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Abstract 38 

The assessment of the mechanical power production is of great importance for researchers 39 

and practitioners. The purpose of this review was to compare the differences in ground 40 

reaction force (GRF), kinematic, and combined (bar velocity x GRF) methods to assess 41 

mechanical power production during weightlifting exercises. A search of electronic 42 

databases was conducted to identify all publications up to 31 May 2019. The peak power 43 

output (PPO) was selected as the key variable. The exercises included in this review were 44 

clean variations, which includes the hang power clean (HPC), power clean (PC) and 45 

clean. A total of 26 articles met the inclusion criteria with 53.9% using the GRF, 38.5% 46 

combined, and 30.8% the kinematic method. Articles were evaluated and descriptively 47 

analysed to enable comparison between methods. The three methods have inherent 48 

methodological differences in the data analysis and measurement systems, which 49 

suggests that these methods should not be used interchangeably to assess PPO in Watts 50 

during weightlifting exercises. In addition, this review provides evidence and rationale 51 

for the use of the GRF to assess power production applied to the system mass while the 52 

kinematic method may be more appropriate when looking to assess only the power 53 

applied to the barbell. 54 

 55 
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Introduction 63 

The assessment of mechanical power production is of great interest for researchers and 64 

practitioners. Peak power output (PPO), defined as the highest instantaneous mechanical 65 

power output is the variable most commonly reported during the biomechanical 66 

assessment of sporting tasks (Garhammer, 1993). This is based on the notion that the PPO 67 

is highly related to sports performance during dynamic athletic tasks (Cronin & Hansen 68 

2005; Young, 2006), is a reliable and valid measure to differentiate between sports profile 69 

based on the training background (Baker, 2001; Comfort, Graham-Smith, Matthews, & 70 

Bamber, 2011; Mcbride, Triplett-Mcbride, Davie, & Newton, 1999), and therefore, may 71 

be appropriate to monitor during the training process. 72 

 73 

Weightlifting exercises such as the clean, power clean (PC) and hang power clean (HPC), 74 

have been suggested by researchers as effective training tools to improve the ability to 75 

exert high levels of power outputs and enhance sport performance of dynamic athletic 76 

tasks (Chiu & Schilling 2005; Hori, Newton, Nosaka, & Stone, 2005; Janz, Dietz, & 77 

Malone, 2008; Suchomel, Comfort, & Lake, 2017). The potential for dynamic 78 

correspondence and the ability to train power across the load-velocity continuum are 79 

likely why the clean, PC, and HPC are widely implemented in strength and conditioning 80 

programs to enhance sport performance not only in weightlifters, but also in the general 81 

sporting population (Hori et al., 2005; Suchomel et al., 2017; Tricoli, Lamas, Carnevale, 82 

& Ugrinowitsch, 2005). 83 

 84 

The assessment of PPO has been widely studied by researchers using the clean variations. 85 

For example, the use of applied video-analysis using a work-energy approach has 86 

specifically been reported in weightlifting competitions to determine successful 87 
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performance predictors of the clean, and to describe the technical differences of skilled 88 

vs. non-skilled weightlifters (Garhammer & Newton, 2013; Garhammer & Oarhammer, 89 

1985). In contrast, in controlled laboratory and field testing conditions, three main 90 

methods have commonly been utilised to obtain mechanical power production: 1) power 91 

applied to the system mass (SM: individual´s body mass + external load), obtained from 92 

the ground reaction force (GRF); 2) power applied to the barbell, obtained from the 93 

kinematics of the barbell; and 3) power applied to the SM, obtained from the kinematics 94 

of the barbell and GRF (known as the combined method) (Cormie, McBride, & 95 

McCaulley, 2007a; Hori, Newton, Nosaka, & McGuigan, 2006). 96 

 97 

Researchers have suggested that practitioners may be interested in either the PPO applied 98 

to the barbell or to the SM, depending on sport-specific skills (Hori et al., 2006, 2007; 99 

McBride, Haines, & Kirby, 2011) and the objective of the research (Lee, DeRosia, Lamie, 100 

& Levine, 2017; Lee, DeRosia, & Lamie, 2018). For example, it has been suggested that 101 

weightlifters or throwers may be particularly interested in the PPO applied to the barbell 102 

using the kinematic method, as their performance predictor is how much power is applied 103 

to an object (i.e. barbell, javelin, ball, hammer), whereas the general sport population may 104 

be more interested in the power applied to the SM to assess performance of the lower-105 

body accelerating the external load and the body mass as a whole (Hori et al., 2008; 106 

McBride et al., 2011). Although Hori et al. (2006, 2007) recommended that the GRF 107 

method should be used as the ‘gold standard’ to assess power applied to the SM, the 108 

combined method has become popular as an alternative to assess power production during 109 

lower-body dynamic tasks (Cormie et al., 2007a; Cormie, Deane, & McBride, 2007b; 110 

Dugan, Doyle, Humphries, Hasson, & Newton, 2004). However, the combined method 111 

has been criticised by some researchers for having a questionable rationale and a lack of 112 
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agreement concerning the GRF method (Hori et al., 2006, 2007; Mundy, Lake, Carden, 113 

Smith, & Lauder, 2016). Therefore, the lack of consensus between researchers makes it 114 

difficult to compare results among studies where different methods have been used. 115 

 116 

The purpose of this review was therefore, to compare the three methods commonly 117 

employed to assess power production during weightlifting exercises. Furthermore, a 118 

secondary goal was to establish practical applications and guidelines for researchers and 119 

practitioners in the use of the current methodologies to assess mechanical power 120 

production. The findings of various studies are integrated to provide dependability 121 

evidence upon which to base the mechanical power output assessment settings. It has 122 

been hypothesised that the GRF, kinematic and combined methods show marked 123 

differences in power production (watts) during weightlifting exercises. 124 

 125 

Methods 126 

Review protocol 127 

A review protocol for this paper was developed using the PRISMA guidelines for 128 

systematic reviews and meta-analyses (Moher et al., 2016; Shamseer et al., 2015). This 129 

was used in the planning and development of the systematic review to assure the quality 130 

of the review process. 131 

 132 

Search strategy and inclusion criteria 133 

 A search of electronic databases was conducted to identify all publications on mechanical 134 

power production assessment during the clean variations up to 31 May 2019. The 135 

literature search was undertaken using 22 different key-words: ‘mechanical power’, ‘peak 136 

power’, ‘power production’, ‘power assessment’, ‘power development’, ‘power–load 137 
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curve’, ‘peak power output’, ‘mechanical power output’, ‘weightlifting exercises’, 138 

‘clean’, ‘clean and jerk’, ‘power clean’, ‘hang power clean’, ‘linear position transducer’, 139 

‘displacement-time’, ‘combined method’, ‘force platform’, ‘accelerometer’, ‘high-speed 140 

video camera’, ‘ground reaction force’, ‘kinematic’, ‘kinetic’. Search terms were 141 

combined by Boolean logic (AND, OR), with no restrictions on date or language, in 142 

MEDLINE (SPORTDiscus), PubMed, Google Scholar, and Web of Science. The search 143 

spectrum has also been extended to ‘related articles’ and the bibliographies of all retrieved 144 

studies. For the sake of guaranteeing accurate outputs (articles selected), two independent 145 

reviewers (initial evaluators: MS, PJM) screened citations of potentially relevant 146 

publications. The total number of citations were gathered and duplications excluded. The 147 

final outputs obtained from this process were categorised as ‘potential abstracts and titles 148 

identified and selected’. When abstracts indicated potential inclusion, the specific 149 

inclusion criteria was applied for the process of including and excluding articles. A third-150 

party consensus meeting was held (mediator: PSB) if the two reviewers were not able to 151 

reach agreement upon inclusion of an article (Moher et al., 2016; Shamseer et al., 2015). 152 

 153 

Studies were included in this review if the following criteria were met: a) full-text, journal 154 

articles; b) research focused on the clean, PC or HPC; c) research reported the PPO in 155 

text, tables, or figures measured across a single load or a power-load spectrum of absolute 156 

values (kg) or relative to the 1RM (%1RM); d) research employed the GRF, kinematic or 157 

combined method for analysis and explained clearly the measurement system and how 158 

the variables were analysed. 159 

 160 

 161 

Quality assessment 162 
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A specific and previously validated quality assessment tool that fits this study has not 163 

been found in the literature. However, in a recent systematic review of biomechanical 164 

research methods in cross-sectional studies (Hindle et al. 2019) researchers have 165 

developed a checklist that seems suitable for evaluating the risk of bias for the eligible 166 

articles of this study (Table 1). Each study was read and ranked from 0 to 16, with a larger 167 

number indicating better quality. For each question, a 1 was awarded if the study met the 168 

standard. If insufficient description or data were not provided to analyse a specific 169 

question, a 0 was awarded. The process of evaluation was undertaken by two researchers 170 

(initial evaluators: MS, PJM) who ranked the articles blinded. Then, a third researcher 171 

(mediator: PSB) compared the scores of each researcher. If there was no consensus, the 172 

three researchers involved (MS, PJM and PSB) discussed the study to provide a definite 173 

score. Eventually, the total risk of bias score was calculated for each article and 174 

categorised using a previous method (Davids and Roman 2014; Hindle et al. 2019) which 175 

classifies articles scoring >67% as having low risk of bias, articles scoring in the range of 176 

34-66% as having a satisfactory risk of bias, and articles scoring <33% as having a high 177 

risk of bias. Only articles scoring a low or satisfactory risk of bias were included in the 178 

review (Davids and Roman 2014; Hindle et al. 2019). 179 

 180 

***Table 1 about here*** 181 

 182 

Description of the methods 183 

The methods were selected based on the guidelines provided by Hori et al. (2006, 2007) 184 

for the assessment of power production during weightlifting exercises: 1) The GRF 185 

method; 2) the kinematic method, and 3) the combined method. In addition, the common 186 

process of data analysis, equations and approaches are provided in the description (see 187 
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Figure 1). Essential concerns regarding the procedures of each method are also addressed 188 

in later sections.   189 

 190 

The GRF method 191 

The GRF method represents the force applied to the SM, following Newton´s third law 192 

using a force platform (FP) (Cavagna, 1975). Acceleration of the SM is calculated by first 193 

subtracting system weight (SM * g, where g = -9.81m·s-2) from GRF, to provide the 194 

exerted force (net force), before this is divided by SM based on Newton´s second law. 195 

SM velocity is calculated from the integration of the SM acceleration data with respect to 196 

time (Cavagna, 1975; Chiu, 2018). Power applied to the SM is obtained as the product of 197 

velocity of the SM and corresponding vertical GRF directly, this process of integration 198 

based on the known GRFs is termed the forward dynamics approach (Cavagna, 1975; 199 

Hori et al., 2006). Researchers and practitioners must be aware that with this method, 200 

power may be calculated by multiplying force and velocity of the SM in the three axes 201 

(x, y, z), however, only the vertical component (z) is typically reported for power 202 

calculations during weightlifting exercises (Comfort, Fletcher, & McMahon, 2012). 203 

 204 

The kinematic method 205 

The kinematic method has been commonly used by researchers and practitioners with 206 

two different methods to obtain barbell kinematics depending on the technology used 207 

(Chiu, 2018; Hori et al., 2006). The first method corresponds to the calculation of the 208 

displacement-time differentiation using motion capture high speed video-cameras 209 

(McBride et al., 2011), a single or dual linear position transducer (LPT) (Cormie, et al. 210 

2007b) or optoelectronic motion capture systems (Rossi et al., 2007), where barbell 211 

velocity is calculated from the rate of change of displacement divided by time. Barbell 212 
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acceleration is then calculated by differentiating velocity-time data between two 213 

consecutive time points (known as double differentiation of displacement-time data) 214 

(Cormie, et al. 2007b; Hori et al. 2006). The second method is based on new technologies 215 

such as accelerometers attached to the barbell (Sato, Sands, & Stone 2012; Thompson & 216 

Bemben, 1999), which provide acceleration of the barbell directly, where no process of 217 

differentiation is needed, although one must integrate the signal to get barbell velocity. 218 

In this matter, the average barbell acceleration value is multiplied by the time interval 219 

between data points (based on the sampling rate) to yield instantaneous barbell velocity 220 

at each data point (Thompson & Bemben, 1999). Once the barbell acceleration is obtained 221 

either directly (accelerometers) or by the double differentiation process (displacement-222 

time), barbell force is then calculated by multiplying the barbell mass by the acceleration 223 

data + barbell weight (barbell mass x g) at each time point. Power is therefore calculated 224 

by multiplying force (individual’s body mass excluded) and integrated velocity data (Hori 225 

et al., 2006, 2007). This process is the inverse dynamic approach, which estimates force 226 

output from barbell kinematics (Chiu, 2018). Similarly to the GRF method, calculations 227 

of total power which correspond to the sum of three axes ([x-force * x-velocity] + [y-228 

force * y-velocity] + [z-force * z-velocity]) may be done depending on the measurement 229 

system utilised (e.g. high speed video-cameras), although only the vertical component (z) 230 

is usually reported for power calculations (Ammar et al., 2018a; Kipp, Harris, & Sabick, 231 

2013; Lake, Lauder, & Smith, 2010).  232 

 233 

***Fig 1 About here*** 234 

 235 

The combined method 236 
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Using the combined method power is calculated as the product of GRF (from the  FP to 237 

represent the force applied to the SM) and barbell velocity (from high-speed video 238 

cameras or LPTs). Using this method, force and velocity are obtained directly, 239 

minimising data manipulation (Cormie et al. 2007a; Cormie et al. 2007b; Hori et al. 2006, 240 

2007). 241 

 242 

Data analysis 243 

To address the primary objectives of this systematic review, the data from the included 244 

articles were subdivided into three zones following previous research (Soriano, Jiménez-245 

Reyes, Rhea, & Marín, 2015). Loads ranged from 0 to 30 % of 1RM were categorised as 246 

Zone 1 (lighter loads), >30 to <70 % of 1 RM categorised as Zone 2 (moderate loads), 247 

and > 70 % of 1RM categorised as Zone 3 (heavier loads). Furthermore, when two or 248 

more loads were within the same zone, the PPO was averaged to enable descriptive 249 

comparisons between zones. A comparison between zones was chosen instead of a load 250 

by load comparison based on the notion that although power production differences may 251 

be observed between all loads, a difference statistically significant is not usually observed 252 

(Cormie, McCaulley, Travis-Triplett, McBride, 2007c; Kilduff et al., 2007). 253 

Measurement system details, sampling rate, and relative reliability (intraclass correlation 254 

coefficient, [ICC]) were reported when available. 255 

 256 

RESULTS 257 

Literature search and quality assessment 258 

A flow diagram of the literature search is shown in Figure 2. According to the above-259 

defined inclusion criteria, 26 independent studies were identified. The GRF method and 260 

the combined method are the most commonly utilised methods to assess PPO for clean 261 
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variations, with 53.9% and 38.5% of the total articles included in this review, 262 

respectively. The kinematic method was used in 30.8% of articles included. Results from 263 

the quality scores and risk of bias are provided in Table 1. In general, the articles reviewed 264 

provided a well-defined and validated data collection methods, utilised appropriate 265 

statistical analysis and presented the results adequately. The risk of bias assessment 266 

conducted on the articles selected showed 21 articles classified as having a low risk of 267 

bias (>67%), while 5 articles were classified as having a satisfactory risk of bias (34-268 

66%). 269 

 270 

***Fig 2 about here*** 271 

 272 

Descriptive Analyses 273 

Mechanical power production 274 

The PPO values and the optimal load for maximal power production are descriptively 275 

reported for the clean, PC and HPC in Table 2. In brief, the PPOs reported for the GRF 276 

method during the clean variations were within a range of 1301 – 3587 W for Zone 1, 277 

1321 – 4226 W for Zone 2, and 1554 – 4391 W for Zone 3. The PPOs reported for the 278 

combined method were descriptively higher than those reported for the GRF and the 279 

kinematic method for Zone 1 (3884 – 4030 W), Zone 2 (3980 – 5618 W) and Zone 3 280 

(3679 – 6629 W). The kinematic method displayed lower PPOs than the GRF and 281 

combined method for Zone 1 (984 – 2203 W), Zone 2 (1680 – 2838 W) and the Zone 3 282 

(1717 – 3493 W). The results of this review showed that the load that maximises power 283 

output during clean variations was consistently observed in Zone 3 (heavier loads), 284 

independent of the methods and measurement systems employed (Table 2).  285 

 286 
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***Table 2 about here*** 287 

 288 

Measurement system, sampling rate and relative reliability 289 

A detailed description of the articles measurement system, sampling rate, and reliability 290 

values is provided in Table 3. In summary, there are inherent methodological differences 291 

to each method regarding the equipment and data analysis. The only measurement system 292 

used to evaluate power production in the GRF method was a FP, the sampling rate was 293 

over 200Hz, and the reliability reported was generally high across the studies (ICC 294 

>0.83). The kinematic method employed four different measurement systems: a) 1 LPT, 295 

b) 2 LPT in a triangular fashion, c) high speed video-cameras, and d) a 3-axis 296 

accelerometer. The sampling rate was 100 Hz for the accelerometers, and > 100 Hz for 297 

the LPTs and high-speed video cameras. The reliability values for the kinematic method 298 

were high (ICC >0.90) independent of the measurement system. In the combined method, 299 

the measurement systems were variable across studies including a) 1 LPT + FP, b) 2 LPT 300 

+ FP, and c) high-speed video cameras + FP. The sampling rate was >200 Hz, and the 301 

reliability values were high (ICC >0.90). Additionally, Table 3 shows the different 302 

advantages and disadvantages associated with the use of each method, and measurement 303 

system utilised.  304 

 305 

***Table 3 about here*** 306 

 307 

Discussion and implications 308 

The purpose of this systematic review was to examine the literature related to the 309 

assessment of the PPO during clean variations, to compare the differences between the 310 

GRF, kinematic, and combined methods regularly used to assess PPO in research and 311 
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field testing and to establish practical applications and guidelines of the current 312 

methodologies. The information included in this review provides researchers and 313 

practitioners with a summary of the evidence on this topic, helping to guide research and 314 

enhance future professional practices. 315 

 316 

The results of this review show that the GRF, kinematic and combined methods display 317 

inherent methodological differences in the data analysis and measurement systems (Table 318 

2, Table 3, and Figure 3), and therefore, these methods should not be used interchangeably 319 

in order to assess the changes in the PPO during clean variations over time. Moreover, 320 

the descriptive differences of power outputs in Watts between methods should be 321 

interpreted with caution since the power development may be influenced by other factors 322 

along with the methods and measurement systems employed (e.g. training status, sex, 323 

warm-up procedures, exercises, load, etc.) (Baker, 2001, 2002; Cormie et al., 2011; 324 

Garhammer, 1980; McMillian, Moore, Hatler, & Taylor, 2006; Needham, Morse, & 325 

Degens, 2009). 326 

 327 

Since the pioneering work of Hori et al. (2007, 2006) a systematic review of the literature 328 

discussing the methods commonly used during weightlifting exercises was necessary for 329 

several reasons. First, the systematic approach was necessary to clarify the topic for 330 

researchers and practitioners according to the current findings and position statements. 331 

Second, based on the distribution percentages reported in this review, the three methods 332 

have been widely used and therefore, a final statement describing the potential ‘gold 333 

standard’ method was necessary to enable comparison between studies. Third, the wide 334 

equipment that is available and the possibilities for different measurement system are 335 

often subject to controversy for many researchers and practitioners, and therefore, the 336 
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clarification regarding this matter along with the main advantages and disadvantages of 337 

each system provides valuable information. Fourth, after reading this review, researchers 338 

and practitioners will be able to interpret with caution the data previously published 339 

during weightlifting exercises and more specifically the clean variations, avoiding 340 

misinterpretation when comparing the results between studies. Fifth, researchers and 341 

practitioners may choose the method that best fits their equipment and measurement 342 

system availability as well as to the specific condition (e.g. controlled laboratory, field 343 

testing) whilst being aware of any potential limitations. Finally, this updated review may 344 

facilitate recommendations and guidelines for future research regarding the assessment 345 

of mechanical power production during weightlifting exercises.  346 

 347 

Power applied to the barbell vs. power applied to the SM. 348 

To the authors’ knowledge, little research has been conducted during weightlifting 349 

exercises and more specifically, during the clean variations comparing the kinematic and 350 

GRF method. In line with the results of this review, McBride et al. (2011) found that 351 

during the PC, the optimal load for the GRF method was close to the kinematic method 352 

(80 and 90%, respectively). However, the power production in Watts differed markedly 353 

(1611 + 505 vs. 2145 + 407 W, respectively), although authors did not compare it 354 

statistically. Similarly, Kipp et al. (2013) found that the PPO was maximised at 75 and 355 

85% for the kinematic and GRF methods during the clean. Although there was no 356 

statistical comparison, the PPO values showed meaningful differences between the GRF 357 

(3572 ± 1431 W) and the kinematic method (1802 ± 1452 W). Moreover, Hori et al. 358 

(2007) did compare the PPOs statistically and found that the GRF was significantly 359 

greater than the kinematic method (3076 ± 638 W vs. 1644 ± 295 W; p<0.01) for the 360 
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HPC. It was explained that the reason the kinematic method underestimated the PPOs 361 

during the HPC was because the individual’s body mass was not taken into account. 362 

 363 

Since the kinematic method only accounts for the power applied to the barbell and does 364 

not consider the acceleration of the individual centre of mass (CM) (see Figure 1), bigger 365 

differences between the kinematic and GRF methods are expected when power is 366 

measured during exercises that include large movement of the individual CM, such as 367 

weightlifting exercises and derivatives (Hori et al., 2006, 2007). Furthermore, Hori et al. 368 

(2007) determined that although a strong correlation was found between the kinematic 369 

and GRF methods for evaluating the PPO (r=0.70; p<0.01), their results still suggested 370 

that the barbell measures do not completely reflect the actual power output developed by 371 

the individual’s lower body accelerating the SM through the propulsion phase, as it is not 372 

reflected totally in the correlation. Such a difference between the kinematic and the GRF 373 

method during the propulsion phase, may be easily identified in Figure 3 of unpublished 374 

data from our laboratory. Furthermore, researchers recently have revealed the big 375 

contribution of the lower-limbs in accelerating the SM by establishing correlations 376 

between the lower-body net joint torques and power applied to the SM during clean 377 

variations (Kipp et al., 2012, 2013; Lee et al., 2017). However, it should be noted that 378 

correlation is not agreement from a statistical perspective, and therefore, irrefutable 379 

conclusions based on correlations may not be adequate (Bland & Altman, 1995; Bland & 380 

Altman, 1986; Mullineaux, Barnes, & Batterham 1999). 381 

 382 

Based on the results of this review, researchers and practitioners are encouraged to use 383 

the GRF method to assess PPO during clean variations if the objective is to obtain 384 

information regarding the performance of the lower-body and therefore, to evaluate the 385 
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individual’s ability to accelerate the SM (Lake et al., 2012). However, although the power 386 

applied to the SM may be more representative of whole-body mechanical power 387 

production, monitoring the power applied to the barbell using displacement-time-, 388 

velocity or acceleration-based equipment may be more representative of weightlifting or 389 

throwing performance, and it may also be useful for practitioners in terms of time-390 

efficient data analysis, and less-costly choice (Hori et al., 2006, 2007; Flores et al., 2017; 391 

Lee et al., 2018; McBride et al., 2011; Sato et al., 2012).  392 

 393 

Power applied to the SM: GRF vs. combined method  394 

Previous research has suggested that the combined method should be used when 395 

measuring power output in multidimensional, free weight movements (Cormie et al. 396 

2007c; Cormie et al., 2007b). Weightlifting exercises present these characteristics and 397 

previous research has used this method widely to assess the power production and optimal 398 

load during the clean and PC (Cormie et al. 2007a; Marriner et al., 2018; Winwood et al., 399 

2015). The combined method has been compared to other methods and established as the 400 

‘gold standard’ on the basis of the high reliability and a questionable rationale (Cormie 401 

et al., 2007a; Cormie et al., 2007b; Cormie et al., 2007c; Dugan et al. 2004). However, it 402 

was currently proven that the GRF method is the true ‘gold standard’ and most valid 403 

method for assessing the PPO of the SM (Mundy et al. 2016). The validity of the 404 

calculation of power production using the GRF method and therefore, the force and 405 

velocity of the SM is based on the impulse-momentum relationship, which describes and 406 

explains prerequisites for performance during dynamic lower-body tasks, being precise 407 

and mathematically irrefutable (Winter et al., 2016).  408 

 409 
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A few studies have compared the differences between the combined and the GRF method 410 

within studies (Cormie et al., 2007b; Hori et al., 2007; Kipp et al., 2013). For example, 411 

Kipp et al. (2013) analysed the clean exercise and found that the highest power production 412 

was observed at 75% 1RM clean for both the GRF and combined methods. However, the 413 

PPO reported differed markedly between each method (3572 ± 1431 vs. 5702 ± 1166 W, 414 

respectively). Similarly, Cormie et al. (2007b) showed that both methods agreed to 415 

identify the optimal load at 80% 1RM PC across a wide load-power spectrum (30 to 90% 416 

1RM); however, the power production was descriptively higher for the two modalities of 417 

the combined method according to the measurement system (FP + 2 LPT: 4842 ± 882 W, 418 

FP + 1LPT: 4925 ± 920 W) in comparison to the GRF method (3474 ± 542 W). These 419 

results are in line with Hori et al. (2007) who found that although there was a high 420 

correlation between the PPO for the HPC between the GRF and combined methods (r = 421 

0.97; p<0.01), PPO was generally overestimated while using the combined method 422 

(p<0.01). 423 

 424 

Defenders of the combined method claim that the PPO may have less error due to the 425 

direct assessment of force and velocity, avoiding the error related to data manipulation 426 

and the inability to account for barbell movement (horizontal and vertical) and the 427 

subsequent derivations (acceleration, velocity) that occurs independently of the body 428 

(Cormie et al., 2007b; Cormie et al. 2007c). Such findings along with a high relative 429 

reliability explain why the use of the combined method to obtain power production has 430 

been proposed as a suitable and the preferred method for researchers to assess the power 431 

applied to the SM (Cormie et al., 2007b; Cormie et al. 2007c; Dugan et al. 2004). 432 

However, current research has shown that the combined and GRF methods do not agree 433 

in measuring power production during dynamic lower-body tasks, and therefore, both 434 
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methods should not be used interchangeably (Hansen, Cronin, & Newton 2011a; Hansen, 435 

Cronin, & Newton 2011b; Lee et al., 2018; Mundy et al., 2016). Moreover, the same 436 

amounts of manipulations are done using the GRF method and further, integrating 437 

acceleration-time data naturally reduces signal noise (Beckham, Suchomel, & Mizuguchi 438 

2014; Cavagna, 1975), whereas the differentiation associated with the barbell kinematics 439 

of the combined method increases signal noise (Lake et al., 2012; Mundy et al. 2016). 440 

Critics of the combined method for assessing whole-body power production state that the 441 

combined method assumes the velocity of the barbell as the velocity of the SM and 442 

therefore, the power outputs will be systematically overestimated in comparison to the 443 

GRF method as can be seen in Figure 3 (Hori et al., 2006, 2007; Lake et al., 2012; Mundy 444 

et al., 2016). It should be noted that the assumption that barbell velocity corresponds to 445 

SM velocity has never been verified and may not be at all valid for weightlifting exercises 446 

(Kipp et al., 2013; Lee et al., 2017). In addition, the kinetic contribution of the lower 447 

extremities has been more related to the whole-body power production during 448 

weightlifting exercises using the velocity of the SM from the GRF than from the velocity 449 

of the barbell (Kipp et al., 2013; Lee et al., 2017, 2018).  450 

 451 

In addition to the disagreement in measuring power production due to differences in the 452 

analysis, the combined method presents more disadvantages in comparison to the GRF 453 

method in the high equipment costs, and space needed. These findings suggest that both 454 

researchers and practitioners, whenever possible, should use the GRF method to estimate 455 

whole-body power production of a given athlete when attempting to assess the power 456 

applied to the SM during weightlifting exercises. Note that the results of this review may 457 

be speculated to occur in other kinds of weightlifting movements such as the snatch 458 
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variations, since similar kinematics and kinetics of the body and barbell have been 459 

identified during the 1st and 2nd pull (Garhammer, 1991, 1993). 460 

 461 

Conclusion 462 

The findings of the articles reviewed provide valuable guidance for researchers and 463 

practitioners to unify the knowledge and establish practical guidelines for assessing PPO 464 

during weightlifting exercises. In particular, practitioners must be aware of that the GRF, 465 

kinematic and combined methods cannot be used interchangeably to assess PPO in Watts 466 

during weightlifting exercises because inherent and marked methodological differences 467 

can be found (Table 2, Table 3, and Figure 3). The result of the analysis of the articles 468 

reviewed are the reason to encourage researchers and practitioners to use the GRF using 469 

a FP as the ‘gold standard’ to assess PPO applied to the SM during weightlifting exercises. 470 

However, the kinematic method may be more appropriate when looking to assess only 471 

the power applied to the barbell. There is a wide range of equipment and measurement 472 

systems that researchers and practitioners can choose from and being aware of the 473 

advantages and disadvantages of each will help inform decision making. Finally, the 474 

authors encourage researchers to develop more research comparing the GRF, kinematic, 475 

and combined methods to assess mechanical power production during the weightlifting 476 

exercises to allow for statistically irrefutable conclusions 477 
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Table 1 Quality and risk of bias evaluation 

Article 1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 4.5 Score 

(%) 

Cormie et al. (2007a) 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 88 (L) 

McBride et al. (2011) 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 75 (L) 

Winchester et al. (2005) 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 69 (L) 

Cormie et al. (2007c) 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 88 (L) 

Suchomel et al. (2017) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 94 (L) 

Kilduff et al. (2007) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 (L) 

Suchomel et al. (2014a) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 94 (L) 

Comfort et al. (2012) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 (L) 

Flores et al. (2017) 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 63 (S) 

Suchomel et al. (2014b) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 94 (L) 

Kawamori et al. (2005) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 (L) 

Marriner et al. (2017) 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 63 (S) 

Marriner et al. (2018) 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 63 (S) 

Kipp et al. (2013) 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 88 (L) 

Pennington et al. (2005) 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 56 (S) 

Cormie et al. (2007b) 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 88 (L) 

Hori et al. (2007) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 (L) 

Jones et al. (2008) 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 69 (L) 

Hardee et al. (2012) 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 75 (L) 

Ammar et al. (2018a) 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 75 (L) 

Ammar et al. (2018b) 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 75 (L) 

Comfort et al. (2013) 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 81 (L) 

Comfort et al. (2011) 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 81 (L) 

Oranchuck et al. (2018a) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 88 (L) 

Oranchuk et al. (2018b) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 88 (L) 

Winwood et al. (2015) 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 56 (S)  

Method for assessing risk of bias based on (Hindle et al. 2019): (1.1) study design is clearly stated; (1.2) the objectives/purposes of 

the study are clearly defined; (1.3) the design of the study adequately tests the hypothesis; (2.1) the criteria for the inclusion of 

participants are clearly described; (2.2) the characteristics of the population are clearly described; (2.3) the study sample is 

representative of the population intended to the study; (2.4) a description of how the study size was arrived at is provided; (3.1) the 

testing methods are clearly described; (3.2) the measurement tools used are valid and reliable; (3.3) the statistical methods used are 

well described; (3.4) the statistical tests used to analyse the data are appropriate; (4.1) the results are well described; (4.2) the 

information provided in the article is sufficient to allow a reader to make an unbiased assessment of the findings of the study; (4.3) 

confounding factors are identified; (4.4) sponsorships/conflicts of interest are acknowledged; (4.5) any limitations to the study are 

identified. Note: the risk of bias score for an article (given as a percentage) is calculated through the addition of the score from each 

criteria being met divided by the maximum possible score across all criteria (16), and multiplied by 100. The risk of bias was 

interpreted based on (Davids and Roman 2014) where: L Low risk of bias (>67%), S satisfactory risk of bias (34-66%), H high risk 

of bias (>33%).  

834 
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Table 2 Descriptive characteristics of journal articles selected 

Study Sample Characteristics Exercise and loading conditions Data analysis and 

measurement system 

Results 

Cormie et al. (2007a) n = 12 healthy athletes 

 

Age: 20.0 ± 1.40 years 

Sex: M 

Height: 179 ± 5.00 cm 

BM: 90.1 ±15.0 kg 

1RM PC: 113 ± 13.2 kg 

1RM/BM: 1.30 

S-P experience: nd 

 

PC 

 

30, 40, 50, 60, 70, 80, 90% 1RM PC 

The CM 

 

FP  

2 LPT 

 

Zone 1:  

PC:  ~4030 W 

Zone 2:  

PC: ~4493 W 

Zone 3: 

PC: ~4786 W (OL: 80% 1RM PC) 

 

 

McBride et al. (2011) n = 9 healthy subjects 

 

Age: 25.0 ± 2.10 years 

Sex: M 

Height: 175 ± 6.00 cm 

Body mass: 81.0 ± 7.20 kg 

1RM PC: 97.1 ± 6.40 kg 

1RM/BM: 1.20 

S-P experience: >24 months 

 

PC 

 

30, 40, 50, 60, 70, 80, 90 % 1RM PC 

1) The GRF method 

 

2) The kinematic method 

 

FP  

High-speed video cameras  

 

1) The GRF method 

Zone 1: 

PC: ~1301 W 

Zone 2: 

PC: ~1321 W 

Zone 3: 

PC: ~1554 W (OL: 80% 1RM PC) 

 

2) The kinematic method: 

Zone 1: 

PC: ~1199 W 

Zone 2: 

PC: ~1680 W 

Zone 3: 

PC: ~2103 W (OL: 90% 1RM PC) 
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Winchester et al. 

(2005) 

n = 18 healthy American football 

players 

 

Age: 22.2 ± 2.10 years 

Sex: M 

Height: nd 

BM: nd 

1RM PC: nd 

1RM/BM: nd 

S-P experience: >12 months 

 

 

PC 

 

50, 70, 90% 1RM PC 

The CM 

 

FP  

High-speed video camera  

Zone 2: 

PC: ~3430 W 

Zone 3: 

PC: ~3679.15 W (OL: 70% 1RM 

PC) 

Cormie et al. (2007c) n = 12 healthy athletes 

 

Age: 20.0 ± 1.40 years 

Sex: M 

Height: 179 ± 5.00 cm 

BM: 90.1 ± 15.0 kg 

1RM PC: 113 ± 13.2 kg 

1RM/BM: 1.30  

S-P experience: nd 

 

PC 

 

30, 40, 50, 60, 70, 80 and 90% 1RM PC 

The CM;  

 

FP  

2 LPT 

Zone 1: 

PC: ~3884 W 

Zone 2:  

PC: ~4305 W 

Zone 3: 

PC: ~4619 W (OL: 80% 1RM PC) 

Suchomel et al. (2017) n = 13 healthy track and field 

athletes 

Age: 21.2 ± 1.10 years 

Sex: M 

Height: 181 ± 6.00 cm 

BM: 86.1 ± 18.0 kg 

1RM HPC: 110 ± 2.40 kg 

1RM/BM: 1.30 

S-P experience: >24 months 

 

HPC 

 

30, 45, 65 and 80% 1RM HPC 

The GRF method 

 

FP  

 

Zone 1: 

HPC: ~3220 W 

Zone 2:  

HPC: ~3857 W (OL: 65% 1RM 

HPC) 

Zone 3: 

HPC: ~3883 W  
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Kilduff et al. (2007) 

 

 

 

 

n = 12 professional rugby players 

Age: 25.0 ± 4.00 years 

Sex: M 

Height: 186 ± 6.00 cm 

BM: 102 ± 11.4 kg 

1RM HPC: 107 ± 13.0 kg 

1RM/BM: 1.04 

S-P experience: >24 months 

HPC 

 

30, 40, 50, 60, 70, 80, 90% 1RM HPC 

 

 

The GRF method 

 

FP  

Zone 1: 

HPC: ~3246 W 

Zone 2: 

HPC: ~3867 W 

Zone 3: 

HPC: ~4390.5 W (OL: 80% 1RM 

HPC) 

Suchomel et al. 

(2014a) 

n = 17 healthy athletes 

Age: 22.0 ± 1.30 years 

Sex: M 

Height: 181 ± 6.30 cm 

BM: 87.1 ± 16.0 kg 

1RM PC: 111 ± 20.4 kg 

1RM/BM: 1.30 

S-P experience: >24 months 

HPC 

 

30, 45, 65 and 80% 1RM HPC 

The GRF method 

 

FP  

Zone 1: 

HPC: ~3857 W 

Zone 2: 

HPC: ~4226 W (OL: 65% 1RM 

HPC) 

Zone 3: 

HPC: ~4185 W  

 

Comfort et al. (2012) n = 19 healthy collegiate athletes 

Age: 22.0 ± 1.40 years 

Sex: M 

Height: 174 ± 8.00 cm 

BM: 79.0 ± 9.00 kg 

1RM PC: 85.0 ± 7.40 kg 

1RM/BM: 1.10 

S-P experience: >12 months 

PC 

 

30, 40, 50, 60, 70 and 80% 1RM PC 

 

 

The GRF method 

 

FP  

Zone 1: 

PC: ~2150 W 

Zone 2:  

PC : ~2379 W 

Zone 3: 

PC: ~2935 W (OL: 70% 1RM PC) 



 37 

Flores et al. (2017) G1 

n = 11 international elite 

weightlifters 

Age: 24.1 ± 6.00 years 

Sex: M 

Height: 175 ± 8.10 cm 

BM: 89.0 ± 28.0 kg 

1RM C: 164 ± nd kg 

1RM/BM: 1.90 

S-P experience: >24 months 

 

G2 

n = 11 national competitive 

weightlifters 

Age: 25.1 ± 6.10 years 

Sex: M 

Height: 176 ± 5.00 cm 

BM: 83.0 ± 14.1 kg 

1RM C: 129 ± nd kg 

1RM/BM: 1.60 

S-P experience: >24 months 

 

C 

 

30, 40, 50, 60, 70, 80 and 90% 1RM C. 

The kinematic method 

 

3-axis acc  

G1 

Zone 1: 

C: ~2032 W 

Zone 2:  

C: ~2838 W 

Zone 3: 

C: ~3493 W (OL: 90% 1RM C) 

 

G2 

Zone 1: 

C: ~1670 W 

Zone 2: 

C: ~2461 W 

Zone 3: 

C: ~2880 W (OL: 90% 1RM C) 

 

 

Suchomel et al. 

(2014b) 

n = 14 healthy athletes 

Age: 22.0  ± 1.30 years 

Sex: M 

Height: 179 ± 6.00 cm 

BM: 82.0 ± 9.00 kg 

1RM HPC: 105 ± 15.1 kg 

1RM/BM: 1.30 

S-P experience: >24 months 

HPC 

 

30, 45, 65 and 80% 1RM HPC 

The GRF method 

 

FP  

Zone 1: 

HPC: ~3527 W 

Zone 2: 

HPC: ~3915 W 

Zone 3: 

HPC: ~4015 W (OL: 80% 1RM 

HPC) 
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Kawamori et al. 

(2005) 

n = 15 athletic and sports player 

subjects 

Age: 22.1 ± 2.00 years 

Sex: M 

Height: 180 ± 6.30 cm 

BM: 89.4 ± 15.0 kg 

1RM HPC: 107 ± 19.0 kg 

1RM/BM: 1.20 

S-P experience: >6 months 

HPC 

 

30, 40, 50, 60, 70, 80 and 90% 1RM 

The GRF method 

 

FP  

Zone 1: 

HPC: ~2990 W 

Zone 2: 

HPC: ~3665 W 

Zone 3: 

HPC: ~4010 W (OL: 70% 1RM 

HPC) 

Marriner et al. (2017) G1 

n =  8 recreationally trained 

subjects 

Age: 23.1 ± 2.30 years 

Sex: M 

Height: nd 

BM: 94.0 ± 11.0 kg 

1RM PC: 103 ± 8.00 kg 

1RM/BM: 1.10 

S-P experience: >24 months 

 

G2 

n =  8 recreationally trained 

subjects 

Age: 23.3 ± 3.80 years 

Sex: M 

Height: nd 

BM: 87.2 ± 10.0 kg 

1RM PC: 102 ± 15.0 kg 

1RM/BM: 1.17 

S-P experience: >24 months 

PC 

 

50, 70 and 90% 1RM PC 

The CM 

 

FP  

1 LPT  

 

G1 

Zone 2: 

PC: ~3980 W  

Zone 3: 

PC: ~4296 W (OL: 70% 1RM PC) 

 

G2 

Zone 2: 

PC: ~4150 W 

Zone 3: 

PC: ~4215 W (OL: 90% 1RM PC) 
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Marriner et al. (2018) 

 

 

 

 

n = 9  

Age: 23.0 ± 4.30 years 

Sex: M 

Height: nd 

BM: 92.0 ± 12.0 kg 

1RM PC: 101 ± 11.0 kg 

1RM/BM: 1.10 

S-P experience: >24 months 

 

PC 

 

50 and 70% 1RM PC 

The CM  

 

FP  

1 LPT  

Zone 2: 

PC: ~3160 W 

Zone 3: 

PC: ~3960 W (OL: 70% 1RM PC) 

 

Kipp et al. (2013) n = 9 

Age: nd 

Sex: M 

Height: 185 ± 1.00 cm 

BM: 106 ± 13.2 kg 

1RM C: 126 ± 23.0 kg 

1RM/BM: 1.20 

S-P experience: nd 

C 

 

65, 75 and 85% 1RM C 

1) The GRF method 

 

2) The kinematic method 

 

3) The CM 

 

FP  

High-speed video cameras  

 

 

1) The GRF method 

Zone 2: 

C: ~3424 W 

Zone 3: 

C: ~3381 W (OL: 75% 1RM C)  

 

2) The kinematic method 

Zone 2: 

C: ~1399 W 

Zone 3: 

C: ~1717 W (OL: 85% 1RM C) 

 

3) The CM 

 Zone 2: 

C: ~5618 W 

Zone 3: 

C: ~5650 W (OL: 75% 1RM C) 

 

 

Pennington et al. 

(2005) 

G1 

n = 8 

Age: 19.0 – 22.0 years 

Sex: M 

Height: 181 ± 3.00 cm 

BM: 87.0 ± 3.20 kg 

1RM PC:  114 ± 9.20 kg 

1RM/BM: 1.31 

PC 

 

30, 40, 50, 60, 70, 80, 90 and 100 % 

1RM C 

The kinematic method 

 

1 LPT  

Zone 1:  

PC: ~984 W 

Zone 2:  

PC: ~1350 W 

Zone 3:  

PC: ~1767 W (OL: 90-100% 1RM 

PC) 
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S-P experience: nd 

 

G2 

n = 12 

Age: 19.0 – 22.0 years 

Sex: M 

Height: 188 ± 4.00 cm 

BM: 113 ± 10.1 kg 

1RM PC: 124 ± 11.3 kg 

1RM/BM: 1.10 

S-P experience: nd 

 

Cormie et al. (2007b) n = 10 

Age: 20.0 ± 2.00 years 

Sex: M 

Height: 178 ± 5.00 cm 

BM: 89.0 ± 15.1 kg 

1RM PC: 113 ± 13.2 kg 

1RM/BM: 1.30 

S-P experience: >24 months 

PC 

 

30, 40, 50, 60, 70, 80 and 90% 1RM 

1) The GRF method 

 

2) The CM 

 

FP  

2 LPT 

1) The GRF method 

Zone 1: 

PC: ~2609 W 

Zone 2: 

PC: ~2841 W 

Zone 3: 

PC: ~3335 W (OL: 80% 1RM PC) 

 

2) The CM 

Zone 1: 

PC: ~3932 W 

Zone 2: 

PC: ~4333 W 

Zone 3: 

PC: ~4632 W (OL: 80% 1RM PC) 

 

 

Hori et al. (2007) N = 30 semi-professional 

Australian football players 

Age: 21.3 ± 3.00 years 

Sex: M 

Height: 182 ± 6.30 cm 

BM: 84.0 ± 8.30 kg 

1RM HPC: 75.3 ± 9.00 kg 

HPC 

 

70% 1RM HPC 

1) The GRF method 

 

2) The CM 

 

3) The kinematic method 

 

FP   

1) The GRF method 

Zone 3: 

HPC: ~3076 W 

 

2) The CM 

Zone 3: 

HPC: ~4017 W 
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1RM/BM: 1.00 

S-P experience: >3 months 

 

1 LPT  

 

 

3) The kinematic method 

Zone 3: 

HPC: ~1644 W 

 

Jones et al. (2008) n = 14 healthy subjects 

Age: 25.0 ± 6.20 years 

Sex: M 

Height: 184 ± 9.40 cm 

BM: 98.1 ± 21.0 

1RM PC: 87.3 ± 17.0 kg 

1RM/BM: 1.00 

S-P experience: >24 months 

 

PC 

 

85% 1RM PC 

The kinematic method 

 

1 LPT  

Zone 3: 

PC: ~2520 W 

Hardee et al. (2012) n = 10 amateur weightlifters 

Age: 24.0 ± 0.40 years 

Sex: M 

Height: 177 ± 1.00 cm 

BM: 80.4 ± 1.00 kg 

1RM PC: 112 ± nd kg 

1RM/BM: 1.40 

S-P experience: >24 months 

 

PC 

 

80% 1RM PC 

2) The CM  

 

FP   

2 LPT  

 

Zone 3: 

PC: ~4564 W 

Ammar et al. (2018a) n = 9 elite weightlifters 

Age: 24.0 ± 4.00 years 

Sex: M 

Height: 176 ± 7.10 cm 

BM: 77.0 ± 9.00 kg 

1RM C: 170 ± 15.0 kg 

1RM/BM: 2.21 

S-P experience: >24 months 

 

C 

 

85, 90, 95 and 100% 1RM C 

The GRF method 

 

FP  

Zone 3: 

C: ~2768 W 
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Ammar et al. (2018b) n = 9 elite weightlifters 

Age: 24.4 ± 4.00 years 

Sex: M 

Height: 176 ± 6.40 cm 

BM: 77.2 ± 7.10 kg 

1RM C: 170 ± 5.00 kg 

1RM/BM: 2.20 

S-P experience: >24 months 

 

C 

 

100% 1RM C 

The GRF method 

 

FP  

Zone 3: 

C: ~2663 W 

Comfort et al. (2013) 

 

 

 

 

 

 

 

n = 16 healthy subjects 

 

Age: 19.0 ± 2.30 years 

Sex: F 

Height: 167 ± 3.22 cm 

BM: 63.0 ± 5.00 kg 

1RM PC: 52.0 ± 3.00 kg 

1RM/BM: 0.82 

S-P experience: >6 months 

 

PC, HPC 

 

60, 70, 80% 1RM PC  

 

The GRF method 

 

FP  

Zone 3: 

HPC: ~2588.8 W  

PC: ~2861 W  

Comfort et al. (2011) n = 16 healthy rugby players 

 

Age: 22.0 ± 2.00 years 

Sex: M 

Height: 182 ± 3.00 cm 

BM: 99.0 ± 8.00 kg 

1RM PC: nd 

1RM/BM: nd 

S-P experience: >24 months 

 

PC, HPC 

 

60 % 1RM PC 

The GRF method 

 

FP  

Zone 2: 

HPC: ~3184 W  

PC: ~2591 W  

Oranchuck et al. 

(2018a) 

n = 11 healthy rugby players 

 

Age: 28.1 ± 6.00 years 

Sex: M 

Height: 176 ± 6.40 cm 

BM: 85.0 ± 11.1 kg 

1RM PC: 109 ± 17.2 kg 

PC 

 

75-79, 80-84, 85-89, 90-94, >95% 1RM 

PC 

The kinematic method 

 

2 LPT  

Zone 3: 

PC: ~3174 W 
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1RM/BM: 1.30 

S-P experience: >24 months 

Oranchuk et al. 

(2018b) 

n = 11 weightlifters and athletes 

 

Age: 28.1 ± 6.00 years 

Sex: M 

Height: 176 ± 6.40 cm 

BM: 85.0 ± 11.1 kg 

1RM PC: 109 ± 17.2 kg 

1RM/BM: 1.30 

S-P experience: >3 months 

 

PC 

 

75-79, 80-84, 85-89, 90-94, >95% 1RM 

PC 

The kinematic method 

 

2 LPT 

Zone 3: 

PC: ~3156 W 

Winwood et al. (2015) n = 6 strongman athletes 

 

Age: 24.0 ± 4.00 years 

Sex: M 

Height: 182 ± 9.40 cm 

BM: 113 ± 29.0 kg 

1RM C&J: 117 ± 20.4 kg 

1RM/BM: 1.10 

S-P experience: >24 months 

 

C 

 

70% C&J 

The CM 

 

FP 

High speed video-camera 

Zone 3: 

C: ~6629 W 

M men, BM body mass, 1RM one repetition maximum, PC power clean, CM combined method S-P strength-power training, PPO peak power output, F force, V velocity, FP 

force platform, LPT linear position transducer, OL optimal load, SM system mass, nd no data, HPC hang power clean, C clean, 3- axis acc accelerometer, G1 groups one, G2 

group two, F female.  

 837 
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Table 3 Description of the measurement systems, sampling rate and relative reliability 

Method 

 

                                                Peculiarities of the analysis Advantages Disadvantages 

 

 

Studies Sampling 

rate (Hz) 

ICC   

 

 

GRF 

method 

 

 

 

 

 

 

 

 

 

 
FP 

 

 

 

McBride et al. (2011)  

Suchomel et al. (2017)  

Kilduff et al. (2007) 

Suchomel et al. (2014a) 

Comfort et al. (2012) 

Suchomel et al. (2014b) 

Kawamori et al. (2005) 

Hori et al. (2007) 

Cormie et al. (2007b) 

Kipp et al. (2013) 

Ammar et al. (2018a) 

Ammar et al. (2018b) 

Comfort et al. (2011) 

Comfort et al. (2013) 

 

1000 

500 

500 

500 

1000 

500 

600 

200 

1000 

1250 

1000 

1000 

1000 

1000 

 

0.88 

0.93-0.99 

0.96 

0.88-0.96 

0.83 

0.88-0.96 

0.98 

0.90 

0.88 

>0.90 

nd 

nd 

>0.92 

>0.89 

 

1. Highly reliable for measuring power 

production 

 

2. Valid for power measurements based 

on the SM where the V(0) is known, and 

the total SM is taken into account  

 

3. Direct forces (impulse, PF, RFD) along 

with power output may be selected for a 

more complete study of the lift 

 

4. Landing forces and load absorption 

may be selected for studying 

 

 

 

 

1. Exercises from the floor (PC, clean) and 

from blocks should be measured with 

caution when the objective is to assess the 

power applied to the SM. A common 

strategy is that the lifter stands on the FP 

holding the bar 1 cm above the floor 

 

2. Low sampling rates may negatively 

influence the measurement 

 

3. Expensive and destined to controlled 

laboratory conditions  

 

4. Requires previous qualified experience 

for calibration, data collection, processing 

and analysis  

 

 

 

 

 

 

 

 

 

 

 

Kinematic 

method 

  

 
1 LPT 

 

 
2 LPT 

 

Pennington et al. (2005) 

Hori et al. (2007) 

Jones et al. (2008) 

 

 

 

Oranchuck et al. (2018a) 

Oranchuk et al. (2018b) 

 

 

100 

200 

100 

 

 

 

500 

 

500 

 

 

0.97 

0.67 

0.97 

 

 

 

0.97 

 

0.97 

 

I. Reliable measure of power production 

in the vertical plane for 1 LPT and vertical 

and horizontal planes for 2 LPTs, high-

speed video-cameras and Acc 

 

II. Sensible to differentiate between 

athletes of different status 

 

III. Relatively inexpensive (e.g. 1 LPT, 

Acc) 

 

 

I. Inability to account for horizontal 

displacement (1 LPT) 

 

II. The effect that side dominance has on 

barbell power symmetry must be taken into 

account (e.g. 1 LPT, Acc attached on one 

side of the barbell), as well as the barbell 

rotation.  
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High Speed Video Cameras 

 

 
3 axis-Acc 

 

 

 

 

 

 

 

 

McBride et al. (2011) 

Kipp et al. (2013) 

 

 

 

Flores et al. (2017) 

 

 

 

 

240 

250 

 

 

 

100 

 

nd 

>0.90 

 

 

 

0.96 

 

 

 

 

IV. Direct measure of velocity and power 

applied to the barbell by most of the 

software on the market 

 

V. It is possible to estimate the power 

symmetry by averaging both sides of the 

barbell using two markers on each side 

(e.g. high-speed video-cameras) 

 

VII. Easy-to-use on a daily basis for 

practitioners (1 LPT and Acc) 

III. Highly expensive and relatively 

expensive, requires calibration, previous 

experience and destined to controlled 

laboratory conditions (e.g. high-speed 

video-cameras and 2 LPT, respectively) 

 

IV. Barbell velocity cannot be used to 

estimate whole body power production or 

power applied to the SM 

 

V. The data manipulation based on the 

double differentiation (1 LPT, 2 LPT, high 

speed video-cameras) may lead to error of 

the power production 

 

 
 

 

 

Combined 

method 

 

 

 

 

 

 

 

 

 
FP + 1 LPT 

 

Marriner et al. (2017) 

Marriner et al. (2018) 

Hori et al. (2007) 

Cormie et al. 2007b 

 

500  

500 + 50 

200 

1000 

 

0.89 

0.89 

0.89 

0.99 

 

1) Direct measure of force (VGRF) and 

velocity of the barbell 

 

2) High reliability for power production  

 

3) Direct forces from the FP (kinetics) and 

kinematics of the barbell may be recorded 

along with the power production for a full 

study of the lift 

 

 

 

 

 

 

1) Expensive setup, requires calibration, 

previous experience and destined to 

controlled laboratory conditions (FP + 1 

LPT, FP + 2LPT, FP + high-speed video-

cameras) 

 

2) Inability to account for horizontal 

displacement (FP + 1 LPT) 

 

3) Barbell velocity cannot be assumed to 

estimate the whole body power production 

(power applied to the SM) 

 

4) Equipment requirements are double of 

necessary to estimate whole body power 

production 
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Cormie et al. (2007b) 

Cormie et al. (2007a) 

Cormie et al. (2007c) 

Hardee et al. (2012) 
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FP + High speed video-

cameras 

 

Winchester et al. (2005) 

Kipp et al. (2013) 

Winwood et al. (2015) 
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1250 + 
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1000 + 
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nd 

>0.90 

nd 

ICC intraclass correlation coefficient, GRF ground reaction force, FP force platform, nd no data SM system mass, V(0) initial velocity, VGRF vertical ground reaction force, PF peak force, RFD 

rate of force development, PPO peak power output, LPT linear position transducer, Acc 3-axis accelerometer, CM center of mass. 

       

841 



 46 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 

Fig 1 A description of the methods to assess power output during weightlifting exercises. GRF 

ground-reaction force, SM system mass, PO  power output, VCOM velocity of the centre of 

mass, i time point based on sampling frequency, t time, g gravity (-9.81), dt difference in time, 

Vbar barbell velocity, bar barbell, Abar barbell acceleration, Fbar barbell force, Mbar barbell mass. 

 



 47 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 
Fig 2 Flow diagram of the study selection process. PC power clean, HPC hang power clean, 

PPO peak power output, GRF ground reaction force, CM combine method 
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Fig 3 A graphical description of unpublished data from our laboratory of a PC (80%1RM PC) 

developed by a skilled subject. The lifter was assessed employing the kinematic, GRF and combined 

methods simultaneously. The horizontal axis represents the relative time of performing the lift from 

the starting position to the catch phase. The vertical axis corresponds to the power output relative to 

the body mass developed by the lifter. Note that the three common stages of the lift as the first pull, 

transition and second pull phase may be clearly differentiated through the three methods. The dashed 

line corresponds to the kinematic method; the solid line corresponds to the GRF method; and the 

dotted line corresponds to the combined method. 
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