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a b s t r a c t

Transfer Path Analysis (TPA) is a test-based methodology used to analyse the propagation

of noise and vibration in complex systems. In this paper we present a covariance based

framework for the propagation of experimental uncertainty in classical, blocked force, and

component-based TPA procedures. The presence of both complex and correlated uncertainty

is acknowledged through a bivariate description of the underlying uncertainty. The frame-

work is summarised by a series of equations that propagate uncertainty through the various

stages of a TPA procedure i.e. inverse source characterisation, dynamic sub-structuring, and

forward response prediction. The uncertainty associated with rank ordering of source con-

tributions is also addressed. To demonstrate the proposed framework a numerical simula-

tion is presented, the results of which are compared against Monte-Carlo methods with good

agreement obtained. An experimental study is also presented, where a blocked force TPA is

performed on an electric steering system. The proposed uncertainty framework requires no

additional experimental effort over and above what is performed in a standard TPA and may

therefore be readily implemented into current TPA practices.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Transfer path analysis (TPA) is a diagnostic method used for analysing the propagation of noise and vibration in complex

built-up structures, for example, ships, vehicles, trains, etc. It has become an essential tool in the development and refinement

of structures whose vibro-acoustic response is of interest. Although an established tool in many industries, it appears as yet few

works have considered the uncertainties associated with its application. The principle aim of TPA is to provide an engineer with

the information necessary to make informed design changes that benefit both the manufacture and end user. In this sense, it

would appear essential that such information is accompanied by a measure of its uncertainty. With this in mind, it is the aim of

the present paper to establish an appropriate framework for the propagation of uncertainty in the context of TPA.

Over the years a variety of TPA methodologies have been proposed (the reader is referred to Ref. [1] for a detailed review

of their history and development). Common to all methods is the division of an assembly into active and passive components.

Active components are regarded as those that contain vibration generating mechanisms (such as engines, gearboxes, pumps,

motors, etc.), whilst passive components simply transmit, and/or radiate, this vibration (for example, vibration isolators, body

panels, etc.). It is the role of TPA to predict the contribution of each active component to the total vibro-acoustic response
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at some specified position, e.g. the noise level experienced by a vehicle occupant. To do so the activity, or ‘strength’, of each

active component must first be estimated. Then, the transmission paths through which these components contribute must be

identified. Depending on the type of TPA considered, the methods employed and quantities obtained will differ. In this paper

we are concerned with blocked force based procedures, namely the blocked force and component-based variants of TPA. Note

however, that the proposed uncertainty framework will be equally applicable to classical (matrix inverse) TPA, as the underlying

equations are of an identical form (they require solving an inverse problem by matrix inversion).

Force-based TPA relies on a two part measurement procedure.1 In part one the passive properties (i.e frequency response

functions) of the structure of interest are measured between the source-receiver (active-passive) interface2 and some set of

indicator positions, which may or may not include interface degrees of freedom (DoFs). In part two the structure is operated

and its activity (i.e. operational acceleration, velocity, etc.) is recorded at the indicator positions (as used in the passive stage).

Based on the measured frequency response functions (FRFs), the operational responses are used to infer the unknown excitation

force at the defined source-receiver interface. Inverse problems of this nature are notoriously sensitivity to experimental error,

making a rigorous treatment of their uncertainty all the more necessary.

In classical TPA active components are characterised by the contact force that they impart on a receiver structure. This

contact force is obtained using FRFs that are measured on the uncoupled receiver structure. Although well established and

widely employed, classical TPA is time consuming and often impractical, as it requires the assembly to be dismantled for the FRF

measurements. Furthermore, the contact forces obtained are dependent upon the dynamics of the receiver structure, meaning

that the effect of a structural modification cannot be investigated.

An alternative procedure, known widely as blocked force TPA (also in-situ TPA), relies on the independent characterisation

of active components by their blocked force [2]. These blocked forces are obtained using an in-situ approach developed in Ref.

[2], which avoids the need to dismantle the assembly. Originally termed ‘In-situ source path contribution analysis’ by Elliott et

al. [3], blocked force TPA offers 2 distinct advantages over classical TPA:

1) The active components are characterised independently. This means that the same set of blocked forces can be used to excite

a range of different assemblies, or be applied in the presence of a structural modification (i.e. they are transferable). This is in

contrast to classical TPA, where the contact forces obtained are valid only for the assembly in which they are characterised.

2) The characterisation procedure is performed entirely in-situ. This means that the active components need not be removed

from their intended installation, unlike classical TPA which requires the assembly to be dismantled.

The in-situ blocked force approach has seen considerable interest due to its straight forward implementation and transferable

source properties, evidenced by its recent standardisation (ISO 20270:2019) [4] and integration into commercially available

software packages.

More recently, an alternative yet related approach, known as component-based TPA, has been proposed. Unlike classical or

blocked force TPA, which are typically used for diagnostic purposes, component-based TPA serves as a predictive tool, capa-

ble of predicting the noise and vibration in complex structures that do not necessarily exist, physically. This is achieved by

combining blocked force TPA (more specifically, the in-situ blocked force characterisation) with dynamic sub-structuring (DS)

procedures [5] (this merger has previously been known as Virtual Acoustic Prototyping [6,7] and was first demonstrated in Ref.

[8]). Component-based TPA allows for the virtual interchange of components in a physically consistent manner, thus provid-

ing design engineers with a means to investigate the effect of a structural modification/redesign in the presence of a realistic

operational excitation (in the form of a measured blocked force). The introduction of DS further facilitates the coupling of exper-

imental and numerically modelled components to form so called ‘hybrid assemblies’ [9].

Whilst these TPA procedures can provide invaluable diagnostic information and impressive predictive capabilities, they are

known to be sensitive to measurement and other errors. It is perhaps surprising then that comparatively little attention has been

devoted to the treatment of uncertainty in TPA. Hence, the aim of this paper is to provide a framework for the propagation of

uncertainty in force based (i.e. classical, in-situ, and component-based) TPA. The framework is formulated by acknowledging the

uncertainty associated with each stage of a TPA procedure, i.e. the active and passive measurements phase, and also the inverse

(source characterisation) and forward (response prediction) calculations involved. Key elements of the proposed framework are

the propagation of uncertainty through an inverse (blocked) force characterisation, and also through a dynamic sub-structuring

(DS) prediction. The propagation of uncertainty in a blocked force characterisation was recently considered by Meggitt et al.

[10] where a covariance based framework was presented. In the present paper we provide an alternative derivation of this

approach, leading to a simplified set of expressions which are more readily implemented into computer code. The propagation

of uncertainty in FRF based DS was initially investigated by Voormeeren et al. [11] under the assumption of uncorrelated uncer-

tainty. Following work by Meggitt [12], where it was shown that inter-FRF correlation (i.e. the correlation between elements

of an FRF matrix) can have a considerable influence on the propagation of uncertainty, Meggitt and Moorhouse [13] proposed

a generalised framework for uncertainty propagation in FRF-based DS, valid in the presence of correlated uncertainty. Drawing

1 Note that ‘force based’ TPA refers explicitly to those methods that are solved by performing a matrix inverse. TPA methods where forces are measured

directly are not considered here, although elements of the proposed framework may be adapted for such approaches.
2 This ‘source-receiver’ interface is somewhat arbitrary. Often passive components, for example vibration isolators, are included in the definition of an active

component. In this case the source-receiver interface would be that between the bottom of the isolator and the remaining portion of the assembly.
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Fig. 1. Diagrammatic representation of a source-receiver (SR) assembly and blocked force.

on these works, in the present paper we formulate a combined framework suitable for propagating (correlated) uncertainty

through force-based TPA procedures. In the process we will address the issue of both total response and individual contribution

(i.e. rank ordering) uncertainty.

The proposed framework is validated by comparison against Monte-Carlo (MC) simulations. Monte-Carlo methods consti-

tute a broad class of computational algorithms that rely on repeated random sampling to determine a numerical result [14]. In

the present context (uncertainty propagation in TPA) the Monte-Carlo method is used to compute blocked forces and response

predictions based on the random sampling of measured FRFs and operational responses. Monte-Carlo simulations are advanta-

geous in that they are able to capture the non-linear behaviour of the underlying equations (necessary in the presence of large

uncertainty), whilst also providing an estimate of the output’s probability distribution. However, covariance-based approaches,

such as the framework presented here, bring benefits in terms of reduced computational expense and improved insight.

In TPA, among other related inverse problems, it is common practice to associate confidence in an estimation with the

condition number of the measured FRF matrix (or more generally the ‘system’ matrix) used to determine the acting forces.

Whilst it is an established practice to use the condition number as an indicator of the sensitivity of an inverse problem to error,

in Ref. [10] it was shown that the condition number was not strongly related to output uncertainty in an experimental setting.

This finding will be subject to further scrutiny in the present paper.

The remainder of this paper will be organised as follows. Section 2 will begin by re-introducing the in-situ characterisation of

blocked forces. Section 3 will go on to discuss its application, alongside dynamic sub-structuring, in the context of component-

based TPA. Section 4 will then focus on formulating the necessary equations for propagating uncertainty through a force-based

TPA. The issue of uncertainty in the rank ordering of contributions will be considered in section 5. In section 6 the relation

between condition number (often used as an indicator of uncertainty) and the proposed framework will be investigated. Section

7 will discuss the issue of ‘systematic’ errors related to model completeness and consistency. A numerical validation of the

proposed uncertainty framework will then be provided in section 8, before section 9 presents an experimental case study.

Finally, section 10 will draw some concluding remarks.

2. Blocked force Transfer Path Analysis

A unique feature of blocked force/component-based TPA is the characterisation of active sub-structures by their blocked

force. The blocked force is by definition an invariant source quantity, unaffected by the dynamics of neighbouring sub-structures,

i.e it is an independent property of the vibration source. This invariance not only allows for the ‘virtual’ interchange of sources,

but also the modification of receiver structures in a physically consistent manner, a capability not offered by the contact force

obtained in a classical TPA.

The blocked force is defined as the reaction force present at the coupling interface of an active sub-structure when its velocity

(also displacement and acceleration) is constrained to zero,

f̄Sc = −fCc|vCc=0
(1)

where: lower-case subscript c represents the coupling interface degrees of freedom (DoFs) that separate source and receiver sub-

structures (see Fig. 1); upper-case subscripts C and S represent the coupled assembly and the source sub-structure, respectively;

and the over-bar accent is used to denote a blocked force, as opposed to a contact force. As a consequence of blocking the

interface DoFs c the dynamics of the receiver structure do not influence the blocked force. As such, it provides an independent

description of structural source activity.
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Classically, a direct measurement of the blocked force required the source in question to be mounted to an approximately

rigid test bench, so as to achieve the necessary constraints. This is clearly impractical and achievable only approximately over

a particular frequency range. In work by Moorhouse et al. [2] it was shown that the blocked force may instead be acquired

through an inverse procedure using measurements performed whilst the source is installed on an arbitrary receiver structure

(assuming linearity and time invariance). It has since been acknowledged that this phenomenon is a special case of a general

theorem on the representation of fields of forced vibration in composite elastic systems [15]. In the context of structural source

characterisation, the relation of note is given by [2],

vCb = YCbcf̄Sc (2)

where: YCbc ∈ ℂM×N is the measured transfer mobility matrix of the coupled assembly, vCb ∈ ℂM is a measured operational

velocity vector (note that accelerance and acceleration may be used in place of mobility and velocity), and f̄Sc ∈ ℂN is the

vector of unknown blocked forces. Here, lower-case subscripts b and c represent remote receiver and coupling interface DoFs,

respectively (see Fig. 1). Note that the DoF set b may include the interface DoFs c as a subset and that all variables are represented

in the frequency domain, with the frequency variable omitted for clarity.

For N = M, providing that the measured mobility matrix is of full rank, a unique solution is found through the inverse

mobility matrix Y−1
Cbc

= ZCcb, where ZCcb ∈ ℂN×N is an assembly impedance matrix. For M > N, the pseudo-inverse may be

used in place of the classical matrix inverse to obtain Y+
Cbc

= ZCcb ∈ ℂN×M , leading to a least squares solution of the problem.

Noting that both YCbc and vCb are properties of the coupled assembly, Eq. (2) facilitates the in-situ determination of the

blocked force. That is, the source need not be installed on a rigid test bench (as would be required for a direct measurement) and

may be characterised under ‘installed’ conditions. The experimental implementation of Eq. (2) follows a two part measurement

procedure. In part 1, the source is turned off and the mobility matrix YCbc is measured. Following this, in part 2, the source

is operated and the operation velocity vCb is measured at the corresponding DoFs. The mobility matrix YCbc relates the DoFs

at which the velocity is measured to the coupling interface DoFs where the blocked force is defined. Particular care should be

taken during the measurement of YCbc as it must be inverted numerically so as to acquire the blocked force. It is known that

poor experimental data is likely to increase the chance of erroneous force estimates, which should be avoided if possible. Often

numerical techniques such as regularisation are employed to minimise these effects.

In a blocked force TPA, Eq. (2) is used first to characterise the active components as described above; this can be referred to

as the inverse step. Having characterised the blocked force f̄Sc, Eq. (2) is then used to predict an operational response based on

the acquired blocked force; this can be referred to as the forward step, and expressed as,

pCr = HCrcf̄Sc (3)

where: pCr ∈ ℂL is the predicted response at some target DoFs r (for example, an interior cabin pressure), and HCrc ∈ ℂL×N is a

matrix of vibro-acoustic FRFs. The FRF matrix HCrc is often measured simultaneously to YCbc if excitations are performed at the

interface DoFs c. Alternatively, it may be measured reciprocally, for example by using a calibrated volume velocity source. Eqs.

(2) and (3) summarize the blocked force TPA procedure.

It should be noted that the forward prediction step, as given by Eq. (3), is used also as an on-board validation procedure, as

specified by ISO 20270 [4] (see also [16]). The uncertainty framework proposed herein may prove a helpful tool for users of the

ISO standard to understand the origin of potential errors in their on-board validation predictions.

Note that Eq. (2) is identical in form to that of a standard inverse force identification,

vCb = YRbcfCc (4)

where: fCc represents the contact force present between the source and receiver, and YRbc is the mobility matrix of the uncou-

pled receiver structure. Eq. (4) is similarly solved through the (pseudo-)inversion of the mobility matrix YRbc. In a classical TPA,

the contact force, obtained as per Eq. (4), is used to estimate the operational response in a forward prediction step,

pCr = HRrcfCc (5)

where HRrc is the vibro-acoustic FRF matrix of the uncoupled receiver structure. Eqs. (4) and (5) summarize the classical TPA

procedure.

In a diagnostic context, Eqs. (3) and (5) are typically broken down as a sum of individual contributions,

pCr =
∑

i

pCr(i) =
∑

i

HCrci
f̄Sci

(6)

where pCr(i) is the response contribution due to the blocked force f̄Sci
, which represents a subset of the acquired blocked

forces. The above facilitates a rank ordering of contributions and the identification of potential issues, e.g. a dominant exci-

tation/transmission path.

As noted above, implementation of Eqs. (2) and (3) (also Eqs. (4) and (5)) requires measurement of the operational velocity

vCb, the mobility matrix YCbc, and the forward FRF matrix HCrc, all of which are subject to some degree of uncertainty. In the

context of a blocked force TPA, we are interested in the influence of this uncertainty on the estimate of the blocked force, f̄Sc, and

the response prediction, pCr. This propagation of uncertainty will be considered in section 4. Also of interest are the uncertainties

of the individual contributions, pCr(i). This issue will be discussed further in section 5.
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3. Component-based Transfer Path Analysis

In a component-based TPA the forward FRF HCrc (or YCrc if we consider only structural responses) used in Eq. (3) is replaced

by a DS prediction for the coupled assembly FRF, thus allowing for the interchange of passive sub-structures. To do so, the

dynamics of each constituent sub-structure must be known (whether through experiment or numerical modelling). These are

then combined through a primal or dual procedure to obtain the dynamics of the coupled assembly. For completeness we will

recall the main DS equations below. For further details the reader is referred to Ref. [5].

The equations of motion for P uncoupled sub-structures may be expressed in a block diagonalised form as,

[Z]v = f + g (7)

where, [Z] is the block diagonal impedance matrix of the P uncoupled sub-structures, v is the corresponding block vector of

velocities, f is the block vector of applied forces, and g the block vector of coupling interface forces,

[Z] =

⎡⎢⎢⎢⎢⎢⎣

Z(1)

Z(2)

⋱

Z(P)

⎤⎥⎥⎥⎥⎥⎦
, v =

⎛⎜⎜⎜⎜⎜⎝

v(1)

v(2)

⋮

v(P)

⎞⎟⎟⎟⎟⎟⎠
, f =

⎛⎜⎜⎜⎜⎜⎝

f(1)

f(2)

⋮

f(P)

⎞⎟⎟⎟⎟⎟⎠
, g =

⎛⎜⎜⎜⎜⎜⎝

g(1)

g(2)

⋮

g(P)

⎞⎟⎟⎟⎟⎟⎠
. (8)

The rigid coupling of any two sub-structures is governed by the conditions of compatibility and equilibrium. These may be

expressed generally in the form,

Bv = 0, (9)

and

LTg = 0, (10)

respectively, where B and L represent signed and unsigned Boolean matrices, respectively. Together, equations (7)-(10) are

referred to as the three field formulation, and may be solved in a primal or dual manner [5].

3.1. Primal solution

The primal solution involves the definition of a unique set of boundary DoFs that belong to the coupled assembly. The con-

dition of compatibility is consequently expressed in the form,

v = LvC, (11)

where vC is the velocity of the coupled assembly. Substitution of Eqs. (11) and (10) into Eq. (7) leads to an expression for the

mobility of the coupled assembly in the form,

YC =
(

L[Y]−1LT
)−1

(12)

where [Y] is the block diagonal (uncoupled) mobility matrix, Y = [Z]−1.

3.2. Dual solution

In a dual solution the equilibrium condition is satisfied a priori by choosing the interface force in the form,

g = −BT𝜆 (13)

where 𝝀 is a vector of Lagrange multipliers. Noting that the matrix L lies in the null space of B (see Ref. [5]), Eq. (10) is always

satisfied as it can be written in the form,

LTg = −LTBT𝜆 = 0. (14)

Substitution of Eq. (13) into Eq. (7), whilst noting Eq. (9), leads to an expression for the coupled assembly mobility, YC, in the

form,

YC = [Y] − [Y]BT
(

B[Y]BT
)−1

B[Y]. (15)

Note that the coupled mobility matrix YC obtained through the dual formulation is larger than that obtained via the primal

approach, as all uncoupled DoFs are retained. Care must be taken to remove duplicate rows and columns prior to application

within a component-based TPA.

In practice, DS procedures require measurement of one or more sub-structure FRF matrices (unless all components are mod-

elled numerically). To provide an accurate estimate of the uncertainty in a component-based TPA response prediction, the uncer-

tainty in the forward FRF matrix HCrc must be known. If this FRF is predicted through a DS procedure then the uncertainty in
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each constituent sub-structure, Y(P), must first be propagated onto the coupled assembly, HCrc. The issue of uncertainty propa-

gation through FRF based DS will be recalled from Ref. [13] in section 4.2.3, and used as part of the TPA uncertainty framework

presented here.

4. Propagation of uncertainty in Transfer Path Analysis

In this section we will develop a framework for the propagation of uncertainty through a force based TPA. The framework

comprises three main elements: i) the inverse characterisation of active components, ii) the forward prediction of an opera-

tional response, and iii) the DS of sub-structures to predict forward (coupled) FRFs. Note that this final element is exclusive to

component-based TPA. Some elements of the work presented below are reproduced from the recent publications [10,12,13], an

overview of which can be found in Ref. [17]. The reader will be referred to these papers for further details when necessary.

4.1. Complex uncertainty and inter-FRF correlation

Before deriving the uncertainty propagation formulae it is necessary to consider the nature of the underlying uncertainty. In

Ref. [10] Meggitt et al. categorize the sources of uncertainty in an inverse force identification as originating from the ‘model’, the

‘source’, and the ‘experiment’. Model uncertainty describes the uncertainty introduced as a result of simplifying assumptions in

the governing equations, for example, linearity, the representation of physical connections by a finite number of degrees of free-

dom, etc. Source uncertainties arise due to inherent variations (assumed random) in the operation of any active sub-structure.

Experimental uncertainty was defined as comprising both measurement and operator uncertainty. The former describes the

cumulative effect of noise and other external disturbances in the measurement signal path, whilst the latter describes the effect

of inconsistent excitation position/orientation when performing impact-based FRF measurements.

Whilst source and experimental uncertainty may be considered random by nature, strictly speaking, model uncertainty

introduces a systematic error rather than a random uncertainty. Nevertheless, these errors are an important reason (possibly

the main reason) for poor results in TPA. For completeness, the likely origins of model uncertainty, i.e. incompleteness and

inconsistency, will be discussed in section 7. Their influence on the propagation of uncertainty, however, is not considered here.

The proposed framework is thus derived under the assumption of random errors, and valid only in the presence of source and

experimental uncertainty.

To formulate an appropriate framework one must first consider the issue of complex variables. Eqs. (1) through (15)

were considered in the frequency domain, rendering all quantities complex (i.e. having both magnitude and phase). A sim-

ple approach to handling complex random variables (RVs) is to treat their real and imaginary components separately. Assum-

ing the uncertainty is of an elliptical form (e.g. Gaussian), a complex RV H ∈ ℂ may be characterised by its expectation,

𝔼[H] = 𝔼[Re(H)] + i𝔼[Im(H)], and the bivariate variance-covariance matrix,

𝚺H =

[
𝜎Re(H)Re(H) 𝜎Re(H)Im(H)

𝜎Im(H)Re(H) 𝜎Im(H)Im(H)

]
(16)

where: σRe(H)Re(H) is the variance of the real part of H, σIm(H)Im(H) is the variance of the imaginary part of H, and

σIm(H)Re(H) = σRe(H)Im(H) is the covariance between them. The above may readily be extended to describe the covariance between

two complex RVs,

𝚺H1H2
=

[
𝜎Re(H1)Re(H2) 𝜎Re(H1)Im(H2)

𝜎Im(H1)Re(H2) 𝜎Im(H1)Im(H2)

]
. (17)

The notion of covariance raises a second important issue; whether or not two RVs are in fact correlated. In experimental

structural dynamics it is often assumed that uncertainty is uncorrelated, as this simplifies its subsequent treatment greatly.

However, it was shown in Ref. [12] that there can exist a strong correlation between FRFs when obtained using impact based

measurements (i.e. when recording multiple responses simultaneously due to a shared excitation). This inter-FRF correlation

was shown to influence greatly the propagation of uncertainty through both inverse procedures [12] and DS predictions [13]. For

this reason the propagation formulae presented below are derived generally such that any correlations present are accounted

for.

4.2. Blocked force and component TPA

A rigorous treatment of the experimental uncertainty associated with the in-situ blocked force approach was first considered

by Meggitt et al. [10]. The authors presented a framework for the inverse (blocked force characterisation) and forward (blocked

force TPA prediction) propagation of uncertainty that acknowledged both the complex and correlated nature of the uncertainty

present [12]. This framework was based on two steps. The first step meant establishing a bivariate covariance matrix for the

impedance matrix used to obtain the blocked force. This required the uncertainty in directly measured FRFs to be propagated

through a matrix inversion. This was achieved using a derived set of linear inverse propagation relations [10,12]. In a second

step, the impedance and velocity uncertainties are propagated onto the blocked force using a linear covariance propagation. In
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section 4.2.1 an alternative derivation of this framework is provided, where the propagation of FRF uncertainty through a matrix

inversion, and its further propagation onto the blocked force, are combined into a single step. Doing so allows the framework

to be reduced to a simplified set of equations that may more readily be implemented into computer code. The issue of forward

propagation is considered in section 4.2.2 where simplified equations are also provided.

4.2.1. Inverse force characterisation

To derive the propagation framework we begin by recalling the in-situ blocked force relation in the form,

f̄ = Y+v (18)

where Eq. (2) has been inverted, and its subscripts omitted for clarity. Eq. (18) represents the ‘function’ through which we will

propagate uncertainty. For generality we will consider both the operational response v and the FRF matrix Y as uncertain, with

their uncertainty characterised by the bivariate covariance matrices, 𝚺v and 𝚺Y, respectively.

In what follows we will consider a linear covariance propagation of uncertainty. In this approach uncertainties are propagated

according to the derivatives of the function of interest. Under the assumptions that i) the uncertainties present are small enough

to be treated using a linear covariance propagation and ii) that the FRF and operational response measurements are uncorrelated

(this is a fair assumption as they will be obtained from different experiments), the inverse propagation of uncertainty takes the

form,

𝚺f̄ = JY𝚺YJT
Y
+ Jv𝚺vJT

v (19)

where: 𝚺f̄, 𝚺Y and 𝚺v are the bivariate covariance matrices of the blocked force vector, the FRF matrix, and the operational

response vector, respectively, JY is the bivariate Jacobian matrix associated with FRF uncertainty (i.e. the derivatives of f̄ with

respect to Y) and Jv is the bivariate Jacobian matrix associated with operational response uncertainty (i.e. the derivatives of f̄

with respect to v). Construction of the bivariate covariance matrices will be detailed in section 4.4. The Jacobians JY and Jv will

be derived in the following.

Eq. (19) constitutes the central equation for the inverse propagation of uncertainty, its application however requires that we

first compute the bivariate Jacobian matrices JY and Jv. To compute these Jacobians we begin by taking the complex differential

of the blocked force vector,

df̄ = d(Y+v) = d(Y+)v + Y+d(v). (20)

We will consider first the differential response term, Y+d(v). Suppose the small change, represented by the differential d(v), is

limited to a single element of the response vector. In this case the differential may be replaced by the scaled unit vector, pidvi,

where pi =
[

0 0 · · · 1 · · · 0

]T

is a zero vector bar the ith entry, whose value is one, and dvi is a scalar differential term.

df̄ = Y+d (v) → df̄ = Y+pidvi (21)

From Eq. (21) the partial derivative of f̄, with respect to the single response variable vi , is identified as,

𝜕f̄

𝜕vi

= Y+pi. (22)

To construct the Jacobian matrix Jv we must compute the derivative of f̄ with respect to each response variable. By horizontally

aligning the unit vectors pi , the resultant matrix becomes the identity matrix Pi = I, and the left hand side becomes a matrix

whose columns correspond to derivatives with respect to each element of the response vector.

Noting that Eq. (22) is analytic and satisfies the Cauchy-Riemann equations (see Appendix B of [10]), the bivariate Jacobian

Jv is obtained by applying, element-wise, the complex matrix mapping operator M( ),

Jv = M
(

Y+) , (23)

defined as,

M(A) =

[
Re (A) −Im (A)
Im (A) Re (A)

]
. (24)

Given the blocked force vector f̄ ∈ ℂN , and the operational response vector v ∈ ℂM, the Jacobian is Jv ∈ ℝ2N×2M .

Let us now consider the differential FRF term, d(Y+)v. Note that this differential term is more complex than the previous as it

contains a matrix pseudo-inverse, which is not only a non-linear function, but non-analytic (i.e. its derivative depends on both Y

and its conjugate Y∗). From Refs. [10,18] the complex differential of the pseudo inverse of Y, with respect to one of its elements,

say Yst , is given by,

dY+ =
[
−Y+PstY+] dYst +

[
Y+Y+HPts(I − YY+) + (I − Y+Y)PtsY+HY+] dY∗

st (25)
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where: Pst is a zero matrix bar the stth entry, whose value is one, ∗ represents complex conjugation, and H the Hermitian

operator (conjugate transpose). Note that in the case of a square matrix the second term in Eq. (25) reduces to the zero matrix

(i.e. the standard matrix inverse is analytic), and the analysis that follows simplifies considerably.

By substituting Eq. (25) into the first term of Eq. (20), the complex differential of the blocked force, with respect to the

differential FRF element dYst and its conjugate, may be rewritten in the form,

df̄ = −Y+PstY+vdYst +
(

Y+Y+HPts(I − YY+) + (I − Y+Y)PtsY+HY+) vdY∗
st
. (26)

To construct the full Jacobian matrix JY (i.e. derivatives with respect to each FRF element) we begin by recalling the vectori-

sation operator, vec( ), which stacks the columns of the argument matrix into a long column vector (in order left to right) such

that, given A ∈ ℂN×M , vec(A) = a ∈ ℂNM×1. Using lemma 2.11 from Ref. [18],

vec(ABC) = (CT ⊗ A)vec(B) (27)

where ⊗ denotes the Kronecker product (see definition 2.6 of [18]), the vectorisation of Eq. (26) (noting that vec(df̄) = df̄) yields

two terms, the first

vec(−Y+PstY+v) = −
(
(Y+v)T ⊗ Y+) vec(Pst) (28)

and the second,

vec
((

Y+Y+HPts(I − YY+) + (I − Y+Y)PtsY+HY+) v
)
=((

(I − YY+)v
)T

⊗ Y+Y+H
)

vec(Pts) +
(
(Y+HY+v)T ⊗ (I − Y+Y)

)
vec(Pts) =[((

(I − YY+)v
)T

⊗ Y+Y+H
)
+
(
(Y+HY+v)T ⊗ (I − Y+Y)

)]
vec(Pts). (29)

Eqs. (28) and (29) denote vectors that contain the partial derivatives of each element of f̄ with respect to the single FRF element

Yst . Note that as one cycles through the st elements of Pst, vec(Pst) represents a unit vector whose index increases with each

step. Clearly, by arranging each vec(Pst) as the columns of a matrix we arrive at the identity matrix, I. In doing so, Eq. (28) yields

a matrix whose columns represent the derivatives of f̄ with respect to each element of Y. Similarly, by arranging each vec(Pts)
as the columns of a matrix we arrive at the so called ‘commutation matrix’, K (see pg. 13 of [18]). The commutation matrix is

used for transforming the vectorised form of a matrix into the vectorised form of its transpose. The complex differential is then

given by,

df̄ = −(Y+v)T ⊗ Y+vec(dY) +
[(
((I − YY+)v)T ⊗ Y+Y+H

)
+
(
(Y+HY+v)T ⊗ (I − Y+Y)

)]
Kvec(dY∗) (30)

where the vectorised differentials vec(dY) and vec(dY∗) are introduced accordingly.

To be compatible with the bivariate description of uncertainty adopted here, the above must be re-expressed in terms of

the real and imaginary components of f̄ and Y. As Eq. (30) is non-analytic, the complex matrix mapping operator M( ) is not

applicable. A similar issue was encountered in Ref. [10]. Following the same steps as in Ref. [10] it can be shown that,

𝜕Re(f̄)
vec(𝜕Re(Y))

= Re (A + B) , 𝜕Re(f̄)
vec(𝜕Im(Y))

= Im (−A + B) (31)

𝜕Im(f̄)
vec(𝜕Re(Y))

= Im (A + B) , 𝜕Im(f̄)
vec(𝜕Im(Y))

= −Re (−A + B)

where,

A = −(Y+v)T ⊗ Y+ (32)

and

B =
[(
((I − YY+)v)T ⊗ Y+Y+H

)
+
(
(Y+HY+v)T ⊗ (I − Y+Y)

)]
K. (33)

The above relations may be summarised using the modified complex matrix mapping operator, MH(A, B), defined as,

MH(A, B) =

[
Re (A + B) Im (−A + B)
Im (A + B) −Re (−A + B)

]
. (34)

The bivariate Jacobian JY is then given by,

JY = MH

(
−(Y+v)T ⊗ Y+,

[(
((I − YY+)v)T ⊗ Y+Y+H

)
+
(
(Y+HY+v)T ⊗ (I − Y+Y)

)]
K
)

(35)
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where MH(A, B) is applied element-wise. Note again that in the case of a square FRF matrix, the second term in Eq. (35) disap-

pears, and the modified mapping operator, MH(A, B) reduces to M(A) (i.e the standard matrix inverse is analytic),

JY = M
(
−(Y−1v)T ⊗ Y−1

)
. (36)

Given the blocked force vector f̄ ∈ ℂN , and the FRF matrix Y ∈ ℂM×N , the Jacobian is JY ∈ ℝ2N×2MN .

Together, Eqs. (19), (23) and (35) provide the necessary formulae to propagate complex and correlated uncertainty, in both

the FRF and operational response measurements, through the inverse characterisation procedure, and onto the blocked force,

thus providing an estimate the blocked force bivariate covariance matrix 𝚺f̄. Note that Eqs. (19), (23) and (35) are also applicable

in the case of a contact force estimation, where Y = YC is simply replaced by Y = YR.

Often when solving inverse problems, such as force identification, regularisation methods are used to overcome the issue of

an ill-posed or ill-conditioned matrix inversion [19]. Although sometimes beneficial, regularisation complicates the propagation

of uncertainty. Depending on the regularisation technique used, the response and/or FRF Jacobians (Jv and JY) derived above may

no longer be suitable. New Jacobian matrices must be derived, taking into account the regularisation procedure. Unfortunately,

further discussion on this topic is outside the scope of this paper. Alternatively, a Monte-Carlo based propagation may be used.

This approach is discussed further in section 4.3.

4.2.2. Forward response prediction

Having estimated the blocked force through an inverse procedure, the forward prediction of an operational response can be

made. This forward prediction step applies not only to a TPA response prediction, but also the blocked force on-board validation

procedure as standardized by ISO 20270 [4]. In either case, the equation of note is recalled as,

p = Hf̄ (37)

where: p is a vector of operational response predictions (e.g. sound pressure level, structural velocity, etc.), and H is the corre-

sponding matrix of vibro-acoustic FRFs. Note that subscripts are again omitted for clarity. Under similar assumptions as above,

the forward propagation of uncertainty takes the form,

𝚺p = JH𝚺HJT
H
+ Jf̄𝚺f̄J

T

f̄
(38)

where 𝚺p, 𝚺H, and 𝚺f̄ are, respectively, the bivariate covariance matrices of the (TPA) response prediction, the forward FRF

matrix, and the blocked force (determined as per section 4.2.1), and JH and Jf̄ are their associated Jacobian matrices.

As Eq. (37) is a straightforward set of linear equations (i.e. contains no matrix inversions), the Jacobians are derived simply

as follows,

dp = d(H)f̄ + Hd(f̄) → vec(d(H)f̄) =
(

f̄T ⊗ I
)

vec(dH) → JH = M
(

f̄T ⊗ I
)

(39)

and

dp = d (H) f̄ + Hd
(

f̄
)
→ vec

(
Hd
(

f̄
))

= (I ⊗ H) vec
(

df̄
)
→ Jf̄ = M (H) (40)

where M( ) is again applied element-wise. Note that if H is measured the forward propagation of uncertainty is exact, given that

Eq. (37) is linear.

If H is measured simultaneously to Y (i.e. the FRF matrix used to calculate the blocked force), then there may exist a non-zero

covariance 𝚺H,Y = 𝚺T
Y,H between them (due to their shared excitation) which is not accounted for by Eq. (38). To include the

influence of this correlation an additional term is required,

𝚺p = JH𝚺HJT
H
+ Jf̄𝚺f̄J

T

f̄
+
[
JH𝚺H,YJT

HY
+ JHY𝚺Y,HJT

H

]
(41)

where the Jacobian JHY is given by,

JHY = MH

(
−(Y+v)T ⊗ HY+,

[(
((I − YY+)v)T ⊗ HY+Y+H

)
+
(
(Y+HY+v)T ⊗ H(I − YY+)

)]
K
)
. (42)

Eq. (42) represents the derivative of the response vector p with respect to the FRF matrix Y. It may be obtained straightfor-

wardly by pre-multiplying the differential blocked force d(f̄) by the vibro-acoustic FRF H, thus obtaining the differential pressure,

dp = Hd(f̄). (43)

Substituting the differential blocked force from Eq. (26) then yields,

dp = −HY+PstY+vdYst +
(

HY+Y+HPts(I − YY+) + H(I − Y+Y)PtsY+HY+) vdY∗
st

(44)
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where dp represents the small change in the response vector p resulting from a small change in the FRF element Yst . Vectori-

sation and application of the complex mapping MH(A,B) yields the Jacobian JHY, as in Eq. (42). Note that this additional term can

lead to a large reduction in the estimated uncertainty, as illustrated in section 8, and should not be neglected.

Given the operational response vector p ∈ ℂL, the blocked force vector f̄ ∈ ℂN , and the forward FRF matrix H ∈ ℂL×N , the

Jacobians are JH ∈ ℝ2L×2LN , Jf̄ ∈ ℝ2L×2N , and JHY ∈ ℝ2L×2NM .

In the case that H is predicted through some dynamic sub-structuring procedure (e.g. in a component-based TPA), 𝚺H will

not be directly available and must be calculated based on the uncertainty of the assembly’s constituent sub-structures. The

propagation of uncertainty through dynamic sub-structuring procedures will be covered as part of the following subsection.

4.2.3. Dynamic sub-structuring and sub-structure decoupling

The propagation of uncertainty through a dynamic sub-structuring procedure (in the FRF domain) was originally considered

in Ref. [11], based on the dual formulation under the assumption of uncorrelated uncertainty. Following evidence supporting

the influence of inter-FRF correlation [12], Meggitt and Moorhouse derived a more general framework taking into account the

covariance between measured FRFs [13]. As above, this framework was based on a linear covariance propagation, and takes the

form,

𝚺YC
= J𝚺[Y]J

T. (45)

where: 𝚺YC
is the bivariate covariance matrix of the coupled FRF matrix YC, 𝚺[Y] is the bivariate covariance matrix of the uncou-

pled FRF matrix Y, and J is a Jacobian matrix associated with the sub-structuring procedure.

The form of J will depend on whether a primal or dual formulation is considered. Although primal and dual procedures

enforce the same coupling, it was noted in Ref. [13] that if non-square FRF matrices are used, the dual formulation of uncertainty

propagation should be considered as it requires only a standard matrix inversion of the interface DoFs (as opposed to a pseudo-

inversion of the entire FRF matrix as in the primal case).

Derivations of the primal and dual Jacobians are not presented here, for this the reader is referred to Ref. [13]. In the case

that a primal sub-structuring procedure is used (see Eq. (12)), the Jacobian takes the form,

J = JP = M
((

Y−1LTYC

)T
⊗
(

YCLY−1
))

. (46)

In the dual case (see Eq. (15)), the Jacobian is given by,

J = JD = M

(
I −
[(

BT
(

BYBT
)−1

BY
)T

⊗ I

]
+
[(

BT
(

BYBT
)−1

BY
)T

⊗ YBT
(

BYBT
)−1

B

]
−
[
I ⊗ YBT

(
BYBT

)−1
B
])

. (47)

Given the coupled FRF matrix YC ∈ ℂL×N and the uncoupled FRF matrix Y ∈ ℂP×Q , the primal and dual Jacobians are JP ∈
ℝ2LN×2PQ and JD ∈ ℝ2PQ×2PQ (note that the dual approach retains the full DoF set).

In both cases the operator M( ) is applied element-wise. It was noted in Ref. [13] that the dual case must be used if the

uncoupled FRF matrix Y is non-square, as this renders the primal procedure non-analytic. Once computed, the coupled FRF’s

bivariate covariance matrix 𝚺YC
may be used in place of 𝚺H in Eq. (38) if a component-based TPA is considered. It is noted that

the above expressions are valid also in the case of sub-structure decoupling, provided that the necessary changes are made to

the Jacobian matrices (e.g. negation of the residual FRF matrix, etc.) [13].

4.3. A combined framework for TPA uncertainty

Having established expressions for propagating uncertainty through the inverse characterisation, forward prediction, and

dynamic sub-structuring steps of a TPA, we are now able to formulate the combined framework. Substituting Eqs. (19) and (45)

into Eq. (38) yields an expression for the bivariate uncertainty in a component-based TPA prediction in terms of the uncertainty

in each experimental step (i.e. measurement of v, Y and Y(P)),

𝚺p = JH

(
J𝚺[Y]J

T
)

JT
H
+ Jf̄

(
JY𝚺YJT

Y
+ Jv𝚺vJT

v

)
JT

f̄
(48)

with the corresponding Jacobians given by Eqs. ((23), (35), (39), (40) and (46) or (47). Eq. (48) thus summarises the uncertainty

framework proposed for a component-based TPA. For a blocked force (or classical) TPA the above is modified to take into account

the directly measured forward FRFs H, and their possible correlation with the inverse FRFs Y,

𝚺p = JH𝚺HJT
H
+ Jf̄

(
JY𝚺YJT

Y
+ Jv𝚺vJT

v

)
JT

f̄
+
[
JH𝚺H,YJT

HY
+ JHY𝚺Y,HJT

H

]
. (49)

with the Jacobian JHY given by equation (42).

The bivariate covariance matrix 𝚺p describes the uncertainty in the real and imaginary components of the TPA response

prediction. In practice, however, we are typically more interested in magnitude and phase descriptors.

For small levels of uncertainty, propagation through a TPA may be considered linear and described using the equations

derived above. In this case, the distribution of the resulting uncertainty is unchanged, i.e. a Gaussian input uncertainty will

yield a Gaussian output uncertainty. The propagation of uncertainty through the magnitude function |pi| = √Re(pi)2 + Im(pi)2,
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however, differs in that the magnitude cannot support negative values, and as such its distribution cannot be Gaussian. The

magnitude (and phase) distribution of two jointly correlated Gaussian variables (for example, the real and imaginary compo-

nents of a response prediction p) was derived in Ref. [20]. In the simplified case that the real and imaginary components are

uncorrelated and of equal variance, this complex expression reduces to the Rayleigh distribution.

In previous work the authors have used a linear covariance propagation, where the bivariate uncertainty 𝚺p is propagated

through the magnitude function |pi| = √Re(pi)2 + Im(pi)2, and assigned to an (assumed) log-normal distribution, thus allowing

a confidence interval to be estimated [10,13]. This linear covariance propagation is given by the equation [21],

𝜎2|pi| =
(

Re(pi)√
Re(pi)2 + Im(pi)2

Im(pi)√
Re(pi)2 + Im(pi)2

)[
𝜎Re(pi)Re(pi) 𝜎Re(pi)Im(pi)

𝜎Im(pi)Re(pi) 𝜎Im(pi)Im(pi)

] ⎛⎜⎜⎜⎝
Re(pi)√

Re(pi)2 + Im(pi)2

Im(pi)√
Re(pi)2 + Im(pi)2

⎞⎟⎟⎟⎠ . (50)

Note that a similar procedure may be used to determine the uncertainty in phase angle, ∠pi = tan−1
(

Im(pi)
Re(pi)

)
[21].

Whilst the log-normal distribution satisfies the non-negative requirement, its agreement with the analytic result can vary

greatly depending on the variance, covariance and expected values of the real and imaginary components. An alternative

approach will be considered here, based on a Monte-Carlo simulation.

Having estimated the expected value and bivariate covariance matrix of the target quantity, 𝔼[p] and𝚺p, assuming a bivariate

normal distribution, a series of N correlated variables can be (randomly) generated. A magnitude confidence interval can then be

estimated by taking the magnitude of each correlated pair and inspecting the resultant empirical cumulative density function

(ECDF). This approach is more reliable than assuming a log-normal distribution providing that N is chosen to be sufficiently

large. An illustrative example is presented in section 4.3.1.

Before proceeding further it is worth considering the limitations of the proposed framework. Eqs. (48) and (49) are based on

the linearisation of the TPA equations. In the presence of a non-linear function an approximation is introduced, the accuracy of

which worsens for increased input uncertainty. The non-linear elements of Eqs. (48) and (49) are those associated with matrix

inversions, namely, the blocked force matrix inversion (i.e. propagating 𝚺Y onto 𝚺f̄) and the DS procedure (i.e. propagating 𝚺[Y]

onto 𝚺YC
). The propagation of uncertainty through a matrix inversion in the context of a blocked force characterisation and a

DS prediction was investigated numerically in Refs. [10,13] for moderate levels of uncertainty, with good agreement obtained

against Monte-Carlo (MC) simulations. Nevertheless, in the presence of large input uncertainty, propagation through the non-

linear elements of Eqs. (48) and (49) should be performed using a MC method. The resulting MC uncertainties can then be

used in place of their linearised counterparts in the above framework. Take for example, the linearised uncertainty propagation

JY𝚺YJT
Y
= 𝚺f̄(Y)

, i.e. the propagation of FRF uncertainty onto the blocked force. A simple MC procedure may be outlined as follows:

1) Calculate a set of N of blocked force vectors by randomly sampling from the set of measured FRFs Y.

2) From the N blocked force vectors estimate a bivariate covariance matrix 𝚺(MC)
f̄(Y)

.

3) Substitute the MC covariance matrix 𝚺(MC)
f̄(Y)

for the linearised propagation term JY𝚺YJT
Y

in equation (48).

Note that N should be made sufficiently large such that an accurate covariance estimate is obtained. A similar MC procedure

may also be required to replace the terms
(

J𝚺[Y]J
T
)

and
[
JH𝚺H,YJT

HY
+ JHY𝚺Y,HJT

H

]
, or if a regularised solution is sought, as the

derived Jacobians would no longer be appropriate.

Whilst, in theory, the above framework may be extended to include second order derivatives for the non-linear elements,

thus improving its accuracy for large input uncertainty (see for example [11]), this is considered beyond the scope of the present

paper.

Finally, a unique advantage of the proposed framework is that Eqs. (48) and (49) may be broken down to various degrees and

used to access/rank order the uncertainty contributions from each component/test, thus facilitating a benefit analysis (see for

example [13]). Similarly, based on the proposed framework the uncertainty in a rank ordering of source contributions can also

be assessed. This topic is discussed further in section 5.

4.3.1. Monte-Carlo confidence interval estimation

In this section we will demonstrate the procedure used to estimate the magnitude confidence bounds of a jointly correlated

complex quantity.

It is assumed that the expected value 𝔼[v] and bivariate covariance matrix 𝚺v of the target quantity v are available. To

estimate the magnitude confidence bounds of v an assumption must first be made regarding the distribution of its underlying

uncertainty. Here we will assume that Re(v) and Im(v) are joint normally distributed with the bivariate covariance matrix,

𝚺v =

[
1 0.55

0.55 1.1

]
. (51)
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Fig. 2. Example estimation of magnitude confidence interval. (a) - Generate N correlated samples according to 𝚺v and 𝔼[v]. (b) - Take magnitude of all samples to obtained

PDF. (c) - Calculate ECDF and find α and 1 − α values of abs(v).

Note that the same procedure may be used for other assumed distributions.

Based on 𝚺v and 𝔼[v] = 1 + 2i, N random samples are drawn from a bivariate distribution (see Fig. 2a). The magnitude of each

sample pair (together representing the complex quantity v) is taken and used to estimate a Probability Distribution Function

(PDF), as in Fig. 2b. Also shown in Fig. 2b is the analytic PDF obtained using equation (1) of [20].

From the PDF an Empirical Cumulative Density Function (ECDF) is estimated, as shown in Fig. 2c. The ±95% confidence

bounds of |v| are then found by inspecting the values of |v| for which the ECDF is equal to α and 1 − α, where α = (1 − 0.95)∕2.

For the example considered here these values are 0.57 and 4.7, and are shown by the orange and yellow lines, respectively.

For frequency dependent quantities the above procedure is repeated at each frequency interval. The accuracy of the confidence

bound estimation will depend on the appropriateness of the assumed bivariate normal distribution, and the number of random

samples drawn.

4.4. Estimation of a bivariate covariance matrix

Successful implementation of the above framework relies on first estimating the bivariate covariance matrices, 𝚺v, 𝚺Y, 𝚺H,

and 𝚺H,Y. These matrices must be arranged in accordance with the Jacobian matrices derived above so that each variance and

covariance element is propagated correctly.

Given a complex response vector v ∈ ℂM, where each element is measured Rv times, the bivariate covariance matrix 𝚺v is

obtained as follows. Each realisation of the vector is horizontally aligned as,

v̂ =
[
Mv(v1) Mv(v2) · · · Mv(vRv )

]
(52)

where the operator Mv( ) is applied element-wise, and defined as

Mv(A) =

(
Re(A)
Im(A)

)
. (53)

The bivariate covariance matrix 𝚺v is then estimated using the standard formula [22],

𝚺v = 1

R − 1

[(
v̂ − 𝔼[v̂]

) (
v̂ − 𝔼[v̂]

)T
]

(54)

where the expectation 𝔼[ ] (taken along the columns of v̂) is subtracted from each column of the matrix v̂.

Similarly, given a complex FRF matrix Y ∈ ℂM×N where each element is measured RY times, the bivariate covariance matrix

may be obtained as follows. Each realisation of the matrix is vectorised, using the operator vec( ), and horizontally aligned as

so,

Ŷ =
[
Mv(vec(Y1)) Mv(vec(Y2)) · · · Mv(vec(YRY ))

]
(55)

where Mv is again applied element-wise. The bivariate covariance matrix 𝚺Y is then estimated according to Eq. (54). When

estimating the bivariate covariance matrix of the uncoupled FRF matrix (for use in DS), Eq. (54) applies to the block diagonalised

FRF matrix (i.e. all zero elements are included). Note that the cross-covariance, 𝚺H,Y, is obtained similarly,

𝚺H,Y = 1

R − 1

[(
Ĥ − 𝔼

[
Ĥ
]) (

Ŷ − 𝔼
[

Ŷ
])T
]
. (56)

where Ĥ is defined as per Eq. (55). An important feature of the proposed uncertainty framework is that no additional experi-

mental effort is required in obtaining the above covariance matrices, only that repeated measurements are stored individually

alongside their computed average.
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When estimating the bivariate covariance matrices it is important to consider the existence of a meaningful correlation. In

practice only a small number of repeated measurements will be performed, meaning that uncorrelated variables will be left

with some non-zero covariance. If the user is confident that this is an artefact of the finite set of measurements, the covariance

may be set to 0. If a correlation truly exists however these terms must be retained. For example, the FRF matrix Y is typically

measured one column at a time (i.e. multiple responses due to a shared excitation). Given that they are measured separately, the

columns of Y are uncorrelated with each other and their covariance is 0 [12]. The elements within a given column are however

correlated due to their shared excitation. In this case 𝚺Y would be block diagonal.

It is important to note that Eq. (54) describes the statistical variation between individual samples. Consequently, the pro-

posed framework provides an uncertainty estimate based on the overall spread of samples collected i.e. the variance obtained

when randomly choosing individual samples and computing a result. Alternatively, interest may lie in the uncertainty of the

expected value. In this case the covariance matrix should be normalised by the number of samples used in its estimation,

𝚺𝔼[v] = 𝚺v∕Rv, where 𝚺𝔼[v] describes the uncertainty in 𝔼[v]. This normalisation does not affect the formulation of the proposed

framework, nor any later developments presented in this work.

As a final remark, it should be noted that whilst there exist common statistical error analysis relations for the quantification

of uncertainty in measured input/output relations, such as FRFs [23,24], these are not appropriate in the context of the above

uncertainty propagation; their formulation is based on the assumption of uncorrelated real and imaginary components with

equal variance, and furthermore, does not account for the presence of inter-FRF correlation, which has been shown to be essen-

tial in the propagation of uncertainty. It is for this reason that the more general bivariate covariance description described above

has been adopted.

5. Uncertainty in contribution analysis and rank ordering

Transfer path analysis may be used as a diagnostic (blocked force TPA) or predictive (component-based TPA) tool. As a pre-

dictive tool, concern is placed on accurately predicting the operational response p based on the measurement of each individual

sub-structure. As a diagnostic tool, we are interested in determining the relative contribution of each excitation force to the

total operational response. Using this information design engineers are able to identify troublesome contributions and apply

appropriate treatments and/or modifications. The uncertainty framework presented thus far provides a means of estimating the

uncertainty in the total operational response, i.e. 𝚺p. In this section we will consider the uncertainty in the relative contribution

of each excitation, i.e. the uncertainty in rank ordering.

Considering a single response variable p, Eq. (37) may be rewritten in the form,

p =
∑

n

pn =
∑

n

Hpnf̄ n (57)

where: pn represents the response contribution due to the nth blocked force f̄ n, and Hpn is the nth element of the forward FRF

vector H. The contribution magnitudes |pn| are often rank ordered to identify the most dominant excitation. We are interested

in evaluating our confidence in the rank of a given contribution. For example, given the total response p, and the experimental

data used to estimate it, we are interested in the probability P( ) that |p2| (i.e. the second largest contribution) is equal to or

greater than |p1| (i.e the largest contribution), P(|p2| ≥ |p1|). More generally we are interested in the probability P(|pi| ≥ |pj|),
or alternatively, P(|pi| − |pj| ≥ 0), where |pi| is the magnitude of the ith largest contribution.

To simplify the subsequent analysis we will assume that |pi| and −|pj| are uncorrelated random variables (RVs), although in

reality this may not be the case. The contributions |pi| and −|pj| are distributed according to their respective PDFs, fi(x) and fj(x).
To obtain P(|pi| − |pj| ≥ 0), we begin by noting that the sum of two (arbitrary) RVs returns another RV whose PDF is given by

the convolution of their respective PDFs,

fi+j(x) = ∫
+∞

−∞
fi(x − t)fj(t)dt. (58)

That is, |pi| − |pj| is distributed according to fi+j(x). Similarly, for discrete variables,

P(|pi| − |pj| = x) =
∞∑

k=−∞
P(|pi| = k)P(−|pj| = x − k). (59)

The probability that |pi| − |pj| ≥ 0, can then be obtained by integrating over x ≥ 0,

P(|pi| − |pj| ≥ 0) = ∫
∞

0

fi+j(x)dx = ∫
∞

0 ∫
∞

−∞
fi(x − t)fj(t)dtdx. (60)

Or in the discrete variable case,

P(|pi| − |pj| ≥ 0) =
∞∑

x=0

P(|pi| − |pj| = x) =
∞∑

x=0

∞∑
k=−∞

P(|pi| = k)P(−|pj| = x − k). (61)

To evaluate P(|pi| − |pj| ≥ 0) the PDFs fi(x) and fj(x) must first be computed. Although analytical expressions exist for these

distributions (see Ref. [20]), the numerical complexity and additional effort required to compute P(|pi| − |pj| ≥ 0) analytically
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Fig. 3. Steps for computing the probability of an incorrect rank ordering. (a) - Generate random samples. (b) - Compute PDFs of absolute values. (c) - Convolve to obtain

PDF of P(|p2 | − |p1|).
renders a Monte-Carlo (MC) approach more convenient. Using 𝔼[pi], 𝔼[pj], 𝚺pi

and 𝚺pj
, random samples are drawn according

to an assumed bivariate normal distribution. The PDFs fi(x) and fj(x) are then estimated and convolved prior to a numerical

integration. These steps are illustrated in Fig. 3. Note that the same procedure may be used for other assumed distributions.

Shown in Fig. 3a are the random samples drawn for the response contributions p1 and p2, based on their expectations, 𝔼[p1]
and 𝔼[p2], and their bivariate covariance matrices, 𝚺p1

and 𝚺p2
. For the example considered 𝔼[|p1|] > 𝔼[|p2|]. We are interested

in P(|p2| − |p1| ≥ 0), i.e. the probability of |p2| exceeding |p1|. The absolute value is taken of each sample and the PDFs of |p1|
and |p2| are estimated, as illustrated in Fig. 3b. The PDF of |p2| − |p1| is then computed by convolving those of Fig. 3b (making

sure to negate that of |p1|). The resulting PDF is shown in Fig. 3c in purple. The probability P(|p2| − |p1| ≥ 0) is then obtained by

summing over the positive x-axis. In this example P(|p2| ≥ |p1|) ≈ 0.05.

To apply the above method the expectations and bivariate covariance matrices of the two contributions being analysed are

required. The expectation 𝔼[pi] is obtained by simply setting all blocked force elements, bar the ith entry, to zero, and calculating

the resulting response. Similarly, 𝚺pi
may be obtained by setting all entries of 𝚺f̄ not associated with the blocked force element

f̄ i to zero and performing the uncertainty propagation with the remaining elements.

6. Condition number as an indicator of uncertainty

It is common practice when analysing dynamic systems to associate the condition number of the system matrix (Y) with the

level of uncertainty, or error, present in the solution of an inverse problem. In this section we will briefly discuss the condition

number, in the context of uncertainty propagation, and investigate its relation to the proposed framework.

We begin by recalling Eq. (2),

v = Yf̄ (62)

omitting subscripts for clarity. For simplicity we will consider the case that the system matrix is square. The solution (i.e. the

blocked force vector f̄) is then obtained using the conventional matrix inverse,

f̄ = Y−1v. (63)

The condition number κ(Y) can be defined as the (maximum) ratio of the relative error in the output (i.e. f̄) for a relative error

on the input (i.e. v) or the system matrix (i.e Y), in a normed sense [25],

𝜅(Y) = max

{(‖d(f̄)‖‖f̄‖
)( ‖v‖‖d(v)‖

)}
or max

{(‖d(f̄)‖‖f̄‖
)( ‖Y‖‖d(Y)‖

)}
, (64)

where ‖ ‖ is used to represent any consistent norm. Recalling from section 4.2.1 the differential blocked force d(f̄),

df̄ = −(Y−1v)T ⊗ Y−1vec(dY) + Y−1dv (65)

it is straight forward to show that when considering a perturbation on the system’s input (i.e. the differential velocity term dv),

equation (64) reduces to the well known form [25],

𝜅(Y) = max

{‖Y−1dv‖‖f̄‖ ‖Yf̄‖‖dv‖
}

= ‖Y−1‖ · ‖dv‖‖f̄‖ ‖Y‖ · ‖f̄‖‖dv‖ = ‖Y−1‖ · ‖Y‖, (66)
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and that the same result is obtained if one similarly considers a perturbation on the system matrix (i.e. the differential FRF term

dY); the condition number is valid for a perturbation on either the system’s matrix or input.

It is important to note that in deriving the condition number the differential terms dv and dY are lost through cancellation.

That is to say, the condition number does not take into account the amount of the error present, only its relative amplification

(in a normed sense).

In the presence of a uniform input uncertainty (e.g. due to numerical precision, or a bias error), the condition number can

be expected to correctly indicate regions of greater uncertainty in an output. In an experimental context, however, the level

of input uncertainty will generally vary with frequency. This limits the use of the condition number as an indicator of output

uncertainty, particularly as large condition numbers tend to coincide with low levels of input uncertainty.

In the presence of a single dominant mode a high condition number is generally expected since all DoFs are constrained to

move according to the mode shape. Yet, at resonance the response and FRF magnitudes reach a local maximum, and so a large

signal to noise ratio is achieved (i.e. minimal measurement uncertainty). Furthermore, the natural frequencies of a linear system

are inherently stable and do not vary with excitation position, and so the influence of operator uncertainty is also at a minimum.

The condition number, therefore, does not reliably estimate which regions of an output are subject to greater uncertainty. In

contrast, the uncertainty framework proposed herein takes into account not only the amplification of uncertainty (described by

the Jacobian matrix), but the amount of uncertainty present (described by the input covariance matrix).

Although unable to accurately estimate the influence of measurement/operator uncertainty on an acquired blocked force,

the condition number may prove useful in identifying regions that are more susceptible to bias errors, e.g. due to model uncer-

tainties.

It is interesting to note that the condition number can also be derived in terms of the uncertainty framework proposed above.

Consider the square-root of the maximum ratio of the normed output to input relative covariance matrices,

max

{ ‖𝚺f̄‖‖𝔼[f̄f̄T]‖ ‖𝔼[vvT]‖‖𝚺v‖
}1∕2

. (67)

Substituting the blocked force covariance matrix from equation (19) (considering only the operational response covariance)

alongside v = Yf̄ yields,

max

{‖Jv𝚺vJT
v
‖‖𝔼[f̄f̄T]‖ ‖𝔼[Yf̄f̄TYT]‖‖𝚺v‖

}1∕2

. (68)

Applying the Cauchy–Schwarz inequality, ‖AB‖ ≤ ‖A‖ · ‖B‖, and taking the upper limit, yields the maximum value,[‖Jv‖ · ‖𝚺v‖ · ‖JT
v‖‖𝔼[f̄f̄T]‖ ‖𝔼[Y]‖ · ‖𝔼[f̄f̄T]‖ · ‖𝔼[YT]‖‖𝚺v‖

]1∕2

=
[‖Jv‖ · ‖JT

v
‖ · ‖𝔼[Y]‖ · ‖𝔼[YT]‖]1∕2

= ‖Jv‖ · ‖𝔼[Y]‖. (69)

Recalling the Jacobian matrix from section 4.2.1 (omitting the complex matrix mapping operator), the above becomes,‖Jv‖ · ‖𝔼[Y]‖ = ‖𝔼[Y−1]‖ · ‖𝔼[Y]‖ or ‖𝔼[Jv]‖ · ‖𝔼[J−1
v ]‖. (70)

This is in agreement with the standard definition of condition number. It is straightforward to show that the same result is

obtained if the FRF covariance matrix were considered instead. Hence the condition number may interpreted as a ratio of the

output to input relative covariance and expressed in terms of the Jacobian matrices derived above,

𝜅(Y) = ‖J−1
v
‖ · ‖Jv‖ or ‖J−1

Y
‖ · ‖JY‖. (71)

In summary, the condition number may be interpreted as a single number value for the amplification of relative covariance

between the input and output variables, in a normed sense. The condition number does not acknowledge the level of uncertainty

(or error) in either the system’s matrix or input, nor any correlations present. Whilst the condition number may be expressed

in terms of the Jacobian matrices used in the propagation of uncertainty, it provides only a condensed single value description

of the system’s sensitivity to error. In contrast, the Jacobians used in the proposed framework describe with great detail the

sensitivity of each output variable to each input variable. Furthermore, the proposed framework, unlike the condition number,

considers the amount of uncertainty in the system’s matrix and input. This is particularly important as regions of large condition

number (e.g. at resonance) do not tend to coincide with regions of large input uncertainty [10].

7. A note on model uncertainties

The uncertainty propagation framework presented thus far has considered only the random uncertainties present in the

measured FRFs and operational responses, i.e. experimental and source based uncertainty. As discussed in section 1 however,

there exists an additional source of uncertainty, emanating from the use of an approximate model to describe the physical

assembly. Strictly speaking, this form of ‘model uncertainty’ introduces a systematic/bias error as opposed to random uncer-

tainty. Nevertheless, model uncertainty is an important source of error in TPA, and thus warrants a brief discussion with regards

its most likely origin. Furthermore, the proposed uncertainty framework is formulated under the assumption that no significant

bias errors are present, and so the reader should be made aware of how to detect/avoid such errors. A more detailed discussion
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Fig. 4. Constrained (a) and unconstrained (b) source-receiver assemblies.

of model uncertainty and its underlying causes (incompleteness and inconsistency) can be found in Refs. [26,27]. For complete-

ness, key details will be summarised below.

7.1. Completeness

Completeness describes the degree to which an interface has been correctly represented. For example, whether enough DoFs

have been included (i.e. rotations/in-plane). Take for example the assembly in Fig. 4, where a source and receiver are coupled

via two sets of DoFs, ci and cj. Suppose the DoFs cj are unknown, or known but cannot be measured (e.g. rotational DoFs). It is

straight forward to show that a characterisation of the blocked force at the remaining ci DoFs (i.e. neglecting those at cj) leads

to [27,28],

̃̄fCci
= fSci

+ Y−1
Cbci

YCbcj
f̄Scj

(72)

where: ̃̄fCci
is the acquired blocked force at the DoFs ci, f̄Sci

is the true blocked force at the DoFs ci, and Y−1
Cbci

YCbcj
f̄Scj

is an

additional term due to the neglected DoFs cj (i.e. incompleteness). Note that, due to this addition term, the acquired blocked

force is a property of the coupled assembly, not the source. When used to predict an operational response (either in the same

assembly, as in a blocked force TPA, or in a new assembly, as in a component-based TPA), this additional term will introduce a

bias error.

When characterising an active component in terms of its blocked force it is important to minimise the effect of bias errors

due to neglected DoFs. With this in mind, Meggitt et al. [27,28] proposed an Interface Completeness Criterion (ICC). Based on

measurements conducted during a standard in-situ blocked force characterisation, the ICC provides a quantitative assessment of

the degree to which an interface has been completely defined. The ICC is derived by considering an assembly whose known DoFs

are mathematically blocked (see Fig. 4b). In this constrained assembly, transmission between remote source (a) and receiver (b)

side DoFs can only occur through the unknown interface DoFs (cj). Based on this notion the ICC is defined as [27,28],

ICCba =

||||YCba

(
Y
(ci)
Cba

)H||||2
YCba

(
YCba

)H
Y
(ci)
Cba

(
Y
(ci)
Cba

)H
(73)

where,

Y
(ci)
Cba

= YCbci
Y−1

Ccici
YCcia

. (74)

In the above, YCba is a vector of coupled FRFs measured between a set of remote source side DoFs a and a single receiver DoF b.

Y
(ci)
Cba

is an equivalent vector of FRFs that have been predicted by considering only the known interface DoFs ci (i.e. neglecting the

unknown DoFs cj). In the case that the interface is fully defined (i.e. |cj| = 0), Y
(ci)
Cba

= YCba and the ICC is equal to 1. Similarly, in

the case that no interface DoFs are considered (i.e. |ci| = 0) the ICC is undefined. If multiple receiver side DoFs are considered,

the FRFs YCba and Y
(ci)
Cba

can be vectorised appropriately and an overall ICC computed [27].

Based on the ICC one can infer the quality of an acquired blocked force; the greater the ICC, the smaller the influence of model

uncertainty, and the more reliable the blocked force. Applications of the ICC in this context can be found in Refs. [28–30].
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Table 1

Geometric and material properties used in the numerical simulation, where l × w × h are the sub-structure

dimensions, E is Young’s modulus, ρ is density, ν is Poisson’s ratio and η is loss factor.

Sub-structure l × w × h (m) E (GPa) ρ (kg/m3) ν (−) η(−)

Source 0.51 × 0.33 × 0.0015 69 2700 0.3 0.05

Receiver 1 1 × 1.3 × 0.005 3.2 1163 0.3 0.1

Receiver 2 0.8 × 0.6 × 0.005 3.2 1163 0.3 0.1

7.2. Consistency

Consistency relates to a compatibility between the underlying dynamics shared by the active and passive properties of an

assembly (or component). Take for example the prediction of an operational response based on a measured blocked force,

vCr = YCrc
̃̄fSc. (75)

In the case of a blocked force TPA, the blocked force ̃̄fSc is obtained from the same assembly in which a prediction is made.

Substituting the blocked force for its inverse calculation,

vCr = YCrcY−1
Ccc

vCc (76)

and noting that the operational velocity vCc may be expressed in terms of the true blocked force f̄Sc, Eq. (75) may be rewritten

in the form,

vCr = Ym
Crc

(
Ym

Ccc

)−1(
YCccf̄Sc

)m
(77)

where the superscript m has been introduced to denote a measured quantity. From the above it is clear that the prediction of vCr

relies on the successful cancellation of YCcc. Note however, the right most YCcc is ‘contained within’ the operational velocity vCc.

Suppose that during the operational measurement of vCc the passive properties of the structure are altered, for example a

small shift in the frequency of a resonance (or anti-resonance), perhaps due to a change in temperature or load. In this case

the two YCcc terms in Eq. (77) will correspond to different assembly states, and a perfect cancellation will not be achieved.

This inconsistency will introduce a bias error in the operational response prediction. Ideally, it would be possible to quantify

the degree of inconsistency through a metric similar to the ICC described above. However, this problem is subject to further

investigation.

In summary, to minimise the effect of bias errors sufficient levels of completeness and consistency should be achieved. In the

presence of large bias errors, the proposed uncertainty framework may yield in accurate uncertainty estimates.

8. Numerical case study

In this section we will demonstrate the proposed uncertainty framework through a two-part numerical example. In part

one a blocked force TPA is considered, where the blocked force is obtained using the in-situ method and used to predict an

‘operational’ response in a coupled receiver structure. In part two a component-based TPA is considered, where the blocked force

obtained from part one is used to predict the operational response in a new assembly, obtained using dynamic sub-structuring.

The assemblies considered each comprise two simply supported plates rigidly coupled at four DoFs. The plates are modelled

using the Lagrange-Rayleigh-Ritz approach with sine-sine basis functions [31]. Material properties and sub-structure geometries

are detailed in Table 1.

8.1. Blocked force TPA

Shown in Fig. 5 is a diagrammatic illustration of the numerical example considered here. A source plate (in blue) is coupled

to a receiver plate (in green) through four rigid elements where, for simplicity, only vertical z translations are considered.

We are interested in determining the blocked force at the interface DoFs c, and the uncertainties thereof, based on simulated

‘measurements’ of the FRF YCcc ∈ ℂ4×4 and the operational velocity vCc ∈ ℂ4,

f̄Sc = Y−1
Ccc

vCc. (78)

The operational velocity vCc is determined by considering a unit excitation at the internal source DoF a, i.e. vCc = YCca ∈ ℂ4.

The blocked force f̄Sc ∈ ℂ4 will then be used to predict an operational response in the receiver at a remote DoF b using the FRF

HCbc ∈ ℂ1×4 (the reciprocal case HCbc = HT
Ccb

will also be considered),

vCb = HCbcf̄Sc. (79)

Note that HCbc will be used in place of YCbc to avoid confusion between the forward and inverse FRFs.
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Fig. 5. Diagrammatic illustration of numerical blocked force TPA. (a) - Coupled assembly. (b) - Excitation distribution at each interface DoF.

Uncertainties in the inverse and forward FRFs, YCcc and HCbc, are modelled by randomly distributing their excitation positions

according to a bivariate Gaussian distribution, as illustrated in Fig. 5b. This simulates the effect of operator uncertainty (for

clarity measurement uncertainty is not considered in the FRFs). Ten random excitations are performed at each interface DoF.

Uncertainty in the operational velocity vCc is modelled by adding uncorrelated noise at a specified Signal to Noise Ratio (SNR).

This simulates the effect of both measurement and source uncertainty. Fifty independent velocity ‘measurements’ are obtained

this way.

For the blocked force TPA, two cases will be considered. In the first, the forward FRF HCbc is measured reciprocally, thus

ensuring its independence from YCcc (i.e. HT
Ccb

and YCcc do not share excitations). Note that when using reciprocal measure-

ments, it is assumed that the error related to inaccurate reciprocal conditions may be considered negligible. In the second case,

the forward FRF HCbc is measured simultaneously to YCcc through a shared excitation, thus ensuring their correlation. These two

cases will highlight the importance of the additional covariance terms in Eq. (41).

Shown in Fig. 6 are some illustrative examples of the simulated measurements with their corresponding uncertainties (for

clarity these are shown as max/min bounds). The level of operator uncertainty is set by the standard deviation of the excita-

tion distribution. For the blocked force TPA measurements, σ = 0.0013, which corresponds, roughly, to an excitation within

±0.25 cm of the indented position, 95% of the time (see Fig. 5b). The operational velocity was assigned an SNR of 15 dB. It is

interesting to note that the severity of the operator uncertainty generally increases with frequency. This is due to the greater

sensitivity of anti-resonance positioning with a decrease in wavelength. Similar effects are often observed in practice.

Based on the simulated measurements described above, the bivariate covariance matrices 𝚺Y ∈ ℝ32×32, 𝚺v ∈ ℝ8×8, 𝚺H ∈
ℝ8×8, and 𝚺H,Y ∈ ℝ8×32 are estimated, as per section 4.4. Also calculated are the expectations 𝔼

[
YCcc

]
∈ ℂ4×4, 𝔼

[
vCc

]
∈ ℂ4 and

𝔼
[
HCbc

]
∈ ℂ1×4. These expectations are used to construct the necessary Jacobians, as per section 4.

The inverse propagation of uncertainty is composed of two terms (see Eq. (19)), one related to the FRF uncertainty, and the

other to the velocity uncertainty. To validate the proposed framework these terms are separated and compared independently

against Monte-Carlo (MC) simulations (this is possible as they are uncorrelated).

Shown in Fig. 7 are the bivariate uncertainties of the blocked force element f̄ S1
due to the velocity uncertainty 𝚺v only.

From top to bottom each plot corresponds to; RelVar
[

Re
(

f̄ S1

)]
, RelVar

[
Im
(

f̄ S1

)]
and RelCov

[
Re
(

f̄ S1

)
, Im

(
f̄ S1

)]
, where the

relative variance and covariance are defined as so,

RelVar [A] = Var[A]
𝔼[A]2

(80)

RelCov [A, B] = Cov[A, B]
𝔼[A]𝔼[B]

. (81)

In blue are the results obtained from a MC propagation, where the blocked force due to each velocity measurement (of which

there were fifty) is calculated. In orange are the results of the proposed framework (referred to as LP, for linear propagation, in

all figure legends hereafter). The two are in excellent agreement. This is expected as the velocity’s contribution to the blocked



19J.W.R. Meggitt et al. / Journal of Sound and Vibration 483 (2020) 115425

Fig. 6. Examples of simulated uncertainty for the mobility (a) and velocity (b). Operator uncertainty (mobility) was set to σ = 0.0013. Signal to Noise Ratio (velocity) was

set to 15 dB.

Fig. 7. Bivariate uncertainty in the blocked force f̄ S1
, due to the velocity uncertainty 𝚺v only, predicted using the LP framework (orange) and a MC propagation (blue). Signal

to Noise Ratio (SNR) was set to 15 dB. (a) - RelVar
[
Re
(

f̄ S1

)]
, (b) - RelVar

[
Im
(

f̄ S1

)]
, (c) - RelCov

[
Re
(

f̄ S1

)
, Im

(
f̄ S1

)]
. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

force uncertainty is linear. As such, there are no higher order derivatives and the Jacobian provides an exact propagation.

Shown in Fig. 8 are the bivariate uncertainties of the blocked force element f̄ S1
due to the FRF uncertainty 𝚺Y only. Unlike

Fig. 7 exact agreement is not obtained here, nor is it expected. The FRF’s contribution to the blocked force uncertainty is non-

linear and therefore subject to some approximation. Nevertheless, for the level of uncertainty considered here (greater than

what would typically be expected experimentally), the proposed framework is in good agreement with the MC propagation.

A similar level of agreement was obtained for all other 𝚺f̄ elements. Note that a more accurate excitation distribution (i.e. a

lower level of uncertainty) would yield better agreement. Likewise, a less accurate excitation distribution would yield poorer

agreement.

It is important to note that the results presented in Fig. 8 were obtained by taking the FRF covariance matrix, 𝚺Y, and setting

all uncorrelated elements to 0, i.e. block diagonalising 𝚺Y with a 4 × 4 structure; under the assumption of operator uncertainty
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Fig. 8. Bivariate uncertainty in the blocked force f̄ S1
, due to the mobility uncertainty 𝚺Y only, predicted using the LP framework (orange) and a MC propagation (blue).

Operator uncertainty was set at σ = 0.0013. (a) - RelVar
[
Re
(

f̄ S1

)]
, (b) - RelVar

[
Im
(

f̄ S1

)]
, (c) - RelCov

[
Re
(

f̄ S1

)
, Im

(
f̄ S1

)]
.

Fig. 9. (a) - Relative variance of the receiver response magnitude, RelVar
[|vCb|], predicted using the LP framework with Eq. (50) (orange), and a MC propagation (blue). (b)

- True (orange) and predicted (yellow) receiver response magnitude |vC b| with a ±95% confidence bound based on the LP bivariate uncertainty 𝚺v and the CI estimation

procedure described in section 4.3.1 (solid). Also shown is the±95% confidence bound based on the MC propagation (dashed). (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web version of this article.)

only FRFs that share an excitation are correlated. This non-zero structure is illustrated in Fig. 11a, where the y/x axis labels

correspond to matrix row/column indices, respectively. This was necessary as only ten excitations were considered for each FRF,

meaning that the uncorrelated covariance terms had not yet reached sufficiently small values. The MC propagation, however,

was performed using 2000 realisations, thus providing sufficient observations for the uncorrelated terms to diminish.

Figs. 7 and 8 demonstrate the inverse propagation of uncertainty using the proposed framework. A blocked force TPA also

requires the forward prediction of an operational response. Shown in Fig. 9 are the results of the forward propagation in the case

that HCbc = HT
Ccb

is measured reciprocally (i.e. independently of YCcc). In this case the additional covariance term in Eq. (49) is
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Fig. 10. Condition number of the FRF matrix YCcc compared against the relative variance of the blocked force magnitude |f̄ S1
|.

Fig. 11. Non-zero structure of the bivariate FRF covariance matrices: (a) - inverse FRF YCcc , (b) - covariance between inverse and forward FRFs, (c) - forward FRF (direct)

HCbc , (d) - forward FRF (reciprocal) HCcb .

not required, as the inverse and forward FRF matrices are uncorrelated.

Shown in Fig. 9a is the relative variance of the receiver response magnitude |vCb| (orange), calculated as per Eq. (50), using

the proposed framework to estimate the required bivariate response uncertainty 𝚺v. Also shown (blue) is the result of a MC

propagation. Based on Eq. (49), the framework estimation has taken into account the blocked force uncertainty 𝚺f̄ and the

forward FRF uncertainty 𝚺H (neglecting the forward/inverse FRF covariance 𝚺H,Y). Note that as the forward FRF was measured

reciprocally (i.e. using a single shared excitation at b), there exist inter-FRF correlations between all of its elements. As such

𝚺H is fully populated, as illustrated in Fig. 11d. The MC result was obtained by performing 2000 inverse blocked force and

forward response calculations, whilst randomly sampling from the set of inverse FRF, operational velocity, and forward FRF

measurements. The absolute value of each response prediction was then taken and the relative variance computed.

The MC and framework estimated uncertainties are in good agreement across the entire frequency range considered. This

result confirms a successful propagation of uncertainty. However, it is often more convenient to present an uncertainty relative

to its expected value in the form a confidence interval (CI). Shown in Fig. 9b are the true (orange) and predicted (yellow) opera-

tional responses. Also shown are two ±95% confidence intervals, obtained using the estimation procedure presented in section

4.3.1, based on the proposed framework (solid) and the MC propagated (dashed) uncertainty. Not only does the LP CI95 bound

appear to encapsulate the true and predicted response, it is in good agreement with the MC CI95 bound across the majority of

the frequency range.

It is worth noting that any disagreement may stem from either: the inverse propagation of uncertainty (where a linear

assumption is made), the MC propagation (where only 2000 realisations were considered), or the CI estimation (which also

relies on a MC sampling).3 Nevertheless, for the level of input uncertainty considered the framework provides an acceptable

level of accuracy.

It is interesting to compare the results of the uncertainty framework with the condition number of the FRF matrix YCcc,

as shown in Fig. 10 (blue). Also shown in Fig. 10 is the relative variance of the blocked force magnitude (orange). From this

comparison it is clear that the condition number provides a poor indication of which regions are most sensitive to the uncertainty

present. For example, around 75 Hz the blocked force magnitude |f̄ S1
| has a maximum relative variance. The condition number,

however, does not indicate that we should expect large uncertainty here. Similarly, around 30 Hz the condition number suggests

3 Note that the MC CL95 bound was obtained directly from the 2000 realisations performed in the MC propagation. The LP CL95 bound was obtained by

generating 10000 random samples from the operational response’s expected value and bivariate covariance matrix.
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Fig. 12. (a) - Relative variance of the receiver response magnitude, RelVar
[|vCb|], predicted using the LP framework with Eq. (50) (orange), and a MC propagation (blue).

(b) - True (orange) and predicted (yellow) receiver response magnitude |vC b| with a ±95% confidence bound based on the LP bivariate uncertainty 𝚺v and the CI estimation

procedure described in section 4.3.1 (solid). Also shown is the±95% confidence bound based on the MC propagation (dashed). (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web version of this article.)

that we should expect large uncertainty, where in fact the relative variance is relatively low. These results are in agreement with

the discussion of section 6, and justify the use of a more rigorous uncertainty estimate.

Shown in Fig. 12 are the forward propagation results in the case that HCbc is measured directly (i.e. simultaneously to YCcc).

In this case the inverse and forward FRF matrices are correlated through their shared excitation, thus we require the additional

covariance terms in Eq. (49). When measured directly, excitations are performed at each interface DoF. As we are considering

only a single response position b, the forward FRF matrix, HCbc, does not possess any inter-FRF correlation. Consequently the

covariance matrix 𝚺H is block diagonal, as illustrated in Fig. 11c.

Notice that there has been a considerable decrease in the relative variance and the associated CI bounds. It happens that when

measured directly, the effect of operator uncertainty in the inverse and forward FRF matrices cancel exactly, leaving behind only

the velocity’s contribution to the uncertainty.

This result may be justified as so. Taking the ith excitation at each interface DoF c, the matrices YCcci
and HCbci

are ‘measured’.

From YCcci
the blocked force f̄Sci

is determined. Note that the excitation position of YCcci
defines the position of the blocked

force, i.e. by exciting away from the interface the blocked force is defined internally to the source (albeit only slightly). Using

the blocked force f̄Sci
and the forward FRF HCbci

the response at b is predicted. Since the forward FRF is measured from the

same position as the ‘internal’ blocked force, ci, it correctly predicts the operational response. Since this will be true for all

‘realisations’, the uncertainty in excitation position does not influence the uncertainty in a response prediction. However, this is

only true when: a) excitations are performed solely at the interface, b) operator uncertainty is the primary source of uncertainty,

and c) the number of DoFs contributing to the response is matched by the number of DoFs used to define the interface. In the

case that measurement uncertainty is present this perfect cancellation would not occur, as the inverse and forward FRFs would

be effected by uncorrelated uncertainty. Furthermore, if the blocked force is determined using reciprocal measurements, or

over-determined using additional responses positions, perfect cancellation will not occur.

In summary, Figs. 7–12 confirm the validity of the proposed uncertainty propagation framework in the context of a blocked

force TPA. In the following section a component-based TPA will be considered, where the forward FRF matrix HCbc is obtained

through a dynamic sub-structuring procedure.

8.2. Component-based TPA

In a component-based TPA the forward FRF HCbc is determined by means of dynamic sub-structuring, where the FRFs of

each constituent sub-structure are measured independently and coupled together as per section 3. In this example, the source

sub-structure used in the above blocked force TPA is coupled to a second receiver, details of which are given in Table 1, and

its operational response predicted. The effect of operator uncertainty on the measured source and receiver FRFs, YS ∈ ℂ4×4 and

YR ∈ ℂ5×5, is considered with a value of σ = 0.0026 in both, twice that used in the blocked force TPA. Based on the measured

source and receiver FRFs, the uncoupled (i.e. block diagonal) FRF matrix [Y] ∈ ℂ9×9 is built, and the bivariate covariance matrix

𝚺[Y] ∈ ℝ162×162 is estimated. Note that measurement uncertainty is not considered in the FRFs.
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Fig. 13. Non-zero structure of the uncoupled FRF covariance matrix 𝚺[Y] under the assumptions of full sub-structure correlation (a), and operator uncertainty only (b).

Fig. 14. Bivariate uncertainty in the coupled FRF HC51
, due to the uncoupled FRF uncertainty 𝚺[Y] , predicted using the LP framework (orange) and a MC propagation (blue).

Operator uncertainty was set at σ = 0.0026. (a) - RelVar
[
Re
(

HC51

)]
, (b) - RelVar

[
Im
(

HC51

)]
, (c) - RelCov

[
Re
(

HC51

)
, Im

(
HC51

)]
. (For interpretation of the references to

colour in this figure legend, the reader is referred to the Web version of this article.)

Although large, relative to the size of the system considered, 𝚺[Y] is sparse in structure; the FRF matrices YS and YR are

uncorrelated. The non-zero structure of 𝚺[Y] is shown in Fig. 13a. Under the assumption of operator uncertainty the columns of

each FRF matrix are also uncorrelated with one another. In this case the non-zero structure of 𝚺[Y] is shown in Fig. 13b. As only

ten excitations are performed for each FRF this non-zero structure was imposed to remove any covariance terms that had not

yet diminished sufficiently.

Shown in Fig. 14 are the bivariate uncertainties of the coupled FRF element HC51
(i.e. from the interface DoF c1 to the remote

receiver DoF b), due to the operator uncertainty in YS and YR. From top to bottom each plot corresponds to: RelVar
[

Re
(

HC51

)]
,

RelVar
[

Im
(

HC51

)]
and RelCov

[
Re
(

HC51

)
, Im

(
HC51

)]
. In blue are the results obtained through a MC propagation, where 2000

FRF matrix realisations are coupled using the dual DS procedure. In orange are the results of the proposed framework (i.e

equation (45)). Good agreement is achieved across the entire frequency range of interest.

Shown in Fig. 15a is the relative variance of the coupled FRF magnitude |HC51
| (orange) obtained using the proposed frame-

work alongside Eq. (50). Also shown (blue) are the equivalent MC predictions. As expected based on Fig. 14 good agreement is
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Fig. 15. (a) - Relative variance of the coupled FRF magnitude, RelVar
[|HC51

|], predicted using the LP framework with Eq. (50) (orange), and a MC propagation (blue). (b) -

True (orange) and predicted (yellow) coupled FRF magnitude |HC51
|with a ±95% confidence bound based on the LP bivariate uncertainty𝚺H and the CI estimation procedure

described in section 4.3.1 (solid). Also shown is the ±95% confidence bound based on the MC propagation (dashed). (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

obtained. This same result is presented as a ±95% CI in Fig. 15b alongside the true (orange) and predicted (yellow) FRF magni-

tudes. The CI bounds were estimated using the procedure outlined in section 4.3.1.4 The two CI bounds are in good agreement

across most of the frequency range considered. Again, it is worth noting that any disagreement between these bounds may stem

from either: the linearised propagation of uncertainty, the MC propagation, or the CI estimation. Nevertheless, Figs. 14 and 15

demonstrate an accurate propagation of uncertainty through a DS prediction using the proposed framework.

Having propagated the uncoupled FRF uncertainty through a DS prediction, we now have an estimate for the forward FRF, H,

and its uncertainty, 𝚺H. Alongside the blocked force, and its uncertainty 𝚺f̄ (obtained as part of the blocked force TPA), we are

now able to estimate the uncertainty in a component-based TPA prediction, as per Eq. (48).

Shown in Fig. 16a is the relative variance of the response magnitude |vCb| obtained using the proposed framework, alongside

Eq. (50). Also shown are the equivalent MC predictions. The MC result was obtained from 4000 realisations, each generated by

randomly sampling from the 2000 coupled FRF matrices (obtained from the DS MC propagation) and the 2000 blocked force

estimates (obtained from the blocked force MC propagation). Again, good agreement is obtained between the two predictions.

This same result is presented as a ±95% CI in Fig. 16b alongside the true (orange) and predicted (yellow) response magnitudes.

Again, good agreement is obtained between the two CI bounds, demonstrating an accurate propagation of uncertainty through

a component-based TPA prediction.

Having successfully propagated uncertainty through a component-based TPA, we will briefly consider the rank ordering of

contributions, and the uncertainty thereof. Shown in Fig. 17a are the magnitude contributions of each interface DoF over the

frequency range 10–100 Hz. Also shown in black is the total response magnitude. Notice that at some frequencies the individual

contribution magnitudes exceed the total response; this is due to the neglect of phase interactions between the individual

contributions. Nevertheless, over the region considered the contributions |vCb(3)
| and |vCb(4)

| appear the most dominant. Given

that both |vCb(3)
| and |vCb(4)

| have an associated uncertainty, we are interested in the probability that one (say |vCb(4)
|) is greater

than the other, P
(|vCb(4)

| ≥ |vCb(3)
|). Applying the procedure outlined in section 5 leads to the frequency dependent probability

shown Fig. 17b. This probability provides a measure of confidence in the rank ordering of |vCb(3)
| and |vCb(4)

|. For example, in

the region of 40 Hz, there is a high probability that |vCb(4)
| ≥ |vCb(3)

|. Similarly, in the region of 65 Hz, there is a high probability

that |vCb(3)
| ≥ |vCb(4)

|. Although this result may be inferred from the magnitudes alone (i.e. Fig. 17a), doing so does not take into

account the uncertainty present in a given contribution.

9. Experimental case study

In this section we will demonstrate the proposed uncertainty propagation framework using an experimental case study. The

example will consider the in-situ characterisation of blocked forces on the electric steering system shown in Fig. 18a, and the

subsequent prediction of an operational response (i.e. an on-board validation). This example is representative of a standard

4 Note that the MC CL95 bound was obtained directly from the 2000 realisations performed in the MC propagation. The LP CL95 bound was obtained by

generating 10000 random samples from the coupled FRFs expected value and bivariate covariance matrix.
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Fig. 16. (a) - Relative variance of the component-based TPA response prediction, RelVar
[|vCb|], predicted using the LP framework with Eq. (50) (orange), and a MC propa-

gation (blue). (b) - True (orange) and predicted (yellow) response prediction magnitude |vCb| with a ±95% confidence bound based on the LP bivariate uncertainty 𝚺v and

the CI estimation procedure described in section 4.3.1 (solid). Also shown is the ±95% confidence bound based on the MC propagation (dashed). (For interpretation of the

references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 17. (a) - Rank ordering of blocked force contributions. (b) - Probability of the contribution magnitude |vCb(4)
| exceeding |vCb(3)

|.

Fig. 18. Experimental case study photos and interface fixtures. An electric steering system coupled to a test bench via two cross-like elements, each instrumented with 3

bi-axial accelerometers. (a) - Steering system coupled to test bench. (b) - Interface coupling close up. (c) - Interface fixtures with applied excitations.

blocked force TPA procedure. Dynamic sub-structuring will not be considered.

The electric steering system is coupled to a representative receiver structure via 2 cross-like elements (see Fig. 18b). These

fixtures have been designed to facilitate a characterisation in 6 DoFs (at each foot). Each cross element is instrumented with

3 bi-axial accelerometers as illustrated in Fig. 18c, where red arrows are used to indicate the direction of applied forces in the
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Fig. 19. Examples of uncertainty for the measured accelerance (a) and acceleration: (b) - artificial excitation, (c) - forced ramp up/down.

measurement of assembly FRFs. Also included were a further 6 bi-axial accelerometers on the underside of the receiver structure.

These additional DoFs allow for a two-fold over-determination in the blocked force characterisation. A final accelerometer is

mounted remote from the interface and is used as a target response for an on-board validation. Note that whilst mobility and

velocity notion will be retained, in what follows all results are presented in terms of accelerance and acceleration.

The assembly FRF matrix YC =
[
YCcc|YCbc

]T ∈ ℂ24×12 (with YCcc ∈ ℂ12×12 and YCbc ∈ ℂ12×12) was measured using an impact

based approach, with 15 repeated excitations at each interface DoF. From these repeated excitations the expected FRF matrices

YCcc and YC were calculated, alongside their respective bivariate covariance matrices 𝚺YCcc
∈ ℝ288×288 and 𝚺YC

∈ ℝ576×576. The

FRF matrices YCcc and YC are used to calculate, respectively, determined and over-determined blocked forces. Two operational

source states are considered. The first is an artificial one, obtained using a shaker driven by constant white noise. The second

consists of a repeated forced run up/down manoeuvrer of the steering system. For each case the operational response vectors

vCc ∈ ℂ12 and vC =
[
vCc|vCb

]T ∈ ℂ24 are measured. To obtain an appropriate covariance matrix the operational response is

recorded for approx. 1 min. This signal is separated into discrete time windows with an overlap of 50%. The phase of each

window is then reassigned to an appropriate sensor. These phase corrected time windowed response vectors are then used to

estimate the bivariate covariance matrices 𝚺vCc
∈ ℝ24×24 and 𝚺vC

∈ ℝ48×48.

Shown in Fig. 19 are some examples of the FRF and operational response measurements and their associated uncertainties

(for clarity these are shown as max/min bounds). In Fig. 19a a driving point and transfer FRF are shown (max/min bounds are

obtained from the 15 repeated excitations). In Fig. 19b an operational response due to an artificial excitation is shown (max/min

bounds are obtained across the individual time windows). In Fig. 19c an operational response due to a forced ramp up/down

manoeuvrer is shown (max/min bounds are again obtained across the individual time windows).

Note that the operational response uncertainties in Fig. 19b and c are quite broad. This is to be expected, given that we

are looking at the total variation of the response over time. If interest lay in the variation of the mean value, the covariance

calculated from the total variation may be scaled by the number of windows, as described in section 4.4. This would enable a

propagation of uncertainty in the mean value of the response, as opposed to its total variation over time.

Shown in Fig. 20 are the bivariate uncertainties of the blocked force element f̄ S1
, for the determined case (i.e. using only the

interface DoFs), due to the FRF uncertainty 𝚺YCcc
only. Note that for the square FRF matrix YCcc the Jacobian in equation (36)

is used to propagate its uncertainty. From top to bottom each plot corresponds to: RelVar
[
Re
(

f̄ S1

)]
, RelVar

[
Im
(

f̄ S1

)]
, and

RelCov
[
Re
(

f̄ S1

)
, Im

(
f̄ S1

)]
. The framework predicted uncertainty (orange) is compared against a Monte-Carlo propagation

(blue) where 5000 random FRF matrix realisations are inverted and a blocked force calculated for each. The two are in excellent

agreement. This indicates a successful propagation of uncertainty through an in-situ blocked force characterisation.
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Fig. 20. Bivariate uncertainty in the determined blocked force f̄ S1
, due to the FRF uncertainty 𝚺YCcc

, predicted using the LP framework (orange) and a MC propagation (blue).

(a) - RelVar
[
Re
(

f̄ S1

)]
, (b) - RelVar

[
Im
(

f̄ S1

)]
, (c) - RelCov

[
Re
(

f̄ S1

)
, Im

(
f̄ S1

)]
. (For interpretation of the references to colour in this figure legend, the reader is referred to

the Web version of this article.)

Shown in Fig. 21 are the bivariate uncertainties of the blocked force element f̄ S1
, for the over-determined case (i.e. using both

interface and remote receiver DoFs), due to the FRF uncertainty 𝚺YC
only. Note that for the non-square FRF matrix YC the Jaco-

bian in equation (35) is used to propagate its uncertainty. From top to bottom each plot corresponds to: RelVar
[

Re
(

f̄ S1

)]
,

RelVar
[

Im
(

f̄ S1

)]
, and RelCov

[
Re
(

f̄ S1

)
, Im

(
f̄ S1

)]
. The framework predicted uncertainty (orange) is compared against a

Monte-Carlo propagation (blue) where 5000 random FRF matrix realisations are pseudo-inverted, and a blocked force calculated

for each. The two are in excellent agreement. This indicates a successful propagation of uncertainty through an over-determined

blocked force characterisation.

The results of Figs. 20 and 21 are representative of those in the remaining entries of the blocked force bivariate covariance

matrix 𝚺f̄ ∈ ℝ24×24. In a practical situation, where the blocked force is to be transferred between a component manufacturer

and client, the bivariate uncertainty 𝚺f̄ ∈ ℝ24×24 should accompany the blocked force f̄S, thus enabling the client to further

propagate the experimental uncertainties present.

It was shown in section 8 that the propagation of response uncertainty is exact, in that its propagating function is linear. For

this reason we have chosen to omit the bivariate covariance due to the operational response uncertainty.

Shown in Fig. 22 are the remote response predictions (i.e. on-board validations) for the artificial and forced excitations

alongside the upper bound of their associated 95% confidence intervals. The lower bound has been omitted for clarity. In each

plot two confidence bounds are presented, one obtained via the proposed framework, and the other via a full MC propagation.

In Fig. 22a the response due to an artificial excitation is shown, with the contribution of source uncertainty being neglected.

This result thus demonstrates the successful propagation of FRF uncertainty through both the inverse and forward calculation

steps. Note that the inverse and forward FRFs are correlated, and so Eq. (41) is used, as opposed to Eq. (38). In Fig. 22a an

additional bound is shown in grey. This corresponds to the propagated uncertainty when neglecting the inverse/forward FRF

covariance, i.e. assuming 𝚺H,Y = 𝚺Y,H = 0. As expected this uncorrelated bound is greater than the true bound (in black), as the

inverse/forward FRF correlation has the effect of reducing the level of uncertainty, as was illustrated in the numerical example.

This result suggests that, in a practical TPA, measuring indicator and target location FRFs simultaneously may provide a more

accurate response prediction.

In Fig. 22b the response due to an artificial excitation is shown including the uncertainty contribution of both the FRFs and

source. Note that the covariance 𝚺v has been left unscaled. As such, the confidence bound represents the limit below which the

response magnitude, due to an artificial excitation, would be expected to lie (97.5% of the time). In Fig. 22c the response due to

a forced ramp up/down excitation is shown including the uncertainty contribution of both the FRFs and source.
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Fig. 21. Bivariate uncertainty in the over-determined blocked force f̄ S1
, due to the FRF uncertainty 𝚺YC

, predicted using the LP framework (orange) and a MC propagation

(blue). (a) - RelVar
[
Re
(

f̄ S1

)]
, (b) - RelVar

[
Im
(

f̄ S1

)]
, (c) - RelCov

[
Re
(

f̄ S1

)
, Im

(
f̄ S1

)]
. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

Fig. 22. Operational response prediction for artificial and forced excitations with upper ±95% confidence bounds predicted using the LP framework (solid) and a MC

propagation (dashed), with the CI estimation procedure described in section 4.3.1. (a) - Artificial excitation considering only FRF uncertainty. (b) - Artificial excitation

considering both FRF and source uncertainty. (c) - Forced ramp up/down excitation considering both FRF and source uncertainty. In (a) an addition upper bound is shown

in grey. This corresponds to the case in which the covariance between the inverse and forward FRFs is neglected.
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Fig. 23. Measured (purple) and predicted (orange) operational response for artificial and forced excitations with upper ± 95% confidence bounds predicted using the LP

framework (black). (a) - Artificial excitation considering only FRF uncertainty. (b) - Artificial excitation considering both FRF and source uncertainty. (c) - Forced ramp

up/down excitation considering both FRF and source uncertainty. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)

The results of Fig. 22 demonstrate a successful propagation of both FRF and operational response uncertainty using the

proposed framework. The main advantage of the proposed framework, over a standard MC propagation, are two-fold. First, the

linear propagation may be performed with far less computation resources. Second, the proposed framework facilitates a more

detailed uncertainty analysis, for example the rank ordering of uncertainty contributions, by which is meant the determination

of which input uncertainties contribute most to the output uncertainty.

As a final result, Fig. 23 shows the predicted operational response, with its associated confidence bound (as in Fig. 22),

alongside the directly measured response. Good agreement is achieved across the entire frequency range, with only minor

discrepancies at some frequencies. This suggests that the presence of model uncertainty (i.e. bias errors) was minimal, and so

the proposed framework may be applied with confidence.

10. Conclusions

Blocked force and component-based Transfer Path Analysis (TPA) procedures have generated significant interest in recent

years, owing to their ease of application, flexibility, and predictive capabilities. This paper addresses the need for a rigorous

treatment of their associated uncertainties. Building on the developments of previous works [10,12,13] a combined uncertainty

framework is presented for blocked force and component-based TPA procedures. The framework is formulated using a linear

covariance propagation and acknowledges both the complex and correlated nature of the underlying uncertainty. Given the

symmetry of the underlying equations, the present framework is also applicable to classical (matrix inverse) TPA.

The proposed uncertainty framework comprises three steps. In the first step, Frequency Response Function (FRF) and oper-

ational response uncertainty is propagated through an inverse procedure onto the blocked force. If a component-based TPA is

considered, step two propagates the sub-structure FRF uncertainty through the chosen Dynamic Sub-structuring (DS) procedure

onto the coupled assembly’s forward FRF. Finally, in step three, the forward FRF and blocked force uncertainties are propagated

onto the TPA response prediction.

The uncertainty framework is summarised through a series of simple equations which can be readily implemented into

computer code. Its output is a bivariate covariance matrix that describes the uncertainty in a response prediction (or a blocked

force estimation) based on the uncertainty of the experimental data. An advantage of the proposed framework is that it requires

no additional experimental effort above what would normally be required.

To accompany the uncertainty propagation, a Monte-Carlo procedure was proposed to determine the magnitude confidence

bound of a complex random variable (e.g. a response prediction). Uncertainty in the rank ordering of contributions was also

addressed and an appropriate procedure described. Some consideration was given to the condition number, an often-used indi-

cator of uncertainty, and its relation to the proposed framework. Although not the main focus of this paper, the issue of model
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uncertainty was also acknowledged and its most likely origins described (i.e. systematic errors due to incompleteness and/or

inconsistency).

The framework has been demonstrated both numerically and experimentally, and shown to provide good agreement with

Monte-Carlo simulations. Interestingly, it was shown that a considerable reduction in uncertainty can be obtained by measuring

indicator and target FRFs simultaneously, as opposed to reciprocally. It was further demonstrated through the numerical exam-

ple that the condition number of an FRF matrix provides a poor indication of experimental uncertainty compared to the more

rigorous framework presented here.
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