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Abstract
Phyllostomids (NewWorld leaf-nosed bats) are the ecologically most diverse bat family and have undergone the most extensive
adaptive radiation of any mammalian family. However comprehensive, multi-species studies regarding phyllostomid echoloca-
tion are scarce in the literature despite abundant ecological research. In this study, we describe the call structure and interspecific
variation in call design of 40 sympatric phyllostomid species from the Central Brazilian Amazon, focussing on general patterns
within genera, subfamilies and between feeding guilds. All but one species utilized short, broadband FM calls consisting of
multiple harmonics. As reported for other bat families, peak frequency was negatively correlated with body mass and forearm
length. Twenty-five species alternated the harmonic of maximum energy, principally between the second and third harmonic.
Based on PCA, we were unable to detect any significant differences in echolocation call parameters between genera, subfamilies
or different feeding guilds, confirming that acoustic surveys cannot be used to reliably monitor these species. We present
Ametrida centurio as an exception to this generalized phyllostomid structure, as it is unique in producing a mono-harmonic call.
Finally, we discuss several hypotheses regarding the evolutionary pressures influencing phyllostomid call structure.
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Introduction

The family Phyllostomidae is not only the second largest bat
family, consisting of approximately 62 extant genera and 219
species, but it also remains unrivalled amongst mammalian fam-
ilies for its ecological and morphological radiation (Rex et al.
2011; Monteiro and Nogueira 2011; Simmons and Cirranello
2019). Intricate partitioning of resources has cultivated

sophisticated dietary specialization within the family which in-
cludes frugivory, folivory, insectivory, carnivory and nectarivory
(Aguirre et al. 2003; Monteiro and Nogueira 2011; Rocha et al.
2017a), as well as the only three sanguivorous mammalian spe-
cies (Zepeda Mendoza et al. 2018).

In the Central Brazilian Amazon, there are at least 84
known species of phyllostomids (López-Baucells et al.
2016). Many of these provide ecosystem services such as
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pollination, seed dispersal and arthropod suppression (Kunz
et al. 2011), which are crucial to maintaining ecosystems and
habitats that are under ever-increasing pressure from anthro-
pogenic activities. Although mist netting is most often used to
survey tropical bats, acoustic methods are being increasingly
employed to sample and monitor aerial-hawking insectivo-
rous species. This is due to the fact that acoustic sampling
complements traditional capture techniques, which alone are
insufficient for fully inventorying local species assemblages
(Flaquer et al. 2007; MacSwiney et al. 2008; Pech-Canche
et al. 2011; Rydell et al. 2002; Silva and Bernard 2017). The
use and capabilities of bioacoustic surveys have advanced
greatly over the past few decades (Clement et al. 2014;
Deichmann et al. 2018), and sound is now utilized in the
research of many taxonomic groups such as birds, amphib-
ians, marine mammals and even plants (Deichmann et al.
2018; Jung et al. 2018). However, this technique has not been
commonly applied to phyllostomid species which have been
deemed unsuitable candidates for acoustic monitoring
(Brinkløv et al. 2009; Fenton et al. 1992).

Whereas aerial-hawking insectivores rely predominantly
on echolocation to forage, phyllostomids typically have more
sophisticated sight and olfactory senses and have been shown
to be less reliant on echolocation to locate food resources
(Brinkløv et al. 2011; Korine and Kalko 2005; Fleming
1989). Most phyllostomids produce low-intensity calls
(Brinkløv et al. 2009), and how species utilize them for for-
aging is not fully understood. However, there are several stud-
ies suggesting that sound may be an important means by
which frugivorous species can quickly discriminate between
desired floral species, e.g. fruit, within other vegetation
(Brinkløv et al. 2009; Gonzalez-Terrazas et al. 2016; Korine
and Kalko 2005). Echolocation call structure (including pa-
rameters such as duration, peak frequency, bandwidth and
intensity) is closely associated with the affiliation to different
types of food resources and the characteristics of the environ-
ment in which they are present (Denzinger and Schnitzler
2013). Bats foraging on aerial insects in open areas (e.g. above
the canopy) utilize long, low-frequency, quasi-constant fre-
quency (QCF) calls with narrow bandwidths for maximizing
prey detection range but which provide minimal environmen-
tal information (Denzinger and Schnitzler 2013). In contrast,
the majority of bats which glean insects within dense vegeta-
tion use either short, broadband, low-intensity frequency-
modulated (FM) calls or almost entirely constant-frequency
(CF) calls, which maximize environmental information, but
attenuate quickly (Jennings et al. 2004; Russo et al. 2018) .

Phyllostomids across different feeding guilds utilize calls
of a similar structure, characterized as short, broadband, FM
calls consisting of multiple harmonics (Brinkløv et al. 2009;
Jennings et al. 2004). Divergence in nose leaf structure has
been shown to be linked with dietary specialization within this
group (Leiser-Miller and Santana 2020); however, this

morphologic variation and the associated variation in call
structure is likely limited by phylogenetic constraints
(Collen 2012). Therefore, despite their dietary diversity,
phyllostomids rely on similar foraging strategies (Giannini
and Kalko 2004)—typically gleaning their food from densely
cluttered vegetation. The low intensity and high directionality
of their echolocation calls make them difficult to record, and
most studies to date have focussed on one or few species,
leaving many phyllostomid calls undescribed (Arias-Aguilar
et al. 2018; Jennings et al. 2004).

These difficulties, and therefore the limited capacity for
bioacoustics to be used in their monitoring, have led to a
research deficit concerning phyllostomid echolocation. Here,
we address this information gap by describing and comparing
the echolocation calls of 40 sympatric phyllostomid species
(24 genera) from the Central Brazilian Amazon. We describe
the interspecific variation within—and between—genera and
subfamilies, as well as explore the influence of body size and
feeding guild on call structure.

Material and methods

Study area

This study was carried out at the Biological Dynamics of
Forest Fragments Project (BDFFP) ~ 80 km north of
Manaus in the Central Amazon (2°20’ S, 60°6’ W; 80–
160 m a.s.l.), Brazil. This reserve was established in the
1980s, with the main goal to investigate the effects of forest
fragment size on Neotropical biota (Bierregaard and Lovejoy
1990). To do so, fragments of 1, 10 and 100 ha were isolated
from continuous terra firme rainforest by distances of 80–
650 m. Fragments are nowadays surrounded by a matrix of
secondary forest at varying successional stages (Carreiras
et al. 2014). Primary forest reaches 30–37 m in mean canopy
height, with isolated trees up to 55 m tall (Laurance et al.
2011). Rainfall varies from 1900 to 3500 mm annually, with
a dry season between July and November and a rainy season
between November and June (Ferreira et al. 2017).

Mist netting

Capture sessions were carried out between August 2011 and
October 2014, using both ground- and canopy- level mist nets
placed in a variety of habitats: continuous primary forest, for-
est fragments and secondary forest in which standardized sur-
veys were conducted and temporary lakes, rivers, streams and
clearings where we sampled opportunistically (Farneda et al.
2015; Silva et al. 2020; Rocha et al. 2019; Torrent et al. 2018).
Mist nets were exposed for six continuous hours after sunset.
We identified all individuals using available field guides and
morphological keys (López-Baucells et al. 2016). Taxonomy
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follows López-Baucells et al. (2016) except for Mimon
crenulatum and Lonchophylla thomasi, which are referred to
as Gardnerycteris crenulatum and Hsunycteris thomasi re-
spectively (Parlos et al. 2014; Hurtado et al. 2014). Standard
morphological measurements (including forearm length and
body mass) and demographic data were collected following
Handley et al. (1991). Details relating to the habitat character-
istics of where species were captured (e.g. vertical stratum)
can be sourced from Farneda et al. (2015), Silva et al. (2020),
Rocha et al. (2019) and Torrent et al. (2018).

Sound recordings

Bats were recorded with a Pettersson D1000X bat detector
(Pettersson Elektronik, Sweden) upon hand release. The detector
was set to full spectrum, continuous recording (no trigger) and a
sampling rate of 384 kHz. The detector was placed 5–10 m from
the point of release (depending on the species), and once alight,
we followed the bat’s flight path for as long as possible.

Acoustic measurements

Sound files were analysed using Kaleidoscope V4.0.4
(Wildlife Acoustics, USA). Sound files consisting of low-
quality recordings, or those with multiple species present,
were discarded. Moreover, we discarded pulses recorded just
after release due to the obvious stress signature (see
Supplementary Fig. A.1). For each of the remaining files,
ten pulses were identified for analysis. This was not possible
for six species which had limited recordings (Table 1). In
these cases, the maximum number of pulses obtained was
analysed. Measurements were extracted from each of these
pulses for six acoustic parameters on each harmonic present:
the frequency of maximum energy (peak frequency), the
frequency at the start of the harmonic (start freq.), the
frequency where the harmonic ends (end freq.), the
maximum frequency detected within a harmonic (maximum
freq.), the minimum frequency detected within a harmonic
(minimum frequency) and the duration in milliseconds
between the start and end frequencies (pulse duration)
(Fig. 1). Peak frequency was determined from the power
spectrum, whereas other variables were measured manually
from the spectrogram plots by comparing intensity.
Maximum and minimum frequency and start and end
frequency were considered 20 dB below peak. Furthermore,
the peak frequency across harmonics was compared within
each pulse to identify the harmonic of maximum energy.
Kaleidoscope settings were as follows: FFT size 256,
window size 128 and cache size 256 MB.

Due to pulse overlap, associated with the multi-harmonic
nature of the echolocation calls produced by the species
targeted by this study, it was neither possible to use an auto-
mated pulse-measuring software (e.g. Scan’R) nor to discern

call parameters such as start/end frequency and duration from
the oscillogram. Although these approaches are preferable for
measuring call characteristics as they reduce variability due to
the analyst’s bias present when parameters are measured via a
sonogram, we believe that our methodology was well suited
for our purposes and that any potential variability in the mea-
surements did not substantially affect the conclusions drawn
here. However, the call measurements we present here should
be viewed in light of these measuring limitations.

Statistical analysis

Linear regression analysis, performed in R 3.4.4 (R Core
Team 2018), was used to assess the relationship between body
size and peak frequency. For this, the peak frequency of the
third harmonic was regressed against the species’ mean body
mass and forearm length. The analysis was restricted to 23
species for which we had body mass and forearm length data
based on our mist net captures. The third harmonic was used
as it was the predominant harmonic of maximum energy for
22 of the 38 species included in the analysis. No echolocation
calls of sufficient quality were obtained for Lophostoma
schulzi. Therefore, it was excluded from the analysis, and
the regression was performed for 22 species.

Principal component analysis (PCA) was conducted on the
aforementioned call parameters measured on the third har-
monic of each species’ calls, using the R package ‘stats’, to
summarize and visualize the similarity in echolocation call
structure of all subfamilies. Log call variables were zero
centred and were scaled to have unit variance.

Results

Call descriptions

Across the study period, 40 phyllostomid species from five
subfamilies were captured. Acoustic analysis was conducted
using a total of 2112 pulses from 135 individuals (Table 1).
Sonograms were produced for all species except Lophostoma
schulzi, as no representative release echolocation call of suffi-
cient quality was obtained for this species. All species, apart
fromAmetrida centurio, producedmulti-harmonic calls which
were visible on the raw recordings. These were characterized
as broadband, downward-sweeping, frequency-modulated
calls with overlapping harmonic components. The frequency
of maximum energy was almost exclusively located either in
the second or third harmonic (88% of all recorded pulses).
They also provided the best quality calls for analysis.
Harmonics higher than the third were rare and were consid-
ered the harmonic of maximum energy for only 2% of
recorded pulses. Moreover, these harmonics were ex-
tremely faint or corrupted (e.g. higher harmonics were
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beyond the frequency range that could be accurately
sampled) and therefore could not be measured accurate-
ly. Therefore, further call analysis focussed primarily on
second and third harmonics. It should be noted that
intraspecific variation may exceed parameter ranges
due to differences in recording situation or environmen-
tal conditions beyond those within our study.

Peak frequency of the third harmonic was significantly
inversely related to body size (Fig. 2); large bats, such as
Artibeus planirostris (average body mass 51.0 g), generally
had low-frequency calls, whereas smaller bats, such as
Vampyriscus bidens (average body mass 12.0 g), exhibited
high frequency calls.

Phyllostominae

A total of 17 species from 11 genera of the subfamily
Phyllostominae were captured during the study period
(Fig. 3). However, no release echolocation call of sufficient
quality was obtained for Lophostoma schulzi (Fig. 4).

There is a high degree of similarity between the respective
call harmonics of the genera Lampronycteris and Trinycteris
(Table 1). Within the genus Lophostoma, call frequencies are

reflective of relative body size as the largest of the three spe-
cies examined; L. silvicolum utilized lower frequency calls
than the smaller L. brasiliense and L. carrikeri (Table 1).

Body size was also negatively correlated with call frequen-
cy overall in the genus Phyllostomus. Despite being the largest
species examined in this study, Chrotopterus auritus utilized
calls that were higher in frequency than predicted for its body
size (see Fig. 2 and Table 1).

Stenodermatinae

A total of 15 stenodermatids were captured during the
study period. There was very little variation in the echo-
location calls of Artibeus planirostris, A. lituratus and
A. obscurus—all produced calls with similar peak fre-
quencies of ~ 70 kHz on the harmonic of maximum
energy (Fig. 3). Artibeus concolor (the smallest
Artibeus examined during this study) emitted calls of
comparatively higher frequencies than the larger conge-
nerics. However, an overlap occurred between the third
harmonic of A. planirostris and A. obscurus and the
second harmonic of the largest species, A. lituratus.
Because of the overlap between the frequencies of

Fig. 1 Illustration of the points of measurement for call parameters used
in this study in Kaleidoscope, including Phyllostomus discolor call. Peak
frequency (FME) was measured from the power spectrum, whereas the

other parameters were measured from the sonogram. FFT size 5112 and
win size 128
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multiple harmonics, it is not possible to reliably distin-
guish between these species. The genera Sturnira and
Vampyriscus produce calls that are indistinguishable
and exhib i t h igh s imi la r i ty wi th the ca l l s of
Dermanura. There is a high degree of overlap between
the different harmonics amongst this group (Table 1).
The shortest bandwidths and highest frequencies are ob-
served in the smaller species Platyrrhinus helleri and
Mesophylla macconnelli. The species of these six genera
produce calls similar to those present in other
phyllostomid families. Ametrida is a monotypic genus
consisting of A. centurio. Pulses are frequency-
modulated resembling an inverted hockey stick
shape, broad bandwidths and short durations. The spe-
cies shows a high degree of variability within call fre-
quencies (Table 1), particularly concerning the call start
and end frequencies. It is also one of the few
phyllostomid species to not emit a multi-harmonic call.
This, combined with its high peak and maximum fre-
quencies, enables A. centurio to be identified using
acoustic analysis. Uroderma bilobatum also exhibits
high frequency calls but overlaps with several species
from other genera.

Desmodontinae

Desmodontinae is a monophyletic group comprising the
species Desmodus rotundus, Diaemus youngi and
Diphylla ecaudata. However, only D. rotundus was cap-
tured in this study. This species exhibited frequencies of
maximum energy on each of the first three of the four
visible harmonics (Table 1) and utilized low-frequency

calls for its body size. Calls produced by this species
are typical of other phyllostomids in terms of their
structure.

Carolliinae

Four species from two genera of the subfamily
Carolliinae were captured. Although morphologically
similar to the smallest species of the genus Carollia
(C. castanea), Rhinophylla pumilio exhibited call fre-
quencies similar to the largest species—C. perspicillata
(Table 1). Call shape was similar across both genera
(Fig. 3) and to that of other phyllostomids. Between
Carollia species, frequencies reflected their relative
body sizes, with larger species emitting echolocation
calls of lower frequency.

Glossophaginae

Three species from three genera of the subfamily
Glossophaginae were captured during the study. Unlike
other subfamilies, glossophagines appear to exhibit var-
iation in call shape amongst genera. Glossophaga
soricina restricts the frequency of maximum energy to
the second harmonic, utilized broader bandwidths and
produced a distinctively longer call compared with all
other phyllostomid species (Table 1). Choeroniscus
minor exhibited frequencies of maximum energy on
the first and third harmonic which were not expressed
on the second harmonic.

Fig. 2 Relationship between body size, represented by body mass and
forearm length, and mean peak frequency of the third harmonic. The third
harmonic was used as it was the predominant harmonic of maximum

energy across the species list. Line shows the results of a linear
regression for each plot. See Table 1 for species abbreviations. Grey
represents 95% confidence level interval
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Call parameter overlap between phyllostomid subfamilies

When all species were considered together, no differentiation
in call structure between subfamilies was perceivable (Fig. 5).

Across the five subfamilies, Stenodermatinae and
Phyllostominae exhibited the largest variation in call structure
amongst species.

Multiple species within and between phyllostomid subfam-
ilies show substantial variation in peak frequency, such as
A. lituratus, Sturnira tildae and Vampyriscus brocki (Fig. 6).
However, despite the substantial difference between peak fre-
quencies of certain species, almost every species has a large
overlap in peak frequency range with multiple other species.
The only exception to this is P. hastatus, which does not
exhibit any overlap in peak frequency range of the third har-
monic with any other study species.

Discussion

Our results demonstrate that phyllostomid subfamilies exhibit
remarkably similar call structures even when belonging to
different feeding guilds. Due to the high degree of overlap in
call parameters as revealed by the PCA (Fig. 5), our results
corroborate that it is not currently possible to reliably distin-
guish between most species, genera and subfamilies, based
solely on the call parameters used in this study. The total
frequency range observed (considering the peak frequencies
for all harmonics of maximum energy) ranged from 33.4 kHz
(Desmodus rotundus) to 118.2 kHz (Mesophylla
macconnelli). Although some differences between certain
subfamilies can be observed (Fig. 6), due to the continuous
overlap along the gradient of all species, it is not possible to
use acoustic data to reliably identify species or subfamilies.

Fig. 3 Echolocation call design of 16 species (11 genera) from the
subfamily Phyllostominae. Lophostoma schulzi is not included in this
figure due to lack of a high-quality sonogram image. Micronycteris
megalotis and M. microtis have been joined due to the difficulty in
distinguishing between these two species. Call duration and frequency

have been scaled to allow comparison between species. Sonogram image
is for illustrative purposes and should not be used in isolation for species
identification. Call amplitude represented here is not standardized be-
tween species and therefore should not be used as a diagnostic feature

Mamm Res



Evolutionary advantage for multi-harmonic calls

All but one species (Ametrida centurio) produced pulses
with multiple harmonic components, the majority of
which showed a high degree of spectral overlap. By
doing so, the production of frequency-modulated calls
which extend their bandwidth possibly enables individ-
uals to perceive a more complete representation of their
environment than otherwise possible (Altringham 2011;
Krumbholz and Schmidt 2001). This includes providing
information on shape, size and texture of neighbouring
vegetation. However, as they produce low-intensity
calls, detection range is limited.

Phyllostomids are not unique in their use of low-inten-
sity, multi-harmonic calls. The families Nycteridae and
Megadermatidae not only exhibit convergent evolution
in terms of call structure, but they also possess similarities

with phyllostomids concerning nose structure and forag-
ing strategies (see Fig. 7) (Altringham 2011; Marimuthu
et al. 2010; Schaer et al. 2015). Therefore, similar ecolog-
ical pressures have resulted in similar evolutionary adap-
tations in both New and Old World species. By compar-
ing wider groups of species assemblages, future research
may be able to uncover the determining factors dictating
call characteristics. In doing so, this would improve our
understanding of the functionality of these characteristics
and their purpose and—more broadly—expand our in-
sights into sound ecology.

Species-specific exceptions to the general
phyllostomid call structure

The phyllostomine Ametrida centurio was the only species
which did not produce a multi-harmonic call, which is

Fig. 4 Echolocation call design of 23 species (15 genera) from the
subfamilies Stenodermatinae, Desmodontinae, Carolliinae and
Glossophaginae. Dermanura gnomus and D. cinereus are presented
together due to the difficulty in distinguishing between these two
species. Call duration and frequency have been scaled to allow

comparison between species. Sonogram image is for illustrative
purposes and should not be used in isolation for species identification.
Call amplitude represented here is not standardized between species and
therefore should not be used as a diagnostic feature
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consistent with previous reports (Collen 2012). Ametrida
centurio is considered to be a canopy species which is also
associated with forest clearings and waterways (Lee and
Dominguez 2000; Rocha et al. 2017b; Silva et al. 2020). It
is primarily frugivorous and nectarivorous and favours less
cluttered spaces (Lee and Dominguez 2000; Vilar et al.
2015). Being the smallest phyllostomid, it has fewer require-
ments in terms of manoeuvrability than larger bats
(Altringham 2011). It is thus possible that the production of
calls with singular harmonics reflects its habitat preferences.
Ametrida centurio also expressed large variation in call fre-
quency. This could also be a response to environmental re-
quirements and can also be associated with sexual dimor-
phism in body size (Lee and Dominguez 2000). Further stud-
ies which differentiate between the calls of males and females
could test this hypothesis. Research regarding the ecology and
biology of this species is limited, in part due to its rarity across

its range as well as difficulties in surveying it (Vilar et al.
2015). Due to the unique nature of this species’ echolocation,
records of occurrence may emerge through future canopy sur-
veys utilizing bioacoustics, subsequently improving our un-
derstanding of its ecological requirements. Although not pres-
ent in our study area, Lonchorhina aurita represents another
species from the subfamily Phyllostominae whose call
Gessinger et al. (2019) recently demonstrated to differ funda-
mentally from the stereotypical echolocation call design of the
family, likely reflecting an adaptation to aerial hawking.

Acoustic partitioning

Due to the degree of overlap between the echolocation call
parameters of phyllostomid species, reliably distinguishing
between subfamilies, genera and species is impossible using
parameters adopted in this study, with few exceptions such as

Fig. 5 Arrangement of the 38 phyllostomid species, excluding L. schulzi,
according to call parameters of the third harmonic along the axes of a
principal component analysis. Circles represent 0.68 confidence ellipse

probabilities. FME, frequency of maximum energy (peak frequency).
Legend includes variable loadings
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A. centurio, P. hastatus and L. aurita. In order to be able to
exploit multiple resources, most phyllostomids exhibit a gen-
eralist call structure. This allows them to adapt their calls to
suit the wide array of environmental conditions encountered
and feeding resources exploited (Brinkløv et al. 2009; Fenton
et al. 1992; Pio et al. 2010). Nevertheless, substantial differ-
ences in peak frequencies distributed across a continuous gra-
dient of variation are evident. Acoustic partitioning between
species is usually related to niche differences such as habitat
preference and prey selection or to facilitate intraspecific com-
munication (Brinkløv et al. 2009; Denzinger et al. 2018;
Denzinger and Schnitzler 2013; Jones and Barlow 2004; Shi
et al. 2009). Although multiple feeding guilds were examined
in this study, all species considered are gleaners that forage in
high-clutter situations and hence utilize broadly similar forag-
ing strategies (Giannini and Kalko 2004). The majority of
these species have flexible diets, demonstrating omnivorous
selection in response to conditions such as seasonal
fluctuations in resource availability (Giannini and
Kalko 2004; Santana et al. 2011; Wilkinson and
Wenrick Boughman 1998).

Body size is a strong predictor of call frequency for
echolocating bat species (see Fig. 2) (Altringham 2011;
Jones 1999; Shi et al. 2009). However, this relationship is
not consistent amongst phyllostomids (Jones 1999; Russo
et al. 2018), and several deviations from this pattern were
evident in our data. Although both C. auritus and
D. rotundus produce calls which follow the basic
phyllostomid structure (low-intensity, multi-harmonic), it is
possible that more specialized diets result in increased selec-
tion pressures on acoustic parameters, as observed in L. aurita
(Gessinger et al. 2019).D. rotundus utilized frequencies lower
than expected relative to its body size (see Table 1). This is
likely due to its unique feeding habits, but whether this is
related to foraging strategy or prey type remains unclear.
Variation in foraging strategy amongst different species has
been observed to affect call structure (Altringham 2011;
Denzinger and Schnitzler 2013). However, the vast majority
of studies relate to aerial insectivores (but see Halfwerk et al.
2014). D. rotundus has an extended forearm length relative to
species of the same weight (Altenbach 1979) as it uses its
forearm for approaching prey on the ground. It is therefore

Fig. 6 Peak frequencies observed for the third harmonic of 38 species of the subfamilies Carolliinae, Desmodontinae, Glossophaginae, Phyllostominae
and Stenodermatinae. See Table 1 for species abbreviations
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possible that the frequencies are not low but rather the forearm
is relatively oversized. However, this hypothesis appears un-
likely as D. rotundus still exhibits low-frequency calls when
this variable is excluded from analysis. Another possible ex-
planation for this lies in the fact that D. rotundus does not
echolocate when approaching prey, its main use thus being
navigation during commuting (Schmidt and Schmidt 1977). A
high wing loading for long-distance commuting to find mam-
malian prey (Wilkinson 1985) supports the theory for a com-
petitive advantage in producing decreased call frequencies
(Altringham 1996). In contrast, C. auritus exhibited a higher
than predicted call frequency relative to its body size (see
Table 1) despite gleaning its prey. This species, unlike other
large carnivorous bats such as Trachops cirrhosus, feeds al-
most exclusively on vertebrates (Smith 2008; Wilkinson and
Wenrick Boughman 1998). Echolocating at lower frequencies
may increase the likelihood of being detected by mammalian
prey, hence the higher frequency echolocation observed
(Norberg and Fenton 1988).

Study limitations

O’Farrell et al. (1999) showed that bat echolocation calls re-
corded shortly after hand release are similar to those recorded
from bats emerging from roosts. However, phyllostomid bats
usually emit highly modulated pulses of short ranges, and
therefore the effect of handling should not be as severe as in

other aerial insectivorous bats with narrow-band calls. For this
study, we minimized this potential bias by only considering
pulses recorded at a distance greater than 5 m away from the
point of release and, whenever possible, only when the re-
leased bat started circling around it. Although the initial
screening process ensured maximum quality of acoustic re-
cordings, this reduced the number of recordings available for
analysis. Thus, the number of recordings for several less com-
mon species (e.g. A. caudifer) was relatively small compared
with more commonly captured species (e.g. A. lituratus)
(Table 1).

Conclusion

In this study we have aimed to both expand and update current
knowledge regarding phyllostomid echolocation call design.
It is clear that due to the considerable overlap between
phyllostomid call parameters, live-trapping still provides the
best method for surveying these species. However, future
technological developments may allow minute differences in
the echolocation call designs of phyllostomid bats to be dis-
tinguished from one another and thus allow these species to be
monitored using remote sensing techniques.
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