) should be sent 

to the project link person (contact details can be found at the end of this document).  
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2. Data Collection 
Each time a new home starts participating in the study a member of the team from Salford University 

will visit the home to explain the project and provide staff training. Staff will be trained in where and 

how to attach and remove the monitor as well as how to manage a resident’s involvement in the 

study. At the initial visit, all new participants will have a monitor attached to begin data collection. 

After the initial visit monitors will be sent by post with a preaddressed return envelope.  

Where new residents are recruited from a home which has already been participating, the University 

will liaise with the home to determine if further staff training is needed.  

Each monitor can record for up to 10 days before it requires recharging and reprogramming. After 

each 10-day recording period monitors should be returned to Salford University using the provided 

preaddressed envelopes. Upon receipt, staff at Salford University will send new monitors and 

consumables (Inc. preaddressed return envelope) to continue data collection.  

2.1 Monitor Usage Recording 

Every time the monitor is removed (for any reason) this should be recorded on the device monitoring 

sheet (document 06). It is more important to accurately record attaching or removing than it is to try 

and keep the device on the leg all the time. Device monitoring sheets should be returned to Salford 

University with each monitor and a new monitoring sheet will be sent with the replacement monitor.  

2.2 When to Remove the Monitor 

The monitor should be checked every 2 days to ensure it is still in place and the dressing is not coming 

loose.  

The medical dressing used to secure the monitor should be changed after 5 days (halfway through the 

10 day recording period). When the dressing is changed, the monitor should be moved to the other 

leg if possible, and this must be recorded on the device monitoring sheet.  

If the participant is bathing (the thigh / monitor will be submersed in water) the monitor should be 

removed to prevent water damage. The devices are encased in a waterproof sleeve which allows 

showering without removing the monitor.  

If the resident needs to attend hospital or a medical appointment outside the home the monitor 

should be removed, if possible, and reattached upon their return, if this is within the 10 day recording 

period. Hospitals have previously discarded the monitors as they do not know what they are. 

2.3 Device Comfort Recording 

For participants who do not have capacity to consent to take part in the study the device comfort form 

(document 07) must be completed at least weekly to ensure that taking part in the study is not causing 

discomfort. It is preferred to complete the device comfort form when the dressing is changed after 5 

days and when the monitor is removed to be returned to the university. If the participant shows signs 

of discomfort due to taking part in the study at any other time this should also be recorded. Any signs 
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of discomfort should be reported to Salford University as soon as possible and if discomfort is serious 

participation should be temporarily withdrawn, pending advice from the University. 

2.4 Fall Recording 

All falls should be recorded on DATIX as usual. Without this, the information recorded on the 

monitoring device will be useless. Where possible, the direction in which the resident fell (e.g. 

forwards, backwards, to the side) and the position in which they were found should be recorded on 

DATIX. 

2.5 Participant Withdrawal 

Any participant who wants to withdraw can do so at any time. They do not need to give a reason. No 

“approval” is required from the study organisers. If a resident wishes to leave the study a note should 

be made in the care plan, the Home Manager and Salford University should be informed by email or 

telephone. 
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02a – Participant Invitation Letter IRAS ID 225139 2017-11-20 v2.0 

 
 

02a – Participant Information 
 
“Research volunteers required to help develop a novel falls detection monitor” 
 
Falls and their related injuries among older people are common and have serious impacts on the 

individual, their family, the health service and the economy. This study is to develop a wearable fall 

detector device that is simple to attach, discrete (worn on the thigh) and low maintenance for the user.  

The fall detector is just one device that is attached to the thigh, which is different to a lot of other fall 

detectors, which can use many devices at once.  The monitor being developed aims to detect falls with 

a very low false alarm rate (when no fall has occurred) making it more useful than current devices on 

the market. 

 

We are seeking participants who would be willing to wear a commercially available activity monitor for 

a period of 2 months.  Participants must be residents within a Four Seasons Care Home. 

 

To participate: 

• You must NOT have an existing skin condition such as psoriasis or eczema that would be 

affected by the application of a medical and medical grade dressing. 

• You MUST live in a Four Seasons Care Home 

• You must NOT be wheelchair bound at all times 

 

If you agree to take part in the study, you will be required to wear an activPAL activity monitor on the 

front of your thigh for a period of 7 days at a time before swapping to the other thigh. This will continue 

for 2 months. The monitor will be applied, removed and monitored by Four Seasons staff. No additional 

actions are required by the participants.   

 

If you are interested in taking part, then please speak to the Home Manager at the home where you 

live. 
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02a – Participant Information Sheet 
Peel Trust Falls Project with Salford University 

 
 
Dear Resident, 
You are being invited to take part in a research study to help Four Seasons Health Care and 
the University of Salford develop a new device which will detect falls.  
 
Before you decide, it is important for you to understand why the research is being done and 
what it will involve.  
 
This document gives you important information about the purpose, risks, and benefits of 
participating in the study. Please take time to read the following information carefully.  
 
If you have any questions then feel free to contact the Home Manager in the home where 
you live or Robert Broadley, the researcher whose details are given at the end of the 
document.  
 
Please take the necessary time to decide whether or not you wish to take part.  
 

Project Title: 

‘A novel body-worn falls detection system: development and evaluation in the frail elderly 
population’  

Background to the Study 

Falls and their related injuries among older people are common and have serious impact on 

the individual, their family, the health service and the economy. Over 40,000 falls have been 

recorded in the past year in the Four Seasons Health Care homes alone. 'Long lies' or inability 

to get up following a fall has a greater adverse risk to an individual causing pressure sores, 

carpet burns, dehydration, hypothermia, and even death. Therefore, accurate detection of 

falls and immediate help would greatly minimise the adversities following a fall. However, 

current fall detection systems suffer from a high rate of false alarms. We aim to minimise the 

falls alarms by robustly detecting an unexpected change (such as walking to lying) in body 

postures using body worn wearable sensors. Hence a fall would be characterised by a change 

from a normal body posture to one that is unexpected. 
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What will happen to me if I participate in this study? 

How long will it take? 
If you agree to participate in the study, you will be required to wear a thigh worn activity 
monitor for a period of 2 months/8 weeks whilst continuing your normal routine. 

What will you do? 

1. Sign a consent form and take part in a medical screening. 

2. After informed consent has been taken, the thigh-worn device will be attached to the 
front of the thigh with a medical dressing.  

3. You continue with your normal daily activity, leaving the activity monitor in place. 

4. The activity monitor will be swapped between your right and left thigh weekly for a 
period of 2 months. This will be carried out by a trained member of Four Seasons 
Health Care staff. 

5. Please be aware that this study does not increase or decrease your risk of falling, as 
we are only observing your physical behaviour over a given period of time.  However, 
if you do happen to experience a fall during that time, you (together with your family 
or carer support) will be asked to let us know - to the best of your knowledge - the 
circumstances under which the fall occurred. 

6. You may also be asked to take part in an interview which is aimed at understanding 
long-term wear and methods of attachment (you may take part in the study but 
decline to be interviewed). 

Am I able to participate? 

To participate: 

• You must NOT have skin breakdown or an existing skin condition (such as psoriasis 
or eczema) that would be affected by the application of a medical dressing of a 
medical grade adhesive dressing.  

• You should be able to walk and must not be totally dependent on a wheelchair. 

Risks & Potential Benefits of the Study 

What risks are involved in participating in the study? 

This is a very simple study with no risks to you.  Some participants may experience some mild 

skin irritation from the hydrogel Stickie Pads and / or medical grade dressing used to attach 

the monitor.  To minimise this, we recommend changing the medical dressing every two days.  

The activity monitor will be swapped to the other thigh every 7 days to further minimise any 

potential irritation.  The activPal monitor has been used for many years in a number of studies 

involving 1000s of users, so the risks are minimal. 
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If I participate in this study, can I also participate in other studies? 

As the testing for the project requires continuous use for 2 months, some other additional 

studies may interfere with data collection. If, however you are already taking part in other 

research, or would like to do so, please discuss this with the researcher (Robert Broadley).  

What benefits are involved in participating in the study? 

You will not benefit directly from taking part in the study. However, longer-term the data we 

will collect during the observation period will improve our knowledge regarding the design of 

fall detection devices. For example, by reducing false positives the uptake of fall detection 

systems by caregivers may increase, subsequently improving medical care for older adults. 

For the individual wearing a fall detection device, the main aspect of being able to detect a 

fall reliably would give them the confidence that in the event of a fall an appropriate response 

will be made. 

What if something goes wrong? 

If you are harmed by taking part in this research project, you are covered by the University’s 

Public Liability and Professional Indemnity insurance policies 

(http://www.salford.ac.uk/finance/procurement).  

In case of a complaint you can contact Anish Kurien (Research Centres Manager), Joule House 

G.08, University of Salford, M5 4WT (Phone: 0161 295 5276 / Email a.kurien@salford.ac.uk), 

or the Home Manager who will contact the university on your behalf. 

Ending the Study 

What if I want to leave the study early?  

You can withdraw from this study at any time without loss of any non-study related benefits 

to which you would have been entitled before participating in the study. There is no danger 

to you if you leave the study early. If you want to withdraw you may do so by notifying the 

Home Manager who will then contact the study representative listed in the “Contact 

Information” section below. 

Financial Information 

Who is organizing and funding the research? 

The Dowager Countess Eleanor Peel Trust is funding this research. 

Will I be paid for participating? 

Unfortunately, financial reward will not come from taking part in this research. However, you 

will be participating in a study with a novel idea and it could have a positive impact on the 

care of older adults like yourself. 
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Confidentiality of Participant Records 

Will my taking part in this study be kept confidential? 

Yes. We take great care to protect the confidentiality of the information we are given, and we 

take careful steps to ensure that data is secure at all times.  The information collected is used 

for research and statistical purposes only and is dealt with according to the 1998 Data 

Protection Act. 

How will my data be used? 

Anonymised research data will be archived in the University of Salford data repository.  

Information from this study will be made available for future research studies; however, no 

information collected and recorded can be used to identify individuals in the dataset. 

What will happen to the results of the research study? 

A summary of the research findings will be sent to the participating care homes. Significant 

findings may be published in clinical and engineering journals. 

Contact Information 

If you require more information about the study, want your friend or relative to participate, 

or if your friend or relative is already participating and want to withdraw, please contact: 

Robert Broadley 
Email: r.broadley@edu.salford.ac.uk 
Address: School of Health Sciences 
University of Salford, 
Salford, M5 4WT 
Phone: 0161 295 2507    

Record of Information Provided 

Your will receive a copy of the information sheet and a signed consent form to keep for your 

personal records. 

Thank you very much for taking time to read this document. We appreciate your interest in 

this study. 
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Peel Trust Project Appendix 01 activPAL device information: 2017-10-24  1 

activPAL™ Monitor Information 
 

The Monitor 
To collect data, we use the activPAL™ Micro monitor (shown below) which records movement and 

body posture in an unobtrusive way. The monitor is small and light, weighing only 10g or ⅓oz. It can 

record continuously for 10 days, after which the monitor must be sent back to Salford University so 

the data can be downloaded and the monitor recharged and reprogramed. 

 

How It’s Worn 
The activPAL™ monitor is designed to be worn on the front of the thigh. It is attached using a 10cm 

square medical dressing called Tegaderm™. The dressing is thin and breathable; it should be 

comfortable and not restrict movement.  

To provide resistance to water, the monitor is covered by a nitrile sleeve before it is attached to the 

thigh. The combination of the nitrile sleeve and Tegaderm™ dressing allow the wearer to shower while 

wearing the device, however it must not be submersed e.g. during swimming or a bath.  

 

Tagaderm™ 

 

activPAL™ 
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E.3 activPAL Monitor Information

The activPAL monitor information sheet was produced to provide a simple overview of the

device and how it is worn. It supplemented the main information documents and aided

care staff in explaining the study to potential participants, especially those with a cognitive

imparment.
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03 – RECORD OF FORMAL ASSESSMENT OF CAPACITY 

 

Principle 1 of the Mental Capacity Act is the ‘presumption of capacity’.  This means that we 
should assume that people have the ability to make choices and decisions for themselves.  
However, where doubt exists, capacity should be formally assessed- see policy for details.  

 

Personal Details of Individual for Whom Capacity is Being Assessed 

First name    

Surname    

Date of birth    

Gender    

Religion    

Ethnicity    

 

Details of Decision to be Made 

What is the decision to be made/why is 
capacity being assessed?  

Use of device that will collect data for research to aid in 

the detection and prediction of falls. The small device is 

designed to be fitted to the front of the thigh. 

Date of assessment  

  

  

Who requires the decision?  Care home staff and research team (Salford University) 

Is there a timescale within which the 
decision must be made and if so, why? 

  

What are the options that exist?  There are no current alternatives to this device that 

will collect the specific data required to detect and 

predict (and therefore help prevent) falls. 

 

Questioning Capacity  

Bearing in mind the first principle of the Act- the assumption of capacity i.e. the assumption 

that people have the ability to make their own decisions - what is the basis for questioning 

this individual’s capacity to make this decision?  

(Explain what the specific decision that has to be made is and why capacity has to be assessed.   
The type of information here might include; the pattern to the person’s falls or them appearing not to 

understand that their behaviour is increasing the risk of them falling e.g. Someone may have lost the 

physical ability to stand or walk but may not appear to fully comprehend this, thus forming the basis for 

questioning their capacity to make the decision regarding wearing the device to gather the data that 

may help to define certain conditions that increase the risk of a fall occurring.) 
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E.4 Assessment of Capacity Form
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Test of Capacity   

Does the person have an impairment of, or a 

disturbance in the functioning of the mind or brain? 

Examples may include; conditions associated with 

some forms of mental illness; long term effects of 

brain damage; dementia; concussion; symptoms of 

drug or alcohol abuse  

Yes 

 

Continue rest of 

assessment 

No 

 

The person does 

not lack capacity 

under the MCA 

Does the impairment or disturbance mean that the 

person is unable to make a specific decision when they 

need to?  

Yes 

 

Evidence details 

of assessment 

below 

No 

 

The person does 

not lack capacity 

under the MCA 

Does the person have capacity to make this decision at 

the time it needs to be made?  
Yes No 

  

Evidence for Findings - Understanding Information Relevant to the Decision 

Pointers for assessing the indicators for 
capacity – it is not an exhaustive or 
exclusive list.  

Comments  

Explain what you have done to assist understanding  

Has information been provided in an 
appropriate format? E.g. has language 
been simplified, has it been provided in 
writing/verbally?  Provide it in digestible 
chunks.  

  

  

  

Use of visual aids- would the use of 
visual aids help the person to 
understand? If so, have they been used?  

Use of a 3rd party- is specialist support 
required to help give the information e.g. 
translator, sign language etc.  

Environment- is the best environment 
being used for the patient? E.g. Is it 
quiet, private, would the person find it 
easier 1:1 rather than with the MDT?  

Would another person be better placed 
to provide this information or support the 
patient through the decision e.g.  
friends/ relatives/ another staff member  

Timing- choose a time of the day when 
the person is more alert/ receptive. 
Revisit giving the information,   

Can the individual understand 

information about the decision? 

Summary of assessment  
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Retaining Information Long Enough to Make a Decision 

Pointers for assessing the indicators for 
capacity – it is not an exhaustive or 
exclusive list.  

Comments  
(explain what you have done to assist retention of 

information)  

Has the person been provided with 
information both verbally, in writing or in 
any other format that they can refer to 
e.g. Makaton, drawings, recorded 
information etc.   

  

Has information been repeated on 
numerous occasions?  

Can the individual relay the information 
back to you?   

Has a third party been engaged to assist 
e.g. specialist advocate, friend, relative 
etc.?  

Can the person retain information 
for long enough to make the 
decision?  
Summary of assessment  

Note that the individual only need be able to retain information for 
long enough to make the decision.  

  
  
  
  

  

Using or Weighing Information as Part of the Decision Making Process  

Pointers for assessing the indicators 
for capacity – it is not an exhaustive or 
exclusive list.  

Comments  
(explain what you have done to assist the person in 

weighing up information)  

Has the person been told why they need 
to make this decision?  

  

Have the ‘pros and cons’ of this 
particular treatment been explained?  

Have alternatives been explained?  

Have the likely success and risks/side 
effects been explained?  

Does the person understand the 
consequences of refusing the treatment 
or not making a decision?  

Can the individual use or weigh the 
information as part of the decision 
making process?  
Summary of assessment  
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Communicating the Decision 

Pointers for assessing the indicators 

for capacity – it is not an exhaustive 

or exclusive list.  

Comments  

(Explain what you have done to assist the person to 

communicate their decision)  

Is a 3rd party expert necessary e.g. a 

translator, sign language, speech and 

language therapist?   

  

Is appropriate support present to 

support the patient e.g. advocate, 

family, friends?  

Has non-verbal communication been 

considered? e.g. eye blinking, hand 

squeeze etc.  

Have technical aids to communication 

been considered e.g. voice board  

Can the person communicate their 
decision?  
Summary of assessment  

  

  

  

  

  

  

  

  

  

  

 Details of Person Completing this Form  

Name    

Designation    

Signature    

Date    

  

Names of people involved in this assessment (ensure you include the individual, 

relatives, friends etc. where involved)  

Name  Designation  
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Policy Ref:  cc001 MCA Peel Trust Project: 2017-11-20   1 

04 – Determination of Best Interests 
 

Personal Details of Individual for Whom Capacity is Being Assessed 

First Name  

Surname  

Date of Birth  

Gender  

Religion  

Ethnicity  

 

Confirmation of Capacity Assessment 

Has the Person been assessed 
as lacking capacity to make this 
specific decision at this 
particular time? 

Yes 

Date of capacity assessment completed on form 
MCA1: 

………………………………………………………………… 
  

No 
If the answer to this question is ‘no’, you must 
complete a capacity assessment and document 
it appropriately on Form MCA1 

 

The Decision to be Made 

Provide details of the decision that needs to be made 

                                                  has been selected to participate in a research study that aims to 
identify key factors relating to their movement that may be able to predict when they are at highest 
risk of falling. Measures to reduce the risk of falls have been implemented and have included a 
review of previous falls and any discernible patterns, appropriate environment, appropriate footwear, 
review of medication, (add any other measures that may have been taken). 

                                                                                                                                           . 

                                                                                                                                           . 

                                                                                                                                           . 

Despite these measures,                                           continues to experience a high number of 
falls and therefore it is felt that it may be beneficial for them to participate in this study. 
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E.5 Assessment of Best Interests Form
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Test of Capacity   

Does the person have an impairment of, or a 

disturbance in the functioning of the mind or brain? 

Examples may include; conditions associated with 

some forms of mental illness; long term effects of 

brain damage; dementia; concussion; symptoms of 

drug or alcohol abuse  

Yes 

 

Continue rest of 

assessment 

No 

 

The person does 

not lack capacity 

under the MCA 

Does the impairment or disturbance mean that the 

person is unable to make a specific decision when they 

need to?  

Yes 

 

Evidence details 

of assessment 

below 

No 

 

The person does 

not lack capacity 

under the MCA 

Does the person have capacity to make this decision at 

the time it needs to be made?  
Yes No 

  

Evidence for Findings - Understanding Information Relevant to the Decision 

Pointers for assessing the indicators for 
capacity – it is not an exhaustive or 
exclusive list.  

Comments  

Explain what you have done to assist understanding  

Has information been provided in an 
appropriate format? E.g. has language 
been simplified, has it been provided in 
writing/verbally?  Provide it in digestible 
chunks.  

  

  

  

Use of visual aids- would the use of 
visual aids help the person to 
understand? If so, have they been used?  

Use of a 3rd party- is specialist support 
required to help give the information e.g. 
translator, sign language etc.  

Environment- is the best environment 
being used for the patient? E.g. Is it 
quiet, private, would the person find it 
easier 1:1 rather than with the MDT?  

Would another person be better placed 
to provide this information or support the 
patient through the decision e.g.  
friends/ relatives/ another staff member  

Timing- choose a time of the day when 
the person is more alert/ receptive. 
Revisit giving the information,   

Can the individual understand 

information about the decision? 

Summary of assessment  
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Retaining Information Long Enough to Make a Decision 

Pointers for assessing the indicators for 
capacity – it is not an exhaustive or 
exclusive list.  

Comments  
(explain what you have done to assist retention of 

information)  

Has the person been provided with 
information both verbally, in writing or in 
any other format that they can refer to 
e.g. Makaton, drawings, recorded 
information etc.   

  

Has information been repeated on 
numerous occasions?  

Can the individual relay the information 
back to you?   

Has a third party been engaged to assist 
e.g. specialist advocate, friend, relative 
etc.?  

Can the person retain information 
for long enough to make the 
decision?  
Summary of assessment  

Note that the individual only need be able to retain information for 
long enough to make the decision.  

  
  
  
  

  

Using or Weighing Information as Part of the Decision Making Process  

Pointers for assessing the indicators 
for capacity – it is not an exhaustive or 
exclusive list.  

Comments  
(explain what you have done to assist the person in 

weighing up information)  

Has the person been told why they need 
to make this decision?  

  

Have the ‘pros and cons’ of this 
particular treatment been explained?  

Have alternatives been explained?  

Have the likely success and risks/side 
effects been explained?  

Does the person understand the 
consequences of refusing the treatment 
or not making a decision?  

Can the individual use or weigh the 
information as part of the decision 
making process?  
Summary of assessment  
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Communicating the Decision 

Pointers for assessing the indicators 

for capacity – it is not an exhaustive 

or exclusive list.  

Comments  

(Explain what you have done to assist the person to 

communicate their decision)  

Is a 3rd party expert necessary e.g. a 

translator, sign language, speech and 

language therapist?   

  

Is appropriate support present to 

support the patient e.g. advocate, 

family, friends?  

Has non-verbal communication been 

considered? e.g. eye blinking, hand 

squeeze etc.  

Have technical aids to communication 

been considered e.g. voice board  

Can the person communicate their 
decision?  
Summary of assessment  

  

  

  

  

  

  

  

  

  

  

 Details of Person Completing this Form  

Name    

Designation    

Signature    

Date    

  

Names of people involved in this assessment (ensure you include the individual, 

relatives, friends etc. where involved)  

Name  Designation  
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05a – Participant Consent Form _ IRAS ID 225139_2017-11-20_v2.0 

05a – Consent Form 
Peel Trust Falls Project 

 
Project Title: 
A novel body-worn falls detection system: development and evaluation in the frail elderly population. 
 

University of Salford Researcher: 
Robert Broadley 
Four Seasons Health Care representatives: 
Roberta Roccella (Head of Quality and Governance) 
Dr Haydn Williams (Datix Manager) 

 Initial box 
to confirm  

I confirm that I have read and understand the Participant Information Sheet (version 
2.1) for the above study and have had the opportunity to ask questions. 

 

I understand that my participation is voluntary and that I am free to withdraw at any 
time, without giving any reason, without my care or legal rights being affected. 

 

I agree to information relating to any fall that may occur being collected for inclusion 
in this study. 

 

I agree that my anonymised data can be kept in the repository within the University 
of Salford and accessed, with permission, by researchers at the university. 

 

To participate: 

• You must NOT have an existing skin condition (such as psoriasis or eczema) that 
would be affected by the application of a medical grade dressing. 

• You MUST live in a Four Seasons Care Home. 

• You must NOT be wheelchair bound at all times. 
 
I confirm that I am not in breach of any of the above conditions. 

 

 
 
By signing this consent form I understand that after the study my anonymised data will be safely 
archived and may be made available to other researchers at the University of Salford data and 
elsewhere.  However, it will not be possible to identify me from this data. 

Name of participant: 
 
______________________________________________________________ 

Signature: 
 
______________________ 

Date: 
 

_________________________ 

 

Name of person taking consent: 
 
__________________________________________________ 

Signature: 
 
______________________ 

Date: 
 

_______________________ 
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E.6 Participant Consent Form



 

 

05b – consultee_declaration_form-IRASID-225139_2017-11-20_v1.0 

 

05b – CONSULTEE DECLARATION FORM 

 
Title of Project: A novel body-worn falls detection system: development and evaluation in the frail 

elderly population. 
 

Please initial box 

I _________________ have been consulted about ______________________  

participation in this research project. I confirm that I have read and understand  

the information sheet. I have had the opportunity to ask questions 

about the study and understand what is involved.  

 
In my opinion they would have no objection to taking part in the above study. 

 
I understand that I can request they are withdrawn from the study at any time, 

without giving any reason and without their care or legal rights being affected. 

 
I understand that relevant sections of their care record and data collected during the 

Study may be looked at by responsible individuals from Four Seasons Health Care and 

Salford University or from regulatory authorities, where it is relevant to their taking part 

in this research. 

 
If your friend or relative regains capacity they will be asked to give their consent to  
continue with the study. 
 

                  
 

             

Name of Consultee   Date    Signature 

 

Relationship to participant:  

             

Person undertaking consultation  

Name Date Signature 

             

Researcher   Date 

 Signature 

 

When completed: 1 (original) to be kept in care record, 1 for consultee; 1 for researcher site file 
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E.7 Consultee Declaration Form



 
 
 
  
 
  
 

Peel Trust Project Staff Handout on Data Collection Version: 2018-01-15  1 

Peel Trust Falls Project 
Information on Data Collection 

1. Introduction 
Falls are one of the serious and common health related problems amongst the older adult population. 

Over 40,000 falls have been recorded in the past year in Four Seasons Health Care homes alone. 

Accurate detection of falls and immediate help would greatly minimise the adversities following a fall. 

However, current fall detection systems suffer from a high rate of false alarms.  

2. Project Aims 
Short Term: 

• Collect one of the world’s largest fall datasets 

Medium Term: 

• Improve understanding of fall movements 

• Develop robust fall detection 

- High sensitivity (detect the vast majority of falls) 

- Low rate of false alarms 

Long Term: 

• Develop fall prediction technology 

3. Benefits of Taking Part 
Reports of activity data for each resident can be used to understand daily routines and activity levels. 

These reports also show night time activity and can be used to determine if the residents get up at 

night, and if so how frequently. 

On completion of data collection, we provide certificates to homes, staff and residents. The 

certificates can be used to demonstrate to commissioners and regulatory bodies a commitment to 

research, innovation and quality improvement. Staff can use certificates as evidence for their CPD 

portfolio.  

4. Protocol 
• Residents wear a small movement monitor for 6 x 10day periods 

• Every 10 days the monitors need to be returned to the university for recharging and 

reprogramming 

• The medical dressing used to secure the monitor should be changed after 5 days 

• The monitor should be checked every 2 days to ensure it is still in place and the dressing is not 

coming loose 
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E.8 Staff Training on Data Collection Handout



 
 
 
  
 
  
 

Peel Trust Project Staff Handout on Data Collection Version: 2018-01-15  2 

5. The activPAL Monitor 

 

6. Attaching the Monitor 

 

7. When You Should Remove the Monitor 
• Bathing (showering is OK, providing Nitrile sleeve is intact) 

• Hospital or a medical appointment outside the home 

• Changing the dressing 

• Returning to the University 
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Peel Trust Project Staff Handout on Data Collection Version: 2018-01-15  3 

8. When You Must Remove the Monitor 
• If the resident no longer wants to take part in the study 

• If the consultee no longer wants the resident to take part in the study 

• If the resident develops a skin breakdown or skin condition such as psoriasis or eczema 

9. Withdrawal Procedure 
Any resident or consultee who wants to withdraw can do so at any time. They do not need to give a 

reason. No “approval” is required from the study organisers. If a resident or their consultee wishes to 

leave the study a note should be made in the care plan, the Home Manager and Salford University 

should be informed by email or telephone. 

10. Device Monitoring Sheet 
Every time the monitor is removed (for any reason) this should be recorded on the device monitoring 

sheet (document 06). It is more important to accurately record attaching or removing than it is to try 

and keep the device on the leg all the time. Device monitoring sheets should be returned to Salford 

University with each monitor and a new monitoring sheet will be sent with the replacement monitor.  
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Peel Trust Project Staff Handout on Data Collection Version: 2018-01-15  4 

11. Device Comfort Form 
For residents who do not have capacity to consent to take part 

in the study, or who may have difficulty communicating verbally, 

the device comfort form must be completed at least every 5 

days. It is to ensure that taking part in the study is not causing 

discomfort. It is preferred to complete the device comfort form 

when the dressing is changed after 5 days and when the monitor 

is removed to be returned to the university. If the resident 

shows signs of discomfort due to taking part in the study at any 

other time this should also be recorded. Any signs of discomfort 

should be reported to Salford University as soon as possible and 

if discomfort is serious participation should be temporarily 

withdrawn, pending advice from the University. 

12. Recording Falls 

Continue to record all fall incidents on DATIX as you are already doing. 

Without accurate recording on Datix we can’t identify the falls and the data 

is useless! 

Where possible, the direction in which the resident fell (e.g. forwards, backwards, to the side) and 

the position in which they were found should be recorded on DATIX. 

13. Receiving and Returning Monitors 
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E.9 Wear Time Record
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✂--------------------✂--------------------✂--------------------✂-------------------- 

Participant name:   _______________________________________________                   

Remove this section before returning to Salford University 

Salford University contact details – phone :0161 295 2507, email: r.broadley@edu.salford.ac.uk Version:2017-10-24 

     

This form is to ensure that the participant is comfortable wearing the device (activPAL) throughout the length of 

this research project. Each participant might show or express discomfort in their own way. Please make sure to 

record verbal and non-verbal communication that this resident may use to demonstrate discomfort as a result of 

wearing the device (activPAL). If you have any concerns or queries please contact Salford University.  

 

5-day 
period 

Signs of discomfort shown wearing 
the monitor 

Monitor 
removed: 
(Yes/No) 

If Yes, Did the sign(s) of 
discomfort disappear after the 

monitor is removed? 

Signed and 
dated 

1 
    

2 
    

3 
    

4 
    

5 
    

6 
    

7 
    

8 
    

9 
    

10 
    

11 
    

12 
    

Peel Trust Project 

Device Comfort Form 

 

DATIX Person ID:_______________________________ 
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F Fall Signal Identification Application

F.1 Application Development

An application was developed to facilitate the verification of the fall times. The process

of verification consisted of checking the accelerometer signal around the reported time

and the identification of the point which matched the description in the fall report. If no

matching signal could be identified then this was recorded with a reason. To increase the

reliability of the results, two experts independently analysed the accelerometer signals to

identify the falls. Where there was disagreement the experts met for discussion and to

agree, if possible, on (1) whether the description from the fall report suggested the incident

was a valid fall, (2) whether the fall could be identified and if not why, and (3) which point

in the accelerometer signal corresponded to the fall.

To facilitate the process a software application was developed. The application was

written using Python3, with SQLAlchemy to interact with the database and PyQt5 for

the Graphical User Interface (GUI). To support the main application a series of modules

written using Python3 and SQLAlchemy were used to automate data management tasks.

The application aimed to aid in the following parts of the process:

• Identification of the reported falls for which data were available

• Identification of falls which the current researcher could work on

• Accessing the information contained in the fall reports

• Deciding if the reported fall was valid based on the description from the fall report

• Analysing the accelerometer signals

• Deciding if the fall could be identified in the accelerometer signal

• Marking the identified point at which the fall occurred

• Recording the confidence in the identified point

• Storage of the results

F.1.1 Records of Fall Signal Identification

To keep all data in a single location the records of fall signal identification were added to

the fall record table in the SQLite database which was used to record information during

the data collection (Section 6.3.1). The relationship between the fall table and others in
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the database is shown in Figure F.1. The fall table stored all the information from the

fall reports received from the care homes, which included the participant ID (for details

see 6.2.3.2) and columns for the results of signal identification (Table F.1). The columns

for the study phase, file id and disagreement were all automatically populated based on

queries of the database. For the study phase and file id, the queries were run before the

verification process began, for the disagreement column the query was run after every

captured fall had been analysed by two researchers. The other columns each appeared

three times, two for the independent analysis and one for the final decision.

Table F.1: Fall table columns for verification process.

Column Description

Study Phase The phase of the study, relative to the participant, in which

the fall occurred (‘pre’ for before the first recording was

made, ‘post’ for after the last recording, ‘between’ for in

between recordings or ‘captured’ if during a recording).

File ID The SHA1 hash of the accelerometer data file identified as

potentially containing the fall. This linked to the file table

where further information was stored such as the file path.

ID Code The ID of the user who analysed the data.

Valid A Boolean indicating whether the fall was deemed valid.

Verifiable A Boolean indicating whether the fall could be identified.

Unverifiable Reason The given reason why the fall could not be identified.

Sample No. The number of the sample in the accelerometer recording

which was marked.

Date & Time The timestamp of the sample in the accelerometer

recording which was marked.

Confidence The given confidence in the marked point.

Disagreement A Boolean indicating whether researchers disagreed.

F.1.2 Graphical User Interface

The GUI for the application was designed to be simple and easy to use whilst locking

the user into following the predefined process. Through a series of dialog windows, the
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*

1 *

1

*

1

*

1

*

1

*

1

fall_verifiers

id int

fall

id int

participant_id int

file_id text

verifier1_id int

verifier2_id int

verifier3_id int

participant

id int

file

id text

participant_id int

Figure F.1: Relationship between the fall table and others in the database.

user was taken step by step through the fall verification process, with only the necessary

information available at each step. To prevent bias the user could only see information

about the fall they were currently working on, with no access to their previous work or

the work of other users. To remove any potential issues caused by errors in data entry, all

interaction with the underlying data was abstracted away, leaving the user free to focus on

the analysis. The application handled all interaction with the database, it retrieved data

as it was needed and stored the results when the user saved their work. Screenshots of the

application’s windows and a description of the user interaction can be found in the section

which follows (Section F.2).

F.2 The Process of Verifying Falls Using the Application

Upon starting the application, a dialog was presented to the user requesting their user

ID (Figure F.2). All work committed to the database was linked to the ID given at the

start of the session. Once the user ID was entered, a query was run against the database

to find falls which had not yet been rated by two users and which had not been rated by

the current user. From the query result, the application selected a fall at random for the

user to work on. The random selection was chosen to minimise any effect of learning from

previous falls as might happen if all users worked on the falls in the same order.

Information about the chosen fall was queried from the database and presented to the user

who then confirmed that the fall was valid (Figure F.3). Falls were not deemed valid if the

description indicated that staff had intervened before the faller had come to rest as this

would interfere with the faller’s motion and there is questionable value in the automatic

detection of such an event.



APPENDIX F. FALL SIGNAL IDENTIFICATION APPLICATION 252

Figure F.2: Fall verification software: user login.

Figure F.3: Fall verification software: dialog to check if a fall was valid based on information
from the incident report.

If the user indicated that the fall was valid the accelerometer signal for the fall was loaded

and presented to them, along with the description of the fall (Figure F.4 - Image A). The

signal was presented on two plots, one showing each of the three axes of the accelerometer

and one showing the resultant acceleration. Both plots shared an X-axis of date and

time with acceleration in multiples of the acceleration due to earth’s gravity (g) on their

respective Y-axes. The initial view of the data showed twenty-four hours of data centred

around the reported fall time, which was marked by an orange dotted line. However, all

data from the complete recording containing the fall was loaded so that the user could

scroll through to get an understanding of the faller’s daily routines.

The application allowed the user to freely scroll back and forth through the signal and zoom

in and out, both in the time dimension only. Following an inspection of the accelerometer

signal, the user could either place a marker on the plot where they believed the fall to

be or save without placing a marker if no part of the signal matched the described fall.

If the user could not identify the fall in the signal, and therefore placed no mark, upon

pressing ‘Save’ a dialog asking why was presented (Figure F.5). The options available were

‘non-wear’, ‘no signal matches description’ or ‘other’.
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Figure F.4: Fall verification software: main window. A) The main window as it appeared
upon loading the data for a fall. B) The main window as it appeared once the user has
zoomed in and marked the fall.
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Figure F.5: Fall verification software: not verifiable dialog.

If the user could identify a signal which matched the described fall, they activated the marker

by pressing the ‘Mark’ button and then clicked on the plot to place the mark (Figure F.4 -

Image B). To standardise the placement of the marker, it was agreed that all users would

mark the point of impact, which presents as a peak in the resultant acceleration signal.

To assist the user, the application was programmed to place the mark on the peak in the

resultant acceleration nearest to where the user clicked. Following placing a mark on the

plot the user pressed save, and the application presented a dialog to request the user’s

confidence that they had marked the correct point (Figure F.6).

Figure F.6: Fall verification software: confidence dialog.

Upon the user either submitting that the fall could not be verified with a reason why, or

the identified point of impact with the confidence in said mark, the application presented

a dialog to confirm before committing the results to the database (Figure F.7).

Figure F.7: Fall verification software: commit dialog.
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